Sample records for factor gm-csf granulocyte

  1. Effects of granulocyte-macrophage colony stimulating factor (GM-CSF) on biomaterial-associated staphylococcal infection in mice.

    PubMed

    Rózalska, B; Ljungh, A; Paziak-Domańska, B; Rudnicka, W

    1996-01-01

    Staphylococcal infections are a major complication in the usage of biomaterials. Different modifications of polymers have been made to reduce the incidence of such infections. We studied the effects of modifying heparinized polyethylene (H-PE) with mouse recombinant granulocyte-macrophage stimulating factor (rGM-CSF). The elimination of staphylococci (Staphylococcus aureus, S. epidermidis) from the peritoneum of mice implanted with rGM-CSF-coated H-PE was slightly more effective than the elimination of the bacteria from the peritoneum of animals implanted with uncoated H-PE. Most interestingly, the number of staphylococci present in the biofilms covering rGM-CSF-coated implants were significantly lower than the number of bacteria detected on the surface of H-PE not coated with rGM-CSF. In vitro, rGM-CSF restored the anti-bacterial potency of the phagocytes, which had been reduced by surface contact with H-PE. The results suggest that modification of biomaterials with rGM-CSF could be one way of preventing staphylococcal infections; especially in neutropenic disorders, which constitute the highest risk factor for foreign body-associated infections.

  2. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model

    PubMed Central

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration. PMID:26376304

  3. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    PubMed

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  4. Chimeric HIV-1 Envelope Glycoproteins with Potent Intrinsic Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Activity*

    PubMed Central

    Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed EnvGM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized EnvGM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric EnvGM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins. PMID:23565193

  5. G-CSF and GM-CSF in Neutropenia

    PubMed Central

    Mehta, Hrishikesh M.; Malandra, Michael; Corey, Seth J.

    2015-01-01

    Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte/Macrophage Colony Stimulating Factor (GM-CSF) are used widely to promote the production of granulocytes or antigen presenting cells (APC). The Food and Drug Administration approved G-CSF (filgrastim) for the treatment of congenital and acquired neutropenias and for mobilization of peripheral hematopoietic progenitor cells for stem cell transplantation. A polyethylene glycol modified (PEGylated) form of G-CSF is approved for the treatment of neutropenias. Clinically significant neutropenia, rendering an individual immunocompromised, occurs when their number is less than 1500/µl. Current guidelines recommend their use when the risk of febrile neutropenia is greater than 20%. GM-CSF (sargramostim) is approved for neutropenia associated with stem cell transplantation. Because of its promotion of APC function, GM-CSF is being evaluated as an immunostimulatory adjuvant in a number of clinical trials. More than 20 million persons have benefited worldwide, and more than $5 billion sales occur annually in the United States. PMID:26254266

  6. Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances cumulus cell expansion in bovine oocytes

    PubMed Central

    2013-01-01

    Background The objectives of the study were to characterize the expression of the α- and β-subunits of granulocyte-macrophage colony stimulating factor (GM-CSF) receptor in bovine cumulus cells and oocytes and to determine the effect of exogenous GM-CSF on cumulus cells expansion, oocyte maturation, IGF-2 transcript expression and subsequent competence for embryonic development. Methods Cumulus-oocyte complexes (COC) were obtained by aspirating follicles 3- to 8-mm in diameter with an 18 G needle connected to a vacuum pump at −50 mmHg. Samples of cumulus cells and oocytes were used to detect GM- CSF receptor by immunofluorescence. A dose–response experiment was performed to estimate the effect of GM-CSF on cumulus cell expansion and nuclear/cytoplasmic maturation. Also, the effect of GM-CSF on IGF-2 expression was evaluated in oocytes and cumulus cells after in vitro maturation by Q-PCR. Finally, a batch of COC was randomly assigned to in vitro maturation media consisting of: 1) synthetic oviductal fluid (SOF, n = 212); 2) synthetic oviductal fluid supplemented with 100 ng/ml of GM-CSF (SOF + GM-CSF, n = 224) or 3) tissue culture medium (TCM 199, n = 216) and then subsequently in vitro fertilized and cultured for 9 days. Results Immunoreactivity for both α and β GM-CSF receptors was localized in the cytoplasm of both cumulus cells and oocytes. Oocytes in vitro matured either with 10 or 100 ng/ml of GM-CSF presented a higher (P < 0.05) cumulus cells expansion than that of the control group (0 ng/ml of GM-CSF). GM-CSF did not affect the proportion of oocytes in metaphase II, cortical granules dispersion and IGF-2 expression. COC exposed to 100 ng/ml of GM-CSF during maturation did not display significant differences in terms of embryo cleavage rate (50.4% vs. 57.5%), blastocyst development at day 7 (31.9% vs. 28.7%) and at day 9 (17.4% vs. 17.9%) compared to untreated control (SOF alone, P = 0.2). Conclusions GM-CSF enhanced cumulus

  7. Pivotal Roles of GM-CSF in Autoimmunity and Inflammation

    PubMed Central

    Shiomi, Aoi; Usui, Takashi

    2015-01-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review. PMID:25838639

  8. Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates cytokine induction by 1,3-beta-D-glucan SCG in DBA/2 mice in vitro.

    PubMed

    Harada, Toshie; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2004-08-01

    Sparassis crispa Fr. is an edible/medicinal mushroom that recently became cultivable in Japan. SCG is a major 6-branched 1,3-beta-D-glucan in S. crispa showing antitumor activity. We recently found that the splenocytes from naive DBA/1 and DBA/2 mice strongly react with SCG to produce interferon-gamma (IFN-gamma). In this study, cytokines induced by SCG were screened and found to be IFN-gamma, tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-12 (IL-12p70). The addition of recombinant murine GM-CSF (rMuGM-CSF) to spleen cell cultures from various strains of mice synergistically enhanced IFN-gamma, TNF-alpha and IL-12p70 in the presence of SCG. In contrast, neutralizing GM-CSF using anti-GM-CSF monoclonal antibody (mAb) significantly inhibited IFN-gamma, TNF-alpha, and IL-12p70 elicited by SCG. We conclude that GM-CSF is a key molecule for cytokine induction by beta-glucan, and GM-CSF induction by SCG is the specific step in DBA/2 mice in vitro.

  9. Beyond CD34+ cell dose: impact of method of peripheral blood hematopoietic stem cell mobilization (granulocyte-colony-stimulating factor [G-CSF], G-CSF plus plerixafor, or cyclophosphamide G-CSF/granulocyte-macrophage [GM]-CSF) on number of colony-forming unit-GM, engraftment, and Day +100 hematopoietic graft function.

    PubMed

    Alexander, Erin T; Towery, Jeanne A; Miller, Ashley N; Kramer, Cindy; Hogan, Kathy R; Squires, Jerry E; Stuart, Robert K; Costa, Luciano J

    2011-09-01

    The dose of CD34+ cells/kg in the mobilized peripheral blood product is the main determinant of neutrophil and platelet (PLT) engraftment after autologous hematopoietic stem cell transplantation (AHSCT). Whether the method of mobilization, namely, granulocyte-colony-stimulating factor (G-CSF) alone (G), G-CSF plus plerixafor (G+P), or cyclophosphamide + G/granulocyte-macrophage (GM)-CSF (Cy+G/GM), independently affects number of colony-forming unit (CFU)-GM, engraftment, and hematopoietic graft function is unknown. We used a database of AHSCT patients with multiple myeloma or lymphoma to identify three groups with different mobilization strategies receiving transplantation with similar CD34+ cell doses. Groups were compared in terms of CFU-GM, ratio of CFU-GM/CD34+, engraftment of neutrophils and PLTs, and hematopoietic graft function on Day +100. Ninety-six patients were included in the analysis, 26 G, 32 G+P, and 38 Cy+G/GM, with median cell doses of 4.21 × 10(6) , 4.11 × 10(6) , and 4.67 × 10(6) CD34+/kg, respectively (p = 0.433). There was no significant difference in number of CFU-GM between the three groups; however, the ratio of CFU-GM/CD34+ was significantly lower for G+P (p = 0.008). Median time for neutrophil engraftment was 13 days in G+P and 12 days in G and Cy+G/GM (p = 0.028), while PLT engraftment happened at a median of 14.5 days in G+P versus 12 days in G and 11 days in Cy+G/GM (p = 0.012). There was no difference in hematopoietic graft function at Day +100. Plerixafor-based mobilization is associated with slightly reduced number of CFU-GM and minimal delay in engraftment that is independent of CD34+ cell dose. Hematopoietic graft function on Day 100 is not affected by mobilization strategy. © 2011 American Association of Blood Banks.

  10. The role of granulocyte macrophage colony stimulating factor (GM-CSF) in radiation-induced tumor cell migration.

    PubMed

    Vilalta, Marta; Brune, Jourdan; Rafat, Marjan; Soto, Luis; Graves, Edward E

    2018-03-13

    Recently it has been observed in preclinical models that that radiation enhances the recruitment of circulating tumor cells to primary tumors, and results in tumor regrowth after treatment. This process may have implications for clinical radiotherapy, which improves control of a number of tumor types but which, despite continued dose escalation and aggressive fractionation, is unable to fully prevent local recurrences. By irradiating a single tumor within an animal bearing multiple lesions, we observed an increase in tumor cell migration to irradiated and unirradiated sites, suggesting a systemic component to this process. Previous work has identified the cytokine GM-CSF, produced by tumor cells following irradiation, as a key effector of this process. We evaluated the ability of systemic injections of a PEGylated form of GM-CSF to stimulate tumor cell migration. While increases in invasion and migration were observed for tumor cells in a transwell assay, we found that daily injections of PEG-GM-CSF to tumor-bearing animals did not increase migration of cells to tumors, despite the anticipated changes in circulating levels of granulocytes and monocytes produced by this treatment. Combination of PEG-GM-CSF treatment with radiation also did not increase tumor cell migration. These findings suggest that clinical use of GM-CSF to treat neutropenia in cancer patients will not have negative effects on the aggressiveness of residual cancer cells. However, further work is needed to characterize the mechanism by which GM-CSF facilitates systemic recruitment of trafficking tumor cells to tumors.

  11. Delivery of GM-CSF to Protect against Influenza Pneumonia

    PubMed Central

    Subramaniam, Renuka; Hillberry, Zachary; Chen, Han; Feng, Yan; Fletcher, Kalyn; Neuenschwander, Pierre; Shams, Homayoun

    2015-01-01

    Background Since adaptive immunity is thought to be central to immunity against influenza A virus (IAV) pneumonias, preventive strategies have focused primarily on vaccines. However, vaccine efficacy has been variable, in part because of antigenic shift and drift in circulating influenza viruses. Recent studies have highlighted the importance of innate immunity in protecting against influenza. Methods Granulocyte-macrophage colony stimulating factor (GM-CSF) contributes to maturation of mononuclear phagocytes, enhancing their capacity for phagocytosis and cytokine production. Results Overexpression of granulocyte macrophage-colony stimulating factor (GM-CSF) in the lung of transgenic mice provides remarkable protection against IAV, which depends on alveolar macrophages (AM). In this study, we report that pulmonary delivery of GM-CSF to wild type young and aged mice abrogated mortality from IAV. Conclusion We also demonstrate that protection is species specific and human GM-CSF do not protect the mice nor stimulates mouse immunity. We also show that IAV-induced lung injury is the culprit for side-effects of GM-CSF in treating mice after IAV infection, and introduce a novel strategy to deliver the GM-CSF to and retain it in the alveolar space even after IAV infection. PMID:25923215

  12. Epithelial GM-CSF induction by Candida glabrata.

    PubMed

    Li, L; Dongari-Bagtzoglou, A

    2009-08-01

    The main cytokine induced by the interaction of oral epithelial cells with C. glabrata is granulocyte monocyte colony-stimulating factor (GM-CSF); however, the mechanisms regulating this response are unknown. Based on previously published information on the interactions of C. albicans with oral epithelial cells, we hypothesized that interaction with viable C. glabrata triggers GM-CSF synthesis via NF-kappaB activation. We found that C. glabrata-induced GM-CSF synthesis was adhesion-dependent, enhanced by endocytosis, and required fungal viability. NF-kappaB activation was noted during interaction of epithelial cells with C. glabrata, and pre-treatment with an NF-kappaB inhibitor partly inhibited GM-CSF synthesis. Blocking TLR4 with anti-TLR4 antibody did not inhibit GM-CSF production. In contrast, an anti-CDw17 antibody triggered significant inhibition of NF-kappaB activation and GM-CSF synthesis. beta-glucans did not stimulate GM-CSF synthesis, suggesting that the CDw17/NF-kappaB/GM-CSF pathway may be beta-glucan-independent. This study provides new insights into the mechanism of GM-CSF induction by C. glabrata.

  13. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is released by female mouse bladder urothelial cells and expressed by the urothelium as an early response to lipopolysaccharides (LPS).

    PubMed

    Li, Yan; Lu, Ming; Alvarez-Lugo, Lery; Chen, Gang; Chai, Toby C

    2017-04-01

    We studied in vitro and in vivo response of primary mouse bladder urothelial cells (mBUC) and bladder urothelium to lipopolysaccharides (LPS), focusing on granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. Female C57BL/6 mBUC were exposed for 12 hr to differing concentrations of LPS (100 ng/ml to 10 µg/ml). mBUC were also exposed to a single dose of LPS (1 µg/ml) for 3, 6, 12 hr. Neutralizing GM-CSF antibody (0.1 μg/ml) was used block GM-CSF activity in vitro. In vivo experiments were performed, whereby, LPS (1 mg/ml) was instilled intravesically and left to dwell for 30 min followed by harvest of bladder urothelium 3 to 18 hr later. ELISA measured GM-CSF. qPCR quantitated mRNA for GM-CSF, vascular endothelial growth factor-A (VEGF-A), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α). RT-PCR was used to detect mRNA for GM-CSF, GM-CSFRα, and β in bladder tissues. Immunohistofluorescence and Western blots for GM-CSFRα were performed on bladder tissues. LPS induced a dose-dependent release of GM-CSF by mBUC. Mouse bladder urothelium did not express GM-CSF mRNA at baseline, but expressed GM-CSF mRNA 3 hr after in vivo LPS exposure, with GM-CSF mRNA expression disappearing 18 hr later. GM-CSFRα expression was confirmed in bladder urothelium. GM-CSF neutralizing antibody significantly diminished LPS-induced increases of VEGF and COX-2 mRNA expression. Urothelium and mBUC secreted GM-CSF as an early response to LPS. GM-CSF mediated downstream expression of VEGF and COX-2. Urothelial GM-CSF may function as a signaling mediator for both inflammation and pain transduction. Neurourol. Urodynam. 36:1020-1025, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    PubMed Central

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  15. Paediatric Crohn disease patients with stricturing behaviour exhibit ileal granulocyte–macrophage colony-stimulating factor (GM-CSF) autoantibody production and reduced neutrophil bacterial killing and GM-CSF bioactivity

    PubMed Central

    Jurickova, I; Collins, M H; Chalk, C; Seese, A; Bezold, R; Lake, K; Allmen, D; Frischer, J S; Falcone, R A; Trapnell, B C; Denson, L A

    2013-01-01

    Granulocyte–macrophage colony-stimulating factor (GM-CSF) autoantibodies are associated with stricturing behaviour in Crohn disease (CD). We hypothesized that CD ileal lamina propria mononuclear cells (LPMC) would produce GM-CSF autoantibodies and peripheral blood (PB) samples would contain GM-CSF neutralizing capacity (NC). Paediatric CD and control PBMC and ileal biopsies or LPMC were isolated and cultured and GM-CSF, immunoglobulin (Ig)G and GM-CSF autoantibodies production were measured by enzyme-linked immunosorbent assay (ELISA). Basal and GM-CSF-primed neutrophil bacterial killing and signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation (pSTAT5) were measured by flow cytometry. GM-CSF autoantibodies were enriched within total IgG for LPMC isolated from CD ileal strictures and proximal margins compared to control ileum. Neutrophil bacterial killing was reduced in CD patients compared to controls. Within CD, neutrophil GM-CSF-dependent STAT5 activation and bacterial killing were reduced as GM-CSF autoantibodies increased. GM-CSF stimulation of pSTAT5 did not vary between controls and CD patients in washed PB granulocytes in which serum was removed. However, GM-CSF stimulation of pSTAT5 was reduced in whole PB samples from CD patients. These data were used to calculate the GM-CSF NC. CD patients with GM-CSF NC greater than 25% exhibited a fourfold higher rate of stricturing behaviour and surgery. The likelihood ratio (95% confidence interval) for stricturing behaviour for patients with elevation in both GM-CSF autoantibodies and GM-CSF NC was equal to 5 (2, 11). GM-CSF autoantibodies are produced by LPMC isolated from CD ileal resection specimens and are associated with reduced neutrophil bacterial killing. CD peripheral blood contains GM-CSF NC, which is associated with increased rates of stricturing behaviour. PMID:23600834

  16. Optimization of human granulocyte macrophage-colony stimulating factor (hGM-CSF) expression using asparaginase and xylanase gene's signal sequences in Escherichia coli.

    PubMed

    Khasa, Yogender Pal; Khushoo, Amardeep; Tapryal, Suman; Mukherjee, K J

    2011-09-01

    The toxicity of the recombinant protein towards the expression host remains a significant deterrent for bioprocess development. In this study, the expression of human granulocyte macrophage-colony stimulating factor (hGM-CSF), which is known to be toxic to its host, was enhanced many folds using a combination of genetic and bioprocess strategies in Escherichia coli. The N terminus attachment of endoxylanase and asparaginase signal sequences from Bacillus subtilis and E. coli, respectively, in combination with and without His-tag, considerably improved expression levels. Induction and media optimization studies in shake flask cultures resulted in a maximal hGM-CSF concentration of 365 mg/L in the form of inclusion bodies (IBs) with a specific product yield (Y (P/X)) of 120 mg/g dry cell weight in case of the asparaginase signal. Culturing the cells in nutrient rich Terrific broth maintained the specific product yields (Y (P/X)) while a 6.6-fold higher volumetric concentration of both product and biomass was obtained. The purification and refolding steps were optimized resulting in a 95% pure protein with a fairly high refolding yield of 45%. The biological activity of the refolded protein was confirmed by a cell proliferation assay on hGM-CSF dependent human erythroleukemia TF-1 cells. This study demonstrated that this indeed is a viable route for the efficient production of hGM-CSF.

  17. Recombinant Granulocyte-Macrophage Colony-Stimulating Factor (rGM-CSF) : A Review of its Pharmacological Properties and Prospective Role in the Management of Myelosuppression.

    PubMed

    Grant, Susan M; Heel, Rennie C

    1992-04-01

    Recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) is a polypeptide hormone produced through recombinant DNA technologies in glycosylated (yeast or mammalian expression systems) or nonglycosylated (Escherichia coli expression system) form. It is a multilineage haematopoietin which stimulates proliferation and differentiation of bone marrow myeloid progenitors and increases peripheral white blood cell counts when administered systemically. Treatment is generally well tolerated, although mild to moderate flu-like symptoms are common and rGM-CSF-induced fever and fluid retention may be problematic in occasional patients. rGM-CSF accelerates recovery of peripheral neutrophil counts after bone marrow transplantation, and results of a placebo-controlled randomised trial correlate this with reduced infectious episodes and shortened length of hospitalisation in patients with lymphoid malignancies. A substantial number of patients with graft failure after bone marrow transplantation also respond to rGM-CSF. The duration of myelosuppression secondary to cancer chemotherapy can be significantly reduced by rGM-CSF which has permitted investigation of antineoplastic dose-intensity escalation. In some haematopoietic disorders (e.g. aplastic anaemia, myelodysplasia and neutropenia secondary to HIV infection and antiviral therapy), rGM-CSF produces clinically useful increases in peripheral blood granulocyte counts, although the effect is generally not sustained after drug withdrawal. The potential for rGM-CSF to stimulate proliferation of the abnormal clone in myelodysplasia and in acute myelogenous leukaemia following induction therapy is of concern. Available data suggest, however, that with appropriate monitoring and exclusion of high-risk patients this serious potential risk can be avoided, and that myelopoiesis is enhanced in such patients by rGM-CSF treatment. Recombinant colony-stimulating factors are a new therapeutic modality; hence many aspects of

  18. Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia.

    PubMed

    Wang, Jinyong; Liu, Yangang; Li, Zeyang; Du, Juan; Ryu, Myung-Jeom; Taylor, Philip R; Fleming, Mark D; Young, Ken H; Pitot, Henry; Zhang, Jing

    2010-12-23

    Oncogenic NRAS mutations are frequently identified in myeloid diseases involving monocyte lineage. However, its role in the genesis of these diseases remains elusive. We report a mouse bone marrow transplantation model harboring an oncogenic G12D mutation in the Nras locus. Approximately 95% of recipient mice develop a myeloproliferative disease resembling the myeloproliferative variant of chronic myelomonocytic leukemia (CMML), with a prolonged latency and acquisition of multiple genetic alterations, including uniparental disomy of oncogenic Nras allele. Based on single-cell profiling of phospho-proteins, a novel population of CMML cells is identified to display aberrant granulocyte-macrophage colony stimulating factor (GM-CSF) signaling in both the extracellular signal-regulated kinase (ERK) 1/2 and signal transducer and activator of transcription 5 (Stat5) pathways. This abnormal signaling is acquired during CMML development. Further study suggests that aberrant Ras/ERK signaling leads to expansion of granulocytic/monocytic precursors, which are highly responsive to GM-CSF. Hyperactivation of Stat5 in CMML cells is mainly through expansion of these precursors rather than up-regulation of surface expression of GM-CSF receptors. Our results provide insights into the aberrant cytokine signaling in oncogenic NRAS-associated myeloid diseases.

  19. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity

    PubMed Central

    Ifergan, Igal; Davidson, Todd S.; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M.; Hunter, Zoe N.; Pittet, Camille L.; Beddow, Sara; Jones, Clare A.; Prat, Alexandre; Sleeman, Matthew A.; Miller, Stephen D.

    2017-01-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα+ myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. PMID:28641926

  20. GM-CSF treatment is not effective in congenital neutropenia patients due to its inability to activate NAMPT signaling.

    PubMed

    Koch, Corinna; Samareh, Bardia; Morishima, Tatsuya; Mir, Perihan; Kanz, Lothar; Zeidler, Cornelia; Skokowa, Julia; Welte, Karl

    2017-03-01

    Severe congenital neutropenia (CN) is a bone marrow failure syndrome characterized by an absolute neutrophil count (ANC) below 500 cells/μL and recurrent, life-threatening bacterial infections. Treatment with granulocyte colony-stimulating factor (G-CSF) increases the ANC in the majority of CN patients. In contrary, granulocyte-monocyte colony-stimulating factor (GM-CSF) fails to increase neutrophil numbers in CN patients in vitro and in vivo, suggesting specific defects in signaling pathways downstream of GM-CSF receptor. Recently, we detected that G-CSF induces granulopoiesis in CN patients by hyperactivation of nicotinamide phosphoribosyl transferase (NAMPT)/Sirtuin 1 signaling in myeloid cells. Here, we demonstrated that, in contrast to G-CSF, GM-CSF failed to induce NAMPT-dependent granulopoiesis in CN patients. We further identified NAMPT signaling as an essential downstream effector of the GM-CSF pathway in myelopoiesis.

  1. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease

    PubMed Central

    McKenzie, Brent S.

    2016-01-01

    Kawasaki disease (KD) is the leading cause of pediatric heart disease in developed countries. KD patients develop cardiac inflammation, characterized by an early infiltrate of neutrophils and monocytes that precipitates coronary arteritis. Although the early inflammatory processes are linked to cardiac pathology, the factors that regulate cardiac inflammation and immune cell recruitment to the heart remain obscure. In this study, using a mouse model of KD (induced by a cell wall Candida albicans water-soluble fraction [CAWS]), we identify an essential role for granulocyte/macrophage colony-stimulating factor (GM-CSF) in orchestrating these events. GM-CSF is rapidly produced by cardiac fibroblasts after CAWS challenge, precipitating cardiac inflammation. Mechanistically, GM-CSF acts upon the local macrophage compartment, driving the expression of inflammatory cytokines and chemokines, whereas therapeutically, GM-CSF blockade markedly reduces cardiac disease. Our findings describe a novel role for GM-CSF as an essential initiating cytokine in cardiac inflammation and implicate GM-CSF as a potential target for therapeutic intervention in KD. PMID:27595596

  2. Mapping of monoclonal antibody- and receptor-binding domains on human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) using a surface plasmon resonance-based biosensor.

    PubMed

    Laricchia-Robbio, L; Liedberg, B; Platou-Vikinge, T; Rovero, P; Beffy, P; Revoltella, R P

    1996-10-01

    An automated surface plasmon resonance (SPR)-based biosensor system has been used for mapping antibody and receptor-binding regions on the recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) molecule. A rabbit antimouse IgG1-Fc antibody (RAM.Fc) was coupled to an extended carboxymethylated-hydrogel matrix attached to a gold surface in order to capture an anti-rhGM-CSF monoclonal antibody (MAb) injected over the sensing layer. rhGM-CSF was subsequently injected and allowed to bind to this antibody. Multisite binding assays were then performed, by flowing sequentially other antibodies and peptides over the surface, and the capacity of the latter to interact with the entrapped rhGM-CSF in a multimolecular complex was monitored in real time with SPR. Eleven MAb (all IgG1K), were analyzed: respectively, four antipeptide MAb raised against three distinct epitopes of the cytokine (two clones against residues 14-24, that includes part of the first alpha-helix toward the N-terminal region; one clone against peptide 30-41, an intrahelical loop; and one clone against residues 79-91, including part of the third alpha-helix) and seven antiprotein MAbs raised against the entire rhGM-CSF, whose target native epitopes are still undetermined. In addition, the binding capacity to rhGM-CSF of a synthetic peptide, corresponding to residues 238-254 of the extracellular human GM-CSF receptor alpha-chain, endowed with rhGM-CSF binding activity, was tested. The results from experiments performed with the biosensor were compared with those obtained by a sandwich enzyme-linked immunosorbent assay (ELISA), using the same reagents. The features of the biosensor technology (fully automated, measure in real time, sharpened yes/no response, less background disturbances, no need for washing step or labeling of the reagent) offered several advantages in these studies of MAb immunoreactivity and epitope mapping, giving a much better resolution and enabling more distinct

  3. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy

    PubMed Central

    Bhattacharya, Palash; Budnick, Isadore; Singh, Medha; Thiruppathi, Muthusamy; Alharshawi, Khaled; Elshabrawy, Hatem; Holterman, Mark J.

    2015-01-01

    Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them “tolerogenic,” which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility. PMID:25803788

  4. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity.

    PubMed

    Ifergan, Igal; Davidson, Todd S; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M; Hunter, Zoe N; Pittet, Camille L; Beddow, Sara; Jones, Clare A; Prat, Alexandre; Sleeman, Matthew A; Miller, Stephen D

    2017-11-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα + myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taketazu, F.; Chiba, S.; Shibuya, K.

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF bindingmore » to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.« less

  6. MafB antagonizes phenotypic alteration induced by GM-CSF in microglia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshida, Ryusuke, E-mail: rkoshida-myz@umin.ac.jp; Oishi, Hisashi, E-mail: hoishi@md.tsukuba.ac.jp; Hamada, Michito

    2015-07-17

    Microglia are tissue-resident macrophages which are distributed throughout the central nervous system (CNS). Recent studies suggest that microglia are a unique myeloid population distinct from peripheral macrophages in terms of origin and gene expression signature. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a pleiotropic cytokine regulating myeloid development, has been shown to stimulate proliferation and alter phenotype of microglia in vitro. However, how its signaling is modulated in microglia is poorly characterized. MafB, a bZip transcriptional factor, is highly expressed in monocyte-macrophage lineage cells including microglia, although its role in microglia is largely unknown. We investigated the crosstalk between GM-CSF signaling and MafB bymore » analyzing primary microglia. We found that Mafb-deficient microglia grew more rapidly than wild-type microglia in response to GM-CSF. Moreover, the expression of genes associated with microglial differentiation was more downregulated in Mafb-deficient microglia cultured with GM-CSF. Notably, such differences between the genotypes were not observed in the presence of M-CSF. In addition, we found that Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. Altogether, our study reveals that MafB is a negative regulator of GM-CSF signaling in microglia. These findings could provide new insight into the modulation of cytokine signaling by transcription factors in microglia. - Highlights: • GM-CSF alters the phenotype of microglia in vitro more potently than M-CSF. • Transcription factor MafB antagonizes the effect of GM-CSF on microglia in vitro. • MafB deficiency leads to RhoA activation in microglia in response to GM-CSF. • We show for the first time the function of MafB in microglia.« less

  7. Development of Membrane-Bound GM-CSF and IL-18 as an Effective Tumor Vaccine

    PubMed Central

    Cheng, Ta-Chun; Chuang, Chih-Hung; Kao, Chien-Han; Hsieh, Yuan-Chin; Cheng, Kuang-Hung; Wang, Jaw-Yuan; Cheng, Chiu-Min; Chen, Chien-Shu; Cheng, Tian-Lu

    2015-01-01

    The development of effective adjuvant is the key factor to boost the immunogenicity of tumor cells as a tumor vaccine. In this study, we expressed membrane-bound granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-18 (IL-18) as adjuvants in tumor cells to stimulate immune response. B7 transmembrane domain fused GM-CSF and IL-18 was successfully expressed in the cell membrane and stimulated mouse splenocyte proliferation. Co-expression of GM-CSF and IL-18 reduced tumorigenesis (P<0.05) and enhanced tumor protective efficacy (P<0.05) significantly in comparison with GM-CSF alone. These results indicated that the combination of GM-CSF andIL-18 will enhance the immunogenicity of a cell-based anti-tumor vaccine. This membrane-bound approach can be applied to other cytokines for the development of novel vaccine strategies. PMID:26186692

  8. Reduced expression of granule proteins during extended survival of eosinophils in splenocyte culture with GM-CSF.

    PubMed

    Ryu, Seul Hye; Na, Hye Young; Sohn, Moah; Han, Sun Murray; Choi, Wanho; In, Hyunju; Hong, Sookyung; Jeon, Hyejin; Seo, Jun-Young; Ahn, Jongcheol; Park, Chae Gyu

    2016-05-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifaceted hematopoietic cytokine and the culture of mouse bone marrow with GM-CSF produces a variety of myeloid cells including granulocytes, macrophages, and dendritic cells. In the present study, we cultured mouse splenocytes with GM-CSF and examined the changes in hematopoietic cell populations over a week. Most of the splenic hematopoietic cells disappeared significantly from culture within 6days with or without the presence of GM-CSF. Among the splenic granulocyte populations, only eosinophils fully survived throughout the culture with GM-CSF for more than a week. During 10days of culture with GM-CSF, splenic eosinophils maintained their morphology as well as most of their surface molecules at high levels, including CCR3 and Siglec F. Meanwhile, the expression of mRNAs encoding major basic protein-1 (MBP-1) and eosinophil peroxidase (EPO), two major eosinophil-derived granule proteins, was diminished significantly from the cultured eosinophils. EPO assays also revealed that eosinophils in culture for more than 5days retained 30% or less EPO activity compared to those in uncultured splenocytes. In contrast, culture of splenocytes with GM-CSF did not change the capacity of eosinophils to migrate in response to eotaxin-1. Our results indicate that mouse splenic eosinophils are effectively cultured for lengthy periods while their expression of eosinophil-derived granule proteins is specifically suppressed. The relevance of these findings to eosinophilic inflammatory response is discussed. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. Electronegative L5-LDL induces the production of G-CSF and GM-CSF in human macrophages through LOX-1 involving NF-κB and ERK2 activation.

    PubMed

    Yang, Tzu-Ching; Chang, Po-Yuan; Kuo, Tzu-Ling; Lu, Shao-Chun

    2017-12-01

    Circulating levels of granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) are associated with the severity of acute myocardial infarction (AMI). However, what causes increases in G-CSF and GM-CSF is unclear. In this study, we investigated whether L5-low-density lipoprotein (LDL), a mildly oxidized LDL from AMI, can induce G-CSF and GM-CSF production in human macrophages. L1-LDL and L5-LDL were isolated through anion-exchange chromatography from AMI plasma. Human macrophages derived from THP-1 and peripheral blood mononuclear cells were treated with L1-LDL, L5-LDL, or copper-oxidized LDL (Cu-oxLDL) and G-CSF and GM-CSF protein levels in the medium were determined. In addition, the effects of L5-LDL on G-CSF and GM-CSF production were tested in lectin-type oxidized LDL receptor-1 (LOX-1), CD36, extracellular signal-regulated kinase (ERK) 1, and ERK2 knockdown THP-1 macrophages. L5-LDL but not L1-LDL or Cu-oxLDL significantly induced production of G-CSF and GM-CSF in macrophages. In vitro oxidation of L1-LDL and L5-LDL altered their ability to induce G-CSF and GM-CSF, suggesting that the degree of oxidation is critical for the effects. Knockdown and antibody neutralization experiments suggested that the effects were caused by LOX-1. In addition, nuclear factor (NF)-κB and ERK1/2 inhibition resulted in marked reductions of L5-LDL-induced G-CSF and GM-CSF production. Moreover, knockdown of ERK2, but not ERK1, hindered L5-LDL-induced G-CSF and GM-CSF production. The results indicate that L5-LDL, a naturally occurring mild oxidized LDL, induced G-CSF and GM-CSF production in human macrophages through LOX-1, ERK2, and NF-κB dependent pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage

    PubMed Central

    Ushach, Irina; Zlotnik, Albert

    2016-01-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  11. The effect of recombinant GM-CSF on the recovery of monkeys transplanted with autologous bone marrow.

    PubMed

    Monroy, R L; Skelly, R R; MacVittie, T J; Davis, T A; Sauber, J J; Clark, S C; Donahue, R E

    1987-11-01

    The regulatory function of recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF) on granulocyte production in vivo was evaluated in an autologous bone marrow transplantation model using rhesus monkeys. Monkeys were exposed to 9.0 Gy total body irradiation and then transplanted with 5.0 x 10(7) low-density bone marrow cells/kg. Alzet miniosmotic pumps were subcutaneously implanted to deliver rhGM-CSF at a rate of 50,400 U/kg/d. Minipumps, containing either rhGM-CSF or saline, were implanted between zero and five days after transplantation for seven days. Kinetic recoveries of peripheral blood cells after either saline or rhGM-CSF treatment were compared. Treatment with rhGM-CSF accelerated the recovery of neutrophils. Neutrophils in rhGM-CSF-treated animals recovered to 80% (3.4 x 10(3)/mm3) pre-irradiation control levels by day 20, in comparison with only 33% (0.9 x 10(3)/mm3) recovery for saline control monkeys. In addition, the recovery of neutrophils was enhanced over that of the controls, reaching 140% v 70% on day 30. Another prominent feature of rhGM-CSF-treated monkeys was the accelerated recovery of platelets, reaching near 50% normal levels by day 24 in comparison with 20% of normal levels for controls. The infusion of rhGM-CSF was shown to be an effective regulator of early hematopoietic regeneration, leading to the accelerated recovery of both neutrophils and platelets and then providing a consistent sustained increase of neutrophils even in the absence of rhGM-CSF.

  12. MDSCs are involved in the protumorigenic potentials of GM-CSF in colitis-associated cancer.

    PubMed

    Ma, Ning; Liu, Qilin; Hou, Lin; Wang, Yalin; Liu, Ziling

    2017-06-01

    Chronic inflammation is thought to be a major driving force for the development of colitis-associated colorectal cancer (CAC). As one member of proinflammatory cytokine family, granulocyte macrophage colony-stimulating factor (GM-CSF) has been identified to play a key role in CAC pathogenesis recently. The underlying mechanisms, however, remain largely unknown. In this study, we found that myeloid-derived suppressor cells (MDSCs) accumulated increasingly in the lesions during the progression from colitis to cancer, which was critical for CAC formation. Importantly, this MDSC accumulation was controlled by GM-CSF. MDSC number decreased significantly in GM-CSF-deficient mice suffering from CAC induction, and transfusion of MDSCs from wild-type CAC-bearing mice into GM-CSF-deficient counterparts led to recurrence of CAC. Furthermore, the supernatants of CAC lesions or GM-CSF alone was sufficient to differentiate hematopoietic precursors into MDSCs. Addition of neutralizing anti-GM-CSF antibody impaired the MDSC-differentiating effects of the supernatants of CAC lesions. Overall, these findings shed new insights into the mechanisms of GM-CSF underlying CAC development, by inducing/recruiting CAC-promoting MDSCs. Blocking GM-CSF activity or MDSC function may represent new therapeutic strategies for CAC in clinic.

  13. T Cell Production of GM-CSF Protects the Host during Experimental Tuberculosis.

    PubMed

    Robinson, Richard T

    2017-12-12

    Although classically associated with myelopoiesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) is increasingly recognized as being important for tuberculosis (TB) resistance. GM-CSF is expressed by nonhematopoietic and hematopoietic lineages following infection with Mycobacterium tuberculosis and is necessary to restrict M. tuberculosis growth in experimental models. Until the recent study by Rothchild et al. (mBio 8:e01514-17, 2017, https://doi.org/10.1128/mBio.01514-17), it was unknown whether GM-CSF-producing T cells contribute to TB resistance. Rothchild et al. identify which conventional and nonconventional T cell subsets produce GM-CSF during experimental TB, establish their protective nature using a variety of approaches, and provide a mechanistic basis for their ability to restrict M. tuberculosis growth. This commentary discusses the significance of these findings to basic and applied TB research. As translated to human disease, these findings suggest vaccine-mediated expansion of GM-CSF-producing T cells could be an effective prophylactic or therapeutic TB strategy. Copyright © 2017 Robinson.

  14. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types

    PubMed Central

    Hong, In-Sun

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications. PMID:27364892

  15. Which AML subsets benefit from leukemic cell priming during chemotherapy? Long-term analysis of the ALFA-9802 GM-CSF study.

    PubMed

    Thomas, Xavier; Raffoux, Emmanuel; Renneville, Aline; Pautas, Cecile; de Botton, Stephane; Terre, Christine; Gardin, Claude; Hayette, Sandrine; Preudhomme, Claude; Dombret, Herve

    2010-04-01

    : Priming with granulocytic hematopoietic growth factors may modulate cell cycle kinetics of leukemic cells and render them more susceptible to phase-specific chemotherapeutic agents. In a first report, we have shown that priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) may enhance complete remission (CR) rate and event-free survival (EFS) in younger adults with acute myeloid leukemia (AML). : In this randomized trial, 259 patients with AML were randomized at baseline to receive or not receive GM-CSF concurrently with all cycles of chemotherapy. The effects of GM-CSF on survival were reported herein with a long-term follow-up and studied according to distinct biological subgroups defined on cytogenetics and molecular markers. : The EFS rate was better in the GM-CSF group (43% vs 34%; P = .04). GM-CSF did not improve the outcome in patients from good risk subgroups, while patients from poor risk subgroups benefited from GM-CSF therapy. In this population, the difference in terms of EFS probability was mainly observed in patients with high initial white blood cell count and in those with FLT3-ITD or MLL rearrangement. When combining these 2 molecular abnormalities for comparison of the effect of GM-CSF priming, the difference in terms of EFS was highly significant (5-year EFS, 39% with GM-CSF vs 8% without GM-CSF; P = .007). : Sensitization of leukemic cells and their progenitors by GM-CSF appears as a plausible strategy for improving the outcome of patients with newly diagnosed AML. Patients with poor-prognosis FLT3-ITD or MLL rearrangement might be a good target population to further investigate priming strategies. Cancer 2010. (c) 2010 American Cancer Society.

  16. Human papillomavirus infection is associated with decreased levels of GM-CSF in cervico-vaginal fluid of infected women.

    PubMed

    Comar, Manola; Monasta, Lorenzo; Zanotta, Nunzia; Vecchi Brumatti, Liza; Ricci, Giuseppe; Zauli, Giorgio

    2013-10-01

    Although human papillomavirus (HPV) is the most common sexually transmitted infection, there are very scant data about the influence of this virus on the in vitro fertilization outcome. To assess the presence of HPV in the cervico-vaginal fluid in relationship to the in vitro fertilization (IVF) outcome and to the concentration of selected cytokines, known to affect embryo implantation and gestation: granulocyte-macrophage colony stimulating factor (GM-CSF) and granulocyte colony stimulating factor (G-CSF). Cervico-vaginal samples were collected on the day of oocyte pick-up from 82 women. Vaginas were flushed with 50 mL of sterile water and 3 mL of fluid was collected. Twelve women (15%) were positive for HPV. Interestingly, among HPV(+) women live birth rate was about half of the rate in HPV(-) women, although the differences were not statistically significant due to the low number of cases. Cervico-vaginal samples of a sub-group of 29 (8 HPV(+) and 21 HPV(-)) women were analyzed for GM-CSF and G-CSF by ELISA. GM-CSF but not G-CSF was significantly lower in the cervico-vaginal fluid of HPV(+) than in HPV(-) women. Since GM-CSF plays an important role during pregnancy, the reduced levels of GM-CSF in the cervico-vaginal fluid of HPV(+) women might contribute to explain the reduced live birth rate observed in HPV(+) women. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The role of granulocyte macrophage-colony stimulating factor in gastrointestinal immunity to salmonellosis.

    PubMed

    Coon, C; Beagley, K W; Bao, S

    2009-08-01

    Human Salmonella infection, in particular, typhoid fever is a highly infectious disease that remains a major public health problem causing significant morbidity and mortality. The outcome of these infections depends on the host's immune response, particularly the actions of granulocytes and macrophages. Using a mouse model of human typhoid fever, with Salmonella typhimurium infection of wild type and granulocyte macrophage-colony stimulating factor (GM-CSF) knock out mice we show a delay in the onset of immune-mediated tissue damage in the spleens and livers of GM-CSF(-/-) mice. Furthermore, GM-CSF(-/-) mice have a prolonged sequestration of S. typhimurium in affected tissues despite an increased production of F4/80+ effector cells. Moreover in the absence of GM-CSF, a decrease in pro-inflammatory cytokine expression of tumor necrosis factor-alpha, interleukin-12 (IL-12) and IL-18 was found, which may alter the host's immune response to infection. GM-CSF appears to play an important role in the pathogenesis of Salmonellosis, and may contribute significantly to the development of protective gastrointestinal mucosal immune responses against oral pathogens.

  18. ZO-1 expression is suppressed by GM-CSF via miR-96/ERG in brain microvascular endothelial cells.

    PubMed

    Zhang, Hu; Zhang, Shuhong; Zhang, Jilin; Liu, Dongxin; Wei, Jiayi; Fang, Wengang; Zhao, Weidong; Chen, Yuhua; Shang, Deshu

    2018-05-01

    The level of granulocyte-macrophage colony-stimulating factor (GM-CSF) increases in some disorders such as vascular dementia, Alzheimer's disease, and multiple sclerosis. We previously reported that in Alzheimer's disease patients, a high level of GM-CSF in the brain parenchyma downregulated expression of ZO-1, a blood-brain barrier tight junction protein, and facilitated the infiltration of peripheral monocytes across the blood-brain barrier. However, the molecular mechanism underlying regulation of ZO-1 expression by GM-CSF is unclear. Herein, we found that the erythroblast transformation-specific (ETS) transcription factor ERG cooperated with the proto-oncogene protein c-MYC in regulation of ZO-1 transcription in brain microvascular endothelial cells (BMECs). The ERG expression was suppressed by miR-96 which was increased by GM-CSF through the phosphoinositide-3 kinase (PI3K)/Akt pathway. Inhibition of miR-96 prevented ZO-1 down-regulation induced by GM-CSF both in vitro and in vivo. Our results revealed the mechanism of ZO-1 expression reduced by GM-CSF, and provided a potential target, miR-96, which could block ZO-1 down-regulation caused by GM-CSF in BMECs.

  19. GM-CSF in murine psoriasiform dermatitis: Redundant and pathogenic roles uncovered by antibody-induced neutralization and genetic deficiency

    PubMed Central

    Scholz, Tatjana; Weigert, Andreas; Brüne, Bernhard; Sadik, Christian D.; Böhm, Beate

    2017-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic, Th17-derived cytokine thought to critically contribute to the pathogenesis of diverse autoimmune diseases, including rheumatoid arthritis and psoriasis. Treatment with monoclonal antibodies that block GM-CSF activity is associated with favorable therapeutic effects in patients with rheumatoid arthritis. We evaluated the role of GM-CSF as a potential target for therapeutic interference in psoriasis using a combined pharmacologic and genetic approach and the mouse model of imiquimod-induced psoriasiform dermatitis (IMQPD). Neutralization of murine GM-CSF by an anti-GM-CSF antibody ameliorated IMQPD. In contrast, genetic deficiency in GM-CSF did not alter the course of IMQPD, suggesting the existence of mechanisms compensating for chronic, but not acute, absence of GM-CSF. Further investigation uncovered an alternative pathogenic pathway for IMQPD in the absence of GM-CSF characterized by an expanded plasmacytoid dendritic cell population and release of IFNα and IL-22. This pathway was not activated in wild-type mice during short-term anti-GM-CSF treatment. Our investigations support the potential value of GM-CSF as a therapeutic target in psoriatic disease. The discovery of an alternative pathogenic pathway for psoriasiform dermatitis in the permanent absence of GM-CSF, however, suggests the need for monitoring during therapeutic use of long-term GM-CSF blockade. PMID:28777803

  20. A novel subset of helper T cells promotes immune responses by secreting GM-CSF

    PubMed Central

    Zhang, J; Roberts, A I; Liu, C; Ren, G; Xu, G; Zhang, L; Devadas, S; Shi, Yufang

    2013-01-01

    Helper T cells are crucial for maintaining proper immune responses. Yet, they have an undefined relationship with one of the most potent immune stimulatory cytokines, granulocyte macrophage-colony-stimulating factor (GM-CSF). By depleting major cytokines during the differentiation of CD4+ T cells in vitro, we derived cells that were found to produce large amounts of GM-CSF, but little of the cytokines produced by other helper T subsets. By their secretion of GM-CSF, this novel subset of helper T cells (which we have termed ThGM cells) promoted the production of cytokines by other T-cell subtypes, including type 1 helper T cell (Th1), type 2 helper T cell (Th2), type 1 cytotoxic T cell (Tc1), type 2 cytotoxic T cell (Tc2), and naive T cells, as evidenced by the fact that antibody neutralization of GM-CSF abolished this effect. ThGM cells were found to be highly prone to activation-induced cell death (AICD). Inhibitors of TRAIL or granzymes could not block AICD in ThGM cells, whereas inhibition of FasL/Fas interaction partially rescued ThGM cells from AICD. Thus, ThGM cells are a novel subpopulation of T helper cells that produce abundant GM-CSF, exhibit exquisite susceptibility to apoptosis, and therefore play a pivotal role in the regulation of the early stages of immune responses. PMID:24076588

  1. GM-CSF-Induced Regulatory T cells Selectively Inhibit Anti-Acetylcholine Receptor-Specific Immune Responses in Experimental Myasthenia Gravis

    PubMed Central

    Sheng, Jian Rong; Muthusamy, Thiruppathi; Prabahakar, Bellur S.; Meriggioli, Matthew N.

    2011-01-01

    We and others have demonstrated the ability of granulocyte-macrophage colony-stimulating factor (GM-CSF) to suppress autoimmunity by increasing the number of CD4+CD25+ regulatory T cells (Tregs). In the current study, we have explored the critical role of induced antigen specific Tregs in the therapeutic effects of GM-CSF in murine experimental autoimmune myasthenia gravis (EAMG). Specifically, we show that Tregs from GM-CSF treated EAMG mice (GM-CSF/AChR-induced-Tregs) adoptively transferred into animals with EAMG suppressed clinical disease more potently than equal numbers of Tregs from either GM-CSF untreated EAMG mice or healthy mice treated with GM-CSF. In addition, GM-CSF/AChR-induced-Tregs selectively suppressed antigen specific T cell proliferation induced by AChR relative to that induced by an irrelevant self antigen, (thyroglobulin) and failed to significantly alter T cell proliferation in response to an exogenous antigen (ovalbumin). These results are consistent with the hypothesized mechanism of action of GM-CSF involving the mobilization of tolerogenic dendritic cell precursors which, upon antigen (AChR) capture, suppress the anti-AChR immune response through the induction/expansion of AChR-specific Tregs. PMID:22099723

  2. IFN Regulatory Factor 8 Represses GM-CSF Expression in T cells to Affect Myeloid Cell Lineage Differentiation

    PubMed Central

    Paschall, Amy V.; Zhang, Ruihua; Qi, Chen-Feng; Bardhan, Kankana; Peng, Liang; Lu, Geming; Yang, Jianjun; Merad, Miriam; McGaha, Tracy; Zhou, Gang; Mellor, Andrew; Abrams, Scott I.; Morse, Herbert C.; Ozato, Keiko; Xiong, Huabao; Liu, Kebin

    2015-01-01

    During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN Regulatory Factor 8 (IRF8) accumulate CD11b+Gr1+ myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. Here we report an intriguing finding that although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b+Gr1+ MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to represses GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo. PMID:25646302

  3. Dysregulation of the Cytokine GM-CSF Induces Spontaneous Phagocyte Invasion and Immunopathology in the Central Nervous System.

    PubMed

    Spath, Sabine; Komuczki, Juliana; Hermann, Mario; Pelczar, Pawel; Mair, Florian; Schreiner, Bettina; Becher, Burkhard

    2017-02-21

    Chronic inflammatory diseases are influenced by dysregulation of cytokines. Among them, granulocyte macrophage colony stimulating factor (GM-CSF) is crucial for the pathogenic function of T cells in preclinical models of autoimmunity. To study the impact of dysregulated GM-CSF expression in vivo, we generated a transgenic mouse line allowing the induction of GM-CSF expression in mature, peripheral helper T (Th) cells. Antigen-independent GM-CSF release led to the invasion of inflammatory myeloid cells into the central nervous system (CNS), which was accompanied by the spontaneous development of severe neurological deficits. CNS-invading phagocytes produced reactive oxygen species and exhibited a distinct genetic signature compared to myeloid cells invading other organs. We propose that the CNS is particularly vulnerable to the attack of monocyte-derived phagocytes and that the effector functions of GM-CSF-expanded myeloid cells are in turn guided by the tissue microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Construction and immunological characterization of CD40L or GM-CSF incorporated Hantaan virus like particle

    PubMed Central

    Zhang, Xiaoxiao; Truax, Agnieszka D.; Ma, Ruixue; Liu, Ziyu; Lei, Yingfeng; Zhang, Liang; Ye, Wei; Zhang, Fanglin; Xu, Zhikai; Shang, Lei; Liu, Rongrong; Wang, Fang; Wu, Xingan

    2016-01-01

    Infection of Hantaan virus (HTNV) usually causes hemorrhagic fever with renal syndrome (HFRS). China has the worst epidemic incidence of HFRS as well as high fatality. Inactivated whole virus has been used for HFRS vaccination, however there are still problems such as safety concerns. CD40 ligand (CD40L) and granulocyte macrophage colony-stimulating factor (GM-CSF) are well-known immune stimulating molecules that can enhance antigen presenting, lymphocytes activation and maturation, incorporation of CD40L and GM-CSF to the surface of virus like particles (VLPs) can greatly improve the vaccination effect. We constructed eukaryotic vectors expressing HTNV M segment and S segment, as well as vectors expressing HTNV M segment with CD40L or GM-CSF, our results showed successful production of CD40L or GM-CSF incorporated HTNV VLPs. In vitro stimulation with CD40L or GM-CSF anchored HTNV VLP showed enhanced activation of macrophages and DCs. CD40L/GM-CSF incorporated VLP can induce higher level of HTNV specific antibody and neutralizing antibody in mice. Immunized mice splenocytes showed higher ability of secreting IFN-γ and IL-2, as well as enhancing CTL activity. These results suggest CD40L/GM-CSF incorporated VLP can serve as prospective vaccine candidate. PMID:27542281

  5. Aspergillus vertebral osteomyelitis in a child with a primary monocyte killing defect: response to GM-CSF therapy.

    PubMed

    Abu Jawdeh, L; Haidar, R; Bitar, F; Mroueh, S; Akel, S; Nuwayri-Salti, N; Dbaibo, G S

    2000-07-01

    We report the first case of vertebral aspergillosis in a child with a primary defect in monocyte killing, an extremely rare immunodeficiency The diagnosis of defective monocyte killing was made by an in vitro assay that showed normal killing of Staphylococcus aureus by the patient's neutrophils but impaired killing by his monocytes. Importantly, the extensive granulomatous infection that involved the vertebral column, posterior mediastinum, pleura, and lung was not responsive to aggressive treatment with a combination of liposomal amphotericin B. intralesional amphotericin B. itraconazole, and granulocyte transfusions. Dramatic clinical and radiological improvement was only seen after the addition of granulocyte macrophage-colony stimulating factor (GM-CSF) to his treatment regimen. The use of GM-CSF in the treatment of invasive aspergillosis in immunocompromised patients requires further evaluation.

  6. The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Guido; Hercus, Timothy R.; McClure, Barbara J.

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific {alpha} subunit and a {beta}c subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface andmore » functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.« less

  7. Adenoviral vector-mediated GM-CSF gene transfer improves anti-mycobacterial immunity in mice - role of regulatory T cells.

    PubMed

    Singpiel, Alena; Kramer, Julia; Maus, Regina; Stolper, Jennifer; Bittersohl, Lara Friederike; Gauldie, Jack; Kolb, Martin; Welte, Tobias; Sparwasser, Tim; Maus, Ulrich A

    2018-03-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in differentiation, survival and activation of myeloid and non-myeloid cells with important implications for lung antibacterial immunity. Here we examined the effect of pulmonary adenoviral vector-mediated delivery of GM-CSF (AdGM-CSF) on anti-mycobacterial immunity in M. bovis BCG infected mice. Exposure of M. bovis BCG infected mice to AdGM-CSF either applied on 6h, or 6h and 7days post-infection substantially increased alveolar recruitment of iNOS and IL-12 expressing macrophages, and significantly increased accumulation of IFNγ pos T cells and particularly regulatory T cells (Tregs). This was accompanied by significantly reduced mycobacterial loads in the lungs of mice. Importantly, diphtheria toxin-induced depletion of Tregs did not influence mycobacterial loads, but accentuated immunopathology in AdGM-CSF-exposed mice infected with M. bovis BCG. Together, the data demonstrate that AdGM-CSF therapy improves lung protective immunity against M. bovis BCG infection in mice independent of co-recruited Tregs, which however critically contribute to limit lung immunopathology in BCG-infected mice. These data may be relevant to the development of immunomodulatory strategies to limit immunopathology-based lung injury in tuberculosis in humans. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. TGF-β Affects the Differentiation of Human GM-CSF+ CD4+ T Cells in an Activation- and Sodium-Dependent Manner.

    PubMed

    Éliás, Szabolcs; Schmidt, Angelika; Kannan, Venkateshan; Andersson, John; Tegnér, Jesper

    2016-01-01

    The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis. However, the environmental cues promoting differentiation of GM-CSF producing T cells are unclear. Herein, we performed a broad experimental screening of cytokines and data-driven analysis assessing their ability to induce human GM-CSF + CD4 + T cells and their subpopulations. TGF-β was discovered to induce GM-CSF production independently of proliferation and IL-2 signaling including STAT5. In contrast, IL-6 and IL-23 decreased GM-CSF production. On the population level, GM-CSF induction was highly correlated with expression of FOXP3 across cytokine stimulations but not with that of IL-17. However, on single-cell level GM-CSF and IFN-γ expression were most correlated, independently of the cytokine environment. Importantly, under low sodium conditions in the medium or upon stimulation with plate-bound instead of bead-bound anti-CD3 and anti-CD28 antibodies, the effects of TGF-β on GM-CSF, but not on FOXP3, were reversed. Our analysis indicates a novel role for TGF-β in generating GM-CSF + subsets of human CD4 + T cells. These results are important for understanding of autoimmune disease and therapeutic considerations.

  9. TGF-β Affects the Differentiation of Human GM-CSF+ CD4+ T Cells in an Activation- and Sodium-Dependent Manner

    PubMed Central

    Éliás, Szabolcs; Schmidt, Angelika; Kannan, Venkateshan; Andersson, John; Tegnér, Jesper

    2016-01-01

    The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis. However, the environmental cues promoting differentiation of GM-CSF producing T cells are unclear. Herein, we performed a broad experimental screening of cytokines and data-driven analysis assessing their ability to induce human GM-CSF+ CD4+ T cells and their subpopulations. TGF-β was discovered to induce GM-CSF production independently of proliferation and IL-2 signaling including STAT5. In contrast, IL-6 and IL-23 decreased GM-CSF production. On the population level, GM-CSF induction was highly correlated with expression of FOXP3 across cytokine stimulations but not with that of IL-17. However, on single-cell level GM-CSF and IFN-γ expression were most correlated, independently of the cytokine environment. Importantly, under low sodium conditions in the medium or upon stimulation with plate-bound instead of bead-bound anti-CD3 and anti-CD28 antibodies, the effects of TGF-β on GM-CSF, but not on FOXP3, were reversed. Our analysis indicates a novel role for TGF-β in generating GM-CSF+ subsets of human CD4+ T cells. These results are important for understanding of autoimmune disease and therapeutic considerations. PMID:28066414

  10. GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis.

    PubMed

    Stojić-Vukanić, Zorica; Pilipović, Ivan; Vujnović, Ivana; Nacka-Aleksić, Mirjana; Petrović, Raisa; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2016-01-01

    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms

  11. PPAR-γ contributes to immunity by cancer vaccines that secrete GM-CSF.

    PubMed

    Goyal, Girija; Wong, Karrie; Nirschl, Christopher J; Souders, Nicholas; Neuberg, Donna; Anandasabapathy, Niroshana; Dranoff, Glenn

    2018-04-18

    Peroxisome proliferator activated receptor-γ (PPARγ) is a lipid-activated nuclear receptor that promotes immune tolerance through effects on macrophages, dendritic cells (DCs), and regulatory T cells (Tregs). Granulocyte-macrophage colony stimulating factor (GM-CSF) induces PPARγ expression in multiple myeloid cell types. GM-CSF contributes to both immune tolerance and protection, but the role of PPARγ in these pathways is poorly understood. Here we reveal an unexpected stimulatory role for PPARγ in the generation of antitumor immunity with irradiated, GM-CSF-secreting tumor-cell vaccines (GVAX). Mice harboring a deletion of PPARγ in lysozyme M (LysM)-expressing myeloid cells showed a decreased ratio of CD8+ T effectors to Tregs and impaired tumor rejection with GVAX. Diminished tumor protection was associated with altered dendritic cell responses and increased production of the Treg attracting chemokines CCL17 and CLL22. Correspondingly, the systemic administration of PPARγ agonists to vaccinated mice elevated the CD8+ T effector to Treg ratio through effects on myeloid cells and intensified the antitumor activity of GVAX combined with cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) antibody blockade. PPARγ agonists similarly attenuated Treg induction and decreased CCL17 and CCL22 levels in cultures of human peripheral blood mononuclear cells (PBMCs) with GM-CSF-secreting tumor cells. Together, these results highlight a key role for myeloid cell PPARγ in GM-CSF stimulated antitumor immunity and suggest that PPARγ agonists might be useful in cancer immunotherapy. Copyright ©2018, American Association for Cancer Research.

  12. Interaction of RNA-binding protein HuR and miR-466i regulates GM-CSF expression.

    PubMed

    Chen, Jing; Adamiak, William; Huang, Ganlei; Atasoy, Ulus; Rostami, Abdolmohamad; Yu, Shiguang

    2017-12-08

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by T helper 17 (Th17) cells plays an essential role in autoimmune diseases. Transcriptional regulation of Th17 cell differentiation has been extensively studied, but post-transcriptional regulation of Th17 cell differentiation has remained less well characterized. The RNA-binding protein HuR functions to promote the stability of target mRNAs via binding the AU-rich elements of the 3' untranslated region (3'UTR) of numerous pro-inflammatory cytokines including IL-4, IL-13, IL-17 and TNF-α. However, whether HuR regulates GM-CSF expression in Th17 cells has not been fully investigated. Here we showed that HuR conditional knockout (KO) Th17 cells have decreased GM-CSF mRNA in comparison with wild-type (WT) Th17 cells, and that HuR binds directly to GM-CSF mRNA 3'UTR. Interestingly, HuR deficiency increased the levels of certain microRNA expression in Th17 cells; for example, miR-466i functioned to mediate GM-CSF and IL-17 mRNA decay, which was confirmed by in vitro luciferase assay. Furthermore, we found that HuR promoted Mxi1 expression to inhibit certain miRNA expression. Taken together, these findings indicate that interaction of HuR and miR-466i orchestrates GM-CSF expression in Th17 cells.

  13. A Review of GM-CSF Therapy in Sepsis

    PubMed Central

    Mathias, Brittany; Szpila, Benjamin E.; Moore, Frederick A.; Efron, Philip A.; Moldawer, Lyle L.

    2015-01-01

    Abstract Determine what clinical role, if any, GM-CSF may have in the clinical treatment of sepsis in the adult patient. Advancements in the management of sepsis have led to significant decreases in early mortality; however, sepsis remains a significant source of long-term mortality and disability which places strain on healthcare resources with a substantial growing economic impact. Historically, early multiple organ failure (MOF) and death in patients with severe sepsis was thought to result from an exaggerated proinflammatory response called the systemic inflammatory response syndrome (SIRS). Numerous prospective randomized controlled trials (PRCTs) tested therapies aimed at decreasing the organ injury associated with an exaggerated inflammatory response. With few exceptions, the results from these PRCTs have been disappointing, and currently no specific therapeutic agent is approved to counteract the early SIRS response in patients with severe sepsis. It has long been recognized that there is a delayed immunosuppressive state that contributes to long-term morbidity. However, recent findings now support a concurrent proinflammatory and anti-inflammatory response present throughout sepsis. Multiple immunomodulating agents have been studied to combat the immunosuppressive phase of sepsis with the goal of decreasing secondary infection, reducing organ dysfunction, decreasing ICU stays, and improving survival. Granulocyte-macrophage colony stimulating factor (GM-CSF), a myelopoietic growth factor currently used in patients with neutropenia secondary to chemotherapy-induced myelosuppression, has been studied as a potential immune-activating agent. The applicability of GM-CSF as a standard therapy for generalized sepsis is still largely understudied; however, small-scale studies available have demonstrated some improved recovery from infection, decreased hospital length of stay, decreased days requiring mechanical ventilation, and decreased medical costs. PMID

  14. GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing.

    PubMed

    Yan, Min; Hu, Yange; Yao, Min; Bao, Shisan; Fang, Yong

    2017-11-01

    Skin wound healing involves complex coordinated interactions of cells, tissues, and mediators. Maintaining microvascular barrier integrity is one of the key events for endothelial homeostasis during wound healing. Vasodilation is observed after vasoconstriction, which causes blood vessels to become porous, facilitates leukocyte infiltration and aids angiogenesis at the wound-area, postinjury. Eventually, vessel integrity has to be reestablished for vascular maturation. Numerous studies have found that granulocyte macrophage colony-stimulating factor (GM-CSF) accelerates wound healing by inducing recruitment of repair cells into the injury area and releases of cytokines. However, whether GM-CSF is involving in the maintaining of microvascular barrier integrity and the underlying mechanism remain still unclear. Aim of this study was to investigate the effects of GM-CSF on modulation of microvascular permeability in wound healing and underlying mechanisms. Wound closure and microvascular leakage was investigated using a full-thickness skin wound mouse model after GM-CSF intervention. The endothelial permeability was measured by Evans blue assay in vivo and in vitro endothelium/pericyte co-culture system using a FITC-Dextran permeability assay. To identify the source of angiopoietin-1 (Ang-1), double staining is used in vivo and ELISA and qPCR are used in vitro. To determine the specific effect of Ang-1 on GM-CSF maintaining microvascular stabilization, Ang-1 siRNA was applied to inhibit Ang-1 production in vivo and in vitro. Wound closure was significantly accelerated and microvascular leakage was ameliorated after GM-CSF treatment in mouse wound sites. GM-CSF decreased endothelial permeability through tightening endothelial junctions and increased Ang-1 protein level that was derived by perictye. Furthermore, applications of siRNAAng-1 inhibited GM-CSF mediated protection of microvascular barrier integrity both in vivo and in vitro. Our data indicate that GM-CSF

  15. Tumor-Derived Granulocyte-Macrophage Colony-Stimulating Factor and Granulocyte Colony-Stimulating Factor Prolong the Survival of Neutrophils Infiltrating Bronchoalveolar Subtype Pulmonary Adenocarcinoma

    PubMed Central

    Wislez, Marie; Fleury-Feith, Jocelyne; Rabbe, Nathalie; Moreau, Joelle; Cesari, Danielle; Milleron, Bernard; Mayaud, Charles; Antoine, Martine; Soler, Paul; Cadranel, Jacques

    2001-01-01

    We evaluated the role of the tumor environment in the regulation of apoptosis of tumor-infiltrating neutrophils, the number of which correlates negatively with outcome, in patients with adenocarcinoma of the bronchioloalveolar (BAC) subtype. We examined three different parameters of apoptosis, namely morphological aspect, annexin-V expression, and DNA fragmentation. Bronchoalveolar lavage fluid (BALF) supernatants from patients with BAC significantly inhibited the 24-hour spontaneous apoptosis of normal peripheral blood neutrophils in vitro compared to BALF supernatants from control patients (64 ± 4% versus 90 ± 2% measured by annexin-V flow cytometry, P = 0.04). The alveolar neutrophil count correlated positively with the granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) concentrations in the patient’s BALF. Furthermore, neutralizing antibodies (Abs) against GM-CSF and G-CSF significantly inhibited BALF anti-apoptotic activity (15 to 40% and 34 to 63% inhibition, respectively), whereas neutralizing Abs against interleukin (IL)-8, IL-6, IL-1β and tumor necrosis factor-α had no significant effect. In an attempt to identify the cell origin of anti-apoptotic cytokines, we tested in vitro the effect of BAC cells (A549 cell line and primary culture derived from a patient’s BAC tumor) on the apoptosis of peripheral blood neutrophils. Cell-free supernatants from tumor cells did not inhibit neutrophil apoptosis. In contrast, cell-free supernatants from tumor cells previously exposed to conditioned media from peripheral blood mononuclear cells and alveolar macrophages significantly inhibited spontaneous neutrophil apoptosis. This inhibition was partially lifted when conditioned media from mononuclear cells were previously treated with Abs against IL-1β and tumor necrosis factor-α. As in vivo, neutralizing Abs against GM-CSF significantly inhibited the anti-apoptotic activity of cell culture supernatants

  16. Plasma granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor levels in critical illness including sepsis and septic shock: relation to disease severity, multiple organ dysfunction, and mortality.

    PubMed

    Presneill, J J; Waring, P M; Layton, J E; Maher, D W; Cebon, J; Harley, N S; Wilson, J W; Cade, J F

    2000-07-01

    To define the circulating levels of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) during critical illness and to determine their relationship to the severity of illness as measured by the Acute Physiology and Chronic Health Evaluation (APACHE) II score, the development of multiple organ dysfunction, or mortality. Prospective cohort study. University hospital intensive care unit. A total of 82 critically ill adult patients in four clinically defined groups, namely septic shock (n = 29), sepsis without shock (n = 17), shock without sepsis (n = 22), and nonseptic, nonshock controls (n = 14). None. During day 1 of septic shock, peak plasma levels of G-CSF, interleukin (IL)-6, and leukemia inhibitory factor (LIF), but not GM-CSF, were greater than in sepsis or shock alone (p < .001), and were correlated among themselves (rs = 0.44-0.77; p < .02) and with the APACHE II score (rs = 0.25-0.40; p = .03 to .18). G-CSF, IL-6, and UF, and sepsis, shock, septic shock, and APACHE II scores were strongly associated with organ dysfunction or 5-day mortality by univariate analysis. However, multiple logistic regression analysis showed that only septic shock remained significantly associated with organ dysfunction and only APACHE II scores and shock with 5-day mortality. Similarly, peak G-CSF, IL-6, and LIF were poorly predictive of 30-day mortality. Plasma levels of G-CSF, IL-6, and LIF are greatly elevated in critical illness, including septic shock, and are correlated with one another and with the severity of illness. However, they are not independently predictive of mortality, or the development of multiple organ dysfunction. GM-CSF was rarely elevated, suggesting different roles for G-CSF and GM-CSF in human septic shock.

  17. Effect of recombinant human granulocyte colony-stimulating factor on variations of morphologically identifiable bone marrow cells in myelosuppressed mice.

    PubMed

    Kabaya, K; Kusaka, M; Seki, M

    1994-01-01

    To examine the effects of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on neutrophilic recovery after cytotoxic agents, the variations of marrow colony-forming units of granulocytes and macrophages (CFU-GM) and morphologically identifiable bone marrow cells were investigated in cyclophosphamide (CPA)-treated mice. In mice treated with CPA at 200mg/kg intraperitoneally (day 0), marked decreases in peripheral neutrophils and nucleated cells in the femur were observed. In the femur of mice treated with CPA, the greatest depression in number occurred firstly with CFU-GM and the most immature granulocytes, such as myeloblasts and promyelocytes, followed in turn by myelocytes, metamyelocytes and mature neutrophils. Administration of rhG-CSF for four successive days (days 1-4) after CPA treatment completely prevented the neutropenia. In the femur, rhG-CSF enhanced the recovery of progenitors and immature granulocytes from their depression in the order of their differentiation, and recovery of marrow neutrophils was also promoted. From these studies, we confirmed that rhG-CSF effects an increase in peripheral neutrophils by enhancing the proliferation and differentiation of CFU-GM and immature marrow granulocytes.

  18. Replication of human immunodeficiency virus in monocytes. Granulocyte/macrophage colony-stimulating factor (GM-CSF) potentiates viral production yet enhances the antiviral effect mediated by 3'-azido- 2'3'-dideoxythymidine (AZT) and other dideoxynucleoside congeners of thymidine

    PubMed Central

    1989-01-01

    We have investigated the influence of granulocyte-macrophage CSF (GM- CSF) on the replication of HIV-1 in cells of monocyte/macrophage (M/M) lineage, and its effect on the anti-HIV activity of several 2'3'- dideoxynucleoside congeners of thymidine in these cells in vitro. We found that replication of both HTLV-IIIBa-L (a monocytotropic strain of HIV-1) and HTLV-IIIB (a lymphocytotropic strain) is markedly enhanced in M/M, but not in lymphocytes exposed to GM-CSF in culture. Moreover, GM-CSF reduced the dose of HIV required to obtain productive infection in M/M. Even in the face of this increased infection, GM-CSF also enhanced the net anti-HIV activity of 3'-azido-2'3'-dideoxythymidine (AZT) and several related congeners: 2'3'-dideoxythymidine (ddT), 2'3'- dideoxy-2'3'-didehydrothymidine (D4T), and 3'-azido-2'3'-dideoxyuridine (AZddU). Inhibition of viral replication in GM-CSF-exposed M/M was achieved with concentrations of AZT and related drugs, which were 10- 100 times lower than those inhibitory for HIV-1 in monocytes in the absence of GM-CSF. Other dideoxynucleosides not related to AZT showed unchanged or decreased anti-HIV activity in GM-CSF-exposed M/M. To investigate the possible biochemical basis for these effects, we evaluated the metabolism of several drugs in M/M exposed to GM-CSF. We observed in these cells markedly increased levels of both parent and mono-, di-, and triphosphate anabolites of AZT and D4T compared with M/M not exposed to GM-CSF. By contrast, only limited increases of endogenous competing 2'-deoxynucleoside-5'-triphosphate pools were observed after GM-CSF exposure. Thus, the ratio of AZT-5'- triphosphate/2'-deoxythymidine-5'-triphosphate and 2'3'-dideoxy-2'3'- didehydrothymidine-5'-triphosphate/2'-deoxythymi dine- 5'-triphosphate is several-fold higher in GM-CSF-exposed M/M, and this may account for the enhanced activity of such drugs in these cells. Taken together, these findings suggest that GM-CSF increases HIV-1 replication in M

  19. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Colagiovanni, D. B.; Henry, V. A.; Clarkson, T. W. (Principal Investigator)

    1992-01-01

    The effects of in vitro pretreatment with benzene metabolites on colony-forming response of murine bone marrow cells stimulated with recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) were examined. Pretreatment with hydroquinone (HQ) at concentrations ranging from picomolar to micromolar for 30 min resulted in a 1.5- to 4.6-fold enhancement in colonies formed in response to rGM-CSF that was due to an increase in granulocyte/macrophage colonies. The synergism equaled or exceeded that reported for the effects of interleukin 1, interleukin 3, or interleukin 6 with GM-CSF. Optimal enhancement was obtained with 1 microM HQ and was largely independent of the concentration of rGM-CSF. Pretreatment with other authentic benzene metabolites, phenol and catechol, and the putative metabolite trans, trans-muconaldehyde did not enhance growth factor response. Coadministration of phenol and HQ did not enhance the maximal rGM-CSF response obtained with HQ alone but shifted the optimal concentration to 100 pM. Synergism between HQ and rGM-CSF was observed with nonadherent bone marrow cells and lineage-depleted bone marrow cells, suggesting an intrinsic effect on recruitment of myeloid progenitor cells not normally responsive to rGM-CSF. Alterations in differentiation in a myeloid progenitor cell population may be of relevance in the pathogenesis of acute myelogenous leukemia secondary to drug or chemical exposure.

  20. OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma.

    PubMed

    Kaufman, Howard L; Bines, Steven D

    2010-06-01

    There are few effective treatment options available for patients with advanced melanoma. An oncolytic herpes simplex virus type 1 encoding granulocyte macrophage colony-stimulating factor (GM-CSF; Oncovex(GM-CSF)) for direct injection into accessible melanoma lesions resulted in a 28% objective response rate in a Phase II clinical trial. Responding patients demonstrated regression of both injected and noninjected lesions highlighting the dual mechanism of action of Oncovex(GM-CSF) that includes both a direct oncolytic effect in injected tumors and a secondary immune-mediated anti-tumor effect on noninjected tumors. Based on these preliminary results a prospective, randomized Phase III clinical trial in patients with unresectable Stage IIIb or c and Stage IV melanoma has been initiated. The rationale, study design, end points and future development of the Oncovex(GM-CSF) Pivotal Trial in Melanoma (OPTIM) trial are discussed in this article.

  1. Cytokine refacing effect reduces granulocyte macrophage colony-stimulating factor susceptibility to antibody neutralization

    PubMed Central

    Heinzelman, Pete; Carlson, Sharon J.; Cox, George N.

    2015-01-01

    Crohn's Disease (CD) afflicts over half a million Americans with an annual economic impact exceeding $10 billion. Granulocyte macrophage colony-stimulating factor (GM-CSF) can increase patient immune responses against intestinal microbes that promote CD and has been effective for some patients in clinical trials. We have made important progress toward developing GM-CSF variants that could be more effective CD therapeutics by virtue of being less prone to neutralization by the endogenous GM-CSF autoantibodies that are highly expressed in CD patients. Yeast display engineering revealed mutations that increase GM-CSF variant binding affinity by up to ∼3-fold toward both GM-CSF receptor alpha and beta subunits in surface plasmon resonance experiments. Increased binding affinity did not reduce GM-CSF half-maximum effective concentration (EC50) values in conventional in vitro human leukocyte proliferation assays. Affinity-enhancing mutations did, however, promote a ‘refacing effect’ that imparted all five evaluated GM-CSF variants with increased in vitro bioactivity in the presence of GM-CSF-neutralizing polyclonal antisera. The most improved variant, H15L/R23L, was 6-fold more active than wild-type GM-CSF. Incorporation of additional known affinity-increasing mutations could augment the refacing effect and concomitant bioactivity improvements described here. PMID:25855658

  2. The frequency of clinical pregnancy and implantation rate after cultivation of embryos in a medium with granulocyte macrophage colony-stimulating factor (GM-CSF) in patients with preceding failed attempts of ART.

    PubMed

    Tevkin, S; Lokshin, V; Shishimorova, M; Polumiskov, V

    2014-10-01

    The application in IVF practice of modern techniques can improve positive outcome of each cycle in the assisted reproductive technology (ART) programs and the effectiveness of treatment as a whole. There are embryos in the female reproductive tract in physiological medium which contain various cytokines and growth factors. It plays an important role in the regulation of normal embryonic development, improve implantation and subsequently optimizing the development of the fetus and the placenta. Granulocyte macrophage colony-stimulating factor (GM-CSF is one of the cytokines playing an important role in reproductive function. Addition of recombinant GM-CSF to the culture medium can makes closer human embryos culture to in vivo conditions and improve the efficacy ART cycles. The analysis of culture embryos in EmbryoGen medium has shown that fertilization rate embryo culture and transfer to patients with previous unsuccessful attempts increases clinical pregnancy rate compared to the control group 39.1 versus 27.8%, respectively. It is noted that the implantation rate (on 7 weeks' gestation) and progressive clinical pregnancy rate (on 12 weeks' gestation) were significantly higher in group embryos culture in EmbryoGen medium compared to standard combination of medium (ISM1+VA), and were 20.4 and 17.4% versus 11.6 and 9.1%, respectively.

  3. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor.

    PubMed

    Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H

    1993-01-15

    In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.

  4. [Mobilization of autologous peripheral blood stem cells by cyclophosphamide and recombinant human granulocyte colony-stimulating factor(rhG-CSF)].

    PubMed

    Shi, Y; Zhou, S; Han, X

    1998-08-01

    To observe the effect of cyclophosphamide (CTX) and recombinant human granulocyte colony-stimulating factor(rhG-CSF, Filgrastim) on autologous peripheral blood stem cells (APBSC) mobilization. CTX (3.7 +/- 0.2) g/m2 was intravenously injected the first day. rhG-CSF (4.5 +/- 0.6) micrograms.kg-1.d-1 was injected subcutaneously from the day of white blood cell (WBC) nadir to the day before the end of APBSC harvest. APBSC harvest was started when WBC > 2.5 x 10(9)/L and finished when accumulated mononuclear cells (MNC) of APBSC > 5 x 10(8)/kg. CFU-GM, BFU-E culture and CD34+ cells detection of the APBSC was performed. Twenty cases underwent the APBSC mobilization. The nadir of WBC was (1.1 +/- 0.5) x 10(9)/L at day (9 +/- 1). rhG-CSF was injected from day (10 +/- 1) and continued for (6 +/- 1) days. APBSC harvest began on day (13 +/- 1) and continued for (4 +/- 1) days. Accumulated MNC harvest was (8.4 +/- 1.9) x 10(8)/kg, CFU-GM (18.7 +/- 10.3) x 10(4)/kg, BFU-E (18.5 +/- 8.7) x 10(4)/kg, and CD34+ cells (20.9 +/- 5.7) x 10(6)/kg. No severe toxicity was observed. Hematopoietic reconstitution was very well in 18 patients received the APBSC transplantation. CTX combined with rhG-CSF was a safe and highly effective method for APBSC mobilization.

  5. In vivo effect of human granulocyte-macrophage colony-stimulating factor on megakaryocytopoiesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aglietta, M.; Monzeglio, C.; Sanavio, F.

    1991-03-15

    The effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on megakaryocytopoiesis and platelet production was investigated in patients with normal hematopoiesis. Three findings indicated that GM-CSF plays a role in megakaryocytopoiesis. During treatment with GM-CSF (recombinant mammalian, glycosylated; Sandoz/Schering-Plough, 5.5 micrograms protein/kg/d, subcutaneously for 3 days) the percentage of megakaryocyte progenitors (megakaryocyte colony forming unit (CFU-Mk)) in S phase (evaluated by the suicide technique with high 3H-Tdr doses) increased from 31% +/- 16% to 88% +/- 11%; and the maturation profile of megakaryocytes was modified, with a relative increase in more immature stage I-III forms. Moreover, by autoradiography (after incubation of marrowmore » cells with 125I-labeled GM-CSF) specific GM-CSF receptors were detectable on megakaryocytes. Nevertheless, the proliferative stimulus induced on the progenitors was not accompanied by enhanced platelet production (by contrast with the marked granulomonocytosis). It may be suggested that other cytokines are involved in the regulation of the intermediate and terminal stages of megakaryocytopoiesis in vivo and that their intervention is an essential prerequisite to turn the GM-CSF-induced proliferative stimulus into enhanced platelet production.« less

  6. Inhibitory effect of Korean Red Ginseng on melanocyte proliferation and its possible implication in GM-CSF mediated signaling

    PubMed Central

    Oh, Chang Taek; Park, Jong Il; Jung, Yi Ra; Joo, Yeon Ah; Shin, Dong Ha; Cho, Hyoung Joo; Ahn, Soo Mi; Lim, Young-Ho; Park, Chae Kyu; Hwang, Jae Sung

    2013-01-01

    Korean Red Ginseng (KRG) has been reported to exert anticancer, anti-oxidant, and anti-inflammatory effects. However, there has been no report on the effect of KRG on skin pigmentation. In this study, we investigated the inhibitory effect of KRG on melanocyte proliferation. KRG extract (KRGE) at different concentrations had no effect on melanin synthesis in melan-A melanocytes. Saponin of KRG (SKRG) inhibited melanin content to 80% of the control at 100 ppm. Keratinocyte-derived factors induced by UV-irradiation were reported to stimulate melanogenesis, differentiation, proliferation, and dendrite formation. In this study, treatment of melan-A melanocytes with conditioned media from UV-irradiated SP-1 keratinocytes increased melanocyte proliferation. When UV-irradiated SP-1 keratinocytes were treated with KRGE or SKRG, the increase of melanocyte proliferation by the conditioned media was blocked. Granulocyte-macrophage colony-stimulating factor (GM-CSF) was produced and released from UV-irradiated keratinocytes. This factor has been reported to be involved in regulating the proliferation and differentiation of epidermal melanocytes. In this study, GM-CSF was significantly increased in SP-1 keratinocytes by UVB irradiation (30 mJ/cm2), and the proliferation of melan-A melanocytes increased significantly by GM-CSF treatment. In addition, the proliferative effect of keratinocyte-conditioned media on melan-A melanocytes was blocked by anti-GM-CSF treatment. KRGE or SKRG treatment decreased the expression of GM-CSF in SP-1 keratinocytes induced by UVB irradiation. These results demonstrate that UV irradiation induced GM-CSF expression in keratinocytes and KRGE or SKRG inhibited its expression. Therefore, KRG could be a good candidate for regulating UV-induced melanocyte proliferation. PMID:24235857

  7. Randomized, Placebo-Controlled, Phase III Trial of Yeast-Derived Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Versus Peptide Vaccination Versus GM-CSF Plus Peptide Vaccination Versus Placebo in Patients With No Evidence of Disease After Complete Surgical Resection of Locally Advanced and/or Stage IV Melanoma: A Trial of the Eastern Cooperative Oncology Group–American College of Radiology Imaging Network Cancer Research Group (E4697)

    PubMed Central

    Lawson, David H.; Lee, Sandra; Zhao, Fengmin; Tarhini, Ahmad A.; Margolin, Kim A.; Ernstoff, Marc S.; Atkins, Michael B.; Cohen, Gary I.; Whiteside, Theresa L.; Butterfield, Lisa H.; Kirkwood, John M.

    2015-01-01

    Purpose We conducted a double-blind, placebo-controlled trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) and peptide vaccination (PV) on relapse-free survival (RFS) and overall survival (OS) in patients with resected high-risk melanoma. Patients and Methods Patients with completely resected stage IV or high-risk stage III melanoma were grouped by human leukocyte antigen (HLA) -A2 status. HLA-A2–positive patients were randomly assigned to receive GM-CSF, PV, both, or placebo; HLA-A2–negative patients, GM-CSF or placebo. Treatment lasted for 1 year or until recurrence. Efficacy analyses were conducted in the intent-to-treat population. Results A total of 815 patients were enrolled. There were no significant improvements in OS (stratified log-rank P = .528; hazard ratio, 0.94; 95% repeated CI, 0.77 to 1.15) or RFS (P = .131; hazard ratio, 0.88; 95% CI, 0.74 to 1.04) in the patients assigned to GM-CSF (n = 408) versus those assigned to placebo (n = 407). The median OS times with GM-CSF versus placebo treatments were 69.6 months (95% CI, 53.4 to 83.5 months) versus 59.3 months (95% CI, 44.4 to 77.3 months); the 5-year OS probability rates were 52.3% (95% CI, 47.3% to 57.1%) versus 49.4% (95% CI, 44.3% to 54.3%), respectively. The median RFS times with GM-CSF versus placebo were 11.4 months (95% CI, 9.4 to 14.8 months) versus 8.8 months (95% CI, 7.5 to 11.2 months); the 5-year RFS probability rates were 31.2% (95% CI, 26.7% to 35.9%) versus 27.0% (95% CI, 22.7% to 31.5%), respectively. Exploratory analyses showed a trend toward improved OS in GM-CSF–treated patients with resected visceral metastases. When survival in HLA-A2–positive patients who received PV versus placebo was compared, RFS and OS were not significantly different. Treatment-related grade 3 or greater adverse events were similar between GM-CSF and placebo groups. Conclusion Neither adjuvant GM-CSF nor PV significantly improved RFS or OS in patients with high

  8. Recent progress in GM-CSF-based cancer immunotherapy.

    PubMed

    Yan, Wan-Lun; Shen, Kuan-Yin; Tien, Chun-Yuan; Chen, Yu-An; Liu, Shih-Jen

    2017-03-01

    Cancer immunotherapy is a growing field. GM-CSF, a potent cytokine promoting the differentiation of myeloid cells, can also be used as an immunostimulatory adjuvant to elicit antitumor immunity. Additionally, GM-CSF is essential for the differentiation of dendritic cells, which are responsible for processing and presenting tumor antigens for the priming of antitumor cytotoxic T lymphocytes. Some strategies have been developed for GM-CSF-based cancer immunotherapy in clinical practice: GM-CSF monotherapy, GM-CSF-secreting cancer cell vaccines, GM-CSF-fused tumor-associated antigen protein-based vaccines, GM-CSF-based DNA vaccines and GM-CSF combination therapy. GM-CSF also contributes to the regulation of immunosuppression in the tumor microenvironment. This review provides recommendations regarding GM-CSF-based cancer immunotherapy.

  9. [The therapeutic effect of HSV1-hGM-CSF combined with doxorubicin on the mouse breast cancer model].

    PubMed

    Zhuang, X F; Zhang, S R; Liu, B L; Wu, J L; Li, X Q; Gu, H G; Shu, Y

    2018-03-23

    Objective: To evaluate the oncolytic effect of herpes simplex virus type 1 which carried recombined human granulocyte-macrophage colony-stimulating factor (HSV1-hGM-CSF) on the mouse breast cancer cell line 4T1 and compare the anticancer effects of HSV1-hGM-CSF, doxorubicin alone or combination on the breast cancer in mice. Methods: We investigated the cytotoxic effect on 4T1 cells in vitro, the cell growth, cell apoptosis and cell cycle of 4T1 cells treated with oncolytic HSV1-hGM-CSF at different MOIs (0, 0.5, 1 and 2) and doxorubicin at different concentrations (0, 2, 4 and 8 μg/ml). The effects of oncolytic HSV1-hGM-CSF and doxorubicin on the tumor growth, survival time and their side effects on the mouse breast cancer model were observed. Results: Both oncolytic HSV1-hGM-CSF and doxorubicin significantly inhibited the proliferation of 4T1 cells in vitro . Doxorubicin induced the G(2)/M phase arrest of 4T1 cells, while the cytotoxicity of oncolytic HSV1-hGM-CSF was no cell cycle-dependent.At day 16 after treatment with doxorubicin and HSV1-hGM-CSF, the tumor volume of 4T1 tumor bearing mice were (144.40±27.68)mm(3,) (216.80±57.18)mm(3,) (246.10±21.90)mm(3,) (327.50±44.24)mm(3,) (213.30±32.31)mm(3) and (495.80±75.87)mm(3) in the groups of doxorubicin combined with high dose HSV1-hGM-CSF, doxorubicin combined with low dose HSV1-hGM-CSF, doxorubicin alone, high dose HSV1-hGM-CSF alone, low dose HSV1-hGM-CSF alone and control, respectively.Compared with the control group, both doxorubicin and HSV1-hGM-CSF treatment exhibited significant reduction of primary tumor volume in vivo ( P <0.001). The median survival times were 48, 50, 40, 42, 43 and 37 days in the six groups mentioned above, respectively. The median survival period of doxorubicin alone, high dose HSV1-hGM-CSF alone and low dose HSV1-hGM-CSF alone were significantly longer than that of control ( P <0.05). Conclusion: Synergistic effect of sequential treatment with doxorubicin and oncolytic HSV1-hGM-CSF

  10. Potential clinical applications of rhGM-CSF in acute myeloid leukemia based on its biologic activity and receptor interaction.

    PubMed

    Lanza, F; Rigolin, G M; Castagnari, B; Moretti, S; Castoldi, G

    1997-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multilineage hemopoietic growth factor that stimulates proliferation, differentiation, and survival of progenitor cells, enhances the functional activities of mature myeloid effector cells, and plays a key role in host defense and the inflammatory process. Although the clinical use of rhGM-CSF in patients affected by lymphoid malignancies is widely accepted, its utility and safety in the management of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) is still controversial. The three main schedules adopted for clinical application of GM-CSF in AML are as follows: A) post-chemotherapy, in order to shorten the duration of neutropenia and/or monocytopenia; B) prechemotherapy to recruit blast cells into active cell cycle phases, and to increase their sensitivity to cell cycle-dependent cytotoxic drugs; C) as a mobilizing agent to induce the release of progenitor cells from bone marrow into circulation (peripheral blood progenitor cell transplantation-PBPC). The objective of this paper is to analyze the potential clinical applications of rhGM-CSF in AML. The material examined in the present review includes several personal papers in this field and articles and abstracts published in journals covered by the Science Citation Index. Based on current knowledge, it may be argued that rhGM-CSF should be used only in a subset of AML patients at high risk of infection mortality, including elderly subjects, and/or in those AML patients who relapse or are resistant to induction treatment. However, the risk of stimulating the leukemic clone following GM-CSF therapy should be kept in mind when using this growth factor in the clinical setting, even though the great majority of the reported papers on this subject have shown that GM-CSF therapy does not affect relapse rates, frequency of remissions or patient life expectancy. It is likely that new data from controlled clinical trials will clarify the

  11. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis

    PubMed Central

    Chousterman, Benjamin G.; Hilgendorf, Ingo; Robbins, Clinton S.; Theurl, Igor; Gerhardt, Louisa M.S.; Iwamoto, Yoshiko; Quach, Tam D.; Ali, Muhammad; Chen, John W.; Rothstein, Thomas L.; Nahrendorf, Matthias; Weissleder, Ralph

    2014-01-01

    Pneumonia is a major cause of mortality worldwide and a serious problem in critical care medicine, but the immunophysiological processes that confer either protection or morbidity are not completely understood. We show that in response to lung infection, B1a B cells migrate from the pleural space to the lung parenchyma to secrete polyreactive emergency immunoglobulin M (IgM). The process requires innate response activator (IRA) B cells, a transitional B1a-derived inflammatory subset which controls IgM production via autocrine granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling. The strategic location of these cells, coupled with the capacity to produce GM-CSF–dependent IgM, ensures effective early frontline defense against bacteria invading the lungs. The study describes a previously unrecognized GM-CSF-IgM axis and positions IRA B cells as orchestrators of protective IgM immunity. PMID:24821911

  12. The administration of IL-12/GM-CSF and Ig-4-1BB ligand markedly decreases murine floor of mouth squamous cell cancer.

    PubMed

    Adappa, Nithin D; Sung, Chi-Kwang; Choi, Bryan; Huang, Tian-Gui; Genden, Eric M; Shin, Edward J

    2008-09-01

    To assess immune-based gene therapy in a murine floor of mouth (FOM) squamous cell carcinoma (SCC) model. In vitro and in vivo testing of immune therapy for SCC. Multiple SCC lines were infected by using advRSV-interleukin-12 (IL-12) and advCMV-interleukin-12/granulocyte macrophage colony-stimulating factor (IL-12/GM-CSF) and monitored for production of IL-12 and GM-CSF. Intratumoral injections of viral vectors were administered with systemic Ig-4-1BB ligand in an orthotopic murine FOM SCC model and followed for tumor size and survival. In vitro, all cell lines produced substantial levels of IL-12 and GM-CSF. In vivo, tumors treated with advCMV-IL-12/GM-CSF and Ig-4-1BBL showed a striking reduction in tumor volume (vs control P<0.0001) and improved median survival (38 days vs 19 days for control, P<0.0001). Combination immune-based therapies effectively improve survival in mice bearing FOM SCC over single-modality therapy.

  13. Keratinocyte Growth Factor Administration Attenuates Murine Pulmonary Mycobacterium tuberculosis Infection through Granulocyte-Macrophage Colony-stimulating Factor (GM-CSF)-dependent Macrophage Activation and Phagolysosome Fusion*

    PubMed Central

    Pasula, Rajamouli; Azad, Abul K.; Gardner, Jason C.; Schlesinger, Larry S.; McCormack, Francis X.

    2015-01-01

    Augmentation of innate immune defenses is an appealing adjunctive strategy for treatment of pulmonary Mycobacterium tuberculosis infections, especially those caused by drug-resistant strains. The effect of intranasal administration of keratinocyte growth factor (KGF), an epithelial mitogen and differentiation factor, on M. tuberculosis infection in mice was tested in prophylaxis, treatment, and rescue scenarios. Infection of C57BL6 mice with M. tuberculosis resulted in inoculum size-dependent weight loss and mortality. A single dose of KGF given 1 day prior to infection with 105 M. tuberculosis bacilli prevented weight loss and enhanced pulmonary mycobacterial clearance (compared with saline-pretreated mice) for up to 28 days. Similar effects were seen when KGF was delivered intranasally every third day for 15 days, but weight loss and bacillary growth resumed when KGF was withdrawn. For mice with a well established M. tuberculosis infection, KGF given every 3 days beginning on day 15 postinoculation was associated with reversal of weight loss and an increase in M. tuberculosis clearance. In in vitro co-culture experiments, M. tuberculosis-infected macrophages exposed to conditioned medium from KGF-treated alveolar type II cell (MLE-15) monolayers exhibited enhanced GM-CSF-dependent killing through mechanisms that included promotion of phagolysosome fusion and induction of nitric oxide. Alveolar macrophages from KGF-treated mice also exhibited enhanced GM-CSF-dependent phagolysosomal fusion. These results provide evidence that administration of KGF promotes M. tuberculosis clearance through GM-CSF-dependent mechanisms and enhances host defense against M. tuberculosis infection. PMID:25605711

  14. Granulocyte Macrophage Colony-Stimulating Factor-Activated Eosinophils Promote Interleukin-23 Driven Chronic Colitis

    PubMed Central

    Griseri, Thibault; Arnold, Isabelle C.; Pearson, Claire; Krausgruber, Thomas; Schiering, Chris; Franchini, Fanny; Schulthess, Julie; McKenzie, Brent S.; Crocker, Paul R.; Powrie, Fiona

    2015-01-01

    Summary The role of intestinal eosinophils in immune homeostasis is enigmatic and the molecular signals that drive them from protective to tissue damaging are unknown. Most commonly associated with Th2 cell-mediated diseases, we describe a role for eosinophils as crucial effectors of the interleukin-23 (IL-23)-granulocyte macrophage colony-stimulating factor (GM-CSF) axis in colitis. Chronic intestinal inflammation was characterized by increased bone marrow eosinopoiesis and accumulation of activated intestinal eosinophils. IL-5 blockade or eosinophil depletion ameliorated colitis, implicating eosinophils in disease pathogenesis. GM-CSF was a potent activator of eosinophil effector functions and intestinal accumulation, and GM-CSF blockade inhibited chronic colitis. By contrast neutrophil accumulation was GM-CSF independent and dispensable for colitis. In addition to TNF secretion, release of eosinophil peroxidase promoted colitis identifying direct tissue-toxic mechanisms. Thus, eosinophils are key perpetrators of chronic inflammation and tissue damage in IL-23-mediated immune diseases and it suggests the GM-CSF-eosinophil axis as an attractive therapeutic target. PMID:26200014

  15. [Therapeutic use of hematopoietic growth factors. II. GM-CSF and G-CSF].

    PubMed

    Royer, B; Arock, M

    1998-01-01

    The second part of this review on haematopoietic growth factors is focused on the therapeutic use of GM-CSF and G-CSF. Such therapeutic applications have raised very great hopes for clinical haematology. However, it should not be forgotten that these haematopoietic growth factors, which are very costly, are powerful two-edged weapons capable of triggering a cascade of reactions, and have a field of activity that often goes beyond the single highly specific property which it is hoped they possess. The risks and costs of their use are currently being evaluated. Waited developments concerning these molecules focus on three axes: a best use of factors already commercialized, especially concerning adaptation of posologies and new indications, the development of hybrid molecules from already known haematopoietic growth factors, possessing the advantages of respective factors, but not their disadvantages, the discovery of new haematopoietic growth factors with potential therapeutic application.

  16. A standardized blood test for the routine clinical diagnosis of impaired GM-CSF signaling using flow cytometry.

    PubMed

    Kusakabe, Yoshiomi; Uchida, Kanji; Hiruma, Takahiro; Suzuki, Yoko; Totsu, Tokie; Suzuki, Takuji; Carey, Brenna C; Yamada, Yoshitsugu; Trapnell, Bruce C

    2014-11-01

    Impaired signaling by granulocyte/macrophage-colony stimulating factor (GM-CSF) drives the pathogenesis of two diseases (autoimmune and hereditary pulmonary alveolar proteinosis (PAP)) representing over ninety percent of patients who develop PAP syndrome but not a broad spectrum of diseases that cause PAP by other mechanisms. We previously exploited the ability of GM-CSF to rapidly increase cell-surface CD11b levels on neutrophils (CD11bSurface) to establish the CD11b stimulation index (CD11b-SI), a test enabling the clinical research diagnosis of impaired GM-CSF signaling based on measuring CD11bSurface by flow cytometry using fresh, heparinized blood. (CD11b-SI is defined as GM-CSF-stimulated- CD11bSurface minus unstimulated CD11bSurface divided by un-stimulated CD11bSurface multiplied by 100.) Notwithstanding important and unique diagnostic utility, the test is sensitive to experimental conditions that can affect test performance. The present study was undertaken to optimize and standardize CD11b-SI test for detecting impaired GM-CSF signaling in heparinized human blood specimens from PAP patients. Results demonstrated the test was sensitive to choice of anticoagulant, pretesting incubation on ice, a delay between phlebotomy and test performance of more than one hour, and the concentration GM-CSF used to stimulate blood. The standardized CD11b-SI test reliably distinguished blood specimens from autoimmune PAP patients with impaired GM-CSF signaling from those of health people with normal signaling. Intra-subject differences were smaller than inter-subject differences in repeated measures. Receiver operating characteristic curve analysis identified a CD11b-SI test result of 112 as the optimal cut off threshold for diagnosis of impaired GM-CSF signaling in autoimmune PAP for which the sensitivity and specificity were both 100%. These results support the use of this standardized CD11b-SI for routine clinical identification of impaired GM-CSF signaling in patients

  17. Granulocyte Macrophage-Colony Stimulating Factor-induced Zn Sequestration Enhances Macrophage Superoxide and Limits Intracellular Pathogen Survival

    PubMed Central

    Vignesh, Kavitha Subramanian; Landero Figueroa, Julio A.; Porollo, Aleksey; Caruso, Joseph A.; Deepe, George S.

    2013-01-01

    SUMMARY Macrophages possess numerous mechanisms to combat microbial invasion, including sequestration of essential nutrients, like Zn. The pleiotropic cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) enhances antimicrobial defenses against intracellular pathogens such as Histoplasma capsulatum, but its mode of action remains elusive. We have found that GM-CSF activated infected macrophages sequestered labile Zn by inducing binding to metallothioneins (MTs) in a STAT3 and STAT5 transcription factor-dependent manner. GM-CSF upregulated expression of Zn exporters, Slc30a4 and Slc30a7 and the metal was shuttled away from phagosomes and into the Golgi apparatus. This distinctive Zn sequestration strategy elevated phagosomal H+ channel function and triggered reactive oxygen species (ROS) generation by NADPH oxidase. Consequently, H. capsulatum was selectively deprived of Zn, thereby halting replication and fostering fungal clearance. GM-CSF mediated Zn sequestration via MTs in vitro and in vivo in mice and in human macrophages. These findings illuminate a GM-CSF-induced Zn-sequestration network that drives phagocyte antimicrobial effector function. PMID:24138881

  18. GM-CSF produced by non-hematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa1,2

    PubMed Central

    Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.

    2012-01-01

    GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885

  19. Granulocyte-macrophage colony-stimulating factor responses of oral epithelial cells to Candida albicans.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H

    2003-06-01

    Candida albicans is the principal fungal species responsible for oropharyngeal candidiasis, the most frequent opportunistic infection associated with immune deficiencies. Cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), are important in the generation of effective immunity to C. albicans. The purposes of this investigation were to determine whether C. albicans triggers secretion of GM-CSF by oral epithelial cells in vitro and to investigate mechanisms of host cell-fungal interactions that trigger such responses. Oral epithelial cell lines as well as primary oral mucosal epithelial cells were challenged with stationary phase viable C. albicans, added to human cell cultures at varying yeast:oral cell ratios. Yeast were allowed to germinate for up to 48 h and supernatants were analyzed for GM-CSF by ELISA. Fixed organisms, germination-deficient mutants and separation of yeast from epithelial cells using cell culture inserts were used to assess the effects of viability, germination and physical contact, respectively, on the GM-CSF responses of these cells. Two out of three cell lines and three out of six primary cultures responded to C. albicans with an increase in GM-CSF secretion. GM-CSF responses were contact-dependent, strain-dependent, required yeast viability and were optimal when the yeast germinated into hyphae.

  20. Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF.

    PubMed

    Choi, K-J; Zhang, S-N; Choi, I-K; Kim, J-S; Yun, C-O

    2012-07-01

    Interleukin (IL)-12 and granulocyte-monocyte colony-stimulating factor (GM-CSF) have recently been used as immunotherapeutic agents in cancer gene therapy. IL-12 and GM-CSF have differential roles in the antitumor immune response, as IL-12 targets T, NK and natural killer T (NKT) cells and GM-CSF principally targets antigen-presenting cells (APCs). To strengthen the therapeutic efficacy of these two cytokines, we generated an oncolytic adenovirus (Ad), Ad-ΔB7/IL12/GMCSF, coexpressing IL-12 and GM-CSF. Using a murine B16-F10 syngeneic tumor model, we show that Ad-ΔB7/IL12/GMCSF promoted antitumor responses and increased survival compared with an oncolytic Ad expressing IL-12 or GM-CSF alone (Ad-ΔB7/IL12 or Ad-ΔB7/GMCSF, respectively). By measuring cytotoxic T lymphocyte activity and interferon-γ production, we show that the enhanced therapeutic effect was mediated by the induction of immune cell cytotoxicity. In situ delivery of Ad-ΔB7/IL12/GMCSF resulted in massive infiltration of CD4(+) T cells, CD8(+) T cells, NK cells and CD86(+) APCs into the tissue surrounding the necrotic area of the tumor. Moreover, GM-CSF effectively promoted antitumor immune memory, which was significantly augmented by IL-12. Lastly, IL12-expressing oncolytic Ads prevented tumor-induced thymic atrophy and was associated with reduced apoptosis and increased proliferation in the thymus. Taken together, these data demonstrate that an oncolytic Ad coexpressing IL-12 and GM-CSF is a potential therapeutic tool for the treatment of cancer.

  1. Granulocyte-Colony Stimulating Factor (G-CSF) Administration for Chemotherapy-Induced Neutropenia.

    PubMed

    Yalçin, Ş; Güler, N; Kansu, E; Ertenli, I; Güllü, I; Barişta, I; Çelik, I; Kars, A; Tekuzman, G; Baltali, E; Firat, D

    1996-01-01

    This study was aimed to evaluate the efficacy of G-CSF (Granulocyte colony stimulating factor) administration to 37 patients with neutropenia following intensive combination chemotherapy. The patients were divided into two subgroups including solid tumors given ifosfamide and etoposide combination chemotherapy (IMET subgroup) and acute myeloid leukemia (AML) patients treated with mitoxantrone and cytarabine. Control group consisted of 31 acute myeloid leukemia patients. G-CSF was started on the first day of absolute neutropenia until the absolute neutrophil count was above 1000/mm(3) for two consecutive days. G-CSF was found to be effective for early recovery of neutrophil count. Expected response was achieved within 14 days in 91.5% of the courses with a median of fifth day of G-CSF treatment. In conclusion, this study showed the efficacy of G-CSF in early recovery of neutrophil count without any reduction in the incidence of febrile episodes and documented rates of bacterial and fungal infections in patients with acute myeloid leukemia.

  2. Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor

    PubMed Central

    ZHAI, YONGZHEN; ZHOU, YAN; LI, XIMEI; FENG, GUOHE

    2015-01-01

    Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM-CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan-pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF. PMID:25738258

  3. Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor.

    PubMed

    Zhai, Yongzhen; Zhou, Yan; Li, Ximei; Feng, Guohe

    2015-07-01

    Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM‑CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan‑pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF.

  4. Glioblastoma-synthesized G-CSF and GM-CSF contribute to growth and immunosuppression: Potential therapeutic benefit from dapsone, fenofibrate, and ribavirin.

    PubMed

    Kast, Richard E; Hill, Quentin A; Wion, Didier; Mellstedt, Håkan; Focosi, Daniele; Karpel-Massler, Georg; Heiland, Tim; Halatsch, Marc-Eric

    2017-05-01

    Increased ratio of circulating neutrophils to lymphocytes is a common finding in glioblastoma and other cancers. Data reviewed establish that any damage to brain tissue tends to cause an increase in G-CSF and/or GM-CSF (G(M)-CSF) synthesized by the brain. Glioblastoma cells themselves also synthesize G(M)-CSF. G(M)-CSF synthesized by brain due to damage by a growing tumor and by the tumor itself stimulates bone marrow to shift hematopoiesis toward granulocytic lineages away from lymphocytic lineages. This shift is immunosuppressive and generates the relative lymphopenia characteristic of glioblastoma. Any trauma to brain-be it blunt, sharp, ischemic, infectious, cytotoxic, tumor encroachment, or radiation-increases brain synthesis of G(M)-CSF. G(M)-CSF are growth and motility enhancing factors for glioblastomas. High levels of G(M)-CSF contribute to the characteristic neutrophilia and lymphopenia of glioblastoma. Hematopoietic bone marrow becomes entrained with, directed by, and contributes to glioblastoma pathology. The antibiotic dapsone, the lipid-lowering agent fenofibrate, and the antiviral drug ribavirin are Food and Drug Administration- and European Medicines Agency-approved medicines that have potential to lower synthesis or effects of G(M)-CSF and thus deprive a glioblastoma of some of the growth promoting contributions of bone marrow and G(M)-CSF.

  5. Use of an oncolytic virus secreting GM-CSF as combined oncolytic and immunotherapy for treatment of colorectal and hepatic adenocarcinomas.

    PubMed

    Malhotra, Sandeep; Kim, Teresa; Zager, Jonathan; Bennett, Joseph; Ebright, Michael; D'Angelica, Michael; Fong, Yuman

    2007-04-01

    Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multimutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these 2 anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. Expression GM-CSF in vitro did not alter the infectivity, cytotoxicity, or replication of NV1034 compared to the noncytokine-secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l-6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice, respectively. In these immune-competent models, NV1034 and NV1023 each demonstrated potent antitumor activity. Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, there was no difference in the antitumor efficacy of these viruses in mice depleted of CD4+ and CD8+ T lymphocytes. Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma.

  6. TNF and granulocyte macrophage-colony stimulating factor interdependence mediates inflammation via CCL17

    PubMed Central

    Cook, Andrew D.; Khiew, Hsu-Wei; Christensen, Anne D.; Fleetwood, Andrew J.; Lacey, Derek C.; Smith, Julia E.; Förster, Irmgard

    2018-01-01

    TNF and granulocyte macrophage-colony stimulating factor (GM-CSF) have proinflammatory activity and both contribute, for example, to rheumatoid arthritis pathogenesis. We previously identified a new GM-CSF→JMJD3 demethylase→interferon regulatory factor 4 (IRF4)→CCL17 pathway that is active in monocytes/macrophages in vitro and important for inflammatory pain, as well as for arthritic pain and disease. Here we provide evidence for a nexus between TNF and this pathway, and for TNF and GM-CSF interdependency. We report that the initiation of zymosan-induced inflammatory pain and zymosan-induced arthritic pain and disease are TNF dependent. Once arthritic pain and disease are established, blockade of GM-CSF or CCL17, but not of TNF, is still able to ameliorate them. TNF is required for GM-CSF–driven inflammatory pain and for initiation of GM-CSF–driven arthritic pain and disease, but not once they are established. TNF-driven inflammatory pain and TNF-driven arthritic pain and disease are dependent on GM-CSF and mechanistically require the same downstream pathway involving GM-CSF→CCL17 formation via JMJD3-regulated IRF4 production, indicating that GM-CSF and CCL17 can mediate some of the proinflammatory and algesic actions of TNF. Given we found that TNF appears important only early in arthritic pain and disease progression, targeting a downstream mediator, such as CCL17, which appears to act throughout the course of disease, could be effective at ameliorating chronic inflammatory conditions where TNF is implicated. PMID:29563337

  7. Shift from posttranscriptional to predominant transcriptional control of the expression of the GM-CSF gene during activation of human Jurkat cells.

    PubMed

    Razanajaona, D; Maroc, C; Lopez, M; Mannoni, P; Gabert, J

    1992-05-01

    The expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is differentially regulated in various cell types. We investigated the mechanisms controlling its expression in 12-O-tetradecanoylphorbol-13-acetate plus phytohemagglutinin-stimulated Jurkat cells, a human T-cell line. In unstimulated cells, GM-CSF mRNA was undetectable by Northern blot. Upon activation, it was detected from 3 h onward, with a progressive increase in the levels of the transcript up to 24 h of stimulation. Whereas cycloheximide treatment at the time of stimulation blocked mRNA induction, its addition at later times resulted in a marked increase in transcript levels. Run-on analysis showed that transcription of the GM-CSF gene was low to undetectable in unstimulated cells; stimulation led to transcriptional activation, which was weak at 6 h but had increased 16-fold at 24 h. In addition, the mRNA half-life decreased during activation, from 2.5 h at 6 h down to 45 min at 24 h. Cycloheximide treatment increased GM-CSF mRNA half-life (3- and 4-fold, respectively). Our results show: (a) both transcriptional and posttranscriptional signals regulate GM-CSF mRNA levels in activated Jurkat cells, (b) de novo protein synthesis is required for mRNA induction, whereas destabilizing labile proteins control the transcript stability, and (c) a shift from a posttranscriptional to a predominant transcriptional control of GM-CSF gene expression occurs during activation.

  8. Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells.

    PubMed

    Na, Yi Rang; Hong, Ji Hye; Lee, Min Yong; Jung, Jae Hun; Jung, Daun; Kim, Young Won; Son, Dain; Choi, Murim; Kim, Kwang Pyo; Seok, Seung Hyeok

    2015-10-01

    Macrophages are crucial in controlling infectious agents and tissue homeostasis. Macrophages require a wide range of functional capabilities in order to fulfill distinct roles in our body, one being rapid and robust immune responses. To gain insight into macrophage plasticity and the key regulatory protein networks governing their specific functions, we performed quantitative analyses of the proteome and phosphoproteome of murine primary GM-CSF and M-CSF grown bone marrow derived macrophages (GM-BMMs and M-BMMs, respectively) using the latest isobaric tag based tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Strikingly, metabolic processes emerged as a major difference between these macrophages. Specifically, GM-BMMs show significant enrichment of proteins involving glycolysis, the mevalonate pathway, and nitrogen compound biosynthesis. This evidence of enhanced glycolytic capability in GM-BMMs is particularly significant regarding their pro-inflammatory responses, because increased production of cytokines upon LPS stimulation in GM-BMMs depends on their acute glycolytic capacity. In contrast, M-BMMs up-regulate proteins involved in endocytosis, which correlates with a tendency toward homeostatic functions such as scavenging cellular debris. Together, our data describes a proteomic network that underlies the pro-inflammatory actions of GM-BMMs as well as the homeostatic functions of M-BMMs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malur, Anagha; Huizar, Isham; Wells, Greg

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO)more » mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as

  10. Dexamethasone promotes granulocyte mobilization by prolonging the half-life of granulocyte-colony-stimulating factor in healthy donors for granulocyte transfusions.

    PubMed

    Hiemstra, Ida H; van Hamme, John L; Janssen, Machiel H; van den Berg, Timo K; Kuijpers, Taco W

    2017-03-01

    Granulocyte transfusion (GTX) is a potential approach to correcting neutropenia and relieving the increased risk of infection in patients who are refractory to antibiotics. To mobilize enough granulocytes for transfusion, healthy donors are premedicated with granulocyte-colony-stimulating factor (G-CSF) and dexamethasone. Granulocytes have a short circulatory half-life. Consequently, patients need to receive GTX every other day to keep circulating granulocyte counts at an acceptable level. We investigated whether plasma from premedicated donors was capable of prolonging neutrophil survival and, if so, which factor could be held responsible. The effects of plasma from G-CSF/dexamethasone-treated donors on neutrophil survival were assessed by annexin-V, CD16. and CXCR4 staining and nuclear morphology. We isolated an albumin-bound protein using α-chymotrypsin and albumin-depletion and further characterized it using protein analysis. The effects of dexamethasone and G-CSF were assessed using mifepristone and G-CSF-neutralizing antibody. G-CSF plasma concentrations were determined by Western blot and Luminex analyses. G-CSF/dexamethasone plasma contained a survival-promoting factor for at least 2 days. This factor was recognized as an albumin-associated protein and was identified as G-CSF itself, which was surprising considering its reported half-life of only 4.5 hours. Compared with coadministration of dexamethasone, administration of G-CSF alone to the same GTX donors led to a faster decline in circulating G-CSF levels, whereas dexamethasone itself did not induce any G-CSF, demonstrating a role for dexamethasone in increasing G-CSF half-life. Dexamethasone increases granulocyte yield upon coadministration with G-CSF by extending G-CSF half-life. This observation might also be exploited in the coadministration of dexamethasone with other recombinant proteins to modulate their half-life. © 2016 AABB.

  11. Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis

    PubMed Central

    Reynolds, G; Gibbon, J R; Pratt, A G; Wood, M J; Coady, D; Raftery, G; Lorenzi, A R; Gray, A; Filer, A; Buckley, C D; Haniffa, M A; Isaacs, J D; Hilkens, C M U

    2016-01-01

    Objective A population of synovial inflammatory dendritic cells (infDCs) has recently been identified in rheumatoid arthritis (RA) and is thought to be monocyte-derived. Here, we investigated the role and source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in the differentiation of synovial infDC in RA. Methods Production of GM-CSF by peripheral blood (PB) and synovial fluid (SF) CD4+ T cells was assessed by ELISA and flow cytometry. In vitro CD4+ T-cell polarisation experiments were performed with T-cell activating CD2/CD3/CD28-coated beads in the absence or presence of pro-Th1 or pro-Th17 cytokines. CD1c+ DC and CD16+ macrophage subsets were flow-sorted and analysed morphologically and functionally (T-cell stimulatory/polarising capacity). Results RA-SF CD4+ T cells produced abundant GM-CSF upon stimulation and significantly more than RA-SF mononuclear cells depleted of CD4+ T cells. GM-CSF-producing T cells were significantly increased in RA-SF compared with non-RA inflammatory arthritis SF, active RA PB and healthy donor PB. GM-CSF-producing CD4+ T cells were expanded by Th1-promoting but not Th17-promoting conditions. Following coculture with RA-SF CD4+ T cells, but not healthy donor PB CD4+ T cells, a subpopulation of monocytes differentiated into CD1c+ infDC; a process dependent on GM-CSF. These infDC displayed potent alloproliferative capacity and enhanced GM-CSF, interleukin-17 and interferon-γ production by CD4+ T cells. InfDC with an identical phenotype to in vitro generated cells were significantly enriched in RA-SF compared with non-RA-SF/tissue/PB. Conclusions We demonstrate a therapeutically tractable feedback loop of GM-CSF secreted by RA synovial CD4+ T cells promoting the differentiation of infDC with potent capacity to induce GM-CSF-producing CD4+ T cells. PMID:25923217

  12. Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF

    PubMed Central

    Felix, Jan; Kandiah, Eaazhisai; De Munck, Steven; Bloch, Yehudi; van Zundert, Gydo C.P.; Pauwels, Kris; Dansercoer, Ann; Novanska, Katka; Read, Randy J.; Bonvin, Alexandre M.J.J.; Vergauwen, Bjorn; Verstraete, Kenneth; Gutsche, Irina; Savvides, Savvas N.

    2016-01-01

    Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses. PMID:27819269

  13. Biological properties in vitro of a combination of recombinant murine interleukin-3 and granulocyte-macrophage colony-stimulating factor.

    PubMed

    Riklis, I; Kletter, Y; Bleiberg, I; Fabian, I

    1989-04-01

    The effect of recombinant murine interleukin-3 (rIL-3) and recombinant murine granulocyte-macrophage colony-stimulating factor (rGM-CSF) on in vitro murine myeloid progenitor cell (CFU-C) growth and on the function of murine resident peritoneal macrophages was investigated. Both rIL-3 and rGM-CSF are known to support the growth of CFU-C and, when combined, were found to act synergistically to induce the development of an increased number of CFU-C. The distribution pattern of myeloid colonies in the presence of these two growth factors was in general similar to that in the presence of rGM-CSF alone. Both rGM-CSF and rIL-3 enhanced the phagocytosis of Candida albicans (CA) by mature macrophages producing an increase in the percentage of phagocytosing cells as well as an increase in the number of yeast particles ingested per cell. No additive effect on the phagocytosis was observed when the two growth factors were added concurrently. rGM-CSF, but not rIL-3, enhanced the killing of CA by macrophages. This killing was inhibited by scavengers of oxygen radicals.

  14. Chitosan solution enhances the immunoadjuvant properties of GM-CSF

    PubMed Central

    Zaharoff, David A.; Rogers, Connie J.; Hance, Kenneth W.; Schlom, Jeffrey; Greiner, John W.

    2008-01-01

    Sustained, local delivery of immunomodulatory cytokines is under investigation for its ability to enhance vaccine and anti-tumor responses both clinically and preclinically. This study evaluates the ability of chitosan, a biocompatible polysaccharide, to (1) control the dissemination of a cytokine, GM-CSF, and (2) enhance the immunoadjuvant properties of GM-CSF. While cytokines have previously been delivered in lipid-based adjuvants and other vehicles, these do not have the clinical safety profile or unique properties of chitosan. We found that chitosan solution maintained a measurable depot of recombinant GM-CSF (rGM-CSF) at a subcutaneous injection site for up to 9 days. In contrast, when delivered in a saline vehicle, rGM-CSF was undetectable in 12 to 24 hours. Furthermore, a single s.c. injection of 20μg rGM-CSF in chitosan solution (chitosan/rGM-CSF(20μg)) transiently expanded lymph nodes up to 4.6-fold and increased the number of MHC class II expressing cells and dendritic cells by 7.4-fold and 6.8-fold, respectively. These increases were significantly greater than those measured when rGM-CSF was administered in saline at the standard preclinical dose and schedule, i.e. 4 daily s.c. injections of 20μg. Furthermore, lymph node cells from mice injected with chitosan/rGM-CSF(20μg) induced greater allogeneic T cell proliferation, indicating enhanced antigen presenting capability, than lymph node cells from mice injected with rGM-CSF alone. Finally, in vaccination experiments, chitosan/rGM-CSF was superior to either chitosan or rGM-CSF alone in enhancing the induction of antigen-specific CD4+ proliferation, peptide-specific CD8+ pentamer staining and cytotoxic T cell lysis. Altogether, chitosan/rGM-CSF outperformed standard rGM-CSF administrations in dendritic cell recruitment, antigen presentation and vaccine enhancement. We conclude that chitosan solution is a promising delivery platform for the sustained, local delivery of rGM-CSF. PMID:18037196

  15. Immune Response to Hepatitis B Vaccine in HIV-Infected Subjects Using Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) as a Vaccine Adjuvant: ACTG Study 5220

    PubMed Central

    Overton, ET; Kang, M; Peters, MG; Umbleja, T; Alston-Smith, BL; Bastow, B; Demarco-Shaw, D; Koziel, MJ; Mong-Kryspin, L; Sprenger, HL; Yu, JY; Aberg, JA

    2010-01-01

    HIV-infected persons are at risk for HBV co-infection which is associated with increased morbidity and mortality. Unfortunately, protective immunity following HBV vaccination in HIV-infected persons is poor. This randomized, phase II, open label study aimed to evaluate efficacy and safety of 40 mcg HBV vaccine with or without 250 mcg GM-CSF administered at day 0, weeks 4 and 12. HIV-infected individuals ≥18 years of age, CD4 count ≥200 cells/mm3, seronegative for HBV and HCV, and naïve to HBV vaccination were eligible. Primary endpoints were quantitative HBsAb titers and adverse events. The study enrolled 48 subjects. Median age and baseline CD4 were 41 years and 446 cells/mm3, 37 were on ART, and 26 subjects had undetectable VL. Vaccination was well tolerated. Seven subjects in the GM-CSF group reported transient Grade ≥2 signs/symptoms (six Grade 2, one Grade 3), mostly aches and nausea. GM-CSF had no significant effect on VL or CD4. Four weeks after vaccination, 26 subjects (59%) developed a protective antibody response (HBsAb ≥10mIU/mL; 52% in the GM-CSF arm and 65% in the control arm) without improved Ab titer in the GM-CSF versus control arm (median 11 mIU/mL vs. 92 mIU/mL, respectively). Response was more frequent in those with CD4 ≥350 cells/mm3 (64%) than with CD4 <350 cells/mm3 (50%), though not statistically significant. GM-CSF as an adjuvant did not improve the Ab titer or the development of protective immunity to HBV vaccination in those receiving an accelerated vaccine schedule. Given the common routes of transmission for HIV and HBV, additional HBV vaccine research is warranted. PMID:20600512

  16. Suppressive Effects on the Immune Response and Protective Immunity to a JEV DNA Vaccine by Co-administration of a GM-CSF-Expressing Plasmid in Mice

    PubMed Central

    Chen, Hui; Gao, Na; Fan, Dongying; Wu, Jiangman; Zhu, Junping; Li, Jieqiong; Wang, Juan; Chen, Yanlei; An, Jing

    2012-01-01

    As a potential cytokine adjuvant of DNA vaccines, granulocyte-macrophage colony–stimulating factor (GM-CSF) has received considerable attention due to its essential role in the recruitment of antigen-presenting cells, differentiation and maturation of dendritic cells. However, in our recent study of a Japanese encephalitis virus (JEV) DNA vaccine, co-inoculation of a GM-CSF plasmid dramatically suppressed the specific IgG response and resulted in decreased protection against JEV challenge. It is known that GM-CSF has been used in clinic to treat neutropenia for repopulating myeloid cells, and as an adjuvant in vaccine studies; it has shown various effects on the immune response. Therefore, in this study, we characterized the suppressive effects on the immune response to a JEV DNA vaccine by the co-administration of the GM-CSF-expressing plasmid and clarified the underlying mechanisms of the suppression in mice. Our results demonstrated that co-immunization with GM-CSF caused a substantial dampening of the vaccine-induced antibody responses. The suppressive effect was dose- and timing-dependent and likely related to the immunogenicity of the antigen. The suppression was associated with the induction of immature dendritic cells and the expansion of regulatory T cells but not myeloid-derived suppressor cells. Collectively, our findings not only provide valuable information for the application of GM-CSF in clinic and using as a vaccine adjuvant but also offer further insight into the understanding of the complex roles of GM-CSF. PMID:22493704

  17. Impaired granulocyte-macrophage colony-stimulating factor bioactivity accelerates surgical recurrence in ileal Crohn’s disease

    PubMed Central

    Gathungu, Grace; Zhang, Yuanhao; Tian, Xinyu; Bonkowski, Erin; Rowehl, Leahana; Krumsiek, Julia; Nix, Billy; Chalk, Claudia; Trapnell, Bruce; Zhu, Wei; Newberry, Rodney; Denson, Lee; Li, Ellen

    2018-01-01

    AIM To examine the relationship between elevated granulocyte-macrophage colony-stimulating factor (GM-CSF) auto-antibodies (Ab) level and time to surgical recurrence after initial surgery for Crohn’s disease (CD). METHODS We reviewed 412 charts from a clinical database at tertiary academic hospital. Patients included in the study had ileal or ileocolonic CD and surgical resection of small bowel or ileocecal region for management of disease. Serum samples were analyzed for serological assays including GM-CSF cytokine, GM-CSF Ab, ASCA IgG and IgA, and genetic markers including SNPs rs2066843, rs2066844, rs2066845, rs2076756 and rs2066847 in NOD2, rs2241880 in ATG16L1, and rs13361189 in IRGM. Cox proportional-hazards models were used to assess the predictors of surgical recurrence. RESULTS Ninety six percent of patients underwent initial ileocecal resection (ICR) or ileal resection (IR) and subsequently 40% of patients required a second ICR/IR for CD. GM-CSF Ab level was elevated at a median of 3.81 mcg/mL. Factors predicting faster time to a second surgery included elevated GM-CSF Ab [hazard ratio (HR) 3.52, 95%CI: 1.45-8.53, P = 0.005] and elevated GM-CSF cytokine (HR = 2.48, 95%CI: 1.31-4.70, P = 0.005). Factors predicting longer duration between first and second surgery included use of Immunomodulators (HR = 0.49, 95%CI: 0.31-0.77, P = 0.002), the interaction effect of low GM-CSF Ab levels and smoking (HR = 0.60, 95%CI: 0.45-0.81, P = 0.001) and the interaction effect of low GM-CSF cytokine levels and ATG16L1 (HR = 0.65, 95%CI: 0.49-0.88, P = 0.006). CONCLUSION GM-CSF bioavailability plays a critical role in maintaining intestinal homeostasis. Decreased bioavailability coupled with the genetic risk markers and/or smoking results in aggressive CD behavior. PMID:29434451

  18. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection.

    PubMed

    Rothchild, Alissa C; Stowell, Britni; Goyal, Girija; Nunes-Alves, Cláudio; Yang, Qianting; Papavinasasundaram, Kadamba; Sassetti, Christopher M; Dranoff, Glenn; Chen, Xinchun; Lee, Jinhee; Behar, Samuel M

    2017-10-24

    Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF -/- ) are highly susceptible to infection with Mycobacterium tuberculosis , and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4 + T cells as the infection progresses. M. tuberculosis -specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis IMPORTANCE Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune

  19. Granulocyte-macrophage and macrophage colony-stimulating factors differentially regulate alpha v integrin expression on cultured human macrophages.

    PubMed

    De Nichilo, M O; Burns, G F

    1993-03-15

    The colony-stimulating factors (CSFs) greatly influence mature macrophage function in vitro: macrophage (M)-CSF induces maturation of monocytes and enhances differentiated cell function; granulocyte-macrophage (GM)-CSF stimulates a variety of antimicrobial functions. In vivo M-CSF is thought to promote differentiation, and GM-CSF is thought to potentiate the inflammatory response. One mechanism by which these differential effects may be achieved is through the receptor-mediated interaction of macrophages with their extracellular matrix. Here we show that M-CSF induces specifically the expression of the alpha v beta 5 integrin receptor, whereas GM-CSF rapidly induces mRNA and surface expression of the alpha v beta 3 integrin. The M-CSF-treated cells acquire a flattened epitheloid phenotype, and on vitronectin the alpha v beta 5 is located in adhesion plaques. These cells do not bind collagen or laminin. In contrast, cells treated with GM-CSF adopt an elongated phenotype on a number of substrates, including collagen and laminin, and express alpha v beta 3 at the leading edge of cells on vitronectin. These results suggest that a primary means by which the CSFs exert their individual effects on mature cells may be through regulating integrin expression.

  20. Effects of granulocyte-colony-stimulating factor on potential normal granulocyte donors.

    PubMed

    McCullough, J; Clay, M; Herr, G; Smith, J; Stroncek, D

    1999-10-01

    The use of granulocyte-colony-stimulating factor (G-CSF) to increase the granulocyte count and the yield from leukapheresis in normal donors is leading to renewed interest in granulocyte transfusion. Therefore, it is important to understand the side effects of G-CSF. We studied the effect of G-CSF on peripheral blood counts and recorded the side effects experienced 24 hours after an injection of G-CSF in normal subjects donating peripheral blood progenitor cells for research. Following administration of G-CSF to 261 donors, the neutrophil count increased to 20.6 to 24.5 x 10(9) per microL depending on the dose of G-CSF. This represented a 6.2 to 7.4-fold increase over the neutrophil count before G-CSF administration. Of all donors, 69 percent experienced one or more side effects. The most common effects were: muscle and bone pain, headache, fatigue, and nausea. There was a relationship between the dose of G-CSF and the likelihood of experiencing a side effect. Most side effects were mild, but about 75 percent of donors took analgesics because of them. In a granulocyte donation program involving G-CSF stimulation, about two-thirds of donors would experience one or more side effects, but these would usually be mild and well tolerated.

  1. Impact on acute myeloid leukemia relapse in granulocyte colony-stimulating factor application: a meta-analysis.

    PubMed

    Feng, Xiaoqin; Lan, He; Ruan, Yongsheng; Li, Chunfu

    2018-03-08

    This meta-analysis evaluated the impact of granulocyte colony-stimulating factor (G-CSF) added to chemotherapy on treatment outcomes including survival and disease recurrence in patients with acute myeloid leukemia (AML). Medline, Cochrane, EMBASE, and Google Scholar databases were searched until 19 September 2016 using search terms. Studies that investigated patients with AML who underwent stem-cell transplantation were included. The overall analysis revealed a significant improvement in overall survival (OS) (P = .019) and disease-free survival (DFS) (P = .002) for patients receiving G-CSF with chemotherapy. Among patients without prior AML treatment, there was a significant improvement in DFS (P = .014) and reduction in incidence of relapse (P = .015) for those who received G-CSF. However, subgroup analyses found no significant difference between G-CSF (+) and G-CSF (-) treatments in rates of OS (P = .104) and complete remission (CR) (P = .572) for patients without prior AML treatment. Among patients with relapsed/refractory AML, there was no significant difference found between G-CSF (+) and G-CSF (-) groups for OS (P = .225), DFS (P = .209), and CR (P = .208). Treatment with chemotherapy plus G-CSF appears to provide better survival and treatment responses compared with chemotherapy alone, particularly for patients with previously untreated AML. AML, acute myeloid leukemia; CI, confidence interval; CR, complete remission; DFS, disease-free survival; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; HR, hazard ratio; MDS, myelodysplastic syndrome; OR, odds ratio; OS, overall survival; RCTs, randomized control trials; RR, relative risk.

  2. Anti-tumor effect of in vivo IL-2 and GM-CSF electrogene therapy in murine hepatoma model.

    PubMed

    Chi, Chau-Hwa; Wang, Yu-Shan; Lai, Yen-Shuae; Chi, Kwan-Hwa

    2003-01-01

    We evaluated the effect of in vivo electrogene therapy (EGT), a newly-developed gene transfer method using electroporation on the induction of anti-cancer immunity. The in vivo EGT was carried out by direct injection of plasmid DNAs encoding mouse interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in a subcutaneous murine hepatoma model of 1MEA.7R.1 cells. Six electric pulses were generated in situ from a square-wave electroporator fitted with a circular, six-needle electrode array. 1MEA.7R1 cells in vitro were modified to secret IL-2 (1MEA.7R.1/IL-2 cells). The 1MEA.7R.1/IL-2 cells had a similar cell doubling-time as their parent cells but showed a much slower growth rate on Balb/C mice. One, or 3 rounds of single gene EGT with IL-2 gene showed a dose-responsive effect of growth retardation. Co-administration of 3 rounds of IL-2/GM-CSF double genes EGT had a stronger growth inhibition effect than 3 rounds of IL-2 single gene EGT. Three rounds of IL-2/GM-CSF EGT rendered the tumor to a growth rate of stably transfected 1MEA.7R.1/IL-2 cells. Seven rounds of IL-2/GM-CSF EGT markedly inhibited the tumor growth. Reverse transciptase-polymerase chain reaction confirmed the expression of IL-2, GM-CSF and interferon-gamma within treated tumors. Systemic inhibitory effects can be demonstrated from tumor-re-challenged experiments on mice which received 3 rounds of double-gene EGT. The T cell proliferation assay revealed an increased T cell proliferation in double-gene EGT-treated mice. This experiment showed that partial systemic immunity can be provoked by IL-2/GM-CSF double-gene EGT. These findings suggest that our immuno-gene therapy protocol has the potential for future clinical applications.

  3. Granulocyte-macrophage colony-stimulating factor alone or with dacarbazine in metastatic melanoma: a randomized phase II trial.

    PubMed

    Ravaud, A; Delaunay, M; Chevreau, C; Coulon, V; Debled, M; Bret-Dibat, C; Courbon, F; Gualde, N; Nguyen Bui, B

    2001-11-16

    The potential antitumoral effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) led us to evaluate GM-CSF alone or with dacarbazine (DTIC) in metastatic melanoma in first line randomized phase II. Treatment was arm A: GM-CSF: 5 microg kg(-1), bid, 14 consecutive days every 21 days and arm B: GM-CSF: 5 microg kg(-1), bid, day 2 to day 19 every 21 days and DTIC: 800 mg m(-2), day 1 of each cycle. 32 patients (pts) were included, 15 pts in arm A and 17 in arm B. All pts had visceral metastatic sites. 9 had only one metastatic site. The median number of cycles given was 2 in arm A and 3 in arm B. 100% and 89.4% of the planned dose of GM-CSF was given in arm A and arm B respectively. No objective response was obtained. 19 pts experienced at least WHO grade 3 toxicity. All pts had fever, 29 had a decrease in performance status and 23 had pain. Grade 3 toxicity were fever (38.7%), decrease in performance status (32.3%), pain (19.4%) and dyspnoea (12.5%). In this study, GM-CSF alone or in association with DTIC did not induce any antitumoral activity with subsequent toxicity.

  4. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow

    PubMed Central

    Dong, Yifei; Arif, Arif A.; Poon, Grace F. T.; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-01-01

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function. PMID:27404290

  5. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization.

    PubMed

    Vanz, Ana Ls; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-04-04

    Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The

  6. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization

    PubMed Central

    Vanz, Ana LS; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-01-01

    Background Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Results Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. Conclusion The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large

  7. Extended Culture of Bone Marrow with Granulocyte Macrophage-Colony Stimulating Factor Generates Immunosuppressive Cells

    PubMed Central

    Na, Hye Young; Sohn, Moah; Ryu, Seul Hye; Choi, Wanho; In, Hyunju; Shin, Hyun Soo

    2018-01-01

    Bone marrow-derived dendritic cells (BM-DCs) are generated from bone marrow (BM) cells cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) for a week. In this study we investigated the effect of duration on the BM culture with GM-CSF. Within several months, the cells in the BM culture gradually expressed homogeneous levels of CD11c and major histocompatibility complex II on surface, and they became unable to stimulate allogeneic naïve T cells in mixed lymphocyte reaction (MLR). In addition, when the BM culture were sustained for 32 wk or longer, the BM cells acquired ability to suppress the proliferation of allogeneic T cells in MLR as well as the response of ovalbumin-specific OT-I transgenic T cells in antigen-dependent manner. We found that, except for programmed death-ligand 1, most cell surface molecules were expressed lower in the BM cells cultured with GM-CSF for the extended duration. These results indicate that BM cells in the extended culture with GM-CSF undergo 2 distinct steps of functional change; first, they lose the immunostimulatory capacity; and next, they gain the immunosuppressive ability. PMID:29736292

  8. A sequential erythropoietin and GM-CSF schedule offers clinical benefits in the treatment of anaemia in myelodysplastic syndromes.

    PubMed

    Bernell, P; Stenke, L; Wallvik, J; Hippe, E; Hast, R

    1996-08-01

    In order to reduce anaemia in patients with myelodysplastic syndromes (MDS) a stepwise treatment protocol including erythropoietin (EP) and granulocyte-macrophage colony-stimulating factor (GM-CSF) was designed. Thirty-seven MDS patients (stages I-III) with symptomatic anaemia were first given EPO 10,000 U s.c. 3 times weekly for 6 weeks. Those not responding, i.e. increased their haemoglobin levels > 15 g/l, proceeded into the second phase of the study where GM-CSF (200 micrograms/d. s.c. on weeks 1-6) was combined with EPO (10,000 U s.c. 3 times weekly on weeks 5-14). Following the initial EPO treatment phase, 14 of the 37 patients (38%) responded with increased haemoglobin levels. Responders were significantly different from non-responders in that their pre-treatment values of s-EPO, s-LDH and bone marrow blast cell counts were lower, their baseline haemoglobin levels higher and their transfusion dependency less pronounced. Eighteen of the 23 non-responders proceeded into the second phase, 13 of those were evaluable having completed the entire schedule. Three of the 13 initially EPO resistant patients (23%) responded to the GM-CSF/EPO combination with increased haemoglobin levels, suggesting a positive synergy between the two cytokines. Thus, the overall response rate to the present protocol was 46% (17 of 37 cases), but only a limited subset of the patients did clearly benefit from the combined GM-CSF/EPO administration. Therefore, we believe this step-wise approach to multiple growth factor treatment in MDS, starting with EPO alone and reserving the combination for refractory cases, has considerable advantages, taking into account both medical and socio-economical aspects.

  9. Prospective randomized comparison of morning versus night daily single subcutaneous administration of granulocyte-macrophage-colony stimulating factor in patients with soft tissue or bone sarcoma.

    PubMed

    Dinçol, D; Samur, M; Pamir, A; Sencan, O; Akbulut, H; Yalçin, B; Onur, H; Demirkazik, A; Senler, F C; Içli, F

    2000-05-01

    Hematopoietic growth factors (HGFs) have been used to reduce the neutropenic complications of cytotoxic chemotherapy so that higher doses may be given. The authors have previously shown that endogenous serum granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage-colony stimulating factor (GM-CSF) levels at night (p.m.) were significantly higher than those in the morning (a.m.). Twenty-four patients with soft tissue or bone sarcoma who were treated with high dose ifosfamide-based chemotherapy were enrolled in this study. Patients were randomized to either a.m. or p.m. treatment. GM-CSF was administered at a dose of 5 microg/kg/day at 10 a.m. or 10 p.m., beginning 36-48 hours after the last chemotherapy dose. GM-CSF therapy was continued until the neutrophil count exceeded 1,000/mm3 for 2 consecutive days. Leukocyte, neutrophil, monocyte, and platelet counts were measured immediately before GM-CSF administration and exactly 12 hours after the first dose of GM-CSF, and every 24 hours until 3 days after the cessation of GM-CSF. The mean duration of Grade 3-4 neutropenia was 5.3 +/- 0.4 days for the a.m. treatment arm and 6.5 +/- 0.3 days for the p.m. treatment arm (P = 0.017). Although the duration of neutropenia in the a.m. arm was significantly shorter than in the p.m. arm, there were no differences related to the number of febrile neutropenic episodes or the duration of antibiotic administration. Also, there were no differences in the side effects observed in the a.m. and p.m. arms. The finding of 1.2 days' difference in the duration of Grade 3-4 neutropenia warrants further study of chronotherapy with HGFs.

  10. Granulocyte-macrophage colony-stimulating factor induces the differentiation of murine erythroleukaemia cells into dendritic cells.

    PubMed Central

    Cao, X; Zhao, Y; Yu, Y; Wang, Y; Zhang, M; Zhang, W; Wang, J

    1998-01-01

    Dendritic cells (DC) are professional antigen-presenting cells (APC) within the immune system and antigen-pulsed DC can be used as an effective vaccine for active immunotherapy of cancer. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays an important role in the generation of DC. We previously showed that GM-CSF can induce murine erythroleukaemia cells (FBL-3) to differentiate into monocyte-like cells. To develop a new vaccinating method to stimulate the host immune response to leukaemia, we further investigate whether FBL-3 cells induced by GM-CSF can differentiate into DC in the present study. After being treated with GM-CSF, FBL-3 cells expressed high levels of 33D1 and NLDC-145, which are the specific markers of DC. The expression of MHC-II, B7-1, B7-2 and vascular cell adhesion molecule-1 (VCAM-1) was up-regulated markedly; the typical morphology of DC were also observed by electron microscopy. Functionally, the GM-CSF-induced FBL-3 cells could apparently stimulate the proliferation of naive allogeneic and autologous T lymphocytes and induce the generation of specific CTL more efficiently than the wild-type FBL-3 cells. Mice immunized with GM-CSF-induced FBL-3 cells could resist the subsequent challenge with the wild-type FBL-3 cells. Collectively, these data indicate that GM-CSF differentiates murine erythroleukaemia cells into DC phenotypically, morphologically and functionally. FBL-3-derived DC can be used as a new type of vaccine. Our results may have important implications for the immunotherapy of leukaemia. Images Figure 3 Figure 4 PMID:9767469

  11. Notch signaling mediates granulocyte-macrophage colony-stimulating factor priming-induced transendothelial migration of human eosinophils.

    PubMed

    Liu, L Y; Wang, H; Xenakis, J J; Spencer, L A

    2015-07-01

    Priming with cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances eosinophil migration and exacerbates the excessive accumulation of eosinophils within the bronchial mucosa of asthmatics. However, mechanisms that drive GM-CSF priming are incompletely understood. Notch signaling is an evolutionarily conserved pathway that regulates cellular processes, including migration, by integrating exogenous and cell-intrinsic cues. This study investigates the hypothesis that the priming-induced enhanced migration of human eosinophils requires the Notch signaling pathway. Using pan Notch inhibitors and newly developed human antibodies that specifically neutralize Notch receptor 1 activation, we investigated a role for Notch signaling in GM-CSF-primed transmigration of human blood eosinophils in vitro and in the airway accumulation of mouse eosinophils in vivo. Notch receptor 1 was constitutively active in freshly isolated human blood eosinophils, and inhibition of Notch signaling or specific blockade of Notch receptor 1 activation during GM-CSF priming impaired priming-enhanced eosinophil transendothelial migration in vitro. Inclusion of Notch signaling inhibitors during priming was associated with diminished ERK phosphorylation, and ERK-MAPK activation was required for GM-CSF priming-induced transmigration. In vivo in mice, eosinophil accumulation within allergic airways was impaired following systemic treatment with Notch inhibitor, or adoptive transfer of eosinophils treated ex vivo with Notch inhibitor. These data identify Notch signaling as an intrinsic pathway central to GM-CSF priming-induced eosinophil tissue migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Granulocyte-macrophage colony-stimulating factor alone or with dacarbazine in metastatic melanoma: a randomized phase II trial

    PubMed Central

    Ravaud, A; Delaunay, M; Chevreau, C; Coulon, V; Debled, M; Bret-Dibat, C; Courbon, F; Gualde, N; Bui, B Nguyen

    2001-01-01

    The potential antitumoural effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) led us to evaluate GM-CSF alone or with dacarbazine (DTIC) in metastatic melanoma in first line randomized phase II. Treatment was arm A: GM-CSF: 5 μg kg−1, bid, 14 consecutive days every 21 days and arm B: GM-CSF: 5 μg kg−1, bid, day 2 to day 19 every 21 days and DTIC: 800 mg m−2, day 1 of each cycle. 32 patients (pts) were included, 15 pts in arm A and 17 in arm B. All pts had visceral metastatic sites. 9 had only one metastatic site. The median number of cycles given was 2 in arm A and 3 in arm B. 100% and 89.4% of the planned dose of GM-CSF was given in arm A and arm B respectively. No objective response was obtained. 19 pts experienced at least WHO grade 3 toxicity. All pts had fever, 29 had a decrease in performance status and 23 had pain. Grade 3 toxicity were fever (38.7%), decrease in performance status (32.3%), pain (19.4%) and dyspnoea (12.5%). In this study, GM-CSF alone or in association with DTIC did not induce any antitumoural activity with subsequent toxicity. © 2001 Cancer Research Campaign   http://www.bjcancer.com PMID:11720430

  13. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor.

    PubMed

    Tran, Anh-Minh; Nguyen, Thanh-Thao; Nguyen, Cong-Thuan; Huynh-Thi, Xuan-Mai; Nguyen, Cao-Tri; Trinh, Minh-Thuong; Tran, Linh-Thuoc; Cartwright, Stephanie P; Bill, Roslyn M; Tran-Van, Hieu

    2017-04-04

    Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is a glycoprotein that has been approved by the FDA for the treatment of neutropenia and leukemia in combination with chemotherapies. Recombinant hGM-CSF is produced industrially using the baker's yeast, Saccharomyces cerevisiae, by large-scale fermentation. The methylotrophic yeast, Pichia pastoris, has emerged as an alternative host cell system due to its shorter and less immunogenic glycosylation pattern together with higher cell density growth and higher secreted protein yield than S. cerevisiae. In this study, we compared the pipeline from gene to recombinant protein in these two yeasts. Codon optimization in silico for both yeast species showed no difference in frequent codon usage. However, rhGM-CSF expressed from S. cerevisiae BY4742 showed a significant discrepancy in molecular weight from those of P. pastoris X33. Analysis showed purified rhGM-CSF species with molecular weights ranging from 30 to more than 60 kDa. Fed-batch fermentation over 72 h showed that rhGM-CSF was more highly secreted from P. pastoris than S. cerevisiae (285 and 64 mg total secreted protein/L, respectively). Ion exchange chromatography gave higher purity and recovery than hydrophobic interaction chromatography. Purified rhGM-CSF from P. pastoris was 327 times more potent than rhGM-CSF from S. cerevisiae in terms of proliferative stimulating capacity on the hGM-CSF-dependent cell line, TF-1. Our data support a view that the methylotrophic yeast P. pastoris is an effective recombinant host for heterologous rhGM-CSF production.

  14. [Promotive effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on recovery from neutropenia induced by fractionated irradiation in mice].

    PubMed

    Kabaya, K; Watanabe, M; Kusaka, M; Seki, M; Fushiki, M

    1994-08-25

    The effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on the recovery from neutropenia induced by fractionated whole-body irradiation was investigated in mice. Male 7-week old C3H/HeN mice received a total of ten exposures of 0.25 Gy/day from day 1 to 5 and from day 8 to 12. Peripheral neutropenia with a nadir on day 17 was caused by the fractionated irradiation. Daily subcutaneous injections of rhG-CSF at 0.25 and 2.5 micrograms/body/day from day 1 to 21 promoted the recovery of neutrophils in a dose-dependent manner. The kinetics of morphologically identifiable bone marrow cells were studied to clarify the mechanism behind the promotive effect of this factor. A slight decrease in mitotic immature granulocytes, such as myeloblasts, promyelocytes and myelocytes on day 5, and a drastic decrease in metamyelocytes and marrow neutrophils on days 5, 9, and 17 were seen in the femur of irradiated mice. Treatment using rhG-CSF caused an increase in immature granulocytes of all differential stages in the femur. Microscopic findings of the femurs and spleens also revealed an increase in immature granulocytes in these organs in mice injected with rhG-CSF. These results indicate that rhG-CSF accelerates granulopoiesis in the femur and spleen, thereby promoting recovery from neutropenia induced by fractionated irradiation.

  15. Cell to cell contact through ICAM-1-LFA-1 and TNF-alpha synergistically contributes to GM-CSF and subsequent cytokine synthesis in DBA/2 mice induced by 1,3-beta-D-Glucan SCG.

    PubMed

    Harada, Toshie; Kawaminami, Hiromi; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2006-04-01

    SCG is a major 6-branched 1,3-beta-D-glucan in Sparassis crispa Fr. showing antitumor activity. We recently found that the splenocytes from naive DBA/1 and DBA/2 mice are potently induced by SCG to produce interferon- gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-12p70 (IL-12p70), and that GM-CSF plays a key biologic role among these cytokines. In this study, we investigated the contribution of cell-cell contact and soluble factors to cytokine induction by SCG in DBA/2 mice. Cell-cell contact involving intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1) was an essential step for the induction of GM-CSF and IFN-gamma by SCG but not for the induction of TNF-alpha or IL-12p70 by SCG. SCG directly induced adherent splenocytes to produce TNF-alpha and IL-12p70. GM-CSF was required for the induction of TNF-alpha by SCG, and in turn, TNF-alpha enhanced the release of GM-CSF and thereby augmented the induction of IL-12p70 and IFN-gamma by SCG. Neutralization of IL-12 significantly inhibited the induction of IFN-gamma by SCG. We concluded that induction of GM-CSF production by SCG was mediated through ICAM-1 and LFA-1 interaction, GM-CSF subsequently contributed to further cytokine induction by SCG, and reciprocal actions of the cytokines were essential for enhancement of the overall response to SCG in DBA/2 mice.

  16. GM-CSF Inhibits c-Kit and SCF Expression by Bone Marrow-Derived Dendritic Cells

    PubMed Central

    Barroeta Seijas, Amairelys Belen; Simonetti, Sonia; Vitale, Sara; Runci, Daniele; Quinci, Angela Caterina; Soriani, Alessandra; Criscuoli, Mattia; Filippi, Irene; Naldini, Antonella; Sacchetti, Federico Maria; Tarantino, Umberto; Oliva, Francesco; Piccirilli, Eleonora; Santoni, Angela; Di Rosa, Francesca

    2017-01-01

    Stem cell factor (SCF), the ligand of c-kit, is a key cytokine for hematopoiesis. Hematopoietic precursors express c-kit, whereas differentiated cells of hematopoietic lineage are negative for this receptor, with the exception of NK cells, mast cells, and a few others. While it has long been recognized that dendritic cells (DCs) can express c-kit, several questions remain concerning the SCF/c-kit axis in DCs. This is particularly relevant for DCs found in those organs wherein SCF is highly expressed, including the bone marrow (BM). We characterized c-kit expression by conventional DCs (cDCs) from BM and demonstrated a higher proportion of c-kit+ cells among type 1 cDC subsets (cDC1s) than type 2 cDC subsets (cDC2s) in both humans and mice, whereas similar levels of c-kit expression were observed in cDC1s and cDC2s from mouse spleen. To further study c-kit regulation, DCs were generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) from mouse BM, a widely used protocol. CD11c+ cells were purified from pooled non-adherent and slightly adherent cells collected after 7 days of culture, thus obtaining highly purified BM-derived DCs (BMdDCs). BMdDCs contained a small fraction of c-kit+ cells, and by replating them for 2 days with GM-CSF, we obtained a homogeneous population of c-kit+ CD40hi MHCIIhi cells. Not only did BMdDCs express c-kit but they also produced SCF, and both were striking upregulated if GM-CSF was omitted after replating. Furthermore, a small but significant reduction in BMdDC survival was observed upon SCF silencing. Incubation of BMdDCs with SCF did not modulate antigen presentation ability of these cells, nor it did regulate their membrane expression of the chemokine receptor CXCR4. We conclude that the SCF/c-kit-mediated prosurvival circuit may have been overlooked because of the prominent use of GM-CSF in DC cultures in vitro, including those human DC cultures destined for the clinics. We speculate that DCs more prominently rely

  17. Benefits of gene transduction of granulocyte macrophage colony-stimulating factor in cancer vaccine using genetically modified dendritic cells.

    PubMed

    Ojima, Toshiyasu; Iwahashi, Makoto; Nakamura, Masaki; Matsuda, Kenji; Nakamori, Mikihito; Ueda, Kentaro; Naka, Teiji; Katsuda, Masahiro; Miyazawa, Motoki; Yamaue, Hiroki

    2007-10-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) is a key cytokine for the generation and stimulation of dendritic cells (DCs), and it may also play a pivotal role in promoting the survival of DCs. In this study, the feasibility of creating a cancer vaccine using DCs adenovirally transduced with the carcinoembryonic antigen (CEA) gene and the GM-CSF gene was examined. In addition, the effect of the co-transduction of GM-CSF gene on the lifespan of these genetically modified DCs was determined. A cytotoxic assay using peripheral blood mononuclear cell (PBMC)-derived cytotoxic T lymphocytes (CTLs) was performed in a 4-h 51Cr release assay. The apoptosis of DCs was examined by TdT-mediated dUTP-FITC nick end labeling (TUNEL) assay. CEA-specific CTLs were generated from PBMCs stimulated with genetically modified DCs expressing CEA. The cytotoxicity of these CTLs was augmented by co-transduction of DCs with the GM-CSF gene. Co-transduction of the GM-CSF gene into DCs inhibited apoptosis of these DCs themselves via up-regulation of Bcl-x(L) expression, leading to the extension of the lifespan of these DCs. Furthermore, the transduction of the GM-CSF gene into DCs also suppressed the incidence of apoptosis of DCs induced by transforming growth factor-beta1 (TGFbeta-1). Immunotherapy using these genetically modified DCs may therefore be useful with several advantages as follows: i) adenoviral toxicity to DCs can be reduced; ii) the lifespan of vaccinated DCs can be prolonged; and iii) GM-CSF may protect DCs from apoptosis induced by tumor-derived TGFbeta-1 in the regional lymph nodes.

  18. In vivo characterization of fusion protein comprising of A1 subunit of Shiga toxin and human GM-CSF: Assessment of its immunogenicity and toxicity.

    PubMed

    Oloomi, Mana; Bouzari, Saeid; Shariati, Elaheh

    2010-10-01

    Most cancer cells become resistant to anti-cancer agents. In the last few years, a new approach for targeted therapy of human cancer has been developed using immunotoxins which comprise both the cell targeting and the cell killing moieties. In the present study, the recombinant Shiga toxin A1 subunit fused to human granulocyte-macrophage colony stimulating factor (A1-GM-CSF), previously produced in E. coli, was further characterized. The recombinant protein could cause 50% cytotoxicity and induced apoptosis in cells bearing GM-CSF receptors. The non-specific toxicity of the fusion protein was assessed in C57BL/6 and BALB/c mice. No mortality was observed in either group of mice, with different concentration of fusion protein. The lymphocyte proliferation assay, induction of specific IgG response and a mixed (Th1/Th2) response were observed only in BALB/c mice. The mixed response in BALB/c mice (Th1/Th2) could be explained on the basis of the two components of the fusion protein i.e. A1 and GM-CSF.

  19. Differential Regulation of Macrophage Glucose Metabolism by Macrophage Colony-stimulating Factor and Granulocyte-Macrophage Colony-stimulating Factor: Implications for 18F FDG PET Imaging of Vessel Wall Inflammation

    PubMed Central

    Tavakoli, Sina; Short, John D.; Downs, Kevin; Nguyen, Huynh Nga; Lai, Yanlai; Zhang, Wei; Jerabek, Paul; Goins, Beth; Sadeghi, Mehran M.

    2017-01-01

    Purpose To determine the divergence of immunometabolic phenotypes of macrophages stimulated with macrophage colony-stimulating factor (M-CSF) and granulocyte-M-CSF (GM-CSF) and its implications for fluorine 18 (18F) fluorodeoxyglucose (FDG) imaging of atherosclerosis. Materials and Methods This study was approved by the animal care committee. Uptake of 2-deoxyglucose and various indexes of oxidative and glycolytic metabolism were evaluated in nonactivated murine peritoneal macrophages (MΦ0) and macrophages stimulated with M-CSF (MΦM-CSF) or GM-CSF (MΦGM-CSF). Intracellular glucose flux was measured by using stable isotope tracing of glycolytic and tricyclic acid intermediary metabolites. 18F-FDG uptake was evaluated in murine atherosclerotic aortas after stimulation with M-CSF or GM-CSF by using quantitative autoradiography. Results Despite inducing distinct activation states, GM-CSF and M-CSF stimulated progressive but similar levels of increased 2-deoxyglucose uptake in macrophages that reached up to sixfold compared with MΦ0. The expression of glucose transporters, oxidative metabolism, and mitochondrial biogenesis were induced to similar levels in MΦM-CSF and MΦGM-CSF. Unexpectedly, there was a 1.7-fold increase in extracellular acidification rate, a 1.4-fold increase in lactate production, and overexpression of several critical glycolytic enzymes in MΦM-CSF compared with MΦGM-CSF with associated increased glucose flux through glycolytic pathway. Quantitative autoradiography demonstrated a 1.6-fold induction of 18F-FDG uptake in murine atherosclerotic plaques by both M-CSF and GM-CSF. Conclusion The proinflammatory and inflammation-resolving activation states of macrophages induced by GM-CSF and M-CSF in either cell culture or atherosclerotic plaques may not be distinguishable by the assessment of glucose uptake. © RSNA, 2016 Online supplemental material is available for this article. PMID:27849433

  20. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice

    PubMed Central

    Wang, Xianzheng; Dong, Aihua; Xiao, Jingjing; Zhou, Xingjun; Mi, Haili; Xu, Hanqian; Zhang, Jiming; Wang, Bin

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8+ T cells from immunized animals, antigen-specific CD8+ T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients. PMID:26166767

  1. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice.

    PubMed

    Wang, Xianzheng; Dong, Aihua; Xiao, Jingjing; Zhou, Xingjun; Mi, Haili; Xu, Hanqian; Zhang, Jiming; Wang, Bin

    2016-11-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8 + T cells from immunized animals, antigen-specific CD8 + T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients.

  2. [G-CSF (Neupogen Roche) in the treatment of patients with chronic aplastic anemia with severe neutropenia].

    PubMed

    Novotný, J; Zvarová, M; Prazáková, L; Jandlová, M; Konvicková, L

    1995-10-01

    Aplastic anaemia (AA) of the chronic type with severe cytopenia is very frequently a difficult therapeutic problem. Patients with granulocyte values below 0.5 G/l are threatened by infections, incl. sepsis possibly with a fatal outcome. If the pool of stem cells for granulocytes is not completely exhausted and can respond to growth factors, these patients can be treated either chronically and/or in risk situations (e.g. injury, surgery) with preparations of the type of a recombinant, granulocyte colony stimulating factor (rhG-CSF), or granulocyte and monocyte colony stimulating factor (rhGM-CSF). The authors present a review of diagnostic and therapeutic algorithms in patients with the AA syndrome and summarize their own experience with the preparation Neupogen Roche (rhG-CSF).

  3. Local Delivery of OncoVEXmGM-CSF Generates Systemic Antitumor Immune Responses Enhanced by Cytotoxic T-Lymphocyte-Associated Protein Blockade.

    PubMed

    Moesta, Achim K; Cooke, Keegan; Piasecki, Julia; Mitchell, Petia; Rottman, James B; Fitzgerald, Karen; Zhan, Jinghui; Yang, Becky; Le, Tiep; Belmontes, Brian; Ikotun, Oluwatayo F; Merriam, Kim; Glaus, Charles; Ganley, Kenneth; Cordover, David H; Boden, Andrea M; Ponce, Rafael; Beers, Courtney; Beltran, Pedro J

    2017-10-15

    Purpose: Talimogene laherparepvec, a new oncolytic immunotherapy, has been recently approved for the treatment of melanoma. Using a murine version of the virus, we characterized local and systemic antitumor immune responses driving efficacy in murine syngeneic models. Experimental Design: The activity of talimogene laherparepvec was characterized against melanoma cell lines using an in vitro viability assay. Efficacy of OncoVEX mGM-CSF (talimogene laherparepvec with the mouse granulocyte-macrophage colony-stimulating factor transgene) alone or in combination with checkpoint blockade was characterized in A20 and CT-26 contralateral murine tumor models. CD8 + depletion, adoptive T-cell transfers, and Enzyme-Linked ImmunoSpot assays were used to study the mechanism of action (MOA) of systemic immune responses. Results: Treatment with OncoVEX mGM-CSF cured all injected A20 tumors and half of contralateral tumors. Viral presence was limited to injected tumors and was not responsible for systemic efficacy. A significant increase in T cells (CD3 + /CD8 + ) was observed in injected and contralateral tumors at 168 hours. Ex vivo analyses showed these cytotoxic T lymphocytes were tumor-specific. Increased neutrophils, monocytes, and chemokines were observed in injected tumors only. Importantly, depletion of CD8 + T cells abolished all systemic efficacy and significantly decreased local efficacy. In addition, immune cell transfer from OncoVEX mGM-CSF -cured mice significantly protected from tumor challenge. Finally, combination of OncoVEX mGM-CSF and checkpoint blockade resulted in increased tumor-specific CD8 + anti-AH1 T cells and systemic efficacy. Conclusions: The data support a dual MOA for OncoVEX mGM-CSF that involves direct oncolysis of injected tumors and activation of a CD8 + -dependent systemic response that clears injected and contralateral tumors when combined with checkpoint inhibition. Clin Cancer Res; 23(20); 6190-202. ©2017 AACR . ©2017 American Association

  4. Relative Efficacy of Granulocyte-Macrophage Colony-Stimulating Factor, Dacarbazine, and Glycoprotein 100 in Metastatic Melanoma: An Indirect Treatment Comparison.

    PubMed

    Quinn, Casey; Ma, Qiufei; Kudlac, Amber; Palmer, Stephen; Barber, Beth; Zhao, Zhongyun

    2017-02-01

    Advances in the treatment of metastatic melanoma have been achieved in recent years: immunotherapies and targeted therapies have demonstrated survival benefits over older agents such as granulocyte-macrophage colony-stimulating factor (GM-CSF), dacarbazine, and glycoprotein peptide vaccine (gp100) in pivotal phase 3 trials. It is important to compare therapies to guide the treatment decision-making process, and establishing the relationship between older agents can strengthen the networks of evidence for newer therapies. We report the outcome of an indirect comparison of GM-CSF, dacarbazine, and gp100 in metastatic melanoma through meta-analysis of absolute treatment effect. A systematic literature review identified trials for inclusion in the meta-analysis. A valid network meta-analysis was not feasible: treatment-specific meta-analysis was conducted. A published algorithm was used to adjust overall survival estimates from trials of GM-CSF, dacarbazine, and gp100 for heterogeneity in baseline prognostic factors. Survival estimates were compared in three patient groups: stage IIIB-IV M1c, stage IIIB-IV M1a, and stage IV M1b/c. One trial of GM-CSF, four of dacarbazine, and one of gp100 were included in the analysis. After adjusting for differences in baseline prognostic factors, median overall survival (OS) in all patient groups was longer for those receiving GM-CSF than for those receiving dacarbazine or gp100. The observed survival over time for GM-CSF was similar to the adjusted survival for dacarbazine and greater than for gp100 in all patient groups. The relative treatment effect of GM-CSF, dacarbazine, and gp100 has been reliably estimated by adjusting for differences in baseline prognostic factors. Results suggest that OS with GM-CSF is at least as good as with dacarbazine and greater than with gp100. Given the role of these agents as controls in phase 3 trials of new immunotherapies and targeted agents, these results can be used to contextualize the

  5. Efficacy of gene-therapy based on adenovirus encoding granulocyte-macrophage colony-stimulating factor in drug-sensitive and drug-resistant experimental pulmonary tuberculosis.

    PubMed

    Francisco-Cruz, Alejandro; Mata-Espinosa, Dulce; Ramos-Espinosa, Octavio; Marquina-Castillo, Brenda; Estrada-Parra, Sergio; Xing, Zhou; Hernández-Pando, Rogelio

    2016-09-01

    Tuberculosis (TB), although a curable disease, remains a major cause of morbidity and mortality worldwide. It is necessary to develop a short-term therapy with reduced drug toxicity in order to improve adherence rate and control disease burden. Granulocyte-macrophage colony-stimulating factor (GM-CSF) may be a key cytokine in the treatment of pulmonary TB since it primes the activation and differentiation of myeloid and non-myeloid precursor cells, inducing the release of protective Th1 cytokines. In this work, we administrated by intratracheal route recombinant adenoviruses encoding GM-CSF (AdGM-CSF). This treatment produced significant bacterial elimination when administered in a single dose at 60 days of infection with drug sensitive or drug resistant Mtb strains in a murine model of progressive disease. Moreover, AdGM-CSF combined with primary antibiotics produced more rapid elimination of pulmonary bacterial burdens than conventional chemotherapy suggesting that this form of treatment could shorten the conventional treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Neoadjuvant gene delivery of feline granulocyte-macrophage colony-stimulating factor using magnetofection for the treatment of feline fibrosarcomas: a phase I trial.

    PubMed

    Hüttinger, Cornelia; Hirschberger, Johannes; Jahnke, Anika; Köstlin, Roberto; Brill, Thomas; Plank, Christian; Küchenhoff, Helmut; Krieger, Stefan; Schillinger, Ulrike

    2008-06-01

    Despite aggressive pre- or postoperative treatment, feline fibrosarcomas have high recurrence rates. Immunostimulatory gene therapy is a promising approach in veterinary oncology. This phase I dose-escalation study was performed to determine toxicity and feasibility of gene therapy with feline granulocyte-macrophage colony-stimulating factor (feGM-CSF) in cats with fibrosarcomas. Twenty cats were treated with plasmid coding for feGM-CSF attached to magnetic nanoparticles in doses of 50, 250, 750 and 1250 microg. Two preoperative intratumoral injections followed by magnetofection were given. Four control cats received only surgical treatment. Adverse events were recorded and correlated according to the veterinary co-operative oncology group toxicity scale. An enzyme-linked immunosorbent assay was performed to detect plasma feGM-CSF concentrations. No significant treatment related toxicity was observed. Preliminary recurrence results were encouraging as, on day 360, ten of 20 treated cats were recurrence-free. In conclusion, 1250 microg of feGM-CSF plasmid DNA applied by magnetofection is safe and feasible for phase II testing.

  7. Bioactivity of Autologous Irradiated Renal Cell Carcinoma Vaccines Generated by ex Vivo Granulocyte-Macrophage Colony-stimulating Factor Gene Transfer1

    PubMed Central

    Simons, Jonathan W.; Jaffee, Elizabeth M.; Weber, Christine E.; Levitsky, Hyam I.; Nelson, William G.; Carducci, Michael A.; Lazenby, Audrey J.; Cohen, Lawrence K.; Finn, Christy C.; Clift, Shirley M.; Hauda, Karen M.; Beck, Lisa A.; Leiferman, Kristen M.; Owens, Albert H.; Piantadosi, Steven; Dranoff, Glenn; Mulligan, Richard C.; Pardoll, Drew M.; Marshall, Fray F.

    2014-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-transduced, irradiated tumor vaccines induce potent, T-cell-mediated antitumor immune responses in preclinical models. We report the initial results of a Phase I trial evaluating this strategy for safety and the induction of immune responses in patients with metastatic renal cell carcinoma (RCC). Patients were treated in a randomized, double-blind dose-escalation study with equivalent doses of autologous, irradiated RCC vaccine cells with or without ex vivo human GM-CSF gene transfer. The replication-defective retroviral vector MFG was used for GM-CSF gene transfer. No dose-limiting toxicities were encountered in 16 fully evaluable patients. GM-CSF gene-transduced vaccines were equivalent in toxicity to nontransduced vaccines up to the feasible limits of autologous tumor vaccine yield. No evidence of autoimmune disease was observed. Biopsies of intradermal sites of injection with GM-CSF gene-transduced vaccines contained distinctive macrophage, dendritic cell, eosinophil, neutrophil, and T-cell infiltrates similar to those observed in preclinical models of efficacy. Histological analysis of delayed-type hypersensitivity responses in patients vaccinated with GM-CSF-transduced vaccines demonstrated an intense eosinophil infiltrate that was not observed in patients who received nontransduced vaccines. An objective partial response was observed in a patient treated with GM-CSF gene-transduced vaccine who displayed the largest delayed-type hypersensitivity conversion. No replication-competent retrovirus was detected in vaccinated patients. This Phase I study demonstrated the feasibility, safety, and bioactivity of an autologous GM-CSF gene-transduced tumor vaccine for RCC patients. PMID:9108457

  8. Granulocyte colony-stimulating factor (G-CSF) production in hemorrhagic shock requires both the ischemic and resuscitation phase.

    PubMed

    Hierholzer, C; Kelly, E; Billiar, T R; Tweardy, D J

    1997-01-01

    Granulocyte colony-stimulating factor (G-CSF) is the cytokine that is critical for polymorphonuclear neutrophilic granulocyte (PMN) production as well as being a potent agonist of PMN activation. We have recently reported that in the lung and the liver of rats resuscitated after hemorrhagic shock (HS) G-CSF mRNA expression is induced. It is not known if both phases of HS, the ischemic and the reperfusion phase, are required for G-CSF mRNA induction. The present study was designed to test the hypothesis that the upregulation of G-CSF mRNA expression is the consequence of HS followed by resuscitation and that ischemia alone is insufficient to induce G-CSF mRNA expression in the affected organs. Male Sprague-Dawley rats were subjected to resuscitated and unresuscitated shock protocols of varying severity. Control animals were subjected to anesthesia and all surgical preparations except for hemorrhage. Lungs and livers were isolated and their RNA extracted. Using semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we demonstrated that G-CSF mRNA was induced in the lung and liver of shock animals above the level observed in control animals. Upregulation of G-CSF mRNA relative to controls occurred only in animals undergoing resuscitated HS and not in ones subjected to unresuscitated HS. These results indicate that G-CSF production specific for the hemorrhage component of shock is dependent on resuscitation. As a consequence, the production of this cytokine may be decreased through modifications in the resuscitation protocols.

  9. Endoplasmic reticulum stress in perivascular adipose tissue promotes destabilization of atherosclerotic plaque by regulating GM-CSF paracrine.

    PubMed

    Ying, Ru; Li, Sheng-Wei; Chen, Jia-Yuan; Zhang, Hai-Feng; Yang, Ying; Gu, Zhen-Jie; Chen, Yang-Xin; Wang, Jing-Feng

    2018-04-18

    Perivascular adipose tissue (PVAT) accelerates plaque progression and increases cardiovascular risk. We tested the hypothesis that PVAT contributed to plaque vulnerability and investigated whether endoplasmic reticulum stress (ER stress) in PVAT played an important role in vulnerable plaque. We transplanted thoracic aortic PVAT or subcutaneous adipose tissue as a control, from donor mice to carotid arteries of recipient apolipoprotein E deficient (apoE -/- ) mice after removing carotid artery collar placed for 6 weeks. Two weeks after transplantation, ER stress inhibitor 4-phenyl butyric acid (4-PBA) was locally administrated to the transplanted PVAT and then animals were euthanized after 4 weeks. Immunohistochemistry was performed to quantify plaque composition and neovascularization. Mouse angiogenesis antibody array kit was used to test the angiogenic factors produced by transplanted adipose tissue. In vitro tube formation assay, scratch wound migration assay and mouse aortic ring assay were used to assess the angiogenic capacity of supernatant of transplanted PVAT. Ultrastructural detection by transmission electron microscopy showed transplanted PVAT was a mixed population of white and brown adipocytes with abundant mitochondria. Transplanted PVAT increased the intraplaque macrophage infiltration, lipid core, intimal and vasa vasorum neovascularization and MMP2/9 expression in plaque while decreased smooth muscle cells and collagen in atherosclerotic plaque, which were restored by local 4-PBA-treatment. Antibody array analysis showed that 4-PBA reduced several angiogenic factors [Granulocyte Macrophage Colony Stimulating Factor (GM-CSF), MCP-1, IL-6] secreted by PVAT. Besides, conditioned medium from 4-PBA treated-PVAT inhibited tube formation and migration capacity of endothelial cells and ex vivo mouse aortic ring angiogenesis compared to conditioned medium from transplanted PVAT. mRNA expression and protein levels of GM-CSF were markedly elevated in

  10. GM-CSF modulates autoantibody production and skin blistering in experimental epidermolysis bullosa acquisita.

    PubMed

    Samavedam, Unni Krishna S R L; Iwata, Hiroaki; Müller, Susen; Schulze, Franziska S; Recke, Andreas; Schmidt, Enno; Zillikens, Detlef; Ludwig, Ralf J

    2014-01-15

    GM-CSF activates hematopoietic cells and recruits neutrophils and macrophages to sites of inflammation. Inhibition of GM-CSF attenuates disease activity in models of chronic inflammatory disease. Effects of GM-CSF blockade were linked to modulation of the effector phase, whereas effects on early pathogenic events, for example, Ab production, have not been identified. To evaluate yet uncharacterized effects of GM-CSF on early pathogenic events in chronic inflammation, we employed immunization-induced epidermolysis bullosa acquisita (EBA), an autoimmune bullous disease caused by autoantibodies to type VII collagen. Compared to wild-type mice, upon immunization, GM-CSF(-/-) mice produced lower serum autoantibody titers, which were associated with reduced neutrophil numbers in draining lymph nodes. The same effect was observed in neutrophil-depleted wild-type mice. Neutrophil depletion in GM-CSF(-/-) mice led to a stronger inhibition, indicating that GM-CSF and neutrophils have additive functions. To characterize the contribution of GM-CSF specifically in the effector phase of EBA, disease was induced by transfer of anti-type VII collagen IgG into mice. We observed an increased GM-CSF expression, and GM-CSF blockade reduced skin blistering. Additionally, GM-CSF enhanced reactive oxygen species release and neutrophil migration in vitro. In immunization-induced murine EBA, treatment with anti-GM-CSF had a beneficial effect on established disease. We demonstrate that GM-CSF modulates both autoantibody production and skin blistering in a prototypical organ-specific autoimmune disease.

  11. Highly Expressed Granulocyte Colony-Stimulating Factor (G-CSF) and Granulocyte Colony-Stimulating Factor Receptor (G-CSFR) in Human Gastric Cancer Leads to Poor Survival.

    PubMed

    Fan, Zhisong; Li, Yong; Zhao, Qun; Fan, Liqiao; Tan, Bibo; Zuo, Jing; Hua, Kelei; Ji, Qiang

    2018-03-23

    BACKGROUND Chemotherapy for advanced gastric cancer (GC) patients has been the mainstay of therapy for many years. Although adding anti-angiogenic drugs to chemotherapy improves patient survival slightly, identifying anti-angiogenic therapy-sensitive patients remains challenging for oncologists. Granulocyte colony-stimulating factor (G-CSF) promotes tumor growth and angiogenesis, which can be minimized with the anti-G-CSF antibody. Thus, G-CSF might be a potential tumor marker. However, the effects of G-CSF and G-CSFR expression on GC patient survival remain unclear. MATERIAL AND METHODS Seventy GC tissue samples were collected for G-CSF and G-CSFR detection by immunohistochemistry. A total of 40 paired GC tissues and matched adjacent mucosa were used to measure the G-CSF and G-CSFR levels by ELISA. Correlations between G-CSF/G-CSFR and clinical characteristics, VEGF-A levels and overall survival were analyzed. Biological function and underlying mechanistic investigations were carried out using SGC7901 cell lines, and the effects of G-CSF on tumor proliferation, migration, and tube formation were examined. RESULTS The levels of G-CSFR were upregulated in GC tissues compared to normal mucosa tissues. Higher G-CSF expression was associated with later tumor stages and higher tumor VEGF-A and serum CA724 levels, whereas higher G-CSFR expression was associated with lymph node metastasis. Patients with higher G-CSF expression had shorter overall survival times. In vitro, G-CSF stimulated SGC7901 proliferation and migration through the JAK2/STAT3 pathway and accelerated HUVEC tube formation. CONCLUSIONS These data suggest that increased G-CSF and G-CSFR in tumors leads to unfavorable outcomes for GC patients by stimulating tumor proliferation, migration, and angiogenesis, indicating that these factors are potential tumor targets for cancer treatment.

  12. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte-macrophage colony-stimulating factor in experimental pulmonary tuberculosis.

    PubMed

    Francisco-Cruz, A; Mata-Espinosa, D; Estrada-Parra, S; Xing, Z; Hernández-Pando, R

    2013-03-01

    BALB/c mice with pulmonary tuberculosis (TB) develop a T helper cell type 1 that temporarily controls bacterial growth. Bacterial proliferation increases, accompanied by decreasing expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS). Activation of dendritic cells (DCs) is delayed. Intratracheal administration of only one dose of recombinant adenoviruses encoding granulocyte-macrophage colony-stimulating factor (AdGM-CSF) 1 day before Mycobacterium tuberculosis (Mtb) infection produced a significant decrease of pulmonary bacterial loads, higher activated DCs and increased expression of TNF-α, IFN-γ and iNOS. When AdGM-CSF was given in female mice B6D2F1 (C57BL/6J X DBA/2J) infected with a low Mtb dose to induce chronic infection similar to latent infection and corticosterone was used to induce reactivation, a very low bacilli burden in lungs was detected, and the same effect was observed in healthy mice co-housed with mice infected with mild and highly virulent bacteria in a model of transmissibility. Thus, GM-CSF is a significant cytokine in the immune protection against Mtb and gene therapy with AdGM-CSF increased protective immunity when administered in a single dose 1 day before Mtb infection in a model of progressive disease, and when used to prevent reactivation of latent infection or transmission. © 2012 British Society for Immunology.

  13. Effect of GM-CSF on cytokine induction by soluble beta-glucan SCG in vitro in beta-glucan-treated mice.

    PubMed

    Hida, Toshie H; Kawaminami, Hiromi; Ishibashi, Ken-Ichi; Miura, Noriko N; Adachi, Yoshiyuki; Yadomae, Toshiro; Ohno, Naohito

    2009-07-01

    SCG is a 6-branched 1,3-beta-D-glucan, which are major cell wall structural components in fungi. Leukocytes from DBA/1 and DBA/2 mice are highly sensitive to SCG, producing cytokines such as GM-CSF, IFN-gamma, TNF-alpha and IL-12p70, but not IL-6. GM-CSF plays a key biological role in this activity. In the present study, we examined the effect of giving i.p. SCG to DBA/2 mice on cytokine production in vitro. SCG was given i.p. to DBA/2 mice on day 0. Splenocytes were prepared on day 7 and cultured in the presence of SCG in vitro. The levels of cytokine production induced by SCG in vitro were lower in the cells from SCG-treated mice than in control mice. Expression of the beta-glucan receptor, dectin-1, in SCG-treated mice was comparable with that shown in control mice. However, the consumption of exogenously added rmGM-CSF in vitro was observed in SCG-treated mice. The addition of a large amount of rmGM-CSF to the culture medium resulted in larger amounts of TNF-alpha and IL-6 in SCG-treated mice than in normal mice. These results suggested that GM-CSF was closely related with the reactivity of beta-glucan. Giving SCG increased the number of macrophages and granulocytes in the spleen. These results suggested that in SCG-treated mice, a change of cell population would be related to modulation of the profile of cytokine production induced by SCG in vitro.

  14. Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis

    PubMed Central

    Piccoli, Luca; Campo, Ilaria; Fregni, Chiara Silacci; Rodriguez, Blanca Maria Fernandez; Minola, Andrea; Sallusto, Federica; Luisetti, Maurizio; Corti, Davide; Lanzavecchia, Antonio

    2015-01-01

    Pulmonary alveolar proteinosis (PAP) is a severe autoimmune disease caused by autoantibodies that neutralize GM-CSF resulting in impaired function of alveolar macrophages. In this study, we characterize 21 GM-CSF autoantibodies from PAP patients and find that somatic mutations critically determine their specificity for the self-antigen. Individual antibodies only partially neutralize GM-CSF activity using an in vitro bioassay, depending on the experimental conditions, while, when injected in mice together with human GM-CSF, they lead to the accumulation of a large pool of circulating GM-CSF that remains partially bioavailable. In contrast, a combination of three non-cross-competing antibodies completely neutralizes GM-CSF activity in vitro by sequestering the cytokine in high-molecular-weight complexes, and in vivo promotes the rapid degradation of GM-CSF-containing immune complexes in an Fc-dependent manner. Taken together, these findings provide a plausible explanation for the severe phenotype of PAP patients and for the safety of treatments based on single anti-GM-CSF monoclonal antibodies. PMID:26077231

  15. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    PubMed

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis.

    PubMed

    Basso, Lilian; Lapointe, Tamia K; Iftinca, Mircea; Marsters, Candace; Hollenberg, Morley D; Kurrasch, Deborah M; Altier, Christophe

    2017-10-17

    Pain is a main symptom of inflammatory diseases and often persists beyond clinical remission. Although we have a good understanding of the mechanisms of sensitization at the periphery during inflammation, little is known about the mediators that drive central sensitization. Recent reports have identified hematopoietic colony-stimulating factors as important regulators of tumor- and nerve injury-associated pain. Using a mouse model of colitis, we identify the proinflammatory cytokine granulocyte-colony-stimulating factor (G-CSF or Csf-3) as a key mediator of visceral sensitization. We report that G-CSF is specifically up-regulated in the thoracolumbar spinal cord of colitis-affected mice. Our results show that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglial activation following colitis. Furthermore, healthy mice subjected to intrathecal injection of G-CSF exhibit pronounced visceral hypersensitivity, an effect that is abolished by microglial depletion. Mechanistically, we demonstrate that G-CSF injection increases Cathepsin S activity in spinal cord tissues. When cocultured with microglia BV-2 cells exposed to G-CSF, dorsal root ganglion (DRG) nociceptors become hyperexcitable. Blocking CX3CR1 or nitric oxide production during G-CSF treatment reduces excitability and G-CSF-induced visceral pain in vivo. Finally, administration of G-CSF-neutralizing antibody can prevent the establishment of persistent visceral pain postcolitis. Overall, our work uncovers a DRG neuron-microglia interaction that responds to G-CSF by engaging Cathepsin S-CX3CR1-inducible NOS signaling. This interaction represents a central step in visceral sensitization following colonic inflammation, thereby identifying spinal G-CSF as a target for treating chronic abdominal pain.

  17. Effects of granulocyte-macrophage colony-stimulating factor and interleukin 6 on the growth of leukemic blasts in suspension culture.

    PubMed

    Tsao, C J; Cheng, T Y; Chang, S L; Su, W J; Tseng, J Y

    1992-05-01

    We examined the stimulatory effects of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 6 (IL)-6 on the in vitro proliferation of leukemic blast cells from patients with acute leukemia. Bone marrow or peripheral blood leukemic blast cells were obtained from 21 patients, including 14 cases of acute myeloblastic leukemia (AML), four cases of acute lymphoblastic leukemia (ALL), two cases of acute undifferentiated leukemia, and one case of acute mixed-lineage leukemia. The proliferation of leukemic blast cells was evaluated by measuring the incorporation of 3H-thymidine into cells incubated with various concentrations of cytokines for 3 days. GM-CSF stimulated the DNA synthesis (with greater than 2.0 stimulation index) of blast cells in 9 of 14 (64%) AML cases, two cases of acute undifferentiated leukemia and one case of acute mixed-lineage leukemia. Only two cases of AML blasts responded to IL-6 to grow in the short-term suspension cultures. GM-CSF and IL-6 did not display a synergistic effect on the growth of leukemic cells. Moreover, GM-CSF and IL-6 did not stimulate the proliferation of ALL blast cells. Binding study also revealed the specific binding of GM-CSF on the blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia. Our results indicated that leukemic blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia possessed functional GM-CSF receptors.

  18. Activation of adenosine A(3) receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice.

    PubMed

    Hofer, Michal; Pospísil, Milan; Sefc, Ludek; Dusek, Ladislav; Vacek, Antonín; Holá, Jirina; Hoferová, Zuzana; Streitová, Denisa

    2010-08-01

    Research areas of 'post-exposure treatment' and 'cytokines and growth factors' have top priority among studies aimed at radiological nuclear threat countermeasures. The experiments were aimed at testing the ability of N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), an adenosine A(3) receptor agonist, to modulate hematopoiesis in sublethally irradiated mice, when administered alone or in a combination with granulocyte colony-stimulating factor (G-CSF) in a two-day post-irradiation treatment regimen. A complete analysis of hematopoiesis including determination of numbers of bone marrow hematopoietic progenitor and precursor cells, as well as of numbers of peripheral blood cells, was performed. The outcomes of the treatment were assessed at days 3 to 22 after irradiation. IB-MECA alone has been found to induce a significant elevation of numbers of bone marrow granulocyte-macrophage progenitor cells (GM-CFC) and peripheral blood neutrophils. IB-MECA given concomitantly with G-CSF increased significantly bone marrow GM-CFC and erythroid progenitor cells (BFU-E) in comparison with the controls and with animals administered each of the drugs alone. The findings suggest the ability of IB-MECA to stimulate hematopoiesis and to support the hematopoiesis-stimulating effects of G-CSF in sublethally irradiated mice.

  19. Polysaccharides derived from Ganoderma lucidum fungus mycelia ameliorate indomethacin-induced small intestinal injury via induction of GM-CSF from macrophages.

    PubMed

    Nagai, Kenta; Ueno, Yoshitaka; Tanaka, Shinji; Hayashi, Ryohei; Shinagawa, Kei; Chayama, Kazuaki

    2017-10-01

    Non-steroidal anti-inflammatory drugs often cause ulcers in the human small intestine, but few effective agents exist to treat such injury. Ganoderma lucidum Karst, also known as "Reishi" or "Lingzhi", is a mushroom. We previously reported that a water-soluble extract from G. lucidum fungus mycelia (MAK) has anti-inflammatory effects in murine colitis induced by trinitrobenzene sulfonic acid, and induction of granulocyte macrophage colony-stimulating factor (GM-CSF) by MAK may provide anti-inflammatory effects. However, its effects on indomethacin-induced small intestinal injuries are unknown. The present study investigated the preventative effects of MAK via immunological function and the polysaccharides from MAK on indomethacin-induced ileitis in mice. Peritoneal macrophages (PMs) were stimulated in vitro with MAK and adoptively transferred to C57BL/6 mice intraperitoneally, which were then given indomethacin. Intestinal inflammation was evaluated after 24h. We performed in vivo antibody blockade to investigate the preventive role of GM-CSF, which derived from PMs stimulated with MAK. We then used PMs stimulated with MAK pre-treated by pectinase in an adoptive transfer assay to determine the preventive role of polysaccharides. Indomethacin-induced small intestinal injury was inhibited by adoptive transfer of PMs stimulated in vitro with MAK. In this transfer model, pre-treatment with anti-GM-CSF antibody but not with control antibody reversed the improvement of small intestinal inflammation by indomethacin. Pectinase pretreatment impaired the anti-inflammatory effect of MAK. PMs stimulated by MAK appear to contribute to the anti-inflammatory response through GM-CSF in small intestinal injury induced by indomethacin. The polysaccharides may be the components that elicit the anti-inflammatory effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Autologous transplantation of blood stem cells mobilized with filgrastim alone in 93 patients with malignancies: the number of CD34+ cells reinfused is the only factor predicting both granulocyte and platelet recovery.

    PubMed

    Faucher, C; Le Corroller, A G; Chabannon, C; Viens, P; Stoppa, A M; Bouabdallah, R; Camerlo, J; Vey, N; Gravis, G; Gastaut, J A; Novakovitch, G; Mannoni, P; Bardou, V J; Moatti, J P; Maraninchi, D; Blaise, D

    1996-12-01

    High-dose chemotherapy (HDC) supported by autologous transplantation of blood stem cells (BSC) is used increasingly for patients with poor-risk malignancies. We report our experience with 93 consecutive patients who were mobilized with recombinant human granulocyte colony-stimulating factor (rhG-CSF) alone. They received a fixed dose of G-CSF for 5 or 6 days, and BSC were collected by leukapheresis. Aphereses were evaluated for MNC, CD34+ cells, and CFU-GM counts and cryopreserved. All patients received a conditioning regimen without TBI. Engraftment was assessed as the first of 2 consecutive days on which patients achieved 0.5 and 1 x 10(9)/L neutrophils and an unsupported platelet count of 25 x 10(9)/L. Multivariate analysis was performed to study patients and graft characteristics that could influence reconstitution. The G-CSF priming regimen was well tolerated and allowed collection of BSC for all patients, 66% of them achieving >3 x 10(6)/kg CD34+ cells, and 86% achieving >10 x 10(4) CFU-GM/kg. The numbers of collected CD34 and CFU-GM cells were highly correlated. The number of courses of chemotherapy prior to collection, a diagnosis of breast cancer, the use of rhG-CSF posttransplant, and the numbers of CFU-GM and CD34+ cells reinfused were correlated with hematologic recovery. In a multivariate analysis, however, the number of CD34+ cells was the only factor independently influencing both granulocyte and platelet recovery. Patients who received at least 3 x 10(6)/kg CD34+ cells achieved granulocyte reconstitution on day 11 after reinfusion (range 8-15) and an unsupported platelet count of 25 x 10(9)/l on day 14 (range 12-180), significantly earlier than patients who received fewer cells (p < 0.001). In addition, G-CSF administration postreinfusion independently enhanced granulocyte reconstitution but not platelet recovery. In conclusion, CD34+ cell number appears to be the only factor predicting both granulocyte and platelet reconstitution. Based on this

  1. Modular MLV-VLPs co-displaying ovalbumin peptides and GM-CSF effectively induce expansion of CD11b+ APC and antigen-specific T cell responses in vitro.

    PubMed

    Gogesch, Patricia; Schülke, Stefan; Scheurer, Stephan; Mühlebach, Michael D; Waibler, Zoe

    2018-05-28

    The development of novel vaccination strategies is a persistent challenge to provide effective prophylactic treatments to encounter viral infections. In general, the physical conjugation of selected vaccine components, e.g. antigen and adjuvant, has been shown to enhance the immunogenicity and hence, can increase effectiveness of the vaccine. In our proof-of-concept study, we generated non-infectious, replication deficient Murine Leukemia Virus (MLV)-derived virus-like particles (VLPs) that physically link antigen and adjuvant in a modular fashion by co-displaying them on their surface. For this purpose, we selected the immunodominant peptides of the model antigen ovalbumin (OVA) and the cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) as non-classical adjuvant. Our results show that murine GM-CSF displayed on MLV-VLPs mediates expansion and proliferation of CD11b + cells within murine bone marrow and total spleen cells. Moreover, we show increased immunogenicity of modular VLPs co-displaying OVA peptides and GM-CSF by their elevated capacity to induce OVA-specific T cell-activation and -proliferation within OT-I and OT-II splenocyte cultures. These enhanced effects were not achieved by using an equimolar mixture of VLPs displaying either OVA or GM-CSF. Taken together, OVA and GM-CSF co-displaying MLV-VLPs are able to target and expand antigen presenting cells which in turn results in enhanced antigen-specific T cell activation and proliferation in vitro. These data suggest MLV-VLPs to be an attractive platform to flexibly combine antigen and adjuvant for novel modular vaccination approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Granulocyte-colony–stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis

    PubMed Central

    Basso, Lilian; Lapointe, Tamia K.; Iftinca, Mircea; Marsters, Candace; Hollenberg, Morley D.; Kurrasch, Deborah M.; Altier, Christophe

    2017-01-01

    Pain is a main symptom of inflammatory diseases and often persists beyond clinical remission. Although we have a good understanding of the mechanisms of sensitization at the periphery during inflammation, little is known about the mediators that drive central sensitization. Recent reports have identified hematopoietic colony-stimulating factors as important regulators of tumor- and nerve injury-associated pain. Using a mouse model of colitis, we identify the proinflammatory cytokine granulocyte-colony–stimulating factor (G-CSF or Csf-3) as a key mediator of visceral sensitization. We report that G-CSF is specifically up-regulated in the thoracolumbar spinal cord of colitis-affected mice. Our results show that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglial activation following colitis. Furthermore, healthy mice subjected to intrathecal injection of G-CSF exhibit pronounced visceral hypersensitivity, an effect that is abolished by microglial depletion. Mechanistically, we demonstrate that G-CSF injection increases Cathepsin S activity in spinal cord tissues. When cocultured with microglia BV-2 cells exposed to G-CSF, dorsal root ganglion (DRG) nociceptors become hyperexcitable. Blocking CX3CR1 or nitric oxide production during G-CSF treatment reduces excitability and G-CSF–induced visceral pain in vivo. Finally, administration of G-CSF–neutralizing antibody can prevent the establishment of persistent visceral pain postcolitis. Overall, our work uncovers a DRG neuron–microglia interaction that responds to G-CSF by engaging Cathepsin S-CX3CR1-inducible NOS signaling. This interaction represents a central step in visceral sensitization following colonic inflammation, thereby identifying spinal G-CSF as a target for treating chronic abdominal pain. PMID:28973941

  3. Combined application of alginate dressing and human granulocyte-macrophage colony stimulating factor promotes healing in refractory chronic skin ulcers.

    PubMed

    Huang, Guobao; Sun, Tangqing; Zhang, Lei; Wu, Qiuhe; Zhang, Keyan; Tian, Qingfen; Huo, Ran

    2014-06-01

    The aim of the present study was to evaluate the clinical therapeutic effect of the combined application of alginate and recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) on the healing of refractory chronic skin ulcers. A single center, three arm, randomized study was performed at Jinan Central Hospital (Jinan, Shandong, China). A total of 60 patients with refractory chronic skin ulcers, which persisted for >1 month, were enrolled and randomly assigned into one of the following three groups: alginate dressing/rhGM-CSF group (group A), rhGM-CSF only group (group B) and conventional (vaseline dressing) group (group C). The wound area rate was measured, granulation and color were observed and pain was evaluated. The data were summarized and statistical analysis was performed. The results demonstrated that group A exhibited a significantly faster wound healing rate and lower pain score compared with the other groups (P<0.01). In conclusion, the combined application of alginate dressing and rhGM-CSF for the treatment of refractory chronic skin ulcers demonstrated significant advantages. It promoted the growth of granulation tissue, accelerated re-epithelialization and also effectively reduced wound pain, and thus improved the quality of life for the patient. This suggests that the combined application of alginate and rhGM-CSF may be an effective therapeutic strategy for the clinical treatment of refractory chronic skin ulcers.

  4. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis.

    PubMed

    Al-Mossawi, M H; Chen, L; Fang, H; Ridley, A; de Wit, J; Yager, N; Hammitzsch, A; Pulyakhina, I; Fairfax, B P; Simone, D; Yi, Yao; Bandyopadhyay, S; Doig, K; Gundle, R; Kendrick, B; Powrie, F; Knight, J C; Bowness, P

    2017-11-15

    Spondyloarthritis encompasses a group of common inflammatory diseases thought to be driven by IL-17A-secreting type-17 lymphocytes. Here we show increased numbers of GM-CSF-producing CD4 and CD8 lymphocytes in the blood and joints of patients with spondyloarthritis, and increased numbers of IL-17A + GM-CSF + double-producing CD4, CD8, γδ and NK cells. GM-CSF production in CD4 T cells occurs both independently and in combination with classical Th1 and Th17 cytokines. Type 3 innate lymphoid cells producing predominantly GM-CSF are expanded in synovial tissues from patients with spondyloarthritis. GM-CSF + CD4 + cells, isolated using a triple cytokine capture approach, have a specific transcriptional signature. Both GM-CSF + and IL-17A + GM-CSF + double-producing CD4 T cells express increased levels of GPR65, a proton-sensing receptor associated with spondyloarthritis in genome-wide association studies and pathogenicity in murine inflammatory disease models. Silencing GPR65 in primary CD4 T cells reduces GM-CSF production. GM-CSF and GPR65 may thus serve as targets for therapeutic intervention of spondyloarthritis.

  5. Granulocyte colony-stimulating factor supportive treatment following intensive chemotherapy in acute lymphocytic leukemia in first remission.

    PubMed

    Kantarjian, H M; Estey, E; O'Brien, S; Anaissie, E; Beran, M; Pierce, S; Robertson, L; Keating, M J

    1993-11-15

    The efficacy of granulocyte colony-stimulating factor (G-CSF) in reducing neutropenia and its associated complications in adults with acute lymphocytic leukemia (ALL) undergoing intensive chemotherapy in first remission was evaluated. Fourteen adult patients with ALL in first remission received intensive chemotherapy consisting of mitoxantrone 5 mg/m2 intravenously (IV) over 1 hour daily for 3 days, cytosine arabinoside (ara-C) 3 g/m2 IV over 2 hours every 12 hours x 4 on days 1 and 2, vincristine 2 mg IV on day 1, solumedrol 50 mg IV twice daily for 5 days, and G-CSF 5 micrograms/kg subcutaneously daily starting on day 4 until granulocyte recovery. Their outcome was compared with that of 14 consecutive patients who received the same intensification chemotherapy, but without G-CSF. The latter patients had been entered on the same ALL protocol from April 1990 through June 1991. G-CSF administration was associated with a significant shortening in the duration of neutropenia. The number of days to granulocyte recovery above 0.5 x 10(3)/microliters was 14 in the G-CSF group versus 18 days in the historical group (P < 0.001). Two episodes of documented infections were observed in the G-CSF group compared with four episodes in the historical group. Death during intensification therapy occurred in 2 of 14 patients in the historical group, but in none of the 14 patients receiving G-CSF. G-CSF as an adjunct to intensive chemotherapy in adults with ALL in first remission yielded positive results. Future studies incorporating growth factors supportive care during remission, induction, and consolidation may reduce treatment-related morbidity and mortality, increase the dose-intensity delivery of therapy, and potentially improve patient outcome.

  6. Short-term exposure of umbilical cord blood CD34+ cells to granulocyte-macrophage colony-stimulating factor early in culture improves ex vivo expansion of neutrophils.

    PubMed

    Marturana, Flavia; Timmins, Nicholas E; Nielsen, Lars K

    2011-03-01

    Despite the availability of modern antibiotics/antimycotics and cytokine support, neutropenic infection accounts for the majority of chemotherapy-associated deaths. While transfusion support with donor neutrophils is possible, cost and complicated logistics make such an option unrealistic on a routine basis. A manufactured neutrophil product could enable routine prophylactic administration of neutrophils, preventing the onset of neutropenia and substantially reducing the risk of infection. We examined the use of pre-culture strategies and various cytokine/modulator combinations to improve neutrophil expansion from umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HPC). Enriched UCB HPC were cultured using either two-phase pre-culture strategies or a single phase using various cytokine/modulator combinations. Outcome was assessed with respect to numerical expansion, cell morphology, granulation and respiratory burst activity. Pre-culture in the absence of strong differentiation signals (e.g. granulocyte colony-stimulating factor; G-CSF) failed to provide any improvement to final neutrophil yields. Similarly, removal of differentiating cells during pre-culture failed to improve neutrophil yields to an appreciable extent. Of the cytokine/modulator combinations, the addition of granulocyte-macrophage (GM)-colony-stimulating factor (CSF) alone gave the greatest increase. In order to avoid production of monocytes, it was necessary to remove GM-CSF on day 5. Using this strategy, neutrophil expansion improved 2.7-fold. Although all cytokines and culture strategies employed have been reported previously to enhance HPC expansion, we found that the addition of GM-CSF alone was sufficient to improve total cell yields maximally. The need to remove GM-CSF on day 5 to avoid monocyte differentiation highlights the context and time-dependent complexity of exogenous signaling in hematopoietic cell differentiation and growth.

  7. Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism

    PubMed Central

    Waight, Jeremy D.; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I.

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy. PMID:22110722

  8. Increased C3 production in human monocytes after stimulation with Candida albicans is suppressed by granulocyte-macrophage colony-stimulating factor.

    PubMed Central

    Høgåsen, A K; Abrahamsen, T G

    1993-01-01

    Activation of the complement system is an important part of host resistance against fungal infections. When human monocytes, cultured for 2 days or more, were treated in vitro with Candida albicans for 24 h, an enhancement of their biosynthesis of the complement components C3 and factor B was found. However, when C. albicans was administered to freshly isolated monocytes, a consistent stimulation of factor B biosynthesis occurred, while the C3 production was increased in about 50% of the donors. C. albicans also induced the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) from the cultured cells, apparently in larger amounts in the donors in whom no stimulation of C3 production was found. An antibody to GM-CSF administered with the yeast at the initiation of the monocyte culture caused an increase in the C3 production. Furthermore, when monocytes were treated with recombinant human GM-CSF either at the same time as or 4 days prior to the addition of C. albicans, the increase in C3 production was suppressed or neutralized, while factor B biosynthesis was unaffected. Taken together, these results indicate that monocytes respond to C. albicans with an increased production of complement factors. This may be an important mechanism both for opsonization of the fungus and for initiation of an inflammatory reaction. At an inflammatory site, this complement response may be suppressed by locally produced GM-CSF. PMID:8478067

  9. The granulocyte-macrophage colony-stimulating factor promoter cis-acting element CLE0 mediates induction signals in T cells and is recognized by factors related to AP1 and NFAT.

    PubMed Central

    Masuda, E S; Tokumitsu, H; Tsuboi, A; Shlomai, J; Hung, P; Arai, K; Arai, N

    1993-01-01

    Expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene in T cells is activated by the combination of phorbol ester (phorbol myristate acetate) and calcium ionophore (A23187), which mimic antigen stimulation through the T-cell receptor. We have previously shown that a fragment containing bp -95 to +27 of the mouse GM-CSF promoter can confer inducibility to reporter genes in the human Jurkat T-cell line. Here we use an in vitro transcription system to demonstrate that a cis-acting element (positions -54 to -40), referred to as CLE0, is a target for the induction signals. We observed induction with templates containing intact CLE0 but not with templates with deleted or mutated CLE0. We also observed that two distinct signals were required for the stimulation through CLE0, since only extracts from cells treated with both phorbol myristate acetate and A23187 supported optimal induction. Stimulation probably was mediated by CLE0-binding proteins because depletion of these proteins specifically reduced GM-CSF transcription. One of the binding factors possessed biochemical and immunological features identical to those of the transcription factor AP1. Another factor resembled the T-cell-specific factor NFAT. The characteristics of these two factors are consistent with their involvement in GM-CSF induction. The presence of CLE0-like elements in the promoters of interleukin-3 (IL-3), IL-4, IL-5, GM-CSF, and NFAT sites in the IL-2 promoter suggests that the factors we detected, or related factors that recognize these sites, may account for the coordinate induction of these genes during T-cell activation. Images PMID:8246960

  10. Coadministration of Recombinant Adenovirus Expressing GM-CSF with Inactivated H5N1 Avian Influenza Vaccine Increased the Immune Responses and Protective Efficacy Against a Wild Bird Source of H5N1 Challenge.

    PubMed

    Wang, Xiangwei; Wang, Xinglong; Jia, Yanqing; Wang, Chongyang; Tang, Qiuxia; Han, Qingsong; Xiao, Sa; Yang, Zengqi

    2017-10-01

    Wild birds play a key role in the spread of avian influenza virus (AIV). There is a continual urgent requirement for AIV vaccines to address the ongoing genetic changes of AIV. In the current study, we trialed a novel AIV vaccine against the wild bird source of H5N1 type AIV with recombinant adenovirus expressing granulocyte monocyte colony-stimulating factor (GM-CSF) as an adjuvant. A total of 150-day-old commercial chicks, with AIV-maternal-derived antibody, were divided into 6 groups. The primary vaccination was performed at day 14 followed by a subsequent boosting and intramuscular challenge on day 28 and 42, respectively. Recombinant GM-CSF (rGM-CSF) expressed by adenovirus, named as rAd-GM-CSF, raised the hemagglutination inhibition (HI) titers (log 2 ) against AIV from 7.0 (vaccinate with inactivated vaccine alone) to 8.4 after booster immunization. Moreover, the rGM-CSF addition markedly increased the expression of interferon-γ, interleukin-4, and major histocompatibility complex-II in the lungs, compared with those immunized with inactivated vaccine alone on day 29, that is, 18 h post booster immunization. Following challenge, chicks inoculated with the inactivated AIV vaccine and rAd-GM-CSF together exhibited mild clinical signs and 62% survivals compared to 33% in the group immunized with inactivated AIV vaccine alone. Higher level of HI titers, immune related molecule expressions, and protection ratio demonstrates a good potential of rGM-CSF in improving humoral and cell mediated immune responses of inactivated AIV vaccines.

  11. GM-CSF has disparate roles during intranasal and intradermal Francisella tularensis infection.

    PubMed

    Kurtz, Sherry L; Bosio, Catharine M; De Pascalis, Roberto; Elkins, Karen L

    2016-12-01

    Our laboratory has employed in vitro and in vivo mouse models based on Francisella tularensis Live Vaccine Strain (LVS)-induced protection to elucidate immune correlates for intracellular bacteria. Among the effectors found was GM-CSF, a pleiotropic cytokine that is integral to the development and proliferation of myeloid cells, including alveolar macrophages. GM-CSF has roles in resistance to primary murine infection with several intracellular pathogens, but its role during Francisella infection is unknown. Francisella is an intracellular pathogen that infects lungs after inhalation, primarily invading alveolar macrophages. Here we show that GM-CSF has route-dependent roles during primary infection of mice with LVS. GM-CSF deficient (GM-CSF KO) mice were slightly more susceptible than wild type to intradermal infection, but had increased resistance to intranasal infection. Similarly, these mice had increased resistance to pulmonary infection with virulent F. tularensis (SchuS4). LVS-vaccinated GM-CSF KO mice had normal adaptive immune responses, as measured by T cell activities after LVS intradermal or intranasal vaccination, and survived lethal secondary LVS challenge. GM-CSF KO mice also had robust humoral responses, producing elevated levels of serum antibodies following LVS vaccination compared to wild type mice. Taken together, our data demonstrates that the absence of GM-CSF improves resistance to pulmonary, but not intradermal, infection with Francisella. Published by Elsevier Masson SAS.

  12. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Specific Contributions of CSF-1 and GM-CSF to the Dynamics of the Mononuclear Phagocyte System.

    PubMed

    Louis, Cynthia; Cook, Andrew D; Lacey, Derek; Fleetwood, Andrew J; Vlahos, Ross; Anderson, Gary P; Hamilton, John A

    2015-07-01

    M-CSF (or CSF-1) and GM-CSF can regulate the development and function of the mononuclear phagocyte system (MPS). To address some of the outstanding and sometimes conflicting issues surrounding this biology, we undertook a comparative analysis of the effects of neutralizing mAbs to these CSFs on murine MPS populations in the steady-state and during acute inflammatory reactions. CSF-1 neutralization, but not of GM-CSF, in normal mice rapidly reduced the numbers of more mature Ly6C(-) monocytes in blood and bone marrow, without any effect on proliferating precursors, and also the numbers of the resident peritoneal macrophages, observations consistent with CSF-1 signaling being essential only at a relatively late state in steady-state MPS development; in contrast, GM-CSF neutralization had no effect on the numbers of these particular populations. In Ag-induced peritonitis (AIP), thioglycolate-induced peritonitis, and LPS-induced lung inflammation, CSF-1 neutralization lowered inflammatory macrophage number; in the AIP model, this reduced number was not due to suppressed proliferation. More detailed studies with the convenient AIP model indicated that CSF-1 neutralization led to a relatively uniform reduction in all inflammatory cell populations; GM-CSF neutralization, in contrast, was more selective, resulting in the preferential loss among the MPS populations of a cycling, monocyte-derived inflammatory dendritic cell population. Some mechanistic options for the specific CSF-dependent biologies enumerated are discussed. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. Granulocyte-Colony Stimulating Factor (G-CSF) for stroke: an individual patient data meta-analysis.

    PubMed

    England, Timothy J; Sprigg, Nikola; Alasheev, Andrey M; Belkin, Andrey A; Kumar, Amit; Prasad, Kameshwar; Bath, Philip M

    2016-11-15

    Granulocyte colony stimulating factor (G-CSF) may enhance recovery from stroke through neuroprotective mechanisms if administered early, or neurorepair if given later. Several small trials suggest administration is safe but effects on efficacy are unclear. We searched for randomised controlled trials (RCT) assessing G-CSF in patients with hyperacute, acute, subacute or chronic stroke, and asked Investigators to share individual patient data on baseline characteristics, stroke severity and type, end-of-trial modified Rankin Scale (mRS), Barthel Index, haematological parameters, serious adverse events and death. Multiple variable analyses were adjusted for age, sex, baseline severity and time-to-treatment. Individual patient data were obtained for 6 of 10 RCTs comprising 196 stroke patients (116 G-CSF, 80 placebo), mean age 67.1 (SD 12.9), 92% ischaemic, median NIHSS 10 (IQR 5-15), randomised 11 days (interquartile range IQR 4-238) post ictus; data from three commercial trials were not shared. G-CSF did not improve mRS (ordinal regression), odds ratio OR 1.12 (95% confidence interval 0.64 to 1.96, p = 0.62). There were more patients with a serious adverse event in the G-CSF group (29.6% versus 7.5%, p = 0.07) with no significant difference in all-cause mortality (G-CSF 11.2%, placebo 7.6%, p = 0.4). Overall, G-CSF did not improve stroke outcome in this individual patient data meta-analysis.

  15. Production of colony-stimulating factor in human dental pulp fibroblasts.

    PubMed

    Sawa, Y; Horie, Y; Yamaoka, Y; Ebata, N; Kim, T; Yoshida, S

    2003-02-01

    Class II major histocompatilibity complex (MHC)-expressing cells are usually distributed in dental pulp, and it was postulated that the colony-stimulating factor (CSF) derived from dental pulp fibroblasts contributes to the migration of class II MHC-expressing cells into pulp tissue. This study aimed to investigate the CSF production of human dental pulp fibroblasts. In pulp tissue sections, granulocyte (G)-CSF was detected from normal teeth, while G-CSF, macrophage (M)-CSF, and granulocyte-macrophage (GM)-CSF were detected from teeth with dentinal caries. In cultured dental pulp fibroblasts, G-CSF was detected by immunostaining, immunoprecipitation, and ELISA, and mRNAs of G-CSF, M-CSF, and GM-CSF were detected by RT-PCR. The dental pulp fibroblasts cultured with TNF-alpha were found to increase the G-CSF expression and to produce M-CSF and GM-CSF. These findings suggest that dental pulp fibroblasts usually produce G-CSF. In the presence of TNF-alpha, dental pulp fibroblast express M-CSF and GM-CSF.

  16. Increased Prevalence of Luminal Narrowing and Stricturing Identified by Enterography in Pediatric Crohn Disease Patients with Elevated Granulocyte-Macrophage Colony Stimulating Factor Auto-antibodies

    PubMed Central

    Dykes, Dana M.H.; Towbin, Alexander J.; Bonkowski, Erin; Chalk, Claudia; Bezold, Ramona; Lake, Kathleen; Kim, Mi-Ok; Heubi, James E.; Trapnell, Bruce C.; Podberesky, Daniel J.; Denson, Lee A.

    2013-01-01

    Background Crohn disease (CD) patients with elevated Granulocyte-Macrophage Colony-Stimulating Factor auto-antibodies (GM-CSF Ab) are more likely to develop stricturing behavior requiring surgery. Computed Tomography or Magnetic Resonance Enterography (CTE or MRE) may detect luminal narrowing (LN) prior to stricture development. Objective To determine whether CD patients with elevated GM-CSF Ab (≥ 1.6 mcg/mL) have a higher prevalence of LN and stricturing on CTE or MRE. Methods A single center, cross-sectional study of 153 pediatric CD patients and controls undergoing CTE or MRE. A novel scoring system evaluated for disease activity, presence of LN, stricture, intra-abdominal abscess, or fistulae Ouutcomes were compared with respect to antibody status using Fisher's exact test, logistic regression, and the unpaired t-test. Results GM-CSF Ab were elevated in CD patients (n=114) with a median (IQR) GM-CSF Ab level of 2.3 mcg/mL (0.5, 6.6) compared with healthy and disease controls, p=0.001. Ileal disease location was more common in CD patients with high GM-CSF Ab, p<0.001. Luminal narrowing increased from 39% in CD patients with low GM-CSF Ab to 71% in those with high levels (p=0.004). High GM-CSF Ab remained significantly associated with LN in a multivariate logistic model. Stricturing increased from 4% in CD patients with low GM-CSF Ab to 19% in those with high GM-CSF Ab (p=0.03). Conclusions Pediatric CD patients with high GM-CSF Ab levels have a higher prevalence of LN on CTE or MRE. Further study will be needed to determine whether medical therapy will reduce progression to stricturing behavior in these patients. PMID:23893081

  17. Posterior reversible encephalopathy syndrome (PRES) after granulocyte-colony stimulating factor (G-CSF) therapy: a report of 2 cases.

    PubMed

    Stübgen, Joerg-Patrick

    2012-10-15

    Two patients with recurrent lymphoma developed an acute, transient encephalopathy following administration of recombinant human granulocyte-colony stimulating factor (rhG-CSF), filgrastim, in anticipation of leukapheresis for hematopoietic stem cell transplantation. Head magnetic resonance imaging showed evidence of blood-brain barrier (BBB) breakdown, compatible with posterior reversible encephalopathy syndrome (PRES). The proposed pathogenesis of PRES was rhG-CSF-induced neutrophil mobilization and activation with the release of inflammatory mediators, resulting in transient alteration of barrier permeability and capillary leakage. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Granulocyte colony-stimulating factor (G-CSF) plays an important role in immune complex-mediated arthritis.

    PubMed

    Christensen, Anne D; Haase, Claus; Cook, Andrew D; Hamilton, John A

    2016-05-01

    Neutrophils are an abundant cell type in many chronic inflammatory diseases such as rheumatoid arthritis (RA); however, their contribution to the pathology of RA has not been widely studied. A key cytokine involved in neutrophil development and function is granulocyte-colony stimulating factor (G-CSF). In this study we used the K/BxN serum-transfer arthritis (STA) model, mimicking the effector phase of RA, to investigate the importance of G-CSF in arthritis development and its relation to neutrophils. Here, we show for the first time in this model that G-CSF levels are increased both in the serum and in inflamed paws of arthritic mice and importantly that G-CSF blockade leads to a profound reduction in arthritis severity, as well as reduced numbers of neutrophils in blood. Moreover, CXCL1 and CXCL2 levels in the arthritic joints were also lowered. Our data demonstrate that G-CSF is a pivotal driver of the disease progression in the K/BxN STA model and possibly acts in part by regulating neutrophil numbers in the circulation. Therefore, our findings suggest that G-CSF might be a suitable target in RA, and perhaps in other immune complex-driven pathologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Low doses of GM-CSF (molgramostim) and G-CSF (filgrastim) after cyclophosphamide (4 g/m2) enhance the peripheral blood progenitor cell harvest: results of two randomized studies including 120 patients

    PubMed Central

    Quittet, Philippe; Ceballos, Patrice; Lopez, Ernesto; Lu, Zhao-Yang; Latry, Pascal; Becht, Catherine; Legouffe, Eric; Fegueux, Nathalie; Exbrayat, Carole; Pouessel, Damien; Rouillé, Valérie; Daures, Jean-Pierre; Klein, Bernard; Rossi, Jean-François

    2006-01-01

    The use of a combination of G-CSF and GM-CSF to G-CSF alone, after cyclophosphamide (4g/m2) was compared in 2 randomized phase III studies, including 120 patients. In study A, 60 patients received 5 × 2 μg/kg/day of G-CSF and GM-CSF compared to 5 μg/kg/day of G-CSF. In study B, 60 patients received 2.5 × 2 μg/kg/day G-CSF and GM-CSF compared to G-CSF alone (5 μg/kg/day). With the aim to collect at least 5 × 106/kg CD34 cells in a maximum of 3 large volume leukapherisis (LK), 123 LK were performed in study A, showing significant higher number of patients reaching 10 × 106/kg CD34 cells (21/29 in G+GM-CSF arm vs 11/27 in G-CSF arm, P= .00006). In study B, 109 LK were performed, with similar results (10/27 vs 15/26, P= .003). In both the study, the total harvest of CD34 cells/kg was 2-fold higher in G-CSF plus GM-CSF group (18.3 × 106 in study A and 15.85 × 106 in study B) than in G-CSF group (9 × 106 in study A and 8.1 × 106 in study B), a difference particularly seen in multiple myeloma, with no significant difference in terms of mobilized myeloma cells between G-CSF and GM-CSF groups. PMID:16883311

  20. Use of granulocyte colony-stimulating factor (G-CSF) and outcome in patients with non-chemotherapy agranulocytosis.

    PubMed

    Ibáñez, L; Sabaté, M; Ballarín, E; Puig, R; Vidal, X; Laporte, J-R

    2008-03-01

    The use of granulocyte colony-stimulating factor (G-CSF) in the treatment of non-chemotherapy drug- induced agranulocytosis is controversial. We aimed at assessing the effect of G-CSF on the duration of agranulocytosis. To assess the effect of G-CSF on the duration of agranulocytosis, a Cox proportional hazard model with an estimated propensity score covariate adjusting for several prognostic factors was used. One hundred and forty-five episodes of agranulocytosis were prospectively collected from January 1994 to December 2000 in Barcelona (Spain). No differences were found in the case-fatality rate between treated (9 of 101, 8.9%) and not treated (5 of 44, 11.4%) patients. The median time to reach a neutrophil count > or =1.0 x 10(9)/L was 5 days (95%CI 5-6) in patients treated with G-CSF compared to 7 days (95%CI 6-8) in those not treated, with a hazard ratio of 1.58 (95% CI 1.1-2.3). G-CSF shortens time to recovery in patients with agranulocytosis. However, as an effect on case-fatality has not been recorded, and data on cost-effectiveness are lacking, it would be wise to restrict its use to high-risk patients. Copyright 2008 John Wiley & Sons, Ltd.

  1. Human granulocyte colony-stimulating factor (hG-CSF) expression in plastids of Lactuca sativa.

    PubMed

    Sharifi Tabar, Mehdi; Habashi, Ali Akbar; Rajabi Memari, Hamid

    2013-01-01

    Human granulocyte colony-stimulating factor (hG-CSF) can serve as valuable biopharmaceutical for research and treatment of the human blood cancer. Transplastomic plants have been emerged as a new and high potential candidate for production of recombinant biopharmaceutical proteins in comparison with transgenic plants due to extremely high level expression, biosafety and many other advantages. hG-CSF gene was cloned into pCL vector between prrn16S promoter and TpsbA terminator. The recombinant vector was coated on nanogold particles and transformed to lettuce chloroplasts through biolistic method. Callogenesis and regeneration of cotyledonary explants were obtained by Murashige and Skoog media containing 6-benzylaminopurine and 1-naphthaleneacetic acid hormones. The presence of hG-CSF gene in plastome was studied with four specific PCR primers and expression by Western immunoblotting. hG-CSF gene cloning was confirmed by digestion and sequencing. Transplastomic lettuce lines were regenerated and subjected to molecular analysis. The presence of hG-CSF in plastome was confirmed by PCR using specific primers designed from the plastid genome. Western immunoblotting of extracted protein from transplastomic plants showed a 20-kDa band, which verified the expression of recombinant protein in lettuce chloroplasts. This study is the first report that successfully express hG-CSF gene in lettuce chloroplast. The lettuce plastome can provide a cheap and safe expression platform for producing valuable biopharmaceuticals for research and treatment.

  2. Porcine granulocyte-colony stimulating factor (G-CSF) delivered via replication-defective adenovirus induces a sustained increase in circulating peripheral blood neutrophils

    USDA-ARS?s Scientific Manuscript database

    The use of immunomodulators is a promising area for biotherapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease, particularly during periods of peak disease incidence. Cytokines, including granulocyte colony-stimulating factor (G-CSF), are one class of compounds that...

  3. [Clinical study of recombinant human granulocyte colony stimulating factor (rhG-CSF) on leukopenia induced by chemotherapy in cancer patients].

    PubMed

    Shi, Y K; Zhou, J C; Feng, F Y

    1994-05-01

    The clinical usefulness of Recombinant Human Granulocyte Colony Stimulating Factor (rhG-CSF, Filgrastim, GRAN) was evaluated in patients with leukopenia and neutropenia following chemotherapy for non-Hodgkin's lymphoma, lung cancer and breast cancer. During chemotherapy when patients' leukocyte count (WBC) fell below 4.0 x 10(9)/L.rhG-CSF(GRAN) at a dose of 75 micrograms/body.day was given subcutaneously 48 hours after the termination of chemotherapy. The results indicated that rhG-CSF(GRAN) could elevate nadirs of WBC and significantly shortened leukopenic period with WBC below 4.0 x 10(9)/L and expedited the recovery of WBC. rhG-CSF (GRAN)'s side effects were mild.

  4. The Activin A-Peroxisome Proliferator-Activated Receptor Gamma Axis Contributes to the Transcriptome of GM-CSF-Conditioned Human Macrophages.

    PubMed

    Nieto, Concha; Bragado, Rafael; Municio, Cristina; Sierra-Filardi, Elena; Alonso, Bárbara; Escribese, María M; Domínguez-Andrés, Jorge; Ardavín, Carlos; Castrillo, Antonio; Vega, Miguel A; Puig-Kröger, Amaya; Corbí, Angel L

    2018-01-01

    GM-CSF promotes the functional maturation of lung alveolar macrophages (A-MØ), whose differentiation is dependent on the peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor. In fact, blockade of GM-CSF-initiated signaling or deletion of the PPARγ-encoding gene PPARG leads to functionally defective A-MØ and the onset of pulmonary alveolar proteinosis. In vitro , macrophages generated in the presence of GM-CSF display potent proinflammatory, immunogenic and tumor growth-limiting activities. Since GM-CSF upregulates PPARγ expression, we hypothesized that PPARγ might contribute to the gene signature and functional profile of human GM-CSF-conditioned macrophages. To verify this hypothesis, PPARγ expression and activity was assessed in human monocyte-derived macrophages generated in the presence of GM-CSF [proinflammatory GM-CSF-conditioned human monocyte-derived macrophages (GM-MØ)] or M-CSF (anti-inflammatory M-MØ), as well as in ex vivo isolated human A-MØ. GM-MØ showed higher PPARγ expression than M-MØ, and the expression of PPARγ in GM-MØ was found to largely depend on activin A. Ligand-induced activation of PPARγ also resulted in distinct transcriptional and functional outcomes in GM-MØ and M-MØ. Moreover, and in the absence of exogenous activating ligands, PPARγ knockdown significantly altered the GM-MØ transcriptome, causing a global upregulation of proinflammatory genes and significantly modulating the expression of genes involved in cell proliferation and migration. Similar effects were observed in ex vivo isolated human A-MØ, where PPARγ silencing led to enhanced expression of genes coding for growth factors and chemokines and downregulation of cell surface pathogen receptors. Therefore, PPARγ shapes the transcriptome of GM-CSF-dependent human macrophages ( in vitro derived GM-MØ and ex vivo isolated A-MØ) in the absence of exogenous activating ligands, and its expression is primarily regulated by activin A

  5. Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF?

    PubMed

    Cashen, A F; Lazarus, H M; Devine, S M

    2007-05-01

    Currently, granulocyte colony stimulating factor (G-CSF) remains the standard mobilizing agent for peripheral blood stem cell (PBSC) donors, allowing the safe collection of adequate PBSCs from the vast majority of donors. However, G-CSF mobilization can be associated with some significant side effects and requires a multi-day dosing regimen. The other cytokine approved for stem cell mobilization, granulocyte-macrophage colony stimulating factor (GM-CSF), alters graft composition and may reduce the development of graft-versus-host disease, but a significant minority of donors fails to provide sufficient CD34+ cells with GM-CSF and some experience unacceptable toxicity. AMD3100 is a promising new mobilizing agent, which may have several advantages over G-CSF for donor mobilization. As it is a direct antagonist of the interaction between the chemokine stromal-derived factor-1 and its receptor CXCR4, AMD3100 mobilizes PBSCs within hours rather than days. It is also well tolerated, with no significant side effects reported in any of the clinical trials to date. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts have demonstrated prompt and stable engraftment. Here, we review the current state of stem cell mobilization in normal donors and discuss novel strategies for donor stem cell mobilization.

  6. Granulocyte-Macrophage Colony-Stimulating Factor Priming plus Papillomavirus E6 DNA Vaccination: Effects on Papilloma Formation and Regression in the Cottontail Rabbit Papillomavirus-Rabbit Model

    PubMed Central

    Leachman, Sancy A.; Tigelaar, Robert E.; Shlyankevich, Mark; Slade, Martin D.; Irwin, Michele; Chang, Ed; Wu, T. C.; Xiao, Wei; Pazhani, Sundaram; Zelterman, Daniel; Brandsma, Janet L.

    2000-01-01

    A cottontail rabbit papillomavirus (CRPV) E6 DNA vaccine that induces significant protection against CRPV challenge was used in a superior vaccination regimen in which the cutaneous sites of vaccination were primed with an expression vector encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine that induces differentiation and local recruitment of professional antigen-presenting cells. This treatment induced a massive influx of major histocompatibility complex class II-positive cells. In a vaccination-challenge experiment, rabbit groups were treated by E6 DNA vaccination, GM-CSF DNA inoculation, or a combination of both treatments. After two immunizations, rabbits were challenged with CRPV at low, moderate, and high stringencies and monitored for papilloma formation. As expected, all clinical outcomes were monotonically related to the stringency of the viral challenge. The results demonstrate that GM-CSF priming greatly augmented the effects of CRPV E6 vaccination. First, challenge sites in control rabbits (at the moderate challenge stringency) had a 0% probability of remaining disease free, versus a 50% probability in E6-vaccinated rabbits, and whereas GM-CSF alone had no effect, the interaction between GM-CSF priming and E6 vaccination increased disease-free survival to 67%. Second, the incubation period before papilloma onset was lengthened by E6 DNA vaccination alone or to some extent by GM-CSF DNA inoculation alone, and the combination of treatments induced additive effects. Third, the rate of papilloma growth was reduced by E6 vaccination and, to a lesser extent, by GM-CSF treatment. In addition, the interaction between the E6 and GM-CSF treatments was synergistic and yielded more than a 99% reduction in papilloma volume. Finally, regression occurred among the papillomas that formed in rabbits treated with the E6 vaccine and/or with GM-CSF, with the highest regression frequency occurring in rabbits that received the combination

  7. Effect of the association of IGF-I, IGF-II, bFGF, TGF-beta1, GM-CSF, and LIF on the development of bovine embryos produced in vitro.

    PubMed

    Neira, J A; Tainturier, D; Peña, M A; Martal, J

    2010-03-15

    This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; P<0.05) on Day 8 after in vitro fertilization and similar results to use of SOF+10% fetal calf serum (38% and 16%, at the same stages, respectively). The averages of total cells, inner cell mass cells, and trophectoderm cells of exclusively in vitro Day-8 blastocysts for pooled GF-CYK treatments were higher than those for SOF and similar to those for fetal calf serum. The presence of these growth factors and cytokines in the embryo culture medium therefore has a combined stimulatory action on embryonic development; in particular through an increase in hatching rate and in the number of cells of both the inner cell mass and trophoblast. These results are the first to demonstrate that use of a combination of recombinant growth factors and cytokine, as IGF-I, IGF-II, bFGF, TGF-beta1, LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the

  8. Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG™) in advanced cancer of the liver.

    PubMed

    Nemunaitis, John; Barve, Minal; Orr, Douglas; Kuhn, Joseph; Magee, Mitchell; Lamont, Jeffrey; Bedell, Cynthia; Wallraven, Gladice; Pappen, Beena O; Roth, Alyssa; Horvath, Staci; Nemunaitis, Derek; Kumar, Padmasini; Maples, Phillip B; Senzer, Neil

    2014-01-01

    Therapies for advanced hepatocellular carcinoma (HCC) are limited. We carried out a phase I trial of a novel autologous whole-cell tumor cell immunotherapy (FANG™), which incorporates a dual granulocyte macrophage colony-stimulating factor (GM-CSF) expressive/bifunctional small hairpin RNA interference (bi-shRNAi) vector. The bi-shRNAi DNA targets furin, which is a proconvertase of transforming growth factors beta (TGFβ) 1 and 2. Safety, mechanism, immunoeffectiveness, and suggested benefit were previously shown [Senzer et al.: Mol Ther 2012;20:679-689; Senzer et al.: J Vaccines Vaccin 2013;4:209]. We now provide further follow-up of a subset of 8 HCC patients. FANG manufacturing was successful in 7 of 8 attempts (one failure due to insufficient cell yield). Median GM-CSF expression was 144 pg/10(6) cells, TGFβ1 knockdown was 100%, and TGFβ2 knockdown was 93% of the vector-transported cells. Five patients were vaccinated (1 or 2.5×10(7) cells/intradermal injection, 6-11 vaccinations). No FANG toxicity was observed. Three of these patients demonstrated evidence of an immune response to the autologous tumor cell sample. Long-term follow-up demonstrated survival of 319, 729, 784, 931+, and 1,043+ days of the FANG-treated patients. In conclusion, evidence supports further assessment of the FANG immunotherapy in HCC. © 2014 S. Karger AG, Basel.

  9. Effect of intramammary infusion of recombinant bovine GM-CSF and IL-8 on CMT score, somatic cell count, and milk mononuclear cell populations in Holstein cows with Staphylococcus aureus subclinical mastitis.

    PubMed

    Kiku, Yoshio; Ozawa, Tomomi; Takahashi, Hideyuki; Kushibiki, Shiro; Inumaru, Shigeki; Shingu, Hiroyuki; Nagasawa, Yuya; Watanabe, Atsushi; Hata, Eiji; Hayashi, Tomohito

    2017-09-01

    The effect of intramammary infusion of recombinant bovine granulocyte-macrophage colony-stimulating factor (rbGM-CSF) and interleukin-8 (rbIL-8) on mononuclear cell populations in quarters, somatic cell count (SCC) and the California Mastitis Test (CMT) score were investigated. From the selected cows with naturally occurring Staphylococcus aureus subclinical mastitis, one quarter of each cow were selected for the infusions of rbGM-CSF (400 μg/5 mL/quarter, n = 9), rbIL-8 (1 mg/5 mL/quarter, n = 9), and phosphate-buffered saline (5 mL/quarter, n = 7). The CMT score of both cytokines post infusion temporarily increased between days 0 and 1 and significantly decreased between days 7 and 14 compared to the preinfusion level. The SCC on day 14 after infusions of rbGM-CSF tended to be lower than that of the control group. The percentage of CD14+ cells increased on days 1 and 2 post infusion of rbGM-CSF. The percentage of CD4+ and CD8+ cells also increased on days 2 and 3, suggesting that the infusion of rbGM-CSF enhanced cellular immunity in the mammary gland. In contrast, the percentage of CD14+ cells decreased on days 0.25 and 1 post infusion of rbIL-8. No significant changes in the percentages of CD4+ and CD8+ cells in milk after infusion of rbIL-8 were evident during the experimental period, which suggested that rbIL-8 had little effect on the function of T cells in the mammary gland. These results indicated that rbGM-CSF and rbIL-8 decreased the CMT score by a different mechanism and may have a potential as therapeutic agents for subclinical mastitis.

  10. The role of G-CSF and IL-6 in the granulopoiesis-stimulating activity of murine blood serum induced by perorally administered ultrafiltered pig leukocyte extract, IMUNOR.

    PubMed

    Vacek, Antonín; Hofer, Michal; Holá, Jirina; Weiterová, Lenka; Streitová, Denisa; Svoboda, Jaroslav

    2007-05-01

    IMUNOR, a low-molecular weight (< 12 kD) ultrafiltered pig leukocyte extract, has been previously found to have significant stimulatory effects on murine hematopoiesis supressed by ionizing radiation or cytotoxic drugs. This communication shows data on the mechanisms of these effects. Using ELISA assay, significantly increased levels of granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6) were observed. On the contrary, no detectable levels of granulocyte-macrophage colony-stimulating factor (GM-CFC) and interleukin-3 (IL-3) have been found in blood serum of IMUNOR-treated mice. Incubation of the serum from IMUNOR-treated mice with antibodies against G-CSF caused abrogation of the ability of the sera to stimulate in vitro growth of colonies originating from granulocyte-macrophage progenitor cells (GM-CFC). In contrast, incubation of the serum with antibodies against IL-6 did not change its colony-stimulating activity. It may be inferred from these findings that G-CSF is probably the main cytokine responsible for the granulopoiesis-stimulating effects of IMUNOR. When the serum from IMUNOR-treated mice with G-CSF inactivated by anti-G-CSF antibodies (but with elevated IL-6) was added to cultures of bone marrow cells together with a suboptimum concentration of IL-3, a significant increase in the numbers of GM-CFC colonies was found. Moreover, conjoint inactivation of G-CSF and IL-6 significantly decreased the numbers of GM-CFC colonies in comparison with those observed when only G-CSF was inactivated. This observation strongly suggests that though IMUNOR-induced IL-6 is not able to induce the growth of GM-CFC colonies alone, it is able to potentiate the hematopoiesis-stimulating effect of IL-3. These findings represent a new knowledge concerning the hematopoiesis-stimulating action of IMUNOR, a promising immunomodulatory agent.

  11. Enhanced interleukin-8 production in THP-1 human monocytic cells by lipopolysaccharide from oral microorganisms and granulocyte-macrophage colony-stimulating factor.

    PubMed

    Baqui, A A; Meiller, T F; Falkler, W A

    1999-10-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-8 (IL-8) plays an important role in macrophage mediated inflammatory processes including exacerbation of periodontal diseases, one of the most common complications in GM-CSF receiving cancer patients. The effect of GM-CSF supplementation on IL-8 production was investigated in a human monocyte cell line THP-1, stimulated with lipopolysaccharide extracted from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. Resting THP-1 cells were treated with lipopolysaccharide (1 microgram/ml) of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) for varying time periods. The production of IL-8 in THP-1 cells was measured by a solid-phase enzyme-linked immunosorbent assay (ELISA). A very low level of the cytokine IL-8 was produced constitutive in THP-1 cells. Starting from 8 h of treatment and afterwards GM-CSF alone significantly increased IL-8 production in THP-1 cells. Lipopolysaccharide (1 microgram/ml) extracts from either F. nucleatum or P. gingivalis amplified IL-8 production 500-800 times in comparison to resting THP-1 cells. When lipopolysaccharide of F. nucleatum or P. gingivalis was supplemented with 50 IU/ml of GM-CSF, there was a statistically significant enhanced production of IL-8 by THP-1 cells after 1 day to 7 days of treatment as compared with lipopolysaccharide treatment alone. GM-CSF (50 IU/ml) also significantly increased IL-8 production from 2-7 days of treatment of THP-1 cells when supplemented with a positive control, phorbol-12-myristate-13 acetate (PMA), as compared to PMA treatment alone. These investigations using the in vitro THP-1 human monocyte cell model indicate that there may be an increase in the response on a cellular level to oral endotoxin following GM-CSF therapy as evidenced by enhanced production of the tissue-reactive inflammatory cytokine, IL-8.

  12. Recombinant human granulocyte colony-stimulating factor (rhG-CSF; filgrastim) treatment of clozapine-induced agranulocytosis.

    PubMed

    Nielsen, H

    1993-11-01

    After 10 weeks of treatment with clozapine, severe agranulocytosis was diagnosed in a 33-year-old female. The patient was treated with filgrastim (granulocyte colony-stimulating factor [G-CSF]) 5 micrograms kg-1 day-1. The neutrophil count was 0.234 x 10(9) l-1 on admission, with a further decrease the next day to < 0.050 x 10(9) l-1, and this complete agranulocytosis continued for 10 days. As no response was obtained after 1 week the dosage of filgrastim was increased to 10 micrograms kg-1 day-1 with immediate improvement. A rapid and pronounced leucocytosis developed with maximal value of neutrophil granulocytes (including immature forms) of 33.108 x 10(9) l-1 on day 12 after admission. The patient only had minor infectious complications during the neutropenic period. In conclusion, early treatment with filgrastim seems warranted in severe cases of clozapine-induced agranulocytosis. A dosage of 10 micrograms kg-1 day-1 can be recommended.

  13. Co-administration of plasmid-encoded granulocyte-macrophage colony-stimulating factor increases human immunodeficiency virus-1 DNA vaccine-induced polyfunctional CD4+ T-cell responses

    PubMed Central

    Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio

    2015-01-01

    T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876

  14. Circulating Cytokine/Chemokine Concentrations Respond to Ionizing Radiation Doses but not Radiation Dose Rates: Granulocyte-Colony Stimulating Factor and Interleukin-18.

    PubMed

    Kiang, Juliann G; Smith, Joan T; Hegge, Sara R; Ossetrova, Natalia I

    2018-06-01

    Exposure to ionizing radiation is a crucial life-threatening factor in nuclear and radiological incidents. It is known that ionizing radiation affects cytokine/chemokine concentrations in the blood of B6D2F1 mice. It is not clear whether radiation dose rates would vary the physiological response. Therefore, in this study we utilized data from two experiments using B6D2F1 female mice exposed to six different dose rates ranging from low to high rates. In one experiment, mice received a total dose of 8 Gy (LD 0/30 ) of 60 Co gamma radiation at four dose rates: 0.04, 0.15, 0.30 and 0.47 Gy/min. Blood samples from mice were collected at 24 and 48 h postirradiation for cytokine/chemokine measurements, including interleukin (IL)-1β, IL-6, IL-10, keratinocyte cytokine (KC), IL-12p70, IL-15, IL-17A, IL-18, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage (GM)-CSF, macrophage (M)-CSF, monokine induced by gamma interferon (MIG), tumor necrosis factor (TNF)-α, fibroblast growth factor (FGF)-basic, vascular endothelial growth factor (VEGF) and platelet-derived growth factor basic (PDGF-bb). At 24 h after ionizing irradiation at dose rate of 0.04 Gy/min, significant increases were observed only in G-CSF and M-CSF ( P < 0.05). At 0.15 Gy/min, IL-10, IL-17A, G-CSF and GM-CSF concentrations were increased. At 0.3 Gy/min, IL-15, IL-18, G-CSF, GM-CSF, M-CSF, MCP-1, MIP-2, MIG, FGF-basic, VEGF and PDGF-bb were significantly elevated ( P < 0.05). At 0.47 Gy/min, IL-6, KC, IL-10, MCP-1, G-CSF, GM-CSF and M-CSF were significantly increased. At 48 h postirradiation, all cytokines/chemokines except MCP-1 returned to or were below their baselines, suggesting these increases are transient at LD 0/30 irradiation. Of note, there is a limitation on day 2 because cytokines/chemokines are either at or below their baselines. Other parameters such as fms-like tyrosine kinase receptor-3 ligand (Flt-3 ligand) concentrations and lymphocyte counts, which have proven to be

  15. Granulocyte-Colony Stimulating Factor (G-CSF) Accelerates Wound Healing in Hemorrhagic Shock Rats by Enhancing Angiogenesis and Attenuating Apoptosis

    PubMed Central

    Huang, Hong; Zhang, Qi; Liu, Jiejie; Hao, Haojie; Jiang, Chaoguang; Han, Weidong

    2017-01-01

    Background Following severe trauma, treatment of cutaneous injuries is often delayed by inadequate blood supply. The aim of the present study was to determine whether granulocyte-colony stimulating factor (G-CSF) protects endothelial cells (ECs) and enhances angiogenesis in a rat model of hemorrhagic shock (HS) combined with cutaneous injury after resuscitation. Material/Methods The HS rats with full-thickness defects were resuscitated and randomly divided into a G-CSF group (200 μg/kg body weight), a normal saline group, and a blank control group. Histological staining was to used estimate the recovery and apoptosis of skin. Apoptosis- and angiogenesis-related factors were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot (WB). Scratch assay, tube formation, and WB experiments were performed to verify the functional effects of G-CSF on HUVECs in vitro. Results H&E staining and Masson trichrome staining showed earlier inflammation resolution and collagen synthesis in the G-CSF-treated group. Angiogenesis-related factors were elevated at mRNA and protein levels. TUNEL staining suggested fewer apoptotic cells in the G-CSF group. The apoptotic-related factors were down-regulated and anti-apoptotic factors were up-regulated in the G-CSF-treated group. Scratch assay and tube formation experiments revealed that G-CSF facilitated migration ability and angiogenic potential of HUVECs. The angiogenic and anti-apoptotic effects were also enhanced in vitro. Conclusions Our results suggest that G-CSF after resuscitation attenuates local apoptosis and accelerates angiogenesis. These findings hold great promise for improving therapy for cutaneous injury in severe trauma and ischemia diseases. PMID:28559534

  16. Interleukin-6 and granulocyte-macrophage colony-stimulating factor in apical periodontitis: correlation with clinical and histologic findings of the involved teeth.

    PubMed

    Radics, T; Kiss, C; Tar, I; Márton, I J

    2003-02-01

    Apical periodontitis is characterized by the presence of immunocompetent cells producing a wide variety of inflammatory mediators. Releasing cytokines with long-range action, such as interleukin-6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF), apical periodontitis may induce changes in remote organs of the host. This study quantified the levels of IL-6 and GM-CSF in symptomatic and asymptomatic human periradicular lesions. Lesions were also characterized by size and histologic findings. Tissue samples were homogenized and supernatants were assayed using an enzyme-linked immunosorbent assay (ELISA). Correlations between cytokine levels and characteristic features (as single variables) of the lesions were analysed. There was a trend for higher levels of IL-6 and GM-CSF in symptomatic than in asymptomatic lesions, but the difference was not significant. Levels also tended to be higher in large than in small lesions, in polymorphonuclear (PMN) cell-rich than in PMN cell-poor samples, and in epithelialized than in non-epithelialized lesions. Significantly higher levels of IL-6 (778.1 +/- 220.5 pg/microg) and GM-CSF (363.3 +/- 98.4 pg/microg) were found in samples coincidentally possessing symptomatic and epithelialized features than in asymptomatic, small, PMN cell-poor, non-epithelialized lesions (IL-6: 45.2 +/- 13.1 pg/microg and GM-CSF: 135.1 +/- 26.4 pg/microg). These results suggest that symptomatic lesions containing epithelial cells represent an immunologically active stage of apical periodontitis, whereas asymptomatic, small, PMN cell-poor, non-epithelialized lesions represent healing apical lesions.

  17. Antitumor activity of a dual cytokine/single-chain antibody fusion protein for simultaneous delivery of GM-CSF and IL-2 to Ep-CAM expressing tumor cells.

    PubMed

    Schanzer, Juergen M; Fichtner, Iduna; Baeuerle, Patrick A; Kufer, Peter

    2006-01-01

    Cytokine targeting to tumor-associated antigens via antibody cytokine fusion proteins has demonstrated potent antitumor activity in numerous animal models and has led to the clinical development of 2 antibody-interleukin-2 (IL-2) fusion proteins. We previously reported on the construction and in vitro properties of a "dual" cytokine fusion protein for simultaneous targeted delivery of human granulocyte macrophage-colony stimulating factor (GM-CSF) and IL-2 to human tumors. The fusion protein is based on a heterodimerized core structure formed by human CH1 and Ckappa domains (heterominibody) with C-terminally fused human cytokines and N-terminally fused single-chain antibody fragments specific for the tumor-associated surface antigen epithelial cell adhesion molecule (Ep-CAM). For testing the antitumor activity in syngeneic mouse xenograft models, we developed "dual cytokine heterominibodies" with murine cytokines (mDCH). mDCH fusion proteins and, as controls, "single cytokine heterominibodies" (SCH) carrying either murine GM-CSF (mGM-CSF) or murine IL-2 (mIL-2) were constructed, of which all retained the specific activities of cytokines and binding to the Ep-CAM antigen on human Ep-CAM transfected mouse colon carcinoma CT26-KSA cells. Over a 5-day treatment course, DCH fusion proteins induced significant inhibition of established pulmonary CT26-KSA metastases in immune-competent Balb/c mice at low daily doses of 1 mug of fusion protein per mouse. However, with the tested dosing schemes, antitumor activity of mDCH was largely independent of cytokine targeting to tumors as demonstrated by a control protein with mutated Ep-CAM binding sites. Single cytokine fusion proteins mSCH-GM-CSF and mSCH-IL-2 showed similar antitumor activity as the dual cytokine fusion protein mDCH, indicating that GM-CSF and IL-2 in one molecule did not significantly synergize in tumor rejection under our experimental conditions. Our results seem to contradict the notion that IL-2 and GM-CSF

  18. Role of hepatocyte growth factor in the development of dendritic cells from CD34+ bone marrow cells.

    PubMed

    Ovali, E; Ratip, S; Kibaroglu, A; Tekelioglu, Y; Cetiner, M; Karti, S; Aydin, F; Bayik, M; Akoglu, T

    2000-05-01

    Hepatocyte growth factor (HGF) is known to augment the effects of stem cell factor, interleukin-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), erythropoetin, and granulocyte colony-stimulating factor, all of which are involved in hematopoiesis. HGF is also known to have a role in immune responses. The aim of this study was to investigate whether HGF is involved in the development of dendritic cells (DC) from CD34+ bone marrow cells. CD34+ cells obtained from three healthy donors were incubated in various combinations of HGF, GM-CSF, and tumor necrosis factor (TNF) for 12 days. Developing cell populations were analyzed for surface markers, morphology and functional capacities by flow cytometry, light microscopy and mixed lymphocyte reaction, respectively. Incubation with HGF alone generated greater number of dendritic cells from CD34+ bone marrow cells than incubation with GM-CSF, or a combination of GM-CSF with TNF. HGF was also found to potentiate the effect of GM-CSF on DC and monocyte development. The effects of HGF were inhibited by the concurrent use of TNF. HGF appears to be a significant factor in the development of dendritic cells from CD34+ bone marrow cells.

  19. Old friends in new constellations--the hematopoetic growth factors G-CSF, GM-CSF, and EPO for the treatment of neurological diseases.

    PubMed

    Maurer, M H; Schäbitz, W-R; Schneider, A

    2008-01-01

    Currently, growth factors which have been identified in hematopoiesis and angiogenesis are re-considered as therapeutical agents in a number of neurological diseases, mainly neurodegenerative disorders like Parkinson's Disease, amyotrophic lateral sclerosis (ALS), or cerebrovascular events such as stroke. Among these growth factors, erythropoietin (EPO) and granulocyte colony-stimulating growth factor (G-CSF) are the most prominent. With regard to neurological disease, EPO has been tested in clinical trials for potential use in stroke, schizophrenia, and addiction, G-CSF is currently under clinical investigation for stroke treatment. The major advantage of these growth factors is their well-described pharmacological behavior and their clinical use over several years. A number of mechanisms of action in the CNS have been identified that are probably important for the beneficial action of these factors in animal models of disease, the most relevant relating to neuroprotection, neuroplasticity and stem cell growth and differentiation. In this review, we will discuss the current efforts and prerequisites of novel growth factor therapies for neurodegenerative diseases with regard to their possible mechanism of action on the molecular level and their effects on brain-derived stem cell populations. Additionally, we will describe the necessities for future research before such therapies can be envisioned.

  20. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    PubMed

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral

  1. In vivo stimulation of granulopoiesis by recombinant human granulocyte colony-stimulating factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.M.; Zsebo, K.M.; Inoue, H.

    1987-04-01

    Osmotic pumps containing Escherichia coli-derived recombinant human granulocyte colony-stimulating factor (rhG-CSF) were attached to indwelling jugular vein catheters and implanted subcutaneously into Golden Syrian hamsters. Within 3 days, peripheral granulocyte counts had increased > 10-fold with a concomitant 4-fold increase in total leukocytes. Microscopic examination of Wright-Giemsa-stained blood smears from rhG-CSF hamsters showed that only the neutrophil subpopulation of granulocytes had increased. After subcutaneous injection at /sup 35/S-labeled rhG-CSF doses of up to 10 ..mu..g x kg/sup -1/ x day/sup -1/ only granulocyte counts were affected. However, at higher dose levels, a transient thrombocytopenia was noted. Erythrocyte and lymphocyte/monocyte countsmore » remained unaffected by rhG-CSF over the entire dose range studied. Total leukocyte counts increased 3-fold within 12 hr after a single s.c. injection of rhG-CSF. This early effect was associated with an increase in the total number of colony-forming cells and the percent of active cycling cells in the marrow. A sustained elevation of peripheral leukocyte and marrow progenitor counts was observed following seven daily s.c. injections of rhG-CSF. The ability of rhG-CSF to increase the production and release of granulocytes from the marrow may underlie the beneficial effect it produced on the restoration of peripheral leukocyte counts in hamsters made leukopenic by treatment with 5-fluorouracil.« less

  2. GM-CSF production by glioblastoma cells has a functional role in eosinophil survival, activation and growth factor production for enhanced tumor cell proliferation

    PubMed Central

    Curran, Colleen S.; Evans, Michael D.; Bertics, Paul J.

    2011-01-01

    Medicinal interventions of limited efficacy are currently available for the treatment of glioblastoma multiforme (GBM), the most common and lethal primary brain tumor in adults. The eosinophil is a pivotal immune cell in the pathobiology of atopic disease that is also found to accumulate in certain tumor tissues. Inverse associations between atopy and GBM risk suggest that the eosinophil may play a functional role in certain tumor immune responses. To assess the potential interactions between eosinophils and GBM, human primary blood eosinophils were cultured with two separate human GBM-derived cell lines (A172, U87-MG) or conditioned media generated in the presence or absence of TNF-α. Results revealed differential eosinophil adhesion and increased survival in response to co-culture with GBM cell lines. Eosinophil responses to GBM cell line-conditioned media included increased survival, activation, CD11b expression and S100A9 release. Addition of GM-CSF neutralizing antibodies to GBM cell cultures or conditioned media reduced eosinophil adhesion, survival and activation, linking tumor cell-derived GM-CSF to the functions of eosinophils in the tumor microenvironment. Dexamethasone, which has been reported to inhibit eosinophil recruitment and shrink GBM lesions on contrast enhanced scans, reduced the production of tumor cell-derived GM-CSF. Furthermore, culture of GBM cells in eosinophil-conditioned media increased tumor cell viability, and generation of eosinophil-conditioned media in the presence of GM-CSF enhanced the effect. These data support the idea of a paracrine loop between GM-CSF producing tumors and eosinophil-derived growth factors in tumor promotion/progression. PMID:21705618

  3. Substance P enhances tissue factor release from granulocyte-macrophage colony-stimulating factor-dependent macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-03-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Evidence that the granulocyte colony-stimulating factor (G-CSF) receptor plays a role in the pharmacokinetics of G-CSF and PegG-CSF using a G-CSF-R KO model.

    PubMed

    Kotto-Kome, Anne C; Fox, Samuel E; Lu, Wenge; Yang, Bing-Bing; Christensen, Robert D; Calhoun, Darlene A

    2004-07-01

    The covalent attachment of polyethylene glycol to filgrastim results in a new molecule pegfilgrastim, which has a significantly longer half-life than filgrastim. It is likely that the clearance of both filgrastim and pegfilgrastim involves granulocyte colony simulating factor (G-CSF) receptor binding, but the pharmacokinetics of these drugs have not been compared in mice with and without a functional G-CSF receptor. We sought to clarify the role of receptor-mediated clearance of filgrastim and pegfilgrastim using wild-type (WT) mice or mice with a non-functional G-CSF-R (knockout, KO). We administered single doses of filgrastim or pegfilgrastim (10 or 100 microg kg(-1)) intravenously to WT and KO mice. Plasma levels of protein were measured by enzyme-linked immunosorbent assay (ELISA) at preset time points, and AUC, MRT, CL, V(d), and T(1/2) were calculated. When compared with WT mice, the G-CSF-R KO mice had significantly greater AUC, longer MRT, longer T(1/2), and lower clearance. This was the case whether animals received 10 or 100 microg kg(-1) and whether they received filgrastim or pegfilgrastim. The volume of protein distribution was identical among WT and KO mice. However, the V(d) was larger after pegfilgrastim dosing than after filgrastim dosing. In both WT and KO mice, increasing the dose of figrastim or pegfilgrastim resulted in a proportional increase in the AUC. A functional G-CSF-R is an important mechanism in the plasma clearance of both filgrastim and pegfilgrastim.

  5. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor

    PubMed Central

    1992-01-01

    Antigen-presenting, major histocompatibility complex (MHC) class II- rich dendritic cells are known to arise from bone marrow. However, marrow lacks mature dendritic cells, and substantial numbers of proliferating less-mature cells have yet to be identified. The methodology for inducing dendritic cell growth that was recently described for mouse blood now has been modified to MHC class II- negative precursors in marrow. A key step is to remove the majority of nonadherent, newly formed granulocytes by gentle washes during the first 2-4 d of culture. This leaves behind proliferating clusters that are loosely attached to a more firmly adherent "stroma." At days 4-6 the clusters can be dislodged, isolated by 1-g sedimentation, and upon reculture, large numbers of dendritic cells are released. The latter are readily identified on the basis of their distinct cell shape, ultrastructure, and repertoire of antigens, as detected with a panel of monoclonal antibodies. The dendritic cells express high levels of MHC class II products and act as powerful accessory cells for initiating the mixed leukocyte reaction. Neither the clusters nor mature dendritic cells are generated if macrophage colony-stimulating factor rather than granulocyte/macrophage colony-stimulating factor (GM-CSF) is applied. Therefore, GM-CSF generates all three lineages of myeloid cells (granulocytes, macrophages, and dendritic cells). Since > 5 x 10(6) dendritic cells develop in 1 wk from precursors within the large hind limb bones of a single animal, marrow progenitors can act as a major source of dendritic cells. This feature should prove useful for future molecular and clinical studies of this otherwise trace cell type. PMID:1460426

  6. Identification of a new adapter protein that may link the common beta subunit of the receptor for granulocyte/macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 to phosphatidylinositol 3-kinase.

    PubMed

    Jücker, M; Feldman, R A

    1995-11-17

    Binding of human granulocyte/macrophage colony-stimulating factor (hGM-CSF) to its receptor induces the rapid activation of phosphatidylinositol-3 kinase (PI 3-kinase). As hGM-CSF receptor (hGMR) does not contain a consensus sequence for binding of PI 3-kinase, hGMR must use a distinct mechanism for its association with and activation of PI 3-kinase. Here, we describe the identification of a tyrosine-phosphorylated protein of 76-85 kDa (p80) that associates with the common beta subunit of hGMR and with the SH2 domains of the p85 subunit of PI 3-kinase in hGM-CSF-stimulated cells. Src/Yes and Lyn were tightly associated with the p80.PI 3-kinase complex, suggesting that p80 and other phosphotyrosyl proteins present in the complex were phosphorylated by Src family kinases. Tyrosine phosphorylation of p80 was only detected in hGM-CSF or human interleukin-3-stimulated cells, suggesting that activation of p80 might be specific for signaling via the common beta subunit. We postulate that p80 functions as an adapter protein that may participate in linking the hGM-CSF receptor to the PI 3-kinase signaling pathway.

  7. Effect of Granulocyte-Macrophage Colony-Stimulating Factor With or Without Supervised Exercise on Walking Performance in Patients With Peripheral Artery Disease

    PubMed Central

    Ferrucci, Luigi; Tian, Lu; Guralnik, Jack M.; Lloyd-Jones, Donald; Kibbe, Melina R.; Polonsky, Tamar S.; Domanchuk, Kathryn; Stein, James H.; Zhao, Lihui; Taylor, Doris; Skelly, Christopher; Pearce, William; Perlman, Harris; McCarthy, Walter; Li, Lingyu; Gao, Ying; Sufit, Robert; Bloomfield, Christina L.; Criqui, Michael H.

    2017-01-01

    Importance Benefits of granulocyte-macrophage colony-stimulating factor (GM-CSF) for improving walking ability in people with lower extremity peripheral artery disease (PAD) are unclear. Walking exercise may augment the effects of GM-CSF in PAD, since exercise-induced ischemia enhances progenitor cell release and may promote progenitor cell homing to ischemic calf muscle. Objectives To determine whether GM-CSF combined with supervised treadmill exercise improves 6-minute walk distance, compared with exercise alone and compared with GM-CSF alone; to determine whether GM-CSF alone improves 6-minute walk more than placebo and whether exercise improves 6-minute walk more than an attention control intervention. Design, Setting, and Participants Randomized clinical trial with 2 × 2 factorial design. Participants were identified from the Chicago metropolitan area and randomized between January 6, 2012, and December 22, 2016, to 1 of 4 groups: supervised exercise + GM-CSF (exercise + GM-CSF) (n = 53), supervised exercise + placebo (exercise alone) (n = 53), attention control  + GM-CSF (GM-CSF alone) (n = 53), attention control + placebo (n = 51). The final follow-up visit was on August 15, 2017. Interventions Supervised exercise consisted of treadmill exercise 3 times weekly for 6 months. The attention control consisted of weekly educational lectures by clinicians for 6 months. GM-CSF (250 μg/m2/d) or placebo were administered subcutaneously (double-blinded) 3 times/wk for the first 2 weeks of the intervention. Main Outcomes and Measures The primary outcome was change in 6-minute walk distance at 12-week follow-up (minimum clinically important difference, 20 m). P values were adjusted based on the Hochberg step-up method. Results Of 827 persons evaluated, 210 participants with PAD were randomized (mean age, 67.0 [SD, 8.6] years; 141 [67%] black, 82 [39%] women). One hundred ninety-five (93%) completed 12-week follow-up. At 12

  8. Recombinant granulocyte colony-stimulating factor administered enterally to neonates is not absorbed.

    PubMed

    Calhoun, Darlene A; Maheshwari, Akhil; Christensen, Robert D

    2003-08-01

    Granulocyte colony-stimulating factor (G-CSF) is present in liquids swallowed by the fetus and neonate; specifically, amniotic fluid, colostrum, and human milk. The swallowed G-CSF has local effects on enteric cells, which express the G-CSF receptor. However, some portion of the G-CSF ingested by the fetus and neonate might be absorbed into the circulation and have systemic actions, such as stimulating neutrophil production. To assess this possibility we sought to determine if circulating G-CSF concentrations of neonates increase after enteral administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF). This was a single-center, prospective, blinded, randomized, 2 x 2 crossover study, with each infant receiving 1 dose of rhG-CSF (100 microg/kg) and 1 dose of placebo. Plasma G-CSF concentrations were measured at 2 and 4 hours after administration of the test solution. No significant change in plasma G-CSF concentration was observed after the enteral administration of rhG-CSF. On this basis, we conclude that orally administered rhG-CSF is not absorbed in significant quantities, and we speculate that the G-CSF swallowed by the fetus and neonate has local but not systemic effects.

  9. Granulocyte macrophage-colony stimulating factor and interleukin-3 increase expression of type II tumour necrosis factor receptor, increasing susceptibility to tumour necrosis factor-induced apoptosis. Control of leukaemia cell life/death switching.

    PubMed

    Rae, C; MacEwan, D J

    2004-12-01

    Tumour necrosis factor (TNF) induces apoptosis in a range of cell types via its two receptors, TNFR1 and TNFR2. Here, we demonstrate that proliferation and TNFR2 expression was increased in human leukaemic TF-1 cells by granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3), with TNFR1 expression unaffected. Consequently, they switch from a proliferative to a TNF-induced apoptotic phenotype. Raised TNFR2 expression and susceptibility to TNF-induced apoptosis was not a general effect of proliferation as IL-1beta and IFN-gamma both proliferated TF-1 cells with no effect on TNFR expression or apoptosis. Although raised TNFR2 expression correlated with the apoptotic phenotype, stimulation of apoptosis in GM-CSF-pretreated cells was mediated by TNFR1, with stimulation of TNFR2 alone insufficient to initiate cell death. However, TNFR2 did play a role in apoptotic and proliferative responses as they were blocked by the presence of an antagonistic TNFR2 antibody. Additionally, coincubation with cycloheximide blocked the mitotic effects of GM-CSF or IL-3, allowing only the apoptotic responses of TNF to persist. TNF life/death was also observed in K562, but not MOLT-4 and HL-60 human leukaemic cell types. These findings show a cooperative role of TNFR2 in the TNF life/death switching phenomenon.

  10. Colony-stimulating factors: clinical evidence for treatment and prophylaxis of chemotherapy-induced febrile neutropenia.

    PubMed

    Gómez Raposo, César; Pinto Marín, Alvaro; González Barón, Manuel

    2006-10-01

    The hematopoietic growth factors (HGFs) are a family of glycoproteins which plays a major role in the proliferation, differentiation, and survival of primitive hematopoietic stem and progenitor cells, and in the functions of some mature cells. More than 20 different molecules of HGF have been identified. Among them, granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) have been demostrated to be effective in reducing the incidence of febrile neutropenia when administered inmediately after chemotherapy and as supportive therapy in patients undergoing bone marrow transplantation. Chemotherapy used for treatment of cancer often causes neutropenia, which may be profound, requiring hospitalization, and leading to potentially fatal infection. The uses of the recombinant human hematopoietic colony-stimulating factors G-CSF and GM-CSF for treatment and prophylaxis of chemotherapy-induced febrile neutropenia will be reviewed here.

  11. Interleukin-6 production by human monocytes treated with granulocyte-macrophage colony-stimulating factor in the presence of lipopolysaccharide of oral microorganisms.

    PubMed

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-06-01

    This study focused on the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) and lipopolysaccharide of the putative periodontal pathogens Porphyromonas gingivalis or Fusobacterium nucleatum on IL-6 production by THP-1 cells (a human monocytic cell line). Resting THP-1 cells were alternatively treated with GM-CSF (50 IU/ml) and lipopolysaccharide of P. gingivalis or F. nucleatum, in varying concentrations for varying time periods. IL-6 production in supernatant fluids of treated cells was evaluated by an enzyme-linked immunosorbent assay (ELISA) and a reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate gene expression. Untreated THP-1 cells did not produce IL-6 as determined by ELISA. RT-PCR also failed to detect IL-6 mRNA in untreated THP-1 cells, indicating that IL-6 was not constitutively produced. After stimulation of THP-1 cells with lipopolysaccharide of F. nucleatum or P. gingivalis, IL-6 was produced, peaking at 4 h (200-300 pg/ml) and thereafter sharply declining by 8 h. When GM-CSF was added together with lipopolysaccharide of P. gingivalis or F. nucleatum, there was a synergistic quantitative increase in production of IL-6 as measured by ELISA as compared with lipopolysaccharide alone. IL-6 mRNA was detected by RT-PCR, 15 min after stimulation with lipopolysaccharide of either P. gingivalis or F. nucleatum. GM-CSF supplementation with lipopolysaccharide of P. gingivalis shortened the transcription of IL-6 mRNA to 5 min, a shift which was not observed with lipopolysaccharide of F. nucleatum, possibly indicating a different mechanism of initiation of transcription. Production of IL-6 by GM-CSF-treated THP-1 cells in the presence of lipopolysaccharide of oral microorganisms may provide a model for studying the role of macrophages in acute and chronic periodontal diseases, including the clinical periodontal exacerbation as observed in chemotherapy patients receiving GM-CSF for bone marrow recovery.

  12. SEIFEM 2017: from real life to an agreement on the use of granulocyte transfusions and colony-stimulating factors for prophylaxis and treatment of infectious complications in patients with hematologic malignant disorders.

    PubMed

    Busca, Alessandro; Cesaro, Simone; Teofili, Luciana; Delia, Mario; Cattaneo, Chiara; Criscuolo, Marianna; Marchesi, Francesco; Fracchiolla, Nicola Stefano; Valentini, Caterina Giovanna; Farina, Francesca; Di Blasi, Roberta; Prezioso, Lucia; Spolzino, Angelica; Candoni, Anna; Del Principe, Maria Ilaria; Verga, Luisa; Nosari, Annamaria; Aversa, Franco; Pagano, Livio

    2018-02-01

    The rapid spread of severe infections mainly due to resistant pathogens, justifies the search for therapies aiming to restore immune functions severely compromised in patients with hematologic malignancies. Areas covered: The present review summarizes the current knowledge on the role of granulocyte transfusions and colony-stimulating factors as treatment strategy for hematologic patients with serious infectious complications. In addition, a survey among 21 hematologic centers, to evaluate the clinical practice for the use of G-CSF originator and biosimilars was performed. Expert commentary: Granulocyte transfusions with a target dose of at least 1.5-3 × 10 8 cells/kg, may be considered as an approach to bridge the gap between marrow suppression and recovery of granulocytes. G-CSF shortens the period of neutropenia, the hospitalization, the use of antibiotics and the rate of febrile neutropenia (FN) in adult and pediatric patients with non-Hodgkin lymphoma, and in adults with acute myeloid leukemia where these advantages nevertheless, did not translate into a clinical benefit. G-CSF biosimilar showed equivalence or non-inferiority to filgrastim. There are no data supporting the use of GM-CSF, eltrombopag and erythropoietin for preventing or treating infectious complications in patients with hematologic disorders.

  13. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    PubMed

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs.

  14. Novel responses of human skin to intradermal recombinant granulocyte/macrophage-colony-stimulating factor: Langerhans cell recruitment, keratinocyte growth, and enhanced wound healing

    PubMed Central

    1992-01-01

    Recombinant granulocyte/macrophage-colony-stimulating factor (rGM-CSF), prepared from Chinese hamster ovary (CHO) cells and Escherichia coli, was administered to 35 patients with the borderline and polar lepromatous forms of leprosy by the intradermal and subcutaneous routes at doses of 7.5-45.0 micrograms/d for 10 d. With each of these doses and routes, increases in the number of circulating eosinophils were noted. After the intradermal injection, the local skin sites demonstrated zones of roughening and micronodularity that appeared within 24-48 h and persisted for more than 6 d. Reinjection of sites led to enhanced areas of epidermal reaction. GM-CSF prepared from CHO cells was a more potent inducer of this effect. GM-CSF given by the subcutaneous route, at higher doses, failed to initiate these changes. At the microscopic level, the epidermis became thickened (+75%) with increased numbers and layers of enlarged keratinocytes. These contained increased numbers of ribosomes and prominent nucleoli, and were imbedded in a looser meshwork of the zona Pellucida. The modified keratinocytes remained MHC class II antigen negative throughout the course of the response. A major change in the dermis was the progressive accumulation of CD1+, Birbeck granule-positive cells. These Langerhans were recognizable at 48 h after intradermal injection and reached maximum numbers by 4 d. During this period the number of epidermal Langerhans cells remained relatively constant. No increment in dermal Langerhans cells occurred when GLM-CSF was injected by the subcutaneous route. No appreciable increase in the numbers of T cells and monocytes was noted, and granulocytes and eosinophils were largely present within the dermal microvasculature. 4-mm punch biopsies taken from injected sites and adjacent controls were compared in terms of the rapidity of wound healing. 22 of 26 sites demonstrated more rapid filling and hemostasis, whereas four were equivalent to controls. We conclude that rGM-CSF

  15. OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-Apc signaling to boost the host T cell antitumor response.

    PubMed

    Gri, Giorgia; Gallo, Elena; Di Carlo, Emma; Musiani, Piero; Colombo, Mario P

    2003-01-01

    Efficient T cell priming by GM-CSF and CD40 ligand double-transduced C26 murine colon carcinoma is not sufficient to cure metastases in a therapeutic setting. To determine whether a cellular vaccine that interacts directly with both APC and T cells in vivo might be superior, we generated C26 carcinoma cells transduced with the T cell costimulatory molecule OX40 ligand (OX40L) either alone (C26/OX40L) or together with GM-CSF (C26/GM/OX40L), which is known to activate APC. Mice injected with C26/OX40L cells displayed only a delay in tumor growth, while the C26/GM/OX40L tumor regressed in 85% of mice. Tumor rejection required granulocytes, CD4+, CD8+ T cells, and APC-mediated CD40-CD40 ligand cosignaling, but not IFN-gamma or IL-12 as shown using subset-depleted and knockout (KO) mice. CD40KO mice primed with C26/GM/OX40L cells failed to mount a CTL response, and T cells infiltrating the C26/GM/OX40L tumor were OX40 negative, suggesting an impairment in APC-T cell cross-talk in CD40KO mice. Indeed, CD4+ T cell-depleted mice failed to mount any CTL activity against the C26 tumor, while treatment with agonistic mAb to CD40, which acts on APC, bypassed the requirement for CD4+ T cells and restored CTL activation. C26/GM/OX40L cells cured 83% of mice bearing lung metastases, whereas C26/OX40L or C26/GM vaccination cured only 28 and 16% of mice, respectively. These results indicate the synergistic activity of OX40L and GM-CSF in a therapeutic setting.

  16. Granulocyte colony stimulating factor treatment for neonatal neutropenia.

    PubMed Central

    Russell, A. R.; Davies, E. G.; Ball, S. E.; Gordon-Smith, E.

    1995-01-01

    In a pilot study recombinant human granulocyte colony-stimulating factor (rhG-CSF) was administered to 12 neutropenic preterm infants to determine if neonatal neutropenia is secondary to decreased endogenous G-CSF production. Respiratory variables were monitored because of the possible link between inflammatory cells and hyaline membrane disease. All infants showed increased neutrophil counts. The only possible side effect observed was an exacerbation of thrombocytopenia. PMID:7538031

  17. Phase II Study of Adjuvant Immunotherapy with the CSF-470 Vaccine Plus Bacillus Calmette-Guerin Plus Recombinant Human Granulocyte Macrophage-Colony Stimulating Factor vs Medium-Dose Interferon Alpha 2B in Stages IIB, IIC, and III Cutaneous Melanoma Patients: A Single Institution, Randomized Study.

    PubMed

    Mordoh, José; Pampena, María Betina; Aris, Mariana; Blanco, Paula Alejandra; Lombardo, Mónica; von Euw, Erika María; Mac Keon, Soledad; Yépez Crow, Michelle; Bravo, Alicia Inés; O'Connor, Juan Manuel; Orlando, Ana Gabriela; Ramello, Franco; Levy, Estrella Mariel; Barrio, María Marcela

    2017-01-01

    The irradiated, allogeneic, cellular CSF-470 vaccine plus Bacillus Calmette-Guerin (BCG) and recombinant human granulocyte macrophage-colony stimulating factor (rhGM-CSF) is being tested against medium-dose IFN-α2b in stages IIB-III cutaneous melanoma (CM) patients (pts) after surgery in an open, randomized, Phase II/III study. We present the results of the Phase II part of the ongoing CASVAC-0401 study (ClinicalTrials.gov: NCT01729663). Thirty-one pts were randomized to the CSF-470 vaccine ( n  = 20) or to the IFN-α2b arm ( n  = 11). During the 2-year treatment, immunized pts should receive 13 vaccinations. On day 1 of each visit, 1.6 × 10 7 irradiated CSF-470 cells plus 10 6 colony-forming units BCG plus 100 µg rhGM-CSF were administered intradermally, followed on days 2-4 by 100 µg rhGM-CSF. IFN-α2b pts should receive 10 million units (MU)/day/5 days a week for 4 weeks; then 5 MU thrice weekly for 23 months. Toxicity and quality of life (QOL) were evaluated at each visit. With a mean and a maximum follow-up of 39.4 and 83 months, respectively, a significant benefit in the distant metastasis-free survival (DMFS) for CSF-470 was observed ( p  = 0.022). Immune monitoring showed an increase in antitumoral cellular and humoral response in vaccinated pts. CSF-470 was well tolerated; 20/20 pts presented grades 1-2 dermic reactions at the vaccination site; 3/20 pts presented grade 3 allergic reactions. Other adverse events (AEs) were grade 1. Pts in the IFN-α2b arm presented grades 2-3 hematological (7/11), hepatic (2/11), and cardiac (1/11) toxicity; AEs in 9/11 pts forced treatment interruptions. QOL was significantly superior in the vaccine arm ( p  < 0.0001). Our results suggest that CSF-470 vaccine plus BCG plus GM-CSF can significantly prolong, with lower toxicity, the DMFS of high-risk CM pts with respect to medium-dose IFN-α2b. The continuation of a Phase III part of the CASVAC-0401 study is encouraged.

  18. Effect of intramammary injection of rboGM-CSF on milk levels of chemiluminescence activity, somatic cell count, and Staphylococcus aureus count in Holstein cows with S. aureus subclinical mastitis

    PubMed Central

    2004-01-01

    Abstract The effect of intramammary injection of recombinant bovine granulocyte-macrophage colony-stimulating factor (rboGM-CSF, 400 μg/10 mL) on quarter milk levels of chemiluminescence (CL) activity, and somatic cell count (SCC) and shedding pattern of Staphylococcus aureus was investigated. Ten Holstein cows, naturally infected with S. aureus were used, with either early-stage or late-stage subclinical mastitis. Injection of rboGM-CSF caused a remarkable increase in milk CL activity with a peak at 6 h after the cytokine injection in the early- and late-stage groups. In the early-stage group, milk SCC stayed around preinjection level at 6 h, rose significantly on days 1 and 2, and was followed by a smooth and significant decline to an under preinjection level (below 200 000 cells/mL) on day 7 postinjection. Alternatively, in the late-stage group, milk SCC rose significantly at 6 h after the cytokine injection and maintained high levels thereafter. The milk S. aureus count decreased drastically by the cytokine injection in the early-stage group. The bacterial count was moderately decreased in the late-stage group, but increased back to preinoculation levels on day 7 after the cytokine injection. The results suggest that the rboGM-CSF has a potential as a therapeutic agent for S. aureus infection causing subclinical mastitis of dairy cows, if the cytokine is applied at the initial stage of infection. PMID:15352542

  19. Granulocyte-Macrophage Colony Stimulatory Factor Enhances the Pro-Inflammatory Response of Interferon-γ-Treated Macrophages to Pseudomonas aeruginosa Infection

    PubMed Central

    Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages

  20. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection.

    PubMed

    Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages

  1. VEGF induces neuroglial differentiation in bone marrow-derived stem cells and promotes microglia conversion following mobilization with GM-CSF.

    PubMed

    Avraham-Lubin, Bat-Chen R; Goldenberg-Cohen, Nitza; Sadikov, Tamilla; Askenasy, Nadir

    2012-12-01

    Evaluation of potential tropic effects of vascular endothelial growth factor (VEGF) on the incorporation and differentiation of bone-marrow-derived stem cells (BMSCs) in a murine model of anterior ischemic optic neuropathy (AION). In the first approach, small-sized subset of BMCs were isolated from GFP donors mice by counterflow centrifugal elutriation and depleted of hematopoietic lineages (Fr25lin(-)). These cells were injected into a peripheral vein (1 × 10(6) in 0.2 ml) or inoculated intravitreally (2 × 10(5)) to syngeneic mice, with or without intravitreal injection of 5 μg/2μL VEGF, simultaneously with AION induction. In a second approach, hematopoietic cells were substituted by myelablative transplant of syngeseic GFP + bone marrow cells. After 3 months, progenitors were mobilized with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by VEGF inoculation into the vitreous body and AION induction . Engraftment and phenotype were examined by immunohistochemistry and FISH at 4 and 24 weeks post-transplantation, and VEGF receptors were determined by real time PCR. VEGF had no quantitative effect on incorporation of elutriated cells in the injured retina, yet it induced early expression of neuroal markers in cells incorporated in the RGC layer and promoted durable gliosis, most prominent perivascular astrocytes. These effects were mediated by VEGF-R1/Flt-1, which is constitutively expresses in the elutriated fraction of stem cells. Mobilization with GM-CSF limited the differentiation of bone marrow progenitors to microglia, which was also fostered by VEGF. VEGF signaling mediated by Flt-1 induces early neural and sustained astrocytic differentiation of stem cells elutriated from adult bone-marrow, with significant contribution to stabilization retinal architecture following ischemic injury.

  2. Hematological remission and long term hematological control of acute myeloblastic leukemia induced and maintained by granulocyte-colony stimulating factor (G-CSF) therapy.

    PubMed

    Xavier, Luciana; Cunha, Manuel; Gonçalves, Cristina; Teixeira, Maria dos Anjos; Coutinho, Jorge; Ribeiro, António Carlos Pinto; Lima, Margarida

    2003-12-01

    We describe a case of a patient with CD34+, TdT+, CD13-, CD33-, MPO- undifferentiated acute leukemia who refused chemotherapy and who achieved complete hematological remission 14 months after the diagnosis, during a short course of granulocyte-colony stimulating factor (G-CSF) for neutropenia and life threatening infection. Relapse occurred approximately one year later and G-CSF was reintroduced, being maintained for 4 months, at a dose and frequency adapted to maintain normal blood counts, a complete hematological remission being achieved again. Five months after withdrawing the G-CSF therapy a second relapse was observed; G-CSF was tried again with success, resulting in a very good hematological response that was sustained by G-CSF maintenance therapy. One year latter there was the need of increasing the doses of G-CSF in order to obtain the same hematological effect, at same time blast cells acquired a more mature CD34+, TdT-, CD13+, CD33-, MPO+ myeloid phenotype. Finally, the patient developed progressive neutropenia, anemia, thrombocytopenia and acute leukemia in spite of G-CSF therapy, dying 64 months after initial diagnosis (50 months after starting G-CSF therapy) with overt G-CSF resistant acute myeloblastic leukemia (AML), after failure of conventional induction chemotherapy.

  3. Granulocyte colony-stimulating factor induces in vitro lymphangiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ae Sin; Kim, Dal; Wagle, Susbin Raj

    2013-07-12

    Highlights: •G-CSF induces tube formation, migration and proliferation of lymphatic cells. •G-CSF increases phosphorylation of MAPK and Akt in lymphatic endothelial cells. •MAPK and Akt pathways are linked to G-CSF-induced in vitro lymphangiogenesis. •G-CSF increases sprouting of a lymphatic ring. •G-CSF produces peritoneal lymphangiogenesis. -- Abstract: Granulocyte-colony stimulating factor (G-CSF) is reported to induce differentiation in cells of the monocyte lineage and angiogenesis in vascular endothelial cells, but its effects on lymphangiogenesis is uncertain. Here we examined the effects and the mechanisms of G-CSF-induced lymphangiogenesis using human lymphatic endothelial cells (hLECs). Our results showed that G-CSF induced capillary-like tube formation,more » migration and proliferation of hLECs in a dose- and time-dependent manner and enhanced sprouting of thoracic duct. G-CSF increased phosphorylation of Akt and ERK1/2 in hLECs. Supporting the observations, specific inhibitors of phosphatidylinositol 3′-kinase and MAPK suppressed the G-CSF-induced in vitro lymphangiogenesis and sprouting. Intraperitoneal administration of G-CSF to mice also stimulated peritoneal lymphangiogenesis. These findings suggest that G-CSF is a lymphangiogenic factor.« less

  4. [Construction of a new oncolytic virus oHSV2hGM-CSF and its anti-tumor effects].

    PubMed

    Shi, Gui-Lan; Zhuang, Xiu-Fen; Han, Xiang-Ping; Li, Jie; Zhang, Yu; Zhang, Shu-Ren; Liu, Bin-Lei

    2012-02-01

    The aim of this study was to construct a new oncolytic virus oHSV2hGM-CSF and evaluate its oncolytic activity in vitro and in vivo in parallel with oHSV1hGM-CSF. oHSV2hGM-CSF was a replication-competent, attenuated HSV2 based on the HG52 virus (an HSV2 strain). It was engineered to be specific for cancer by deletion of the viral genes ICP34.5 and ICP47 and insertion of the gene encoding hGM-CSF. To measure the in vitro killing effect of the virus, 15 human tumor cell lines (HeLa, Eca-109, PG, HepG2, SK/FU, CNE-2Z, PC-3, SK-OV3, A-549, 786-0, MCF-7, Hep-2, HT-29, SK-Mel-28, U87-MG) and mouse melanoma (B16R) cell line were seeded into 24-well plates and infected with viruses at MOI = 1 (multiplicity of infection, MOI), or left uninfected. The cells were harvested 24 and 48 hours post infection, and observed under the microscope. For animal studies, the oncolytic viruses were administered intratumorally (at 3-day interval) at a dose of 2.3 x 10(6) PFU (plaque forming unit, PFU) for three times when the tumor volume reached 7-8 mm3. The tumor volume was measured at 3-day intervals and animal survival was recorded. Both oHSV2hCM-CSFand oHSV1hGM-CSF induced widespread cytopathic effects at 24 h after infection. OHSV2hGM-CSF, by contrast, produced more plaques with a syncytial phenotype than oHSV1hGM-CSF. In the in vitro killing experiments for the cell lines HeLa, HepG2, SK-Mel-28, B16R and U87-MG, oHSV2hGM-CSF eradicated significantly more cells than oHSV1hGM-CSF under the same conditions. For the mouse experiments, it was observed that oHSV2hGM-CSF significantly inhibited the tumor growth. At 15 days after B16R tumor cells inoculation, the tumor volumes of the PBS, oHSV1hGCM-CSF and oHSV2hGM-CSF groups were (374.7 +/- 128.24) mm3, (128.23 +/- 45.32) mm3 (P < 0.05, vs. PBS group) or (10.06 +/- 5.1) mm3 (P < 0.01, vs. PBS group), respectively (mean +/- error). The long term therapeutic effect of oHSV2hGM-CSF on the B16R animal model was evaluated by recording animal

  5. Biologic Activity of Autologous, Granulocyte-Macrophage Colony Stimulating Factor Secreting Alveolar Soft Parts Sarcoma and Clear Cell Sarcoma Vaccines

    PubMed Central

    Goldberg, John; Fisher, David E.; Demetri, George D.; Neuberg, Donna; Allsop, Stephen A.; Fonseca, Catia; Nakazaki, Yukoh; Nemer, David; Raut, Chandrajit P.; George, Suzanne; Morgan, Jeffrey A.; Wagner, Andrew J.; Freeman, Gordon J.; Ritz, Jerome; Lezcano, Cecilia; Mihm, Martin; Canning, Christine; Hodi, F. Stephen; Dranoff, Glenn

    2015-01-01

    Purpose Alveolar soft parts sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate members of the microphthalmia transcription factor (MITF) family. However, in contrast to malignant melanoma, little is known about their immunogenicity. To learn more about the host response to ASPS and CCS, we conducted a phase I clinical trial of vaccination with irradiated, autologous sarcoma cells engineered by adenoviral mediated gene transfer to secrete granulocyte-macrophage colony stimulating factor (GM-CSF). Experimental Design Metastatic tumors from ASPS and CCS patients were resected, processed to single cell suspensions, transduced with a replication defective adenoviral vector encoding GM-CSF, and irradiated. Immunizations were administered subcutaneously and intradermally weekly times three and then every other week. Results Vaccines were successfully manufactured for 11 of the 12 enrolled patients. Eleven subjects received from 3 to 13 immunizations. Toxicities were restricted to grade 1–2 skin reactions at inoculation sites. Vaccination elicited local dendritic cell infiltrates and stimulated T cell mediated delayed type-hypersensitivity reactions to irradiated, autologous tumor cells. Antibody responses to tissue-type plasminogen activator (tTPA) and angiopoietins-1/2 were detected. Tumor biopsies showed programmed death-1 (PD-1) positive CD8+ T cells in association with PD ligand-1 (PD-L1) expressing sarcoma cells. No tumor regressions were observed. Conclusions Vaccination with irradiated, GM-CSF secreting autologous sarcoma cell vaccines is feasible, safe, and biologically active. Concurrent targeting of angiogenic cytokines and antagonism of the PD-1 negative regulatory pathway might intensify immune-mediated tumor destruction. PMID:25805798

  6. [Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice].

    PubMed

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2014-07-01

    This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.

  7. Identification and in vitro characterization of novel nanobodies against human granulocyte colony-stimulating factor receptor to provide inhibition of G-CSF function.

    PubMed

    Bakherad, Hamid; Gargari, Seyed Latif Mousavi; Sepehrizadeh, Zargham; Aghamollaei, Hossein; Taheri, Ramezan Ali; Torshabi, Maryam; Yazdi, Mojtaba Tabatabaei; Ebrahimizadeh, Walead; Setayesh, Neda

    2017-09-01

    It has been shown that Granulocyte colony-stimulating factor (G-CSF) has a higher expression in malignant tumors, and anti-G-CSF therapy considerably decreases tumor growth, tumor vascularization and metastasis. Thus, blocking the signaling pathway of G-CSF could be beneficial in cancer therapy. This study is aimed at designing and producing a monoclonal nanobody that could act as an antagonist of G-CSF receptor. Nanobodies are the antigen binding fragments of camelid single-chain antibodies, also known as VHH. These fragments have exceptional properties which makes them ideal for tumor imaging and therapeutic applications. We have used our previously built nanobody phage libraries to isolate specific nanobodies to the G-CSF receptor. After a series of cross-reactivity and affinity experiments, two unique nanobodies were selected for functional analysis. Proliferation assay, real-time PCR and immunofluorescence assays were used to characterize these nanobodies. Finally, VHH26 nanobody that was able to specifically bind G-CSF receptor (G-CSF-R) on the surface of NFS60 cells and efficiently block G-CSF-R downstream signaling pathway in a dose-dependent manner was selected. This nanobody could be further developed into a valuable tool in tumor therapy and it forms a basis for additional studies in preclinical animal models. Copyright © 2017. Published by Elsevier Masson SAS.

  8. Effects and safety of granulocyte colony-stimulating factor in healthy volunteers

    PubMed Central

    Anderlini, Paolo

    2015-01-01

    Purpose of Review Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is now widely used in normal donors for collection of peripheral blood progenitor cells (PBPCs) for allogeneic transplantation and granulocytes for transfusion. Currently available data on biologic and molecular effects, and safety of rhG-CSF in normal healthy volunteers are reviewed. Recent Findings In addition to its known activating role on neutrophil kinetics and functional status, rhG-CSF administration can affect monocytes, lymphocytes and the hemostatic system. G-CSF receptors were identified in a variety of non-myeloid tissues, although their role and functional activity have not always been well defined. Moreover, rhG-CSF is capable of modulating complex cytokine networks and can impact the inflammatory response. In addition to its known mobilizing role for PBPCs, rhG-CSF can mobilize dendritic and endothelial progenitor cells as well. On a clinical level, serious rhG-CSF-related adverse events are well described (e.g. splenic rupture) but remain rare. Summary rhG-CSF effects in healthy volunteers, while normally transient and self-limiting, are now believed to be more complex and heterogeneous that previously thought. While rhG-CSF administration to healthy volunteers continues to have a favorable risk-benefit profile, these new findings have implications for safeguarding the safety of normal individuals. PMID:19057203

  9. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung

    PubMed Central

    Willinger, Tim; Rongvaux, Anthony; Takizawa, Hitoshi; Yancopoulos, George D.; Valenzuela, David M.; Murphy, Andrew J.; Auerbach, Wojtek; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.

    2011-01-01

    Mice with a functional human immune system have the potential to allow in vivo studies of human infectious diseases and to enable vaccine testing. To this end, mice need to fully support the development of human immune cells, allow infection with human pathogens, and be capable of mounting effective human immune responses. A major limitation of humanized mice is the poor development and function of human myeloid cells and the absence of human immune responses at mucosal surfaces, such as the lung. To overcome this, we generated human IL-3/GM-CSF knock-in (hIL-3/GM-CSF KI) mice. These mice faithfully expressed human GM-CSF and IL-3 and developed pulmonary alveolar proteinosis because of elimination of mouse GM-CSF. We demonstrate that hIL-3/GM-CSF KI mice engrafted with human CD34+ hematopoietic cells had improved human myeloid cell reconstitution in the lung. In particular, hIL-3/GM-CSF KI mice supported the development of human alveolar macrophages that partially rescued the pulmonary alveolar proteinosis syndrome. Moreover, human alveolar macrophages mounted correlates of a human innate immune response against influenza virus. The hIL-3/GM-CSF KI mice represent a unique mouse model that permits the study of human mucosal immune responses to lung pathogens. PMID:21262803

  10. Cytokine-primed bone marrow stem cells vs. peripheral blood stem cells for autologous transplantation: a randomized comparison of GM-CSF vs. G-CSF.

    PubMed

    Weisdorf, D; Miller, J; Verfaillie, C; Burns, L; Wagner, J; Blazar, B; Davies, S; Miller, W; Hannan, P; Steinbuch, M; Ramsay, N; McGlave, P

    1997-10-01

    Autologous transplantation for non-Hodgkins lymphoma and Hodgkin's disease is widely used as standard therapy for those with high-risk or relapsed tumor. Peripheral blood stem cell (PBSC) collections have nearly completely replaced bone marrow stem cell (BMSC) harvests because of the perceived advantages of more rapid engraftment, less tumor contamination in the inoculum, and better survival after therapy. The advantage of PBSC, however, may derive from the hematopoietic stimulating cytokines used for PBSC mobilization. Therefore, we tested a randomized comparison of GM-CSF vs. G-CSF used to prime either BMSC or PBSC before collection for use in autologous transplantation. Sixty-two patients receiving transplants (31 PBSC; 31 BMSC) for non-Hodgkin's lymphoma (n = 51) or Hodgkin's disease (n = 11) were treated. All patients received 6 days of randomly assigned cytokine. Those with cellular marrow in morphologic remission underwent BMSC harvest, while those with hypocellular marrow or microscopic marrow tumor involvement had PBSC collected. Neutrophil recovery was similarly rapid in all groups (median 14 days; range 10-23 days), though two patients had delayed neutrophil recovery using GM-CSF primed PBSC (p = 0.01). Red cell and platelet recovery were significantly quicker after BMSC mobilized with GM-CSF or PBSC mobilized with G-CSF. This speedier hematologic recovery resulted in earlier hospital discharge as well. However, in multivariate analysis, neither the stem cell source nor randomly assigned G-CSF vs. GM-CSF was independently associated with earlier multilineage hematologic recovery or shorter hospital stay. Relapse-free survival was not independently affected by either the assigned stem cell source or the randomly assigned priming cytokine, though malignant relapse was more frequent in those assigned to PBSC (RR of relapse 3.15, p = 0.03). These data document that BMSC, when collected following cytokine priming, can yield a similarly rapid hematologic

  11. Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.; Loewenberg, B.; Hoefsloot, L.H.

    Severe congenital neutropenia (Kostmann syndrome) is characterized by profound absolute neutropenia and a maturation arrest of marrow progenitor cells at the promyelocyte-myelocyte stage. Marrow cells from such patients frequently display a reduced responsiveness to granulocyte-colony-stimulating factor (G-CSF). G-CSF binds to and activates a specific receptor which transduces signals critical for the proliferation and maturation of granulocytic progenitor cells. Here the authors report the identification of a somatic point mutation in one allele of the G-CSF receptor gene in a patient with severe congenital neutropenia. The mutation results in a cytoplasmic truncation of the receptor. When expressed in murine myeloid cells,more » the mutant receptor transduced a strong growth signal but, in contrast to the wild-type G-CSF receptor, was defective in maturation induction. This mutant receptor chain may act in a dominant negative manner to block granulocytic maturation. 40 refs., figs., 2 tabs.« less

  12. Combination Immunotherapy of B16 Melanoma Using Anti–Cytotoxic T Lymphocyte–Associated Antigen 4 (Ctla-4) and Granulocyte/Macrophage Colony-Stimulating Factor (Gm-Csf)-Producing Vaccines Induces Rejection of Subcutaneous and Metastatic Tumors Accompanied by Autoimmune Depigmentation

    PubMed Central

    van Elsas, Andrea; Hurwitz, Arthur A.; Allison, James P.

    1999-01-01

    We examined the effectiveness of cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) blockade, alone or in combination with a granulocyte/macrophage colony-stimulating factor (GM-CSF)–expressing tumor cell vaccine, on rejection of the highly tumorigenic, poorly immunogenic murine melanoma B16-BL6. Recently established tumors could be eradicated in 80% (68/85) of the cases using combination treatment, whereas each treatment by itself showed little or no effect. Tumor rejection was dependent on CD8+ and NK1.1+ cells but occurred irrespective of the presence of CD4+ T cells. Mice surviving a primary challenge rejected a secondary challenge with B16-BL6 or the parental B16-F0 line. The same treatment regimen was found to be therapeutically effective against outgrowth of preestablished B16-F10 lung metastases, inducing long-term survival. Of all mice surviving B16-BL6 or B16-F10 tumors after combination treatment, 56% (38/68) developed depigmentation, starting at the site of vaccination or challenge and in most cases progressing to distant locations. Depigmentation was found to occur in CD4-depleted mice, strongly suggesting that the effect was mediated by CTLs. This study shows that CTLA-4 blockade provides a powerful tool to enhance T cell activation and memory against a poorly immunogenic spontaneous murine tumor and that this may involve recruitment of autoreactive T cells. PMID:10430624

  13. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation.

    PubMed

    van Elsas, A; Hurwitz, A A; Allison, J P

    1999-08-02

    We examined the effectiveness of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade, alone or in combination with a granulocyte/macrophage colony-stimulating factor (GM-CSF)-expressing tumor cell vaccine, on rejection of the highly tumorigenic, poorly immunogenic murine melanoma B16-BL6. Recently established tumors could be eradicated in 80% (68/85) of the cases using combination treatment, whereas each treatment by itself showed little or no effect. Tumor rejection was dependent on CD8(+) and NK1.1(+) cells but occurred irrespective of the presence of CD4(+) T cells. Mice surviving a primary challenge rejected a secondary challenge with B16-BL6 or the parental B16-F0 line. The same treatment regimen was found to be therapeutically effective against outgrowth of preestablished B16-F10 lung metastases, inducing long-term survival. Of all mice surviving B16-BL6 or B16-F10 tumors after combination treatment, 56% (38/68) developed depigmentation, starting at the site of vaccination or challenge and in most cases progressing to distant locations. Depigmentation was found to occur in CD4-depleted mice, strongly suggesting that the effect was mediated by CTLs. This study shows that CTLA-4 blockade provides a powerful tool to enhance T cell activation and memory against a poorly immunogenic spontaneous murine tumor and that this may involve recruitment of autoreactive T cells.

  14. Signaling mechanisms coupled to tyrosines in the granulocyte colony-stimulating factor receptor orchestrate G-CSF-induced expansion of myeloid progenitor cells.

    PubMed

    Hermans, Mirjam H A; van de Geijn, Gert-Jan; Antonissen, Claudia; Gits, Judith; van Leeuwen, Daphne; Ward, Alister C; Touw, Ivo P

    2003-04-01

    Granulocyte colony-stimulating factor (G-CSF) is the major regulator of neutrophil production. Studies in cell lines have established that conserved tyrosines Tyr704, Tyr729, Tyr744, Tyr764 within the cytoplasmic domain of G-CSF receptor (G-CSF-R) contribute significantly to G-CSF-induced proliferation, differentiation, and cell survival. However, it is unclear whether these tyrosines are equally important under more physiologic conditions. Here, we investigated how individual G-CSF-R tyrosines affect G-CSF responses of primary myeloid progenitors. We generated G-CSF-R-deficient mice and transduced their bone marrow cells with tyrosine "null" mutant (m0), single tyrosine "add-back" mutants, or wild-type (WT) receptors. G-CSF-induced responses were determined in primary colony assays, serial replatings, and suspension cultures. We show that removal of all tyrosines had no major influence on primary colony growth. However, adding back Tyr764 strongly enhanced proliferative responses, which was reverted by inhibition of ERK activity. Tyr729, which we found to be associated with the suppressor of cytokine signaling, SOCS3, had a negative effect on colony formation. After repetitive replatings, the clonogenic capacities of cells expressing m0 gradually dropped compared with WT. The presence of Tyr729, but also Tyr704 and Tyr744, both involved in activation of signal transducer and activator of transcription 3 (STAT3), further reduced replating efficiencies. Conversely, Tyr764 greatly elevated the clonogenic abilities of myeloid progenitors, resulting in a more than 10(4)-fold increase of colony-forming cells over m0 after the fifth replating. These findings suggest that tyrosines in the cytoplasmic domain of G-CSF-R, although dispensable for G-CSF-induced colony growth, recruit signaling mechanisms that regulate the maintenance and outgrowth of myeloid progenitor cells.

  15. Role of granulocyte colony-stimulating factor in human reproduction.

    PubMed

    Eftekhar, Maryam; Naghshineh, Elham; Khani, Parisa

    2018-01-01

    As new research reveals, granulocyte colony-stimulating factor (G-CSF) plays an effective role in pregnancy success, considering that it not only affects the embryo implantation and ovarian function but also it promotes endometrial thickening and improves the pathophysiology of endometriosis, which all fundamentally lead to reducing pregnancy loss. In this review, we focus on the role of G-CSF in human reproduction. We summarized its role in ovulation, luteinized unruptured follicle syndrome, poor responders, improving repeated in vitro fertilization failure, endometrial receptivity and treatment of thin endometrium, and recurrent spontaneous abortion.

  16. ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research

    Cancer.gov

    Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated,

  17. Efficacy of transfusion with granulocytes from G-CSF/dexamethasone–treated donors in neutropenic patients with infection

    PubMed Central

    Boeckh, Michael; Harrison, Ryan W.; McCullough, Jeffrey; Ness, Paul M.; Strauss, Ronald G.; Nichols, W. Garrett; Hamza, Taye H.; Cushing, Melissa M.; King, Karen E.; Young, Jo-Anne H.; Williams, Eliot; McFarland, Janice; Holter Chakrabarty, Jennifer; Sloan, Steven R.; Friedman, David; Parekh, Samir; Sachais, Bruce S.; Kiss, Joseph E.; Assmann, Susan F.

    2015-01-01

    High-dose granulocyte transfusion therapy has been available for 20 years, yet its clinical efficacy has never been conclusively demonstrated. We report here the results of RING (Resolving Infection in Neutropenia with Granulocytes), a multicenter randomized controlled trial designed to address this question. Eligible subjects were those with neutropenia (absolute neutrophil count <500/μL) and proven/probable/presumed infection. Subjects were randomized to receive either (1) standard antimicrobial therapy or (2) standard antimicrobial therapy plus daily granulocyte transfusions from donors stimulated with granulocyte colony-stimulating factor (G-CSF) and dexamethasone. The primary end point was a composite of survival plus microbial response, at 42 days after randomization. Microbial response was determined by a blinded adjudication panel. Fifty-six subjects were randomized to the granulocyte arm and 58 to the control arm. Transfused subjects received a median of 5 transfusions. Mean transfusion dose was 54.9 × 109 granulocytes. Overall success rates were 42% and 43% for the granulocyte and control groups, respectively (P > .99), and 49% and 41%, respectively, for subjects who received their assigned treatments (P = .64). Success rates for granulocyte and control arms did not differ within any infection type. In a post hoc analysis, subjects who received an average dose per transfusion of ≥0.6 × 109 granulocytes per kilogram tended to have better outcomes than those receiving a lower dose. In conclusion, there was no overall effect of granulocyte transfusion on the primary outcome, but because enrollment was half that planned, power to detect a true beneficial effect was low. RING was registered at www.clinicaltrials.gov as #NCT00627393. PMID:26333778

  18. Prophylactic antibiotics or G-CSF for the prevention of infections and improvement of survival in cancer patients undergoing chemotherapy.

    PubMed

    Herbst, Christine; Naumann, Frauke; Kruse, Eva-Brigitta; Monsef, Ina; Bohlius, Julia; Schulz, Holger; Engert, Andreas

    2009-01-21

    Febrile neutropenia (FN) and other infectious complications are some of the most serious treatment-related toxicities of chemotherapy for cancer, with a mortality rate of 2% to 21%. The two main types of prophylactic regimens are granulocyte (G-CSF) or granulocyte-macrophage colony stimulating factors (GM-CSF); and antibiotics, frequently quinolones or cotrimoxazole. Important current guidelines recommend the use of colony stimulating factors when the risk of febrile neutropenia is above 20% but they do not mention the use of antibiotics. However, both regimens have been shown to reduce the incidence of infections. Since no systematic review has compared the two regimens, a systematic review was undertaken. To compare the effectiveness of G-CSF or GM-CSF with antibiotics in cancer patients receiving myeloablative chemotherapy with respect to preventing fever, febrile neutropenia, infection, infection-related mortality, early mortality and improving quality of life. We searched The Cochrane Library, MEDLINE, EMBASE, databases of ongoing trials, and conference proceedings of the American Society of Clinical Oncology and the American Society of Hematology (1980 to 2007). We planned to include both full-text and abstract publications. Randomised controlled trials comparing prophylaxis with G-CSF or GM-CSF versus antibiotics in cancer patients of all ages receiving chemotherapy or bone marrow or stem cell transplantation were included for review. Both study arms had to receive identical chemotherapy regimes and other supportive care. Trial eligibility and quality assessment, data extraction and analysis were done in duplicate. Authors were contacted to obtain missing data. We included two eligible randomised controlled trials with 195 patients. Due to differences in the outcomes reported, the trials could not be pooled for meta-analysis. Both trials showed non-significant results favouring antibiotics for the prevention of fever or hospitalisation for febrile

  19. GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization.

    PubMed

    Halstead, E Scott; Umstead, Todd M; Davies, Michael L; Kawasawa, Yuka Imamura; Silveyra, Patricia; Howyrlak, Judie; Yang, Linlin; Guo, Weichao; Hu, Sanmei; Hewage, Eranda Kurundu; Chroneos, Zissis C

    2018-01-05

    Influenza A viruses cause life-threatening pneumonia and lung injury in the lower respiratory tract. Application of high GM-CSF levels prior to infection has been shown to reduce morbidity and mortality from pathogenic influenza infection in mice, but the mechanisms of protection and treatment efficacy have not been established. Mice were infected intranasally with influenza A virus (PR8 strain). Supra-physiologic levels of GM-CSF were induced in the airways using the double transgenic GM-CSF (DTGM) or littermate control mice starting on 3 days post-infection (dpi). Assessment of respiratory mechanical parameters was performed using the flexiVent rodent ventilator. RNA sequence analysis was performed on FACS-sorted airway macrophage subsets at 8 dpi. Supra-physiologic levels of GM-CSF conferred a survival benefit, arrested the deterioration of lung mechanics, and reduced the abundance of protein exudates in bronchoalveolar (BAL) fluid to near baseline levels. Transcriptome analysis, and subsequent validation ELISA assays, revealed that excess GM-CSF re-directs macrophages from an "M1-like" to a more "M2-like" activation state as revealed by alterations in the ratios of CXCL9 and CCL17 in BAL fluid, respectively. Ingenuity pathway analysis predicted that GM-CSF surplus during IAV infection elicits expression of anti-inflammatory mediators and moderates M1 macrophage pro-inflammatory signaling by Type II interferon (IFN-γ). Our data indicate that application of high levels of GM-CSF in the lung after influenza A virus infection alters pathogenic "M1-like" macrophage inflammation. These results indicate a possible therapeutic strategy for respiratory virus-associated pneumonia and acute lung injury.

  20. Curative potential of GM-CSF-secreting tumor cell vaccines on established orthotopic liver tumors: mechanisms for the superior antitumor activity of live tumor cell vaccines.

    PubMed

    Tai, Kuo-Feng; Chen, Ding-Shinn; Hwang, Lih-Hwa

    2004-01-01

    In preclinical studies, tumor cells genetically engineered to secrete cytokines, hereafter referred to as tumor cell vaccines, can often generate systemic antitumor immunity. This study investigated the therapeutic effects of live or irradiated tumor cell vaccines that secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) on established orthotopic liver tumors. Experimental results indicated that two doses (3 x 10(7) cells per dose) of irradiated tumor cell vaccines were therapeutically ineffective, whereas one dose (3 x 10(6) cells) of live tumor cell vaccines caused complete tumor regression. In vivo depletion of CD8+ T cells, but not natural killer cells, restored tumor formation in the live vaccine-treated animals. Additionally, the treatment of cells with live vaccine induced markedly higher levels of cytotoxic T lymphocyte activity than the irradiated vaccines in the draining lymph nodes. The higher levels of cytokine and antigen loads could partly explain the superior antitumor activity of live tumor cell vaccines, but other unidentified mechanisms could also play a role in the early T cell activation in the lymph nodes. A protocol using multiple and higher dosages of irradiated tumor cell vaccines also caused significant regression of liver tumors. These results suggest that the GM-CSF-secreting tumor cell vaccines are highly promising for orthotopic liver tumors if higher levels of immune responses are elicited during early tumor development. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel

  1. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies.

    PubMed

    Dwivedi, Pankaj; Greis, Kenneth D

    2017-02-01

    Granulocyte colony-stimulating factor is a hematopoietic cytokine that stimulates neutrophil production and hematopoietic stem cell mobilization by initiating the dimerization of homodimeric granulocyte colony-stimulating factor receptor. Different mutations of CSF3R have been linked to a unique spectrum of myeloid disorders and related malignancies. Myeloid disorders caused by the CSF3R mutations include severe congenital neutropenia, chronic neutrophilic leukemia, and atypical chronic myeloid leukemia. In this review, we provide an analysis of granulocyte colony-stimulating factor receptor, various mutations, and their roles in the severe congenital neutropenia, chronic neutrophilic leukemia, and malignant transformation, as well as the clinical implications and some perspective on approaches that could expand our knowledge with respect to the normal signaling mechanisms and those associated with mutations in the receptor. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  2. Colony-stimulating factors for the treatment of the hematopoietic component of the acute radiation syndrome (H-ARS): a review.

    PubMed

    Singh, Vijay K; Newman, Victoria L; Seed, Thomas M

    2015-01-01

    One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. As such, this type of security threat is considered to be of relatively low risk, but one that would have an extraordinary high impact on health and well-being of the US citizenry. Psychological counseling and medical assessments would be necessary for all those significantly impacted by the nuclear/radiological event. Direct medical interventions would be necessary for all those individuals who had received substantial radiation exposures (e.g., >1 Gy). Although no drugs or products have yet been specifically approved by the United States Food and Drug Administration (US FDA) to treat the effects of acute radiation syndrome (ARS), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and pegylated G-CSF have been used off label for treating radiation accident victims. Recent threats of terrorist attacks using nuclear or radiologic devices makes it imperative that the medical community have up-to-date information and a clear understanding of treatment protocols using therapeutically effective recombinant growth factors and cytokines such as G-CSF and GM-CSF for patients exposed to injurious doses of ionizing radiation. Based on limited human studies with underlying biology, we see that the recombinants, G-CSF and GM-CSF appear to have modest, but significant medicinal value in treating radiation accident victims. In the near future, the US FDA may approve G-CSF and GM-CSF as ‘Emergency Use Authorization’ (EUA) for managing radiation-induced aplasia, an ARS-related pathology. In this article, we review the status of growth factors for the treatment of radiological/nuclear accident victims.

  3. Diesel exhaust particulate induces airway hyperresponsiveness in a murine model: essential role of GM-CSF.

    PubMed

    Ohta, K; Yamashita, N; Tajima, M; Miyasaka, T; Nakano, J; Nakajima, M; Ishii, A; Horiuchi, T; Mano, K; Miyamoto, T

    1999-11-01

    Inhaled pollutants were recently shown to be responsible for an increased incidence of airway allergic diseases, including asthma. A common feature of all forms of asthma is airway hyperresponsiveness. Our purpose was to elucidate the effects of diesel exhaust particulate (DEP), one of the most prevalent inhaled pollutants, on airway responsiveness. A/J and C57Bl/6 mice were used; the former are genetically predisposed to be hyperresponsive to acetylcholine, whereas the latter are not. DEP was administered intranasally for 2 weeks, after which pulmonary function was analyzed by whole-body plethysmography. Intranasal administration of DEP increased airway responsiveness to acetylcholine in both A/J and C57Bl/6 mice and induced displacement of ciliated epithelial cells by mucus-secreting Clara cells. The effect was mediated by M(3) muscarinic receptors. Acetylcholine-evoked bronchial constriction was reversed by administration of terbutaline, a beta(2)-adrenergic antagonist, which is also characteristic of human asthma. Intranasal administration of antibody raised against GM-CSF abolished DEP-evoked increases in airway responsiveness and Clara cell hyperplasia. The antibody raised against IL-4 also inhibited DEP-evoked increases in airway responsiveness. However, it was to a lesser extent compared with antibody against GM-CSF. In addition, DEP stimulated GM-CSF messenger RNA expression in the lung. DEP induces airway hyperresponsiveness by stimulating GM-CSF synthesis.

  4. Bone marrow hematopoietic stem cells behavior with or without growth factors in trauma hemorrhagic shock

    PubMed Central

    Kumar, Manoj; Bhoi, Sanjeev; Mohanty, Sujata; Kamal, Vineet Kumar; Rao, D. N.; Mishra, Pravas; Galwankar, Sagar

    2016-01-01

    Background: Hemorrhagic shock (HS) is the major leading cause of death after trauma. Up to 50% of early deaths are due to massive hemorrhage. Excessive release of pro-inflammatory cytokine and hypercatecholamine induces hematopoietic progenitor cells (HPCs) apoptosis, leading to multiorgan failure and death. However, still, result remains elusive for hematopoietic stem cells (HSCs) behavior in trauma HS (T/HS). Objectives: Therefore, our aim was to evaluate the in vitro HSCs behavior with or without recombinant human erythropoietin (rhEPO), recombinant human granulocyte macrophage-colony-stimulating factor (rhGM-CSF), recombinant human interleukin-3 (rhIL-3) alone, and combination with rhEPO + rhGM-CSF + rhIL-3 (EG3) in T/HS patients. Methodology: Bone marrow (BM) aspirates (n = 14) were collected from T/HS patients, those survived on day 3. BM cells were cultured for HPCs: Colony-forming unit-erythroid (CFU-E), burst-forming unit-erythroid (BFU-E), and colony-forming unit-granulocyte, monocyte/macrophage colonies growth. HPCs were counted with or without rhEPO, rhGM-CSF, rhIL-3 alone, and combination with EG3 in T/HS patients. Results: BM HSCs growth significantly suppressed in T/HS when compared with control group (P < 0.05). In addition, CFU-E and BFU-E colony growth were increased with additional growth factor (AGF) (rhEPO, rhGM-CSF, and rhIL-3) as compared to baseline (without AGF) (P < 0.05). Conclusion: Suppressed HPCs may be reactivated by addition of erythropoietin, GM-CSF, IL-3 alone and with combination in T/HS. PMID:27722113

  5. Hematopoietic growth factors and human acute leukemia.

    PubMed

    Löwenberg, B; Touw, I

    1988-10-22

    The study of myelopoietic maturation arrest in acute myeloblastic leukemia (AML) has been eased by availability of the human recombinant hemopoietic growth factors, macrophage colony stimulating factor (M-CSF), granulocyte-(G-CSF), granulocyte-macrophage-(GM-CSF) and multilineage stimulating factor (IL-3). Nonphysiological expansion of the leukemic population is not due to escape from control by these factors. Proliferation in vitro of AML cells is dependent on the presence of one or several factors in most cases. The pattern of factor-dependency does not correlate with morphological criteria in individual cases, and may thus offer a new tool for classification of AML. Overproduction of undifferentiated cells is not due to abnormal expression of receptors for the stimulating factors acting at an immature level. Rather, autocrine secretion of early acting lymphokines maintains proliferation of the leukemic clone. When looking at causes of leukemic dysregulation, yet undefined inhibitors of differentiation probably are of equal importance as dysequilibrated stimulation by lymphokines.

  6. GM-CSF and IL-3 Modulate Human Monocyte TNF-α Production and Renewal in In Vitro Models of Trained Immunity.

    PubMed

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Loffredo, Stefania; Scamardella, Eloise; Galdiero, Maria Rosaria; Varricchi, Gilda; Granata, Francescopaolo; Portella, Giuseppe; Marone, Gianni

    2016-01-01

    GM-CSF and IL-3 are hematopoietic cytokines that also modulate the effector functions of several immune cell subsets. In particular, GM-CSF and IL-3 exert a significant control on monocyte and macrophage effector functions, as assessed in experimental models of inflammatory and autoimmune diseases and also in human studies. Here, we sought to investigate the mechanisms and the extent to which GM-CSF and IL-3 modulate the pro-inflammatory, LPS-mediated, activation of human CD14 + monocytes taking into account the new concept of trained immunity (i.e., the priming stimulus modulates the response to subsequent stimuli mainly by inducing chromatin remodeling and increased transcription at relevant genetic loci). We demonstrate that GM-CSF and IL-3 priming enhances TNF-α production upon subsequent LPS stimulation (short-term model of trained immunity) in a p38- and SIRT2-dependent manner without increasing TNF primary transcript levels (a more direct measure of transcription), thus supporting a posttranscriptional regulation of TNF-α in primed monocytes. GM-CSF and IL-3 priming followed by 6 days of resting also results in increased TNF-α production upon LPS stimulation (long-term model of trained immunity). In this case, however, GM-CSF and IL-3 priming induces a c-Myc-dependent monocyte renewal and increase in cell number that is in turn responsible for heightened TNF-α production. Overall, our results provide insights to understand the biology of monocytes in health and disease conditions in which the hematopoietic cytokines GM-CSF and IL-3 play a role and also extend our knowledge of the cellular and molecular mechanisms of trained immunity.

  7. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine.

    PubMed

    Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R; Robinson, Harriet L

    2012-11-01

    Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection.

  8. Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

    NASA Astrophysics Data System (ADS)

    Dranoff, Glenn; Jaffee, Elizabeth; Lazenby, Audrey; Golumbek, Paul; Levitsky, Hyam; Brose, Katja; Jackson, Valerie; Hamada, Hirofumi; Pardoll, Drew; Mulligan, Richard C.

    1993-04-01

    To compare the ability of different cytokines and other molecules to enhance the immunogenicity of tumor cells, we generated 10 retroviruses encoding potential immunomodulators and studied the vaccination properties of murine tumor cells transduced by the viruses. Using a B16 melanoma model, in which irradiated tumor cells alone do not stimulate significant anti-tumor immunity, we found that irradiated tumor cells expressing murine granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated potent, long-lasting, and specific anti-tumor immunity, requiring both CD4^+ and CD8^+ cells. Irradiated cells expressing interleukins 4 and 6 also stimulated detectable, but weaker, activity. In contrast to the B16 system, we found that in a number of other tumor models, the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone. Nevertheless, manipulation of the vaccine or challenge doses made it possible to demonstrate the activity of murine GM-CSF in those systems as well. Overall, our results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines.

  9. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    PubMed

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Granulocyte-macrophage colony stimulating factor administered as prophylaxis for reduction of sepsis in extremely preterm, small for gestational age neonates (the PROGRAMS trial): a single-blind, multicentre, randomised controlled trial.

    PubMed

    Carr, Robert; Brocklehurst, Peter; Doré, Caroline J; Modi, Neena

    2009-01-17

    Systemic sepsis is a major cause of death in preterm neonates. There are compelling theoretical reasons why treatment with haemopoietic colony-stimulating factors might reduce sepsis and improve outcomes, and as a consequence these agents have entered into use in neonatal medicine without adequate evidence. We assessed whether granulocyte-macrophage colony stimulating factor (GM-CSF) administered as prophylaxis to preterm neonates at high risk of neutropenia would reduce sepsis, mortality, and morbidity. We undertook a single-blind, multicentre, randomised controlled trial in 26 centres between June, 2000, and June, 2006. 280 neonates of below or equal to 31 weeks' gestation and below the 10th centile for birthweight were randomised within 72 h of birth to receive GM-CSF 10 microg/kg per day subcutaneously for 5 days or standard management. From recruitment to day 28 a detailed daily clinical record form was completed by the treating clinicians. Primary outcome was sepsis-free survival to 14 days from trial entry. Analysis was by intention to treat. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN42553489. Neutrophil counts after trial entry rose significantly more rapidly in infants treated with GM-CSF than in control infants during the first 11 days (difference between neutrophil count slopes 0.34 x 10(9)/L/day; 95% CI 0.12-0.56). There was no significant difference in sepsis-free survival for all infants (93 of 139 treated infants, 105 of 141 control infants; difference -8%, 95% CI -18 to 3). A meta-analysis of this trial and previous published prophylactic trials showed no survival benefit. Early postnatal prophylactic GM-CSF corrects neutropenia but does not reduce sepsis or improve survival and short-term outcomes in extremely preterm neonates.

  11. Therapeutic use of recombinant human G-CSF (RHG-CSF) in a canine model of sublethal and lethal whole-body irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macvittie, T.J.; Monroy, R.L.; Patchen, M.L.

    The short biologic half-life of the peripheral neutrophil (PMN) requires an active granulopoietic response to replenish functional PMSs and to remain a competent host defence in irradiated animals. Recombinant human G-CSF (rhG-CSF) was studied for its ability to modulate hemopoiesis in normal dogs as well as to decrease therapeutically the severity and duration of neutropenia in sublethally and lethally irradiated dogs. For the normal dog, subcutaneous administration of rhG-CSF induced neutrophilia within hours after the first injection; total PMSs continued to increase (with plateau phases) to mean peak values of 1000 per cent of baseline at the end of themore » treatment period (12-14 days). Bone-marrow-derived granulocyte-macrophage colony-forming cells (GM-CFC) increased significantly during treatment. For a sublethal 200 cGy dose, treatment with rhG-CSF for 14 consecutive days decreased the severity and shortened the duration of neutropenia and thrombocytopenia. The radiation-induced lethality of 60 per cent after a dose of 350 cGy was associated with marrow-derived GM-CFC survival of 1 per cent.« less

  12. Intraperitoneal Administration of a Tumor-Associated Antigen SART3, CD40L, and GM-CSF Gene-Loaded Polyplex Micelle Elicits a Vaccine Effect in Mouse Tumor Models

    PubMed Central

    Furugaki, Kouichi; Cui, Lin; Kunisawa, Yumi; Osada, Kensuke; Shinkai, Kentaro; Tanaka, Masao; Kataoka, Kazunori; Nakano, Kenji

    2014-01-01

    Polyplex micelles have demonstrated biocompatibility and achieve efficient gene transfection in vivo. Here, we investigated a polyplex micelle encapsulating genes encoding the tumor-associated antigen squamous cell carcinoma antigen recognized by T cells-3 (SART3), adjuvant CD40L, and granulocyte macrophage colony-stimulating factor (GM-CSF) as a DNA vaccine platform in mouse tumor models with different types of major histocompatibility antigen complex (MHC). Intraperitoneally administrated polyplex micelles were predominantly found in the lymph nodes, spleen, and liver. Compared with mock controls, the triple gene vaccine significantly prolonged the survival of mice harboring peritoneal dissemination of CT26 colorectal cancer cells, of which long-term surviving mice showed complete rejection when re-challenged with CT26 tumors. Moreover, the DNA vaccine inhibited the growth and metastasis of subcutaneous CT26 and Lewis lung tumors in BALB/c and C57BL/6 mice, respectively, which represent different MHC haplotypes. The DNA vaccine highly stimulated both cytotoxic T lymphocyte and natural killer cell activities, and increased the infiltration of CD11c+ DCs and CD4+/CD8a+ T cells into tumors. Depletion of CD4+ or CD8a+ T cells by neutralizing antibodies deteriorated the anti-tumor efficacy of the DNA vaccine. In conclusion, a SART3/CD40L+GM-CSF gene-loaded polyplex micelle can be applied as a novel vaccine platform to elicit tumor rejection immunity regardless of the recipient MHC haplotype. PMID:25013909

  13. Efficient mobilization of haematopoietic progenitors after a single injection of pegylated recombinant human granulocyte colony-stimulating factor in mouse strains with distinct marrow-cell pool sizes.

    PubMed

    de Haan, G; Ausema, A; Wilkens, M; Molineux, G; Dontje, B

    2000-09-01

    We have compared the efficacy of a single injection of SD/01, a newly engineered, pegylated form of recombinant human granulocyte colony stimulating factor (rhG-CSF), with a single injection of glycosylated rhG-CSF (Filgrastim). SD/01 was administered to regular and recombinant inbred strains of mice (AKR, C57L/J, DBA/2, C57BL/6, AKXL) known to have widely distinct marrow-cell pool sizes and proliferation kinetics. A single injection of G-CSF was unable to mobilize granulocyte-macrophage colony-forming units (CFU-GM). In sharp contrast, a single dose of SD/01 resulted in massive mobilization of progenitors and stem cells. Although all mice strains showed qualitatively similar mobilization responses, large interstrain differences remained. C57L and C57BL/6 mice mobilized relatively poorly, whereas AKR and DBA/2 mice showed threefold to tenfold superior responses. In order to explain these different phenotypes, we studied the effects of SD/01 in nine AKXL recombinant inbred strains, derived from well-responding AKR and poorly responding C57L parental strains. The best predictor for SD/01 responsiveness in these strains was marrow cellularity prior to mobilization. Comparison of the AKXL strain distribution pattern for marrow cellularity with loci previously mapped in these strains showed complete concordance with Aat, a serine protease inhibitor mapping to chromosome 12.

  14. Expression of CD73/ecto-5'-nucleotidase on human gingival fibroblasts and contribution to the inhibition of interleukin-1alpha-induced granulocyte-macrophage colony stimulating factor production.

    PubMed

    Nemoto, Eiji; Kunii, Ryotaro; Tada, Hiroyuki; Tsubahara, Taisuke; Ishihata, Hiroshi; Shimauchi, Hidetoshi

    2004-02-01

    CD73/5'-nucleotidase (5'-NT) is an ectoenzyme that participates in immune/inflammatory reactions. We examined the possible expression of CD73/5'-NT on human gingival fibroblasts (hGF), which are important to the immune/inflammatory system in periodontal tissue. We demonstrated that CD73/5'-NT was expressed on hGF by flow cytometry. We found that pre-treatment of hGF with 5'-AMP induced marked inhibition of granulocyte-macrophage colony-stimulating factor (GM-CSF) production from hGF upon stimulation with interleukin-1alpha (IL-1alpha) by enzyme-linked immunosorbent assay (ELISA). A specific inhibitor of 5'-NT, adenosine 5'-[alpha,beta-methylene] diphosphate blocked the inhibition of GM-CSF production, suggesting that adenosine converted from 5'-AMP acts on the inhibitory effects. The GM-CSF inhibition suggested that A3 receptor might be involved. The rank order of agonists was found to be (N6-benzyl-5'-N-ethylcarboxamidoadenosine) A3 receptor agonist > or = (2-chloroadenosine) non-selective agonist > (CGS-21680) A2A receptor agonist > adenosine > or = (N6-cyclohexyladenosine) A1 agonist. Further support for the main role of A3 receptor was the binding A3 antagonist [9-chloro-2-(2-furanyl)-5-([phenylacetyl]amino)[1,2,4]-triazolo[1,5-c]quinazdine] reversed the effect of adenosine, but no significant reverse was observed by A1 (1,3-dipropyl-8-cyclopentylxanthine), A2 [3,7-dimethyl-1-(2-propargyl)xanthine], A2A[8-(3-chlorostyryl)caffeine], and A2B (alloxazine) antagonists. The CD73/5'-NT expression was increased upon stimulation with gamma-interferon, but not other stimulants such as tumor necrosis factor-alpha, IL-4, lipopolysaccharide from Porphyromonas gingivalis and Escherichia coli, and fimbriae from P. gingivalis, and this increase was correlated with the enhanced GM-CSF inhibition by 5'-AMP but not adenosine. These findings suggested that CD73/5'-NT on hGF exerts an anti-inflammatory effects in periodontal disease by conversion from 5'-AMP to adenosine.

  15. Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: a concise review.

    PubMed

    Hofer, Michal; Pospíšil, Milan; Komůrková, Denisa; Hoferová, Zuzana

    2014-04-16

    This article concisely summarizes data on the action of one of the principal and best known growth factors, the granulocyte colony-stimulating factor (G-CSF), in a mammalian organism exposed to radiation doses inducing acute radiation syndrome. Highlighted are the topics of its real or anticipated use in radiation accident victims, the timing of its administration, the possibilities of combining G-CSF with other drugs, the ability of other agents to stimulate endogenous G-CSF production, as well as of the capability of this growth factor to ameliorate not only the bone marrow radiation syndrome but also the gastrointestinal radiation syndrome. G-CSF is one of the pivotal drugs in the treatment of radiation accident victims and its employment in this indication can be expected to remain or even grow in the future.

  16. Direct anti-inflammatory effects of granulocyte colony-stimulating factor (G-CSF) on activation and functional properties of human T cell subpopulations in vitro.

    PubMed

    Malashchenko, Vladimir Vladimirovich; Meniailo, Maxsim Evgenievich; Shmarov, Viacheslav Anatolievich; Gazatova, Natalia Dinislamovna; Melashchenko, Olga Borisovna; Goncharov, Andrei Gennadievich; Seledtsova, Galina Victorovna; Seledtsov, Victor Ivanovich

    2018-03-01

    We investigated the direct effects of human granulocyte colony-stimulating factor (G-CSF) on functionality of human T-cell subsets. CD3 + T-lymphocytes were isolated from blood of healthy donors by positive magnetic separation. T cell activation with particles conjugated with antibodies (Abs) to human CD3, CD28 and CD2 molecules increased the proportion of cells expressing G-CSF receptor (G-CSFR, CD114) in all T cell subpopulations studied (CD45RA + /CD197 + naive T cells, CD45RA - /CD197 + central memory T cells, CD45RA - /CD197 - effector memory T cells and CD45RA + /CD197 - terminally differentiated effector T cells). Upon T-cell activation in vitro, G-CSF (10.0 ng/ml) significantly and specifically enhanced the proportion of CD114 + T cells in central memory CD4 + T cell compartment. A dilution series of G-CSF (range, 0.1-10.0 ng/ml) was tested, with no effect on the expression of CD25 (interleukin-2 receptor α-chain) on activated T cells. Meanwhile, G-CSF treatment enhanced the proportion of CD38 + T cells in CD4 + naïve T cell, effector memory T cell and terminally differentiated effector T cell subsets, as well as in CD4 - central memory T cells and terminally differentiated effector T cells. G-CSF did not affect IL-2 production by T cells; relatively low concentrations of G-CSF down-regulated INF-γ production, while high concentrations of this cytokine up-regulated IL-4 production in activated T cells. The data obtained suggests that G-CSF could play a significant role both in preventing the development of excessive and potentially damaging inflammatory reactivity, and in constraining the expansion of potentially cytodestructive T cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-{kappa}B translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jawan, Bruno; Kao, Y.-H.; Department of Biological Sciences, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstratedmore » that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.« less

  18. Acute radiation syndrome (ARS) - treatment of the reduced host defense.

    PubMed

    Heslet, Lars; Bay, Christiane; Nepper-Christensen, Steen

    2012-01-01

    The current radiation threat from the Fukushima power plant accident has prompted rethinking of the contingency plan for prophylaxis and treatment of the acute radiation syndrome (ARS). The well-documented effect of the growth factors (granulocyte colony-stimulating factor [G-CSF] and granulocyte-macrophage colony-stimulating factor [GM-CSF]) in acute radiation injury has become standard treatment for ARS in the United States, based on the fact that growth factors increase number and functions of both macrophages and granulocytes. Review of the current literature. The lungs have their own host defense system, based on alveolar macrophages. After radiation exposure to the lungs, resting macrophages can no longer be transformed, not even during systemic administration of growth factors because G-CSF/GM-CSF does not penetrate the alveoli. Under normal circumstances, locally-produced GM-CSF receptors transform resting macrophages into fully immunocompetent dendritic cells in the sealed-off pulmonary compartment. However, GM-CSF is not expressed in radiation injured tissue due to defervescence of the macrophages. In order to maintain the macrophage's important role in host defense after radiation exposure, it is hypothesized that it is necessary to administer the drug exogenously in order to uphold the barrier against exogenous and endogenous infections and possibly prevent the potentially lethal systemic infection, which is the main cause of death in ARS. Preemptive treatment should be initiated after suspected exposure of a radiation dose of at least <2 Gy by prompt dosing of 250-400 μg GM-CSF/m(2) or 5 μg/kg G-CSF administered systemically and concomitant inhalation of GM-CSF < 300 mcg per day for at least 14-21 days. The present United States standard for prevention and treatment of ARS standard intervention should consequently be modified into the combined systemic administration of growth factors and inhaled GM-CSF to ensure the sustained systemic and pulmonary

  19. Characterization of GM-CSF-inhibitory factor and Uracil DNA glycosylase encoding genes from camel pseudocowpoxvirus.

    PubMed

    Nagarajan, G; Swami, Shelesh Kumar; Dahiya, Shyam Singh; Narnaware, S D; Mehta, S C; Singh, P K; Singh, Raghvendar; Tuteja, F C; Patil, N V

    2015-06-01

    The present study describes the PCR amplification of GM-CSF-inhibitory factor (GIF) and Uracil DNA glycosylase (UDG) encoding genes of pseudocowpoxvirus (PCPV) from the Indian Dromedaries (Camelus dromedarius) infected with contagious ecthyma using the primers based on the corresponding gene sequences of human PCPV and reindeer PCPV, respectively. The length of GIF gene of PCPV obtained from camel is 795 bp and due to the addition of one cytosine residue at position 374 and one adenine residue at position 516, the open reading frame (ORF) got altered, resulting in the production of truncated polypeptide. The ORF of UDG encoding gene of camel PCPV is 696 bp encoding a polypeptide of 26.0 kDa. Comparison of amino acid sequence homologies of GIF and UDG of camel PCPV revealed that the camel PCPV is closer to ORFV and PCPV (reference stains of both human and reindeer), respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Distinct Properties of Human M-CSF and GM-CSF Monocyte-Derived Macrophages to Simulate Pathological Lung Conditions In Vitro: Application to Systemic and Inflammatory Disorders with Pulmonary Involvement.

    PubMed

    Lescoat, Alain; Ballerie, Alice; Augagneur, Yu; Morzadec, Claudie; Vernhet, Laurent; Fardel, Olivier; Jégo, Patrick; Jouneau, Stéphane; Lecureur, Valérie

    2018-03-17

    Macrophages play a central role in the pathogenesis of inflammatory and fibrotic lung diseases. However, alveolar macrophages (AM) are poorly available in humans to perform in vitro studies due to a limited access to broncho-alveolar lavage (BAL). In this study, to identify the best alternative in vitro model for human AM, we compared the phenotype of AM obtained from BAL of patients suffering from three lung diseases (lung cancers, sarcoidosis and Systemic Sclerosis (SSc)-associated interstitial lung disease) to human blood monocyte-derived macrophages (MDMs) differentiated with M-CSF or GM-CSF. The expression of eight membrane markers was evaluated by flow cytometry. Globally, AM phenotype was closer to GM-CSF MDMs. However, the expression levels of CD163, CD169, CD204, CD64 and CD36 were significantly higher in SSc-ILD than in lung cancers. Considering the expression of CD204 and CD36, the phenotype of SSc-AM was closer to MDMs, from healthy donors or SSc patients, differentiated by M-CSF rather than GM-CSF. The comparative secretion of IL-6 by SSc-MDMs and SSc-AM is concordant with these phenotypic considerations. Altogether, these results support the M-CSF MDM model as a relevant in vitro alternative to simulate AM in fibrotic disorders such as SSc.

  1. Adherence to granulocyte-colony stimulating factor (G-CSF) guidelines to reduce the incidence of febrile neutropenia after chemotherapy--a representative sample survey in Germany.

    PubMed

    Link, Hartmut; Nietsch, J; Kerkmann, M; Ortner, P

    2016-01-01

    Febrile neutropenia (FN) after chemotherapy increases complications, morbidity, risk of death, reduction of dose delivery and impairs quality of life. Primary granulocyte-colony stimulating factor (G-CSF) prophylaxis after chemotherapy is recommended in the guideline (GL) if the risk of FN is high (≥20%) or intermediate (≥10-20%) with additional risk factors. This study evaluated the implementation of G-CSF GL. Sample size of the survey was calculated at 2% of the incidences of malignant lymphoma, breast cancer, and lung cancer in Germany in 2006. Patients were documented retrospectively over three to nine cycles of chemotherapy and FN risk ≥10%. Professional physician profiles were analyzed by classification and regression tree analysis (CART). One hundred ninety-five hematologists-oncologists and pulmonologists and gynecologists specialized in oncology documented data of 666 lung cancer patients, 286 malignant lymphoma patients, and 976 breast cancer patients, with 7805 chemotherapy cycles; 85.1% of physicians claimed adhering to G-CSF GL. Adherence to GL in all high-FN-risk chemotherapy cycles was 15.4% in lung cancer, 84.5% in malignant lymphoma, and 85.6% in breast cancer, and in all intermediate-FN-risk chemotherapy cycles, lung cancer it was 38.8%, malignant lymphoma it was 59.4%, and breast cancer it was 49.3%. G-CSF was overused without additional patient risk factors in 7.2% lung cancer cycles, 16.8% malignant lymphoma cycles, and 17.6% breast cancer cycles. The CART analysis split pulmonologists and other specialists, with the latter adhering more to GL. Pulmonologists, trained less than 22.5 years, adhered better to GL, as did also gynecologists or hematologists-oncologists with professional experience less than 8.1 years. Acceptance of and adherence to G-CSF GL differed between lung cancer, lymphoma, and breast cancer. Physicians overestimate their adherence to the GL. Physicians adhering to the GL can be characterized.

  2. Autoimmune Th17 Cells Induced Synovial Stromal and Innate Lymphoid Cell Secretion of the Cytokine GM-CSF to Initiate and Augment Autoimmune Arthritis.

    PubMed

    Hirota, Keiji; Hashimoto, Motomu; Ito, Yoshinaga; Matsuura, Mayumi; Ito, Hiromu; Tanaka, Masao; Watanabe, Hitomi; Kondoh, Gen; Tanaka, Atsushi; Yasuda, Keiko; Kopf, Manfred; Potocnik, Alexandre J; Stockinger, Brigitta; Sakaguchi, Noriko; Sakaguchi, Shimon

    2018-06-19

    Despite the importance of Th17 cells in autoimmune diseases, it remains unclear how they control other inflammatory cells in autoimmune tissue damage. Using a model of spontaneous autoimmune arthritis, we showed that arthritogenic Th17 cells stimulated fibroblast-like synoviocytes via interleukin-17 (IL-17) to secrete the cytokine GM-CSF and also expanded synovial-resident innate lymphoid cells (ILCs) in inflamed joints. Activated synovial ILCs, which expressed CD25, IL-33Ra, and TLR9, produced abundant GM-CSF upon stimulation by IL-2, IL-33, or CpG DNA. Loss of GM-CSF production by either ILCs or radio-resistant stromal cells prevented Th17 cell-mediated arthritis. GM-CSF production by Th17 cells augmented chronic inflammation but was dispensable for the initiation of arthritis. We showed that GM-CSF-producing ILCs were present in inflamed joints of rheumatoid arthritis patients. Thus, a cellular cascade of autoimmune Th17 cells, ILCs, and stromal cells, via IL-17 and GM-CSF, mediates chronic joint inflammation and can be a target for therapeutic intervention. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte-macrophage colony-stimulating factor for hematologic support after high-dose intensification for breast cancer.

    PubMed

    Elias, A D; Ayash, L; Anderson, K C; Hunt, M; Wheeler, C; Schwartz, G; Tepler, I; Mazanet, R; Lynch, C; Pap, S

    1992-06-01

    High-dose therapy with autologous marrow support results in durable complete remissions in selected patients with relapsed lymphoma and leukemia who cannot be cured with conventional dose therapy. However, substantial morbidity and mortality result from the 3- to 6-week period of marrow aplasia until the reinfused marrow recovers adequate hematopoietic function. Hematopoietic growth factors, particularly used after chemotherapy, can increase the number of peripheral blood progenitor cells (PBPCs) present in systemic circulation. The reinfusion of PBPCs with marrow has recently been reported to reduce the time to recovery of adequate marrow function. This study was designed to determine whether granulocyte-macrophage colony-stimulating factor (GM-CSF)-mobilized PBPCs alone (without marrow) would result in rapid and reliable hematopoietic reconstitution. Sixteen patients with metastatic breast cancer were treated with four cycles of doxorubicin, 5-fluorouracil, and methotrexate (AFM induction). Patients responding after the first two cycles were administered GM-CSF after the third and fourth cycles to recruit PBPCs for collection by two leukapheresis per cycle. These PBPCs were reinfused as the sole source of hematopoietic support after high doses of cyclophosphamide, thiotepa, and carboplatin. No marrow or hematopoietic cytokines were used after progenitor cell reinfusion. Granulocytes greater than or equal to 500/microL was observed on a median of day 14 (range, 8 to 57). Transfusion independence of platelets greater than or equal to 20,000/microL occurred on a median day of 12 (range, 8 to 134). However, three patients required the use of a reserve marrow for slow platelet engraftment. In retrospect, these patients were characterized by poor baseline bone marrow cellularity and poor platelet recovery after AFM induction therapy. When compared with 29 historical control patients who had received the same high-dose intensification chemotherapy using autologous

  4. Isolation, nucleotide sequence and expression of a cDNA encoding feline granulocyte colony-stimulating factor.

    PubMed

    Dunham, S P; Onions, D E

    2001-06-21

    A cDNA encoding feline granulocyte colony stimulating factor (fG-CSF) was cloned from alveolar macrophages using the reverse transcriptase-polymerase chain reaction. The cDNA is 949 bp in length and encodes a predicted mature protein of 174 amino acids. Recombinant fG-CSF was expressed as a glutathione S-transferase fusion and purified by affinity chromatography. Biological activity of the recombinant protein was demonstrated using the murine myeloblastic cell line GNFS-60, which showed an ED50 for fG-CSF of approximately 2 ng/ml. Copyright 2001 Academic Press.

  5. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development.

    PubMed

    Dobrenis, Kostantin; Gauthier, Laurent R; Barroca, Vilma; Magnon, Claire

    2015-02-15

    The hematopoietic growth factor granulocyte colony-stimulating factor (G-CSF) has a role in proliferation, differentiation and migration of the myeloid lineage and in mobilizing hematopoietic stem and progenitor cells into the bloodstream. However, G-CSF has been newly characterized as a neurotrophic factor in the brain. We recently uncovered that autonomic nerve development in the tumor microenvironment participates actively in prostate tumorigenesis and metastasis. Here, we found that G-CSF constrains cancer to grow and progress by, respectively, supporting the survival of sympathetic nerve fibers in 6-hydroxydopamine-sympathectomized mice and also, promoting the aberrant outgrowth of parasympathetic nerves in transgenic or xenogeneic prostate tumor models. This provides insight into how neurotrophic growth factors may control tumor neurogenesis and may lead to new antineurogenic therapies for prostate cancer. © 2014 UICC.

  6. Glycosylated and non-glycosylated recombinant human granulocyte colony-stimulating factor (rhG-CSF)--what is the difference?

    PubMed

    Höglund, M

    1998-12-01

    Two forms of recombinant human G-CSF (rhG-CSF) are available for clinical use: filgrastim is expressed in E coli and non-glycosylated, whereas lenograstim is derived from Chinese hamster ovary (CHO) cells and glycosylated. The function of the sugar chain, accounting for approximately 4% of the molecular weight of lenograstim (and native G-CSF), is not known. Glycosylation of the G-CSF molecule does not prolong its circulation half life. Lenograstim is more active than filgrastim (and research-use deglycosylated G-CSF) on a weight-by-weight basis in in vitro colony-forming and cell line assays. An international potency standard assigns a specific activity of 100,000 IU/microgram to filgrastim and 127,760 IU/microgram to lenograstim. Correspondingly, two randomised crossover studies in normal subjects, comparing mass equivalent doses of the two rhG-CSFs, have demonstrated a 25-30% higher concentration of blood stem cells (CD34+, CFU-GM) during lenograstim administration. No difference in side effects was observed. Results from a prospective, randomised, non-crossover trial in breast cancer patients suggest that bioequivalent doses of filgrastim and lenograstim have a similar effect on mobilisation of CD34+ cells and immature CD34+ cell subsets, respectively. Although comparisons outside the setting of stem cell mobilisation are lacking, the clinical relevance of the greater specific activity of lenograstim may thus be limited. The difference in potency between microgram identical doses of the two rhG-CSFs makes dosing in biological units (IU) rather than mass units (microgram) more appropriate.

  7. Heterogeneous expression pattern of pro- and anti-apoptotic factors in myeloid progenitor cells of patients with severe congenital neutropenia treated with granulocyte colony-stimulating factor.

    PubMed

    Cario, Gunnar; Skokowa, Julia; Wang, Zheng; Bucan, Vesna; Zeidler, Cornelia; Stanulla, Martin; Schrappe, Martin; Welte, Karl

    2005-04-01

    Apoptosis is accelerated in the myeloid progenitor cells of patients with severe congenital neutropenia (CN). Granulocyte colony-stimulating factor (G-CSF) increases neutrophil numbers in most CN patients. The effect of G-CSF on apoptosis in CN was analysed by apoptosis rate and expression of anti- and pro-apoptotic factors. G-CSF-treated patients showed higher apoptosis frequency, lower expression of bcl-2 and bcl-xL, but higher expression of bfl-1/A1 and mcl-1. Caspase 9 was highly expressed in patients and controls after G-CSF administration. Thus, G-CSF acts on apoptosis regulation, but additional mechanisms leading to the increase of neutrophil numbers must be assumed.

  8. The immunological and clinical effects of mutated ras peptide vaccine in combination with IL-2, GM-CSF, or both in patients with solid tumors.

    PubMed

    Rahma, Osama E; Hamilton, J Michael; Wojtowicz, Malgorzata; Dakheel, Omar; Bernstein, Sarah; Liewehr, David J; Steinberg, Seth M; Khleif, Samir N

    2014-02-24

    Mutant Ras oncogenes produce proteins that are unique to cancer cells and represent attractive targets for vaccine therapy. We have shown previously that vaccinating cancer patients with mutant ras peptides is feasible and capable of inducing a specific immune response against the relevant mutant proteins. Here, we tested the mutant ras peptide vaccine administered in combination with low dose interleukin-2 (IL-2) or/and granulocyte-macrophage colony-stimulating factor (GM-CSF) in order to enhance the vaccine immune response. 5000 μg of the corresponding mutant ras peptide was given subcutaneously (SQ) along with IL-2 (Arm A), GM-CSF (Arm B) or both (Arm C). IL-2 was given SQ at 6.0 million IU/m²/day starting at day 5, 5 days/week for 2 weeks. GM-CSF was given SQ in a dose of 100 μg/day one day prior to each ras peptide vaccination for 4 days. Vaccines were repeated every 5 weeks on arm A and C, and every 4 weeks on arm B, for a maximum of 15 cycles or until disease progression. We treated 53 advanced cancer patients (38 with colorectal, 11 with pancreatic, 1 with common bile duct and 3 with lung) on 3 different arms (16 on arm A, 18 on arm B, and 19 on arm C). The median progression free survival (PFS) and overall survival (OS) was 3.6 and 16.9 months, respectively, for all patients evaluable for clinical response (n = 48). There was no difference in PFS or OS between the three arms (P = 0.73 and 0.99, respectively). Most adverse events were grade 1-2 toxicities and resolved spontaneously. The vaccine induced an immune response to the relevant ras peptide in a total of 20 out of 37 evaluable patients (54%) by ELISPOT, proliferative assay, or both. While 92.3% of patients on arm B had a positive immune response, only 31% of patients on arm A and 36% of patients on arm C had positive immune responses (P = 0.003, Fisher's exact test). The reported data showed that IL-2 might have a negative effect on the specific immune response induced by the relevant mutant

  9. Functional paralysis of GM-CSF-derived bone marrow cells productively infected with ectromelia virus.

    PubMed

    Szulc-Dąbrowska, Lidia; Struzik, Justyna; Ostrowska, Agnieszka; Guzera, Maciej; Toka, Felix N; Bossowska-Nowicka, Magdalena; Gieryńska, Małgorzata M; Winnicka, Anna; Nowak, Zuzanna; Niemiałtowski, Marek G

    2017-01-01

    Ectromelia virus (ECTV) is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV). ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM), comprised of conventional dendritic cells (cDCs) and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR). Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.

  10. Key Role of MicroRNA in the Regulation of Granulocyte Macrophage Colony-stimulating Factor Expression in Murine Alveolar Epithelial Cells during Oxidative Stress*

    PubMed Central

    Sturrock, Anne; Mir-Kasimov, Mustafa; Baker, Jessica; Rowley, Jesse; Paine, Robert

    2014-01-01

    GM-CSF is an endogenous pulmonary cytokine produced by normal alveolar epithelial cells (AEC) that is a key defender of the alveolar space. AEC GM-CSF expression is suppressed by oxidative stress through alternations in mRNA turnover, an effect that is reversed by treatment with recombinant GM-CSF. We hypothesized that specific microRNA (miRNA) would play a key role in AEC GM-CSF regulation. A genome-wide miRNA microarray identified 19 candidate miRNA altered in primary AEC during oxidative stress with reversal by treatment with GM-CSF. Three of these miRNA (miR 133a, miR 133a*, and miR 133b) are also predicted to bind the GM-CSF 3′-untranslated region (UTR). PCR for the mature miRNA confirmed induction during oxidative stress that was reversed by treatment with GM-CSF. Experiments using a GM-CSF 3′-UTR reporter construct demonstrated that miR133a and miR133b effects on GM-CSF expression are through interactions with the GM-CSF 3′-UTR. Using lentiviral transduction of specific mimics and inhibitors in primary murine AEC, we determined that miR133a and miR133b suppress GM-CSF expression and that their inhibition both reverses oxidant-induced suppression of GM-CSF expression and increases basal expression of GM-CSF in cells in normoxia. In contrast, these miRNAs are not active in regulation of GM-CSF expression in murine EL4 T cells. Thus, members of the miR133 family play key roles in regulation of GM-CSF expression through effects on mRNA turnover in AEC during oxidative stress. Increased understanding of GM-CSF gene regulation may provide novel miRNA-based interventions to augment pulmonary innate immune defense in lung injury. PMID:24371146

  11. Adjuvant Docetaxel and Cyclophosphamide (DC) with prophylactic granulocyte colony-stimulating factor (G-CSF) on days 8 &12 in breast cancer patients: a retrospective analysis.

    PubMed

    Yerushalmi, Rinat; Goldvaser, Hadar; Sulkes, Aaron; Ben-Aharon, Irit; Hendler, Daniel; Neiman, Victoria; Ciuraru, Noa Beatrice; Bonilla, Luisa; Amit, Limor; Zer, Alona; Granot, Tal; Rizel, Shulamith; Stemmer, Salomon M

    2014-01-01

    Four cycles of docetaxel/cyclophosphamide (DC) resulted in superior survival than doxorubicin/cyclophosphamide in the treatment of early breast cancer. The original study reported a 5% incidence of febrile neutropenia (FN) recommending prophylactic antibiotics with no granulocyte colony-stimulating factor (G-CSF) support. The worldwide adoption of this protocol yielded several reports on substantially higher rates of FN events. We explored the use of growth factor (GF) support on days 8 and 12 of the cycle with the original DC protocol. Our study included all consecutive patients with stages I-II breast cancer who were treated with the DC protocol at the Institute of Oncology, Davidoff Center (Rabin Medical Center, Petah Tikva, Israel) from April, 2007 to March, 2012. Patient, tumor characteristics, and toxicity were reported. In total, 123 patients received the DC regimen. Median age was 60 years, (range, 25-81 years). Thirty-three patients (26.8%) were aged 65 years and older. Most of the women (87%) adhered to the planned G-CSF protocol (days 8 &12). 96% of the patients completed the 4 planned cycles of chemotherapy. Six patients (5%) had dose reductions, 6 (5%) had treatment delays due to non-medical reasons. Thirteen patients (10.6%) experienced at least one event of FN (3 patients had 2 events), all requiring hospitalization. Eight patients (6.5%) required additional support with G-CSF after the first chemotherapy cycle, 7 because of FN and one due to neutropenia and diarrhea. Primary prophylactic G-CSF support on days 8 and 12 of the cycle provides a tolerable option to deliver the DC protocol. Our results are in line with other retrospective protocols using longer schedules of GF support.

  12. Effects of recombinant granulocyte-colony stimulating factor administration during Mycobacterium avium infection in mice

    PubMed Central

    Gonçalves, A S; Appelberg, R

    2001-01-01

    Granulocyte colony-stimulating factor (G-CSF) administration in vivo has been shown to improve the defence mechanisms against infection by different microbes. Here we evaluated a possible protective role of this molecule in a mouse model of mycobacterial infection. The administration of recombinant G-CSF promoted an extensive blood neutrophilia but failed to improve the course of Mycobacterium avium infection in C57Bl/6 or beige mice. G-CSF administration also failed to improve the efficacy of a triple chemotherapeutic regimen (clarithromycin + ethambutol + rifabutin). G-CSF treatment did not protect interleukin-10 gene disrupted mice infected with M. avium. Spleen cells from infected mice treated with G-CSF had a decreased priming for antigen-specific production of interferon gamma compared to control infected mice. Our data do not substantiate previous reports on the protective activity of G-CSF in antimycobacterial immunity using mouse models. PMID:11422200

  13. Prevention of myelosuppression by combined treatment with enterosorbent and granulocyte colony-stimulating factor.

    PubMed

    Shevchuk, O O; Posokhova, К А; Todor, I N; Lukianova, N Yu; Nikolaev, V G; Chekhun, V F

    2015-06-01

    Hematotoxicity and its complication are the prominent limiting factors for rational treatment of malignancies. Granulocyte colony-stimulating factor (G-CSF) is used to increase granulocyte production. It has been shown previously that enterosorption causes prominent myeloprotective activity also. Still, no trial was performed to combine both of them. To study the influence of combination of enterosorption and pharmaceutical analogue of naturally occurring G-CSF (filgrastim) on bone marrow protection and the growth of grafted tumor in a case of injection of melphalan (Mel). Mel injections were used for promotion of bone marrow suppression in rats. Carbon granulated enterosorbent C2 (IEPOR) was used for providing of enteral sorption detoxifying therapy. Filgrastim was used to increase white blood cells (WBC) count. The simultaneous usage of enterosorption and filgrastim had maximum effectiveness for restoring of all types of blood cells. WBC count was higher by 138.3% compared with the Mel group. The increase of platelets count by 98.5% was also observed. In the group (Mel + C2 + filgrastim) the absolute neutrophils count was twofold higher, in comparison with rats of Mel group. Simultaneous administration of G-CSF-analogue and carbonic enterosorbent C2 is a perspective approach for bone marrow protection, when the cytostatic drug melphalan is used. Such combination demonstrates prominent positive impact on restoring of all types of blood cells and had no influence on the antitumor efficacy.

  14. CLOZAPINE-INDUCED AGRANULOCYTOSIS AND USE OF G-CSF

    PubMed Central

    Srinivasan, T.N.; Thomas, Kuruvilla

    1998-01-01

    Use of clozapine is attended with the serious though rare risk of agranulocytosis. Clozapineinduced agranulocytosis is reversible with the use of cytokines like granulocyte-colony stimulating factor (G-CSF). Reports of the haematological complication of clozapine have not been forthcoming from India though it has been in use for nearly three years. This report is on an young patient who developed total absence of granulocytes during the 4th month of treatment who was successfully treated with G-CSF. PMID:21494447

  15. Effects of exogenous recombinant human granulocyte colony-stimulating factor (filgrastim, rhG-CSF) on neutrophils of critically ill patients with systemic inflammatory response syndrome depend on endogenous G-CSF plasma concentrations on admission.

    PubMed

    Weiss, Manfred; Voglic, Sami; Harms-Schirra, Britt; Lorenz, Ingrid; Lasch, Britta; Dumon, Kristoffel; Gross-Weege, Wilhelm; Schneider, Elisabeth Marion

    2003-06-01

    To investigate the effects of exogenous recombinant human granulocyte colony-stimulating factor (rhG-CSF; filgrastim) application on the neutrophils of patients at risk of sepsis following major trauma or operation. Randomized controlled trial. Surgical intensive care unit and research laboratory of a university hospital. Twenty-seven patients with systemic inflammatory response syndrome (SIRS). Thirteen patients were treated with filgrastim (1 micro g.kg.24 h) for 10 days as a continuous infusion. Fourteen patients served as controls. Surface expression of FcgammaR type I (CD64), phagocytosis of E. coli, and the E. coli-induced oxidative burst of neutrophils were tested by flow cytometry. On the first postoperative/posttraumatic day, endogenous G-CSF plasma concentrations were <300 pg/ml in seven controls (subgroup 1) and nine filgrastim patients (subgroup 3), and were already elevated with >500 pg/ml in seven controls (subgroup 2) and four filgrastim patients (subgroup 4). G-CSF values ( P=0.0026, subgroup 1/3; P=0.0167, 2/4), neutrophil counts ( P=0.0026, 1/3; P=0.0167, 2/4), and CD64 expression ( P=0.0013, 1/3) were higher in filgrastim-treated than non-treated subgroups, but not phagocytic and burst activities. From day zero to day 1, phagocytosis decreased in subgroups 1 (5/7 patients) and 3 (5/9), but increased in subgroups 2 (5/7) and 4 (3/4), and respiratory burst activity decreased in subgroup 3 (8/9). Besides activation of neutrophil maturation, low-dose rhG-CSF application in postoperative patients with SIRS has different effects on neutrophil functions, in part depending on already endogenously produced G-CSF.

  16. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells

    PubMed Central

    Li, Min; Piao, Longzhu; Chen, Chie-Pein; Wu, Xianqing; Yeh, Chang-Ching; Masch, Rachel; Chang, Chi-Chang; Huang, S. Joseph

    2017-01-01

    During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF–positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli. PMID:26970370

  17. Granulocyte Macrophage Colony-Stimulating Factor Alone Reduces Toxoplasma gondii Replication in Microglial Culture by Superoxide and Nitric Oxide, without IFN-γ production: A Preliminary Report.

    PubMed

    Pimenta, Tamirys Simão; Chaves, Natalie Ferreira; Drummond Rodrigues, Ana Paula; Picanço Diniz, Cristovam Wanderley; DaMatta, Renato Augusto; Picanço Diniz Junior, José Antônio

    2018-06-07

    In vitro studies have demonstrated that GM-CSF in combination with other stimulatory factors induces a microbicidal response that control T. gondii infection. We assessed whether GM-CSF alone can control T. gondiireplication in murine microglial cultures. Microglia were collected and cultured with or without GM-CSF and the half of each group was infected with T. gondii. We determined the T. gondii infectivity, cytokines levels, NO and superoxide detection.GM-CSF alone primes microglia, which after infection induces the production of TNF-α and IL-6, leading to NO and superoxide production, without any stimulus from IL-12p70 and IFN-γ. Copyright © 2018. Published by Elsevier Masson SAS.

  18. Application of microchip CGE for the analysis of PEG-modified recombinant human granulocyte-colony stimulating factors.

    PubMed

    Park, Eun Ji; Lee, Kyung Soo; Lee, Kang Choon; Na, Dong Hee

    2010-11-01

    The purpose of this study was to evaluate the microchip CGE (MCGE) for the analysis of PEG-modified granulocyte-colony stimulating factor (PEG-G-CSF) prepared with PEG-aldehydes. The unmodified and PEG-modified G-CSFs were analyzed by Protein 80 and 230 Labchips on the Agilent 2100 Bioanalyzer. The MCGE allowed size-based separation and quantitation of PEG-G-CSF. The Protein 80 Labchip was useful for PEG-5K-G-CSF, while the Protein 230 Labchip was more suitable for PEG-20K-G-CSF. The MCGE was also used to monitor a search for optimal PEG-modification (PEGylation) conditions to produce mono-PEG-G-CSF. This study demonstrates the usefulness of MCGE for monitoring and optimizing the PEGylation of G-CSF with the advantages of speed, minimal sample consumption, and automatic quantitation.

  19. Pharmacokinetic and pharmacodynamic comparisons between human granulocyte colony-stimulating factor purified from human bladder carcinoma cell line 5637 culture medium and recombinant human granulocyte colony-stimulating factor produced in Escherichia coli.

    PubMed

    Tanaka, H; Kaneko, T

    1992-07-01

    The pharmacokinetics and biological activities of recombinant human granulocyte colony-stimulating factor (hG-CSF) produced in Escherichia coli were compared with those of hG-CSF purified from human bladder carcinoma cell line 5637 culture medium (5637-hG-CSF). Recombinant hG-CSF was biologically active in a bone marrow cell proliferation assay in vitro, with a dose-response curve similar to that of 5637-hG-CSF. The effects of 5637- and recombinant hG-CSF administered via i.v. injection to rats showed similar response patterns of neutrophil counts in peripheral blood. From these results, it is concluded that the O-linked sugar chain of hG-CSF does not contribute to the in vitro and in vivo biological activities. The pharmacokinetics of both forms of hG-CSF in rats were investigated using a sandwich enzyme-linked immunosorbent assay. After i.v. administration, the serum concentration-time curves of 5637- and recombinant hG-CSF declined biexponentially. Total body clearance and steady-state volume of distribution of 5637-hG-CSF were smaller than those for the recombinant form. After s.c. administration, a lower peak serum level, smaller AUC, and lower bioavailability of 5637-hG-CSF were observed compared to recombinant hG-CSF.

  20. Effect of a structurally modified human granulocyte colony stimulating factor, G-CSFa, on leukopenia in mice and monkeys

    PubMed Central

    2011-01-01

    Background Granulocyte colony stimulating factor (G-CSF) regulates survival, proliferation, and differentiation of neutrophilic granulocyte precursors, Recombinant G-CSF has been used for the treatment of congenital and therapy-induced neutropenia and stem cell mobilization. Due to its intrinsic instability, recombinant G-CSF needs to be excessively and/or frequently administered to patients in order to maintain a plasma concentration high enough to achieve therapeutic effects. Therefore, there is a need for the development of G-CSF derivatives that are more stable and active in vivo. Methods Using site-direct mutagenesis and recombinant DNA technology, a structurally modified derivative of human G-CSF termed G-CSFa was obtained. G-CSFa contains alanine 17 (instead of cysteine 17 as in wild-type G-CSF) as well as four additional amino acids including methionine, arginine, glycine, and serine at the amino-terminus. Purified recombinant G-CSFa was tested for its in vitro activity using cell-based assays and in vivo activity using both murine and primate animal models. Results In vitro studies demonstrated that G-CSFa, expressed in and purified from E. coli, induced a much higher proliferation rate than that of wild-type G-CSF at the same concentrations. In vivo studies showed that G-CSFa significantly increased the number of peripheral blood leukocytes in cesium-137 irradiated mice or monkeys with neutropenia after administration of clyclophosphamide. In addition, G-CSFa increased neutrophil counts to a higher level in monkeys with a concomitant slower declining rate than that of G-CSF, indicating a longer half-life of G-CSFa. Bone marrow smear analysis also confirmed that G-CSFa was more potent than G-CSF in the induction of granulopoiesis in bone marrows of myelo-suppressed monkeys. Conclusion G-CSFa, a structurally modified form of G-CSF, is more potent in stimulating proliferation and differentiation of myeloid cells of the granulocytic lineage than the wild

  1. Effect of a structurally modified human granulocyte colony stimulating factor, G-CSFa, on leukopenia in mice and monkeys.

    PubMed

    Jiang, Yongping; Jiang, Wenhong; Qiu, Yuchang; Dai, Wei

    2011-06-13

    Granulocyte colony stimulating factor (G-CSF) regulates survival, proliferation, and differentiation of neutrophilic granulocyte precursors, Recombinant G-CSF has been used for the treatment of congenital and therapy-induced neutropenia and stem cell mobilization. Due to its intrinsic instability, recombinant G-CSF needs to be excessively and/or frequently administered to patients in order to maintain a plasma concentration high enough to achieve therapeutic effects. Therefore, there is a need for the development of G-CSF derivatives that are more stable and active in vivo. Using site-direct mutagenesis and recombinant DNA technology, a structurally modified derivative of human G-CSF termed G-CSFa was obtained. G-CSFa contains alanine 17 (instead of cysteine 17 as in wild-type G-CSF) as well as four additional amino acids including methionine, arginine, glycine, and serine at the amino-terminus. Purified recombinant G-CSFa was tested for its in vitro activity using cell-based assays and in vivo activity using both murine and primate animal models. In vitro studies demonstrated that G-CSFa, expressed in and purified from E. coli, induced a much higher proliferation rate than that of wild-type G-CSF at the same concentrations. In vivo studies showed that G-CSFa significantly increased the number of peripheral blood leukocytes in cesium-137 irradiated mice or monkeys with neutropenia after administration of cyclophosphamide. In addition, G-CSFa increased neutrophil counts to a higher level in monkeys with a concomitant slower declining rate than that of G-CSF, indicating a longer half-life of G-CSFa. Bone marrow smear analysis also confirmed that G-CSFa was more potent than G-CSF in the induction of granulopoiesis in bone marrows of myelo-suppressed monkeys. G-CSFa, a structurally modified form of G-CSF, is more potent in stimulating proliferation and differentiation of myeloid cells of the granulocytic lineage than the wild-type counterpart both in vitro and in vivo

  2. Adjuvant Docetaxel and Cyclophosphamide (DC) with Prophylactic Granulocyte Colony-Stimulating Factor (G-CSF) on Days 8 &12 in Breast Cancer Patients: A Retrospective Analysis

    PubMed Central

    Yerushalmi, Rinat; Goldvaser, Hadar; Sulkes, Aaron; Ben-Aharon, Irit; Hendler, Daniel; Neiman, Victoria; Ciuraru, Noa Beatrice; Bonilla, Luisa; Amit, Limor; Zer, Alona; Granot, Tal; Rizel, Shulamith; Stemmer, Salomon M.

    2014-01-01

    Purpose Four cycles of docetaxel/cyclophosphamide (DC) resulted in superior survival than doxorubicin/cyclophosphamide in the treatment of early breast cancer. The original study reported a 5% incidence of febrile neutropenia (FN) recommending prophylactic antibiotics with no granulocyte colony-stimulating factor (G-CSF) support. The worldwide adoption of this protocol yielded several reports on substantially higher rates of FN events. We explored the use of growth factor (GF) support on days 8 and 12 of the cycle with the original DC protocol. Methods Our study included all consecutive patients with stages I–II breast cancer who were treated with the DC protocol at the Institute of Oncology, Davidoff Center (Rabin Medical Center, Petah Tikva, Israel) from April, 2007 to March, 2012. Patient, tumor characteristics, and toxicity were reported. Results: In total, 123 patients received the DC regimen. Median age was 60 years, (range, 25–81 years). Thirty-three patients (26.8%) were aged 65 years and older. Most of the women (87%) adhered to the planned G-CSF protocol (days 8 &12). 96% of the patients completed the 4 planned cycles of chemotherapy. Six patients (5%) had dose reductions, 6 (5%) had treatment delays due to non-medical reasons. Thirteen patients (10.6%) experienced at least one event of FN (3 patients had 2 events), all requiring hospitalization. Eight patients (6.5%) required additional support with G-CSF after the first chemotherapy cycle, 7 because of FN and one due to neutropenia and diarrhea. In Conclusion Primary prophylactic G-CSF support on days 8 and 12 of the cycle provides a tolerable option to deliver the DC protocol. Our results are in line with other retrospective protocols using longer schedules of GF support. PMID:25330205

  3. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans.

    PubMed

    Bramante, Simona; Koski, Anniina; Kipar, Anja; Diaconu, Iulia; Liikanen, Ilkka; Hemminki, Otto; Vassilev, Lotta; Parviainen, Suvi; Cerullo, Vincenzo; Pesonen, Saila K; Oksanen, Minna; Heiskanen, Raita; Rouvinen-Lagerström, Noora; Merisalo-Soikkeli, Maiju; Hakonen, Tiina; Joensuu, Timo; Kanerva, Anna; Pesonen, Sari; Hemminki, Akseli

    2014-08-01

    Sarcomas are a relatively rare cancer, but often incurable at the late metastatic stage. Oncolytic immunotherapy has gained attention over the past years, and a wide range of oncolytic viruses have been delivered via intratumoral injection with positive safety and promising efficacy data. Here, we report preclinical and clinical results from treatment of sarcoma with oncolytic adenovirus Ad5/3-D24-GMCSF (CGTG-102). Ad5/3-D24-GMCSF is a serotype chimeric oncolytic adenovirus coding for human granulocyte-macrophage colony-stimulating factor (GM-CSF). The efficacy of Ad5/3-D24-GMCSF was evaluated on a panel of soft-tissue sarcoma (STS) cell lines and in two animal models. Sarcoma specific human data were also collected from the Advanced Therapy Access Program (ATAP), in preparation for further clinical development. Efficacy was seen in both in vitro and in vivo STS models. Fifteen patients with treatment-refractory STS (13/15) or primary bone sarcoma (2/15) were treated in ATAP, and treatments appeared safe and well-tolerated. A total of 12 radiological RECIST response evaluations were performed, and two cases of minor response, six cases of stable disease and four cases of progressive disease were detected in patients progressing prior to virus treatment. Overall, the median survival time post treatment was 170 days. One patient is still alive at 1,459 days post virus treatment. In summary, Ad5/3-D24-GMCSF appears promising for the treatment of advanced STS; a clinical trial for treatment of refractory injectable solid tumors including STS is ongoing. © 2013 UICC.

  4. Novel adapter proteins that link the human GM-CSF receptor to the phosphatidylino-sitol 3-kinase and Shc/Grb2/ras signaling pathways.

    PubMed

    Jücker, M; Feldman, R A

    1996-01-01

    We have used a human GM-CSF-dependent hematopoietic cell line that responds to physiological concentrations of hGM-CSF to analyze a set of signaling events that occur in normal myelopoiesis and whose deregulation may lead to leukemogenesis. Stimulation of these cells with hGM-CSF induced the assembly of multimeric complexes that contained known and novel phosphotyrosyl proteins. One of the new proteins was a major phosphotyrosyl substrate of 76-85 kDa (p80) that was directly associated with the p85 subunit of phosphatidylinositol (PI) 3-kinase through the SH2 domains of p85. p80 also associated with the beta subunit of the activated hGM-CSF receptor, and assembly of this complex correlated with activation of PI 3-kinase. A second phosphotyrosyl protein we identified, p140, associated with the Shc and Grb2 adapter proteins by direct binding to a novel phosphotyrosine-interacting domain located at the N-terminus of Shc. and to the SH3 domains of Grb2, respectively. The Shc/p140/Grb2 complex was found to be constitutively activated in acute myeloid leukemia cells, indicating that activation of this pathway may be a necessary step in the development of some leukemias. The p80/p85/PI 3-kinase and the Shc/Grb2/p140 complexes were tightly associated with Src family kinases, which were prime candidates for phosphorylation of Shc, p80, p140 and other phosphotyrosyl substrates present in these complexes. Our studies suggest that p80 and p140 may link the hGM-CSF receptor to the PI 3-kinase and Shc/Grb2/ras signaling pathways, respectively, and that abnormal activation of hGM-CSF-dependent targets may play a role in leukemogenesis.

  5. CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the common β chain of the IL-3, GM-CSF and IL-5 receptors

    PubMed Central

    Panousis, Con; Dhagat, Urmi; Edwards, Kirsten M.; Rayzman, Veronika; Hardy, Matthew P.; Braley, Hal; Gauvreau, Gail M.; Hercus, Timothy R.; Smith, Steven; Sehmi, Roma; McMillan, Laura; Dottore, Mara; McClure, Barbara J.; Fabri, Louis J.; Vairo, Gino; Lopez, Angel F; Parker, Michael W.; Nash, Andrew D.; Wilson, Nicholas J.; Wilson, Michael J.; Owczarek, Catherine M.

    2016-01-01

    ABSTRACT The β common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared β common (βc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human βc receptor. The binding epitope of CSL311 on the βc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human βc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 β common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human βc receptor is central to pathogenesis. The coordinates for the βc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU). PMID:26651396

  6. Granulocyte colony stimulating factor (G-CSF) can allow treatment with clozapine in a patient with severe benign ethnic neutropaenia (BEN): a case report.

    PubMed

    Spencer, Benjamin W J; Williams, Hugh R J; Gee, Siobhan H; Whiskey, Eromona; Rodrigues, Joseph P; Mijovic, Aleksandar; MacCabe, James H

    2012-09-01

    Clozapine is the treatment of choice for treatment-resistant schizophrenia, but it is associated with a risk of neutropaenia and agranulocytosis. Clozapine use is regulated by mandatory blood monitoring in the UK, requiring cessation of treatment should the absolute neutrophil count (ANC) drop below specified values. Benign reductions in the ANC in non-white populations are common, and this can preclude a patient from receiving treatment with clozapine. A diagnosis of benign ethnic neutropaenia can reduce these treatment restrictions (UK specific), but the degree of neutropaenia can be significant enough to still prevent treatment. In this report, we show that response to granulocyte colony stimulating factor (G-CSF) may be quite variable and difficult to predict, but with careful monitoring it can be used to increase the ANC count and allow continued treatment with clozapine.

  7. [Proliferation and IFN-gamma secretion of autologous T lymphocytes stimulated by myeloid leukemia cells induced with rhGM-CSF and rhIL-4].

    PubMed

    Xie, Yan-Hui; Chen, Qin-Fen; Xie, Yi; Xie, Hong

    2002-12-01

    To observe the proliferation of T lymphocytes stimulated by CML and AML cells which were induced by rhGM-CSF and rhIL-4, and the secretion of IFN-gamma from proliferated T lymphocytes, the expression of CD80, CD86 and HLA-DR on CML and AML cells induced by GM-CSF and IL-4 was assayed by flow cytometry in vitro. Then one-way mixed lymphocyte reaction was carried out, with induced leukemia cells as stimulating cells and auto-T lymphocytes as reactive cells. The secretion of IFN-gamma from T lymphocytes was determined by double antibody sandwich ELISA. The results showed that GM-CSF and IL-4 significantly upregulated the expression of CD80, CD86 and HLA-DR on CML cells and CD80 and CD86 on AML cells, which could stimulate the T lymphocyte proliferation and high secretion of IFN-gamma (in CML group) of autologous T lymphocytes. It is concluded that the CML and AML cells induced by GM-CSF and IL-4 have the ability to present tumor specific antigen to auto-T lymphocyte.

  8. Neutrophil kinetics of recombinant human granulocyte colony-stimulating factor-induced neutropenia in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Yuji; Kawagishi, Mayumi; Kusaka, Masaru

    Single injection of recombinant human granulocyte colony-stimulating factor (rhG-CSF) immediately induced a decrease in the number of circulating neutrophils in rats. This neutropenia occurred 10 minutes after the injection but disappeared 40 minutes after injection. This transient neutropenia was dose-dependently induced by rhG-CSF and also induced by repeated injections. We studied the kinetics of circulating neutrophils in transient neutropenia. rhG-CSF markedly decreased the number of {sup 3}H-diisopropylfluorophosphate ({sup 3}H-DFP) labeled neutrophils in the circulation 10 minutes after injection but the labeled neutrophils recovered to near the control level 40 minutes after the injection. These results indicate that the neutrophil marginationmore » accounts for the neutrophenia and the marginated neutrophils return to the circulation.« less

  9. Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer.

    PubMed

    Huang, Yan-Shan; Wen, Xiao-Fang; Wu, Yi-Liang; Wang, Ye-Fei; Fan, Min; Yang, Zhi-Yu; Liu, Wei; Zhou, Lin-Fu

    2010-03-01

    The plasma half-life of therapeutic proteins is a critical factor in many clinical applications. Therefore, new strategies to prolong plasma half-life of long-acting peptides and protein drugs are in high demand. Here, we designed an artificial gelatin-like protein (GLK) and fused this hydrophilic GLK polymer to granulocyte-colony-stimulating factor (G-CSF) to generate a chimeric GLK/G-CSF fusion protein. The genetically engineered recombinant GLK/G-CSF (rGLK/G-CSF) fusion protein was purified from Pichia pastoris. In vitro studies demonstrated that rGLK/G-CSF possessed an enlarged hydrodynamic radius, improved thermal stability and retained full bioactivity compared to unfused G-CSF. Following a single subcutaneous administration to rats, the rGLK/G-CSF fusion protein displayed a slower plasma clearance rate and stimulated greater and longer lasting increases in circulating white blood cells than G-CSF. Our findings indicate that fusion with this artificial, hydrophilic, GLK polymer provides many advantages in the construction of a potent hematopoietic factor with extended plasma half-life. This approach could be easily applied to other therapeutic proteins and have important clinical applications. (c) 2009 Elsevier B.V. All rights reserved.

  10. A 3,387 bp 5'-flanking sequence of the goat alpha-S1-casein gene provides correct tissue-specific expression of human granulocyte colony-stimulating factor (hG-CSF) in the mammary gland of transgenic mice.

    PubMed

    Serova, Irina A; Dvoryanchikov, Gennady A; Andreeva, Ludmila E; Burkov, Ivan A; Dias, Luciene P B; Battulin, Nariman R; Smirnov, Alexander V; Serov, Oleg L

    2012-06-01

    A new expression vector containing the 1,944 bp 5'-flanking regulatory region together with exon 1 and intron 1 of the goat alpha-S1-casein gene (CSN1S1), the full-sized human granulocyte colony-stimulating factor gene (hGCSF) and the 3'-flanking sequence of the bovine CSN1S1, was created. The vector DNA was used for generation of four mouse transgenic lines. The transgene was integrated into chromosomes 8 and 12 of two founders as 2 and 5 copies, respectively. Tissue-specific secretion of hG-CSF into the milk of transgenic mice was in the range of 19-40 μg/ml. RT-PCR analysis of various tissues of the transgenic mice demonstrated that expression of hGCSF was detected in only the mammary gland in the progeny of all founders. Moreover, cells were shown to be positive for hG-CSF by immunofluorescent analysis in the mammary glands but not in any other tissues. There were no signs of mosaic expression in the mammary gland. Trace amounts of hG-CSF were detected in the serum of females of two transgenic lines during lactation only. However, no transgenic mice showed any changes in hematopoiesis based on the number of granulocytes in blood. Immunoblotting of hG-CSF in the milk of transgenic mice revealed two forms, presumably the glycosylated and non-glycosylated forms. The hematopoietic activity of hG-CSF in the milk of transgenic females is comparable to that of recombinant G-CSF. In general, the data obtained in this study show that the new expression vector is able to provide correct tissue-specific expression of hG-CSF with high biological activity in transgenic mice.

  11. Granulocyte colony-stimulating factor improves host defense to resuscitated shock and polymicrobial sepsis without provoking generalized neutrophil-mediated damage.

    PubMed

    Patton, J H; Lyden, S P; Ragsdale, D N; Croce, M A; Fabian, T C; Proctor, K G

    1998-05-01

    Granulocyte colony-stimulating factor (G-CSF) increases production and release of neutrophil precursors and activates multiple functions of circulating polymorphonuclear neutrophils (PMNs). G-CSF has therapeutic effects in many experimental models of sepsis; its actions with superimposed reperfusion insults are unknown. In traumatic conditions, G-CSF could exacerbate unregulated, PMN-dependent injury to otherwise normal host tissue or, it could partially reverse trauma-induced immune suppression, which may improve long-term outcome. This study tested whether stimulating PMN proliferation and function with G-CSF during recovery from trauma+sepsis potentiated reperfusion injury or whether it improved host defense. Anesthetized swine were subjected to cecal ligation and incision, 35% hemorrhage, and 1 hr of hypotension. Resuscitation consisted of intravenous G-CSF (5 microg/kg) or placebo followed by shed blood and 40 mL/kg of lactated Ringer's solution. The control group received laparotomy only. G-CSF or placebo was given daily. Animals were killed at 4 days. Observers, blind to the protocol, graded autopsy samples for localization of infection and quality of abscess wall formation. Data included complete blood count, granulocyte oxidative burst after phorbol myristate acetate stimulation in vitro (GO2B), bronchoalveolar lavage (BAL) cell count, BAL noncellular protein, lipopolysaccharide-stimulated tumor necrosis factor production in whole blood in vitro (lipopolysaccharide-tumor necrosis factor), and lung tissue myeloperoxidase (MPO). Neutrophilia and localization of infection, were significantly improved by G-CSF. Variables altered by G-CSF, though not significantly, showed GO2B potential increased by 50%, lipopolysaccharide-tumor necrosis factor decreased by 50%, and improved survival versus placebo (100% vs. 70%). G-CSF did not increase lung MPO, BAL cell count, or BAL protein. Both arterial and venous O2 saturations were unaltered. Our data show that G-CSF

  12. CCR6+ Th cells in the cerebrospinal fluid of persons with multiple sclerosis are dominated by pathogenic non-classic Th1 cells and GM-CSF-only-secreting Th cells.

    PubMed

    Restorick, S M; Durant, L; Kalra, S; Hassan-Smith, G; Rathbone, E; Douglas, M R; Curnow, S J

    2017-08-01

    Considerable attention has been given to CCR6 + IL-17-secreting CD4 + T cells (Th17) in the pathology of a number of autoimmune diseases including multiple sclerosis (MS). However, other Th subsets also play important pathogenic roles, including those that secrete IFNγ and GM-CSF. CCR6 expression by Th17 cells allows their migration across the choroid plexus into the cerebrospinal fluid (CSF), where they are involved in the early phase of experimental autoimmune encephalomyelitis (EAE), and in MS these cells are elevated in the CSF during relapses and contain high frequencies of autoreactive cells. However, the relatively low frequency of Th17 cells suggests they cannot by themselves account for the high percentage of CCR6 + cells in MS CSF. Here we identify the dominant CCR6 + T cell subsets in both the blood and CSF as non-classic Th1 cells, including many that secrete GM-CSF, a key encephalitogenic cytokine. In addition, we show that Th cells secreting GM-CSF but not IFNγ or IL-17, a subset termed GM-CSF-only-secreting Th cells, also accumulate in the CSF. Importantly, in MS the proportion of IFNγ- and GM-CSF-secreting T cells expressing CCR6 was significantly enriched in the CSF, and was elevated in MS, suggesting these cells play a pathogenic role in this disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Effect of Granulocyte-Colony Stimulating Factor on Endothelial Cells and Osteoblasts

    PubMed Central

    Liu, Xi Ling; Hu, Xiang; Cai, Wei Xin; Lu, Weijia William; Zheng, Li Wu

    2016-01-01

    Objectives. Some animal studies showed that granulocyte-colony stimulating factor (G-CSF) provides beneficial environment for bone healing. It has been well documented that endothelial cells and osteoblasts play critical roles in multiple phases of bone healing. However, the biological effects of G-CSF on these cells remain controversial. This study aimed to investigate the influence of G-CSF at various concentrations on endothelial cells and osteoblasts. Materials and Methods. Human umbilical vein endothelial cells (HUVECs) and human osteoblasts (hOBs) were treated with G-CSF at 1000, 100, 10, and 0 ng/mL, respectively. The capacity of cell proliferation, migration, and tube formation of HUVECs was evaluated at 72, 8, and 6 hours after treatment, respectively. The capacity of proliferation, differentiation, and mineralization of hOBs was evaluated at 24 hours, 72 hours, and 21 days after treatment, respectively. Results. HUVECs treated with 100 and 1000 ng/mL G-CSF showed a significantly higher value comparing with controls in migration assay (p < 0.001, p < 0.01, resp.); the group treated with 1000 ng/mL G-CSF showed a significantly lower value on tube formation. No significant difference was detected in groups of hOBs. Conclusions. G-CSF showed favorable effects only on the migration of HUVECs, and no direct influence was found on hOBs. PMID:27006951

  14. [Evaluation of the increasing serum lactate dehydrogenase caused by recombinant human granulocyte-colony stimulating factor].

    PubMed

    Sawa, Toshiyuki; Yoshida, Tsutomu; Ikoma, Tetsuroh; Toyoda, Miki; Ohno, Yasushi; Fujiwara, Hisayoshi

    2003-01-01

    Increasing serum lactate dehydrogenase (LDH) is often caused by granulocyte-colony stimulating factor (G-CSF) for leukopenia following chemotherapy in patients with lung cancer. To evaluate the increase in LDH, we investigated the significance of its elevation and LDH isozyme during chemotherapy supported by recombinant human G-CSF (rhG-CSF). To exclude effects of liver diseases and chemotherapy-induced liver dysfunction, only patients in whom laboratory findings concerning liver function were within normal range were entered in this study. If leukocyte or neutrophil counts were less than grade 3, subcutaneous injection of 50 micrograms/m2 of filgrastim was given daily until leukocyte counts increased to more than 10,000/mm3. Sixty patients with unresectable lung cancer were enrolled in this study and the LDH isozyme was evaluable in 54 patients. Increasing LDH was observed in 38 patients(70.4%), and LDH isozyme was measured in these 38 patients. Increases in granulocytes and LDH isozymes were found to have a positive correlation. LDH2, LDH3, LDH4 and LDH5 increased significantly after rhG-CSF administration, although LDH 1 did not increase. It was found that a rapid increase in leukocytes by rhG-CSF induced an increase in LDH, especially LDH 3.4. Considering the results of principal component analysis and the distribution ratio of LDH isozymes in neutrophils, it is thought that elevation of LDH is reflected in the rapid production and consumption of neutrophils.

  15. Granulocyte Colony-Stimulating Factor and Azole Antifungal Therapy in Murine Aspergillosis: Role of Immune Suppression

    PubMed Central

    Graybill, John R.; Bocanegra, Rosie; Najvar, Laura K.; Loebenberg, David; Luther, Mike F.

    1998-01-01

    Outbred ICR mice were immune suppressed either with hydrocortisone or with 5-fluorouracil and were infected intranasally with Aspergillus fumigatus. Beginning 3 days before infection some groups of mice were given recombinant human granulocyte colony-stimulating factor (G-CSF), SCH56592 (an antifungal triazole), or both. Corticosteroid-pretreated mice responded to SCH56592 and had reduced counts in lung tissue and prolonged survival. In these mice, G-CSF strongly antagonized the antifungal activity of SCH56592. Animals treated with both agents developed large lung abscesses with polymorphonuclear leukocytes and large amounts of Aspergillus. In contrast, mice made neutropenic with 5-fluorouracil and then infected with A. fumigatus conidia benefited from either G-CSF or triazoles, and the effect of the combination was additive rather than antagonistic. Host predisposing factors contribute in different ways to the outcome of growth factor therapy in aspergillosis. PMID:9756743

  16. Recombinant granulocyte colony-stimulating factor (rG-CSF) in the management of neutropenia induced by anthracyclines and ifosfamide in patients with soft tissue sarcomas (NEUSAR).

    PubMed

    Bongiovanni, Alberto; Monti, Manuela; Foca, Flavia; Recine, Federica; Riva, Nada; Di Iorio, Valentina; Liverani, Chiara; De Vita, Alessandro; Miserocchi, Giacomo; Mercatali, Laura; Amadori, Dino; Ibrahim, Toni

    2017-01-01

    Anthracycline and ifosfamide-based chemotherapy represents a widely used regimen both in early and advanced settings in soft tissue sarcoma (STS). Prophylaxis with granulocyte colony-stimulating factor (G-CSF) reduces the severity of chemotherapy-induced neutropenia. The aim of this study was to assess the efficacy and safety of biosimilar G-CSF in these patients. Between 2003 and 2013, 67 patients with soft tissue tumors under epirubicin and ifosfamide (EI) treatment receiving biosimilar filgrastim (Zarzio®), originator filgrastim (Granulokine®, Neupogen®), and lenograstim (only originator Myelostim®) as primary prophylaxis for a total of 260 cycles of therapy were retrospectively analyzed. Baseline patient characteristics were summarized in a propensity score (PS). The incidence of febrile neutropenia (FN) was 44.0 % in biosimilar filgrastim, 40.0 % in originator filgrastim, and 45.5 % in the lenograstim groups (p = 0.935). All grade and G4 neutropenia were similar in the three groups with the same safety profile. The use of biosimilar filgrastim achieved cost savings of €225.25 over originator filgrastim and €262.00 over lenograstim. Biosimilar G-CSF was effective in preventing FN and in reducing the need for hospitalization in STS patients undergoing EI treatment. It also proved comparable to its reference products from both a clinical and cost-effective standpoint.

  17. PEGylated G-CSF (BBT-015), GM-CSF (BBT-007), and IL-11 (BBT-059) analogs enhance survival and hematopoietic cell recovery in a mouse model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Plett, Paul Artur; Chua, Hui Lin; Sampson, Carol H; Katz, Barry P; Fam, Christine M; Anderson, Lana J; Cox, George N; Orschell, Christie M

    2014-01-01

    Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, using a previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated HGF were investigated. The PEGylated-HGFs possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76-8.72 Gy, Cs, 0.62-1.02 Gy min) and were treated with various dosing regimens of 0.1, 0.3, and 1.0 mg kg of analogs of human PEG-G-CSF, murine PEG-GM-CSF, or human PEG-IL-11. Mice were administered one of the HGF analogs at 24-28 h post irradiation, and in some studies, additional doses given every other day (beginning with the 24-28 h dose) for a total of three or nine doses. Thirty-day (30 d) survival was significantly increased with only one dose of 0.3 mg kg of PEG-G-CSF and PEG-IL-11 or three doses of 0.3 mg kg of PEG-GM-CSF (p ≤ 0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p ≤ 0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT's PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event.

  18. The use of granulocyte colony stimulating factor (G-CSF) and management of chemotherapy delivery during adjuvant treatment for early-stage breast cancer--further observations from the IMPACT solid study.

    PubMed

    Mäenpää, Johanna; Varthalitis, Ioannis; Erdkamp, Frans; Trojan, Andreas; Krzemieniecki, Krzysztof; Lindman, Henrik; Bendall, Kate; Vogl, Florian D; Verma, Shailendra

    2016-02-01

    To investigate the use and impact of granulocyte colony-stimulating factors (G-CSF) on chemotherapy delivery and neutropenia management in breast cancer in a clinical practice setting. IMPACT Solid was an international, prospective observational study in patients with a physician-assessed febrile neutropenia (FN) risk of ≥20%. This analysis focused on stages I-III breast cancer patients who received a standard chemotherapy regimen for which the FN risk was published. Chemotherapy delivery and neutropenia-related outcomes were reported according to the FN risk of the regimen and intent of G-CSF use. 690 patients received a standard chemotherapy regimen; 483 received the textbook dose/schedule with a majority of these regimens (84%) having a FN risk ≥10%. Patients receiving a regimen with a FN risk ≥10% were younger with better performance status than those receiving a regimen with a FN risk <10%. Patients who received higher-risk regimens were more likely to receive G-CSF primary prophylaxis (48% vs 22%), complete their planned chemotherapy (97% vs 88%) and achieve relative dose intensity ≥85% (93% vs 86%) than those receiving lower-risk regimens. Most first FN events (56%) occurred in cycles not supported with G-CSF primary prophylaxis. Physicians generally recommend standard adjuvant chemotherapy regimens and were more likely to follow G-CSF guidelines for younger, good performance status patients in the curative setting, and often modify standard regimens in more compromised patients. However, G-CSF support is not optimal, indicated by G-CSF primary prophylaxis use in <50% of high-risk patients and observation of FN without G-CSF support. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A randomized case-controlled study of recombinant human granulocyte colony stimulating factor for the treatment of sepsis in preterm neutropenic infants.

    PubMed

    Aktaş, Doğukan; Demirel, Bilge; Gürsoy, Tuğba; Ovalı, Fahri

    2015-06-01

    To investigate the efficacy and safety of recombinant human granulocyte colony-stimulating factor, recombinant human granulocyte-macrophage colony-stimulating factor (rhG-CSF) to treat sepsis in neutropenic preterm infants. Fifty-six neutropenic preterm infants with suspected or culture-proven sepsis hospitalized in Zeynep Kamil Maternity and Children's Educational and Training Hospital, Kozyatağı/Istanbul, Turkey between January 2008 and January 2010 were enrolled. Patients were randomized either to receive rhG-CSF plus empirical antibiotics (Group I) or empirical antibiotics alone (Group II). Clinical features were recorded. Daily complete blood count was performed until neutropenia subsided. Data were analyzed using SPSS version 11.5. Thirty-three infants received rhG-CSF plus antibiotic treatment and 23 infants received antibiotic treatment. No drug-related adverse event was recorded. Absolute neutrophil count values were significantly higher on the 2(nd) study day and 3(rd) study day in Group I. Short-term mortality did not differ between the groups. Treatment with rhG-CSF resulted in a more rapid recovery of ANC in neutropenic preterm infants. However, no reduction in short-term mortality was documented. Copyright © 2014. Published by Elsevier B.V.

  20. Staphylococcal enterotoxin A regulates bone marrow granulocyte trafficking during pulmonary inflammatory disease in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, W.M.; Gushiken, V.O.; Ferreira-Duarte, A.P.

    Pulmonary neutrophil infiltration produced by Staphylococcal enterotoxin A (SEA) airway exposure is accompanied by marked granulocyte accumulation in bone marrow (BM). Therefore, the aim of this study was to investigate the mechanisms of BM cell accumulation, and trafficking to circulating blood and lung tissue after SEA airway exposure. Male BALB/C mice were intranasally exposed to SEA (1 μg), and at 4, 12 and 24 h thereafter, BM, circulating blood, bronchoalveolar lavage (BAL) fluid and lung tissue were collected. Adhesion of BM granulocytes and flow cytometry for MAC-1, LFA1-α and VLA-4 and cytokine and/or chemokine levels were assayed after SEA-airway exposure.more » Prior exposure to SEA promoted a marked PMN influx to BAL and lung tissue, which was accompanied by increased counts of immature and/or mature neutrophils and eosinophils in BM, along with blood neutrophilia. Airway exposure to SEA enhanced BM neutrophil MAC-1 expression, and adhesion to VCAM-1 and/or ICAM-1-coated plates. Elevated levels of GM-CSF, G-CSF, INF-γ, TNF-α, KC/CXCL-1 and SDF-1α were detected in BM after SEA exposure. SEA exposure increased production of eosinopoietic cytokines (eotaxin and IL-5) and BM eosinophil VLA-4 expression, but it failed to affect eosinophil adhesion to VCAM-1 and ICAM-1. In conclusion, BM neutrophil accumulation after SEA exposure takes place by integrated action of cytokines and/or chemokines, enhancing the adhesive responses of BM neutrophils and its trafficking to lung tissues, leading to acute lung injury. BM eosinophil accumulation in SEA-induced acute lung injury may occur via increased eosinopoietic cytokines and VLA-4 expression. - Highlights: • Airway exposure to SEA causes acute lung inflammation. • SEA induces accumulation of bone marrow (BM) in immature and mature neutrophils. • SEA increases BM granulocyte or BM PMN adhesion to ICAM-1 and VCAM-1, and MAC-1 expression. • SEA induces BM elevations of CXCL-1, INF-γ, TNF-α, GM-CSF, G-CSF

  1. Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in a rat model of anterior ischemic optic neuropathy (rAION).

    PubMed

    Chang, Chung-Hsing; Huang, Tzu-Lun; Huang, Shun-Ping; Tsai, Rong-Kung

    2014-01-01

    The purpose of this study was to investigate the neuroprotective effects of recombinant human granulocyte colony stimulating factor (G-CSF), as administered in a rat model of anterior ischemic optic neuropathy (rAION). Using laser-induced photoactivation of intravenously administered Rose Bengal in the optic nerve head of 60 adult male Wistar rats, an anterior ischemic optic neuropathy (rAION) was inducted. Rats either immediately received G-CSF (subcutaneous injections) or phosphate buffered saline (PBS) for 5 consecutive days. Rats were euthanized at 4 weeks post infarct. Density of retinal ganglion cells (RGCs) was counted using retrograde labeling of Fluoro-gold. Visual function was assessed by flash visual-evoked potentials (FVEP) at 4 weeks. TUNEL assay in the retinal sections and immunohistochemical staining of ED1 (marker of macrophage/microglia) were investigated in the optic nerve (ON) specimens. The RGC densities in the central and mid-peripheral retinas in the G-CSF treated rats were significantly higher than those of the PBS-treated rats (survival rate was 71.4% vs. 33.2% in the central retina; 61.8% vs. 22.7% in the mid-peripheral retina, respectively; both p < 0.05). FVEP measurements showed a significantly better preserved latency and amplitude of the p1 wave in the G-CSF-treated rats than that of the PBS-treated rats (latency120 ± 11 ms vs. 142 ± 12 ms, p = 0.03; amplitude 50 ± 11 μv vs. 31 ± 13 μv, p = 0.04). TUNEL assays showed fewer apoptotic cells in the retinal ganglion cell layers of G-CSF treated rats [2.1 ± 1.0 cells/high power field (HPF) vs. 8.0 ± 1.5/HPF; p = 0.0001]. In addition, the number of ED1 positive cells was attenuated at the optic nerve sections of G-CSF-treated rats (16 ± 6/HPF vs. 35 ± 10/HPF; p = 0.016). In conclusion, administration of G-CSF is neuroprotective in the rat model of anterior ischemic optic neuropathy, as demonstrated both structurally by RGC density and functionally by

  2. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. STAT3-Activated GM-CSFRα Translocates to the Nucleus and Protects CLL Cells from Apoptosis

    PubMed Central

    Li, Ping; Harris, David; Liu, Zhiming; Rozovski, Uri; Ferrajoli, Alessandra; Wang, Yongtao; Bueso-Ramos, Carlos; Hazan-Halevy, Inbal; Grgurevic, Srdana; Wierda, William; Burger, Jan; O'Brien, Susan; Faderl, Stefan; Keating, Michael; Estrov, Zeev

    2014-01-01

    Here it was determined that Chronic Lymphocytic Leukemia (CLL) cells express the α-subunit but not the β-subunit of the granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR/CSF3R). GM-CSFRα was detected on the surface, in the cytosol, and the nucleus of CLL cells via confocal microscopy, cell fractionation, and GM-CSFRα antibody epitope mapping. Because STAT3 is frequently activated in CLL and the GM-CSFRα promoter harbors putative STAT3 consensus binding sites, MM1 cells were transfected with truncated forms of the GM-CSFRα promoter, then stimulated with IL-6 to activate STAT3 to identify STAT3 binding sites. Chromatin immunoprecipitation (ChIP) and an electoromobility shift assay (EMSA) confirmed STAT3 occupancy to those promoter regions in both IL-6 stimulated MM1 and CLL cells. Transfection of MM1 cells with STAT3 siRNA or CLL cells with STAT3 shRNA significantly down-regulated GM-CSFRα mRNA and protein levels. RNA transcripts, involved in regulating cell-survival pathways, and the proteins KAP1 (TRIM28) and ISG15 co-immunoprecipitated with GM-CSFRα. GM-CSFRα-bound KAP1 enhanced the transcriptional activity of STAT3, whereas ISG15 inhibited the NF-κB pathway. Nevertheless, overexpression of GM-CSFRα protected MM1 cells from dexamethasone-induced apoptosis, and GM-CSFRα knockdown induced apoptosis in CLL cells, suggesting that GM-CSFRα provides a ligand-independent survival advantage. PMID:24836891

  4. Dexamethasone and interleukin-1 potently synergize to stimulate the production of granulocyte colony-stimulating factor in differentiated THP-1 cells.

    PubMed

    Wang, Y; Zhang, J J; Lei, K Y; Pike, J W

    1997-10-29

    The human monocytic leukemic cell line, THP-1, which differentiates toward macrophages in response to phorbol 12-myristate 13-acetate (PMA) was investigated for its ability to produce granulocyte colony-stimulating factor (G-CSF). G-CSF protein was neither produced during PMA-induced differentiation nor in response to dexamethasone (Dex) alone. However, when combined, PMA and Dex synergistically stimulated THP-1 cells to produce G-CSF. The synergistic interaction between PMA and Dex on G-CSF production appeared to be mediated through the production of interleukin-1 (IL-1) since neutralization of IL-1 activity completely inhibited G-CSF production. Further experiments demonstrated that in THP-1 cells pretreated with PMA, Dex potently synergized with IL-1 to stimulate G-CSF production.

  5. A murine model of acute myeloid leukemia with Evi1 overexpression and autocrine stimulation by an intracellular form of GM-CSF in DA-3 cells.

    PubMed

    Cardona, Maria E; Simonson, Oscar E; Oprea, Iulian I; Moreno, Pedro M D; Silva-Lara, Maria F; Mohamed, Abdalla J; Christensson, Birger; Gahrton, Gösta; Dilber, M Sirac; Smith, C I Edvard; Arteaga, H Jose

    2016-01-01

    The poor treatment response of acute myeloid leukemia (AML) overexpressing high-risk oncogenes such as EVI1, demands specific animal models for new treatment evaluations. Evi1 is a common site of activating integrations in murine leukemia virus (MLV)-induced AML and in retroviral and lentiviral gene-modified HCS. Still, a model of overt AML induced by Evi1 has not been generated. Cell lines from MLV-induced AML are growth factor-dependent and non-transplantable. Hence, for the leukemia maintenance in the infected animals, a growth factor source such as chronic immune response has been suggested. We have investigated whether these leukemias are transplantable if provided with growth factors. We show that the Evi1(+)DA-3 cells modified to express an intracellular form of GM-CSF, acquired growth factor independence and transplantability and caused an overt leukemia in syngeneic hosts, without increasing serum GM-CSF levels. We propose this as a general approach for modeling different forms of high-risk human AML using similar cell lines.

  6. Therapeutic trial of granulocyte-colony stimulating factor for dilated cardiomyopathy in three dogs.

    PubMed

    Park, Chul; Yoo, Jong-Hyun; Jeon, Hyo-Won; Kang, Byeong-Teck; Kim, Jung-Hyun; Jung, Dong-In; Lim, Chae-Young; Lee, Hye-Jung; Hahm, Dae-Hyun; Woo, Eung-Je; Park, Hee-Myung

    2007-09-01

    Three dogs were presented to us for evaluation of cardiac problems. Electrocardiographic recordings revealed severe tachyarrhythmia and atrial fibrillation with ventricular tachycardia in 2 of the 3 dogs. The echocardiographic findings of the 3 dogs revealed markedly decreased fractional shortening and a marked increase in E-point septal separation. Based on the results of electrocardiographic and echocardiographic evaluation, the 3 dogs were diagnosed as dilated cardiomyopathy (DCM). The dogs were treated with conventional cardiac medication, but cardiac function did not improve and the clinical signs remained. We subsequently attempted treatment with granulocyte-colony stimulating factor (G-CSF; 10 microg/kg, subcutaneously). The specific purpose of G-CSF therapy for DCM was to improve cardiac function and a significant improvement in cardiac function was confirmed. The three dogs had no treatment side effects. This case report suggests that G-CSF might have therapeutic effects for medically refractory DCM in dogs.

  7. T Cell Intrinsic Function of the Noncanonical NF-κB Pathway in the Regulation of GM-CSF Expression and EAE Pathogenesis

    PubMed Central

    Yu, Jiayi; Zhou, Xiaofei; Nakaya, Mako; Jin, Wei; Cheng, Xuhong; Sun, Shao-Cong

    2014-01-01

    The Noncanonical NF-κB pathway induces processing of the NF-κB2 precursor protein p100 and, thereby, mediates activation of p52-containing NF-κB complexes. This pathway is crucial for B-cell maturation and humoral immunity, but its role in regulating T-cell function is less clear. Using mutant mice that express a non-processible p100, NF-κB2lym1, we show that the noncanonical NF-κB pathway has a T cell-intrinsic role in regulating the pathogenesis of a T cell-mediated autoimmunity, experimental autoimmune encephalomyelitis (EAE). Although the lym1 mutation does not interfere with naïve T-cell activation, it renders the Th17 cells defective in the production of inflammatory effector molecules, particularly the cytokine GM-CSF. We provide evidence that p52 binds to the promoter of the GM-CSF-encoding gene (Csf2) and cooperates with c-Rel in the transactivation of this target gene. Introduction of exogenous p52 or GM-CSF to the NF-κB2lym1 mutant T cells partially restores their ability to induce EAE. These results suggest that the noncanonical NF-κB pathway mediates induction of EAE by regulating the effector function of inflammatory T cells. PMID:24899500

  8. IFNγ inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis.

    PubMed

    Ramakrishna, Chandran; Cantin, Edouard M

    2018-01-01

    Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection.

  9. A role for granulocyte-macrophage colony-stimulating factor in the regulation of CD8{sup +} T cell responses to rabies virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanjalla, Celestine N.; Goldstein, Elizabeth F.; Wirblich, Christoph

    2012-05-10

    Inflammatory cytokines have a significant role in altering the innate and adaptive arms of immune responses. Here, we analyzed the effect of GM-CSF on a RABV-vaccine vector co-expressing HIV-1 Gag. To this end, we immunized mice with RABV expressing HIV-1 Gag and GM-CSF and analyzed the primary and recall CD8{sup +} T cell responses. We observed a statistically significant increase in antigen presenting cells (APCs) in the spleen and draining lymph nodes in response to GM-CSF. Despite the increase in APCs, the primary and memory anti HIV-1 CD8{sup +} T cell response was significantly lower. This was partly likely duemore » to lower levels of proliferation in the spleen. Animals treated with GM-CSF neutralizing antibodies restored the CD8{sup +} T cell response. These data define a role of GM-CSF expression, in the regulation of the CD8{sup +} T cell immune responses against RABV and has implications in the use of GM-CSF as a molecular adjuvant in vaccine development.« less

  10. Biosimilar granulocyte colony-stimulating factor uptakes in the EU-5 markets: a descriptive analysis.

    PubMed

    Bocquet, François; Paubel, Pascal; Fusier, Isabelle; Cordonnier, Anne-Laure; Le Pen, Claude; Sinègre, Martine

    2014-06-01

    Biosimilars are copies of biological reference medicines. Unlike generics (copies of chemical molecules), biologics are complex, expensive and complicated to produce. The knowledge of the factors affecting the competition following patent expiry for biologics remains limited. The aims of this study were to analyse the EU-5 Granulocyte-Colony Stimulating Factor (G-CSF) markets and to determine the factors affecting the G-CSF biosimilar uptakes, particularly that of biosimilar prices relative to originators. Data on medicine volumes, values, and ex-manufacturer prices for all G-CSF categories were provided by IMS Health. Volumes were calculated in defined daily doses (DDD) and prices in Euros per DDD. In the EU-5 countries, there is 5 years of experience with biosimilar G-CSFs (2007-2011). Two G-CSF market profiles exist: (1) countries with a high retail market distribution, which are the largest G-CSF markets with low global G-CSF biosimilar uptakes (5.4% in France and 8.5% in Germany in 2011); and (2) countries with a dominant hospital channel, which are the smallest markets with higher G-CSF biosimilar uptakes (12.4% in Spain and 20.4% in the UK). The more the decisions are decentralized, the more their uptakes are high. The price difference between G-CSF biosimilars and their reference plays a marginal role at a global level (price differences of +13.3% in the UK and -20.4% in France). The competition with G-CSF biosimilars varies significantly between EU-5 countries, probably because of G-CSF distribution channel differences. Currently, this competition is not mainly based on prices, but on local political options to stimulate tendering between them and recently branded second- or third-generation products.

  11. The role of macrophages in the regulation of erythroid colony growth in vitro.

    PubMed

    Wang, C Q; Udupa, K B; Lipschitz, D A

    1992-10-01

    Depletion of macrophages from murine marrow by the use of a monoclonal anti-macrophage antibody resulted in a significant increase in the number of erythroid burst forming units (BFU-E). This increase could be neutralized by the addition back to culture of macrophages or macrophage conditioned medium indicating that the suppression was mediated by soluble factors. To further characterize this effect, the addition to culture, either alone or in combination, of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF alpha), and granulocyte-macrophage colony-stimulating factor (GM-CSF) on the growth of BFU-E and the colony-forming unit granulocyte-macrophage (CFU-GM) was examined in macrophage-containing and macrophage-depleted cultures. The addition of IL-1 alpha to culture stimulated the release of both TNF alpha and GM-CSF and acted synergistically with both cytokines, resulting in a dose-dependent suppression of BFU-E and stimulation of CFU-GM growth. The increase in CFU-GM caused by the addition of IL-1 alpha was mediated by GM-CSF but not by TNF alpha as the increase was prevented by the addition of a monoclonal anti-GM-CSF antibody but not by anti-TNF alpha. When either TNF alpha or GM-CSF was neutralized by monoclonal antibodies the addition of IL-1 alpha resulted in a significant increase in BFU-E growth. The addition of GM-CSF to culture caused a dose-dependent suppression of BFU-E that was mediated by TNF alpha, as colony number was not reduced when GM-CSF and a monoclonal anti-TNF alpha antibody were simultaneously added to culture. TNF alpha-induced suppression of BFU-E only occurred in the presence of macrophages. In macrophage-depleted cultures, a dose-dependent suppression of BFU-E could be induced if subinhibitory concentrations of IL-1 alpha or GM-CSF were simultaneously added with increasing concentrations of TNF alpha. The effects of IL-1 alpha or GM-CSF and TNF alpha were markedly synergistic so that the doses required to induce

  12. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats.

    PubMed

    Sun, Bao-Liang; He, Mei-Qing; Han, Xiang-Yu; Sun, Jing-Yi; Yang, Ming-Feng; Yuan, Hui; Fan, Cun-Dong; Zhang, Shuai; Mao, Lei-Lei; Li, Da-Wei; Zhang, Zong-Yong; Zheng, Cheng-Bi; Yang, Xiao-Yi; Li, Yang V; Stetler, R Anne; Chen, Jun; Zhang, Feng

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.

  13. Nontransformed, GM-CSF-dependent macrophage lines are a unique model to study tissue macrophage functions.

    PubMed

    Fejer, György; Wegner, Mareike Dorothee; Györy, Ildiko; Cohen, Idan; Engelhard, Peggy; Voronov, Elena; Manke, Thomas; Ruzsics, Zsolt; Dölken, Lars; Prazeres da Costa, Olivia; Branzk, Nora; Huber, Michael; Prasse, Antje; Schneider, Robert; Apte, Ron N; Galanos, Chris; Freudenberg, Marina A

    2013-06-11

    Macrophages are diverse cell types in the first line of antimicrobial defense. Only a limited number of primary mouse models exist to study their function. Bone marrow-derived, macrophage-CSF-induced cells with a limited life span are the most common source. We report here a simple method yielding self-renewing, nontransformed, GM-CSF/signal transducer and activator of transcription 5-dependent macrophages (Max Planck Institute cells) from mouse fetal liver, which reflect the innate immune characteristics of alveolar macrophages. Max Planck Institute cells are exquisitely sensitive to selected microbial agents, including bacterial LPS, lipopeptide, Mycobacterium tuberculosis, cord factor, and adenovirus and mount highly proinflammatory but no anti-inflammatory IL-10 responses. They show a unique pattern of innate responses not yet observed in other mononuclear phagocytes. This includes differential LPS sensing and an unprecedented regulation of IL-1α production upon LPS exposure, which likely plays a key role in lung inflammation in vivo. In conclusion, Max Planck Institute cells offer an useful tool to study macrophage biology and for biomedical science.

  14. Combined Administration of Recombinant Human Megakaryocyte Growth and Development Factor and Granulocyte Colony-Stimulating Factor Enhances Multilineage Hematopoietic Reconstitution in Nonhuman Primates after Radiation-Induced Marrow Aplasia

    DTIC Science & Technology

    1996-05-01

    dose would yield an equivalent or better biological activity. Neupogen ® ( Filgrastim ), r-metHuG-CSF, was produced in E. coli as a...recombinant human granulocyte colony-stimulating factor on hematopoiesis of normal dogs and on hematopoi- etic recovery after otherwise lethal total body

  15. Eighteen years experience of granulocyte donations-acceptable donor safety?

    PubMed

    Axdorph Nygell, Ulla; Sollén-Nilsson, Agneta; Lundahl, Joachim

    2015-10-01

    Granulocyte transfusions are given to patients with life-threatening infections, refractory to treatment. The donors are stimulated with corticosteroids ± granulocyte colony stimulating factor (G-CSF). However, data regarding the donors' safety is sparse. The objective was therefore to evaluate short- and long-term adverse events (AE) in G-CSF stimulated donors. All consecutive granulocyte donors from 1994 to 2012 were identified through our registry. From the donation records, the number of aphereses, stimulation therapy, AE, blood values post donation, and recent status were evaluated. One hundred fifty-four volunteer donors were mobilized for 359 collections. Age at first granulocyte donation was 43 years (median; range 19-64 years). Follow-up was 60 months (median; range 0-229 months). The dose of G-CSF per collection was 3.8 ug/kg body weight (median; range 1.6-6.0 ug/kg). Sedimentation agent was HES. Short-term AE were mild. Blood values 4 weeks post donation with minor reductions/elevations mostly resolved in later donations. Fourteen donors were excluded from the registry due to hypertension (4), diabetes (2), atrial flutter (1), breast carcinoma (1), urethral carcinoma in situ (1), MGUS (1), thrombosis (1), anaphylaxis (1), primary biliary cirrhosis (1), and unknown (1). Three donors are deceased due to diabetes, acute myocardial infarction, and unknown cause. All excluded/deceased donors except one were excluded/died at least 6 months after first granulocyte donation. No serious short-term AE were observed. Due to the variability of diagnoses among excluded/deceased donors, we propose that it is less likely that granulocyte donations have a causative impact on these donors' exclusion or death. © 2014 Wiley Periodicals, Inc.

  16. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation

    PubMed Central

    Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J.

    2017-01-01

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse

  17. Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation.

    PubMed

    Kim, So Young; Kang, Dongxu; Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J

    2017-02-28

    A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse

  18. Hematologic improvement in dogs with parvovirus infection treated with recombinant canine granulocyte-colony stimulating factor.

    PubMed

    Duffy, A; Dow, S; Ogilvie, G; Rao, S; Hackett, T

    2010-08-01

    Previously, dogs with canine parvovirus-induced neutropenia have not responded to treatment with recombinant human granulocyte-colony stimulating factor (rhG-CSF). However, recombinant canine G-CSF (rcG-CSF) has not been previously evaluated for treatment of parvovirus-induced neutropenia in dogs. We assessed the effectiveness of rcG-CSF in dogs with parvovirus-induced neutropenia with a prospective, open-label, nonrandomized clinical trial. Endpoints of our study were time to recovery of WBC and neutrophil counts, and duration of hospitalization. 28 dogs with parvovirus and neutropenia were treated with rcG-CSF and outcomes were compared to those of 34 dogs with parvovirus and neutropenia not treated with rcG-CSF. We found that mean WBC and neutrophil counts were significantly higher (P < 0.05) in the 28 dogs treated with rcG-CSF compared to disease-matched dogs not treated with rcG-CSF. In addition, the mean duration of hospitalization was reduced (P = 0.01) in rcG-CSF treated dogs compared to untreated dogs. However, survival times were decreased in dogs treated with rcG-CSF compared to untreated dogs. These results suggest that treatment with rcG-CSF was effective in stimulating neutrophil recovery and shortening the duration of hospitalization in dogs with parvovirus infection, but indicate the need for additional studies to evaluate overall safety of the treatment.

  19. Prevalidation of a model for predicting acute neutropenia by colony forming unit granulocyte/macrophage (CFU-GM) assay.

    PubMed

    Pessina, A; Albella, B; Bueren, J; Brantom, P; Casati, S; Gribaldo, L; Croera, C; Gagliardi, G; Foti, P; Parchment, R; Parent-Massin, D; Sibiril, Y; Van Den Heuvel, R

    2001-12-01

    This report describes an international prevalidation study conducted to optimise the Standard Operating Procedure (SOP) for detecting myelosuppressive agents by CFU-GM assay and to study a model for predicting (by means of this in vitro hematopoietic assay) the acute xenobiotic exposure levels that cause maximum tolerated decreases in absolute neutrophil counts (ANC). In the first phase of the study (Protocol Refinement), two SOPs were assessed, by using two cell culture media (Test A, containing GM-CSF; and Test B, containing G-CSF, GM-CSF, IL-3, IL-6 and SCF), and the two tests were applied to cells from both human (bone marrow and umbilical cord blood) and mouse (bone marrow) CFU-GM. In the second phase (Protocol Transfer), the SOPs were transferred to four laboratories to verify the linearity of the assay response and its interlaboratory reproducibility. After a further phase (Protocol Performance), dedicated to a training set of six anticancer drugs (adriamycin, flavopindol, morpholino-doxorubicin, pyrazoloacridine, taxol and topotecan), a model for predicting neutropenia was verified. Results showed that the assay is linear under SOP conditions, and that the in vitro endpoints used by the clinical prediction model of neutropenia are highly reproducible within and between laboratories. Valid tests represented 95% of all tests attempted. The 90% inhibitory concentration values (IC(90)) from Test A and Test B accurately predicted the human maximum tolerated dose (MTD) for five of six and for four of six myelosuppressive anticancer drugs, respectively, that were selected as prototype xenobiotics. As expected, both tests failed to accurately predict the human MTD of a drug that is a likely protoxicant. It is concluded that Test A offers significant cost advantages compared to Test B, without any loss of performance or predictive accuracy. On the basis of these results, we proposed a formal Phase II validation study using the Test A SOP for 16-18 additional

  20. Use of granulocyte colony-stimulating factor: a survey among Italian medical oncologists.

    PubMed

    Danova, Marco; Rosti, Giovanni; De Placido, Sabino; Bencardino, Katia; Venturini, Marco

    2005-12-01

    In October 2003, the Italian Association of Medical Oncology (AIOM) published its own guidelines on the use of granulocyte colony-stimulating factor (G-CSF). The present survey was conducted during the same period with the aim of collecting data on the current use of G-CSF to provide a starting point for future evaluations of the implementation of AIOM guidelines. From October 2003 to January 2004, 1591 AIOM members were asked to complete a questionnaire based on specific clinical scenarios, regarding the use of G-CSF for primary and secondary prophylaxis and treatment of neutropenia. The rate of response was 22%. For primary prophylaxis, the majority of physicians avoid using G-CSF, with no difference in cases of adjuvant, curative or palliative chemotherapy (CT). In fact, 67.2% to 74.9% would 'rarely or never' use G-CSF in the proposed clinical scenarios. In chemosensitive tumors, rather than reducing CT doses, 55.7% would use G-CSF as a secondary prophylaxis after afebrile neutropenia (AN), and 68.8% after febrile neutropenia (FN). In elderly patients experiencing FN, 35.7% would reduce the adjuvant CT doses and 23.1% would change the regimen. Most oncologists would use G-CSF to treat neutropenia, and the median duration of G-CSF treatment is less than 1 week and would depend on neutrophil count. Our survey shows that Italian oncologists are particularly oriented towards the use of G-CSF in clinical practice to maintain the CT dose intensity, and are sensitive to the prevention and treatment of not only FN, but also AN. Finally, Italian medical oncologists appear to be very cautious in introducing G-CSF when treating elderly patients.

  1. Ex-vivo expansion of CFU-GM and BFU-E in unselected PBMC cultures with Flt3L is enhanced by autologous plasma.

    PubMed

    Guo, M; Miller, W M; Papoutsakis, E T; Patel, S; James, C; Goolsby, C; Winter, J N

    1999-01-01

    Previous ex-vivo expansion studies in our laboratory, comparing unselected and CD34(+)-selected PBMC, have shown no advantage for CD34(+) cell selection, in terms of the expansion achieved. Our goal was to develop procedures for consistent generation of large numbers of hematopoietic progenitor and post-progenitor cells from unselected PBMC. Unselected PBMC, collected from cancer patients undergoing apheresis prior to high-dose chemotherapy and autologous stem cell rescue, were expanded ex vivo in static cultures, without a stromal layer, in the presence of Flt3 ligand (Flt3L), a recombinant GM-CSF/IL-3 fusion protein (PIXY321), G-CSF and GM-CSF for 10 days. The addition of 2% autologous plasma to this cytokine combination enhanced expansion of total cell numbers (3.2 fold versus 1.9 fold; p < 0.01), colony-forming units granulocyte-macrophage (CFU-GM) (22.0 fold versus 8.1 fold, p < 0.01) and burst-forming units erythroid (BFU-E) (17.6 fold versus 7.0 fold, 0.01 < p < 0.02). The optimal seeding density for a given specimen was inversely related to the frequency of CD34(+) cells in the sample. CFU-GM expansion with the Flt3L-containing cytokine cocktail was equivalent to that obtained with IL-3, IL-6, G-CSF and SCF, whether or not the cultures were supplemented with autologous plasma. In plasma-free cultures, BFU-E expansion was significantly higher with IL-3, IL-6, G-CSF and SCF than with Flt3L, PIXY321, G-CSF and GM-CSF. In the presence of autologous plasma, however BFU-E expansion was higher in the Flt3L-containing media. In comparison studies, autologous plasma suppressed BFU-E expansion in SCF-containing cultures. Consistent with our colony assay results, dual-parameter flow cytometric analysis of the expanded cell population revealed that supplementation with autologous plasma yielded a significant increase in the numbers of myeloid progenitors in Flt3L-containing cultures. Unselected PBMC from cancer patients can be effectively expanded ex vivo in Flt3L

  2. Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF.

    PubMed

    Quail, Daniela F; Olson, Oakley C; Bhardwaj, Priya; Walsh, Logan A; Akkari, Leila; Quick, Marsha L; Chen, I-Chun; Wendel, Nils; Ben-Chetrit, Nir; Walker, Jeanne; Holt, Peter R; Dannenberg, Andrew J; Joyce, Johanna A

    2017-08-01

    Obesity is associated with chronic, low-grade inflammation, which can disrupt homeostasis within tissue microenvironments. Given the correlation between obesity and relative risk of death from cancer, we investigated whether obesity-associated inflammation promotes metastatic progression. We demonstrate that obesity causes lung neutrophilia in otherwise normal mice, which is further exacerbated by the presence of a primary tumour. The increase in lung neutrophils translates to increased breast cancer metastasis to this site, in a GM-CSF- and IL5-dependent manner. Importantly, weight loss is sufficient to reverse this effect, and reduce serum levels of GM-CSF and IL5 in both mouse models and humans. Our data indicate that special consideration of the obese patient population is critical for effective management of cancer progression.

  3. Effects of macrophage colony-stimulating factor on macrophages and their related cell populations in the osteopetrosis mouse defective in production of functional macrophage colony-stimulating factor protein.

    PubMed Central

    Umeda, S.; Takahashi, K.; Shultz, L. D.; Naito, M.; Takagi, K.

    1996-01-01

    The development of macrophage populations in osteopetrosis (op) mutant mice defective in production of functional macrophage colony-stimulating factor (M-CSF) and the response of these cell populations to exogenous M-CSF were used to classify macrophages into four groups: 1) monocytes, monocyte-derived macrophages, and osteoclasts, 2) MOMA-1-positive macrophages, 3) ER-TR9-positive macrophages, and 4) immature tissue macrophages. Monocytes, monocyte-derived macrophages, osteoclasts in bone, microglia in brain, synovial A cells, and MOMA-1- or ER-TR9-positive macrophages were deficient in op/op mice. The former three populations expanded to normal levels in op/op mice after daily M-CSF administration, indicating that they are developed and differentiated due to the effect of M-CSF supplied humorally. In contrast, the other cells did not respond or very slightly responded to M-CSF, and their development seems due to either M-CSF produced in situ or expression of receptor for M-CSF. Macrophages present in tissues of the mutant mice were immature and appear to be regulated by either granulocyte/macrophage colony-stimulating factor and/or interleukin-3 produced in situ or receptor expression. Northern blot analysis revealed different expressions of GM-CSF and IL-3 mRNA in various tissues of the op/op mice. However, granulocyte/macrophage colony-stimulating factor and interleukin-3 in serum were not detected by enzyme-linked immunosorbent assay. The immature macrophages differentiated and matured into resident macrophages after M-CSF administration, and some of these cells proliferated in response to M-CSF. Images Figure 4 Figure 6 Figure 8 Figure 10 Figure 11 PMID:8701995

  4. Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation

    PubMed Central

    Ho, Vincent T.; Vanneman, Matthew; Kim, Haesook; Sasada, Tetsuro; Kang, Yoon Joong; Pasek, Mildred; Cutler, Corey; Koreth, John; Alyea, Edwin; Sarantopoulos, Stefanie; Antin, Joseph H.; Ritz, Jerome; Canning, Christine; Kutok, Jeffery; Mihm, Martin C.; Dranoff, Glenn; Soiffer, Robert

    2009-01-01

    Through an immune-mediated graft-versus-leukemia effect, allogeneic hematopoietic stem cell transplantation (HSCT) affords durable clinical benefits for many patients with hematologic malignancies. Nonetheless, subjects with high-risk acute myeloid leukemia or advanced myelodysplasia often relapse, underscoring the need to intensify tumor immunity within this cohort. In preclinical models, allogeneic HSCT followed by vaccination with irradiated tumor cells engineered to secrete GM-CSF generates a potent antitumor effect without exacerbating the toxicities of graft-versus-host disease (GVHD). To test whether this strategy might be similarly active in humans, we conducted a Phase I clinical trial in which high-risk acute myeloid leukemia or myelodysplasia patients were immunized with irradiated, autologous, GM-CSF-secreting tumor cells early after allogeneic, nonmyeloablative HSCT. Despite the administration of a calcineurin inhibitor as prophylaxis against GVHD, vaccination elicited local and systemic reactions that were qualitatively similar to those previously observed in nontransplanted, immunized solid-tumor patients. While the frequencies of acute and chronic GVHD were not increased, 9 of 10 subjects who completed vaccination achieved durable complete remissions, with a median follow-up of 26 months (range 12–43 months). Six long-term responders showed marked decreases in the levels of soluble NKG2D ligands, and 3 demonstrated normalization of cytotoxic lymphocyte NKG2D expression as a function of treatment. Together, these results establish the safety and immunogenicity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic HSCT, and raise the possibility that this combinatorial immunotherapy might potentiate graft-versus-leukemia in patients. PMID:19717467

  5. CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells

    PubMed Central

    Poppensieker, Karola; Otte, David-Marian; Schürmann, Britta; Limmer, Andreas; Dresing, Philipp; Drews, Eva; Schumak, Beatrix; Klotz, Luisa; Raasch, Jennifer; Mildner, Alexander; Waisman, Ari; Scheu, Stefanie; Knolle, Percy; Förster, Irmgard; Prinz, Marco; Maier, Wolfgang; Zimmer, Andreas; Alferink, Judith

    2012-01-01

    Dendritic cells (DCs) are pivotal for the development of experimental autoimmune encephalomyelitis (EAE). However, the mechanisms by which they control disease remain to be determined. This study demonstrates that expression of CC chemokine receptor 4 (CCR4) by DCs is required for EAE induction. CCR4−/− mice presented enhanced resistance to EAE associated with a reduction in IL-23 and GM-CSF expression in the CNS. Restoring CCR4 on myeloid cells in bone marrow chimeras or intracerebral microinjection of CCR4-competent DCs, but not macrophages, restored EAE in CCR4−/− mice, indicating that CCR4+ DCs are cellular mediators of EAE development. Mechanistically, CCR4−/− DCs were less efficient in GM-CSF and IL-23 production and also TH-17 maintenance. Intraspinal IL-23 reconstitution restored EAE in CCR4−/− mice, whereas intracerebral inoculation using IL-23−/− DCs or GM-CSF−/− DCs failed to induce disease. Thus, CCR4-dependent GM-CSF production in DCs required for IL-23 release in these cells is a major component in the development of EAE. Our study identified a unique role for CCR4 in regulating DC function in EAE, harboring therapeutic potential for the treatment of CNS autoimmunity by targeting CCR4 on this specific cell type. PMID:22355103

  6. Inductive potential of recombinant human granulocyte colony-stimulating factor to mature neutrophils from x-irradiated human peripheral blood hematopoietic progenitor cells.

    PubMed

    Katsumori, Takeo; Yoshino, Hironori; Hayashi, Masako; Takahashi, Kenji; Kashiwakura, Ikuo

    2009-11-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) has been used for treatment of neutropenia. Filgrastim, Nartograstim, and Lenograstim are clinically available in Japan. However, the differences in potential benefit for radiation-induced disorder between these types of rhG-CSFs remain unknown. Therefore, the effects of three different types of rhG-CSFs on granulocyte progenitor cells and expansion of neutrophils from nonirradiated or 2 Gy X-irradiated human CD34+ hematopoietic progenitor cells were examined. For analysis of granulocyte colony-forming units (CFU-G) and a surviving fraction of CFU-G, nonirradiated or X-irradiated CD34+ cells were cultured in methylcellulose containing rhG-CSF. These cells were cultured in serum-free medium supplemented with rhG-CSF, and the expansion and characteristics of neutrophils were analyzed. All three types of rhG-CSFs increased the number of CFU-G in a dose-dependent manner; however, Lenograstim is superior to others because of CFU-G-derived colony formation at relatively low doses. The surviving fraction of CFU-G was independent of the types of rhG-CSFs. Expansion of neutrophils by rhG-CSF was largely attenuated by X-irradiation, though no significant difference in neutrophil number was observed between the three types of rhG-CSFs under both nonirradiation and X-irradiation conditions. In terms of functional characteristics of neutrophils, Lenograstim-induced neutrophils produced high levels of reactive oxygen species compared to Filgrastim, when rhG-CSF was applied to nonirradiated CD34(+) cells. In conclusion, different types of rhG-CSFs lead to different effects when rhG-CSF is applied to nonirradiated CD34+ cells, though Filgrastim, Nartograstim, and Lenograstim show equal effects on X-irradiated CD34+ cells.

  7. Endogenous Heat-Shock Protein Induction with or Without Radiofrequency Ablation or Cryoablation in Patients with Stage IV Melanoma.

    PubMed

    Domingo-Musibay, Evidio; Heun, James M; Nevala, Wendy K; Callstrom, Matthew; Atwell, Thomas; Galanis, Evanthia; Erickson, Lori A; Markovic, Svetomir N

    2017-09-01

    Percutaneous thermal ablation combined with in situ granulocyte-macrophage colony-stimulating factor cytokine therapy was technically feasible and well tolerated.No significant clinical or immunologic responses were seen. Melanoma tumor-derived heat-shock proteins (HSPs) and HSP-peptide complexes can elicit protective antitumor responses. The granulocyte-macrophage colony-stimulating factor (GM-CSF) chemokine can also promote uptake and processing by professional antigen presenting cells (APCs). On this basis, we designed a pilot study of percutaneous thermal ablation as a means to induce heat-shock protein vaccination plus GM-CSF to determine safety and preliminary antitumor activity of this combination. This study was designed to assess overall safety of percutaneous ablation combined with GM-CSF for unresectable, metastatic melanoma including uveal and mucosal types. All patients received heat-shock therapy (42°C for 30 minutes), then received one of three treatments: (a) intralesional GM-CSF (500 mcg standard dose); (b) radiofrequency ablation (RFA) + GM-CSF; or (c) cryoablation plus GM-CSF. The primary endpoint of the study was the induction of endogenous HSP70 and melanoma-specific cytotoxic T lymphocytes (CTL). Nine patients (three per study arm) were enrolled. No dose-limiting toxicity was observed as specified per protocol. All patients developed progressive disease and went on to receive alternative therapy. Median overall survival (OS) was 8.2 months (95% confidence interval [CI] 2-17.2). The study was not powered to detect a difference in clinical outcome among treatment groups. Percutaneous thermal ablation plus GM-CSF was well tolerated, technically feasible, and demonstrated an acceptable adverse event profile comparable to conventional RFA and cryoablation. While HSP70 was induced following therapy, the degree of HSP70 elevation was not associated with clinical outcome or induced CTL responses. While percutaneous thermal ablation plus GM-CSF

  8. Early Events of the Reaction Elicited by CSF-470 Melanoma Vaccine Plus Adjuvants: An In Vitro Analysis of Immune Recruitment and Cytokine Release.

    PubMed

    Pampena, María B; Barrio, María M; Juliá, Estefanía P; Blanco, Paula A; von Euw, Erika M; Mordoh, José; Levy, Estrella Mariel

    2017-01-01

    In a previous work, we showed that CSF-470 vaccine plus bacillus Calmette-Guerin (BCG) and granulocyte macrophage colony-stimulating factor (GM-CSF) as adjuvants resulted in a significant benefit in the distant metastasis-free survival when comparing vaccinated vs . IFN-α2b-treated high-risk cutaneous melanoma patients in a Phase II study. Immune monitoring demonstrated an increase in anti-tumor innate and adaptive immunities of vaccinated patients, with a striking increase in IFN-γ secreting lymphocytes specific for melanoma antigens (Ags). In an effort to dissect the first steps of the immune response elicited by CSF-470 vaccine plus adjuvants, we evaluated, in an in vitro model, leukocyte migration, cytokine production, and monocyte phagocytosis of vaccine cells. Our results demonstrate that leukocytes recruitment, mostly from the innate immune system, is an early event after CSF-470 vaccine plus BCG plus GM-CSF interaction with immune cells, possibly explained by the high expression of CCL2/MCP-1 and other chemokines by vaccine cells. Early release of TNF-α and IL-1β pro-inflammatory cytokines and efficient tumor Ags phagocytosis by monocytes take place and would probably create a favorable context for Ag processing and presentation. Although the presence of the vaccine cells hampered cytokines production stimulated by BCG in a mechanism partially mediated by TGF-β and IL-10, still significant levels of TNF-α and IL-1β could be detected. Thus, BCG was required to induce local inflammation in the presence of CSF-470 vaccine cells.

  9. IFNγ inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis

    PubMed Central

    Ramakrishna, Chandran

    2018-01-01

    Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection. PMID:29352287

  10. ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research

    Cancer.gov

    Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated, or M1, macrophages have immune-stimulatory properties and cytotoxic function against tumor cells. Alternatively activated, or M2, macrophages have low cytotoxic function but high tissue-remodeling activity. There are also M2-like cells called tumor-associated macrophages (TAMs) that are responsible for many tumor-promoting activities. Blocking the function of TAMs inhibits tumorigenesis.

  11. CSF N-glycan profile reveals sialylation deficiency in a patient with GM2 gangliosidosis presenting as childhood disintegrative disorder.

    PubMed

    Barone, Rita; Sturiale, Luisella; Fiumara, Agata; Palmigiano, Angelo; Bua, Rosaria O; Rizzo, Renata; Zappia, Mario; Garozzo, Domenico

    2016-04-01

    Protein N-glycosylation consists in the synthesis and processing of the oligosaccharide moiety (N-glycan) linked to a protein and it serves several functions for the proper central nervous system (CNS) development and function. Previous experimental and clinical studies have shown the importance of proper glycoprotein sialylation for the synaptic function and the occurrence of autism spectrum disorders (ASD) in the presence of sialylation deficiency in the CNS. Late-onset Tay Sachs disease (LOTSD) is a lysosomal disorder caused by mutations in the HEXA gene resulting in GM2-ganglioside storage in the CNS. It is characterized by progressive neurological impairment and high co-occurrence of psychiatric disturbances. We studied the N-glycome profile of the cerebrospinal fluid (CSF) in a 14 year-old patient with GM2-gangliosidosis (LOTSD). At the age of 4, the patient presented regressive autism fulfilling criteria for childhood disintegrative disorder (CDD). A CSF sample was obtained in the course of diagnostic work-up for the suspicion of an underlying neurodegenerative disorder. We found definite changes of CSF N-glycans due to a dramatic decrease of sialylated biantennary and triantennary structures and an increase of asialo-core fucosylated bisected N-glycans. No changes of total plasma N-glycans were found. Herein findings highlight possible relationships between the early onset psychiatric disturbance featuring CDD in the patient and defective protein sialylation in the CNS. In conclusion, the study first shows aberrant N-glycan structures of CSF proteins in LOTSD; unveils possible pathomechanisms of GM2-gangliosidosis; supports existing relationships between neuropsychiatric disorders and unproper protein glycosylation in the CNS. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  12. Fluorine-18 fluorodeoxyglucose splenic uptake from extramedullary hematopoiesis after granulocyte colony-stimulating factor stimulation.

    PubMed

    Abdel-Dayem, H M; Rosen, G; El-Zeftawy, H; Naddaf, S; Kumar, M; Atay, S; Cacavio, A

    1999-05-01

    Two patients with sarcoma, one with recurrent osteosarcoma of the spine and the other with metastatic synovial cell sarcoma, were treated with high-dose chemotherapy that produced severe leukopenia. The patients received granulocyte colony-stimulating factor (G-CSF) to stimulate the bone marrow (480 mg given subcutaneously twice daily for 5 to 7 days); their responses were seen as a marked increase in peripheral leukocyte count with no change in the erythrocyte or platelet counts. The patients had fluorine-18 fluorodeoxyglucose (F-18 FDG) imaging 24 hours after the end of G-CSF treatment. Diffusely increased uptake of F-18 FDG was seen in the bone marrow in both patients. In addition, markedly increased uptake in the spleen was noted in both, indicating that the spleen was the site of extramedullary hematopoiesis. The patients had no evidence of splenic metastases. The first patient had a history of irradiation to the dorsal spine, which was less responsive to G-CSF administration than was the nonirradiated lumbar spine.

  13. Paradoxical drop in circulating neutrophil count following granulocyte-colony stimulating factor and stem cell factor administration in rhesus macaques.

    PubMed

    Gordon, Brent C; Revenis, Amy M; Bonifacino, Aylin C; Sander, William E; Metzger, Mark E; Krouse, Allen E; Usherson, Tatiana N; Donahue, Robert E

    2007-06-01

    Granulocyte colony-stimulating factor (G-CSF) is frequently used therapeutically to treat chronic or transient neutropenia and to mobilize hematopoietic stem cells. Shortly following G-CSF administration, we observed a dramatic transient drop in circulating neutrophil number. This article characterizes this effect in a rhesus macaque animal model. Hematologic changes were monitored following subcutaneous (SQ) administration of G-CSF. G-CSF was administered as a single SQ dose at 10 microg/kg or 50 microg/kg. It was also administered (10 microg/kg) in combination with stem cell factor (SCF; 200 microg/kg) over 5 days. Flow cytometry was performed on serial blood samples to detect changes in cell surface adhesion protein expression. Neutrophil count dramatically declined 30 minutes after G-CSF administration. This decline was observed whether 10 microg/kg G-CSF was administered in combination with SCF over 5 days, or given as a single 10 microg/kg dose. At a single 50 microg/kg dose, the decline accelerated to 15 minutes. Neutrophil count returned to baseline after 120 minutes and rapidly increased thereafter. An increase in CD11a and CD49d expression coincided with the drop in neutrophil count. A transient paradoxical decline in neutrophil count was observed following administration of G-CSF either alone or in combination with SCF. This decline accelerated with the administration of a higher dose of G-CSF and was associated with an increase in CD11a and CD49d expression. It remains to be determined whether this decline in circulating neutrophils is associated with an increase in endothelial margination and/or entrance into extravascular compartments.

  14. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    PubMed

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  15. A phase I study of different doses and frequencies of pegylated recombinant human granulocyte-colony stimulating factor (PEG rhG-CSF) in patients with standard-dose chemotherapy-induced neutropenia

    PubMed Central

    Qin, Yan; Han, Xiaohong; Wang, Lin; Du, Ping; Yao, Jiarui; Wu, Di; Song, Yuanyuan; Zhang, Shuxiang; Tang, Le; Shi, Yuankai

    2017-01-01

    Objective The recommended dose of prophylactic pegylated recombinant human granulocyte-colony stimulating factor (PEG rhG-CSF) is 100 μg/kg once per cycle for patients receiving intense-dose chemotherapy. However, few data are available on the proper dose for patients receiving less-intense chemotherapy. The aim of this phase I study is to explore the proper dose and administration schedule of PEG rhG-CSF for patients receiving standard-dose chemotherapy. Methods Eligible patients received 3-cycle chemotherapy every 3 weeks. No PEG rhG-CSF was given in the first cycle. Patients experienced grade 3 or 4 neutropenia would then enter the cycle 2 and 3. In cycle 2, patients received a single subcutaneous injection of prophylactic PEG rhG-CSF on d 3, and received half-dose subcutaneous injection in cycle 3 on d 3 and d 5, respectively. Escalating doses (30, 60, 100 and 200 μg/kg) of PEG rhG-CSF were investigated. Results A total of 26 patients were enrolled and received chemotherapy, in which 24 and 18 patients entered cycle 2 and cycle 3 treatment, respectively. In cycle 2, the incidence of grade 3 or 4 neutropenia for patients receiving single-dose PEG rhG-CSF of 30, 60, 100 and 200 μg/kg was 66.67%, 33.33%, 22.22% and 0, respectively, with a median duration less than 1 (0–2) d. No grade 3 or higher neutropenia was noted in cycle 3 in all dose cohorts. Conclusions The pharmacokinetic and pharmacodynamic profiles of PEG rhG-CSF used in cancer patients were similar to those reported, as well as the safety. Double half dose administration model showed better efficacy result than a single dose model in terms of grade 3 neutropenia and above. The single dose of 60 μg/kg, 100 μg/kg and double half dose of 30 μg/kg were recommended to the phase II study, hoping to find a preferable method for neutropenia treatment. PMID:29142459

  16. A phase I study of different doses and frequencies of pegylated recombinant human granulocyte-colony stimulating factor (PEG rhG-CSF) in patients with standard-dose chemotherapy-induced neutropenia.

    PubMed

    Qin, Yan; Han, Xiaohong; Wang, Lin; Du, Ping; Yao, Jiarui; Wu, Di; Song, Yuanyuan; Zhang, Shuxiang; Tang, Le; Shi, Yuankai

    2017-10-01

    The recommended dose of prophylactic pegylated recombinant human granulocyte-colony stimulating factor (PEG rhG-CSF) is 100 μg/kg once per cycle for patients receiving intense-dose chemotherapy. However, few data are available on the proper dose for patients receiving less-intense chemotherapy. The aim of this phase I study is to explore the proper dose and administration schedule of PEG rhG-CSF for patients receiving standard-dose chemotherapy. Eligible patients received 3-cycle chemotherapy every 3 weeks. No PEG rhG-CSF was given in the first cycle. Patients experienced grade 3 or 4 neutropenia would then enter the cycle 2 and 3. In cycle 2, patients received a single subcutaneous injection of prophylactic PEG rhG-CSF on d 3, and received half-dose subcutaneous injection in cycle 3 on d 3 and d 5, respectively. Escalating doses (30, 60, 100 and 200 μg/kg) of PEG rhG-CSF were investigated. A total of 26 patients were enrolled and received chemotherapy, in which 24 and 18 patients entered cycle 2 and cycle 3 treatment, respectively. In cycle 2, the incidence of grade 3 or 4 neutropenia for patients receiving single-dose PEG rhG-CSF of 30, 60, 100 and 200 μg/kg was 66.67%, 33.33%, 22.22% and 0, respectively, with a median duration less than 1 (0-2) d. No grade 3 or higher neutropenia was noted in cycle 3 in all dose cohorts. The pharmacokinetic and pharmacodynamic profiles of PEG rhG-CSF used in cancer patients were similar to those reported, as well as the safety. Double half dose administration model showed better efficacy result than a single dose model in terms of grade 3 neutropenia and above. The single dose of 60 μg/kg, 100 μg/kg and double half dose of 30 μg/kg were recommended to the phase II study, hoping to find a preferable method for neutropenia treatment.

  17. Recombinant human granulocyte colony-stimulating factor after kidney transplantation: a retrospective analysis to evaluate the benefit or risk of immunostimulation.

    PubMed

    Schmaldienst, S; Bekesi, G; Deicher, R; Franz, M; Hörl, W H; Pohanka, E

    2000-02-27

    Leukopenia due to immunosuppressive drugs represents a well-known complication in graft recipients, which might put patients at an increased risk for infections. In this study, recombinant human granulocyte colony-stimulating factor (rhG-CSF), a hematopoietic growth factor that selectively stimulates neutrophil colony formation and neutrophil cell differentiation, was tested for safety and efficacy. We evaluated 30 episodes of leukopenia (<2000/mm3) in 19 kidney graft recipients treated with rhG-CSF. This cohort was compared with an age- and sex-matched historical control group without therapy. Peripheral and differential blood cell counts were analyzed, and the duration of leukopenia was estimated. Furthermore, the occurrence of infections associated with leukopenia was investigated. All patients responded to rhG-CSF therapy. Peripheral leukocyte counts increased from 1756+/-582 to a peak of 8723+/-3038/mm3 (P<0.0001). On the average, the peak was reached after 2.7 days (range 1 to 8). Furthermore, the effect was fairly persistent, because in 22 of 30 episodes leukocyte counts were within the normal range after 7 days. The elevation of total leukocytes was mainly due to a specific increase in neutrophil granulocytes from 1143+/-514 to 6895+/-1950/mm3 on the peak day (P<0.0001). Patients in the G-CSF group were leukopenic for a mean of 1.29+/-0.59 days, whereas in the control group leukopenia persisted for at least 7 days. Consequently, the rate of infections was significantly higher (P<0.045) in nontreated patients. rhG-CSF was safe and effective in leukopenic kidney graft recipients. Leukopenic episodes in treated patients were significantly shorter, and infections occurred at a significantly lower rate. No evidence was found that rhG-CSF therapy might trigger rejection episodes, and no side effects were observed.

  18. Opposite cytokine synthesis by fibroblasts in contact co-culture with osteosarcoma cells compared with transwell co-cultures.

    PubMed

    David, Manu S; Kelly, Elizabeth; Zoellner, Hans

    2013-04-01

    We recently reported exchange of membrane and cytoplasm during contact co-culture between human Gingival Fibroblasts (h-GF) and SAOS-2 osteosarcoma cells, a process we termed 'cellular sipping' to reflect the manner in which cells become morphologically diverse through uptake of material from the opposing cell type, independent of genetic change. Cellular sipping is increased by Tumor Necrosis Factor-α (TNF-α), and we here show for the first time altered cytokine synthesis in contact co-culture supporting cellular sipping compared with co-culture where h-GF and SAOS-2 were separated in transwells. SAOS-2 had often undetectably low cytokine levels, while Interleukin-6 (IL-6), Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) were secreted primarily by TNF-α stimulated h-GF and basic Fibroblast Growth Factor (FGF) was prominent in h-GF lysates (p < 0.001). Contact co-cultures permitting cellular sipping had lower IL-6, G-CSF and GM-CSF levels, as well as higher lysate FGF levels compared with TNF-α treated h-GF alone (p < 0.05). The opposite was the case for co-cultures in transwells, with increased IL-6, G-CSF and GM-CSF levels (p < 0.03) and no clear difference in FGF. We thus demonstrate significant phenotypic change in cultures where cellular sipping occurs, potentially contributing to tumor inflammatory responses. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants.

    PubMed

    Ali, Omar A; Verbeke, Catia; Johnson, Chris; Sands, R Warren; Lewin, Sarah A; White, Des; Doherty, Edward; Dranoff, Glenn; Mooney, David J

    2014-03-15

    The innate cellular and molecular components required to mediate effective vaccination against weak tumor-associated antigens remain unclear. In this study, we used polymeric cancer vaccines incorporating different classes of adjuvants to induce tumor protection, to identify dendritic cell (DC) subsets and cytokines critical to this efficacy. Three-dimensional, porous polymer matrices loaded with tumor lysates and presenting distinct combinations of granulocyte macrophage colony-stimulating factor (GM-CSF) and various Toll-like receptor (TLR) agonists affected 70% to 90% prophylactic tumor protection in B16-F10 melanoma models. In aggressive, therapeutic B16 models, the vaccine systems incorporating GM-CSF in combination with P(I:C) or CpG-ODN induced the complete regression of solid tumors (≤40 mm(2)), resulting in 33% long-term survival. Regression analysis revealed that the numbers of vaccine-resident CD8(+) DCs, plasmacytoid DCs (pDC), along with local interleukin (IL)-12, and granulocyte colony-stimulating factor (G-CSF) concentrations correlated strongly to vaccine efficacy regardless of adjuvant type. Furthermore, vaccine studies in Batf3(-/-) mice revealed that CD8(+) DCs are required to affect tumor protection, as vaccines in these mice were deficient in cytotoxic T lymphocytes priming and IL-12 induction in comparison with wild-type. These studies broadly demonstrate that three-dimensional polymeric vaccines provide a potent platform for prophylactic and therapeutic protection, and can be used as a tool to identify critical components of a desired immune response. Specifically, these results suggest that CD8(+) DCs, pDCs, IL-12, and G-CSF play important roles in priming effective antitumor responses with these vaccines. ©2014 AACR.

  20. Early applications of granulocyte colony-stimulating factor (G-CSF) can stabilize the blood-optic-nerve barrier and ameliorate inflammation in a rat model of anterior ischemic optic neuropathy (rAION).

    PubMed

    Wen, Yao-Tseng; Huang, Tzu-Lun; Huang, Sung-Ping; Chang, Chung-Hsing; Tsai, Rong-Kung

    2016-10-01

    Granulocyte colony-stimulating factor (G-CSF) was reported to have a neuroprotective effect in a rat model of anterior ischemic optic neuropathy (rAION model). However, the therapeutic window and anti-inflammatory effects of G-CSF in a rAION model have yet to be elucidated. Thus, this study aimed to determine the therapeutic window of G-CSF and investigate the mechanisms of G-CSF via regulation of optic nerve (ON) inflammation in a rAION model. Rats were treated with G-CSF on day 0, 1, 2 or 7 post-rAION induction for 5 consecutive days, and a control group were treated with phosphate-buffered saline (PBS). Visual function was assessed by flash visual evoked potentials at 4 weeks post-rAION induction. The survival rate and apoptosis of retinal ganglion cells were determined by FluoroGold labeling and TUNEL assay, respectively. ON inflammation was evaluated by staining of ED1 and Iba1, and ON vascular permeability was determined by Evans Blue extravasation. The type of macrophage polarization was evaluated using quantitative real-time PCR (qRT-PCR). The protein levels of TNF-α and IL-1β were analyzed by western blotting. A therapeutic window during which G-CSF could rescue visual function and retinal ganglion cell survival was demonstrated at day 0 and day 1 post-infarct. Macrophage infiltration was reduced by 3.1- and 1.6-fold by G-CSF treatment starting on day 0 and 1 post-rAION induction, respectively, compared with the PBS-treated group (P<0.05). This was compatible with 3.3- and 1.7-fold reductions in ON vascular permeability after G-CSF treatment compared with PBS treatment (P<0.05). Microglial activation was increased by 3.8- and 3.2-fold in the early (beginning treatment at day 0 or 1) G-CSF-treated group compared with the PBS-treated group (P<0.05). Immediate (within 30 mins of infarct) treatment with G-CSF also induced M2 microglia/macrophage activation. The cytokine levels were lower in the group that received immediate G-CSF treatment compared to

  1. Mobilizing peripheral blood stem cells with high-dose G-CSF alone is as effective as with Dexa-BEAM plus G-CSF in lymphoma patients.

    PubMed

    Kröger, N; Zeller, W; Fehse, N; Hassan, H T; Krüger, W; Gutensohn, K; Lölliger, C; Zander, A R

    1998-09-01

    We compared retrospectively the efficacy of granulocyte colony stimulating factor (G-CSF) alone with chemotherapy plus G-CSF in mobilizing CD34-positive cells in patients with malignant lymphoma. 35 patients underwent peripheral blood stem cell (PBSC) collection following mobilization either with 24 microg/kg G-CSF for 4 consecutive days (n = 18) or Dexa-BEAM chemotherapy plus 5 microg/kg G-CSF (n = 17). High-dose G-CSF was well tolerated with only slight bone pain and/or myalgia. The Dexa-BEAM therapy required hospitalization with a median duration of 21 d. The median number of apheresis procedures in both groups was two (range two to four), resulting in a median of 5.3 and 5.1 x 10(6) CD34+ cells/kg. No patients in the G-CSF group, but one in the Dexa-BEAM group, failed to reach the target of collecting >2.0 x 10(6) CD34+ cells/kg. The number of CFU-GM (10.4 v 6.0 x 10(5)/kg) and of BFU-E (10.6 v 4.5 x 10(5)/kg; P = 0.04) was higher in the G-CSF group than in the Dexa-BEAM group. A subset analysis of CD34+ cells was performed in 16 patients showing a higher mean of Thy-1 (CD90w) coexpression in the G-CSF than in the Dexa-BEAM group (4.8 v 1.8%, P = 0.12). Additionally the percentage of CD34+/CD38- cells was higher in the G-CSF group (10.66% v 8.8%). However, these differences were not statistically significant. The median time to leucocyte and platelet engraftment after high-dose chemotherapy was slightly shorter in the G-CSF than in the Dexa-BEAM group (9 v 10 and 12 v 13.5 d, respectively). These results demonstrate that high-dose G-CSF is as effective as Dexa-BEAM plus G-CSF in mobilizing peripheral blood stem cells and produces prompt engraftment. The major advantages of G-CSF mobilization were the safe outpatient self-application and the fixed-day apheresis.

  2. Effectiveness of Granulocyte Colony-Stimulating Factor in Hospitalized Infants with Neutropenia.

    PubMed

    Lee, Jin A; Sauer, Brooke; Tuminski, William; Cheong, Jiyu; Fitz-Henley, John; Mayers, Megan; Ezuma-Igwe, Chidera; Arnold, Christopher; Hornik, Christoph P; Clark, Reese H; Benjamin, Daniel K; Smith, P Brian; Ericson, Jessica E

    2017-04-01

    Objective  The objective of this study was to determine the time to hematologic recovery and the incidence of secondary sepsis and mortality among neutropenic infants treated or not treated with granulocyte colony-stimulating factor (G-CSF). Study Design  We identified all neutropenic infants discharged from 348 neonatal intensive care units from 1997 to 2012. Neutropenia was defined as an absolute neutrophil count ≤ 1,500/µL for ≥ 1 day during the first 120 days of life. Incidence of secondary sepsis and mortality and number of days required to reach an absolute neutrophil count > 1,500/µL for infants exposed to G-CSF were compared with those of unexposed infants. Results  We identified 30,705 neutropenic infants, including 2,142 infants (7%) treated with G-CSF. Treated infants had a shorter adjusted time to hematologic recovery (hazard ratio: 1.36, 95% confidence interval [CI]: 1.30-1.44) and higher adjusted odds of secondary sepsis (odds ratio [OR]: 1.50, 95% CI: 1.20-1.87), death (OR: 1.33, 95% CI: 1.05-1.68), and the combined outcome of sepsis or death (OR: 1.41, 95% CI: 1.19-1.67) at day 14 compared with untreated infants. These differences persisted at day 28. Conclusion  G-CSF treatment decreased the time to hematologic recovery but was associated with increased odds of secondary sepsis and mortality in neutropenic infants. G-CSF should not routinely be used for infants with neutropenia. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Simultaneous quantification of GM1 and GM2 gangliosides by isotope dilution tandem mass spectrometry.

    PubMed

    Gu, Jianghong; Tifft, Cynthia J; Soldin, Steven J

    2008-04-01

    Gangliosides (GGs) are considered as diagnostic biomarkers and therapeutic targets and agents. The goal of this study was to develop a tandem mass spectrometry (MS/MS) method for the simultaneous measurement of both GM1 and GM2 gangliosides in human cerebrospinal fluid (CSF) samples in order to be able to determine their concentrations in patients with Tay-Sachs and Sandhoff disease and assess whether drugs or transplantation affect their concentrations. An API-4000 tandem mass spectrometer equipped with TurboIonSpray source and Shimadzu HPLC system was employed to perform the analysis using isotope dilution with deuterium labeled internal standards. To a 1.5 mL conical plastic Eppendorf centrifuge tube, 40 microL of human CSF sample was added and mixed with 400 microL of internal standard solution for deproteinization. After centrifugation, 100 microL of supernatant was injected onto a C-18 column. After a 2.5 min wash, the switching valve was activated and the analytes were eluted from the column with a water/methanol gradient into the MS/MS system. Quantification by multiple reaction-monitoring (MRM) analysis was performed in the negative mode. The within-day coefficients of variation were <3% for GM1 and <2% for GM2 and the between-day coefficients of variation were <5% for both GM1 and GM2 at all concentrations tested. Accuracy ranged between 98% and 102% for both analytes. Good linearity was also obtained within the concentration range of 10-200 ng/mL (6.5-129.3 nmol/L) for GM1 and 5-100 ng/mL (3.6-72.3 nmol/L) for GM2 (r> or =0.995). A new simple, accurate, and fast isotope dilution tandem mass spectrometry method was developed for the simultaneous quantification of GM1 and GM2 gangliosides in a small amount of human CSF. Concentrations were measured in "normal" CSF and in CSF from patients with Tay-Sachs disease.

  4. Essential mechanisms of differential activation of eosinophils by IL-3 compared to GM-CSF and IL-5

    PubMed Central

    Esnault, Stephane; Kelly, Elizabeth A.

    2017-01-01

    There is compelling evidence that the eosinophils bring negative biological outcomes in several diseases, including eosinophilic asthma and hypereosinophilic syndromes. Eosinophils produce and store a broad range of toxic proteins and other mediators that enhance the inflammatory response and lead to tissue damage. For instance, in asthma, there is a close relationship between increased lung eosinophilia, asthma exacerbation, and loss of lung function. The use of an anti-IL-5 therapy in severe eosinophilic asthmatic patients is efficient to reduce exacerbations. However, anti-IL-5-treated patients still display a relatively high amount of functional lung tissue eosinophils, indicating that supplemental therapies are required to damper the eosinophil functions. Our recent published works, suggest that compared to IL-5, IL-3 can more strongly and differentially affect eosinophil functions. In this review, we will summarize our and other investigations that have compared the effects of the three β-chain receptor cytokines (IL-5, GM-CSF and IL-3) on eosinophil biology. We will focus on how IL-3 differentially activates eosinophils compared to IL-5 or GM-CSF. PMID:28605348

  5. Simplified Large-Scale Refolding, Purification, and Characterization of Recombinant Human Granulocyte-Colony Stimulating Factor in Escherichia coli

    PubMed Central

    Kim, Chang Kyu; Lee, Chi Ho; Lee, Seung-Bae; Oh, Jae-Wook

    2013-01-01

    Granulocyte-colony stimulating factor (G-CSF) is a pleiotropic cytokine that stimulates the development of committed hematopoietic progenitor cells and enhances the functional activity of mature cells. Here, we report a simplified method for fed-batch culture as well as the purification of recombinant human (rh) G-CSF. The new system for rhG-CSF purification was performed using not only temperature shift strategy without isopropyl-l-thio-β-d-galactoside (IPTG) induction but also the purification method by a single step of prep-HPLC after the pH precipitation of the refolded samples. Through these processes, the final cell density and overall yield of homogenous rhG-CSF were obtained 42.8 g as dry cell weights, 1.75 g as purified active proteins, from 1 L culture broth, respectively. The purity of rhG-CSF was finally 99% since the isoforms of rhG-CSF could be separated through the prep-HPLC step. The result of biological activity indicated that purified rhG-CSF has a similar profile to the World Health Organization (WHO) 2nd International Standard for G-CSF. Taken together, our results demonstrate that the simple purification through a single step of prep-HPLC may be valuable for the industrial-scale production of biologically active proteins. PMID:24224041

  6. Use of Granulocyte Colony–Stimulating Factor During Pregnancy in Women With Chronic Neutropenia

    PubMed Central

    Boxer, Laurence A.; Bolyard, Audrey Anna; Kelley, Merideth L.; Marrero, Tracy M.; Phan, Lan; Bond, Jordan M.; Newburger, Peter E.; Dale, David C.

    2014-01-01

    Objective To report outcomes associated with the administration of granulocyte colony–stimulating factor (G-CSF) to women with chronic neutropenia during pregnancy. Methods We conducted an observational study of women of child-bearing potential with congenital, cyclic, idiopathic, or autoimmune neutropenia enrolled in the Severe Chronic Neutropenia International Registry to determine outcomes of pregnancies, without and with chronic G-CSF therapy, 1999–2014. Treatment decisions were made by the patients’ personal physicians. A research nurse conducted telephone interviews of all enrolled U.S. women of child-bearing potential using a standard questionnaire. Comparisons utilized Fisher’s exact test analysis and Student’s t-test. Results One-hundred seven women reported 224 pregnancies, 124 without G-CSF therapy and 100 on chronic G-CSF therapy (median dose: 1.0 mcg/kg/day, range 0.02–8.6 mcg/kg/day). There were no significant differences in adverse events between the groups considering all pregnancies or individual mothers, e.g., spontaneous terminations (all pregnancies: no G-CSF 27/124, G-CSF 13/100; P=0.11, Fisher’s exact test,), preterm labors (all pregnancies, no G-CSF 9/124, G-CSF 2/100, P=0.12,). A study with at least 300 per group would be needed to detect a difference in these events with 80% statistical power (alpha=0.05). Four newborns of mothers with idiopathic or autoimmune neutropenia not on G-CSF (4/101) had life-threatening infections, whereas there were no similar events (0/90) in the treated group, but this difference was also not statistically significant. (p=0.124). Adverse events in the neonates were similar for the two groups. Conclusions This observational study showed no significant adverse effects of administration of G-CSF to women with severe chronic neutropenia during pregnancy. PMID:25560125

  7. Multimodal Approaches for Regenerative Stroke Therapies: Combination of Granulocyte Colony-Stimulating Factor with Bone Marrow Mesenchymal Stem Cells is Not Superior to G-CSF Alone

    PubMed Central

    Balseanu, Adrian Tudor; Buga, Ana-Maria; Catalin, Bogdan; Wagner, Daniel-Christoph; Boltze, Johannes; Zagrean, Ana-Maria; Reymann, Klaus; Schaebitz, Wolf; Popa-Wagner, Aurel

    2014-01-01

    Attractive therapeutic strategies to enhance post-stroke recovery of aged brains include methods of cellular therapy that can enhance the endogenous restorative mechanisms of the injured brain. Since stroke afflicts mostly the elderly, it is highly desirable to test the efficacy of cell therapy in the microenvironment of aged brains that is generally refractory to regeneration. In particular, stem cells from the bone marrow allow an autologous transplantation approach that can be translated in the near future to the clinical practice. Such a bone marrow-derived therapy includes the grafting of stem cells as well as the delayed induction of endogenous stem cell mobilization and homing by the stem cell mobilizer granulocyte colony-stimulating factor (G-CSF). We tested the hypothesis that grafting of bone marrow-derived pre-differentiated mesenchymal cells (BM-MSCs) in G-CSF-treated animals improves the long-term functional outcome in aged rodents. To this end, G-CSF alone (50 μg/kg) or in combination with a single dose (106 cells) of rat BM MSCs was administered intravenously to Sprague-Dawley rats at 6 h after transient occlusion (90 min) of the middle cerebral artery. Infarct volume was measured by magnetic resonance imaging at 3 and 48 days post-stroke and additionally by immunhistochemistry at day 56. Functional recovery was tested during the entire post-stroke survival period of 56 days. Daily treatment for post-stroke aged rats with G-CSF led to a robust and consistent improvement of neurological function after 28 days. The combination therapy also led to robust angiogenesis in the formerly infarct core and beyond in the “islet of regeneration.” However, G-CSF + BM MSCs may not impact at all on the spatial reference-memory task or infarct volume and therefore did not further improve the post-stroke recovery. We suggest that in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be

  8. Neuroantigen-specific, tolerogenic vaccines: GM-CSF is a fusion partner that facilitates tolerance rather than immunity to dominant self-epitopes of myelin in murine models of experimental autoimmune encephalomyelitis (EAE)

    PubMed Central

    2011-01-01

    Background Vaccination strategies that elicit antigen-specific tolerance are needed as therapies for autoimmune disease. This study focused on whether cytokine-neuroantigen (NAg) fusion proteins could inhibit disease in chronic murine models of experimental autoimmune encephalomyelitis (EAE) and thus serve as potential therapeutic modalities for multiple sclerosis. Results A fusion protein comprised of murine GM-CSF as the N-terminal domain and the encephalitogenic MOG35-55 peptide as the C-terminal domain was tested as a tolerogenic, therapeutic vaccine (TTV) in the C57BL/6 model of EAE. Administration of GMCSF-MOG before active induction of EAE, or alternatively, at the onset of EAE blocked the development and progression of EAE. Covalent linkage of the GM-CSF and MOG35-55 domains was required for tolerogenic activity. Likewise, a TTV comprised of GM-CSF and PLP139-151 was a tolerogen in the SJL model of EAE. Conclusion These data indicated that fusion proteins containing GM-CSF coupled to myelin auto-antigens elicit tolerance rather than immunity. PMID:22208499

  9. Receptor for macrophage colony-stimulating factor transduces a signal decreasing erythroid potential in the multipotent hematopoietic EML cell line.

    PubMed

    Pawlak, G; Grasset, M F; Arnaud, S; Blanchet, J P; Mouchiroud, G

    2000-10-01

    To test the hypothesis that hematopoietic growth factors may influence lineage choice in pluripotent progenitor cells, we investigated the effects of macrophage colony-stimulating factor (M-CSF) on erythroid and myeloid potentials of multipotent EML cells ectopically expressing M-CSF receptor (M-CSFR). EML cells are stem cell factor (SCF)-dependent murine cells that give rise spontaneously to pre-B cells, burst-forming unit erythroid (BFU-E), and colony-forming unit granulocyte macrophage (CFU-GM). We determined BFU-E and CFU-GM frequencies among EML cells transduced with murine M-CSFR, human M-CSFR, or chimeric receptors, and cultivated in the presence of SCF, M-CSF, or both growth factors. Effects of specific inhibitors of signaling molecules were investigated. EML cells transduced with murine M-CSFR proliferated in response to M-CSF but also exhibited a sharp and rapid decrease in BFU-E frequency associated with an increase in CFU-GM frequency. In contrast, EML cells expressing human M-CSFR proliferated in response to M-CSF without any changes in erythroid or myeloid potential. Using chimeric receptors between human and murine M-CSFR, we showed that the effects of M-CSF on EML cell differentiation potential are mediated by a large region in the intracellular domain of murine M-CSFR. Furthermore, phospholipase C (PLC) inhibitor U73122 interfered with the negative effects of ligand-activated murine M-CSFR on EML cell erythroid potential. We propose that signaling pathways activated by tyrosine kinase receptors may regulate erythroid potential and commitment decisions in multipotent progenitor cells and that PLC may play a key role in this process.

  10. Long-active granulocyte colony-stimulating factor for peripheral blood hematopoietic progenitor cell mobilization.

    PubMed

    Martino, Massimo; Laszlo, Daniele; Lanza, Francesco

    2014-06-01

    Peg-filgrastim (PEG-FIL), a polyethylene glycol-conjugated form of granulocyte colony-stimulating factor (G-CSF), has been introduced in clinical practice and is effective in shortening the time of neutropenia after cytotoxic chemotherapy. G-CSF has emerged as the preferred cytokine for hematopoietic progenitor cells' (HPC) mobilization. Nevertheless, data on the ability of PEG-FIL in this field have been published. We review publications in the field with the goal of providing an overview of this approach. PEG-FIL may be able to mobilize CD34(+) cells in a more timely fashion than G-CSF, with the advantages of only a single-dose administration, an earlier start and a reduction in the number of apheresis procedures. The main controversies concern the dosage of the drug and the optimal dose. In the context of chemo-mobilization, a single dose of 6 mg PEG-FIL seems effective in terms of HPC's mobilization and there is no increase in this effect if the dose is doubled to 12 mg. Steady-state mobilization requires higher doses of PEG-FIL and this approach is not cost-effective when compared with G-CSF. The experiences with PEG-FIL in the healthy donor setting are very limited.

  11. Common medium versus advanced IVF medium for cryopreserved oocytes in heterologous cycles.

    PubMed

    Poverini, R; Lisi, R; Lisi, F; Berlinghieri, V; Bielli, W; Carfagna, P; Costantino, A; Iacomino, D; Nicodemo, G

    2018-12-01

    Granulocyte-macrophage colony-stimulation factor plays different crucial roles during embryo implantation and subsequent development. Here we aimed to evaluate the effects of embryo cell culture medium, with the inclusion of granulocyte-macrophage colony-stimulation factor (GM-CSF), on embryo development and pregnancy rate. To this end, we took advantage of our retrospective observational study to correlate the outcomes from two different culture media. We included in this study 25 unselected patient from our IVF Center that underwent heterologous IVF cycle with crypreserved oocytes. We analyze the fertilization rate, pregnancy rate, and embryo quality at different day of transfer obtained from two different media composition. Our results show that the rate of fertilization and the pregnancy rate were increased using medium added with this particular type of cytokines (GM-CSF).

  12. Two protocols to treat thin endometrium with granulocyte colony-stimulating factor during frozen embryo transfer cycles.

    PubMed

    Xu, Bin; Zhang, Qiong; Hao, Jie; Xu, Dabao; Li, Yanping

    2015-04-01

    The efficacy of two granulocyte colony-stimulating factor (G-CSF) protocols for thin endometrium were investigated. Eighty-two patients were diagnosed with thin endometrium (<7 mm). Thirty patients with previously cancelled embryo transfers received intrauterine G-CSF in subsequent frozen embryo transfer (FET) cycles. Patients were divided into the G-CSF only and G-CSF with endometrial scratch subgroups. Compared with previous cycles, endometrial thickness increased from 5.7 ± 0.7 mm to 8.1 ± 2.1 mm after G-CSF treatment (P < 0.001). Endometrial thickness increases were not significantly different between the two subgroups. The G-CSF with endometrial scratch subgroup established nominally higher though non-significant clinical pregnancy and live birth rates than the G-CSF only subgroup (53.8 % versus 42.9% and 38.5% versus 28.6%, respectively). Fifty-two patients underwent FET despite edometrial thickness less than 7 mm, and were included as controls. Significantly higher embryo implantation and clinical pregnancy rates were observed in the G-CSF group compared with the control group (31.5% versus 13.9%; P < 0.01; 48.1% versus 25.0%; P = 0.038, respectively). Endometrial scracth did not impair G-CSF treatment for thin endometrium and favoured pregnancy and live birth rates. For patients with thin endometrium, embryo transfer cancellation and G-CSF treatment in subsequent FET cycles is beneficial. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Drug eruption caused by recombinant human G-CSF.

    PubMed

    Sasaki, O; Yokoyama, A; Uemura, S; Fujino, S; Inoue, Y; Kohno, N; Hiwada, K

    1994-10-01

    Two types of recombinant human granulocyte colony-stimulating factor (rhG-CSF) are available, and equally used for mitigation of neutropenia. One is a glycosylated natural product from mammalian cells, and the other a non-glycosylated form from Escherichia coli. Though only minimal adverse effects have been reported for both, we treated two patients with rhG-CSF-induced systemic eruption. Based on these patients, the following should be noted: 1) drug eruption may occur in both types of rhG-CSF without detectable antibodies, 2) intradermal test is useful for determination of the causal drug, and 3) if one rhG-CSF product causes eruption, the alternative one may possibly be safe and effective.

  14. Effects of recombinant human granulocyte colony-stimulating factor on the hematologic recovery and survival of irradiated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanikawa, S.; Nose, M.; Aoki, Y.

    1990-08-01

    We studied the effects of intraperitoneal injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF) according to various administration schedules on the recovery of spleen colony-forming units (CFU-S) and peripheral blood counts, and on the survival of irradiated mice. The sooner and more frequently the mice were injected with rhG-CSF after irradiation, the more enhanced the recovery of CFU-S in bone marrow was obtained on day 7. Twice-daily injections of rhG-CSF from day 0 to day 2 significantly enhanced the recovery of platelets and hematocrit, but two injections of rhG-CSF on only day 0 did not. Twice-daily injections of rhG-CSF frommore » day 0 to day 6 enhanced the recovery of platelets more effectively than twice-daily injections of rhG-CSF from day 1 to day 7, and increased the survival of irradiated mice more effectively than any other examined administration schedules. Twice-daily injections of rhG-CSF from day 0 to day 6 were significantly effective in enhancing the survival of mice irradiated with 8.5-, 9.0-, and 9.5-Gy x-rays, although not effective after irradiation of 10.5-Gy x-rays.« less

  15. Three to six year follow-up of normal donors who received recombinant human granulocyte colony-stimulating factor.

    PubMed

    Cavallaro, A M; Lilleby, K; Majolino, I; Storb, R; Appelbaum, F R; Rowley, S D; Bensinger, W I

    2000-01-01

    One hundred and one donors who had received filgrastim (rhG-CSF) for the purpose of donating either granulocytes or peripheral blood stem cells (PBSC) for their relatives more than 3 years ago were contacted. All donors had received daily rhG-CSF at a median dose of 16 microg/kg/day (range 3-16) for a median of 6 days (range 3-15 days). All collection procedures were completed and short-term side-effects of rhG-CSF were mild in the majority of the donors. At a median time interval of 43.13 months (range 35-73), the donors were contacted to assess whether adverse effects related to rhG-CSF administration had occurred. Prior to rhG-CSF two donors had cancer, one had a myocardial infarction, one was hepatitis C virus positive, one had a history of sinusitis, one had Graves' disease and two had arterial hypertension. None worsened with the rhG-CSF administration but the donor with a history of infarction had an episode of angina following apheresis, and the donor with Graves' disease had a stroke 15 months after rhG-CSF. Two pregnancies occurred after the rhG-CSF administration and one donor was 2-3 weeks pregnant during rhG-CSF treatment. Three pregnancies resulted in two normal births and one in a spontaneous abortion of a pregnancy which occurred more than 2 years following rhG-CSF. In the time following rhG-CSF administration two donors developed cancer (breast and prostate cancer) at a follow-up of 70 and 11 months, respectively. One donor developed lymphadenopathy 38 months after the rhG-CSF, which spontaneously resolved. Blood counts were obtained in 70 donors at a median follow up of 40.4 months (range 16.8-70.8). Hematocrit was 43% (median, range 36.8-48), white blood cells were 5.7 x 109/l (median, range 3-14), granulocytes 3.71 x 109/l (median, range 1. 47-10.36), lymphocytes 1.67 x 109/l (median, range 0.90-3.96), monocytes 0.46 x 109/l (median, range 0.07-0.87) and platelet counts were 193.0 x 109/l (median, range 175.0-240.0). This study indicates that

  16. Expression of granulocyte colony-stimulating factor receptor correlates with prognosis in oral and mesopharyngeal carcinoma.

    PubMed

    Tsuzuki, H; Fujieda, S; Sunaga, H; Noda, I; Saito, H

    1998-02-15

    Granulocyte colony-stimulating factor receptors (G-CSFRs) have been observed on the surface of not only hematopoietic cells but also several cancer cells. The stimulation of G-CSF has been demonstrated to induce proliferation and activation of G-CSFR-positive cells. In this study, we investigated the expression of G-CSFR on the surface of tumor cells and G-CSF production in oral and mesopharyngeal squamous cell carcinoma (SCC) by an immunohistochemical approach. Of 58 oral and mesopharyngeal SCCs, 31 cases (53.4%) and 36 cases (62.1%) were positive for G-CSFR and G-CSF, respectively. There was no association between G-CSFR expression and G-CSF staining. In the group positive for G-CSFR expression, relapse was significantly more likely after primary treatment (P = 0.0069), whereas there was no association between G-CSFR expression and age, sex, tumor size, lymph node metastasis, and clinical stage. Also, the G-CSFR-positive groups had a significantly lower disease-free and overall survival rate than the G-CSFR-negative groups (P = 0.0172 and 0.0188, respectively). However, none of the clinical markers correlated significantly with G-CSF staining, nor did the status of G-CSF production influence the overall survival. The results imply that assessment of G-CSFR may prove valuable in selecting patients with oral and mesopharyngeal SCC for aggressive therapy.

  17. Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF-induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems.

    PubMed

    Yokota, Yosuke; Inoue, Hiroyuki; Matsumura, Yumiko; Nabeta, Haruka; Narusawa, Megumi; Watanabe, Ayumi; Sakamoto, Chika; Hijikata, Yasuki; Iga-Murahashi, Mutsunori; Takayama, Koichi; Sasaki, Fumiyuki; Nakanishi, Yoichi; Yokomizo, Takehiko; Tani, Kenzaburo

    2012-10-25

    BLT1 is a high-affinity receptor for leukotriene B4 (LTB4) that is a potent lipid chemoattractant for myeloid leukocytes. The role of LTB4/BLT1 axis in tumor immunology, including cytokine-based tumor vaccine, however, remains unknown. We here demonstrated that BLT1-deficient mice rejected subcutaneous tumor challenge of GM-CSF gene-transduced WEHI3B (WGM) leukemia cells (KO/WGM) and elicited robust antitumor responses against second tumor challenge with WEHI3B cells. During GM-CSF-induced tumor regression, the defective LTB4/BLT1 signaling significantly reduced tumor-infiltrating myeloid-derived suppressor cells, increased the maturation status of dendritic cells in tumor tissues, enhanced their CD4(+) T-cell stimulation capacity and migration rate of dendritic cells that had phagocytosed tumor-associated antigens into tumor-draining lymph nodes, suggesting a positive impact on GM-CSF-sensitized innate immunity. Furthermore, KO/WGM mice displayed activated adaptive immunity by attenuating regulatory CD4(+) T subsets and increasing numbers of Th17 and memory CD44(hi)CD4(+) T subsets, both of which elicited superior antitumor effects as evidenced by adoptive cell transfer. In vivo depletion assays also revealed that CD4(+) T cells were the main effectors of the persistent antitumor immunity. Our data collectively underscore a negative role of LTB4/BLT1 signaling in effective generation and maintenance of GM-CSF-induced antitumor memory CD4(+) T cells.

  18. Successful treatment with granulocyte-colony stimulating factor for ritodrine-induced neutropenia in a twin pregnancy.

    PubMed

    Wang, Chen-Yu; Lai, Yu-Ju; Hwang, Kwei-Shuai; Chen, Chi-Huang; Yu, Mu-Hsien; Chen, Huei-Tsung; Su, Her-Young

    2016-10-01

    Neutropenia developed after continuous intravenous infusion of ritodrine hydrochloride (Yutopar) for preterm uterine contractions in a twin pregnancy. We successfully returned the low neutrophil count to the normal range after discontinuation of infusion of ritodrine and treatment with granulocyte colony stimulating factor (G-CSF). A 34-year-old woman with twin pregnancy was treated with ritodrine for preterm uterine contractions at 27 weeks and 6 days gestation. Neutropenia developed after continuous intravenous infusion of ritodrine for about 4 weeks. We ceased the ritodrine infusion immediately and treated the neutropenia with G-CSF. A cesarean delivery was performed the day after cessation of the ritodrine infusion because of uncontrolled preterm labor. There were no adverse side effects or infectious complications in the mother or the newborns. The maternal neutrophil count recovered to the normal range 4 days after administration of G-CSF. Based on prior case reports and the clinical presentation of our case, G-CSF may be a useful treatment for pregnant women with ritodrine-induced neutropenia. However, more clinical studies are required to confirm the safety and efficacy of this treatment. Copyright © 2016. Published by Elsevier B.V.

  19. Protective effects of granulocyte colony-stimulating factor on endotoxin shock in mice with retrovirus-induced immunodeficiency syndrome.

    PubMed

    Toki, S; Hiromatsu, K; Aoki, Y; Makino, M; Yoshikai, Y

    1997-10-01

    Mice with retrovirus-induced murine acquired immunodeficiency syndrome (MAIDS) were hypersensitive to lipopolysaccharide (LPS)-induced lethal shock accompanied by marked elevations of systematic interleukin 1beta (IL-beta) and interferon gamma (IFN-gamma) after LPS challenge. Pretreatment with 10 microg of recombinant human granulocyte colony-stimulating factor (rhG-CSF) protected MAIDS mice from hypersensitivity to LPS-induced lethal shock and this protection was concomitant with suppression of IFN-gamma production. Copyright 1997 Academic Press Limited.

  20. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection.

    PubMed

    Cerny, Natacha; Sánchez Alberti, Andrés; Bivona, Augusto E; De Marzi, Mauricio C; Frank, Fernanda M; Cazorla, Silvia I; Malchiodi, Emilio L

    2016-01-01

    Therapeutic vaccine research and development are especially important in Chagas disease considering the characteristics of the chronic infection and the number of people in the Americas living with a parasite infection for decades. We have previously reported the efficacy of attenuated Salmonella enterica (S) carrying plasmid encoding cruzipain (SCz) to protect against Trypanosoma cruzi infection. In the present work we investigated whether Cz DNA vaccine immunotherapy could be effective in controlling an ongoing T. cruzi infection in mice. We here report the intramuscular administration of naked Cz DNA or the oral administration of Salmonella as Cz DNA delivery system as therapeutic vaccines in mice during acute or chronic infection. The coadministration of a plasmid encoding GM-CSF improved vaccine performance, indicating that the stimulation of innate immune cells is needed in the event of an ongoing infection. These therapeutic vaccines were able to address the response to a protective and sustained Th1 biased profile not only against Cz but also against a variety of parasite antigens. The combined therapeutic vaccine during the chronic phase of infection prevents tissue pathology as shown by a reduced level of enzyme activity characteristic of tissue damage and a tissue status compatible with normal tissue. The obtained results suggest that immunotherapy with Cz and GM-CSF DNAs, either alone or in combination with other drug treatments, may represent a promising alternative for Chagas disease therapy.

  1. Elevated Serum Anti-GM-CSF Antibodies before the Onset of Autoimmune Pulmonary Alveolar Proteinosis in a Patient with Sarcoidosis and Systemic Sclerosis.

    PubMed

    Yamasue, Mari; Nureki, Shin-Ichi; Usagawa, Yuko; Ono, Tomoko; Matsumoto, Hiroyuki; Kan, Takamasa; Kadota, Jun-Ichi

    2017-09-01

    Pulmonary alveolar proteinosis (PAP) is characterized by the accumulation of periodic acid-schiff stain-positive lipoproteinaceous materials in the alveolar space due to impaired surfactant clearance by alveolar macrophage. Autoimmune PAP is the most common form of PAP, but rarely accompanies collagen disease or sarcoidosis. We report here a rare case of autoimmune PAP preceded by systemic sclerosis and sarcoidosis. A 64-year-old woman was admitted to our hospital for blurred vision, muscle weakness of extremities, Raynaud's phenomenon, and exertional dyspnea. We diagnosed her as having systemic sclerosis complicated with sarcoidosis. Chest computed tomography (CT) and transbronchial lung biopsy showed the findings of pulmonary fibrosis without PAP. We treated her with corticosteroid and intravenous cyclophosphamide therapy, followed by tacrolimus therapy. Thereafter, her symptoms improved except for exertional dyspnea, and she began to complain of productive cough thirteen months after corticosteroid and immunosuppressant therapy. On the second admission, a chest CT scan detected the emergence of crazy-paving pattern in bilateral upper lobes. Bronchoalveolar lavage (BAL) fluid with milky appearance and a lung biopsy specimen revealed acellular periodic acid-schiff stain-positive bodies. The serum titer of anti-granulocyte macrophage colony stimulating factor (GM-CSF) antibodies was elevated on first admission and remained high on second admission. We thus diagnosed her as having autoimmune PAP. Reducing the dose of immunosuppressive agents and repeating the segmental BAL resulted in the improvement of her symptoms and radiological findings. Immunosuppressant therapy may trigger the onset of autoimmune PAP in a subset of patients with systemic sclerosis and/or sarcoidosis.

  2. Hematopoietic Effects of Paeoniflorin and Albiflorin on Radiotherapy-Induced Myelosuppression Mice

    PubMed Central

    Zhu, Yingli; Wang, Linyuan; Yang, Zhihui; Wang, Jingxia; Li, Wei; Zhou, Jianyu; Zhang, Jianjun

    2016-01-01

    Paeonia lactiflora root (baishao in Chinese) is a commonly used herb in traditional Chinese medicine (TCM). Paeoniflorin (PF) and albiflorin (AF) are two major active constituents of P. lactiflora. In this paper, we aimed to investigate the hematopoietic effects of PF and AF on myelosuppression mice induced by radiotherapy and to explore the underlying mechanism. The finding indicated that PF and AF significantly increased the numbers of white blood cells (WBC) and reversed the atrophy of thymus. Furthermore, PF and AF increased the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) and reduced the levels of tumor necrosis factor-α (TNF-α) in serum and increased the level of colony-stimulating factor (G-CSF) in plasma. Lastly, PF and AF not only enhanced the mRNA levels of GM-CSF and G-CSF in the spleens, but also increased the protein levels of G-CSF and GM-CSF in bone marrow. Our results suggest that PF and AF may promote the recovery of bone marrow hemopoietic function in a myelosuppressed mouse model. PMID:27313650

  3. rhG-CSF in healthy donors: mobilization of peripheral hemopoietic progenitors and effect on peripheral blood leukocytes.

    PubMed

    Sica, S; Rutella, S; Di Mario, A; Salutari, P; Rumi, C; Ortu la Barbera, E; Etuk, B; Menichella, G; D'Onofrio, G; Leone, G

    1996-08-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) 16 micrograms/kg/day was given to 9 healthy donors to recruit hemopoietic progenitors (HP) for allogeneic transplantation or donor leukocyte infusion. rhG-CSF was administered s.c. for 5 days. No side effects were encountered except for moderate bone pain and lumbago. Mobilization was effective, reaching a peak median value of 187 x 10(3) CD34+ cells/ml (range 51.2-1127) and 2170 x 10(3) colony-forming units-granulocyte macrophage (CFU-GM)/ml (range 1138-4190). Peak values were obtained at a median of 4 days of rhG-CSF and represented, respectively, a 13-fold and a 37-fold increase from baseline values (p = 0.0007 and p = 0.006). White blood cell (WBC) counts increased 6-fold from baseline values (p < 0.0007) and reached a median peak of 34 x 10(6)/ml (23.5-59). Polymorphonuclear (PMN), and mononuclear (MNC) cells increased 10-fold and 2-fold, respectively (p = 0.0039 and p = 0.0026) and reached a median peak of 32.1 x 10(6)/ml (18.2-52) and 4.42 x 10(6)/ml (3.14-12.42). Absolute lymphocyte and monocyte counts increased at peak day in all donors 1.5-fold and 5.7-fold from baseline values (p = 0.0017 and p = 0.0018). In 7 of 9 donors, lymphocyte subsets were analyzed in detail. CD3+ and CD19+ lymphocytes increased 1.5-fold and 3-fold, respectively (p = 0.032 for both). NK and activated T lymphocytes doubled at a median of 4 days of rhG-CSF (p = 0.032 and p = NS, respectively). Similar changes were observed in lymphocytes collected in leukapheresis product. T helper and T suppressor subsets displayed a similar increase. Thus, besides the anticipated priming effect on HP and PMN, rhG-CSF in healthy donors produced an unexpected and still unexplained modification of lymphocyte subsets in peripheral blood.

  4. Granulocyte-colony stimulating factor therapy to induce neovascularization in ischemic heart disease.

    PubMed

    Ripa, Rasmus Sejersten

    2012-03-01

    Cell based therapy for ischemic heart disease has the potential to reduce post infarct heart failure and chronic ischemia. Treatment with granulocyte-colony stimulating factor (G-CSF) mobilizes cells from the bone marrow to the peripheral blood. Some of these cells are putative stem or progenitor cells. G-CSF is injected subcutaneously. This therapy is intuitively attractive compared to other cell based techniques since repeated catheterizations and ex vivo cell purification and expansion are avoided. Previous preclinical and early clinical trials have indicated that treatment with G-CSF leads to improved myocardial perfusion and function in acute or chronic ischemic heart disease. The hypothesis of this thesis is that patient with ischemic heart disease will benefit from G-CSF therapy. We examined this hypothesis in two clinical trials with G-CSF treatment to patients with either acute myocardial infarction or severe chronic ischemic heart disease. In addition, we assed a number of factors that could potentially affect the effect of cell based therapy. Finally, we intended to develop a method for in vivo cell tracking in the heart. Our research showed that subcutaneous G-CSF along with gene therapy do not improve myocardial function in patients with chronic ischemia despite a large increase in circulation bone marrow-derived cells. Also, neither angina pectoris nor exercise capacity was improved compared to placebo treatment. We could not identify differences in angiogenic factors or bone marrow-derived cells in the blood that could explain the neutral effect of G-CSF. Next, we examined G-CSF as adjunctive therapy following ST segment elevation myocardial infarction. We did not find any effect of G-CSF neither on the primary endpoint--regional myocardial function--nor on left ventricular ejection fraction (secondary endpoint) compared to placebo treatment. In subsequent analyses, we found significant differences in the types of cells mobilized from the bone marrow

  5. Disabled infectious single cycle herpes simplex virus (DISC-HSV) is a candidate vector system for gene delivery/expression of GM-CSF in human prostate cancer therapy.

    PubMed

    Parkinson, Richard J; Mian, Shahid; Bishop, Michael C; Gray, Trevor; Li, Geng; McArdle, Stephanie E B; Ali, Selman; Rees, Robert C

    2003-06-15

    DISC-HSV is a replication incompetent herpes simplex virus that is a highly efficient vector for the transduction of genes in vivo and in vitro. We examine the ability of DISC-HSV to infect human prostate cancer cell-lines and xenograft tumor models, and induce expression of reporter and therapeutic cytokine genes. Infection was confirmed by cellular staining for the beta-galactosidase reporter gene product, and by EM. Human GM-CSF production following DISC-hGMCSF infection was measured using ELISA. The metabolic activity of infected cells was determined by NADP/NADPH assay. Cell death was estimated by cell-cycle analysis using flow cytometry with propidium iodide staining. Infection of DU145, PC3 and LNCaP cells with DISC-HSV was dose dependent. Cells infected with DISC-hGM-CSF released significant levels of hGM-CSF for 3 days. NADP/NADPH assay suggested that infected cells continued to be metabolically active for 3 days post-infection, which was consistent with flow cytometry findings that cell death did not occur within 7 days of infection. Tumor xenografts injected with DISC-HSV expressed beta-galactosidase, and intracellular viral particles were demonstrated using EM. We have previously reported the rejection of established tumors following intra-tumoral injection of DISC-GMCSF. This study demonstrates the ability of DISC-HSV to infect prostate cancer and express GMCSF at significant levels. We suggest that prostate cancer is a potential target for therapy using DISC-HSV containing GM-CSF. Copyright 2003 Wiley-Liss, Inc.

  6. Fully Synthetic Granulocyte Colony-Stimulating Factor Enabled by Isonitrile-Mediated Coupling of Large, Side-Chain-Unprotected Peptides

    PubMed Central

    Roberts, Andrew G.; Johnston, Eric V.; Shieh, Jae-Hung; Sondey, Joseph P.; Hendrickson, Ronald C.; Moore, Malcolm A. S.; Danishefsky, Samuel J.

    2015-01-01

    Human granulocyte colony-stimulating factor (G-CSF) is an endogenous glycoprotein involved in hematopoiesis. Natively glycosylated and nonglycosylated recombinant forms, lenograstim and filgrastim, respectively, are used clinically to manage neutropenia in patients undergoing chemotherapeutic treatment. Despite their comparable therapeutic potential, the purpose of O-linked glycosylation at Thr133 remains a subject of controversy. In light of this, we have developed a synthetic platform to prepare G-CSF aglycone with the goal of enabling access to native and designed glycoforms with site-selectivity and glycan homogeneity. To address the synthesis of a relatively large, aggregation-prone sequence, we advanced an isonitrile-mediated ligation method. The chemoselective activation and coupling of C-terminal peptidyl Gly thioacids with the N-terminus of an unprotected peptide provide ligated peptides directly in a manner complementary to that with conventional native chemical ligation–desulfurization strategies. Herein, we describe the details and application of this method as it enabled the convergent total synthesis of G-CSF aglycone. PMID:26401918

  7. Csf2 null mutation alters placental gene expression and trophoblast glycogen cell and giant cell abundance in mice.

    PubMed

    Sferruzzi-Perri, Amanda N; Macpherson, Anne M; Roberts, Claire T; Robertson, Sarah A

    2009-07-01

    Genetic deficiency in granulocyte-macrophage colony-stimulating factor (CSF2, GM-CSF) results in altered placental structure in mice. To investigate the mechanism of action of CSF2 in placental morphogenesis, the placental gene expression and cell composition were examined in Csf2 null mutant and wild-type mice. Microarray and quantitative RT-PCR analyses on Embryonic Day (E) 13 placentae revealed that the Csf2 null mutation caused altered expression of 17 genes not previously known to be associated with placental development, including Mid1, Cd24a, Tnfrsf11b, and Wdfy1. Genes controlling trophoblast differentiation (Ascl2, Tcfeb, Itgav, and Socs3) were also differentially expressed. The CSF2 ligand and the CSF2 receptor alpha subunit were predominantly synthesized in the placental junctional zone. Altered placental structure in Csf2 null mice at E15 was characterized by an expanded junctional zone and by increased Cx31(+) glycogen cells and cyclin-dependent kinase inhibitor 1C (CDKN1C(+), P57(Kip2+)) giant cells, accompanied by elevated junctional zone transcription of genes controlling spongiotrophoblast and giant cell differentiation and secretory function (Ascl2, Hand1, Prl3d1, and Prl2c2). Granzyme genes implicated in tissue remodeling and potentially in trophoblast invasion (Gzmc, Gzme, and Gzmf) were downregulated in the junctional zone of Csf2 null mutant placentae. These data demonstrate aberrant placental gene expression in Csf2 null mutant mice that is associated with altered differentiation and/or functional maturation of junctional zone trophoblast lineages, glycogen cells, and giant cells. We conclude that CSF2 is a regulator of trophoblast differentiation and placental development, which potentially influences the functional capacity of the placenta to support optimal fetal growth in pregnancy.

  8. Involvement of suppressor of cytokine signaling-1 in globular adiponectin-induced granulocyte colony-stimulating factor in RAW 264 cell.

    PubMed

    Fujimoto, Akie; Akifusa, Sumio; Hirofuji, Takao; Yamashita, Yoshihisa

    2011-09-01

    We previously demonstrated that treatment with a globular type of adiponectin (gAd) induced expression of granulocyte colony-stimulating factor (G-CSF) via the MEK/ERK signaling pathway in a murine macrophage cell line, RAW 264. In the present study, we investigated whether suppressor of cytokine signaling-1 (SOCS1) has roles in the regulation of gAd-induced G-CSF generation. Intracellular G-CSF generation induced by gAd treatment peaked after 10h and then attenuated. SOCS1 mRNA and protein were expressed at 1h and 4h after gAd treatment, respectively. Overexpression of SOCS1 reduced G-CSF generation and phosphorylation of ERK, JNK, and p38 MAPK in gAd-treated cells. While gAd treatment induced the translocation of STAT3 to the nucleus under control conditions, STAT3 stayed in the cytosol when SOCS1 was overexpressed. Additionally, knockdown of SOCS1 by interfering RNA caused levels of G-CSF to continue to rise beyond 10h after gAd treatment. These results suggest that SOCS1 is involved in providing negative feedback for gAd-induced production of G-CSF. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5α-Restrictive Macaques.

    PubMed

    Kannanganat, Sunil; Wyatt, Linda S; Gangadhara, Sailaja; Chamcha, Venkatesarlu; Chea, Lynette S; Kozlowski, Pamela A; LaBranche, Celia C; Chennareddi, Lakshmi; Lawson, Benton; Reddy, Pradeep B J; Styles, Tiffany M; Vanderford, Thomas H; Montefiori, David C; Moss, Bernard; Robinson, Harriet L; Amara, Rama Rao

    2016-11-01

    We tested, in rhesus macaques, the effects of a 500-fold range of an admixed recombinant modified vaccinia Ankara (MVA) expressing rhesus GM-CSF (MVA/GM-CSF) on the immunogenicity and protection elicited by an MVA/SIV macaque 239 vaccine. High doses of MVA/GM-CSF did not affect the levels of systemic envelope (Env)-specific Ab, but it did decrease the expression of the gut-homing receptor α4β7 on plasmacytoid dendritic cells (p < 0.01) and the magnitudes of Env-specific IgA (p = 0.01) and IgG (p < 0.05) in rectal secretions. The protective effect of the vaccine was evaluated using 12 weekly rectal challenges in rhesus macaques subgrouped by tripartite motif-containing protein 5α (TRIM5α) genotypes that are restrictive or permissive for infection by the challenge virus SIVsmE660. Eight of nine TRIM5α-restrictive animals receiving no or the lowest dose (1 × 10 5 PFU) of MVA/GM-CSF resisted all 12 challenges. In the comparable TRIM5α-permissive group, only 1 of 12 animals resisted all 12 challenges. In the TRIM5α-restrictive animals, but not in the TRIM5α-permissive animals, the number of challenges to infection directly correlated with the magnitudes of Env-specific rectal IgG (r = +0.6) and IgA (r = +0.6), the avidity of Env-specific serum IgG (r = +0.5), and Ab dependent cell-mediated virus inhibition (r = +0.6). Titers of neutralizing Ab did not correlate with protection. We conclude that 1) protection elicited by MVA/SIVmac239 is strongly dependent on the presence of TRIM5α restriction, 2) nonneutralizing Ab responses contribute to protection against SIVsmE660 in TRIM5α-restrictive animals, and 3) high doses of codelivered MVA/GM-CSF inhibit mucosal Ab responses and the protection elicited by MVA expressing noninfectious SIV macaque 239 virus-like particles. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. Inherited biallelic CSF3R mutations in severe congenital neutropenia

    PubMed Central

    Triot, Alexa; Järvinen, Päivi M.; Arostegui, Juan I.; Murugan, Dhaarini; Kohistani, Naschla; Dapena Díaz, José Luis; Racek, Tomas; Puchałka, Jacek; Gertz, E. Michael; Schäffer, Alejandro A.; Kotlarz, Daniel; Pfeifer, Dietmar; Díaz de Heredia Rubio, Cristina; Ozdemir, Mehmet Akif; Patiroglu, Turkan; Karakukcu, Musa; Sánchez de Toledo Codina, José; Yagüe, Jordi; Touw, Ivo P.; Unal, Ekrem

    2014-01-01

    Severe congenital neutropenia (SCN) is characterized by low numbers of peripheral neutrophil granulocytes and a predisposition to life-threatening bacterial infections. We describe a novel genetic SCN type in 2 unrelated families associated with recessively inherited loss-of-function mutations in CSF3R, encoding the granulocyte colony-stimulating factor (G-CSF) receptor. Family A, with 3 affected children, carried a homozygous missense mutation (NM_000760.3:c.922C>T, NP_000751.1:p.Arg308Cys), which resulted in perturbed N-glycosylation and aberrant localization to the cell surface. Family B, with 1 affected infant, carried compound heterozygous deletions provoking frameshifts and premature stop codons (NM_000760.3:c.948_963del, NP_000751.1:p.Gly316fsTer322 and NM_000760.3:c.1245del, NP_000751.1:p.Gly415fsTer432). Despite peripheral SCN, all patients had morphologic evidence of full myeloid cell maturation in bone marrow. None of the patients responded to treatment with recombinant human G-CSF. Our study highlights the genetic and morphologic SCN variability and provides evidence both for functional importance and redundancy of G-CSF receptor-mediated signaling in human granulopoiesis. PMID:24753537

  11. Effects of granulocyte colony-stimulating factor (G-CSF) treatment on granulocyte function and receptor expression in patients with ventilator-dependent pneumonia

    PubMed Central

    Hustinx, W N M; Van Kessel, C P M; Heezius, E; Burgers, S; Lammers, J-W; Hoepelman, I M

    1998-01-01

    Considerable experimental evidence in animals suggests that treatment with G-CSF may have a beneficial effect in the management of severe infections in non-neutropenic hosts. This beneficial effect is attributed to an enhancement of granulopoiesis and neutrophil function, the latter possibly involving up-regulation of receptors on neutrophils that are involved in antibody-mediated cytotoxicity and killing of microorganisms. We compared neutrophil function and phenotype in blood and bronchoalveolar lavage fluid (BALF) of 10 patients with severe ventilator-dependent pneumonia, at baseline and following initiation of G-CSF treatment as adjunct to standard therapy. G-CSF treatment was associated with three-fold increased blood neutrophil counts at day 3 of treatment compared with baseline counts. Mean serum G-CSF concentration increased from 313 to 2007 pg/ml. After correction for lavage dilution effects, BALF G-CSF levels did not differ significantly from baseline, nor did neutrophil receptor expression (FcγRI, FcγRII, FcγRIII, CR3, and l-selectin) or indicators of neutrophil function such as respiratory burst activity, phagocytosis and killing of Candida albicans in BALF or blood. The mortality in this group of patients was 30% and compared favourably to the APACHE II-derived predicted mortality of 60%. We conclude that the possible therapeutic benefit of G-CSF administration in the early phase of severe bacterial pneumonia is not readily explained by its effect on baseline indicators of neutrophil function or receptor expression. PMID:9649199

  12. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection

    PubMed Central

    Cerny, Natacha; Sánchez Alberti, Andrés; Bivona, Augusto E; De Marzi, Mauricio C; Frank, Fernanda M; Cazorla, Silvia I; Malchiodi, Emilio L

    2016-01-01

    Therapeutic vaccine research and development are especially important in Chagas disease considering the characteristics of the chronic infection and the number of people in the Americas living with a parasite infection for decades. We have previously reported the efficacy of attenuated Salmonella enterica (S) carrying plasmid encoding cruzipain (SCz) to protect against Trypanosoma cruzi infection. In the present work we investigated whether Cz DNA vaccine immunotherapy could be effective in controlling an ongoing T. cruzi infection in mice. We here report the intramuscular administration of naked Cz DNA or the oral administration of Salmonella as Cz DNA delivery system as therapeutic vaccines in mice during acute or chronic infection. The coadministration of a plasmid encoding GM-CSF improved vaccine performance, indicating that the stimulation of innate immune cells is needed in the event of an ongoing infection. These therapeutic vaccines were able to address the response to a protective and sustained Th1 biased profile not only against Cz but also against a variety of parasite antigens. The combined therapeutic vaccine during the chronic phase of infection prevents tissue pathology as shown by a reduced level of enzyme activity characteristic of tissue damage and a tissue status compatible with normal tissue. The obtained results suggest that immunotherapy with Cz and GM-CSF DNAs, either alone or in combination with other drug treatments, may represent a promising alternative for Chagas disease therapy. PMID:26312947

  13. Incidence of neutropenia and use of granulocyte colony-stimulating factors in multiple myeloma: is current clinical practice adequate?

    PubMed

    Leleu, Xavier; Gay, Francesca; Flament, Anne; Allcott, Kim; Delforge, Michel

    2018-03-01

    Although immunomodulatory drugs, alkylating agents, corticosteroids, protease inhibitors, and therapeutic monoclonal antibodies improve multiple myeloma outcomes, treatment burden is still an issue. Neutropenia is a known complication of cytotoxic cancer therapy and is often associated with infections; it is an important consideration in myeloma given the fact that patients often have a weakened immune system. The risk of febrile neutropenia increases with severe and persisting neutropenia. Recombinant granulocyte colony-stimulating factors (G-CSFs) are commonly used to reduce the incidence, duration, and severity of febrile neutropenia. Here, we review the risk and management of neutropenia associated with new and commonly used anti-myeloma agents. Few papers report the use of G-CSF in patients with multiple myeloma receiving anti-cancer treatments, and fewer describe whether G-CSF was beneficial. None of the identified studies reported G-CSF primary prophylaxis. Further studies are warranted to evaluate the need for G-CSF prophylaxis in multiple myeloma. Prophylaxis may be particularly useful in patients at high risk of prolonged severe neutropenia.

  14. The effects of vitamin D binding protein-macrophage activating factor and colony-stimulating factor-1 on hematopoietic cells in normal and osteopetrotic rats.

    PubMed

    Benis, K A; Schneider, G B

    1996-10-15

    Osteopetrosis is a heterogeneous group of bone disorders characterized by the failure of osteoclasts to resorb bone and by several immunological defects including macrophage dysfunction. Two compounds, colony-stimulating factor-1 (CSF-1) and vitamin D-binding protein-macrophage activating factor (DBP-MAF) were used in the present study to evaluate their effects on the peritoneal population of cells and on cells within the bone marrow microenvironment in normal and incisors absent (ia) osteopetrotic rats. Previous studies in this laboratory have demonstrated that administration of DBP-MAF to newborn ia animals results in a substantial increase in bone marrow cavity size due to upregulated osteoclast function. To study the effects of these compounds on the macrophage/osteoclast precursors, DBP-MAF, CSF-1, and the combination of these compounds were given to newborn ia and normal littermate animals. Both the normal and mutant phenotypes responded similarly when treated with these compounds. Rats exhibited a profound shift toward the macrophage lineage from the neutrophil lineage when compared with vehicle-treated control animals after treatment with these compounds. In the in vivo peritoneal lavage study, animals received injections of CSF-1, DBP-MAF or DBP-MAF/CSF-1 over a 4-week period. The various types of cells in the peritoneal cavity were then enumerated. The in vitro study consisted of cells isolated from the bone marrow microenvironment and cultured on feeder layers of CSF-1, DBP-MAF, or DBP-MAF/CSF-1 for colony enumeration. The increase in macrophage numbers at the expense of neutrophil numbers could be seen in both the in vivo and in vitro experiments. The macrophage/osteoclast and neutrophil lineages have a common precursor, the granulocyte/macrophage colony-forming cell (GM-CFC). With the addition of CSF-1, the GM-CFC precursor may be induced into the macrophage/osteoclast lineage rather than the granulocyte lineage. This increased pool of cells in the

  15. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease.

    PubMed

    Powell, Tiffany M; Paul, Jonathan D; Hill, Jonathan M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; McCoy, J Philip; Read, Elizabeth J; Khuu, Hanh M; Leitman, Susan F; Finkel, Toren; Cannon, Richard O

    2005-02-01

    Endothelial progenitor cells (EPCs) that may repair vascular injury are reduced in patients with coronary artery disease (CAD). We reasoned that EPC number and function may be increased by granulocyte colony-stimulating factor (G-CSF) used to mobilize hematopoietic progenitor cells in healthy donors. Sixteen CAD patients had reduced CD34(+)/CD133(+) (0.0224+/-0.0063% versus 0.121+/-0.038% mononuclear cells [MNCs], P<0.01) and CD133(+)/VEGFR-2(+) cells, consistent with EPC phenotype (0.00033+/-0.00015% versus 0.0017+/-0.0006% MNCs, P<0.01), compared with 7 healthy controls. Patients also had fewer clusters of cells in culture, with out-growth consistent with mature endothelial phenotype (2+/-1/well) compared with 16 healthy subjects at high risk (13+/-4/well, P<0.05) or 14 at low risk (22+/-3/well, P<0.001) for CAD. G-CSF 10 microg/kg per day for 5 days increased CD34(+)/CD133(+) cells from 0.5+/-0.2/microL to 59.5+/-10.6/microL and CD133(+)/ VEGFR-2(+) cells from 0.007+/-0.004/microL to 1.9+/-0.6/microL (both P<0.001). Also increased were CD133(+) cells that coexpressed the homing receptor CXCR4 (30.4+/-8.3/microL, P<0.05). Endothelial cell-forming clusters in 10 patients increased to 27+/-9/well after treatment (P<0.05), with a decline to 9+/-4/well at 2 weeks (P=0.06). Despite reduced EPCs compared with healthy controls, patients with CAD respond to G-CSF with increases in EPC number and homing receptor expression in the circulation and endothelial out-growth in culture. Endothelial progenitor cells (EPCs) are reduced in coronary artery disease. Granulocyte colony-stimulating factor (CSF) administered to patients increased: (1) CD133+/VEGFR-2+ cells consistent with EPC phenotype; (2) CD133+ cells coexpressing the chemokine receptor CXCR4, important for homing of EPCs to ischemic tissue; and (3) endothelial cell-forming clusters in culture. Whether EPCs mobilized into the circulation will be useful for the purpose of initiating vascular growth and myocyte repair

  16. Tumor necrosis factor-alpha inhibits stem cell factor-induced proliferation of human bone marrow progenitor cells in vitro. Role of p55 and p75 tumor necrosis factor receptors.

    PubMed Central

    Rusten, L S; Smeland, E B; Jacobsen, F W; Lien, E; Lesslauer, W; Loetscher, H; Dubois, C M; Jacobsen, S E

    1994-01-01

    Stem cell factor (SCF), a key regulator of hematopoiesis, potently synergizes with a number of hematopoietic growth factors. However, little is known about growth factors capable of inhibiting the actions of SCF. TNF-alpha has been shown to act as a bidirectional regulator of myeloid cell proliferation and differentiation. This study was designed to examine interactions between TNF-alpha and SCF. Here, we demonstrate that TNF-alpha potently and directly inhibits SCF-stimulated proliferation of CD34+ hematopoietic progenitor cells. Furthermore, TNF-alpha blocked all colony formation stimulated by SCF in combination with granulocyte colony-stimulating factor (CSF) or CSF-1. The synergistic effect of SCF observed in combination with GM-CSF or IL-3 was also inhibited by TNF-alpha, resulting in colony numbers similar to those obtained in the absence of SCF. These effects of TNF-alpha were mediated through the p55 TNF receptor, whereas little or no inhibition was signaled through the p75 TNF receptor. Finally, TNF-alpha downregulated c-kit cell-surface expression on CD34+ bone marrow cells, and this was predominantly a p55 TNF receptor-mediated event as well. Images PMID:7518828

  17. Granulocyte-colony stimulating factor for acute-on-chronic liver failure: systematic review and meta-analysis.

    PubMed

    Chavez-Tapia, Norberto C; Mendiola-Pastrana, Indira; Ornelas-Arroyo, Victoria J; Noreña-Herrera, Camilo; Vidaña-Perez, Desiree; Delgado-Sanchez, Guadalupe; Uribe, Misael; Barrientos-Gutierrez, Tonatiuh

    2015-01-01

    Acute-on-chronic liver failure (ACLF) is associated with increased short and long-term mortality. Animal models of liver failure have demonstrated that granulocyte-colony stimulating factor (G-CSF) accelerates the liver regeneration process and improves survival. However, clinical evidence regarding the use of G-CSF in ACLF remains scarce. The aim of this study was to assess the benefits and harms of G-CSF in patients with acute-on-chronic liver failure. An electronic search was made in The Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and LILACS up to November 2013. Randomized clinical trials comparing the use of any regimen of G-CSF against placebo or no intervention in patients with ACLF were included. Primary outcomes included overal mortality, mortality due multi-organ failure, and adverse events. Relative risk (RR) and mean difference (MD) were used. Two trials involving 102 patients were included. A significant reduction in short-term overall mortality was observed in patients receiving G-CSF compared to controls (RR 0.56; 95%CI 0.39,0.80). G-CSF failed to reduce mortality secondary to gastrointestinal bleeding (RR 1.45; 95%CI 0.50, 4.27). Adverse effects reported included: fever, rash, herpes zoster, headache and nausea. In conclusion, the use of G-CSF for the treatment of patients with ACLF significantly reduced short-term mortality. While the evidence is still limited, the apparent benefit observed on short-term mortality, mild adverse effects and lack of an alternative therapy make the use of G-CSF in ACLF patients a reasonable alternative when liver transplantation is contraindicated or unavailable.

  18. Sex differences in the pharmacokinetics of recombinant human granulocyte colony-stimulating factor in the rat.

    PubMed

    Tanaka, H; Kaneko, T

    1991-01-01

    The pharmacokinetics of recombinant human granulocyte colony-stimulating factor (rhG-CSF) were studied in male and female rats. The serum concentration of rhG-CSF after iv and sc administration to male and female Sprague-Dawley rats at a dose of 5 and 100 micrograms/kg was investigated by a sandwich enzyme-linked immunosorbent assay. After iv administration, AUC and half-lives of rhG-CSF in female rats were smaller than those for male rats. The volume of distribution of rhG-CSF in female rats was not significantly different from that in male rats. After sc administration, AUC, mean residence time, and half-lives of elimination phase in female rats were smaller than those for male rats. The in vitro biological activities of rhG-CSF were investigated using [3H]thymidine uptake assay in cultures of bone marrow cells obtained from male and female rat femur. Female rat bone marrow cells showed a similar dose-response profile to rhG-CSF to that of male rat bone marrow cells. The effect of rhG-CSF administration in rats was a specific activity on the neutrophil lineage with an increase of neutrophils in peripheral blood. The in vivo effects of rhG-CSF after iv and sc administration to male and female rats at 5 and 100 micrograms/kg doses were determined. After 100 micrograms/kg administration, the neutrophil count in female rats was similar to that in male rats in the early period; however, the neutrophil count in female rats was lower than that in male rats 24 hr after administration.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Clinical trial in healthy malaria-naïve adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA

    PubMed Central

    Richie, Thomas L.; Charoenvit, Yupin; Wang, Ruobing; Epstein, Judith E.; Hedstrom, Richard C.; Kumar, Sanjai; Luke, Thomas C.; Freilich, Daniel A.; Aguiar, Joao C.; Sacci, Jr., John B.; Sedegah, Martha; Nosek, Jr., Ronald A.; De La Vega, Patricia; Berzins, Mara P.; Majam, Victoria F.; Abot, Esteban N.; Ganeshan, Harini; Richie, Nancy O.; Banania, Jo Glenna; Baraceros, Maria Fe B.; Geter, Tanya G.; Mere, Robin; Bebris, Lolita; Limbach, Keith; Hickey, Bradley W.; Lanar, David E.; Ng, Jennifer; Shi, Meng; Hobart, Peter M.; Norman, Jon A.; Soisson, Lorraine A.; Hollingdale, Michael R.; Rogers, William O.; Doolan, Denise L.; Hoffman, Stephen L.

    2012-01-01

    When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997−1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000–2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 μg of each plasmid plus escalating doses (0, 20, 100 or 500 μg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines. PMID:23151451

  20. Effect of recombinant human granulocyte colony stimulating factor (rhG-CSF) for the treatment of neonates in presumed sepsis with neutropenia.

    PubMed

    Khan, T H; Shahidullah, M; Mannan, M A; Nahar, N

    2012-07-01

    Bacterial sepsis continues to be an important cause of morbidity and mortality in neonates. In newborn with presumed sepsis, short-term treatment with rhG-CSF increased the neutrophil count and more importantly improved survival. The objective of the study was to evaluate the effect of rhG-CSF for the treatment of neonates in presumed sepsis with neutropenia. This interventional study was conducted in the Department of Neonatology, BSMMU, Dhaka during July 2009 to May 2010. Total 30 neonates of presumed sepsis with absolute neutrophil count ≤5000/cumm, age<28 days and birth weight 1000-2000g were included in the study. A subcutaneous injection of rhG-CSF (10μgm/kg/day) was administered to 15 neonates for 5 consecutive days (study group) and 15 neonates did not receive it (control group) in addition to standard antibiotic protocol for neonatal sepsis. Baseline characteristics of 30 neonates shows male/female ratio, weight on admission, gestational age were similar in both groups. Among 30 neonates of clinically presumed sepsis 7(23%) were culture proven. E. coli was the most common organism. After 24 hours of treatment mean ANC was increased more in study group (p<0.05) compared to control group. Mean ANC after 72 hours of treatment was increased significantly in study group than control group: 5940.00 versus 5706.00 (p=0.01). At the end of treatment, the mean ANC was higher than that of control (p=0.001). Twelve neonates in study group and ten neonates in control group survived to hospital discharge. The mortality rate in the study group 3/15(20%) and in control group 5/15(33%) were not significant. Duration of hospital stay was less in study group but not significant. The study concluded that before routine use of rhG-CSF in neonatal sepsis with neutropenia further large scale, multi-centre, randomized, placebo controlled trial are needed to validate the beneficial effect.

  1. Oestrogen-deficiency inducing haematopoiesis dysfunction via reduction in haematopoietic stem cells and haematopoietic growth factors in rats

    PubMed Central

    Qiu, Xi; Yuan, Xiang-Gui; Jin, Xiao-li; He, Xin; Zhu, Lei; Zhao, Xiao-Ying

    2012-01-01

    Summary Haematopoiesis is a self-renewing and multi-directional differentiation process of haematopoietic stem cells (HSCs), which is modulated very precisely by the haematopoietic microenvironment in bone marrow. Our previous study has demonstrated that oestrogen-deficiency leads to haematopoiesis dysfunction which manifests as a decrease in haematopoietic tissues and an increase in adipose tissues in bone marrow. However, the mechanism involved in the oestrogen-deficiency effects on haematopoiesis dysfunction is not completely understood. In this study, we established an oestrogen-deficiency rat model by ovariectomy (OVX group). Haematopoiesis was evaluated at the 12th, 16th, 20th, 24th and 28th weeks after operation in the OVX group and its control (Sham group) by pathological examination; the number and function of HSCs were evaluated by flow cytometry analysis and colony-forming assay respectively. Haematopoietic growth factors levels including granulocyte/macrophage-colony-stimulating factor (GM-CSF), stem cell factor (SCF) and interleukin-3 (IL-3) were examined by ELISA kits at different time points. We found that in the OVX group, haematopoiesis dysfunction in bone marrow was observed (P < 0.05) from the 12th week when compared with the Sham group, and extramedullary haematopoiesis began to appear in the liver and spleen from the 16th week. The number of HSCs and colony-forming units-granulocyte/macrophage (CFUs-GM) in bone marrow was reduced significantly (P < 0.05) from the 20th and 16th week respectively. Furthermore, GM-CSF, SCF and IL-3 in the OVX group decreased significantly (P < 0.05) since the 12th, 16th and 24th week respectively. Taken together, these results suggested that oestrogen is required for normal haematopoiesis. Oestrogen-deficiency inducing haematopoiesis dysfunction may be via reduction in HSCs and haematopoietic growth factors at a late stage. PMID:22583131

  2. High EMT Signature Score of Invasive Non-Small Cell Lung Cancer (NSCLC) Cells Correlates with NFκB Driven Colony-Stimulating Factor 2 (CSF2/GM-CSF) Secretion by Neighboring Stromal Fibroblasts

    PubMed Central

    Rudisch, Albin; Dewhurst, Matthew Richard; Horga, Luminita Gabriela; Kramer, Nina; Harrer, Nathalie; Dong, Meng; van der Kuip, Heiko; Wernitznig, Andreas; Bernthaler, Andreas; Dolznig, Helmut; Sommergruber, Wolfgang

    2015-01-01

    We established co-cultures of invasive or non-invasive NSCLC cell lines and various types of fibroblasts (FBs) to more precisely characterize the molecular mechanism of tumor-stroma crosstalk in lung cancer. The HGF-MET-ERK1/2-CREB-axis was shown to contribute to the onset of the invasive phenotype of Calu-1 with HGF being secreted by FBs. Differential expression analysis of the respective mono- and co-cultures revealed an upregulation of NFκB-related genes exclusively in co-cultures with Calu-1. Cytokine Array- and ELISA-based characterization of the “cytokine fingerprints” identified CSF2 (GM-CSF), CXCL1, CXCL6, VEGF, IL6, RANTES and IL8 as being specifically upregulated in various co-cultures. Whilst CXCL6 exhibited a strictly FB-type-specific induction profile regardless of the invasiveness of the tumor cell line, CSF2 was only induced in co-cultures of invasive cell lines regardless of the partnered FB type. These cultures revealed a clear link between the induction of CSF2 and the EMT signature of the cancer cell line. The canonical NFκB signaling in FBs, but not in tumor cells, was shown to be responsible for the induced and constitutive CSF2 expression. In addition to CSF2, cytokine IL6, IL8 and IL1B, and chemokine CXCL1 and CXCL6 transcripts were also shown to be increased in co-cultured FBs. In contrast, their induction was not strictly dependent on the invasiveness of the co-cultured tumor cell. In a multi-reporter assay, additional signaling pathways (AP-1, HIF1-α, KLF4, SP-1 and ELK-1) were found to be induced in FBs co-cultured with Calu-1. Most importantly, no difference was observed in the level of inducibility of these six signaling pathways with regard to the type of FBs used. Finally, upon tumor fibroblast interaction the massive induction of chemokines such as CXCL1 and CXCL6 in FBs might be responsible for increased recruitment of a monocytic cell line (THP-1) in a transwell assay. PMID:25919140

  3. Single dose of filgrastim (rhG-CSF) increases the number of hematopoietic progenitors in the peripheral blood of adult volunteers.

    PubMed

    Schwinger, W; Mache, C; Urban, C; Beaufort, F; Töglhofer, W

    1993-06-01

    Hematopoietic progenitor cell levels were monitored in the peripheral blood of ten healthy adults receiving a single dose of recombinant human granulocyte colony-stimulating factor (rhG-CSF). The objective was to determine the time and number of progenitor cells released into the peripheral blood, induced by a single dose of 15 micrograms/kg rhG-CSF administered intravenously. In all cases the absolute number of circulating progenitor cells including granulocyte-macrophage and erythroid lineages increased up to 12-fold (median 9.4-fold) 4 days after treatment. These findings were based on flow cytometric quantification of CD34+ cells and on progenitor assays. The relative distribution of granulocyte/macrophage and erythroid progenitors remained unchanged. rhG-CSF was well tolerated; mild to moderate bone pain was the most common side-effect and was noted in 6 of 10 subjects. Thus a single dose of rhG-CSF is effective in mobilizing progenitor cells into the peripheral blood in healthy adults. If these progenitors are capable of reconstituting bone marrow, peripheral progenitor cell separation following rhG-CSF administration could be a reasonable alternative to conventional bone marrow harvest in healthy adults.

  4. A sensitive WST-8-based bioassay for PEGylated granulocyte colony stimulating factor using the NFS-60 cell line.

    PubMed

    Tiwari, Krishna; Wavdhane, Madan; Haque, Shafiul; Govender, Thavendran; Kruger, Hendrik G; Mishra, Maheshwari K; Chandra, Ramesh; Tiwari, Dileep

    2015-06-01

    Granulocyte colony stimulating factor (G-CSF) has been commonly used to treat neutropenia caused by chemotherapy, radiotherapy, and organ transplants. Improved in vitro efficacy of G-CSF has already been observed by conjugating it to polyethylene glycol (PEG). The in vivo bioassay using tetrazolium dye with the NFS-60 cell line has been recommended for G-CSF but no such monographs are available for PEGylated G-CSF in pharmacopeias. In the present study, the assay recommended for G-CSF was evaluated for its suitability to PEGylated G-CSF. The generally used MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium]-based assay was compared with a bioassay employing a water-soluble tetrazolium dye, WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium], using NFS-60 cells at a concentration of 7 × 10(5) cells/ml against 800 IU/ml of PEGylated G-CSF at 24, 48, 72, and 72 h time points to determine the efficacy of PEGylated G-CSF. Further, the optimized WST-8 dye-based assay was used to test the potency of various commercially available PEGylated G-CSF preparations. The results demonstrated enhanced sensitivity of the WST-8-based assay over the conventional MTS-based assay for determining the potency of PEGylated G-CSF using the NFS-60 cell line. Our study demonstrates the potential application of WST-8-based bioassays for other biotherapeutic proteins of human and veterinary interest.

  5. Simplified in vitro refolding and purification of recombinant human granulocyte colony stimulating factor using protein folding cation exchange chromatography.

    PubMed

    Vemula, Sandeep; Dedaniya, Akshay; Thunuguntla, Rahul; Mallu, Maheswara Reddy; Parupudi, Pavani; Ronda, Srinivasa Reddy

    2015-01-30

    Protein folding-strong cation exchange chromatography (PF-SCX) has been employed for efficient refolding with simultaneous purification of recombinant human granulocyte colony stimulating factor (rhG-CSF). To acquire a soluble form of renatured and purified rhG-CSF, various chromatographic conditions, including the mobile phase composition and pH was evaluated. Additionally, the effects of additives such as urea, amino acids, polyols, sugars, oxidizing agents and their amalgamations were also investigated. Under the optimal conditions, rhG-CSF was efficaciously solubilized, refolded and simultaneously purified by SCX in a single step. The experimental results using ribose (2.0M) and arginine (0.6M) combination were found to be satisfactory with mass yield, purity and specific activity of 71%, ≥99% and 2.6×10(8)IU/mg respectively. Through this investigation, we concluded that the SCX refolding method was more efficient than conventional methods which has immense potential for the large-scale production of purified rhG-CSF. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Intensification of chemotherapy for the treatment of solid tumours: feasibility of a 3-fold increase in dose intensity with peripheral blood progenitor cells and granulocyte colony-stimulating factor.

    PubMed Central

    Leyvraz, S.; Ketterer, N.; Perey, L.; Bauer, J.; Vuichard, P.; Grob, J. P.; Schneider, P.; von Fliedner, V.; Lejeune, F.; Bachmann, F.

    1995-01-01

    Dose intensity may be an important determinant of the outcome in cancer chemotherapy, but is often limited by cumulative haematological toxicity. The availability of haematopoietic growth factors such as granulocyte colony-stimulating factor (G-CSF) and of peripheral blood progenitor cell (PBPC) transplantation has allowed the development of a new treatment strategy in which several courses of high-dose combination chemotherapy are administered for the treatment of solid tumours. PBPCs were mobilised before chemotherapy using 12 or 30 micrograms kg-1 day-1 G-CSF (Filgrastim) for 10 days, and were collected by 2-5 leucaphereses. The yields of mononuclear cells, colony-forming units and CD34-positive cells were similar at the two dose levels of Filgrastim, and the numbers of PBPCs were sufficient for rescue following multiple cycles of chemotherapy. High-dose chemotherapy (cyclophosphamide 2.5 g m-2 for 2 days, etoposide 300 mg m-2 for 3 days and cisplatin 50 mg m-2 for 3 days) was administered sequentially for a median of three cycles (range 1-4) to ten patients. Following the 30 evaluable cycles, the median duration of leucopenia < or = 0.5 x 10(9) l-1 and < or = 1.0 x 10(9) l-1 was 7 and 8 days respectively. The median time of thrombopenia < or = 20 x 10(9) l-1 was 6 days. There was no cumulative haematological toxicity. The duration of leucopenia, but not of thrombopenia, was inversely related to the number of reinfused CFU-GM (granulocyte-macrophage colony-forming units). In the majority of patients, neurotoxicity and ototoxicity became dose limiting after three cycles of therapy. However, the average dose intensity delivered was about three times higher than in a standard regimen. The complete response rate in patients with small-cell lung cancers was 66% (95% CI 30-92%) and the median progression-free survival and overall survival were 13 months and 17 months respectively. These results are encouraging and should be compared, in a randomised fashion, with

  7. Adrenaline administration promotes the efficiency of granulocyte colony stimulating factor-mediated hematopoietic stem and progenitor cell mobilization in mice.

    PubMed

    Chen, Chong; Cao, Jiang; Song, Xuguang; Zeng, Lingyu; Li, Zhenyu; Li, Yong; Xu, Kailin

    2013-01-01

    A high dose of granulocyte colony stimulating factor (G-CSF) is widely used to mobilize hematopoietic stem and progenitor cells (HSPC), but G-CSF is relatively inefficient and may cause adverse effects. Recently, adrenaline has been found to play important roles in HSPC mobilization. In this study, we explored whether adrenaline combined with G-CSF could induce HSPC mobilization in a mouse model. Mice were treated with adrenaline and either a high or low dose of G-CSF alone or in combination. Peripheral blood HSPC counts were evaluated by flow cytometry. Levels of bone marrow SDF-1 were measured by ELISA, the transcription of CXCR4 and SDF-1 was measured by real-time RT-PCR, and CXCR4 protein was detected by Western blot. Our results showed that adrenaline alone fails to mobilize HSPCs into the peripheral blood; however, when G-CSF and adrenaline are combined, the WBC counts and percentages of HSPCs are significantly higher compared to those in mice that received G-CSF alone. The combined use of adrenaline and G-CSF not only accelerated HSPC mobilization, but also enabled the efficient mobilization of HSPCs into the peripheral blood at lower doses of G-CSF. Adrenaline/G-CSF treatment also extensively downregulated levels of SDF-1 and CXCR4 in mouse bone marrow. These results demonstrated that adrenaline combined with G-CSF can induce HSPC mobilization by down-regulating the CXCR4/SDF-1 axis, indicating that the use of adrenaline may enable the use of reduced dosages or durations of G-CSF treatment, minimizing G-CSF-associated complications.

  8. Granulocyte-colony stimulating factor for hematopoietic stem cell donation from healthy female donors during pregnancy and lactation: what do we know?

    PubMed

    Pessach, Ilias; Shimoni, Avichai; Nagler, Arnon

    2013-01-01

    BACKGROUND Hematopoietic growth factors (HGFs) are mostly used as supportive measures to reduce infectious complications associated with neutropenia. Over the past decade, the use of HGFs became a common method for mobilizing human CD34+ stem cells, either for autologous or allogeneic transplantation. However, since their introduction the long-term safety of the procedure has become a major focus of discussion and research. Most information refers to healthy normal donors and data concerning pregnant and lactating women are scarce. The clinical question, which is the core of this review, is whether stem cell donation, preceded by administration of granulocyte-colony stimulating factor (G-CSF) for mobilization, is a safe procedure for pregnant donors. METHODS Literature searches were performed in Pubmed for English language articles published before the end of May 2012, focusing on G-CSF administration during pregnancy, lactation and hematopoietic stem cell donation. Searches included animal and human studies. RESULTS Data from animals (n = 15 studies) and women (n = 46 studies) indicate that G-CSF crosses the placenta, stimulates fetal granulopoiesis, improves neonatal survival mostly for very immature infants, promotes trophoblast growth and placental metabolism and has an anti-abortive role. Granulocyte macrophage-CSF is a key cytokine in the maternal immune tolerance towards the implanted embryo and exerts protective long-term programming effects to preimplantation embryos. The available data suggest that probably CSFs should not be administered during the time of most active organogenesis (first trimester), except perhaps for the first week during which implantation takes place. Provided CSF is administered during the second and third trimesters, it appears to be safe, and pregnant women receiving the CSF treatment can become hematopoietic stem cell donors. There are also risks related to the anesthesia, which is required for the bone marrow aspiration. During

  9. Is febrile neutropenia prophylaxis with granulocyte-colony stimulating factors economically justified for adjuvant TC chemotherapy in breast cancer?

    PubMed

    Skedgel, Chris; Rayson, Daniel; Younis, Tallal

    2016-01-01

    Febrile neutropenia (FN) during adjuvant chemotherapy is associated with morbidity, mortality risk, and substantial cost, and subsequent chemotherapy dose reductions may result in poorer outcomes. Patients at high risk of, or who develop FN, often receive prophylaxis with granulocyte colony-stimulating factors (G-CSF). We investigated whether different prophylaxis strategies with G-CSF offered favorable value-for-money. We developed a decision model to estimate the short- and long-term costs and outcomes of a hypothetical cohort of women with breast cancer receiving adjuvant taxotere + cyclophosphamide (TC) chemotherapy. The short-term phase estimated upfront costs and FN risks with adjuvant TC chemotherapy without G-CSF prophylaxis (i.e., chemotherapy dose reductions) as well as with secondary and primary G-CSF prophylaxis strategies. The long-term phase estimated the expected costs and quality-adjusted life years (QALYs) for patients who completed adjuvant TC chemotherapy with or without one or more episodes of FN. Secondary G-CSF was associated with lower costs and greater QALY gains than a no G-CSF strategy. Primary G-CSF appears likely to be cost-effective relative to secondary G-CSF at FN rates greater than 28%, assuming some loss of chemotherapy efficacy at lower dose intensities. The cost-effectiveness of primary vs. secondary G-CSF was sensitive to FN risk and mortality, and loss of chemotherapy efficacy following FN. Secondary G-CSF is more effective and less costly than a no G-CSF strategy. Primary G-CSF may be justified at higher willingness-to-pay thresholds and/or higher FN risks, but this threshold FN risk appears to be higher than the 20% rate recommended by current clinical guidelines.

  10. Potential use of G-CSF for protection against Streptococcus suis infection in swine

    USDA-ARS?s Scientific Manuscript database

    The use of immunomodulators is a promising alternative to the use of antibiotics for therapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease. We developed a replication-defective adenovirus vector that expresses porcine granulocyte colony-stimulating factor (G-CSF) ...

  11. Aciculatin Inhibits Granulocyte Colony-Stimulating Factor Production by Human Interleukin 1β-Stimulated Fibroblast-Like Synoviocytes

    PubMed Central

    Shih, Kao-Shang; Wang, Jyh-Horng; Wu, Yi-Wen; Teng, Che-Ming; Chen, Chien-Chih; Yang, Chia-Ron

    2012-01-01

    The expression of granulocyte colony-stimulating factor (G-CSF), the major regulator of neutrophil maturation, by human fibroblast-like synoviocytes (FLS) can be stimulated by the inflammatory cytokine interleukin-1β (IL-1β). G-CSF is known to contribute to the pathologic processes of destructive arthritis, but the induction mechanism remains unknown. The aims of this study were to identify the signaling pathways involved in IL-1β-stimulated G-CSF production and to determine whether this process was inhibited by aciculatin (8-((2R,4S,5S,6R)-tetrahydro-4,5-dihydroxy-6-methyl-2H-pyran-2-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one), the major bioactive component of Chrysopogon aciculatus. IL-1β-induced cytokine expression was evaluated by measuring mRNA and protein levels by RT-PCR, ELISA, and Milliplex® assay. Whether aciculatin inhibited IL-1β-stimulated G-CSF expression, and if so, how, were evaluated using western blot assay, an electrophoretic mobility shift assay, and a reporter gene assay. Neutrophil differentiation was determined by Wright-Giemsa staining and flow cytometry. Aciculatin markedly inhibited G-CSF expression induced by IL-1β (10 ng/mL) in a concentration-dependent manner (1–10 µM). In clarifying the mechanisms involved, aciculatin was found to inhibit the IL-1β-induced activation of the IκB kinase (IKK)/IκB/nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways by suppressing the DNA binding activity of the transcription factors NF-κB and activator protein (AP)-1. Furthermore, aciculatin significantly inhibited the G-CSF-mediated phosphorylation of Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Akt and neutrophil differentiation from precursor cells. Our results show that aciculatin inhibits IL-1β-stimulated G-CSF expression and the subsequent neutrophil differentiation, suggesting that it might have therapeutic potential for inflammatory arthritis. PMID

  12. Defibrotide in combination with granulocyte colony-stimulating factor significantly enhances the mobilization of primitive and committed peripheral blood progenitor cells in mice.

    PubMed

    Carlo-Stella, Carmelo; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Stucchi, Claudio; Cleris, Loredana; Formelli, Franca; Gianni, Massimo A

    2002-11-01

    Defibrotide is a polydeoxyribonucleotide, which significantly reduces the expression of adhesion molecules on endothelial cells. We investigated the activity of Defibrotide alone or in combination with recombinant human granulocyte colony-stimulating factor (rhG-CSF) to mobilize peripheral blood progenitor cells (PBPCs) in BALB/c mice. A 5-day treatment with Defibrotide alone (1-15 mg/mouse/day) had no effect on WBC counts, frequencies and absolute numbers of total circulating colony-forming cells (CFCs), i.e., granulocyte-macrophage colony-forming units, erythroid burst-forming units, and multilineage colony-forming units. As compared with mock-injected mice, administration of rhG-CSF alone (5 micro g/mouse/day) for 5 days significantly (P < or = 0.0001) increased WBC counts, CFC frequencies, and CFC absolute numbers by 2-, 13-, and 27-fold, respectively. As compared with control mice, the combined administration of Defibrotide (15 mg/mouse/day) and rhG-CSF significantly (P < or = 0.0001) increased WBC counts, frequencies and absolute numbers of CFCs by 4-, 38-, and 119-fold, respectively. As compared with rhG-CSF alone, administration of Defibrotide plus rhG-CSF resulted in a significant increase (P < or = 0.001) of the frequency of circulating long-term culture-initiating cells. In addition, transplantation of 2 x 10(5) rhG-CSF- or Defibrotide/rhG-CSF-mobilized mononuclear cells rescued 43% and 71% of recipient mice, respectively. Experiments of CFC homing performed in lethally irradiated or nonirradiated recipients showed that marrow homing of transplanted PBPCs was reduced by 3-fold in Defibrotide-treated animals as compared with mock-injected mice (P < or = 0.001), suggesting that the mobilizing effect of Defibrotide might be because of an effect on PBPC trafficking. In conclusion, our data demonstrate that Defibrotide synergizes with rhG-CSF and significantly increases the mobilization of a broad spectrum of PBPCs, including primitive and committed

  13. The effects of granulocyte colony-stimulating factor in preclinical models of infection and acute inflammation.

    PubMed

    Marshall, John C

    2005-12-01

    The cytokine granulocyte colony-stimulating factor (G-CSF) is a potent endogenous trigger for the release of neutrophils from bone marrow stores and for their activation for enhanced antimicrobial activity. G-CSF has been widely evaluated in preclinical models of acute illness, with generally promising though divergent results. A recombinant G-CSF molecule has recently undergone clinical trials to assess its efficacy as an adjuvant therapy in community-acquired and nosocomial pneumonia, however, these studies failed to provide convincing evidence of benefit. We undertook a systematic review of the published literature reporting the effects of modulation of G-CSF in preclinical in vivo models to determine whether evidence of differential efficacy might explain the disappointing results of human studies and point to disease states that might be more likely to benefit from G-CSF therapy. G-CSF has been evaluated in 86 such studies involving a variety of different models. The strongest evidence of benefit was seen in studies involving intraperitoneal challenge with live organisms; benefit was evident whether the agent was given before or after challenge. G-CSF demonstrates anti-inflammatory activity in models of systemic challenge with viable organisms or endotoxin, but only when the agent is given before challenge; evidence of benefit after challenge was minimal. Preclinical models of intrapulmonary challenge only show efficacy when the cytokine is administered before the infectious challenge, and suggested harm in gram-negative pneumonia resulting from challenge with Escherichia coli or Klebsiella. There is little evidence for therapeutic efficacy in noninfectious models of acute illness. We conclude that the most promising populations for evaluation of G-CSF are neutropenic patients with invasive infection and patients with intra-abdominal infection, particularly those with the syndrome of tertiary, or recurrent, peritonitis. Significant variability in the design

  14. Enhanced synergistic anti-Lewis lung carcinoma effect of a DNA vaccine harboring a MUC1-VEGFR2 fusion gene used with GM-CSF as an adjuvant.

    PubMed

    Ruan, Junzhong; Duan, Yong; Li, Fugen; Wang, Zitong

    2017-01-01

    In order to achieve a synergistic effect on anti-tumour and anti-angiogenesis activity, we designed and constructed a DNA vaccine that expresses MUC1and VEGFR2 in the same reading frame. The aim of this study was to investigate the anti-tumour activity of this DNA vaccine. Furthermore, we also investigated the enhanced synergistic anti-Lewis lung carcinoma effect of this DNA vaccine by using GM-CSF as an adjuvant. A series of DNA plasmids encoding MUC1, VEGFR2, GM-CSF, and their conjugates were constructed and injected into mice intramuscularly (i.m.) followed by an electric pulse. The humoral and cellular immune responses after immunization were detected by enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot (ELISPOT), respectively. To evaluate the anti-tumour efficacy of these plasmids, murine models with MUC1-expressing tumours were generated. After injection into the tumour-bearing mouse model, the plasmid carrying the fusion gene of MUC1 and VEGFR2 showed stronger inhibition of tumour growth than the plasmid expressing MUC1 or VEGFR2 alone, which indicated that MUC1 and VEGFR2 could exert a synergistic anti-tumour effect. Furthermore, mice vaccinated with the combination of the GM-CSF expressing plasmid and the plasmid carrying the fusion gene of MUC1 and VEGFR2 showed an increased inhibition in the growth of MUC1-expressing tumours and prolonged mouse survival. These observations emphasize the potential of the synergistic anti-tumour and anti-angiogenesis strategy used in DNA vaccines, and the potential of the GM-CSF gene as an adjuvant for DNA vaccines, which could represent a promising approach for tumour immunotherapy. © 2016 John Wiley & Sons Australia, Ltd.

  15. Inherited biallelic CSF3R mutations in severe congenital neutropenia.

    PubMed

    Triot, Alexa; Järvinen, Päivi M; Arostegui, Juan I; Murugan, Dhaarini; Kohistani, Naschla; Dapena Díaz, José Luis; Racek, Tomas; Puchałka, Jacek; Gertz, E Michael; Schäffer, Alejandro A; Kotlarz, Daniel; Pfeifer, Dietmar; Díaz de Heredia Rubio, Cristina; Ozdemir, Mehmet Akif; Patiroglu, Turkan; Karakukcu, Musa; Sánchez de Toledo Codina, José; Yagüe, Jordi; Touw, Ivo P; Unal, Ekrem; Klein, Christoph

    2014-06-12

    Severe congenital neutropenia (SCN) is characterized by low numbers of peripheral neutrophil granulocytes and a predisposition to life-threatening bacterial infections. We describe a novel genetic SCN type in 2 unrelated families associated with recessively inherited loss-of-function mutations in CSF3R, encoding the granulocyte colony-stimulating factor (G-CSF) receptor. Family A, with 3 affected children, carried a homozygous missense mutation (NM_000760.3:c.922C>T, NP_000751.1:p.Arg308Cys), which resulted in perturbed N-glycosylation and aberrant localization to the cell surface. Family B, with 1 affected infant, carried compound heterozygous deletions provoking frameshifts and premature stop codons (NM_000760.3:c.948_963del, NP_000751.1:p.Gly316fsTer322 and NM_000760.3:c.1245del, NP_000751.1:p.Gly415fsTer432). Despite peripheral SCN, all patients had morphologic evidence of full myeloid cell maturation in bone marrow. None of the patients responded to treatment with recombinant human G-CSF. Our study highlights the genetic and morphologic SCN variability and provides evidence both for functional importance and redundancy of G-CSF receptor-mediated signaling in human granulopoiesis. © 2014 by The American Society of Hematology.

  16. Effects of granulocyte-macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides.

    PubMed

    Scheibenbogen, Carmen; Schadendorf, Dirk; Bechrakis, Nikolaos E; Nagorsen, Dirk; Hofmann, Udo; Servetopoulou, Fotini; Letsch, Anne; Philipp, Armin; Foerster, Michael H; Schmittel, Alexander; Thiel, Eckhard; Keilholz, Ulrich

    2003-03-20

    Immunologic adjuvants are used to augment the immunogenicity of MHC class I-restricted peptide vaccines, but this effect has rarely been systematically evaluated in a clinical trial. We have investigated, in a phase I study, whether addition of the 2 adjuvants GM-CSF and KLH can enhance the T-cell response to MHC class I peptide vaccines. Forty-three high-risk melanoma patients who were clinically free of disease received 6 vaccinations with MHC class I-restricted tyrosinase peptides alone, with either GM-CSF or KLH or with a combination of both adjuvants. The primary end point was induction of tyrosinase-specific T cells, and serial T-cell monitoring was performed in unstimulated peripheral blood samples before and after the second, fourth and sixth vaccinations by ELISPOT assay. Tyrosinase-specific IFN-gamma-producing T cells were detected as early as 2 weeks after the second vaccination in 5 of 9 patients vaccinated with tyrosinase peptides in combination with GM-CSF and KLH but not in any patient vaccinated with tyrosinase peptides without adjuvants or in combination with either adjuvant alone. After 6 vaccinations, tyrosinase-specific T cells were found in patients immunized with peptides either without adjuvants (3 of 9 patients) or in combination with the single adjuvant GM-CSF (4 of 9 patients) but not with KLH (0 of 10 patients). Our results suggest that addition of either GM-CSF or KLH as a single adjuvant has little impact on the immunogenicity of tyrosinase peptides. The combined application of GM-CSF and KLH was associated with early induction of T-cell responses. Copyright 2003 Wiley-Liss, Inc.

  17. Felty's syndrome treated with rhG-CSF associated with flare of arthritis and skin rash.

    PubMed

    McMullin, M F; Finch, M B

    1995-03-01

    A patient with Felty's syndrome and rheumatoid arthritis was treated with recombinant granulocyte stimulating factor rhG-CSF (Neupogen) in view of severe neutropenia. He had a prompt rise in his neutrophil count and associated with this a severe flare of his arthritis and a skin rash. rhG-CSF was stopped, his neutrophil count fell rapidly and his symptoms resolved. rhG-CSF and the resulting rise in neutrophil count may be associated with flare of autoimmune disease in susceptible individuals.

  18. NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD+-sirtuin-1-dependent pathway

    USDA-ARS?s Scientific Manuscript database

    We identified nicotinamide phosphoribosyltransferase (NAMPT), also known as pre-B cell colony enhancing factor (PBEF), as an essential enzyme mediating granulocyte colony-stimulating factor (G-CSF)-triggered granulopoiesis in healthy individuals and in individuals with severe congenital neutropenia....

  19. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    PubMed

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  20. [Cytokines in cancer chemotherapy: present state and problems in use of G- and GM-CSF for solid tumors in Japan].

    PubMed

    Ogawara, M

    1998-01-01

    The present state and the problems of G and GM-CSF in cancer chemotherapy, especially for solid tumors in Japan, were reviewed. One of the problems is that adaptation is restricted to several tumors, and the other that recommended doses are about half or one-fourth as much as in North America or Europe. With G-CSF after dose-intensive chemotherapy in small-cell lung cancer, three studies showed G-CSF shortened the duration of neutropenia, and reduced the incidence of neutropenic fever, use of antibiotics and hospitalization, while they showed no advantages in terms of response rate and the incidence of infection-related death. Moreover, the effect on survival has not been proved. In afebrile neutropenic patients, G-CSF could accelerate recovery from neutropenia, but did not reduce the incidence of neutropenic fever. In febrile neutropenic patients with antibiotics, it could also accelerate recovery from neutropenia, but did not reduce neutropenic fever compared with no CSF except in some subsets. Our retrospective study showed the effects of G-CSF in grade 4 neutropenia were comparable with grade 3 neutropenia. The functions of neutrophils with G-CSF after chemotherapy were reported to be increased or maintained. Clinical benefits were only obtained in certain dose-intensive chemotherapy or in limited subsets. Additional clinical trials and a guideline like ASCO's should be planned.

  1. [A case of lung cancer producing granulocyte colony-stimulating factor with a significantly high uptake in the bones observed by a FDG-PET scan].

    PubMed

    Hidaka, Dai; Koshizuka, Hiroaki; Hiyama, Junichiro; Nakatsubo, Seita; Ikeda, Koutarou; Hayashi, Akihiro; Fujii, Akiko; Sawamoto, Ryouko; Misumi, Yukihiro; Miyagawa, Yousuke

    2009-03-01

    A 57-year-old man complaining of right shoulder pain was admitted. Chest enhanced CT scanning showed a mass shadow in the right upper lobe with chest wall invasion. The laboratory data on admission showed marked leukocytosis. A CT-guided lung biopsy was performed, and a histological examination of the biopsy specimen showed a spindle cell type pleomorphic carcinoma. Immunohistochemistry staining using an anti-granulocyte colony-stimulating factor (G-CSF) monoclonal antibody demonstrated many tumor cells containing G-CSF as well as an increased level of serum G-CSF. The diagnosis was determined to be lung cancer producing G-CSF. FDG-PET scanning showed a significantly high uptake in the right upper field and the bones throughout the body. After chemoradiation therapy, the patient underwent a right upper lobectomy with a chest wall resection. Since then, the leukocytosis and the high level of serum G-CSF normalized and the high uptake in the bones disappeared in the FDG-PET scan.

  2. A Novel Combinatorial Therapy With Pulp Stem Cells and Granulocyte Colony-Stimulating Factor for Total Pulp Regeneration

    PubMed Central

    Iohara, Koichiro; Murakami, Masashi; Takeuchi, Norio; Osako, Yohei; Ito, Masataka; Ishizaka, Ryo; Utunomiya, Shinji; Nakamura, Hiroshi; Matsushita, Kenji

    2013-01-01

    Treatment of deep caries with pulpitis is a major challenge in dentistry. Stem cell therapy represents a potential strategy to regenerate the dentin-pulp complex, enabling conservation and restoration of teeth. The objective of this study was to assess the efficacy and safety of pulp stem cell transplantation as a prelude for the impending clinical trials. Clinical-grade pulp stem cells were isolated and expanded according to good manufacturing practice conditions. The absence of contamination, abnormalities/aberrations in karyotype, and tumor formation after transplantation in an immunodeficient mouse ensured excellent quality control. After autologous transplantation of pulp stem cells with granulocyte-colony stimulating factor (G-CSF) in a dog pulpectomized tooth, regenerated pulp tissue including vasculature and innervation completely filled in the root canal, and regenerated dentin was formed in the coronal part and prevented microleakage up to day 180. Transplantation of pulp stem cells with G-CSF yielded a significantly larger amount of regenerated dentin-pulp complex compared with transplantation of G-CSF or stem cells alone. Also noteworthy was the reduction in the number of inflammatory cells and apoptotic cells and the significant increase in neurite outgrowth compared with results without G-CSF. The transplanted stem cells expressed angiogenic/neurotrophic factors. It is significant that G-CSF together with conditioned medium of pulp stem cells stimulated cell migration and neurite outgrowth, prevented cell death, and promoted immunosuppression in vitro. Furthermore, there was no evidence of toxicity or adverse events. In conclusion, the combinatorial trophic effects of pulp stem cells and G-CSF are of immediate utility for pulp/dentin regeneration, demonstrating the prerequisites of safety and efficacy critical for clinical applications. PMID:23761108

  3. Cosmos 2229 immunology study (Experiment K-8-07)

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    The purpose of the current study was to further validate use of the rhesus monkey as a model for humans in future space flight testing. The areas of immunological importance examined in the Cosmos 2229 flight were represented by two sets of studies. The first set of studies determined the effect of space flight on the ability of bone marrow cells to respond to granulocyte/monocyte colony stimulating factor (GM-CSF). GM-CSF is an important regulator in the differentiation of bone marrow cells of both monocyte/macrophage and granulocyte lineages and any change in the ability of these cells to respond to GM-CSF can result in altered immune function. A second set of studies determined space flight effects on the expression of cell surface markers on both spleen and bone marrow cells. Immune cell markers included in this study were those for T-cell, B-cell, natural killer cell, and interleukin-2 populations. Variations from a normal cell population percentage, as represented by these markers, can be correlated with alterations in immunological function. Cells were stained with fluorescein-labelled antibodies directed against the appropriate antigens, and then analyzed using a flow cytometer.

  4. Granulocyte colony-stimulating factor enhances protection by anti-K1 capsular IgM antibody in murine Escherichia coli sepsis.

    PubMed

    Hustinx, W; Benaissa-Trouw, B; Van Kessel, K; Kuenen, J; Tavares, L; Kraaijeveld, K; Verhoef, J; Hoepelman, A

    1997-12-01

    Combined prophylactic treatment with recombinant murine granulocyte colony-stimulating factor (G-CSF) and a suboptimal dose of anti-K1 capsular IgM monoclonal antibody (MAb) significantly enhanced survival in an experimental mouse Escherichia coli O7:K1 peritonitis model compared with untreated animals (67% vs. 11% survival; P < 0.001) and with either treatment alone (67 vs. 29% and 27% survival, respectively; P < 0.01), which suggests synergism between these agents. Enhanced survival by combined treatment was associated with increased neutrophil counts in blood and peritoneal lavage fluid, lower systemic and higher levels of local tumour necrosis factor (TNF) and lower bacterial counts in blood cultures. Mouse neutrophils treated with G-CSF but not infected with E. coli showed enhanced phagocytic and respiratory burst capacity, down-regulation of L-selectin receptors and enhanced expression of Fc RII-III receptors but not of complement receptors.

  5. Mechanism of enhanced hematopoietic response by soluble beta-glucan SCG in cyclophosphamide-treated mice.

    PubMed

    Harada, Toshie; Kawaminami, Hiromi; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2006-01-01

    SCG is a major 6-branched 1,3-beta-D-glucan in Sparassis crispa Fr. SCG shows antitumor activity and also enhances the hematopoietic response in cyclophosphamide (CY)-treated mice. In the present study, the molecular mechanism of the enhancement of the hematopoietic response was investigated. The levels of interferon-(IFN-)gamma, tumor necrosis factor-(TNF-)alpha, granulocyte-macrophage-colony stimulating factor (GM-CSF), interleukin-(IL-) 6 and IL-12p70 were significantly increased by SCG in CY-treated mice. GM-CSF production in the splenocytes from the CY-treated mice was higher than that in normal mice regardless of SCG stimulation. Neutralizing GM-CSF significantly inhibited the induction of IFN-gamma, TNF-alpha and IL-12p70 by SCG. The level of cytokine induction by SCG was regulated by the amount of endogenous GM-CSF produced in response to CY treatment in a dose-dependent manner. The expression of beta-glucan receptors, such as CR3 and dectin-1, was up-regulated by CY treatment. Blocking dectin-1 significantly inhibited the induction of TNF-alpha and IL-12p70 production by SCG. Taken together, these results suggest that the key factors in the cytokine induction in CY-treated mice were the enhanced levels of both endogenous GM-CSF production and dectin-1 expression.

  6. Radical esophagectomy for a 92-year-old woman with granulocyte colony-stimulating factor-producing esophageal squamous cell carcinoma: a case report.

    PubMed

    Kitani, Mari; Yamagata, Yukinori; Tanabe, Asami; Yagi, Kouichi; Aikou, Susumu; Kiyokawa, Takashi; Nishida, Masato; Yamashita, Hiroharu; Mori, Kazuhiko; Nomura, Sachiyo; Seto, Yasuyuki

    2016-10-13

    Granulocyte colony-stimulating factor (G-CSF)-producing esophageal squamous cell carcinoma (ESCC) has been considered to have a poor prognosis. We successfully treated a case of G-CSF-producing ESCC in a 92-year-old woman. A 92-year-old woman was admitted to our hospital with the complaints of choking while swallowing and dysphagia. Esophagogastroduodenoscopy and contrast-enhanced computed tomography revealed a type 2 esophageal cancer located 26-35 cm from the dental arch, with no distant metastasis. The patient was diagnosed with G-CSF-producing ESCC based on remarkable leukocytosis and high G-CSF levels. The patient underwent radical subtotal esophagectomy. Subsequently, the level of neutrophils (from 23,500/μL to 5000/μL) and the level of G-CSF (from 131 to <19.5 pg/mL) decreased significantly. Immunohistochemistry analysis of the resected tissue specimen showed positive staining for G-CSF in the cytoplasm of the tumor cells. Although the patient developed aspiration pneumonitis, after antibiotic treatment, she promptly recovered and was discharged. Herein, we describe a case of successfully treated G-CSF-producing ESCC in a 92-year-old woman. Precise detection and safely performed immediate radical operation are considered essential to achieve a good clinical course.

  7. Perioperative Granulocyte Colony-Stimulating Factor Does Not Prevent Severe Infections in Patients Undergoing Esophagectomy for Esophageal Cancer

    PubMed Central

    Schaefer, Hartmut; Engert, Andreas; Grass, Guido; Mansmann, Georg; Wassmer, Gernot; Hubel, Kai; Loehlein, Dietrich; Ulrich, Bernward C.; Lippert, Hans; Knoefel, Wolfram T.; Hoelscher, Arnulf H.

    2004-01-01

    Objective: Esophagectomy for esophageal cancer is associated with substantial postoperative morbidity as a result of infectious complications. In a prior phase II study, granulocyte colony-stimulating factor (G-CSF) was shown to improve leukocyte function and to reduce infection rates after esophagectomy. The aim of the current randomized, placebo-controlled, multicenter phase III trial was to investigate the clinical efficacy of perioperative G-CSF administration in reducing infection and mortality after esophagectomy for esophageal cancer. Patients and Methods: One hundred fifty five patients with resectable esophageal cancer were randomly assigned to perioperative G-CSF at standard doses (77 patients) or placebo (76 patients), administered from 2 days before until day 7 after esophagectomy. The G-CSF and placebo groups were comparable as regards age, gender, risk, cancer stage, frequency of neoadjuvant radiochemotherapy, and type of esophagectomy (transthoracic or transhiatal esophageal resection). Results: Of 155 randomized patients, 153 were eligible for the intention-to-treat analysis. The rate of infection occurring within the first 10 days after esophagectomy was 43.4% (confidence interval 32.8–55.9%) in the placebo and 44.2% (confidence interval 32.1–55.3%) in the G-CSF group (P = 0.927). 30-day mortality amounted to 5.2% in the G-CSF group versus 5.3% in the placebo group (P = 0.985). Similar results were found in the per-protocol analysis. Conclusion: Perioperative administration of G-CSF failed to reduce postoperative morbidity, infection rate, or mortality in patients with esophageal cancer who underwent esophagectomy. PMID:15213620

  8. Cost-benefit analysis of prophylactic granulocyte colony-stimulating factor during CHOP antineoplastic therapy for non-Hodgkin's lymphoma.

    PubMed

    Dranitsaris, G; Altmayer, C; Quirt, I

    1997-06-01

    Several randomised comparative trials have shown that granulocyte colony-stimulating factor (G-CSF) reduces the duration of neutropenia, hospitalisation and intravenous antibacterial use in patients with cancer who are receiving high-dosage antineoplastic therapy. However, one area that has received less attention is the role of G-CSF in standard-dosage antineoplastic regimens. One such treatment that is considered to have a low potential for inducing fever and neutropenia is the CHOP regimen (cyclophosphamide, doxorubicin, vincristine and prednisone) for non-Hodgkin's lymphoma. We conducted a cost-benefit analysis from a societal perspective in order to estimate the net cost or benefit of prophylactic G-CSF in this patient population. This included direct costs for hospitalisation with antibacterial support, as well as indirect societal costs, such as time off work and antineoplastic therapy delays secondary to neutropenia. The findings were then tested by a comprehensive sensitivity analysis. The administration of G-CSF at a dosage of 5 micrograms/kg/day for 11 doses following CHOP resulted in an overall net cost of $Can1257. In the sensitivity analysis, lowering the G-CSF dosage to 2 micrograms/kg/day generated a net benefit of $Can6564, indicating a situation that was cost saving to society. The results of the current study suggest that the use of G-CSF in patients receiving CHOP antineoplastic therapy produces a situation that is close to achieving cost neutrality. However, low-dosage (2 micrograms/kg/day) G-CSF is an economically attractive treatment strategy because it may result in overall savings to society.

  9. Remission induction of refractory anaemia with excess blasts in transformation by sole treatment with granulocyte colony-stimulating factor with persistent chromosomal abnormality.

    PubMed

    Kondo, Haruki; Kasahara, Yasunori; Mori, Akinori

    2002-01-01

    We report a patient with myelodysplastic syndrome (MDS), refractory anaemia with excess blasts in transformation, in whom complete remission (CR) was achieved with the administration of granulocyte colony-stimulating factor (G-CSF). The 76-year-old patient was admitted to our hospital with a fever and a productive cough; a diagnosis of pneumonia was thus made. Following treatment with antibiotics, the patient's condition improved, and MDS was diagnosed from peripheral blood and bone marrow examinations after the patient recovered from the infection. The patient achieved a sustained haematological CR that was confirmed by morphological and flow cytometric examination after treatment with G-CSF alone, although chromosomal abnormalities persisted. According to the literature, in almost all patients with acute myeloid leukaemia or MDS who were reported to achieve CR by G-CSF, the course was associated with infection, although our case did not have this complication during the course of G-CSF therapy. We suggest that patients with G-CSF alone without infection can achieve CR and that this may be related to a differentiation effect of G-CSF based on persistent chromosomal abnormality in this case. Copyright 2002 S. Karger AG, Basel

  10. Recombinant human interleukin-3 (rhIL-3) enhances the mobilization of peripheral blood progenitor cells by recombinant human granulocyte colony-stimulating factor (rhG-CSF) in normal volunteers.

    PubMed

    Huhn, R D; Yurkow, E J; Tushinski, R; Clarke, L; Sturgill, M G; Hoffman, R; Sheay, W; Cody, R; Philipp, C; Resta, D; George, M

    1996-06-01

    To identify a precisely timed and safe protocol for progenitor cell mobilization, we studied the effects of rhIL-3 and rhG-CSF administration to normal volunteers. rhG-CSF 5 micrograms/kg/d was administered subcutaneously (s.c.) for 7 consecutive days either alone or preceded by rhIL-3 5 micrograms/kg/d s.c. for 4 consecutive days in sequential or partially overlapping schedules. The combined cytokines were well-tolerated--adverse effects were similar to those of the individual agents. Total white blood cell (WBC) and neutrophil counts rose briskly in response to rhG-CSF, and peak mean values were similar between treatment cohorts. Mean platelet counts were modestly elevated during rhG-CSF treatment only in the cohorts receiving rhIL-3 and rhG-CSF. Mean circulating CD34+ cells peaked on day 5 in the rhG-CSF group (38.9+/-14.3/microliter), day 6 in the sequential rhIL-3/rhG-CSF group (56.4+/-12.4/microliter), and day 6 in the partial overlap group (46.1+/-10.9/microliter). On day 3, mean CD34+ cell counts of the subjects who received sequential treatment were markedly higher than observed in the other groups (p<0.05) and were estimated to have been sufficient for collection of adequate grafts by single 10-L leukapheresis procedures in 60% of subjects. Circulating clonogenic cells (CFU-GM and/or BFU-E) were substantially higher in the sequential group than the rhG-CSF group on days 3-6 but were only minimally elevated above baseline in the partial overlap group. The numbers of circulating CD34+/Lin-/Thy-1+ cells (putative stem cells) were increased substantially, especially in the sequential group. On the basis of this pilot trial, we conclude that priming with rhIL-3 is a safe and well-tolerated method for enhancing the mobilization of human blood progenitors and stem cells by rhG-CSF.

  11. Hallway gossip between Ras and PI3K pathways.

    PubMed

    Emanuel, Peter D

    2014-05-01

    In this issue of Blood, Goodwin et al investigate the pathogenesis of juvenile myelomonocytic leukemia (JMML), demonstrating that mutant Shp2 induces granulocyte macrophage-colony-stimulating factor (GM-CSF) hypersensitivity and that the p110δ subunit of phosphatidylinositol 3-kinase (PI3K) further promotes this dysregulation

  12. A new approach in the management of urothelial tumors using GM-CSF on marker lesions: an ultrastructural and immunohistochemical study on the macrophage population in bladder mucosa.

    PubMed

    Stravoravdi, P; Toliou, T; Kirtsis, P; Natsis, K; Konstandinidis, E; Barich, A; Gigis, P; Dimitriadis, K

    1999-03-01

    Our purpose was to investigate a new therapeutic model, GM-CSF-targeted immunomodulation on transitional cell carcinoma (TCC) marker lesions and to evaluate the immunologic response of the bladder mucosa. Eleven patients with pTa or pT1 bladder cancer were eligible for the study. All lesions were removed by transurethral resection (TUR) except for a marker lesion. All patients received 8 weekly instillations of 300 microg of GM-CSF, after which cystoscopy with bladder biopsies +/- TUR was repeated on adjacent urothelium or tumor or both. Paraffin-embedded sections were immunohistochemically stained with CD68, which labels monocytes and macrophages. The CD68+ cell population was evaluated as 1+ to 3+. Comparable specimens were routinely processed for ultrastructural analysis. Complete response was observed in 6 patients (55%), persistent tumor occurred in 4 patients (approximately 36.4%), and 1 patient (8.6%) showed recurrence. Immunohistochemically, an at least twofold increase in the number of the CD68+ cells was observed in all responders. Submicroscopically, migration of macrophages to the surface layer occurred. Macrophages showed an extensive lysosomal system and pseudopodia. This study indicates that the prophylactic treatment of TCC with GM-CSF may induce immunomodulatory effects on macrophage activities, which could be associated with the clinical evolution of the disease.

  13. [Pleomorphic carcinoma of the lung with high serum granulocyte colony stimulating factor, suggested of pulmonary abscess by preoperative radiology; report of a case].

    PubMed

    Mizuno, Mikoto; Miyoshi, Tatsu; Nabeshima, Kazuki; Iwasaki, Akinori; Shirakusa, Takaho

    2006-08-01

    A 52-year-old man with a history of heavy smoking was hospitalized for evaluation of fever. Pulmonary abscess was initially suspected by computed tomography (CT) showing an ovoid, well-demarcated nodule of 61 mm in diameter with coarse calcification in S2a of the right lung. The patient was treated with antibiotics, but no improvement was seen in inflammatory reactions or lesion size. Marked leukocytosis and high level of granulocyte colony stimulating factor (G-CSF) was shown by laboratory examination. To improve patient condition and ensure correct diagnosis, right upper lobectomy of the lung was performed. Pleomorphic carcinoma of the lung was subsequently diagnosed. G-CSF producing tumor was suspected, since the normalization of serum G-CSF level followed by the improvement of both fever and inflammatory reaction was observed postoperatively. We also present herein a review of 22 Japanese cases of pleomorphic carcinoma producing G-CSF of the lung, characterized by leukocytosis.

  14. Expression of brain derived-neurotrophic factor and granulocyte-colony stimulating factor in the urothelium: relation with voiding function.

    PubMed

    Yuk, Seung Mo; Shin, Ju Hyun; Song, Ki Hak; Na, Yong Gil; Lim, Jae Sung; Sul, Chong Koo

    2015-05-08

    We designed this experiment to elucidate the relationship between the expression of brain derived-neurotrophic factor (BDNF), the expression of granulocyte-colony stimulating factor (G-CSF), and the development of overactive bladder (OAB). In our previous study, the urothelium was observed to be more than a simple mechanosensory receptor and was found to be a potential therapeutic target for OAB. Moreover, neuregulin-1 and BDNF were found to be potential new biomarkers of OAB. Here, we investigated the relationship between changes in the voiding pattern and the expression of BDNF and G-CSF in the urothelium and evaluated the effects of 5-hydroxymethyl tolterodine (5-HMT) on rats with bladder outlet obstruction (BOO). A total of 100 Sprague-Dawley rats were divided into the following groups: 20 control rats; 40 BOO rats; and 40 BOO rats administered 5-HMT (0.1 mg/kg). After BOO was induced for 4 weeks, the rats were assessed by cystometrography. The changes in BDNF and G-CSF expression were examined in both separated urothelial tissues and in cultured urothelial cells by reverse transcription polymerase chain reaction (RT-PCR). BOO rats showed increased non-voiding activity [NVA; (number/10 voidings)] and bladder weight and decreased micturition volume (MV), micturition interval (MI), and micturition time (MT) relative to the controls. Moreover, the 5-HMT administration rats showed decreased NVA and bladder weight and increased MV and MI in comparison to the BOO rats. BDNF and G-CSF expression was increased in BOO rats and decreased following 5-HMT administration. In this model, voiding dysfunction developed as a result of BOO. As a therapeutic agent for OAB, the administration of 5-HMT improved the voiding dysfunction. BDNF and G-CSF might modulate voiding patterns through micturition pathways and might be involved only in the urothelium. Moreover, the expression of both genes in the urothelium might be related to voiding dysfunction in OAB patients. Thus, the

  15. Granulocyte-Colony Stimulating Factor Increases Cerebral Blood Flow via a NO Surge Mediated by Akt/eNOS Pathway to Reduce Ischemic Injury

    PubMed Central

    Kuo, Jon-Son; Wang, Jia-Yi

    2015-01-01

    Granulocyte-colony stimulating factor (G-CSF) protects brain from ischemic/reperfusion (I/R) injury, and inhibition of nitric oxide (NO) synthases partially reduces G-CSF protection. We thus further investigated the effects of G-CSF on ischemia-induced NO production and its consequence on regional cerebral blood flow (rCBF) and neurological deficit. Endothelin-1 (ET-1) microinfused above middle cerebral artery caused a rapid reduction of rCBF (ischemia) which lasted for 30 minutes and was followed by a gradual recovery of blood flow (reperfusion) within the striatal region. Regional NO concentration increased rapidly (NO surge) during ischemia and recovered soon to the baseline. G-CSF increased rCBF resulting in shorter ischemic duration and an earlier onset of reperfusion. The enhancement of the ischemia-induced NO by G-CSF accompanied by elevation of phospho-Akt and phospho-eNOS was noted, suggesting an activation of Akt/eNOS. I/R-induced infarct volume and neurological deficits were also reduced by G-CSF treatment. Inhibition of NO synthesis by L-NG-Nitroarginine Methyl Ester (L-NAME) significantly reduced the effects of G-CSF on rCBF, NO surge, infarct volume, and neurological deficits. We conclude that G-CSF increases rCBF through a NO surge mediated by Akt/eNOS, which partially contributes to the beneficial effect of G-CSF on brain I/R injury. PMID:26146654

  16. Bortezomib inhibits STAT5-dependent degradation of LEF-1, inducing granulocytic differentiation in congenital neutropenia CD34+ cells

    PubMed Central

    Gupta, Kshama; Kuznetsova, Inna; Klimenkova, Olga; Klimiankou, Maksim; Meyer, Johann; Moore, Malcolm A. S.; Zeidler, Cornelia; Welte, Karl

    2014-01-01

    The transcription factor lymphoid enhancer–binding factor 1 (LEF-1), which plays a definitive role in granulocyte colony-stimulating factor (G-CSF) receptor-triggered granulopoiesis, is downregulated in granulocytic progenitors of severe congenital neutropenia (CN) patients. However, the exact mechanism of LEF-1 downregulation is unclear. CN patients are responsive to therapeutically high doses of G-CSF and are at increased risk of developing acute myeloid leukemia. The normal expression of LEF-1 in monocytes and lymphocytes, whose differentiation is unaffected in CN, suggests the presence of a granulopoiesis-specific mechanism downstream of G-CSF receptor signaling that leads to LEF-1 downregulation. Signal transducer and activator of transcription 5 (STAT5) is activated by G-CSF and is hyperactivated in acute myeloid leukemia. Here, we investigated the effects of activated STAT5 on LEF-1 expression and functions in hematopoietic progenitor cells. We demonstrated that constitutively active STAT5a (caSTAT5a) inhibited LEF-1–dependent autoregulation of the LEF-1 gene promoter by binding to the LEF-1 protein, recruiting Nemo-like kinase and the E3 ubiquitin-ligase NARF to LEF-1, leading to LEF-1 ubiquitination and a reduction in LEF-1 protein levels. The proteasome inhibitor bortezomib reversed the defective G-CSF–triggered granulocytic differentiation of CD34+ cells from CN patients in vitro, an effect that was accompanied by restoration of LEF-1 protein levels and LEF-1 messenger RNA autoregulation. Taken together, our data define a novel mechanism of LEF-1 downregulation in CN patients via enhanced ubiquitination and degradation of LEF-1 protein by hyperactivated STAT5. PMID:24394665

  17. Antiapoptotic effects of Phe140Asn, a novel human granulocyte colony-stimulating factor mutant in H9c2 rat cardiomyocytes.

    PubMed

    Chung, Hee Kyoung; Ko, Eun Mi; Kim, Sung Woo; Byun, Sung-June; Chung, Hak-Jae; Kwon, Moosik; Lee, Hwi-Cheul; Yang, Byoung-Chul; Han, Deug-Woo; Park, Jin-Ki; Hong, Sung-Gu; Chang, Won-Kyong; Kim, Kyung-Woon

    2012-12-01

    Granulocyte colony-stimulating factor (G-CSF) is used for heart failure therapy and promotes myocardial regeneration by inducing mobilization of bone marrow stem cells to the injured heart after myocardial infarction; however, this treatment has one weakness in that its biological effect is transient. In our previous report, we generated 5 mutants harboring N-linked glycosylation to improve its antiapoptotic activities. Among them, one mutant (Phe140Asn) had higher cell viability than wild-type hG-CSF in rat cardiomyocytes, even after treatment with an apoptotic agent (H2O2). Cells treated with this mutant significantly upregulated the antiapoptotic proteins, and experienced reductions in caspase 3 activity and PARP cleavage. Moreover, the total number of apoptotic cells was dramatically lower in cultures treated with mutant hG-CSF. Taken together, these results suggest that the addition of an N-linked glycosylation was successful in improving the antiapoptotic activity of hG-CSF, and that this mutated product will be a feasible therapy for patients who have experienced heart failure.

  18. Granulocyte colony-stimulating factor in toxic epidermal necrolysis (TEN) and Chelsea & Westminster TEN management protocol [corrected].

    PubMed

    de Sica-Chapman, A; Williams, G; Soni, N; Bunker, C B

    2010-04-01

    Toxic epidermal necrolysis (TEN) is a rare but life-threatening, allergic drug reaction. Skin blistering with epidermal and mucosal necrolysis with subsequent detachment from an inflamed underlying dermis is a hallmark of the condition. The pathogenesis of TEN is not well understood, accounting for controversies about its management and significant delay in initiating potentially beneficial therapy. There are no management protocols based on a robust evidence base. Prompt recognition of the diagnosis and consensus on early management initiatives are necessary in order to improve outcomes and survival in TEN. To date, TEN management has been directed at arresting the allergic reaction and treating the complications. We have identified a need for specific medical interventions to accelerate wound regeneration. This approach has not previously been adopted in the management of TEN. We observed that in two cases of severe TEN, dramatic re-epithelialization and recovery coincided with the introduction of granulocyte colony-stimulating factor (G-CSF) for neutropenia. We explain how addition of the G-CSF promotes recovery from TEN by enhanced bioregeneration of the damaged tissues through accelerated re-epithelialization. G-CSF has been used for severe neutropenia in TEN, but we recommend and explain why, as in our Chelsea and Westminster protocol, G-CSF should be considered in treating severe TEN irrespective of the severity of neutropenia.

  19. Long-term overexpression of human granulocyte colony-stimulating factor in transgenic mice: persistent neutrophilia with no increased mortality for more than one year.

    PubMed

    Serizawa, I; Amano, K; Ishii, H; Ichikawa, T; Kusaka, M; Taguchi, T; Kiyokawa, N; Fujimoto, J

    2000-06-01

    To investigate possible adverse consequences of persistent neutrophil overproduction, mice transgenic for human granulocyte colony-stimulating factor (hG-CSF) were studied for more than 1 year. They showed marked granulocytopoiesis and neutrophilia. Continuous medullary and extramedullary granulocytopoiesis resulted in marked changes in bone and liver. In the liver, haemorrhage and focal necrosis and a few haemangiosarcomas were present, presumably caused by the destructive granulocytopoiesis. Despite the high incidence of lung infiltration by mature neutrophils, lung lesions rarely appeared. Although there was a persistent increase in neutrophils, mortality of the mice did not differ from that of non-transgenic littermates at least within 1 year after birth. Factors other than overproduction of G-CSF and extensive neutrophilia could be required for the development of neutrophil-mediated acute and chronic tissue damage. Copyright 2000 Academic Press.

  20. Granulocyte-mobilized bone marrow.

    PubMed

    Arcese, William; De Angelis, Gottardo; Cerretti, Raffaella

    2012-11-01

    In the last few years, mobilized peripheral blood has overcome bone marrow as a graft source, but, despite the evidence of a more rapid engraftment, the incidence of chronic graft-versus-host disease is significantly higher with, consequently, more transplant-related mortality on the long follow-up. Overall, the posttransplant outcome of mobilized peripheral blood recipients is similar to that of patients who are bone marrow grafted. More recently, the use of bone marrow after granulocyte colony-stimulating factor (G-CSF) donor priming has been introduced in the transplant practice. Herein, we review biological acquisitions and clinical results on the use of G-CSF-primed bone marrow as a source of hematopoietic stem cells (HSC) for allogeneic stem cell transplantation. G-CSF the increases the HSC compartment and exerts an intense immunoregulatory effect on marrow T-cells resulting in the shift from Th1 to Th2 phenotype with higher production of anti-inflammatory cytokines. The potential advantages of these biological effects have been translated in the clinical practice by using G-CSF primed unmanipulated bone marrow in the setting of transplant from human leukocyte antigen (HLA)-haploidentical donor with highly encouraging results. For patients lacking an HLA-identical sibling, the transplant of G-CSF primed unmanipulated bone marrow from a haploidentical donor combined with an intense in-vivo immunosuppression is a valid alternative achieving results that are well comparable with those reported for umbilical cord blood, HLA-matched unrelated peripheral blood/bone marrow or T-cell-depleted haploidentical transplant.

  1. The water-soluble extract from cultured medium of Ganoderma lucidum (Reishi) mycelia (Designated as MAK) ameliorates murine colitis induced by trinitrobenzene sulphonic acid.

    PubMed

    Hanaoka, R; Ueno, Y; Tanaka, S; Nagai, K; Onitake, T; Yoshioka, K; Chayama, K

    2011-11-01

    Ganoderma lucidum Karst is well known as 'Reishi', a traditional food in China and Japan. It contains a polysaccharide component known to induce granulocyte macrophage colony-stimulating factor (GM-CSF) production from murine splenocytes. Moreover, GM-CSF may be a therapeutic agent for Crohn's disease. In this study, we investigated the water-soluble, polysaccharide components of Reishi (designated as MAK) in murine colitis induced by trinitrobenzene sulphonic acid (TNBS). We examined the concentration of GM-CSF in peritoneal macrophage cells (PMs) of C57BL/6 mice during in vitro and in vivo stimulation with MAK. After feeding with chow or MAK for 2 weeks, 2 mg of TNBS/50% ethanol was administered to each mouse. After 3 days of TNBS treatment, intestinal inflammation was evaluated, and mononuclear cells of the mesenteric lymph nodes (MLNs) and colon were cultured for ELISA. To determine the preventive role of GM-CSF, the mice were pre-treated with or without anti-GM-CSF antibody before TNBS administration. In vitro and in vivo MAK-stimulated PMs produced GM-CSF in a dose-dependent manner. Intestinal inflammation by TNBS was improved by feeding with MAK. MLNs of mice treated with TNBS produced IFN-γ, which was inhibited by feeding with MAK. In contrast, MLNs of mice treated with TNBS inhibited GM-CSF production, which was induced by feeding with MAK. The colon organ culture assay also revealed that IFN-γ was decreased and GM-CSF was increased by MAK. The preventive effect was blocked by the neutralization of GM-CSF. We concluded that the induction of GM-CSF by MAK may provide the anti-inflammatory effect. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  2. Effect of recombinant human granulocyte colony-stimulating factor on combination therapy with aztreonam and clindamycin for infections in neutropenic patients with hematologic diseases.

    PubMed

    Toyama, K; Yaguchi, M; Mizoguchi, H; Masuda, M; Urabe, A; Ikeda, Y; Aoki, I; Shinbo, T; Togawa, A; Hirashima, K; Miura, Y; Hirose, S; Tsuruoka, N; Omine, M; Kamakura, M; Saito, T; Arimori, S; Aoki, N; Kuraishi, Y; Hirai, H; Asano, S; Mori, M; Shirai, T; Muto, Y; Takaku, F

    1996-12-01

    The present multicenter study was performed to evaluate the effect of recombinant human granulocyte-colony stimulating factor (rhG-CSF) on combination therapy using aztreonam (AZT) and clindamycin (CLDM) to treat severe infection in neutropenic patients with hematologic diseases. Forty-three neutropenic patients with infections (rhG-CSF group) were treated with AZT (2 g) and CLDM (600 mg) 2-3 times daily as well as rhG-CSF (Lenograstim or Filgrastim: 2-5 mu/kg/day). The clinical efficacy of this regimen was compared to that obtained in 44 febrile neutropenic patients, with hematologic diseases, who received only AZT and CLDM in a previous study (historical control group). The overall efficacy rate was 69.8% (30/43) in the rhG-CSF group and 65.9% (29/44) in the historical control group. Although the neutrophil count was significantly increased and C-reactive protein tended to be lower in the rhG-CSF group, the daily maximum body temperature profiles of the 2 groups were nearly the same. These results suggest that rhG-CSF is of little benefit in the treatment of single infectious episodes in neutropenic patients, and that appropriate antibiotic therapy is more important.

  3. Successful treatment of chronic severe neutropenia with weekly recombinant granulocyte-colony stimulating factor.

    PubMed

    Fine, K D; Byrd, T D; Stone, M J

    1997-04-01

    Daily treatment for symptomatic chronic neutropenia with recombinant granulocyte-colony stimulating factor (rhG-CSF) filgrastim is costly and sometimes causes neutrophillia. We report the use of weekly filgrastim in a 40-year-old man with life-long symptomatic neutropenia. Baseline neutrophil counts were < 1 x 10(9)/l 60% of the time, and fell below 0.5 x 10(9)/l for 7d periods every 22 d. Following 1 year of weekly filgrastim treatment, the absolute neutrophil count was maintained > 1 x 10(9)/l (averaging 2 x 10(9)/l) and the frequency and severity of symptoms were reduced by 85%. Therefore the benefits of filgrastim for the treatment of at least one form of chronic severe neutropenia can be derived from weekly rather than daily doses.

  4. Process development for production of human granulocyte-colony stimulating factor by high cell density cultivation of recombinant Escherichia coli.

    PubMed

    Khalilzadeh, Rasoul; Mohammadian-Mosaabadi, Jafar; Bahrami, Ali; Nazak-Tabbar, Ahmad; Nasiri-Khalili, Mohammad Ali; Amouheidari, Alireza

    2008-12-01

    The fed-batch process using glucose as the sole source of carbon and energy with exponential feeding rate was carried out for high cell density cultivation of recombinant Escherichia coli BL21 (DE3) expressing human granulocyte-colony stimulating factor (hG-CSF). IPTG was used to induce the expression of hG-CSF at 48 g dry cell wt l(-1) during high cell density culture of recombinant E. coli BL21 (DE3) [pET23a-g-csf]. The final cell density, specific yield and overall productivity of hG-CSF were obtained as approximately 64 g dry cell wt l(-1), 223 mg hG-CSF g(-1) dry cell wt and 775 mg hG-CSF l(-1) h(-1), respectively. The resulting purification process used cell lysis, inclusion body (IB) preparation, refolding, DEAE and Butyl-Sepharose. Effects of different process conditions such as cell lysis and washing of IB were evaluated. The results reveal that the cells lyzed at 1,200 bar, 99.9% and Triton removed about 64% of the LPS but sarcosyl had no effect on removal of nucleic acids and LPS. Further analysis show that DEAE column removes DNA about 84%. Cupper concentration was identified as parameter that could have a significant impact on aggregation, as an unacceptable pharmaceutical form that decrease process yields. The purity of purified hG-CSF was more than 99%. Also the comparison of activity between purified hG-CSF and commercial form do not show valuable decrease in activity in purified form.

  5. Effect of recombinant human granulocyte colony-stimulating factor on efficacy of radiation therapy in tumor-bearing rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koji Kabaya; Masahiko Watanabe; Masaru Kusaka

    The effect of recombinant human granulocyte colony-stimulating factor on radiation-induced neutropenia and on growth of transplanted tumors treated by irradiation was investigated using tumor-bearing rats as a model for radiation therapy. In a preliminary study using normal rats, neutropenia induced by upper hemi-body irradiation at 3 Gy/day 5 times a week for 3 weeks was prevented by consecutive subcutaneous injections of rhG-CSF at 100 {mu}g/kg/day. Rats bearing Walker-256, a mammary tumor, were scheduled to receive upper hemibody irradiation at 3 Gy/day for 15 times in 3 weeks if white blood cell (WBC) counts were maintained above 3,000/{mu}l. In control tumor-bearingmore » rats not receiving rhG-CSF, irradiation was often withheld because of the decrease in WBC counts below 3,000/{mu}l. In contrast, a decrease in WBC counts below 3,000/{mu}l was rarely found in tumor-bearing rats injected daily with rhG-CSF. The average number of radiation treatments in control rats and rats treated with rhG-CSF was about 8 and 14, respectively, out of the scheduled 15 treatments in 3 weeks. Treatment with rgG-CSF made it possible to complete the radiation therapy regimen and thus inhibit the growth of the transplanted tumor more effectively. These results suggest that rgG-CSF may be useful to ensure radiation therapy on schedule in cancer patients. 20 refs., 4 figs., 1 tab.« less

  6. [Clinical study on a concomitant therapy with fluconazole and human recombinant granulocyte colony stimulating factor in the treatment of systemic fungal infections with hematological disorders].

    PubMed

    Kitamura, K; Miyagawa, K; Urabe, A; Sato, H; Obayashi, Y; Aoki, I; Takaku, F; Togawa, A; Shindou, E; Wakabayashi, Y; Ohshima, T; Horikoshi, A; Nomura, T; Ohki, I; Suzuki, K; Kamakura, M; Oguchi, A; Toyama, K; Yaguchi, M; Aoki, N; Kato, A; Mizoguchi, H; Masuda, M; Irie, S; Fujioka, S

    1996-12-01

    The clinical efficacy and the safety of concomitant therapy with fluconazole and recombinant human granulocyte colony stimulating factor (rhG-CSF) was compared with fluconazole monotherapy in neutropenic patients with hematological disorders. The clinical efficacy rate was 73.5% (25/34) in the combination therapy and 48.1% (37/77) in monotherapy. The difference between the two is statistically significant. Side effects were not observed in the combination group, but laboratory abnormalities were found in 6 patients with an incident rate of 11%. The combination therapy with fluconazole and rhG-CSF may be selected as empiric therapy for systemic fungal infection associated with hematological disorders, since this combination therapy showed high efficacy and low incident of side effects. Some patients, however, did not show increased neutrophil counts in spite of rhG-CSF administration.

  7. [Granulocyte- colony stimulating factor (G-CSF) use in clinical practice in patients receiving chemotherapy for breast cancer: The Opaline Study].

    PubMed

    Jacot, William; Antoine, Eric-Charles; Hacini, Maya; Giron, Cathy; Rivière, Alain; Moureau-Zabotto, Laurence; Cassin, Daniel; Yazbek, Gabriel; Orfeuvre, Hubert; Sakek, Nacera; Diab, Rafik; Bastit, Laurent; Mille, Dominique; Azria, David

    2015-12-01

    To describe the French routine use of G-CSF in patients treated for breast cancer as per the EORTC recommendations. A prospective multicenter observational study conducted between February 2008 and September 2009 in 869 breast cancer patients treated by chemotherapy (CT) and for whom G-CSF treatment will be delivered in primary (PP) or secondary prophylaxis. The mean age was 55 years. A total of 80.3% of CT was in neoadjuvant/adjuvant setting (NAS). PP was delivered in 78.9% of the NAS patients and 67.5% in metastatic situation. Of the 702 evaluable patients, incidences of severe (SN) and febrile neutropenias (FN) in patients who received PP were 9.3% and 4.2%, respectively. In patients who did not received G-CSF at first cycle, SN and FN were 12.4% and 7.3%, respectively. The use of PP was mainly driven by the type of CT for patients treated in the NAS and by patient or disease related risk factors in the locally advanced/metastatic setting. This study has shown that the use of G-CSF was in accordance with the 2010 updates of the EORTC recommendations. However, G-CSF appears more widely used in the routine practice. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  8. Accessory cells with a veiled morphology and movement pattern generated from monocytes after avoidance of plastic adherence and of NADPH oxidase activation. A comparison with GM-CSF/IL-4-induced monocyte-derived dendritic cells.

    PubMed

    Ruwhof, Cindy; Canning, Martha O; Grotenhuis, Kristel; de Wit, Harm J; Florencia, Zenovia Z; de Haan-Meulman, Meeny; Drexhage, Hemmo A

    2002-07-01

    Veiled cells (VC) present in afferent lymph transport antigen from the periphery to the draining lymph nodes. Although VC in lymph form a heterogeneous population, some of the cells clearly belong on morphological grounds to the Langerhans cell (LC)/ dendritic cell (DC) series. Here we show that culturing monocytes for 24 hrs while avoiding plastic adherence (polypropylene tubes) and avoiding the activation of NADPH oxidase (blocking agents) results in the generation of a population of veiled accessory cells. The generated VC were actively moving cells like lymph-borne VC in vivo. The monocyte (mo)-derived VC population existed of CD14(dim/-) and CD14(brighT) cells. Of these the CD14(dim/-) VC were as good in stimulating allogeneic T cell proliferation as immature DC (iDC) obtained after one week of adherent culture of monocytes in granulocyte-macrophage-colony stimulating factor (GM-CSF)/interleukin (IL)-4. This underscores the accessory cell function of the mo-derived CD14(dim/-) VC. Although the CD14(dim/-)VC had a modest expression of the DC-specific marker CD83 and were positive for S100, expression of the DC-specific markers CD1a, Langerin, DC-SIGN, and DC-LAMP were absent. This indicates that the here generated CD14(dim/-) VC can not be considered as classical LC/DC. It was also impossible to turn the CD14(dim/-) mo-derived VC population into typical DC by culture for one week in GM-CSF/IL-4 or LPS. In fact the cells died tinder such circumstances, gaining some macrophage characteristics before dying. The IL-12 production from mo-derived CD14(dim/-) VC was lower, whereas the production of IL-10 was higher as compared to iDC. Consequently the T cells that were stimulated by these mo-derived VC produced less IFN-gamma as compared with T cells stimulated by iDC. Our data indicate that it is possible to rapidly generate a population of CD14(dim/-) veiled accessory cells from monocytes. The marker pattern and cytokine production of these VC indicate that this

  9. Sequential promotion of normal and leukemic hemopoiesis by recombinant human granulocyte colony-stimulating factor during the course of myelodysplastic syndrome.

    PubMed

    Ueda, T; Kawai, Y; Sugiyama, T; Takeuchi, N; Yoshida, A; Iwasaki, H; Wano, Y; Tsutani, H; Kamada, N; Nakamura, T

    1993-12-01

    A 48-year-old man developed refractory anemia with excess of blasts in transformation. Complete response was achieved by low-dose ara-C therapy, but he relapsed 15 months later, with pancytopenia and 13.0% myeloblasts in normocellular marrow. He was treated unsuccessfully with prednisolone, metenolone, and 1-alpha-hydroxyvitamin D3 for 8 weeks. He then developed life-threatening pneumonia and was treated with recombinant human granulocyte colony-stimulating factor (rhG-CSF Filgrastim; 125 micrograms/day s.c.). The pneumonia resolved and, interestingly, he achieved a partial response, with normal blood cell counts and only a few dysmyelopoietic cells in the marrow. However, thrombocytopenia progressed when rhG-CSF administration was tapered. When the dose was increased again, leukemic blasts were found to proliferate. When rhG-CSF was discontinued, blasts rapidly decreased in the peripheral blood. Chromosomal analysis revealed a complex abnormality during the first relapse, a normal 46,XY karyotype during the partial response, and recurrence of the same complex abnormality during leukemic transformation. The stimulation index of marrow mononuclear cells cultured with rhG-CSF increased with disease progression. These findings suggest that rhG-CSF initially stimulated the selective proliferation of normal hemopoietic cells, but the evolution or selection of a leukemic clone responsive to rhG-CSF appears to have occurred subsequently.

  10. High pH solubilization and chromatography-based renaturation and purification of recombinant human granulocyte colony-stimulating factor from inclusion bodies.

    PubMed

    Li, Ming; Fan, Hua; Liu, Jiahua; Wang, Minhong; Wang, Lili; Wang, Chaozhan

    2012-03-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is a very efficient therapeutic protein drug which has been widely used in human clinics to treat cancer patients suffering from chemotherapy-induced neutropenia. In this study, rhG-CSF was solubilized from inclusion bodies by using a high-pH solution containing low concentration of urea. It was found that solubilization of the rhG-CSF inclusion bodies greatly depended on the buffer pH employed; alkalic pH significantly favored the solubilization. In addition, when small amount of urea was added to the solution at high pH, the solubilization was further enhanced. After solubilization, the rhG-CSF was renatured with simultaneous purification by using weak anion exchange, strong anion exchange, and hydrophobic interaction chromatography, separately. The results indicated that the rhG-CSF solubilized by the high-pH solution containing low concentration of urea had much higher mass recovery than the one solubilized by 8 M urea when using anyone of the three refolding methods employed in this work. In the case of weak anion exchange chromatography, the high pH solubilized rhG-CSF could get a mass recovery of 73%. The strategy of combining solubilization of inclusion bodies at high pH with refolding of protein using liquid chromatography may become a routine method for protein production from inclusion bodies.

  11. Granulocyte colony-stimulating factors for febrile neutropenia prophylaxis following chemotherapy: systematic review and meta-analysis

    PubMed Central

    2011-01-01

    Background Febrile neutropenia (FN) occurs following myelosuppressive chemotherapy and is associated with morbidity, mortality, costs, and chemotherapy reductions and delays. Granulocyte colony-stimulating factors (G-CSFs) stimulate neutrophil production and may reduce FN incidence when given prophylactically following chemotherapy. Methods A systematic review and meta-analysis assessed the effectiveness of G-CSFs (pegfilgrastim, filgrastim or lenograstim) in reducing FN incidence in adults undergoing chemotherapy for solid tumours or lymphoma. G-CSFs were compared with no primary G-CSF prophylaxis and with one another. Nine databases were searched in December 2009. Meta-analysis used a random effects model due to heterogeneity. Results Twenty studies compared primary G-CSF prophylaxis with no primary G-CSF prophylaxis: five studies of pegfilgrastim; ten of filgrastim; and five of lenograstim. All three G-CSFs significantly reduced FN incidence, with relative risks of 0.30 (95% CI: 0.14 to 0.65) for pegfilgrastim, 0.57 (95% CI: 0.48 to 0.69) for filgrastim, and 0.62 (95% CI: 0.44 to 0.88) for lenograstim. Overall, the relative risk of FN for any primary G-CSF prophylaxis versus no primary G-CSF prophylaxis was 0.51 (95% CI: 0.41 to 0.62). In terms of comparisons between different G-CSFs, five studies compared pegfilgrastim with filgrastim. FN incidence was significantly lower for pegfilgrastim than filgrastim, with a relative risk of 0.66 (95% CI: 0.44 to 0.98). Conclusions Primary prophylaxis with G-CSFs significantly reduces FN incidence in adults undergoing chemotherapy for solid tumours or lymphoma. Pegfilgrastim reduces FN incidence to a significantly greater extent than filgrastim. PMID:21943360

  12. Gene expression-based detection of radiation exposure in mice after treatment with granulocyte colony-stimulating factor and lipopolysaccharide.

    PubMed

    Tucker, James D; Grever, William E; Joiner, Michael C; Konski, Andre A; Thomas, Robert A; Smolinski, Joseph M; Divine, George W; Auner, Gregory W

    2012-02-01

    In a large-scale nuclear incident, many thousands of people may be exposed to a wide range of radiation doses. Rapid biological dosimetry will be required on an individualized basis to estimate the exposures and to make treatment decisions. To ameliorate the adverse effects of exposure, victims may be treated with one or more cytokine growth factors, including granulocyte colony-stimulating factor (G-CSF), which has therapeutic efficacy for treating radiation-induced bone marrow ablation by stimulating granulopoiesis. The existence of infections and the administration of G-CSF each may confound the ability to achieve reliable dosimetry by gene expression analysis. In this study, C57BL/6 mice were used to determine the extent to which G-CSF and lipopolysaccharide (LPS, which simulates infection by gram-negative bacteria) alter the expression of genes that are either radiation-responsive or non-responsive, i.e., show potential for use as endogenous controls. Mice were acutely exposed to (60)Co γ rays at either 0 Gy or 6 Gy. Two hours later the animals were injected with either 0.1 mg/kg of G-CSF or 0.3 mg/kg of LPS. Expression levels of 96 different gene targets were evaluated in peripheral blood after an additional 4 or 24 h using real-time quantitative PCR. The results indicate that the expression levels of some genes are altered by LPS, but altered expression after G-CSF treatment was generally not observed. The expression levels of many genes therefore retain utility for biological dosimetry or as endogenous controls. These data suggest that PCR-based quantitative gene expression analyses may have utility in radiation biodosimetry in humans even in the presence of an infection or after treatment with G-CSF.

  13. The substitution of cysteine 17 of recombinant human G-CSF with alanine greatly enhanced its stability.

    PubMed

    Ishikawa, M; Iijima, H; Satake-Ishikawa, R; Tsumura, H; Iwamatsu, A; Kadoya, T; Shimada, Y; Fukamachi, H; Kobayashi, K; Matsuki, S

    1992-02-01

    Human recombinant granulocyte-colony stimulating factor (rhG-CSF) has one free cysteine at position 17 and has two disulfide bridges (Cys36-Cys42 and Cys64-Cys74). The Cys17 of rhG-CSF was substituted with Gly, Ala, Ser, Ile, Tyr, Arg, and Pro, or deleted using site-directed mutagenesis in order to improve its thermostability. With the exception of Pro17-rhG-CSF, all mutant proteins retained biological activity which promotes the growth of mouse bone marrow cells in vitro. Among these mutant proteins, Ala17-rhG-CSF had more than 5 times higher stability than rhG-CSF. But Ser17-rhG-CSF had almost same stability as rhG-CSF and other mutant proteins had only lower stability.

  14. Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and Bcr-Abl.

    PubMed

    Odai, H; Sasaki, K; Iwamatsu, A; Nakamoto, T; Ueno, H; Yamagata, T; Mitani, K; Yazaki, Y; Hirai, H

    1997-04-15

    Grb2/Ash and Shc are the adapter proteins that link tyrosine-kinase receptors to Ras and make tyrosine-kinase functionally associated with receptors and Ras in fibroblasts and hematopoietic cells. Grb2/Ash and Shc have the SH3, SH2, or phosphotyrosine binding domains. These domains bind to proteins containing proline-rich regions or tyrosine-phosphorylated proteins and contribute to the association of Grb2/Ash and Shc with other signaling molecules. However, there could remain unidentified signaling molecules that physically and functionally interact with these adapter proteins and have biologically important roles in the signaling pathways. By using the GST fusion protein including the full length of Grb2/Ash, we have found that c-Cbl and an unidentified 135-kD protein (pp135) are associated with Grb2/Ash. We have also found that they become tyrosine-phosphorylated by treatment of a human leukemia cell line, UT-7, with granulocyte-macrophage colony-stimulating factor (GM-CSF). We have purified the pp135 by using GST-Grb2/Ash affinity column and have isolated the full-length complementary DNA (cDNA) encoding the pp135 using a cDNA probe, which was obtained by the degenerate polymerase chain reaction based on a peptide sequence of the purified pp135. The cloned cDNA has 3,958 nucleotides that contain a single long open reading frame of 3,567 nucleotides, encoding a 1,189 amino acid protein with a predicted molecular weight of approximately 133 kD. The deduced amino acid sequence reveals that pp135 is a protein that has one SH2, one SH3, and one proline-rich domain. The pp135, which contains two motifs conserved among the inositol polyphosphate-5-phosphatase proteins, was shown to have the inositol polyphosphate-5-phosphatase activity. The pp135 was revealed to associate constitutively with Grb2/Ash and inducibly with Shc using UT-7 cells stimulated with GM-CSF. In the cell lines derived from human chronic myelogenous leukemia, pp135 was constitutively tyrosine

  15. Immunomodulation Induced by Stem Cell Mobilization and Harvesting in Healthy Donors: Increased Systemic Osteopontin Levels after Treatment with Granulocyte Colony-Stimulating Factor

    PubMed Central

    Melve, Guro Kristin; Ersvaer, Elisabeth; Akkök, Çiğdem Akalın; Ahmed, Aymen Bushra; Kristoffersen, Einar K.; Hervig, Tor; Bruserud, Øystein

    2016-01-01

    Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. The frequency of severe graft versus host disease is similar for patients receiving peripheral blood and bone marrow allografts, even though the blood grafts contain more T cells, indicating mobilization-related immunoregulatory effects. The regulatory phosphoprotein osteopontin was quantified in plasma samples from healthy donors before G-CSF treatment, after four days of treatment immediately before and after leukapheresis, and 18–24 h after apheresis. Myeloma patients received chemotherapy, combined with G-CSF, for stem cell mobilization and plasma samples were prepared immediately before, immediately after, and 18–24 h after leukapheresis. G-CSF treatment of healthy stem cell donors increased plasma osteopontin levels, and a further increase was seen immediately after leukapheresis. The pre-apheresis levels were also increased in myeloma patients compared to healthy individuals. Finally, in vivo G-CSF exposure did not alter T cell expression of osteopontin ligand CD44, and in vitro osteopontin exposure induced only small increases in anti-CD3- and anti-CD28-stimulated T cell proliferation. G-CSF treatment, followed by leukapheresis, can increase systemic osteopontin levels, and this effect may contribute to the immunomodulatory effects of G-CSF treatment. PMID:27447610

  16. Enhanced heterologous expression of biologically active human granulocyte colony stimulating factor in transgenic tobacco BY-2 cells by localization to endoplasmic reticulum.

    PubMed

    Nair, Nisha R; Chidambareswaren, M; Manjula, S

    2014-09-01

    Tobacco Bright Yellow-2 (BY-2) cells, one of the best characterized cell lines is an attractive expression system for heterologous protein expression. However, the expression of foreign proteins is currently hampered by their low yield, which is partially the result of proteolytic degradation. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine. Recombinant hG-CSF is successfully being used for the treatment of chemotherapy-induced neutropenia in cancer patients. Here, we describe a simple strategy for producing biologically active hG-CSF in tobacco BY-2 cells, localized in the apoplast of BY-2 cells, as well as targeted to the endoplasmic reticulum (ER). ER targeting significantly enhanced recombinant production which scaled to 17.89 mg/l from 4.19 mg/l when expressed in the apoplasts. Southern blotting confirmed the stable integration of hG-CSF in the BY-2 nuclear genome, and the expression of hG-CSF was analysed by Western blotting. Total soluble protein containing hG-CSF isolated from positive calli showed proliferative potential when tested on HL-60 cell lines by MTT assay. We also report the potential of a Fluorescence-activated cell sorting approach for an efficient sorting of the hG-CSF-expressing cell lines, which will enable the generation of homogenous high-producing cell lines.

  17. Oestrogen-deficiency inducing haematopoiesis dysfunction via reduction in haematopoietic stem cells and haematopoietic growth factors in rats.

    PubMed

    Qiu, Xi; Yuan, Xiang-Gui; Jin, Xiao-Li; He, Xin; Zhu, Lei; Zhao, Xiao-Ying

    2012-06-01

    Haematopoiesis is a self-renewing and multi-directional differentiation process of haematopoietic stem cells (HSCs), which is modulated very precisely by the haematopoietic microenvironment in bone marrow. Our previous study has demonstrated that oestrogen-deficiency leads to haematopoiesis dysfunction which manifests as a decrease in haematopoietic tissues and an increase in adipose tissues in bone marrow. However, the mechanism involved in the oestrogen-deficiency effects on haematopoiesis dysfunction is not completely understood. In this study, we established an oestrogen-deficiency rat model by ovariectomy (OVX group). Haematopoiesis was evaluated at the 12th, 16th, 20th, 24th and 28th weeks after operation in the OVX group and its control (Sham group) by pathological examination; the number and function of HSCs were evaluated by flow cytometry analysis and colony-forming assay respectively. Haematopoietic growth factors levels including granulocyte/macrophage-colony-stimulating factor (GM-CSF), stem cell factor (SCF) and interleukin-3 (IL-3) were examined by ELISA kits at different time points. We found that in the OVX group, haematopoiesis dysfunction in bone marrow was observed (P < 0.05) from the 12th week when compared with the Sham group, and extramedullary haematopoiesis began to appear in the liver and spleen from the 16th week. The number of HSCs and colony-forming units-granulocyte/macrophage (CFUs-GM) in bone marrow was reduced significantly (P < 0.05) from the 20th and 16th week respectively. Furthermore, GM-CSF, SCF and IL-3 in the OVX group decreased significantly (P < 0.05) since the 12th, 16th and 24th week respectively. Taken together, these results suggested that oestrogen is required for normal haematopoiesis. Oestrogen-deficiency inducing haematopoiesis dysfunction may be via reduction in HSCs and haematopoietic growth factors at a late stage. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal

  18. Evaluating the effects of buffer conditions and extremolytes on thermostability of granulocyte colony-stimulating factor using high-throughput screening combined with design of experiments.

    PubMed

    Ablinger, Elisabeth; Hellweger, Monika; Leitgeb, Stefan; Zimmer, Andreas

    2012-10-15

    In this study, we combined a high-throughput screening method, differential scanning fluorimetry (DSF), with design of experiments (DoE) methodology to evaluate the effects of several formulation components on the thermostability of granulocyte colony stimulating factor (G-CSF). First we performed a primary buffer screening where we tested thermal stability of G-CSF in different buffers, pH values and buffer concentrations. The significance of each factor and the two-way interactions between them were studied by multivariable regression analysis. pH was identified as most critical factor regarding thermal stability. The most stabilizing buffer, sodium glutamate, and sodium acetate were determined for further investigations. Second we tested the effect of 6 naturally occurring extremolytes (trehalose, sucrose, ectoine, hydroxyectoine, sorbitol, mannitol) on the thermal stability of G-CSF, using a central composite circumscribed design. At low pH (3.8) and low buffer concentration (5 mM) all extremolytes led to a significant increase in thermal stability except the addition of ectoine which resulted in a strong destabilization of G-CSF. Increasing pH and buffer concentration led to an increase in thermal stability with all investigated extremolytes. The described systematic approach allowed to create a ranking of stabilizing extremolytes at different buffer conditions. Copyright © 2012. Published by Elsevier B.V.

  19. Special Education.

    PubMed

    Kozutsumi

    1996-01-01

    HEMOPOIETIC FACTORS AND BLOOD CELL PROLIFERATION AND DIFFERENTIATION: Blood cells are generally classified into three cell lineages: erythrocytes, granulocytes and megakaryocytes. In the bone marrow, pluripotent stem cells differentiate into either the lymphoid stem cell line, where they are further induced to differentiate into B- or T-derived lymphocytes, or the myeloid stem cell (CFU-GEMM) line, where they are further induced to become erythrocytes, granulocytes (neutrophils, eosinophils or basophils), macrophages or megakaryocytes (platelets). Proliferation and differentiation of blood cells in the bone marrow are regulated by hemopoietic factors. Hemopoietic factors include those that are continuously produced, such as EPO, G-CSF and thrombopoietin (TPO), and those that are produced on demand in response to inflammation and infection, such as IL-3, IL-11 and GM-CSF. In recent years the genes for hemopoietic factors which regulate erythrocytes and granulocytes have been cloned using the techniques of genetic engineering. In 1994 the gene for TPO was cloned. TPO acts specifically on megakaryocytes. PROLIFERATION AND DIFFERENTIATION OF ERYTHROCYTIC CELLS: The earliest cells destined to become erythrocytes which differentiate from the myeloid stem cells (CFU-GEMM) are early phase erythroblast progenitor cells called BFU-E cells. After the BFU-E cells have undergone several divisions, they differentiate into late phase erythroblast progenitor cells called CFU-E cells. After passing through the proerythroblast stage, the CFU-E cells become erythroblasts. Erythroblasts can be confirmed by light microscope as belonging to the erythroid cell line. Erythroblasts mature and become enucleated reticulocytes, which are then released from the bone marrow into the blood, thus becoming mature erythrocytes. Proliferation and differentiation of the erythroid progenitor cells are regulated by erythropoietin (EPO), which is primarily produced by the kidneys. In 1985 genomic DNA

  20. An open-label pilot study of granulocyte colony-stimulating factor for the treatment of severe endoscopic postoperative recurrence in Crohn's disease.

    PubMed

    Dejaco, Clemens; Lichtenberger, Conny; Miehsler, Wolfgang; Oberhuber, Georg; Herbst, Friedrich; Vogelsang, Harald; Gangl, Alfred; Reinisch, Walter

    2003-01-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) promoted healing of Crohn's disease (CD)-like intestinal lesions in chronic granulomatous disease and glycogen storage disease Ib, both characterized by defective neutrophil functions. We performed a prospective, open-label pilot study with rhG-CSF for the treatment of CD. Five patients with clinically inactive CD, but with severe endoscopic ileitis within 1 year after intestinal resection and ileocolonic anastomosis, received 300 microg of rhG-CSF (Filgrastim; Neupogen) subcutaneously, three times weekly for a total of 12 weeks. Safety was evaluated by assessment of clinical and laboratory data and disease activity. The primary parameter of efficacy was complete mucosal healing, as defined by the Rutgeerts score. Anti-inflammatory mediators were repeatedly measured during treatment. All patients completed the protocol in clinical remission. In 1 subject transient headache resolved after halving the rhG-CSF dosage. Complete mucosal healing was observed in 2 patients: in 1 patient after 12 weeks of therapy and in 1 patient 9 months after treatment cessation. In a single patient, closure of an anovaginal and of a perianal fistula was noted. Neutrophil counts and interleukin-1 receptor antagonist and soluble tumor necrosis factor receptor p55 and p75 levels were found to be increased during drug administration. rhG-CSF seems to be safe, well tolerated, and might provide efficacy in CD. Copyright 2003 S. Karger AG, Basel

  1. CSF analysis

    MedlinePlus

    ... A, Sancesario GM, Esposito Z, et al. Plasmin system of Alzheimer's disease: CSF analysis. J Neural Transm (Vienna) . ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is ...

  2. Structural insights into the backbone-circularized granulocyte colony-stimulating factor containing a short connector.

    PubMed

    Miyafusa, Takamitsu; Shibuya, Risa; Honda, Shinya

    2018-06-02

    Backbone circularization is a powerful approach for enhancing the structural stability of polypeptides. Herein, we present the crystal structure of the circularized variant of the granulocyte colony-stimulating factor (G-CSF) in which the terminal helical region was circularized using a short, two-amino acid connector. The structure revealed that the N- and C-termini were indeed connected by a peptide bond. The local structure of the C-terminal region transited from an α helix to 3 10 helix with a bend close to the N-terminal region, indicating that the structural change offset the insufficient length of the connector. This is the first-ever report of a crystal structure of the backbone of a circularized protein. It will facilitate the development of backbone circularization methodology. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Perioperative recombinant human granulocyte colony-stimulating factor (Filgrastim) treatment prevents immunoinflammatory dysfunction associated with major surgery.

    PubMed

    Schneider, Christian; von Aulock, Sonja; Zedler, Siegfried; Schinkel, Christian; Hartung, Thomas; Faist, Eugen

    2004-01-01

    To examine the effects of perioperative rhG-CSF administration on immune function in patients subjected to major surgery. Severe trauma, such as major surgery, initiates acute immunodysfunction which predisposes the patient towards infectious complications. Sixty patients undergoing elective surgery received either recombinant human granulocyte colony-stimulating factor/rh G-CSF (Filgrastim) or a placebo perioperatively. At several time points before and after the surgical intervention immunofunctional parameters were assessed. RESULTS Leukocyte counts and serum levels of anti-inflammatory mediators (IL-1ra and TNF-R) were increased in Filgrastim-treated patients, while the post-operative acute phase response was attenuated. Monocyte deactivation (reduced TNF-alpha release and HLA-DR expression) and lymphocyte anergy (impaired mitogenic proliferation and reduced TH1 lymphokine release) were blunted and the incidence and severity of infectious complications were reduced. These results suggest that Filgrastim treatment reinforces innate immunity, enabling better prevention of infection. Thus, this unique combination of hematopoietic, anti-inflammatory and anti-infectious effects on the innate immune system warrants further study of clinical efficacy and sepsis prophylaxis.

  4. Perioperative Recombinant Human Granulocyte Colony-Stimulating Factor (Filgrastim) Treatment Prevents Immunoinflammatory Dysfunction Associated With Major Surgery

    PubMed Central

    Schneider, Christian; von Aulock, Sonja; Zedler, Siegfried; Schinkel, Christian; Hartung, Thomas; Faist, Eugen

    2004-01-01

    Objective: To examine the effects of perioperative rhG-CSF administration on immune function in patients subjected to major surgery. Summary Background Data: Severe trauma, such as major surgery, initiates acute immunodysfunction which predisposes the patient towards infectious complications. Methods: Sixty patients undergoing elective surgery received either recombinant human granulocyte colony-stimulating factor/rh G-CSF (Filgrastim) or a placebo perioperatively. At several time points before and after the surgical intervention immunofunctional parameters were assessed. Results: Leukocyte counts and serum levels of anti-inflammatory mediators (IL-1ra and TNF-R) were increased in Filgrastim-treated patients, while the post-operative acute phase response was attenuated. Monocyte deactivation (reduced TNF-α release and HLA-DR expression) and lymphocyte anergy (impaired mitogenic proliferation and reduced TH1 lymphokine release) were blunted and the incidence and severity of infectious complications were reduced. Conclusions: These results suggest that Filgrastim treatment reinforces innate immunity, enabling better prevention of infection. Thus, this unique combination of hematopoietic, anti-inflammatory and anti-infectious effects on the innate immune system warrants further study of clinical efficacy and sepsis prophylaxis. PMID:14685103

  5. CSF drug levels for children with acute lymphoblastic leukemia treated by 5 g/m2 methotrexate. A study from the EORTC Children's Leukemia Cooperative Group.

    PubMed

    Milano, G; Thyss, A; Serre Debeauvais, F; Laureys, G; Benoit, Y; Deville, A; Dutour, C; Robert, A; Otten, J; Behar, C

    1990-04-01

    A multicenter EORTC study was conducted in children with acute lymphocytic leukemia to determine whether 5 g/m2 of methotrexate (MTX) (24 h i.v. infusion, four cycles) is an appropriate dosage for obtaining CSF drug concentrations approaching the critical cytotoxic level of 10(-6) M. A total of 193 cycles were analyzed for 58 patients. At the end of the 24 h infusion, the mean MTX serum level was 65.27 +/- 33.11 microM; the mean CSF MTX level was 1.47 +/- 1.1 microM; no significant difference in CSF MTX levels was observed between patients with (n = 20) and those without i.v. Ara-C (n = 38). The mean CSF MTX/serum MTX ratio was 0.029 +/- 0.027. CSF drug concentrations greater than or equal to 10(-6) M were achieved in 81% of the courses. The highest level was 8.4 X 10(-6) M. Only 5% of patients failed to achieve this drug concentration in at least one cycle. No significant correlation was observed between blood and CSF MTX levels. Mean CSF MTX levels were comparable from one cycle to another.

  6. G-CSF Analogue Treatment Increases Peripheral Neutrophil Numbers in Pigs - a Potential Alternative for In-Feed Antibiotics

    USDA-ARS?s Scientific Manuscript database

    Immunomodulators is a promising area for therapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease during periods of peak disease incidence. Granulocyte colony-stimulating factor (G-CSF) enhances neutrophil production and release from the bone marrow and is already li...

  7. Mobilization of primitive and committed hematopoietic progenitors in nonhuman primates treated with defibrotide and recombinant human granulocyte colony-stimulating factor.

    PubMed

    Carlo-Stella, Carmelo; Di Nicola, Massimo; Longoni, Paolo; Milani, Raffaella; Milanesi, Marco; Guidetti, Anna; Haanstra, Krista; Jonker, Margaret; Cleris, Loredana; Magni, Michele; Formelli, Franca; Gianni, Alesssandro M

    2004-01-01

    The aim of this study was to evaluate the capacity of defibrotide in enhancing cytokine-induced hematopoietic mobilization in rhesus monkeys. Animals received recombinant human granulocyte colony-stimulating factor (rhG-CSF, 100 microg/kg/day SC for 5 days) and, after a 4- to 6-week washout period, were remobilized with defibrotide (15 mg/kg/hour continuous intravenous for 5 days) plus rhG-CSF. Hematopoietic mobilization was evaluated by complete blood counts, differential counts, as well as frequency and absolute numbers of colony-forming cells (CFCs), high-proliferative potential CFCs (HPP-CFCs), and long-term culture-initiating cells (LTC-ICs). Compared to baseline values, rhG-CSF increased circulating CFCs, HPP-CFCs, and LTC-ICs by 158-, 125-, and 67-fold, respectively; the same figures for defibrotide/rhG-CSF were 299-, 1452-, and 295-fold, respectively. Defibrotide/rhG-CSF treatment compared to rhG-CSF alone increased CFCs, HPP-CFCs, and LTC-ICs by 1.4- (35,089 vs 25,825, p< or =0.02), 6- (4358 vs 748, p< or =0.02), and 5-fold (884 vs 168, p< or =0.04), respectively. We then evaluated the effects of a 2-day defibrotide treatment associated with a 5-day rhG-CSF treatment. Compared to rhG-CSF, defibrotide/rhG-CSF increased the mobilization of CFCs, HPP-CFCs, and LTC-ICs by 2- (31,128 vs 15,527, p< or =0.05), 8- (5361 vs 660, p< or =0.01), and 8-fold (954 vs 119, p< or =0.01), respectively. Our data demonstrate that in nonhuman primates: 1) defibrotide enhances rhG-CSF-elicited mobilization of primitive and committed progenitors; and 2) a 2-day defibrotide injection is as effective as a 5-day injection.

  8. Prophylactic antibiotics or G(M)-CSF for the prevention of infections and improvement of survival in cancer patients receiving myelotoxic chemotherapy.

    PubMed

    Skoetz, Nicole; Bohlius, Julia; Engert, Andreas; Monsef, Ina; Blank, Oliver; Vehreschild, Jörg-Janne

    2015-12-21

    Febrile neutropenia (FN) and other infectious complications are some of the most serious treatment-related toxicities of chemotherapy for cancer, with a mortality rate of 2% to 21%. The two main types of prophylactic regimens are granulocyte (macrophage) colony-stimulating factors (G(M)-CSF) and antibiotics, frequently quinolones or cotrimoxazole. Current guidelines recommend the use of colony-stimulating factors when the risk of febrile neutropenia is above 20%, but they do not mention the use of antibiotics. However, both regimens have been shown to reduce the incidence of infections. Since no systematic review has compared the two regimens, a systematic review was undertaken. To compare the efficacy and safety of G(M)-CSF compared to antibiotics in cancer patients receiving myelotoxic chemotherapy. We searched The Cochrane Library, MEDLINE, EMBASE, databases of ongoing trials, and conference proceedings of the American Society of Clinical Oncology and the American Society of Hematology (1980 to December 2015). We planned to include both full-text and abstract publications. Two review authors independently screened search results. We included randomised controlled trials (RCTs) comparing prophylaxis with G(M)-CSF versus antibiotics for the prevention of infection in cancer patients of all ages receiving chemotherapy. All study arms had to receive identical chemotherapy regimes and other supportive care. We included full-text, abstracts, and unpublished data if sufficient information on study design, participant characteristics, interventions and outcomes was available. We excluded cross-over trials, quasi-randomised trials and post-hoc retrospective trials. Two review authors independently screened the results of the search strategies, extracted data, assessed risk of bias, and analysed data according to standard Cochrane methods. We did final interpretation together with an experienced clinician. In this updated review, we included no new randomised controlled

  9. AFRRI Reports, Fourth Quarter 1992

    DTIC Science & Technology

    1993-01-01

    GS, Moore MM, Elliott TB, Brook 1. Synthetic trehalose dicorynomycolate and antimicrobials increase survival from sepsis in mice immunocomporomised by...Publications Limited R92-43 SR92-43Westbury, NY 11590-0966 USA SYNTHETIC TREHALOSE DICORYNOMYCOLATE AND ANTIMICROBIALS INCREASE SURVIVAL FROM SEPSIS IN...wound. Subjects: Mice. Abbreviations: GM-CSF = granulocyte-macrophage colony-stimulating factor, S-TDCM = synthetic trehalose dicorynomycolate

  10. Clinical experience with the use of rhG-CSF in secondary autoimmune neutropenia.

    PubMed

    Smith, M A; Smith, J G

    2002-04-01

    This paper outlines the impact of granulocyte-colony stimulating factor (G-CSF) used as a single modality therapy in 17 patients with secondary autoimmune neutropenia (S-AIN) who had been treated a multiple number of times previously. Fifteen of these patients had demonstrable antineutrophil antibodies and two had cellular S-AIN with haemopoietic inhibitory T-cells present in the marrow. Prior to treatment, all had had problems with infection. All patients responded within 7 days of commencement of treatment. Provided G-CSF neutrophil counts were maintained above 1 x 109/l, no further infections occurred. This was achievable by using G-CSF administered as infrequently as once every 8 days. Eight of the 17 patients remained on G-CSF, although five switched to the glycosylated form because of side-effects. None have developed osteoporosis despite 47.29 patient years of total experience with G-CSF. In conclusion both glycosylated and nonglycosylated G-CSF can be used effectively in treating AIN on a long-term basis.

  11. Does granulocyte colony-stimulating factor ameliorate the proinflammatory response in human meningococcal septic shock?

    PubMed

    Rojahn, Astrid; Brusletto, Berit; Øvstebø, Reidun; Haug, Kari B F; Kierulf, Peter; Brandtzaeg, Petter

    2008-09-01

    To test the hypothesis that granulocyte colony-stimulating factor acts cooperatively with interleukin-10 in down-regulating monocyte function in severe meningococcal septic shock. 1) We quantified the plasma levels of granulocyte colony-stimulating factor, interleukin-10, Neisseria meningitidis lipopolysaccharide and the number of N. meningitidis DNA copies in 28 patients with systemic meningococcal disease. 2) We studied the inhibitory effect of recombinant human granulocyte colony-stimulating factor on normal human monocytes stimulated with purified meningococcal lipopolysaccaride. 3) We monitored the inhibitory effects of endogenously produced granulocyte colony-stimulating factor and interleukin-10 in meningococcal shock plasmas on monocytes. Comparative, experimental study. University Hospital and laboratory. Twenty-eight patients with systemic meningococcal disease, 13 with persistent shock, 7 died, and 15 without shock. The median levels of granulocyte colony-stimulating factor in shock and nonshock patients were 1.7 x 10(6) and 8.1 x 10(2) pg/mL; interleukin-10, 2.1 x 10(4) and 4 x 10(1) pg/mL; number of N. meningitidis DNA copies, 2.9 x 10(7) and <10(3)/mL; and lipopolysaccharide, 105 and <0.04 endotoxin units/mL, respectively. The plasma levels of granulocyte colony-stimulating factor were reduced by 50% within 4 to 6 hrs after initiation of antibiotic treatment. In model experiments with lipopolysaccharide-stimulated human monocytes, recombinant human granulocyte colony-stimulating factor and interleukin-10 reduced the release of tumor necrosis factor-alpha by mean 30% and 92%, respectively. When plasmas from three shock patients were depleted of native granulocyte colony-stimulating factor or interleukin-10 by immunoprecipitation, no increase in tumor necrosis factor-alpha release occurred after removal of granulocyte colony-stimulating factor, whereas removal of interleukin-10 increased the tumor necrosis factor-alpha release eight-fold. Although

  12. Just-in-time rescue plerixafor in combination with chemotherapy and granulocyte-colony stimulating factor for peripheral blood progenitor cell mobilization.

    PubMed

    Smith, Veronica R; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra

    2013-09-01

    Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin's and non-Hodgkin's) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but one patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 10(6) /kg of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 10(6) /kg of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 10(6) /kg of body weight. Plerixafor was well tolerated; no grade 2 or higher non-hematologic toxic effects were observed. Copyright © 2013 Wiley Periodicals, Inc.

  13. Just-in-time rescue plerixafor in combination with chemotherapy and granulocyte-colony stimulating factor for peripheral blood progenitor cell mobilization

    PubMed Central

    Smith, Veronica R.; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra

    2014-01-01

    Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin’s and non-Hodgkin’s) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but 1 patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 106/kilogram of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 106/kilogram of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 106/kilogram of body weight. Plerixafor was well tolerated; no grade 2 or higher non- hematologic toxic effects were observed. PMID:23749720

  14. [The effect of lithium carbonate on the leukocyte count following ionizing radiation. 4. The effect of lithium carbonate on the activation of granulocytes].

    PubMed

    Wolf, G; Müller, G M; Kehrberg, G

    1989-01-01

    From numerous investigations it is known that lithium carbonate promotes granulocytopoiesis by stimulation of CSF (colony stimulating factor) in bone marrow. To prove if no immature, in their functions restricted cells are delivered from bone marrow, the activity of granulocytes was tested in vitro in patients with lithium therapy. It could be seen that granulocytes of peripheral blood show an increased in-vitro-activation after lithium influence in vivo.

  15. Mobilization of circulating progenitor cells in multiple myeloma during VCAD therapy with or without rhG-CSF.

    PubMed

    Majolino, I; Marcenò, R; Buscemi, F; Scimè, R; Vasta, S; Indovina, A; Pampinella, M; Catania, P; Santoro, A

    1995-01-01

    Circulating progenitor cells (CPC), when infused in large numbers, rapidly repopulate the marrow after myeloablation with high-dose therapy. In multiple myeloma (MM), as in other disorders, different chemotherapy regimens, including single-as well as multiple-agent chemotherapy, with or without hemopoietic growth factors, have been proposed to mobilize these progenitor cells into the blood. Here we report our experience with a drug combination called VCAD and compare the results to those obtained by adding rhG-CSF to the same combination. Fourteen MM patients were given one course of VCAD, a chemotherapy association of vincristine 2 mg, cyclophosphamide 4 x 0.5 g/m2, adriamycin 2 x 50 mg/m2 and dexamethasone 4 x 40 mg, before undergoing apheresis to collect CPC for autografting. Seven also received rhG-CSF (filgrastim) 5 mcg/kg/day over the period of apheresis. These latter were allocated to rhG-CSF treatment sequentially from the time the drug became available for clinical use. Following VCAD-induced pancytopenia, CFU-GM peaked at a median of 853/mL (range 96-4352; 7.6 times basal level). RhG-CSF administration increased CFU-GM levels but not significantly. With rhG-CSF the CFU-GM peak was reached sooner, toxicity was reduced and granulocytopenia less protracted. Fewer aphereses were run in the rhG-CSF group, there were higher yields per single run, and patients began and completed their collection program more quickly. The VCAD association is able to mobilize CPC in patients with MM, and rhG-CSF is recommended as a fundamental part of the priming schedule.

  16. Granulocyte-colony stimulating factor administration among hemoglobin S trait donors: A single center experience from the Eastern Mediterranean region.

    PubMed

    Gereklioglu, Cigdem; Asma, Suheyl; Korur, Aslı; Tepebaşı, Songul; Aytan, Pelin; Yeral, Mahmut; Kozanoglu, Ilknur; Boga, Can; Ozdogu, Hakan

    2018-02-01

    Assessment of Hemoglobin S trait donors has gained importance together with the increased allogeneic peripheral stem cell transplant activity for sickle cell disease in the regions where the disease is prevalent. Outcomes of Granulocyte-Colony Stimulating Factor (G-CSF) administration are obscure for hemoglobin S trait donors. This study aims at investigating the incidence of hemoglobin S carrier status and outcomes of G-CSF administration among donors who live in Eastern Mediterranean region. The cross-sectional, single-center cohort study was performed with 147 donors between January 2013 and March 2017. Prevalence of hemoglobin S trait was estimated and subjects with or without Hemogobin S trait were compared with regard to stem cell characteristics, early and late clinical outcomes after G-CSF administration. Eleven out of 147 donors (7.48%) were found as hemoglobin S trait. G-CSF administration was successfully completed and yielded good harvesting results in hemoglobin S trait donors. No statistically significant difference was found between groups with regard to early and late side effects, stem cell characteristics. Blood pressures and QTc values were within normal ranges in both groups. Groups were similar with regard to CD34 values. G-CSF seems safe in hemoglobin S trait donors. Their being eligible as donors would increase the chance of the patients for allogeneic stem cell transplantation in high prevalence regions. Further studies are required to reveal the safety profile of G-SCF in hemoglobin S carriers in different regions. © 2017 Wiley Periodicals, Inc.

  17. The role of donor characteristics and post-granulocyte colony-stimulating factor white blood cell counts in predicting the adverse events and yields of stem cell mobilization.

    PubMed

    Chen, Shu-Huey; Yang, Shang-Hsien; Chu, Sung-Chao; Su, Yu-Chieh; Chang, Chu-Yu; Chiu, Ya-Wen; Kao, Ruey-Ho; Li, Dian-Kun; Yang, Kuo-Liang; Wang, Tso-Fu

    2011-05-01

    Granulocyte colony-stimulating factor (G-CSF) is now widely used for stem cell mobilization. We evaluated the role of post-G-CSF white blood cell (WBC) counts and donor factors in predicting adverse events and yields associated with mobilization. WBC counts were determined at baseline, after the third and the fifth dose of G-CSF in 476 healthy donors. Donors with WBC ≥ 50 × 10(3)/μL post the third dose of G-CSF experienced more fatigue, myalgia/arthralgia, and chills, but final post-G-CSF CD34(+) cell counts were similar. Although the final CD34(+) cell count was higher in donors with WBC ≥ 50 × 10(3)/μL post the fifth G-CSF, the incidence of side effects was similar. Females more frequently experienced headache, nausea/anorexia, vomiting, fever, and lower final CD34(+) cell count than did males. Donors with body mass index (BMI) ≥ 25 showed higher incidences of sweat and insomnia as well as higher final CD34(+) cell counts. Donor receiving G-CSF ≥ 10 μg/kg tended to experience bone pain, headache and chills more frequently. Multivariate analysis indicated that female gender is an independent factor predictive of the occurrence of most side effects, except for ECOG > 1 and chills. Higher BMI was also an independent predictor for fatigue, myalgia/arthralgia, and sweat. Higher G-CSF dose was associated with bone pain, while the WBC count post the third G-CSF was associated with fatigue only. In addition, one donor in the study period did not complete the mobilization due to suspected anaphylactoid reaction. Observation for 1 h after the first injection of G-CSF is required to prevent complications from unpredictable side effects.

  18. IL-23/IL-17/G-CSF pathway is associated with granulocyte recruitment to the lung during African swine fever.

    PubMed

    Karalyan, Z; Voskanyan, H; Ter-Pogossyan, Z; Saroyan, D; Karalova, E

    2016-10-15

    The interleukin (IL)-23/IL-17 pathway plays a crucial role in various forms of inflammation but its function in acute African swine fever (ASF) is not well understood. Thus, in this study, we aimed to find out whether IL-23/IL-17/G-CSF is released in acute ASF and what function it may have. The present study revealed that the production of IL-17 and IL-23 were significantly increased in the sera of ASFV infected pigs. Using ELISA, we found that the serum levels of IL-23 and IL-17 have overexpressed in ASF virus infected pigs compared with healthy controls. The levels of IL-17 and IL-23 increase in the early stages and the levels of G-CSF and C - reactive protein in the later stages of ASF. Simultaneously, with the increase of the levels of IL-23/IL-17 extravasation of granular leukocytes in the tissue (diapedesis) is observed. Diapedesis can explain the neutropenia that we identified previously in the terminal stages of ASF. The increase in serum levels of IL-23/IL-17 is preceded by enhanced migration of neutrophils in tissues, and the last one is preceded by neutropenia. The increase in serum levels of G-CSF has compensatory nature, directed on stimulation of proliferation of granulocytes. Taken together, our results revealed an overexpression of the IL-23/IL-17 axis in the ASF virus infected pigs, suggesting that it may be a crucial pathway in the diapedesis at ASF. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Early Dynamics of Cerebrospinal CD14+ Monocytes and CD15+ Granulocytes in Patients after Severe Traumatic Brain Injury: A Cohort Study

    PubMed Central

    Postl, Lukas Kurt; Bogner, Viktoria; Beirer, Marc; Kanz, Karl Georg; Egginger, Christoph; Schmitt-Sody, Markus; Biberthaler, Peter; Kirchhoff, Chlodwig

    2015-01-01

    In traumatic brain injury (TBI) the analysis of neuroinflammatory mechanisms gained increasing interest. In this context certain immunocompetent cells might play an important role. Interestingly, in the actual literature there exist only a few studies focusing on the role of monocytes and granulocytes in TBI patients. In this regard it has recently reported that the choroid plexus represents an early, selective barrier for leukocytes after brain injury. Therefore the aim of this study was to evaluate the very early dynamics of CD14+ monocytes and CD15+ granulocyte in CSF of patients following severe TBI with regard to the integrity of the BBB. Cytometric flow analysis was performed to analyze the CD14+ monocyte and CD15+ granulocyte population in CSF of TBI patients. The ratio of CSF and serum albumin as a measure for the BBB's integrity was assessed in parallel. CSF samples of patients receiving lumbar puncture for elective surgery were obtained as controls. Overall 15 patients following severe TBI were enrolled. 10 patients were examined as controls. In patients, the monocyte population as well as the granulocyte population was significantly increased within 72 hours after TBI. The BBB's integrity did not have a significant influence on the cell count in the CSF. PMID:26568661

  20. Enforced expression of KDR receptor promotes proliferation, survival and megakaryocytic differentiation of TF1 progenitor cell line.

    PubMed

    Coppola, S; Narciso, L; Feccia, T; Bonci, D; Calabrò, L; Morsilli, O; Gabbianelli, M; De Maria, R; Testa, U; Peschle, C

    2006-01-01

    Vascular endothelial growth factor (VEGF) receptor-2/kinase insert domain-containing receptor (KDR) is expressed in primitive hematopoietic cells, in megakaryocytes and platelets. In primitive hematopoiesis KDR mediates cell survival via autocrine VEGF, while its effect on cell growth and differentiation has not been elucidated. We induced enforced KDR expression in the granulocyte macrophage-colony-stimulating factor (GM-CSF)-dependent TF1 progenitor cell line (TF1-KDR), treated the cells with VEGF and analyzed their response. In GM-CSF-deprived cells, VEGF induces cell proliferation and protection against apoptosis, followed by enhanced expression of megakaryocytic (MK) markers. Combined with GM-CSF, VEGF induces a mild proliferative stimulus, followed by cell adherence, accumulation in G0/G1, massive MK differentiation and Fas-mediated apoptosis. Accordingly, we observed that MK-differentiating cells, derived from hematopoietic progenitors, produce VEGF, express KDR, inhibition of which reduces MK differentiation, indicating a key role of KDR in megakaryopoiesis. In conclusion, TF1-KDR cells provide a reliable model to investigate the biochemical and molecular mechanisms underlying hematopoietic progenitor proliferation, survival and MK differentiation.

  1. Role for granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells.

    PubMed

    Rutella, Sergio; Pierelli, Luca; Bonanno, Giuseppina; Sica, Simona; Ameglio, Franco; Capoluongo, Ettore; Mariotti, Andrea; Scambia, Giovanni; d'Onofrio, Giuseppe; Leone, Giuseppe

    2002-10-01

    Granulocyte colony-stimulating factor (G-CSF) may affect T-cell homeostasis by multiple mechanisms, inducing polarization of cytokine secretion, inhibition of T-cell proliferation, and enhancement of T-cell apoptosis. We analyzed the production of interleukin-10 (IL-10) and transforming growth factor-beta1 (TGF-beta1) by T cells from healthy volunteer donors treated with recombinant human G-CSF. Highly purified CD4(+) T cells obtained before and after G-CSF administration (pre-G and post-G, respectively) were activated using the allogeneic mixed leukocyte reaction. Post-G CD4(+) T cells produced high levels of IL-10 but undetectable levels of IL-2 and IL-4, whereas the level of TGF-beta1 release was comparable to that of pre-G CD4(+) T cells. Notably, post-G CD4(+) T cells proliferated poorly in response to alloantigens and to recall antigens and suppressed the proliferation of autologous CD4(+) T cells in a cell contact-independent and an antigen-nonspecific manner. TGF-beta1 and IL-10 were not dispensable for post-G CD4(+) T cells to mediate suppression, as shown by neutralization studies. Compared with pre-G CD4(+) T cells, alloantigen-activated post-G CD4(+) T cells preferentially expressed markers associated with memory T cells, in conjunction with reduced levels of CD28 and CD62L. Collectively, these data demonstrate that CD4(+) T cells exposed to G-CSF in vivo acquire the properties of T regulatory (Tr) cells once triggered in vitro through the T-cell receptor, including a peculiar cytokine production profile (IL-10(++)TGF-beta1(+)IL-2(low/-)IL-4(low/-)), an intrinsic low proliferative capacity, and a contact-independent suppression of antigen-driven proliferation. Tr cells generated ex vivo after exposure to G-CSF might be clinically relevant for transplantation medicine and for the treatment of human immune-mediated diseases.

  2. Effect of cytokine-encoding plasmid delivery on immune response to Japanese encephalitis virus DNA vaccine in mice.

    PubMed

    Bharati, Kaushik; Appaiahgari, Mohan Babu; Vrati, Sudhanshu

    2005-01-01

    We have previously shown that immunization of mice with plasmid pMEa synthesizing Japanese encephalitis virus (JEV) envelope protein induced anti-JEV humoral and cellular immune responses. We now show that intra-muscular co-administration of mice with pMEa and pGM-CSF, encoding murine granulocyte-macrophage colony-stimulating factor or pIL-2, encoding murine interleukin-2 given 4 days after pMEa, augmented anti-JEV antibody titers. This did not enhance the level of protection in immunized mice against JEV. However, intra-dermal co-administration of pMEa and pGM-CSF in mice using the gene gun, enhanced anti-JEV antibody titers resulting in an increased level of protection in mice against lethal JEV challenge.

  3. Anti- Schistosomular Activity of Human Monocytes/Macrophages in Response to Interleukin-3 and Granulocyte-Macrophage Colonystimulating Factor Stimulation

    PubMed Central

    Nissimov, L.; Lengy, J.; Keisari, Y.

    1994-01-01

    Human monocytes, co-incubated for 7 days in culture with GM-CSF or IL-3 but not with IFN-γ, exerted a variable schistosotnulicidal effect on Schistosoma mansoni parasites when grown in 96-well round-bottomed plates but not in flat-bottomed plates. Addition of LPS or IFN-γ or both, for the last 48 h did not enhance the cidal effect. Addition of LPS but not IFN-γ to the pre-incubated cells with GM-CSF or IL-3 markedly stimulated TNF-α production by the cells but not their cidal activity. The variable cidal effects obtained with the monocytes/macrophages from different donors suggest that these effects may be genetically predetermined and are possibly linked to blood group markers or to MHC class I or II antigens. PMID:18475576

  4. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide.

    PubMed

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%-92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp.

  5. Leukocyte integrin activation mediates transient neutropenia after G-CSF administration

    PubMed Central

    Tuschong, Laura; Bauer, Thomas R.; Yau, Yu Ying; Leitman, Susan F.; Hickstein, Dennis D.

    2011-01-01

    After administration of granulocyte colony-stimulating factor (G-CSF), there is a marked, albeit transient, drop in circulating neutrophils. To determine the role of leukocyte integrins in this disappearance, a dog having canine leukocyte adhesion deficiency (CLAD) or CLAD dogs who had undergone gene correction either by matched littermate allogeneic transplant or autologous gene therapy were evaluated. Shortly after G-CSF administration, a dramatic, yet transient, neutropenia was observed in the control littermates. This neutropenia was not as marked in the CLAD dogs. In all instances, it was CD18+ neutrophils that preferentially egressed from the circulation. The association of CD18 with this rapid loss suggested leukocyte integrin activation after G-CSF administration. To determine the activation status of the integrin, a monoclonal antibody recognizing the activated α-subunit cation binding domain (mAb24) was used to evaluate human leukocytes after G-CSF administration. Mirroring the dramatic decrease in circulating neutrophil numbers, there was a dramatic and specific increase in the activation of the α-subunit after G-CSF expression on polymorphonuclear leukocytes. This activation, like the drop in neutrophil count, was transient. These results demonstrate that the leukocyte integrin on circulating neutrophils is transiently activated after G-CSF administration and mediates the transient neutropenia observed after G-CSF administration. PMID:21844566

  6. Establishment of the first international standard for PEGylated granulocyte colony stimulating factor (PEG-G-CSF): Report of an international collaborative study

    PubMed Central

    Wadhwa, Meenu; Bird, Chris; Dougall, Thomas; Rigsby, Peter; Bristow, Adrian; Thorpe, Robin

    2015-01-01

    We assessed the feasibility of developing a suitable international reference standard for determination of in vitro biological activity of human sequence recombinant PEG-G-CSF products with a 20 kD linear PEG linked to the N-terminal methionyl residue of G-CSF (INN Filgrastim), produced using a conjugation process and coupling chemistry similar to that employed for the lead PEGfilgrastim product. Based on initial data which showed that the current WHO 2nd international standard, IS for G-CSF (09/136) or alternatively, a PEG-G-CSF standard with a unitage traceable to the G-CSF IS may potentially serve as the IS for PEG-G-CSF products, two candidate preparations of PEG-G-CSF were formulated and lyophilized at NIBSC. These preparations were tested by 23 laboratories using in vitro bioassays in a multi-centre collaborative study. Results indicated that on the basis of parallelism, the current WHO 2nd IS for G-CSF or any of the PEG-G-CSF samples could be used as the international standard for PEG-G-CSF preparations. However, because of the variability in potency estimates seen when PEG-G-CSF preparations were compared with the current WHO 2nd IS for G-CSF, a candidate PEG-G-CSF was suitable as the WHO IS. The preparation 12/188 was judged suitable to serve as the WHO IS based on in vitro biological activity data. Therefore, the preparation coded 12/188 was established by the WHO Expert Committee on Biological Standardization (ECBS) in 2013 as the WHO 1st IS for human PEGylated G-CSF with an assigned in vitro bioactivity of 10,000 IU per ampoule. PMID:25450254

  7. Annual patient and caregiver burden of oncology clinic visits for granulocyte-colony stimulating factor therapy in the US.

    PubMed

    Stephens, J Mark; Li, Xiaoyan; Reiner, Maureen; Tzivelekis, Spiros

    2016-01-01

    Prophylactic treatment with granulocyte-colony stimulating factors (G-CSFs) is indicated for chemotherapy patients with a significant risk of febrile neutropenia. This study estimates the annual economic burden on patients and caregivers of clinic visits for prophylactic G-CSF injections in the US. Annual clinic visits for prophylactic G-CSF injections (all cancers) were estimated from national cancer incidence, chemotherapy treatment and G-CSF utilization data, and G-CSF sales and pricing information. Patient travel times, plus time spent in the clinic, were estimated from patient survey responses collected during a large prospective cohort study (the Prospective Study of the Relationship between Chemotherapy Dose Intensity and Mortality in Early-Stage (I-III) Breast Cancer Patients). Economic models were created to estimate travel costs, patient co-pays and the economic value of time spent by patients and caregivers in G-CSF clinic visits. Estimated total clinic visits for prophylactic G-CSF injections in the US were 1.713 million for 2015. Mean (SD) travel time per visit was 62 (50) min; mean (SD) time in the clinic was 41 (68) min. Total annual time for travel to and from the clinic, plus time at the clinic, is estimated at 4.9 million hours, with patient and caregiver time valued at $91.8 million ($228 per patient). The estimated cumulative annual travel distance for G-CSF visits is 60.2 million miles, with a total transportation cost of $28.9 million ($72 per patient). Estimated patient co-pays were $61.1 million, ∼$36 per visit, $152 per patient. The total yearly economic impact on patients and caregivers is $182 million, ∼$450 per patient. Data to support model parameters were limited. Study estimates are sensitive to the assumptions used. The burden of clinic visits for G-CSF therapy is a significant addition to the total economic burden borne by cancer patients and their families.

  8. The impact of concurrent granulocyte-macrophage colony-stimulating factor on quality of life in head and neck cancer patients: results of the randomized, placebo-controlled Radiation Therapy Oncology Group 9901 trial.

    PubMed

    Hoffman, Karen E; Pugh, Stephanie L; James, Jennifer L; Scarantino, Charles; Movsas, Benjamin; Valicenti, Richard K; Fortin, Andre; Pollock, JonDavid; Kim, Harold; Brachman, David G; Berk, Lawrence B; Bruner, Deborah Watkins; Kachnic, Lisa A

    2014-08-01

    The Radiation Therapy Oncology Group (RTOG) conducted a randomized, placebo-controlled trial evaluating the efficacy of GM-CSF in reducing mucosal injury and symptom burden from curative radiotherapy for head and neck (H&N) cancer. Eligible patients with H&N cancer receiving radiation encompassing ≥50 % of the oral cavity or oropharynx received subcutaneous GM-CSF or placebo. Quality of life (QoL) was assessed using the RTOG-modified University of Washington H&N Symptom Questionnaire at baseline 4, 13, 26, and 48 weeks from radiation initiation. Of 125 eligible patients, 114 were evaluable for QoL (58 GM-CSF, 56 placebo). Patient demographics, clinical characteristics, and baseline symptom scores were well balanced between the treatment arms. At the end of the acute period (13 weeks), patients in both arms reported negative change in total symptom score indicating increase in symptom burden relative to baseline (mean -18.4 GM-CSF, -20.8 placebo). There was no difference in change in total symptom score (p > 0.05) or change in mucous, pain, eating, or activity domain scores (p > 0.01) between patients in the GM-CSF and placebo arms. Analysis limited to patients treated per protocol or with an acceptable protocol deviation also found no difference in change in total symptom score (p > 0.05) or change in domain scores (p > 0.01) between treatment arms. Provider assessment of acute mucositis during treatment did not correlate with patient-reported mucous domain and total symptom scores (p > 0.05). GM-CSF administered concurrently during head and neck radiation does not appear to significantly improve patient-reported QoL symptom burden.

  9. Roles of Stat3 and ERK in G-CSF signaling.

    PubMed

    Kamezaki, Kenjirou; Shimoda, Kazuya; Numata, Akihiko; Haro, Takashi; Kakumitsu, Haruko; Yoshie, Masumi; Yamamoto, Masahiro; Takeda, Kiyoshi; Matsuda, Tadashi; Akira, Shizuo; Ogawa, Katsuhiro; Harada, Mine

    2005-02-01

    G-CSF specifically stimulates the proliferation and differentiation of cells that are committed to the neutrophil-granulocyte lineage. Although Stat3 was thought to be essential for the transduction of G-CSF-induced cell proliferation and differentiation signals, mice deficient for Stat3 in hematopoietic cells show neutrocytosis and infiltration of cells into the digestive tract. The number of progenitor cells in the neutrophil lineage is not changed, and G-CSF-induced proliferation of progenitor cells and prolonged neutrophil survival were observed in Stat3-deficient mice. In hematopoietic cells from Stat3-deficient mice, trace levels of SOCS3, a negative regulator of granulopoiesis, were observed, and SOCS3 expression was not induced by G-CSF stimulation. Stat3-null bone marrow cells displayed a significant activation of extra-cellular regulated kinase 1 (ERK1)/ERK2 under basal conditions, and the activation of ERK was enhanced and sustained by G-CSF stimulation. Furthermore, the augmented proliferation of Stat3-deficient bone marrow cells in response to G-CSF was dramatically decreased by addition of a MEK1 inhibitor. These results indicate that Stat3 functions as a negative regulator of G-CSF signaling by inducing SOCS3 expression and that ERK activation is the major factor responsible for inducing the proliferation of hematopoietic cells in response to G-CSF.

  10. Bromelain Treatment Decreases Secretion of Pro-Inflammatory Cytokines and Chemokines by Colon Biopsies In Vitro

    PubMed Central

    Onken, Jane E.; Greer, Paula K.; Calingaert, Brian; Hale, Laura P.

    2008-01-01

    Oral bromelain has been anecdotally reported to decrease inflammation in ulcerative colitis (UC). Proteolytically active bromelain is known to decrease expression of mRNAs encoding pro-inflammatory cytokines by human leukocytes in vitro. To assess the effect of bromelain on mucosal secretion of cytokines in inflammatory bowel disease (IBD), endoscopic colon biopsies from patients with UC, Crohn’s disease (CD), and non-IBD controls were treated in vitro with bromelain or media, then cultured. Secretion of pro-inflammatory cytokines and chemokines was measured. Significant increases in granulocyte colony stimulating factor (G-CSF), interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) were detected in the media from actively inflamed areas in UC and CD as compared with non-inflamed IBD tissue and non-IBD controls. In vitro bromelain treatment decreased secretion of G-CSF, granulocyte-macrophage colony stimulating factor (GM-CSF), IFN-γ, CCL4/macrophage inhibitory protein (MIP)-1β, and TNF by inflamed tissue in IBD. Bromelain may be a novel therapy for IBD. PMID:18160345

  11. Repeated Lentivirus-Mediated Granulocyte Colony-Stimulating Factor Administration to Treat Canine Cyclic Neutropenia

    PubMed Central

    Yanay, Ofer; Dale, David C.

    2012-01-01

    Abstract Cyclic neutropenia occurs in humans and gray collie dogs, is characterized by recurrent neutropenia, and is treated by repeated injections of recombinant granulocyte colony-stimulating factor (rG-CSF). As dose escalation of lentivirus may be clinically necessary, we monitored the outcome of four sequential intramuscular injections of G-CSF-lentivirus (3×107 IU/kg body weight) to a normal dog and a gray collie. In the normal dog absolute neutrophil counts were significantly increased after each dose of virus, with mean levels of 27.75±3.00, 31.50±1.40, 35.05±1.68, and 43.88±2.94×103 cells/μl, respectively (p<0.001), and elevated neutrophil counts of 31.18±7.81×103 cells/μl were maintained for more than 6 years with no adverse effects. A gray collie dog with a mean count of 1.94±1.48×103 cells/μl received G-CSF-lentivirus and we observed sustained elevations in neutrophil levels for more than 5 months with a mean of 26.00±11.00×103 cells/μl, significantly increased over the pretreatment level (p<0.001). After the second and third virus administrations mean neutrophil counts of 15.80±6.14 and 11.52±4.90×103 cells/μl were significantly reduced compared with cell counts after the first virus administration (p<0.001). However, after the fourth virus administration mean neutrophil counts of 15.21±4.50×103 cells/μl were significantly increased compared with the previous administration (p<0.05). Throughout the nearly 3 years of virus administrations the dog gained weight, was healthy, and showed neutrophil counts significantly higher than pretreatment levels (p<0.001). These studies suggest that patients with cyclic and other neutropenias may be treated with escalating doses of G-CSF-lentivirus to obtain a desired therapeutic neutrophil count. PMID:22845776

  12. Granulocyte-colony stimulating factor (G-CSF)-primed, delayed marrow harvests as a source of hematopoietic stem and progenitor cells for allogeneic transplantation.

    PubMed

    Phillips, G L; Davey, D D; Hale, G A; Marshall, K W; Munn, R K; Nath, R; Reece, D E; Van Zant, G

    1999-10-01

    We evaluated the ability of G-CSF to increase the number of hematopoietic stem cells obtained by "delayed" BM harvest for allogeneic transplantation. Five normal donors received G-CSF @ 10 mcg/kg/day x 5 followed by repeat PB and BM assays at day 6 and 16, and BM harvest at day 16. Stem cells were not increased in the BM at day 16. Five patients underwent BMT and engrafted at +10 to +19 days. While the tested strategy offers no intrinsic advantages, its potential cannot be evaluated fully without alternative timing and/or additional, "early acting" growth factors.

  13. Human granulocyte colony-stimulating factor may improve outcome attributable to neonatal sepsis complicated by neutropenia.

    PubMed

    Kocherlakota, P; La Gamma, E F

    1997-07-01

    To determine whether adjunctive therapy with recombinant human granulocyte colony-stimulating factor (rhG-CSF) could reverse sepsis-associated neonatal neutropenia and improve neonatal survival compared with conventional therapy in a phase I/II-type trial. An intravenous infusion of rhG-CSF (10 microg/kg/d x 3 d) was administered to 14 septic neutropenic neonates. Neutrophilic responses and outcome of these neonates were compared with 11 concurrently treated, retrospectively selected, case-matched control septic patients identified by using a search of medical records coded for sepsis with neutropenia (>/=24 hours). Seven neonates with early-onset sepsis with neutropenia at birth and seven neonates with late-onset sepsis plus neutropenia (all with necrotizing enterocolitis) were entered in the rhG-CSF treatment group. Results were compared with a conventional therapy control group (five early onset, six late onset). No significant differences existed in the birth weight, gestational age, use of antibiotic therapy, magnitude of respiratory support, severity of metabolic acidosis, use of vasopressors, or other supportive therapy between the two groups. In the rhG-CSF-treated group and in the conventionally treated control group, the absolute neutrophil count (ANC) (mean +/- SEM) was 585 +/- 138 and 438 +/- 152, respectively. The ANC increased to more than baseline in the rhG-CSF-treated group by 10-fold versus 2-fold at 24 hours, 18-fold versus 4-fold at 48 hours, 24-fold versus 5-fold at 72 hours (significant by one-way analysis of variance in the rhG-CSF group only), and 29-fold versus 16-fold at 7 to 10 days when compared with the conventional therapy group. There were no nonresponders in the rhG-CSF group by 24 hours after the first dose of study drug. Monocyte cell counts also increased significantly in both groups by 7 days after entry into this protocol but remained within normal range for age. No clinically significant effect on lymphocytes, erythrocytes, or

  14. Intensive chemotherapy plus recombinant human granulocyte-colony stimulating factor support for distant metastatic nasopharyngeal carcinoma. A preliminary report.

    PubMed

    Wang, C H; Wang, H M; Chen, J S; Chang, W J; Lai, G M

    1997-01-01

    Nasopharyngeal carcinoma (NPC) has been shown to be highly responsive to chemotherapy. The major limiting toxicity was myelotoxicity. Recently, the role of granulocyte colony-stimulating factor (G-CSF) in reducing chemotherapy-induced neutropenic sepsis has been well established. In this study, we tested whether recombinant human G-CSF (rhG-CSF) could effectively support the bone marrow function in both previously untreated and pretreated metastatic NPC patients receiving intensive chemotherapy. Twelve patients with distant metastatic disease, 5 newly diagnosed (group A) and 7 pretreated patients (group B), were enrolled to receive BEC (bleomycin, epirubicin and cisplatin), followed by rhG-CSF support (50 microg/m2 s.c. daily for 10 days) every 4 weeks for two cycles. Four patients in group A completed the treatment as scheduled while only 2 patients in group B did. After the first treatment cycle, 6 patients (50%) had grade III-IV myelosuppression. Five of the patients were from group B. The mean values of the white cell count nadir were 2,680 (range 1,200-3,700) in group A and 1,343 (range 400-2,900) in group B (p = 0.0386). Neutropenia-associated fever occurred in 7 patients, 6 of whom had received previous treatment. There were 2 deaths due to toxicity, and both patients had liver metastases within 6 months following radiation. After 24 months of follow-up, only 1 patient is still alive. Our preliminary results suggest that in previously treated metastatic NPC patients, bone marrow suppression is still the major limiting toxic side effect of aggressive chemotherapy, especially for those patients with liver recurrences within 6 months after irradiation and despite rhG-CSF support.

  15. Acute exposure to cadmium induces prolonged neutrophilia along with delayed induction of granulocyte colony-stimulating factor in the livers of mice.

    PubMed

    Horiguchi, Hyogo; Oguma, Etsuko

    2016-12-01

    Acute exposure to cadmium (Cd), a toxic heavy metal, causes systemic inflammation characterized by neutrophilia. To elucidate the mechanism of neutrophilia induced by Cd, we investigated the induction of granulocyte colony-stimulating factor (G-CSF), which regulates neutrophil production, in mice with acute Cd toxicity, and compared it with mice injected with lipopolysaccharide (LPS) as an inducer of general inflammatory responses. We injected BALB/c mice with Cd at 2.5 mg/kg i.p. or LPS at 0.5 mg/kg i.p. and sampled the peripheral blood and organs at time points up to 24 h. In Cd-treated mice, the peripheral neutrophil count increased steadily up to 24 h, whereas LPS-treated mice showed a more rapid increase with a peak at 12 h. The serum G-CSF level increased gradually to reach a plateau at 12-18 h in Cd-treated mice, but LPS-treated mice showed a marked increase, reaching a peak at 2-3 h. A gradual elevation of G-CSF mRNA expression up to 24 h was detected by real-time PCR in the livers of Cd-treated mice, but in LPS-treated mice its highest expression was observed in the liver with a rapid increase at 2 h. By in situ hybridization using G-CSF RNA probes, hepatic Kupffer cells were identified as G-CSF-producing cells in the liver. These results indicated that Cd has a characteristic effect of delayed induction of G-CSF in the liver, causing systemic inflammation accompanied by prolonged neutrophilia.

  16. Linked Tumor-Selective Virus Replication and Transgene Expression from E3-Containing Oncolytic Adenoviruses†

    PubMed Central

    Zhu, Mingzhu; Bristol, J. Andrew; Xie, Yuefeng; Mina, Mervat; Ji, Hong; Forry-Schaudies, Suzanne; Ennist, David L.

    2005-01-01

    Historically, the adenoviral E3 region was found to be nonessential for viral replication in vitro. In addition, adenoviruses whose genome was more than approximately 105% the size of the native genome were inefficiently packaged. These profound observations were used experimentally to insert transgenes into the adenoviral backbone. More recently, however, the reintroduction of the E3 region into oncolytic adenoviruses has been found to positively influence antitumor efficacy in preclinical models and clinical trials. In the studies reported here, the granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA sequence has been substituted for the E3-gp19 gene in oncolytic adenoviruses that otherwise retained the E3 region. Five viruses that differed slightly in the method of transgene insertion were generated and compared to Ar6pAE2fGmF (E2F/GM/ΔE3), a previously described E3-deleted oncolytic adenovirus encoding GM-CSF. In all of the viruses, the human E2F-1 promoter regulated E1A expression and GM-CSF expression was under the control of the adenoviral E3 promoter and the packaging signal was relocated immediately upstream from the right terminal repeat. The E3-gp19-deleted viruses had similar cytolytic properties, as measured in vitro by cytotoxicity assays, but differed markedly in their capacity to express and secrete GM-CSF. Ar15pAE2fGmF (E2F/GM/E3b), the virus that produced the highest levels of GM-CSF and retained the native GM-CSF leader sequence, was selected for further analysis. The E2F/GM/E3b and E2F/GM/ΔE3 viruses exhibited similar cytotoxic activity and GM-CSF production in several tumor cell lines in vitro. However, when compared in vivo in nude mouse xenograft tumor models, E2F/GM/E3b spread through tumors to a greater extent, resulted in higher peak GM-CSF and total exposure levels in both tumor and serum, and was more efficacious than the E3-deleted virus. Using the matched WI-38 (parental) and WI-38-VA13 (simian virus 40 large T antigen

  17. Analysis of rhG-CSF-effects on platelets by in vitro bleeding test and transcranial Doppler ultrasound examination.

    PubMed

    Söhngen, D; Wienen, S; Siebler, M; Boogen, C; Scheid, C; Schulz, A; Kobbe, G; Diehl, V; Heyll, A

    1998-12-01

    Experimental evidence suggests a stimulatory effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on both platelets and coagulation. RhG-CSF is increasingly used to stimulate healthy volunteer donors for blood stem cell mobilization. We therefore assessed 25 healthy donors receiving rhG-CSF for changes in in vitro bleeding test (IVBT), coagulation parameters and cerebral microembolism by transcranial Doppler (TCD) ultrasound. A significant shortening of IVBT was found on day 4 of rhG-CSF administration together with increased levels of fibrinogen and factor VIII and reduced activities of protein C and protein S. Although these changes are quite small it is possible that they may lead to a hypercoagulable state especially in donors with other risk factors for thromboembolism. However, TCD examination failed to detect any signs of microembolism. We therefore conclude that rhG-CSF leads to significant changes in coagulation parameters, but has no effect on TCD detectable microembolism as a stroke risk factor. However donors receiving rhG-CSF should be examined carefully to detect pre-existing changes in the coagulation system and we would like to suggest a routine thrombophilia screen.

  18. Granulocyte-Macrophage Colony-Stimulating Factor: More Than a Hemopoietin

    DTIC Science & Technology

    1990-01-01

    Sullivan, R., Elias, A., Antman , K.. Schnipper, L.. and Griffin, D., Granulocyte-macrophage colony-stimulating factor induces the expression of the CDI lb...surface adhesion molecule on human granulocytes in vivo. Blood 72, 691--697, 1988. 38. Socinski, M. A., Cannistra, S., Elias, A., Antman , K. H...1989. 82. Antman , K.. Griffin, J., Elias, A., Socinski. M., Ryan, L., Cannistra, S., Gette, D., Whitly, M., Frei, E., and Schnipper, L., Effect of

  19. Genistein protects hematopoietic stem cells against G-CSF-induced DNA damage.

    PubMed

    Souza, Liliana R; Silva, Erica; Calloway, Elissa; Kucuk, Omer; Rossi, Michael; McLemore, Morgan L

    2014-05-01

    Granulocyte colony-stimulating factor (G-CSF) has been used to treat neutropenia in various clinical settings. Although clearly beneficial, there are concerns that the chronic use of G-CSF in certain conditions increases the risk of myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML). The most striking example is in severe congenital neutropenia (SCN). Patients with SCN develop MDS/AML at a high rate that is directly correlated to the cumulative lifetime dosage of G-CSF. Myelodysplastic syndrome and AML that arise in these settings are commonly associated with chromosomal deletions. We have demonstrated in this study that chronic G-CSF treatment in mice results in expansion of the hematopoietic stem cell (HSC) population. In addition, primitive hematopoietic progenitors from G-CSF-treated mice show evidence of DNA damage as demonstrated by an increase in double-strand breaks and recurrent chromosomal deletions. Concurrent treatment with genistein, a natural soy isoflavone, limits DNA damage in this population. The protective effect of genistein seems to be related to its preferential inhibition of G-CSF-induced proliferation of HSCs. Importantly, genistein does not impair G-CSF-induced proliferation of committed hematopoietic progenitors, nor diminishes neutrophil production. The protective effect of genistein was accomplished with plasma levels that are attainable through dietary supplementation.

  20. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis.

    PubMed

    Ryan, G R; Dai, X M; Dominguez, M G; Tong, W; Chuan, F; Chisholm, O; Russell, R G; Pollard, J W; Stanley, E R

    2001-07-01

    Colony-stimulating factor 1 (CSF-1) regulates the survival, proliferation, and differentiation of mononuclear phagocytes. It is expressed as a secreted glycoprotein or proteoglycan found in the circulation or as a biologically active cell-surface glycoprotein. To investigate tissue CSF-1 regulation, CSF-1-null Csf1(op)/Csf1(op) mice expressing transgenes encoding the full-length membrane-spanning CSF-1 precursor driven by 3.13 kilobases of the mouse CSF-1 promoter and first intron were characterized. Transgene expression corrected the gross osteopetrotic, neurologic, weight, tooth, and reproductive defects of Csf1(op)/Csf1(op) mice. Detailed analysis of one transgenic line revealed that circulating CSF-1, tissue macrophage numbers, hematopoietic tissue cellularity, and hematopoietic parameters were normalized. Tissue CSF-1 levels were normal except for elevations in 4 secretory tissues. Skin fibroblasts from the transgenic mice secreted normal amounts of CSF-1 but also expressed some cell-surface CSF-1. Also, lacZ driven by the same promoter/first intron revealed beta-galactosidase expression in hematopoietic, reproductive, and other tissue locations proximal to CSF-1 cellular targets, consistent with local regulation by CSF-1 at these sites. These studies indicate that the 3.13-kilobase promoter/first intron confers essentially normal CSF-1 expression. They also pinpoint new cellular sites of CSF-1 expression, including ovarian granulosa cells, mammary ductal epithelium, testicular Leydig cells, serous acinar cells of salivary gland, Paneth cells of the small intestine, as well as local sites in several other tissues.

  1. The Src-like adaptor protein regulates GM-CSFR signaling and monocytic dendritic cell maturation.

    PubMed

    Liontos, Larissa M; Dissanayake, Dilan; Ohashi, Pamela S; Weiss, Arthur; Dragone, Leonard L; McGlade, C Jane

    2011-02-15

    GM-CSF is an important cytokine involved in myeloid differentiation and inflammatory processes. Signaling through the GM-CSFR also plays a critical role in the generation of monocyte-derived dendritic cells (DC). In this article, we report that the Src-like adaptor protein (SLAP) functions as a negative regulator of the GM-CSFR. In bone marrow-derived DC (BM-DC) lacking SLAP and the closely related SLAP2, downregulation of GM-CSFRβ is impaired, leading to enhanced phosphorylation of Jak2 and prolonged activation of Akt and Erk1/2 in response to GM-CSF stimulation. Compared with wild-type bone marrow, SLAP/SLAP2(-/-) bone marrow gave rise to similar numbers of CD11c(+) and CD11b(+) DC, but SLAP/SLAP2(-/-) BM-DC failed to acquire high levels of MHC class II, CD80, and CD86, indicating an impairment in maturation. Furthermore, MHC class II expression in SLAP/SLAP2(-/-) BM-DC was rescued by decreasing GM-CSF concentration, suggesting that enhanced GM-CSF signaling mediates the block in maturation. In addition, SLAP/SLAP2(-/-) BM-DC produced less IL-12 and TNF-α in response to LPS compared with controls and failed to stimulate T cells in an MLR. Ag-specific T cell activation assays showed that SLAP/SLAP2(-/-) BM-DC were less robust at inducing IFN-γ secretion by DO11.10 T cells. These results indicated that SLAP-mediated GM-CSFR regulation is important for the generation of functionally mature monocytic DC.

  2. Granulocyte-colony stimulating factor and stem cell factor are the crucial factors in long-term culture of human primitive hematopoietic cells supported by a murine stromal cell line.

    PubMed

    Nishi, N; Ishikawa, R; Inoue, H; Nishikawa, M; Kakeda, M; Yoneya, T; Tsumura, H; Ohashi, H; Yamaguchi, Y; Motoki, K; Sudo, T; Mori, K J

    1996-09-01

    The findings that murine marrow stromal cell line MS-5 supported the proliferation of human lineage-negative (Lin-) CD34+CD38- bone marrow cells in long-term culture have been reported. In this study, we analyzed this proliferating activity of MS-5-conditioned medium (CM) on human primitive hematopoietic cells. When Lin-CD34+CD38- cells of normal human cord blood cells were co-cultured with MS-5, colony forming cells (CFCs) were maintained over 7 weeks in vitro. Prevention of contact between MS-5 and Lin-CD34+CD38- cells by using membrane filter (0.45 micron) was negligible for this activity. This indicated that the activity of MS-5 on human primitive hematopoietic cells is a soluble factor(s) secreted from MS-5, which is not induced by the contact between MS-5 and Lin-CD34+CD38- cells. We tried to purify this soluble activity. An active material with a molecular weight of about 150 kDa, determined by gel filtration chromatography, solely supported the growth of Lin-CD34+CD38- cells and Mo7e, a human megakaryocytic cell line. This activity not only reacted with anti-mouse stem cell factor (mSCF) antibody on Western blots, but it was also neutralized in the presence of anti-mSCF antibody. Another active material with a molecular weight of about 20-30 kDa synergized with mSCF to stimulate the growth of Lin-CD34+CD38- cells but failed to do so alone, although this synergy was inhibited in the presence of soluble mouse granulocyte-colony stimulating factor (mG-CSF) receptor, which is a chimeric protein consisting of the extracellular domain of mG-CSF receptor and the Fe region of human IgG1. In addition, the latter molecule supported the growth of the G-CSF dependent cell line FD/GR3, which is a murine myeloid leukemia cell line, FDC-P2, transfected with mG-CSF receptor cDNA. Adding of anti-mSCF antibody and soluble mG-CSF receptor to the culture completely abrogated the activity of MS-5-CM. Recombinant (r) mSCF and rmG-CSF had synergistic activity on the growth of Lin

  3. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34

    PubMed Central

    Gow, Deborah J.; Garceau, Valerie; Kapetanovic, Ronan; Sester, David P.; Fici, Greg J.; Shelly, John A.; Wilson, Thomas L.; Hume, David A.

    2012-01-01

    Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been described, but its physiological role is not yet known. The domestic pig provides an alternative to traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antagonists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demonstrating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we discuss the molecular basis for the species specificity. PMID:22974529

  4. Diverse manifestations of tumorigenicity and immunogenicity displayed by the poorly immunogenic B16-BL6 melanoma transduced with cytokine genes.

    PubMed

    Arca, M J; Krauss, J C; Strome, S E; Cameron, M J; Chang, A E

    1996-05-01

    We evaluated the in vivo response to the poorly immunogenic B16-BL6 (BL6) murine melanoma genetically altered to secrete interleukin-2 (IL-2), IL-4, interferon gamma (IFN gamma) and granulocyte/macrophage-colony-stimulating factor (GM-CSF). Three parameters were evaluated: (1) tumorigenicity, (2) vaccination of naive animals, and (3) assessment of antitumor reactivity of T cells derived from tumor-draining lymph nodes (TDLN). Secretion of IL-2 abrogated the tumorigenicity of BL6, while IFN gamma and IL-4 partially reduced tumorigenicity, and GM-CSF had no effect. Protective immunity to wild-type tumor challenge could not be achieved by vaccination with irradiated cytokine-secreting tumors, although IL-2 and IL-4 secretion appeared to retard the growth of the challenge inoculum significantly. An alternative method to evaluate the immunogenicity of the cytokine-secreting tumors was to measure the ability of T cells obtained from TDLN to mediate regression of wild-type tumor in adoptive immunotherapy. Neither IL-2 nor IFN gamma secretion resulted in the induction of immune T cells. By contrast, GM-CSF and IL-4 secretion were found to induce immune T cells in the TDLN with GM-CSF being superior to IL-4. The combined secretion of GM-CSF and IL-4 did not lead to enhanced induction of immune T cells. GM-CSF secretion was found to upregulate B7-1 expression in TDLN, consistent with an increase in the population of antigen-presenting cells. These studies demonstrated that reduced tumorigenicity by cytokine secretion did not correlate with increased immunogenicity. With the cytokines examined, there was limited capability of developing protective immunity against the BL6 tumor. Nevertheless, GM-CSF and IL-4 secretion significantly enhanced T cell immune reactivity to the poorly immunogenic BL6 tumor.

  5. Granulocyte Colony-Stimulating Factor Use after Autologous Peripheral Blood Stem Cell Transplantation: Comparison of Two Practices.

    PubMed

    Singh, Amrita D; Parmar, Sapna; Patel, Khilna; Shah, Shreya; Shore, Tsiporah; Gergis, Usama; Mayer, Sebastian; Phillips, Adrienne; Hsu, Jing-Mei; Niesvizky, Ruben; Mark, Tomer M; Pearse, Roger; Rossi, Adriana; van Besien, Koen

    2018-02-01

    Administration of granulocyte colony-stimulating factor (G-CSF) after autologous peripheral blood stem cell transplantation (PBSCT) is generally recommended to reduce the duration of severe neutropenia; however, data regarding the optimal timing of G-CSFs post-transplantation are limited and conflicting. This retrospective study was performed at NewYork-Presbyterian/Weill Cornell Medical Center between November 5, 2013, and August 9, 2016, of adult inpatient autologous PBSCT recipients who received G-CSF empirically starting on day +5 (early) versus on those who received G-CSF on day +12 only if absolute neutrophil count (ANC) was <0.5 × 10 9 /L (ANC-driven). G-CSF was dosed at 300 µg in patients weighing <75 kg and 480 µg in those weighing ≥75 kg. One hundred consecutive patients underwent autologous PBSCT using either the early (n = 50) or ANC-driven (n = 50) G-CSF regimen. Patient and transplantation characteristics were comparable in the 2 groups. In the ANC-driven group, 24% (n = 12) received G-CSF on day +12 and 60% (n = 30) started G-CSF earlier due to febrile neutropenia or at the physician's discretion, 6% (n = 3) started after day +12 at the physician's discretion, and 10% (n = 5) did not receive any G-CSF. The median start day of G-CSF therapy was day +10 in the ANC-driven group versus day +5 in the early group (P < .0001). For the primary outcome, the median time to neutrophil engraftment was 12 days (interquartile range [IQR] 11-13 days) in the early group versus 13 days (IQR, 12-14 days) in the ANC-driven group (P = .07). There were no significant between-group differences in time to platelet engraftment, 1-year relapse rate, or 1-year overall survival. The incidence of febrile neutropenia was 74% in the early group versus 90% in the ANC-driven group (P = .04); however, there was no significant between-group difference in the incidence of positive bacterial cultures or transfer to the intensive care

  6. Effects of granulocyte colony stimulating factor on retinal leukocyte and erythrocyte flux in the human retina.

    PubMed

    Fuchsjäger-Mayrl, Gabriele; Malec, Magdalena; Polska, Elzbieta; Jilma, Bernd; Wolzt, Michael; Schmetterer, Leopold

    2002-05-01

    The blue-field entoptic technique was introduced more than 20 years ago to quantify perimacular white blood cell flux. However, a final confirmation that the perceived corpuscles represent leukocytes is still unavailable. The study design was randomized, placebo-controlled, and double masked with two parallel groups. Fifteen healthy male subjects received a single dose of granulocyte colony stimulating factor (G-CSF, 300 microg) and 15 other subjects received placebo. The following parameters were assessed at baseline and at 12 minutes and 8 hours after administration: retinal white blood cell flux, with the blue-field entoptic technique; retinal blood velocities, with bidirectional laser Doppler velocimetry; retinal venous diameter determined with a retinal vessel analyzer; and blood pressure and pulse rate determined by automated oscillometry and pulse oxymetry, respectively. After 12 minutes, G-CSF reduced total leukocyte count from 5.5 +/- 1.4 10(9)/L at baseline to 1.9 +/- 0.4 10(9)/L. This was paralleled by a 35% +/- 11% decrease in retinal white blood cell density. After 8 hours G-CSF increased total leukocyte counts to 20.0 +/- 4.4 10(9)/L. Again, this increase in circulating leukocytes was reflected by an increase in retinal white blood cell density (110% +/- 48%). All effects were significant at P < 0.001. By contrast, none of the other hemodynamic parameters was changed by administration of G-CSF. The results clearly indicate that the blue-field entoptic technique assesses leukocyte movement in the perimacular capillaries of the retina. Moreover, white blood cell density appears to adequately reflect the number of circulating leukocytes within the retinal microvasculature. Hence, an increase in retinal white blood cell density does not necessarily reflect retinal vasodilatation.

  7. G-CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo.

    PubMed

    Tanha, Shima; Rafiee-Tehrani, Morteza; Abdollahi, Mohamad; Vakilian, Saeid; Esmaili, Zahra; Naraghi, Zahra Safaei; Seyedjafari, Ehsan; Javar, Hamid Akbari

    2017-10-01

    Sustained release of functional growth factors can be considered as a beneficial methodology for wound healing. In this study, recombinant human granulocyte colony-stimulating factor (G-CSF)-loaded chitosan nanoparticles were incorporated in Poly(ε-caprolactone) (PCL) nanofibers, followed by surface coating with collagen type I. Physical and mechanical properties of the PCL nanofibers containing G-CSF loaded chitosan nanoparticles PCL/NP(G-CSF) and in vivo performance for wound healing were investigated. G-CSF structural stability was evaluated through SDS_PAGE, reversed phase (RP) HPLC and size-exclusion chromatography, as well as circular dichroism. Nanofiber/nanoparticle composite scaffold was demonstrated to have appropriate mechanical properties as a wound dresser and a sustained release of functional G-CSF. The PCL/NP(G-CSF) scaffold showed a suitable proliferation and well-adherent morphology of stem cells. In vivo study and histopathological evaluation outcome revealed that skin regeneration was dramatically accelerated under PCL/NP(G-CSF) as compared with control groups. Superior fibroblast maturation, enhanced collagen deposition and minimum inflammatory cells were also the beneficial properties of PCL/NP(G-CSF) over the commercial dressing. The synergistic effect of extracellular matrix-mimicking nanofibrous membrane and G-CSF could develop a suitable supportive substrate in order to extensive utilization for the healing of skin wounds. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2830-2842, 2017. © 2017 Wiley Periodicals, Inc.

  8. Granulocyte colony stimulating factor priming chemotherapy is more effective than standard chemotherapy as salvage therapy in relapsed acute myeloid leukemia.

    PubMed

    Shen, Ying; He, Aili; Wang, Fangxia; Bai, Ju; Wang, Jianli; Zhao, Wanhong; Zhang, Wanggang; Cao, Xingmei; Chen, Yinxia; Liu, Jie; Ma, Xiaorong; Chen, Hongli; Feng, Yuandong; Yang, Yun

    2017-12-29

    To improve the complete remission (CR) rate of newly diagnosed acute myeloid leukemia (AML) patients and alleviate the severe side effects of double induction chemotherapy, we combined a standard regimen with granulocyte colony-stimulating factor (G-CSF) priming chemotherapy to compose a new double induction regimen for AML patients who failed to achieve CR after the first course. Ninety-seven patients with AML who did not achieve CR after the first course of standard chemotherapy were enrolled. Among them, 45 patients received G-CSF priming combined with low-dose chemotherapy during days 20-22 of the first course of chemotherapy, serving as priming group, 52 patients were administered standard chemotherapy again, serving as control group. Between the two groups there were no differences in the French-American-British (FAB) classification, risk status, the first course of chemotherapy, blood cell count or blasts percentage of bone marrow before the second course. But the CR rate was significantly higher and the adverse effect was much lower in the priming group than the control group. Cox multivariate regression analysis showed that WBC level before the second course and the selection of the second chemotherapy regimen were two independent factors for long survival of patients. These results elucidate that standard chemotherapy followed by G-CSF priming new double induction chemotherapy is an effective method for AML patients to improve CR rate and reduce adverse effects. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  9. High doses of granulocyte-macrophage colony stimulating factor inhibit antibody responses in rectal secretions and diminish MVA/SIV vaccine protection in TRIM5α restrictive macaques

    PubMed Central

    Kannanganat, Sunil; Wyatt, Linda S; Gangadhara, Sailaja; Chamcha, Venkateswarlu; Chea, Lynette S.; Kozlowski, Pamela A; LaBranche, Celia C; Chennareddi, Lakshmi; Lawson, Benton; Reddy, Pradeep B. J.; Styles, Tiffany M.; Vanderford, Thomas H; Montefiori, David C; Moss, Bernard; Robinson, Harriet L; Amara, Rama Rao

    2016-01-01

    Here, we test in rhesus macaques the effects of a 500-fold range of an admixed recombinant modified vaccinia Ankara (MVA) expressing rhesus GM-CSF (MVA/GM-CSF) on the immunogenicity and protection elicited by an MVA/simian immunodeficiency macaque 239 (SIVmac239) vaccine. High doses of the MVA/GM-CSF did not affect the levels of systemic Env-specific Ab but did decrease the expression of the gut homing receptor α4β7 on plasmacytoid dendritic cells (p<0.01) and the magnitudes of Env-specific IgA (p=0.01) and IgG (p<0.05) in rectal secretions. The protective effect of the vaccine was evaluated using 12 weekly rectal challenges in rhesus subgrouped by tripartite motif-containing protein 5α (TRIM5α) genotypes that are restrictive or permissive for infection by the challenge virus, SIVsmE660. Eight of 9 TRIM5α-restrictive animals receiving no, or the lowest dose [1×105 plaque forming units (pfu)] of MVA/GM-CSF resisted all 12 challenges. In the comparable TRIM5α-permissive group only 1 of 12 animals resisted all 12 challenges. In the TRIM5α restrictive, but not permissive animals, the number of challenges to infection directly correlated with the magnitudes of Env-specific rectal IgG (r=0.6) and IgA (r=0.6), the avidity of Env-specific serum IgG (r=0.5), and antibody dependent cell-mediated virus inhibition (r=0.6). Titers of neutralizing Ab did not correlate with protection. We conclude that (i) protection elicited by MVA/SIVmac239 is strongly dependent on the presence of the TRIM5α restriction, (ii) in TRIM5α restrictive animals, non-neutralizing Ab responses contribute to protection against SIVsmE660, and (iii) high doses of co-expressed MVA/GM-CSF inhibit mucosal Ab responses and MVA/SIV239-elicited protection. PMID:27683750

  10. [Effects of granulocyte-macrophage colony stimulating factor on nuclear factor-KappaB activation in multiple organs of hemorrhage-induced acute lung injury in mice].

    PubMed

    Wang, Qian; Song, Yong; Shi, Yi

    2007-05-01

    To investigate the effects of nuclear factor-KappaB (NF-KappaB) activation in multiple organs of hemorrhage-induced acute lung injury (ALI) by the specific granulocyte-macrophage colony stimulating factor (GM-CSF)-neutralizing antibody (22E9) and dexamethasone (DEX) in mice. Twenty male C57BL/6 mice were used to reproduce a model of hemorrhagic shock by cardiac puncture. Before cardiac puncture, mice in different groups were transnasally administered with phosphate buffered solution (PBS, PCG group), PBS plus 1 microg 22E9 (HS1 group), PBS plus 10 microg 22E9 (HS10 group) and PBS plus 20 microg DEX (DEX group), respectively. In negative control group (NCG group) received cardiac puncture without shock followed by transnasal administration with PBS without shock. Lungs, hearts, livers and kidneys tissues of mice were harvested at 4 hours after hemorrhagic shock. The activities of NF-KappaB in different organs was determined by electrophoretic mobility shift assay (EMSA). The tumor necrosis factor-alpha (TNF-alpha) in lung and heart were determined by enzyme-linked immunosorbent assay (ELISA). 22E9 in both low or high doses could significantly inhibit NF-KappaB activities in lung, heart and liver, and elevated NF-KappaB activity in kidney compared with those of PCG group (all P<0.05). The effect of 22E9 was much better in HS1 group than in HS10 group (all P<0.05). DEX significantly strengthened NF-KappaB activity in kidney (P<0.05) and didn't significantly inhibit NF-KappaB activities in heart and liver compared with those of PCG group. 22E9 significantly inhibited TNF-alpha in lung and heart, while DEX significantly inhibited TNF-alpha in heart (all P<0.05). 22E9 can inhibit the NF-KappaB activation and inflammatory reaction in multiple organs after hemorrhage-induced ALI and reduce injury in multiple organs, while DEX has no significant effect.

  11. The in Vitro Inhibitory Effect of Ectromelia Virus Infection on Innate and Adaptive Immune Properties of GM-CSF-Derived Bone Marrow Cells Is Mouse Strain-Independent.

    PubMed

    Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N; Gieryńska, Małgorzata

    2017-01-01

    Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM-comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data

  12. The in Vitro Inhibitory Effect of Ectromelia Virus Infection on Innate and Adaptive Immune Properties of GM-CSF-Derived Bone Marrow Cells Is Mouse Strain-Independent

    PubMed Central

    Szulc-Dąbrowska, Lidia; Struzik, Justyna; Cymerys, Joanna; Winnicka, Anna; Nowak, Zuzanna; Toka, Felix N.; Gieryńska, Małgorzata

    2017-01-01

    Ectromelia virus (ECTV) belongs to the Orthopoxvirus genus of the Poxviridae family and is a natural pathogen of mice. Certain strains of mice are highly susceptible to ECTV infection and develop mousepox, a lethal disease similar to smallpox of humans caused by variola virus. Currently, the mousepox model is one of the available small animal models for investigating pathogenesis of generalized viral infections. Resistance and susceptibility to ECTV infection in mice are controlled by many genetic factors and are associated with multiple mechanisms of immune response, including preferential polarization of T helper (Th) immune response toward Th1 (protective) or Th2 (non-protective) profile. We hypothesized that viral-induced inhibitory effects on immune properties of conventional dendritic cells (cDCs) are more pronounced in ECTV-susceptible than in resistant mouse strains. To this extent, we confronted the cDCs from resistant (C57BL/6) and susceptible (BALB/c) mice with ECTV, regarding their reactivity and potential to drive T cell responses following infection. Our results showed that in vitro infection of granulocyte-macrophage colony-stimulating factor-derived bone marrow cells (GM-BM—comprised of cDCs and macrophages) from C57BL/6 and BALB/c mice similarly down-regulated multiple genes engaged in DC innate and adaptive immune functions, including antigen uptake, processing and presentation, chemokines and cytokines synthesis, and signal transduction. On the contrary, ECTV infection up-regulated Il10 in GM-BM derived from both strains of mice. Moreover, ECTV similarly inhibited surface expression of major histocompatibility complex and costimulatory molecules on GM-BM, explaining the inability of the cells to attain full maturation after Toll-like receptor (TLR)4 agonist treatment. Additionally, cells from both strains of mice failed to produce cytokines and chemokines engaged in T cell priming and Th1/Th2 polarization after TLR4 stimulation. These data

  13. Use of G-CSF-stimulated marrow in allogeneic hematopoietic stem cell transplantation settings: a comprehensive review.

    PubMed

    Chang, Ying-Jun; Huang, Xiao-Jun

    2011-01-01

    In recent years, several researchers have unraveled the previously unrecognized effects of granulocyte colony-stimulating factor (G-CSF) on hematopoiesis and the immune cell functions of bone marrow in healthy donors. In human leukocyte antigen-matched or haploidentical transplant settings, available data have established the safety of using G-CSF-stimulated bone marrow grafts, as well as the ability of this source to produce rapid and sustained engraftment. Interestingly, G-CSF-primed bone marrow transplants could capture the advantages of blood stem cell transplants, without the increased risk of chronic graft-versus-host disease that is associated with blood stem cell transplants. This review summarizes the growing body of evidence that supports the use of G-CSF-stimulated bone marrow grafts as an alternative stem cell source in allogeneic hematopoietic stem cell transplantation. © 2010 John Wiley & Sons A/S.

  14. Efficacy, safety and proper dose analysis of PEGylated granulocyte colony-stimulating factor as support for dose-dense adjuvant chemotherapy in node positive Chinese breast cancer patients.

    PubMed

    Zhang, Fan; LingHu, RuiXia; Zhan, XingYang; Li, Ruisheng; Feng, Fan; Gao, Xudong; Zhao, Lei; Yang, Junlan

    2017-10-03

    For high-risk breast cancer patients with positive axillary lymph nodes, dose-dense every-two-week epirubicin/cyclophosphamide-paclitaxel (ddEC-P) regimen is the optimal postoperative adjuvant therapy. However, this regimen is limited by the grade 3/4 neutropenia and febrile neutropenia (FN). There is an urgent need to explore the efficacy, safety and proper dosage of PEGylated granulocyte colony-stimulating factor (PEG-G-CSF) as support for ddEC-P in Chinese breast cancer patients with positive axillary lymph nodes. Prospectively, 40 women with stage IIIA to IIIC breast cancer received ddEC-P ± trastuzumab as adjuvant treatment. PEG-G-CSF was injected subcutaneously in a dose of 6 mg or 3 mg on the 2 th day of each treatment cycle. With administration of PEG-G-CSF, all of the 40 patients completed 8 cycles of ddEC-P ± trastuzumab regimen without dose reductions or treatment delays. Moreover, no FN cases were observed. Further analysis showed that the proper dosage of PEG-G-CSF was 6 mg for ddEC treatment, and 3 mg for ddP treatment. PEG-G-CSF exhibits advantages compared with G-CSF in convenient of administration and tolerance for high risk Chinese breast cancer patients. More importantly, the proper dose of PEG-G-CSF for high risk Chinese breast cancer patients during ddEC-P chemotherapy may be 6 mg for ddEC treatment and 3 mg for ddP treatment.

  15. Efficacy of granulocyte colony stimulating factor as a secondary prophylaxis along with full-dose chemotherapy following a prior cycle of febrile neutropenia.

    PubMed

    Gupta, Seema; Singh, Pankaj K; Bhatt, Madan L B; Pant, Mohan C; Gupta, Rajeev; Negi, Mahendra P S

    2010-10-01

    Secondary prophylaxis with recombinant human granulocyte colony stimulating factor (G-CSF) is recommended where patients have experienced febrile neutropenia in an earlier chemotherapy cycle and for whom the maintenance of chemotherapy dose intensity is important; or where febrile neutropenia has not occurred but prolonged neutropenia is causing excessive dose delay or reduction, where maintenance of dose intensity is important. The objective of this study was to determine the efficacy and feasibility of G-CSF as secondary prophylaxis when used along with full dose moderately myelotoxic chemotherapy following a prior cycle with febrile-neutropenia. Fifty-two patients aged 22-75 years with febrile neutropenia that required intravenous antibiotics following moderately myelotoxic chemotherapy were included. These patients received the next cycle of the same chemotherapy regime without dose modification but with support of filgrastim 24 h after completion of chemotherapy (300 μg/day/subcutaneously (s.c.) for weight < 60 kg, 480 μg/day/s.c. for weight > 60 kg, for at least 10 consecutive days), patients in whom neutropenia was associated with a life-threatening infection and those who developed prolonged myelosuppression were excluded. The use of the hematopoietic growth factor G-CSF was shown to shorten the neutrophil recovery time, resulting in significant reduction of incidence of febrile neutropenia, hospitalization and use of broad spectrum antibiotics. There was no drug related death or adverse events associated with either cycle. In conclusion, recombinant human G-CSF is effective and relatively safe as a secondary prophylaxis with full dose chemotherapy in patients who develop febrile neutropenia following prior cycles of moderately myelotoxic chemotherapy.

  16. Tumor regression induced by intratumor therapy with a disabled infectious single cycle (DISC) herpes simplex virus (HSV) vector, DISC/HSV/murine granulocyte-macrophage colony-stimulating factor, correlates with antigen-specific adaptive immunity.

    PubMed

    Ali, Selman A; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Rojas, José M; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2002-04-01

    Direct intratumor injection of a disabled infectious single cycle HSV-2 virus encoding the murine GM-CSF gene (DISC/mGM-CSF) into established murine colon carcinoma CT26 tumors induced a significant delay in tumor growth and complete tumor regression in up to 70% of animals. Pre-existing immunity to HSV did not reduce the therapeutic efficacy of DISC/mGM-CSF, and, when administered in combination with syngeneic dendritic cells, further decreased tumor growth and increased the incidence of complete tumor regression. Direct intratumor injection of DISC/mGM-CSF also inhibited the growth of CT26 tumor cells implanted on the contralateral flank or seeded into the lungs following i.v. injection of tumor cells (experimental lung metastasis). Proliferation of splenocytes in response to Con A was impaired in progressor and tumor-bearer, but not regressor, mice. A potent tumor-specific CTL response was generated from splenocytes of all mice with regressing, but not progressing tumors following in vitro peptide stimulation; this response was specific for the gp70 AH-1 peptide SPSYVYHQF and correlated with IFN-gamma, but not IL-4 cytokine production. Depletion of CD8(+) T cells from regressor splenocytes before in vitro stimulation with the relevant peptide abolished their cytolytic activity, while depletion of CD4(+) T cells only partially inhibited CTL generation. Tumor regression induced by DISC/mGM-CSF virus immunotherapy provides a unique model for evaluating the immune mechanism(s) involved in tumor rejection, upon which tumor immunotherapy regimes may be based.

  17. Defining the impact of the use of granulocyte colony stimulating factors on the incidence of chemotherapy-induced neutropenia in patients with gynecologic malignancies.

    PubMed

    Julius, Justin M; Hammerstrom, Aimee; Wei, Caimiao; Rajesh, Raeshmma; Bodurka, Diane C; Kurian, Shiney; Smith, Judith A

    2017-03-01

    Purpose The objectives of this study were to characterize the incidence of chemotherapy-induced neutropenia (CIN) and febrile neutropenia (FN) with specific chemotherapy agents commonly used in the treatment of gynecologic malignancies, as well as defining the impact of granulocyte colony stimulating factors (G-CSF) on the prevention of CIN and FN in this patient population. Methods This retrospective analysis was conducted from a database of 635 gynecologic cancer patients who received chemotherapy between 1 September 2007 and 31 August 2008. A logistic regression analysis was conducted to determine the impact of potential covariates on the overall incidence of CIN. Results Overall, 28.3% of patients experienced CIN with one or more cycles chemotherapy, and 13.1% had treatment delays or dose reduction associated with CIN. The use of G-CSF prior to administration of chemotherapy resulted in a decrease in the incidence of CIN from 29.8% to 19.6% compared to no G-CSF use. No difference was observed in number of treatment delays or dose reductions in the 46 (7.2%) of gynecologic cancer patients that received G-CSF prophylaxis. Multivariate analysis found that both age and the number of current cycles jointly may predict risk of CIN. Conclusions Patients with gynecologic malignancies appear to be at a higher risk of development of neutropenia when treated with chemotherapy. The proactive use of G-CSF did decrease the risk of CIN by over 30%. Prospective study is warranted to determine the impact of G-CSF to reduce CIN in patients with gynecologic malignancies receiving chemotherapy.

  18. Primary granulocyte colony-stimulating factor prophylaxis during the first two cycles only or throughout all chemotherapy cycles in patients with breast cancer at risk for febrile neutropenia.

    PubMed

    Aarts, Maureen J; Peters, Frank P; Mandigers, Caroline M; Dercksen, M Wouter; Stouthard, Jacqueline M; Nortier, Hans J; van Laarhoven, Hanneke W; van Warmerdam, Laurence J; van de Wouw, Agnes J; Jacobs, Esther M; Mattijssen, Vera; van der Rijt, Carin C; Smilde, Tineke J; van der Velden, Annette W; Temizkan, Mehmet; Batman, Erdogan; Muller, Erik W; van Gastel, Saskia M; Borm, George F; Tjan-Heijnen, Vivianne C G

    2013-12-01

    Early breast cancer is commonly treated with anthracyclines and taxanes. However, combining these drugs increases the risk of myelotoxicity and may require granulocyte colony-stimulating factor (G-CSF) support. The highest incidence of febrile neutropenia (FN) and largest benefit of G-CSF during the first cycles of chemotherapy lead to questions about the effectiveness of continued use of G-CSF throughout later cycles of chemotherapy. In a multicenter study, patients with breast cancer who were considered fit enough to receive 3-weekly polychemotherapy, but also had > 20% risk for FN, were randomly assigned to primary G-CSF prophylaxis during the first two chemotherapy cycles only (experimental arm) or to primary G-CSF prophylaxis throughout all chemotherapy cycles (standard arm). The noninferiority hypothesis was that the incidence of FN would be maximally 7.5% higher in the experimental compared with the standard arm. After inclusion of 167 eligible patients, the independent data monitoring committee advised premature study closure. Of 84 patients randomly assigned to G-CSF throughout all chemotherapy cycles, eight (10%) experienced an episode of FN. In contrast, of 83 patients randomly assigned to G-CSF during the first two cycles only, 30 (36%) had an FN episode (95% CI, 0.13 to 0.54), with a peak incidence of 24% in the third cycle (ie, first cycle without G-CSF prophylaxis). In patients with early breast cancer at high risk for FN, continued use of primary G-CSF prophylaxis during all chemotherapy cycles is of clinical relevance and thus cannot be abandoned.

  19. The impact of granulocyte colony stimulating factor at content of donor lymphocytes collected for cellular immunotherapy.

    PubMed

    Arat, Mutlu; Arslan, Onder; Gürman, Günhan; Dalva, Klara; Ozcan, Muhit; Uğur, Aynur; Ilhan, Osman

    2004-02-01

    Donor lymphocyte infusions (DLI) have become widely used for prevention or treatment of relapse after allogeneic hematopoietic stem cell transplantation. Increasing use of reduced intensity conditioning regimens (RICR) and subsequent application of DLI forced the hemapheresis centers to collect donor lymphocytes in certain quantity and quality. The place of growth factors especially granulocyte colony stimulating factor (rhG-CSF, filgrastim) in allogeneic hemapoietic stem cell (HSC) collection is established, but there is no consensus about the role of rhG-CSF. We aimed to clarify the dose effect of rhG-CSF on lymphocyte subpopulations (CD3+, CD3+4+, CD3+8+, CD19+, CD3-16+56+) cells and CD34+ HSC. Major indications for DLI (mean volume: 180+/-52 ml) were for relapse or transplants using RICR mainly in patients with acute leukemia (n=20) or chronic myeloid leukemia (n=15). In four years we performed 40 lymphocyte apheresis (LA) on 30 healthy (med. age 28, M/F 21/9) donors using continuous flow cell separators by processing 2-2.5 times of their total blood volume (TBV). The apheresis data is divided into three groups according to rhG-CSF dose used for priming. Donors in Group I (n=18), Group II (n=9) and Group III (n=13) received no rhG-CSF (steady state), rhG-CSF 5 microg/kg/dsc x 5 days and rhG-CSF 10 microg/kg/dsc x 5 days, respectively. There was no difference within groups concerning TBV processed and recipient body weight. A total of 11,565 ml (+/-3700) of blood was processed in 216 min (+/-36.5) at an inlet of 56.8 ml/min (+/-10.6) using 999 ml (+/-307) ACD. The CD34+ HSC increased with increasing rhG-CSF dose as expected. Median CD3+ lymphocyte yield per recipient body weight in Group I, II and III were 0.9 x 10e8/kg (range: 0.1-2.1), 2.9 x 10e8/kg (range: 1.6-4.3) and 2.1 x 10e8/kg (range: 0.6-6.9), respectively. The primed donors T lymphocyte yield was 2-3-fold more in comparison to Group I. This gain was most significant between Group I and III in terms of

  20. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis.

    PubMed

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-09-15

    IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis. Copyright © 2014 by The American Association of Immunologists, Inc.

  1. Phase II clinical trial of local use of GM-CSF for prevention and treatment of chemotherapy- and concomitant chemoradiotherapy-induced severe oral mucositis in advanced head and neck cancer patients: an evaluation of effectiveness, safety and costs.

    PubMed

    Mantovani, Giovanni; Massa, Elena; Astara, Giorgio; Murgia, Viviana; Gramignano, Giulia; Lusso, Maria Rita; Camboni, Paolo; Ferreli, Luca; Mocci, Miria; Perboni, Simona; Mura, Loredana; Madeddu, Clelia; Macciò, Antonio

    2003-01-01

    In the present open non-randomized phase II study we looked for effectiveness, safety, tolerability and costs of locally applied GM-CSF in preventing or treating mucositis in patients receiving chemotherapy or chemoradiotherapy for head and neck cancer. In addition to clinical mucositis scoring system, the effects of treatment with GM-CSF were evaluated by its impact on patient quality of life and by laboratory immunological assays such as serum proinflammatory cytokines, IL-2 and leptin. The trial was designed to assess the effectiveness of local GM-CSF treatment in two different settings: i) prophylaxis of mucositis; ii) treatment of mucositis. Prophylaxis was chosen for chemoradiotherapy treatments of high mucosatoxic potential, while curative treatment was reserved for chemotherapy or chemoradiotherapy treatments of lesser potential of inducing mucositis. From January 1998 to December 2001, 68 patients entered the study. The great majority of patients of both groups had head and neck cancer, were stage IV, PS ECOG 0-1, were habitual smokers and were treated with chemotherapy and concomitant (or sequential) chemoradiotherapy. Forty-six patients were included in the 'prophylactic' setting and 22 patients in the 'curative' setting. The main findings of our study are: only 50% of patients included in the 'prophylactic' setting developed mucositis; the duration of oral mucositis from appearance until complete remission was significantly shorter in the 'prophylactic' than in the 'curative' setting; the mean grade of oral mucositis at baseline, on day 3 of therapy and on day 6 of therapy was significantly lower in the 'prophylactic' than in the 'curative' setting; 24 (55.82%) patients in the 'prophylactic' setting had grade 3/4 oral mucositis at baseline compared to 25 (80.60%) patients in the 'curative' setting (p=0.048). Thirteen (30.23%) patients in the 'prophylactic' setting had grade 3/4 oral mucositis on day 3 of therapy compared to 19 (61.29%) patients in the

  2. Extending the Serum Half-Life of G-CSF via Fusion with the Domain III of Human Serum Albumin

    PubMed Central

    Zhao, Shuqiang; Zhang, Yu; Tian, Hong; Chen, Xiaofei; Cai, Di; Yao, Wenbing; Gao, Xiangdong

    2013-01-01

    Protein fusion technology is one of the most commonly used methods to extend the half-life of therapeutic proteins. In this study, in order to prolong the half-life of Granulocyte colony stimulating factor (G-CSF), the domain III of human serum albumin (3DHSA) was genetically fused to the N-terminal of G-CSF. The 3DHSA-G-CSF fusion gene was cloned into pPICZαA along with the open reading frame of the α-factor signal under the control of the AOX1 promoter. The recombinant expression vector was transformed into Pichia pastoris GS115, and the recombinant strains were screened by SDS-PAGE. As expected, the 3DHSA-G-CSF showed high binding affinity with HSA antibody and G-CSF antibody, and the natural N-terminal of 3DHSA was detected by N-terminal sequencing. The bioactivity and pharmacokinetic studies of 3DHSA-G-CSF were respectively determined using neutropenia model mice and human G-CSF ELISA kit. The results demonstrated that 3DHSA-G-CSF has the ability to increase the peripheral white blood cell (WBC) counts of neutropenia model mice, and the half-life of 3DHSA-G-CSF is longer than that of native G-CSF. In conclusion, 3DHSA can be used to extend the half-life of G-CSF. PMID:24151579

  3. MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial.

    PubMed

    Behrens, Frank; Tak, Paul P; Østergaard, Mikkel; Stoilov, Rumen; Wiland, Piotr; Huizinga, Thomas W; Berenfus, Vadym Y; Vladeva, Stoyanka; Rech, Juergen; Rubbert-Roth, Andrea; Korkosz, Mariusz; Rekalov, Dmitriy; Zupanets, Igor A; Ejbjerg, Bo J; Geiseler, Jens; Fresenius, Julia; Korolkiewicz, Roman P; Schottelius, Arndt J; Burkhardt, Harald

    2015-06-01

    To determine the safety, tolerability and signs of efficacy of MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF), in patients with rheumatoid arthritis (RA). Patients with active, moderate RA were enrolled in a randomised, multicentre, double-blind, placebo-controlled, dose-escalation trial of intravenous MOR103 (0.3, 1.0 or 1.5 mg/kg) once a week for 4 weeks, with follow-up to 16 weeks. The primary outcome was safety. Of the 96 randomised and treated subjects, 85 completed the trial (n=27, 24, 22 and 23 for pooled placebo and MOR103 0.3, 1.0 and 1.5 mg/kg, respectively). Treatment emergent adverse events (AEs) in the MOR103 groups were mild or moderate in intensity and generally reported at frequencies similar to those in the placebo group. The most common AE was nasopharyngitis. In two cases, AEs were classified as serious because of hospitalisation: paronychia in a placebo subject and pleurisy in a MOR103 0.3 mg/kg subject. Both patients recovered fully. In exploratory efficacy analyses, subjects in the MOR103 1.0 and 1.5 mg/kg groups showed significant improvements in Disease Activity Score-28 scores and joint counts and significantly higher European League Against Rheumatism response rates than subjects receiving placebo. MOR103 1.0 mg/kg was associated with the largest reductions in disease activity parameters. MOR103 was well tolerated and showed preliminary evidence of efficacy in patients with active RA. The data support further investigation of this monoclonal antibody to GM-CSF in RA patients and potentially in those with other immune-mediated inflammatory diseases. NCT01023256. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Granulocyte colony-stimulating-factor-induced psoriasiform dermatitis resembles psoriasis with regard to abnormal cytokine expression and epidermal activation.

    PubMed

    Mössner, R; Beckmann, I; Hallermann, C; Neumann, C; Reich, K

    2004-06-01

    Psoriasis is a chronic inflammatory skin disorder characterized by accumulation of Th1-type T cells and neutrophils, regenerative keratinocyte proliferation and differentiation, and enhanced epidermal production of antimicrobial peptides. The underlying cause is unknown, but there are some similarities with the immunologic defense program against bacteria. Development of psoriasiform skin lesions has been reported after administration of granulocyte colony-stimulating factor (G-CSF), a cytokine induced in monocytes by bacterial antigens. To further investigate the relation between this type of cytokine-induced dermatitis and psoriasis, we analyzed the cutaneous cytokine profile [tumor necrosis factor-alpha (TNF-alpha), interferon-gamma, transforming growth factor-beta1 (TGF-beta1), interleukin-10 (IL-10), IL-12p35 and p40, and IL-8] and expression of markers of epidermal activation [Ki-67, cytokeratin-16, major histocompatibility complex (MHC) class II, intercellular adhesion molecule-1 (ICAM-1)] in a patient who developed G-CSF-induced psoriasiform dermatitis by using quantitative real-time reverse transcriptase-polymerase chain reaction and immunohistology. The histologic picture resembled psoriasis with regard to epidermal hyperparakeratosis and the accumulation of lymphocytes in the upper corium. CD8(+) T cells were found to infiltrate the epidermis which was associated with an aberrant expression of Ki-67, cytokeratin-16, MHC class II, and ICAM-1 on adjacent keratinocytes. As compared to normal skin (n = 7), there was an increased expression of TNF-alpha, IL-12p40, and IL-8, a decreased expression of TGF-beta1, and a lack of IL-10, similar to the findings in active psoriasis (n = 8). Therefore, G-CSF may cause a lymphocytic dermatitis that, similar to psoriasis, is characterized by a pro-inflammatory Th1-type cytokine milieu and an epidermal phenotype indicative of aberrant maturation and acquisition of non-professional immune functions.

  5. Therapy with granulocyte colony-stimulating factor in the chronic stage, but not in the acute stage, improves experimental autoimmune myocarditis in rats via nitric oxide.

    PubMed

    Shimada, Kana; Okabe, Taka-aki; Mikami, Yu; Hattori, Miki; Fujita, Masatoshi; Kishimoto, Chiharu

    2010-09-01

    We systematically investigated serial efficacy of granulocyte colony-stimulating factor (G-CSF) therapy upon experimental autoimmune myocarditis (EAM) in rats treated with and without the inhibition of nitric oxide (NO) with the analyses of tissue regeneration. G-CSF could mobilize multipotent progenitor cells of bone marrow into the peripheral blood and may improve ventricular function. A rat model of porcine myosin-induced EAM was used. After the immunization of myosin, G-CSF (10 microg/kg/day) or saline was injected intraperitoneally on days 0-21 in experiment 1 and on days 21-42 in experiment 2. Additional myosin-immunized rats were orally given 25 mg/kg/day of N(G)-nitro-L-arginine methylester (L-NAME), an inhibitor of nitric oxide synthase (NOS), in each experiment (each group; n=8-21). Serum cytokines and peripheral blood cell counts were measured in each group. In experiment 1, G-CSF treatment aggravated cardiac pathology associated with increased macrophage inflammatory protein-2 (MIP-2) and interleukin-6 (IL-6) levels and enhanced superoxide production. In experiment 2, G-CSF treatment reduced the severity of myocarditis with increased capillary density and improved left ventricular ejection fraction. In the rats with EAM treated with G-CSF associated with oral L-NAME treatment in experiment 2, the severity of myocarditis was not reduced. Myocardial c-kit(+) cells were demonstrated only in G-CSF-treated group in experiment 2 but not in other groups. G-CSF has differential effects on EAM in rats associated with the modulation of cytokine network. The overwhelming superoxide production by G-CSF administration in the acute stage may worsen the disease. G-CSF therapy improved cardiac function via NO system in a rat model of myocarditis in the chronic stage, but not in the acute stage, possibly through the myocardial regeneration and acceleration of healing process. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Effect of granulocyte-colony stimulating factor on empiric therapy with flomoxef sodium and tobramycin in febrile neutropenic patients with hematological malignancies. Kan-etsu Hematological Disease and Infection Study Group.

    PubMed

    Yoshida, M; Karasawa, M; Naruse, T; Fukuda, M; Hirashima, K; Oh, H; Ninomiya, H; Abe, T; Saito, K; Shishido, H; Moriyama, Y; Shibata, A; Motoyoshi, K; Nagata, N; Miura, Y

    1999-02-01

    The clinical effects of concomitant use of granulocyte-colony stimulating factor (G-CSF) on empiric antibiotic therapy in febrile neutropenic patients were evaluated in a randomized fashion. Two hundred and fourteen neutropenic febrile episodes (neutrophil counts < 1.0 x 10(9)/l) were treated with flomoxef sodium and tobramycin with or without G-CSF. The resolution of fever at day 4 (excellent response) or at day 7 (good response) was deemed effective. Among 157 evaluable episodes, the observed excellent responses were 31 (38.8%) and the good responses were 20 (25.0%) in the G-CSF group; those in the control group were 26 (33.8%) and 25 (32.5%), respectively. The overall efficacy rate was 63.8% (51/80) in the G-CSF group and 66.2% (51/77) in the control group (not significant). The initial neutrophil count was 0.186 +/- 0.249 x 10(9)/l in the G-CSF group and 0.235 +/- 0.290 x 10(9)/l in the control group, and rose to 2.889 +/- 4.198 x 10(9)/l and 0.522 +/- 0.844 x 10(9)/l, respectively, at day 7. These results indicate that G-CSF does not affect the rate of response to empiric antibiotic therapy in febrile neutropenic patients, although a significant effect of G-CSF was observed on neutrophil recovery.

  7. Multilineage response in aplastic anemia patients following long-term administration of filgrastim (recombinant human granulocyte colony stimulating factor).

    PubMed

    Sonoda, Y; Ohno, Y; Fujii, H; Takahashi, T; Nakayama, S; Haruyama, H; Nasu, K; Shimazaki, C; Hara, H; Kanamaru, A

    1993-11-01

    The present multicenter study was undertaken to confirm whether filgrastim/recombinant human granulocyte colony stimulating factor (rhG-CSF) could mobilize residual multipotential stem cells by its G0-shortening effect in patients with aplastic anemia (AA) and induce a multilineage response. Twenty-seven patients with acquired severe or moderate AA received long-term administration (2 to 12+ months) of rhG-CSF in doses from 100 to 400 micrograms/body/day by s.c. injection or 250 to 1,500 micrograms/body/day by i.v. infusion. Twenty-six out of the 27 evaluable patients showed a substantial increase in neutrophils associated with a recovery of myeloid precursors in bone marrow within one month of therapy. Interestingly, 10 out of the 27 patients showed a dramatic improvement in severe anemia after two to ten months of therapy. Moreover, severe thrombocytopenia improved after two to four months of therapy in three out of these ten patients accompanied by a significant increase in megakaryocytes in bone marrow. Clonal cultures of bone marrow cells revealed a recovery in myeloid as well as erythroid precursors in most of these ten patients. In two patients who showed a trilineage response, mixed and megakaryocyte colony formations also recovered. These results suggest that long-term administration of rhG-CSF mobilizes myeloid, erythroid, megakaryocyte and multipotential progenitor cells and induces a multilineage response in some patients with AA.

  8. Cost-effectiveness of granulocyte colony-stimulating factor prophylaxis in chemotherapy-induced febrile neutropenia among breast cancer and Non-Hodgkin's lymphoma patients under Taiwan's national health insurance system.

    PubMed

    Wen, Tsun-Jen; Wen, Yu-Wen; Chien, Chun-Ru; Chiang, Shao-Chin; Hsu, William Wei-Yuan; Shen, Li-Jiuan; Hsiao, Fei-Yuan

    2017-04-01

    The beneficial effects of granulocyte colony-stimulating factor (G-CSF) prophylaxis on reducing the risk of chemotherapy-induced febrile neutropenia (CIFN) were well documented throughout the literature. However, existing data regarding its cost-effectiveness were conflicting. We estimated the cost-effectiveness of G-CSF prophylaxis in CIFN under Taiwan's National Health Insurance (NHI) system. Data on clinical outcomes and direct medical costs were derived for 5179 newly diagnosed breast cancer and 629 non-Hodgkin's lymphoma (NHL) patients from the NHI claims database. Patients were further categorized into three subgroups as "primary-", "secondary-" and "no -" prophylaxis based on their patterns of G-CSF use. Generalized estimating equations were applied to estimate the impact of G-CSF use on the incidence of CIFN. The incremental cost-effectiveness ratios of primary and secondary prophylactic G-CSF use were calculated and sensitivity analyses were performed. Primary prophylaxis of G-CSF decreased the incidence of CIFN by 27% and 83%, while secondary prophylaxis by 34% and 22% in breast cancer and NHL patients, respectively. Compared with those with no prophylaxis, the incremental cost per CIFN reduced in primary prophylaxis is $931 and $52 among patients with breast cancer and NHL, respectively. In contrast, secondary prophylaxis is dominated by no prophylaxis and primary prophylaxis in both cancer patients. Primary but not secondary prophylactic use of G-CSF was cost-effective in CIFN in breast cancer and NHL patients under Taiwan's NHI system. © 2016 John Wiley & Sons, Ltd.

  9. Regulation of CTL responses to MHC-restricted class I peptide of the gp70 tumour antigen by splenic parenchymal CD4+ T cells in mice failing immunotherapy with DISC-mGM-CSF.

    PubMed

    Ahmad, Murrium; Rees, Robert C; McArdle, Stephanie E; Li, Geng; Mian, Shahid; Entwisle, Claire; Loudon, Peter; Ali, Selman A

    2005-07-20

    Direct intratumour injection of the disabled infectious single-cycle-herpes simplex virus-encoding murine granulocyte/macrophage colony-stimulating factor (DISC-HSV-mGM-CSF) into established colon carcinoma CT26 tumours induced complete tumour rejection in up to 70% of treated animals (regressors), while the remaining mice developed progressive tumours (progressors). This murine Balb/c model was used to dissect the cellular mechanisms involved in tumour regression or progression following immunotherapy. CTLs were generated by coculturing lymphocytes and parenchymal cells from the same spleens of individual regressor or progressor animals in the presence of the relevant AH-1 peptide derived from the gp70 tumour-associated antigens expressed by CT26 tumours. Tumour regression was correlated with potent CTL responses, spleen weight and cytokine (IFN-gamma) production. Conversely, progressor splenocytes exhibited weak to no CTL activity and poor IFN-gamma production, concomitant with the presence of a suppressor cell population in the progressor splenic parenchymal cell fraction. Further fractionation of this parenchymal subpopulation demonstrated that cells inhibitory to the activation of AH-1-specific CTLs, restimulated in vitro with peptide, were present in the nonadherent parenchymal fraction. In vitro depletion of progressor parenchymal CD3+/CD4+ T cells restored the CTL response of the cocultured splenocytes (regressor lymphocytes and progressor parenchymal cells) and decreased the production of IL-10, suggesting that CD3+CD4+ T lymphocytes present in the parenchymal fraction regulated the CTL response to AH-1. We examined the cellular responses associated with tumour rejection and progression, identifying regulatory pathways associated with failure to respond to immunotherapy. Copyright 2005 Wiley-Liss, Inc.

  10. Hemopoiesis in healthy old people and centenarians: well-maintained responsiveness of CD34+ cells to hemopoietic growth factors and remodeling of cytokine network.

    PubMed

    Bagnara, G P; Bonsi, L; Strippoli, P; Bonifazi, F; Tonelli, R; D'Addato, S; Paganelli, R; Scala, E; Fagiolo, U; Monti, D; Cossarizza, A; Bonafé, M; Franceschi, C

    2000-02-01

    In vitro hemopoiesis and hemopoietic cytokines production were evaluated in 9 centenarians (median age 100.5 years, age range: 100-104 years), 10 old people (median age: 71 years, age range: 66-73 years), and 10 young people (median age: 35 years, age range: 30-45 years), all carefully selected for their healthy status. The main findings were the following: (i) a trend towards a decreased absolute number of CD34+ progenitor cells in the peripheral blood of old people and centenarians, in comparison to young subjects; (ii) a well-preserved capability of CD34+ cells from old people and centenarians to respond to hemopoietic cytokines, and to form erythroid (BFU-E), granulocyte-macrophagic (CFU-GM), and mixed colonies (CFU-GEMM) in a way (number, size, and morphology) indistinguishable from that of young subjects; (iii) an age-related decreased in vitro production of granulocyte-macrophagic colony-stimulating factor (GM-CSF) and a decreased production of interleukin-3 (IL-3) in centenarians by phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC); (iv) a linear increase of the serum level of stem cell factor (SCF), measured in the above-mentioned subjects and in 65 additional subjects, including 4 centenarians. These data suggest that basal hematopoietic potential is well preserved in healthy centenarians, and that the hemopoietic cytokine network undergoes a complex remodeling with age.

  11. M-CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation

    PubMed Central

    Sarrazin, Sandrine; Redelberger, David

    2016-01-01

    Myeloablative treatment preceding hematopoietic stem cell (HSC) and progenitor cell (HS/PC) transplantation results in severe myeloid cytopenia and susceptibility to infections in the lag period before hematopoietic recovery. We have previously shown that macrophage colony-stimulating factor (CSF-1; M-CSF) directly instructed myeloid commitment in HSCs. In this study, we tested whether this effect had therapeutic benefit in improving protection against pathogens after HS/PC transplantation. M-CSF treatment resulted in an increased production of mature myeloid donor cells and an increased survival of recipient mice infected with lethal doses of clinically relevant opportunistic pathogens, namely the bacteria Pseudomonas aeruginosa and the fungus Aspergillus fumigatus. M-CSF treatment during engraftment or after infection efficiently protected from these pathogens as early as 3 days after transplantation and was effective as a single dose. It was more efficient than granulocyte CSF (G-CSF), a common treatment of severe neutropenia, which showed no protective effect under the tested conditions. M-CSF treatment showed no adverse effect on long-term lineage contribution or stem cell activity and, unlike G-CSF, did not impede recovery of HS/PCs, thrombocyte numbers, or glucose metabolism. These results encourage potential clinical applications of M-CSF to prevent severe infections after HS/PC transplantation. PMID:27811055

  12. Cell proliferation and differentiation in chemical leukemogenesis

    NASA Technical Reports Server (NTRS)

    Irons, R. D.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)

    1993-01-01

    In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.

  13. Effect of Granulocyte Colony-Stimulating Factor-Combined Conditioning in Cord Blood Transplantation for Myelodysplastic Syndrome and Secondary Acute Myeloid Leukemia: A Retrospective Study in Japan.

    PubMed

    Konuma, Takaaki; Takahashi, Satoshi; Uchida, Naoyuki; Kuwatsuka, Yachiyo; Yamasaki, Satoshi; Aoki, Jun; Onishi, Yasushi; Aotsuka, Nobuyuki; Ohashi, Kazuteru; Mori, Takehiko; Masuko, Masayoshi; Nakamae, Hirohisa; Miyamura, Kouichi; Kato, Koji; Atsuta, Yoshiko; Kato, Seiko; Asano, Shigetaka; Takami, Akiyoshi; Miyazaki, Yasushi

    2015-09-01

    Granulocyte colony-stimulating factor (G-CSF) increases the susceptibility of dormant malignant or nonmalignant hematopoietic cells to cytarabine arabinoside (Ara-C) through the induction of cell cycle entry. Therefore, G-CSF-combined conditioning before allogeneic stem cell transplantation might positively contribute to decreased incidences of relapse and graft failure without having to increase the dose of cytotoxic drugs. We conducted a retrospective nationwide study of 336 adult patients with myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (sAML) after single-unit cord blood transplantation (CBT) who underwent 4 different kinds of conditioning regimens: total body irradiation (TBI) ≥ 8 Gy + Ara-C/G-CSF + cyclophosphamide (CY) (n = 65), TBI ≥ 8 Gy + Ara-C + CY (n = 119), TBI ≥ 8 Gy + other (n = 104), or TBI < 8 Gy or non-TBI (n = 48). The TBI ≥ 8 Gy + Ara-C/G-CSF + CY regimen showed significantly higher incidence of neutrophil engraftment (hazard ratio, 1.52; 95% confidence interval [CI], 1.10 to 2.08; P = .009) and lower overall mortality (hazard ratio, .46; 95% CI, .26 to .82; P = .008) rates compared with those without a G-CSF regimen. This retrospective study shows that the G-CSF-combined conditioning regimen provides better engraftment and survival results in CBT for adults with MDS and sAML. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  14. Pharmacokinetic and pharmacodynamic modelling of the novel human granulocyte colony-stimulating factor derivative Maxy-G34 and pegfilgrastim in rats.

    PubMed

    Scholz, M; Engel, C; Apt, D; Sankar, S L; Goldstein, E; Loeffler, M

    2009-12-01

    This study aims to compare pharmacokinetics and pharmacodynamics of pegfilgrastim, a pharmaceutical recombinant human granulocyte colony-stimulating factor (rhG-CSF), with that of a newly developed reagent, Maxy-G34. This comparison was performed using rat experiments and biomathematical modelling of granulopoiesis. Healthy rats and those with cyclophosphamide-induced neutropenia were treated with either pegfilgrastim or Maxy-G34 under various schedules. Time courses of absolute neutrophil count (ANC) and G-CSF serum level were measured and we constructed a combined pharmacokinetic/pharmacodynamic model of both drugs. Neutropenic episodes were assessed by experimental data and model simulations. Both Pegfilgrastim and Maxy-G34 showed strong dose-dependent efficacy in reducing neutropenic episodes. However, time courses of ANC and G-CSF serum levels were markedly different. The biomathematical model showed good agreement with these data. We estimated that differences between the two drugs could be explained by lower bioavailability and reduced elimination of Maxy-G34. Based on the data and model interpolations, we estimated that Maxy-G34 is superior in reducing neutropenic episodes. Also, we predicted that G-CSF administration 48 h after cyclophosphamide would be superior to its administration after 2 or 24 h, for both derivatives. Maxy-G34 is a highly potent drug for stimulation of neutrophil production in rats. By our modelling approach, we quantified differences between Maxy-G34 and pegfilgrastim, related to pharmacokinetic parameters. Model simulations can be used to estimate optimal dosing and timing options in the present preclinical rat model.

  15. Inflammatory Biomarkers Predict Airflow Obstruction After Exposure to World Trade Center Dust

    PubMed Central

    Nolan, Anna; Naveed, Bushra; Comfort, Ashley L.; Ferrier, Natalia; Hall, Charles B.; Kwon, Sophia; Kasturiarachchi, Kusali J.; Cohen, Hillel W.; Zeig-Owens, Rachel; Glaser, Michelle S.; Webber, Mayris P.; Aldrich, Thomas K.; Rom, William N.; Kelly, Kerry; Prezant, David J.

    2012-01-01

    Background: The World Trade Center (WTC) collapse on September 11, 2001, produced airflow obstruction in a majority of firefighters receiving subspecialty pulmonary evaluation (SPE) within 6.5 years post-September 11, 2001. Methods: In a cohort of 801 never smokers with normal pre-September 11, 2001, FEV1, we correlated inflammatory biomarkers and CBC counts at monitoring entry within 6 months of September 11, 2001, with a median FEV1 at SPE (34 months; interquartile range, 25-57). Cases of airflow obstruction had FEV1 less than the lower limit of normal (LLN) (100 of 801; 70 of 100 had serum), whereas control subjects had FEV1 greater than or equal to LLN (153 of 801; 124 of 153 had serum). Results: From monitoring entry to SPE years later, FEV1 declined 12% in cases and increased 3% in control subjects. Case subjects had elevated serum macrophage derived chemokine (MDC), granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor, and interferon inducible protein-10 levels. Elevated GM-CSF and MDC increased the risk for subsequent FEV1 less than LLN by 2.5-fold (95% CI, 1.2-5.3) and 3.0-fold (95% CI, 1.4-6.1) in a logistic model adjusted for exposure, BMI, age on September 11, 2001, and polymorphonuclear neutrophils. The model had sensitivity of 38% (95% CI, 27-51) and specificity of 88% (95% CI, 80-93). Conclusions: Inflammatory biomarkers can be risk factors for airflow obstruction following dust and smoke exposure. Elevated serum GM-CSF and MDC levels soon after WTC exposure were associated with increased risk of airflow obstruction in subsequent years. Biomarkers of inflammation may help identify pathways producing obstruction after irritant exposure. PMID:21998260

  16. Influence of recombinant human granulocyte colony-stimulating factor (filgrastim) on hematopoietic recovery and outcome following allogeneic bone marrow transplantation (BMT) from volunteer unrelated donors.

    PubMed

    Berger, C; Bertz, H; Schmoor, C; Behringer, D; Potthoff, K; Mertelsmann, R; Finke, J

    1999-05-01

    Effects of recombinant human granulocyte colony-stimulating factor (rhG-CSF, filgrastim) on hematopoietic recovery and clinical outcome in patients undergoing allogeneic bone marrow transplantation (BMT) from volunteer unrelated donors (VUD) were analyzed retrospectively. Additionally, the influence of baseline patient and transplant characteristics on hematopoietic recovery was evaluated. From January 1994 to March 1996, 47 consecutive adult patients received VUD-BMT. GVHD prophylaxis was cyclosporin A/short course methotrexate/prednisolone, and in four patients additional ATG. Post-transplantation, cohorts of patients received rhG-CSF (5 microg/kg/day) (n = 22) or no rhG-CSF (n = 25) in a non-randomized manner. The patient groups with and without rhG-CSF were rather comparable with respect to baseline patient and transplant characteristics. Median time to neutrophil counts (ANC) >500/microl was 14 days with rhG-CSF vs 16 days without rhG-CSF (P = 0.048), to ANC >1000/microl was 15 vs 18 days (P = 0.084). Neutrophil recovery was accelerated in patients receiving more than the median MNC dose of 2.54 x 10(8)/kg with a median time to ANC >1000/microl of 13 days vs 19 days (P = 0.017). RhG-CSF did not influence platelet recovery and incidence of infectious complications. Incidence of acute GVHD II-IV was 50% with rhG-CSF and 28% without rhG-CSF (P = 0.144), but death before acute GVHD II-IV occurred in 9% of patients with and 20% of patients without rhG-CSF. The median follow-up time was 38 and 36 months in patients with and without rhG-CSF, respectively. Survival at 2 years post-transplant was 39% (95% confidence interval (18%, 60%)) in patients with rhG-CSF and 24% (95% confidence interval (7%, 41%)) in patients without rhG-CSF. Administration of rhG-CSF after VUD-BMT may lead to more rapid neutrophil recovery, but did not influence the incidence of infectious complications. Patients receiving rhG-CSF showed a slightly higher incidence of acute GVHD II-IV. Higher

  17. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells.

    PubMed

    Brunner, Stefan; Huber, Bruno C; Fischer, Rebekka; Groebner, Michael; Hacker, Marcus; David, Robert; Zaruba, Marc-Michael; Vallaster, Marcus; Rischpler, Christoph; Wilke, Andrea; Gerbitz, Armin; Franz, Wolfgang-Michael

    2008-06-01

    Besides its classical function in the field of autologous and allogenic stem cell transplantation, granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI) by mobilization of bone marrow-derived progenitor cells (BMCs) and in addition by activation of multiple signaling pathways. In the present study, we focused on the impact of G-CSF on migration of BMCs and the impact on resident cardiac cells after MI. Mice (C57BL/6J) were sublethally irradiated, and BM from green fluorescent protein (GFP)-transgenic mice was transplanted. Coronary artery ligation was performed 10 weeks later. G-CSF (100 microg/kg) was daily injected for 6 days. Subpopulations of enhanced GFP(+) cells in peripheral blood, bone marrow, and heart were characterized by flow cytometry. Growth factor expression in the heart was analyzed by quantitative real-time polymerase chain reaction. Perfusion was investigated in vivo by gated single photon emission computed tomography (SPECT). G-CSF-treated animals revealed a reduced migration of c-kit(+) and CXCR-4(+) BMCs associated with decreased expression levels of the corresponding growth factors, namely stem cell factor and stromal-derived factor-1 alpha in ischemic myocardium. In contrast, the number of resident cardiac Sca-1(+) cells was significantly increased. However, SPECT-perfusion showed no differences in infarct size between G-CSF-treated and control animals 6 days after MI. Our study shows that G-CSF treatment after MI reduces migration capacity of BMCs into ischemic tissue, but increases the number of resident cardiac cells. To optimize homing capacity a combination of G-CSF with other agents may optimize cytokine therapy after MI.

  18. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children.

    PubMed

    Li, Yuanyuan; Li, Haipeng; Fan, Ruyan; Wen, Bo; Zhang, Jian; Cao, Xiaoying; Wang, Chengwu; Song, Zhanyi; Li, Shuochi; Li, Xiaojie; Lv, Xinjun; Qu, Xiaowang; Huang, Renbin; Liu, Wenpei

    2016-01-01

    Coronavirus (CoV) infections induce respiratory tract illnesses and central nervous system (CNS) diseases. We aimed to explore the cytokine expression profiles in hospitalized children with CoV-CNS and CoV-respiratory tract infections. A total of 183 and 236 hospitalized children with acute encephalitis-like syndrome and respiratory tract infection, respectively, were screened for anti-CoV IgM antibodies. The expression profiles of multiple cytokines were determined in CoV-positive patients. Anti-CoV IgM antibodies were detected in 22/183 (12.02%) and 26/236 (11.02%) patients with acute encephalitis-like syndrome and respiratory tract infection, respectively. Cytokine analysis revealed that the level of serum granulocyte colony-stimulating factor (G-CSF) was significantly higher in both CoV-CNS and CoV-respiratory tract infection compared with healthy controls. Additionally, the serum level of granulocyte macrophage colony-stimulating factor (GM-CSF) was significantly higher in CoV-CNS infection than in CoV-respiratory tract infection. In patients with CoV-CNS infection, the levels of IL-6, IL-8, MCP-1, and GM-CSF were significantly higher in their cerebrospinal fluid samples than in matched serum samples. To the best of our knowledge, this is the first report showing a high incidence of CoV infection in hospitalized children, especially with CNS illness. The characteristic cytokine expression profiles in CoV infection indicate the importance of host immune response in disease progression. © 2017 S. Karger AG, Basel.

  19. [Therapeutic effect of rmIL-12 combined with G-CSF on acute radiation sickness produced by γ-ray irradiation in mice].

    PubMed

    Wang, Li; Zhai, Rui-Ren; Pang, Zhao-Xia; Zhang, Chao; Yu, Chang-Lin

    2012-08-01

    The aim of this study is to observe the therapeutic effect of recombinant murine interleukin 12 (rmIL-12) combining with granulocyte colony stimulating factor (G-CSF) on mice irradiated by γ-rays. 56 BALB/c mice were totally irradiated by 6.0 Gy of (60)Co γ-ray and randomly divided into irradiation control group, rmIL-12 treatment group, G-CSF treatment group and combination therapy (rmIL-12 plus G-CSF) group. rmIL-12 20 µg/kg was administrated intraperitoneally at 1 h following irradiation, and was administrated every 3 days after irradiation for 4 times in rmIL-12 treatment group. G-CSF 100 µg/kg was administrated subcutaneously the 2 h following irradiation for 14 d in G-CSF treatment group. The dose and method of rmIL-12 and G-CSF in combination therapy group were same as in rmIL-12 group and G-CSF group. The general status of mice were observed twice a day, the changes in body weight, peripheral blood cell (WBC and Plt) counts were examined once every three days, bone marrow cells were collected to perform colony cultivation on day 14 and 28 after irradiation. The results showed that WBC count recovery time in combination therapy group was significantly earlier than that of the control group (7 d vs 11 d), WBC count recovery velocity in the combination therapy group was no significant different from that of the G-CSF treatment group. Combined therapy significantly promoted Plt count recovery, resulting in less profound nadirs (16.5% vs 8.1%, P < 0.01) and rapid recovery to normal levels (11 d vs 14 d), Plt count recovery velocity in the combination therapy group was no significant different from that of the rmIL-12 treatment group. Culture of bone marrow cells in semi-solid medium also demonstrated that combination of rmIL-12 and G-CSF could stimulate bone marrow cells to form more CFU-GM and CFU-Mix than those of the irradiation control group in vitro on day 14 and 28 after irradiation (P < 0.05). It is concluded that the combination of rmIL-12 and G-CSF

  20. Tyk2 as a target for immune regulation in human viral/bacterial pneumonia.

    PubMed

    Berg, Johanna; Zscheppang, Katja; Fatykhova, Diana; Tönnies, Mario; Bauer, Torsten T; Schneider, Paul; Neudecker, Jens; Rückert, Jens C; Eggeling, Stephan; Schimek, Maria; Gruber, Achim D; Suttorp, Norbert; Hippenstiel, Stefan; Hocke, Andreas C

    2017-07-01

    The severity and lethality of influenza A virus (IAV) infections is frequently aggravated by secondary bacterial pneumonia. However, the mechanisms in human lung tissue that provoke this increase in fatality are unknown and therapeutic immune modulatory options are lacking.We established a human lung ex vivo co-infection model to investigate innate immune related mechanisms contributing to the susceptibility of secondary pneumococcal pneumonia.We revealed that type I and III interferon (IFN) inhibits Streptococcus pneumoniae -induced interleukin (IL)-1β release. The lack of IL-1β resulted in the repression of bacterially induced granulocyte-macrophage colony-stimulating factor (GM-CSF) liberation. Specific inhibition of IFN receptor I and III-associated tyrosine kinase 2 (Tyk2) completely restored the S. pneumoniae -induced IL-1β-GM-CSF axis, leading to a reduction of bacterial growth. A preceding IAV infection of the human alveolus leads to a type I and III IFN-dependent blockade of the early cytokines IL-1β and GM-CSF, which are key for orchestrating an adequate innate immune response against bacteria. Their virally induced suppression may result in impaired bacterial clearance and alveolar repair.Pharmacological inhibition of Tyk2 might be a new treatment option to sustain beneficial endogenous GM-CSF levels in IAV-associated secondary bacterial pneumonia. Copyright ©ERS 2017.