Sample records for factor hgf modulates

  1. Hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility

    PubMed Central

    Bae, Mihyun H.; Bissonette, Gregory B.; Mars, Wendy M.; Michalopoulos, George K.; Achim, Cristian L.; Depireux, Didier A.; Powell, Elizabeth M.

    2009-01-01

    Disrupted ontogeny of forebrain inhibitory interneurons leads to neurological disorders, including epilepsy. Adult mice lacking the urokinase plasminogen activator receptor (Plaur) have decreased numbers of neocortical GABAergic interneurons and spontaneous seizures, attributed to a reduction of hepatocyte growth factor/scatter factor (HGF/SF). We report that by increasing endogenous HGF/SF concentration in the postnatal Plaur null mouse brain maintains the interneuron populations in the adult, reverses the seizure behavior and stabilizes the spontaneous electroencephalogram activity. The perinatal intervention provides a pathway to reverse potential birth defects and ameliorate seizures in the adult. PMID:19853606

  2. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity.

    PubMed

    Trusolino, L; Cavassa, S; Angelini, P; Andó, M; Bertotti, A; Comoglio, P M; Boccaccio, C

    2000-08-01

    Hepatocyte growth factor/scatter factor (HGF/SF) controls a genetic program known as 'invasive growth', which involves as critical steps cell adhesion, migration, and trespassing of basement membranes. We show here that in MDA-MB-231 carcinoma cells, these steps are elicited by HGF/SF but not by epidermal growth factor (EGF). Neither factor substantially alters the production or activity of extracellular matrix proteases. HGF/SF, but not EGF, selectively promotes cell adhesion on laminins 1 and 5, fibronectin, and vitronectin through a PI3-K-dependent mechanism. Increased adhesion is followed by enhanced invasiveness through isolated matrix proteins as well as through reconstituted basement membranes. Inhibition assays using function-blocking antibodies show that this phenomenon is mediated by multiple integrins including beta1, beta3, beta4, and beta5. HGF/SF triggers clustering of all these integrins at actin-rich adhesive sites and lamellipodia but does not quantitatively modify their membrane expression. These data suggest that HGF/SF promotes cell adhesion and invasiveness by increasing the avidity of integrins for their specific ligands.

  3. Integrin-linked kinase (ILK) modulates wound healing through regulation of hepatocyte growth factor (HGF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrano, Isabel; Diez-Marques, Maria L.; Rodriguez-Puyol, Manuel

    2012-11-15

    Integrin-linked kinase (ILK) is an intracellular effector of cell-matrix interactions and regulates many cellular processes, including growth, proliferation, survival, differentiation, migration, invasion and angiogenesis. The present work analyzes the role of ILK in wound healing in adult animals using a conditional knock-out of the ILK gene generated with the tamoxifen-inducible Cre-lox system (CRE-LOX mice). Results show that ILK deficiency leads to retarded wound closure in skin. Intracellular mechanisms involved in this process were analyzed in cultured mouse embryonic fibroblast (MEF) isolated from CRE-LOX mice and revealed that wounding promotes rapid activation of phosphatidylinositol 3-kinase (PI3K) and ILK. Knockdown of ILKmore » resulted in a retarded wound closure due to a decrease in cellular proliferation and loss of HGF protein expression during the healing process, in vitro and in vivo. Alterations in cell proliferation and wound closure in ILK-deficient MEF or mice could be rescued by exogenous administration of human HGF. These data demonstrate, for the first time, that the activation of PI3K and ILK after skin wounding are critical for HGF-dependent tissue repair and wound healing. -- Highlights: Black-Right-Pointing-Pointer ILK deletion results in decreased HGF expression and delayed scratch wound repair. Black-Right-Pointing-Pointer PI3K/ILK/AKT pathway signals through HGF to regulate wound healing. Black-Right-Pointing-Pointer An ILK-dependent increase in HGF expression is responsible for wound healing in vivo. Black-Right-Pointing-Pointer ILK-KO mice are used to confirm the requirement for ILK function in wound healing. Black-Right-Pointing-Pointer Human HGF treatment restores delayed wound closure in vitro and in vivo.« less

  4. Human Hepatocyte Growth Factor (hHGF)-Modified Hepatic Oval Cells Improve Liver Transplant Survival

    PubMed Central

    Li, Li; Ran, Jiang-Hua; Li, Xue-Hua; Liu, Zhi-Heng; Liu, Gui-Jie; Gao, Yan-Chao; Zhang, Xue-Li; Sun, Hiu-Dong

    2012-01-01

    Despite progress in the field of immunosuppression, acute rejection is still a common postoperative complication following liver transplantation. This study aims to investigate the capacity of the human hepatocyte growth factor (hHGF) in modifying hepatic oval cells (HOCs) administered simultaneously with orthotopic liver transplantation as a means of improving graft survival. HOCs were activated and isolated using a modified 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH) model in male Lewis rats. A HOC line stably expressing the HGF gene was established following stable transfection of the pBLAST2-hHGF plasmid. Our results demonstrated that hHGF-modified HOCs could efficiently differentiate into hepatocytes and bile duct epithelial cells in vitro. Administration of HOCs at the time of liver transplantation induced a wider distribution of SRY-positive donor cells in liver tissues. Administration of hHGF-HOC at the time of transplantation remarkably prolonged the median survival time and improved liver function for recipients compared to these parameters in the other treatment groups (P<0.05). Moreover, hHGF-HOC administration at the time of liver transplantation significantly suppressed elevation of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) levels while increasing the production of IL-10 and TGF-β1 (P<0.05). HOC or hHGF-HOC administration promoted cell proliferation, reduced cell apoptosis, and decreased liver allograft rejection rates. Furthermore, hHGF-modified HOCs more efficiently reduced acute allograft rejection (P<0.05 versus HOC transplantation only). Our results indicate that the combination of hHGF-modified HOCs with liver transplantation decreased host anti-graft immune responses resulting in a reduction of allograft rejection rates and prolonging graft survival in recipient rats. This suggests that HOC-based cell transplantation therapies can be developed as a means of treating severe liver injuries. PMID

  5. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway.

    PubMed

    González, Mariela Natacha; de Mello, Wallace; Butler-Browne, Gillian S; Silva-Barbosa, Suse Dayse; Mouly, Vincent; Savino, Wilson; Riederer, Ingo

    2017-10-10

    The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving

  6. HGF Gene Modification in Mesenchymal Stem Cells Reduces Radiation-Induced Intestinal Injury by Modulating Immunity.

    PubMed

    Wang, Hua; Sun, Rui-Ting; Li, Yang; Yang, Yue-Feng; Xiao, Feng-Jun; Zhang, Yi-Kun; Wang, Shao-Xia; Sun, Hui-Yan; Zhang, Qun-Wei; Wu, Chu-Tse; Wang, Li-Sheng

    2015-01-01

    Effective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs), which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF)-gene-modified MSCs on radiation-induced intestinal injury (RIII). Female 6- to 8-week-old mice were radiated locally at the abdomen with a single 13-Gy dose of radiation and then treated with saline control, Ad-HGF or Ad-Null-modified MSCs therapy. The transient engraftment of human MSCs was detected via real-time PCR and immunostaining. The therapeutic effects of non- and HGF-modified MSCs were evaluated via FACS to determine the lymphocyte immunophenotypes; via ELISA to measure cytokine expression; via immunostaining to determine tight junction protein expression; via PCNA staining to examine intestinal epithelial cell proliferation; and via TUNEL staining to detect intestinal epithelial cell apoptosis. The histopathological recovery of the radiation-injured intestine was significantly enhanced following non- or HGF-modified MSCs treatment. Importantly, the radiation-induced immunophenotypic disorders of the mesenteric lymph nodes and Peyer's patches were attenuated in both MSCs-treated groups. Treatment with HGF-modified MSCs reduced the expression and secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ), increased the expression of the anti-inflammatory cytokine IL-10 and the tight junction protein ZO-1, and promoted the proliferation and reduced the apoptosis of intestinal epithelial cells. Treatment of RIII with HGF-gene-modified MSCs reduces local inflammation and promotes the recovery of small intestinal histopathology in a mouse model. These findings might provide an effective therapeutic strategy for RIII.

  7. The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms?

    PubMed Central

    Boissinot, Marjorie; Vilaine, Mathias; Hermouet, Sylvie

    2014-01-01

    Met is the receptor of hepatocyte growth factor (HGF), a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML), and myeloproliferative neoplasms (MPNs). The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs). PMID:25119536

  8. Hepatocyte growth factor fusion protein having collagen-binding activity (CBD-HGF) accelerates re-endothelialization and intimal hyperplasia in balloon-injured rat carotid artery.

    PubMed

    Ohkawara, Nana; Ueda, Hiroki; Shinozaki, Shohei; Kitajima, Takashi; Ito, Yoshihiro; Asaoka, Hiroshi; Kawakami, Akio; Kaneko, Eiji; Shimokado, Kentaro

    2007-08-01

    Hepatocyte growth factor (HGF) is known to stimulate endothelial cell proliferation. However, re-endothelialization is not enhanced when the native protein is administered to the injured artery, probably due to the short half-life of HGF at the site of injury. Therefore, the effects of an HGF fusion protein having collagen-binding activity (CBD-HGF) on re-endothelialization and neointimal formation was studied in the balloon-injured rat carotid artery. The left common carotid artery of male Sprague-Dawley rats was injured with an inflated balloon catheter, and then treated with CBD-HGF 10 microg/mL), HGF (10 micro g/mL) or saline (control) for 15 min. After 14 days, the rats were injected with Evans blue and sacrificed. The re-endothelialized area was significantly greater in the CBD-HGF- treated rats than in the control or HGF -treated rats. Neointimal formation was significantly more pronounced in the CBD-HGF treated rats than in other rat groups. Both HGF and CBD-HGF stimulated proliferation of vascular smooth muscle cells as well as endothelial cells in vitro. Consistent with this, cultured smooth muscle cells were shown to express the HGF receptor (c-Met). CBD-HGF accelerates re-endothelialization and neointimal formation in vivo. CBD fusion protein is a useful vehicle to deliver vascular growth factors to injured arteries.

  9. In vitro modulation of microglia motility by glioma cells is mediated by hepatocyte growth factor/scatter factor.

    PubMed

    Badie, B; Schartner, J; Klaver, J; Vorpahl, J

    1999-05-01

    Considered as immune effector cells of the central nervous system, microglia represent a major component of the inflammatory cells found in malignant gliomas. Although their role in brain tumor biology is unclear, accumulation of microglia in malignant brain tumors may be mediated through active secretion of cytokines by glioma cells. Because hepatocyte growth factor/scatter factor (HGF/SF) has been shown to modulate glioma motility through an autocrine mechanism, and because microglia have been reported to express the HGF/SF receptor Met, we hypothesized that microglia recruitment by gliomas may also occur through the secretion of HGF/SF. The effect of glioma cells in augmenting BV-2 murine microglia motility was studied by using an in vitro Boyden chamber migration assay. To determine the chemokines involved in microglia migration, neutralizing monoclonal antibodies against monocyte chemotactic protein-1 and HGF/SF were tested. Immunoblotting was used to check for the expression of HGF/SF by glioma cells, and the expression of Met by BV-2 cells was examined by flow cytometry. BV-2 migration was noted within 7 hours of incubation with both human (U251 MG and U373 MG) and murine (GL261) glioma cell lines. This migration corresponded to HGF/SF secretion by glioma cells and was completely inhibited by neutralizing monoclonal antibody against HGF/SF, but not monocyte chemotactic protein-1. Exposure of BV-2 cells to recombinant HGF/SF, but not monocyte chemotactic protein-1, resulted in their migration and down-regulation of Met in a dose-dependent fashion. HGF/SF, which plays a role in glioma motility and mitogenesis, may also act as a chemokine for microglia and may be responsible for the microglia infiltration in malignant gliomas. This active recruitment of microglia may play an important role in glioma biology.

  10. Modulation of Myostatin/Hepatocyte Growth Factor Balance by Different Hemodialysis Modalities.

    PubMed

    Esposito, Pasquale; La Porta, Edoardo; Calatroni, Marta; Grignano, Maria Antonietta; Milanesi, Samantha; Verzola, Daniela; Battaglia, Yuri; Gregorini, Marilena; Libetta, Carmelo; Garibotto, Giacomo; Rampino, Teresa

    2017-01-01

    Background. In this study we investigated the relevance of myostatin and Hepatocyte Growth Factor (HGF) in patients undergoing hemodialysis HD and the influence of different HD modalities on their levels. Methods. We performed a prospective crossover study in which HD patients were randomized to undergo 3-month treatment periods with bicarbonate hemodialysis (BHD) followed by online hemodiafiltration (HDF). Clinical data, laboratory parameters, and myostatin and HGF serum levels were collected and compared. Results. Ten patients and six controls (C) were evaluated. In any experimental condition myostatin and HGF levels were higher in HD than in C. At enrollment and after BHD there were not significant correlations, whereas at the end of the HDF treatment period myostatin and HGF were inversely correlated ( r   -0.65, p < 0.05), myostatin serum levels inversely correlated with transferrin ( r   -0.73, p < 0.05), and HGF levels that resulted positively correlated with BMI ( r 0.67, p < 0.05). Moving from BHD to HDF, clinical and laboratory parameters were unchanged, as well as serum HGF, whereas myostatin levels significantly decreased (6.3 ± 4.1 versus 4.3 ± 3.1 ng/ml, p < 0.05). Conclusions. Modulation of myostatin levels and myostatin/HGF balance by the use of different HD modalities might represent a novel approach to the prevention and treatment of HD-related muscle wasting syndrome.

  11. HGF Secreted by Activated Kupffer Cells Induces Apoptosis of Plasmodium-Infected Hepatocytes

    PubMed Central

    Gonçalves, Lígia Antunes; Rodo, Joana; Rodrigues-Duarte, Lurdes; de Moraes, Luciana Vieira; Penha-Gonçalves, Carlos

    2017-01-01

    Malaria liver stage infection is an obligatory parasite development step and represents a population bottleneck in Plasmodium infections, providing an advantageous target for blocking parasite cycle progression. Parasite development inside hepatocytes implies a gross cellular insult evoking innate host responses to counteract intra-hepatocytic infection. Using primary hepatocyte cultures, we investigated the role of Kupffer cell-derived hepatocyte growth factor (HGF) in malaria liver stage infection. We found that Kupffer cells from Plasmodium-infected livers produced high levels of HGF, which trigger apoptosis of infected hepatocytes through a mitochondrial-independent apoptosis pathway. HGF action in infected hepatocyte primary cultures results in a potent reduction of parasite yield by specifically sensitizing hepatocytes carrying established parasite exo-erythrocytic forms to undergo apoptosis. This apoptosis mechanism is distinct from cell death that is spontaneously induced in infected cultures and is governed by Fas signaling modulation through a mitochondrial-dependent apoptosis pathway. This work indicates that HGF and Fas signaling pathways are part of an orchestrated host apoptosis response that occurs during malaria liver stage infection, decreasing the success of infection of individual hepatocytes. Our results raise the hypothesis that paracrine signals derived from Kupffer cell activation are implicated in directing death of hepatocytes infected with the malaria parasite. PMID:28220125

  12. HGF Secreted by Activated Kupffer Cells Induces Apoptosis of Plasmodium-Infected Hepatocytes.

    PubMed

    Gonçalves, Lígia Antunes; Rodo, Joana; Rodrigues-Duarte, Lurdes; de Moraes, Luciana Vieira; Penha-Gonçalves, Carlos

    2017-01-01

    Malaria liver stage infection is an obligatory parasite development step and represents a population bottleneck in Plasmodium infections, providing an advantageous target for blocking parasite cycle progression. Parasite development inside hepatocytes implies a gross cellular insult evoking innate host responses to counteract intra-hepatocytic infection. Using primary hepatocyte cultures, we investigated the role of Kupffer cell-derived hepatocyte growth factor (HGF) in malaria liver stage infection. We found that Kupffer cells from Plasmodium -infected livers produced high levels of HGF, which trigger apoptosis of infected hepatocytes through a mitochondrial-independent apoptosis pathway. HGF action in infected hepatocyte primary cultures results in a potent reduction of parasite yield by specifically sensitizing hepatocytes carrying established parasite exo-erythrocytic forms to undergo apoptosis. This apoptosis mechanism is distinct from cell death that is spontaneously induced in infected cultures and is governed by Fas signaling modulation through a mitochondrial-dependent apoptosis pathway. This work indicates that HGF and Fas signaling pathways are part of an orchestrated host apoptosis response that occurs during malaria liver stage infection, decreasing the success of infection of individual hepatocytes. Our results raise the hypothesis that paracrine signals derived from Kupffer cell activation are implicated in directing death of hepatocytes infected with the malaria parasite.

  13. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system.

    PubMed

    Gallo, Simona; Sala, Valentina; Gatti, Stefano; Crepaldi, Tiziana

    2015-12-01

    Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the

  14. HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons

    PubMed Central

    Zhang, Jianying; Middleton, Kellie K.; Fu, Freddie H.; Im, Hee-Jeong; Wang, James H-C.

    2013-01-01

    Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2. PMID:23840657

  15. The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine

    PubMed Central

    NAKAMURA, Toshikazu; MIZUNO, Shinya

    2010-01-01

    It has been more than 25 years since HGF was discovered as a mitogen of hepatocytes. HGF is produced by stromal cells, and stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its receptor, c-Met. In fetal stages, HGF-neutralization, or c-Met gene destruction, leads to hypoplasia of many organs, indicating that HGF signals are essential for organ development. Endogenous HGF is required for self-repair of injured livers, kidneys, lungs and so on. In addition, HGF exerts protective effects on epithelial and non-epithelial organs (including the heart and brain) via anti-apoptotic and anti-inflammatory signals. During organ diseases, plasma HGF levels significantly increased, while anti-HGF antibody infusion accelerated tissue destruction in rodents. Thus, endogenous HGF is required for minimization of diseases, while insufficient production of HGF leads to organ failure. This is the reason why HGF supplementation produces therapeutic outcomes under pathological conditions. Moreover, emerging studies delineated key roles of HGF during tumor metastasis, while HGF-antagonism leads to anti-tumor outcomes. Taken together, HGF-based molecules, including HGF-variants, HGF-fragments and c-Met-binders are available as regenerative or anti-tumor drugs. Molecular analysis of the HGF-c-Met system could provide bridges between basic biology and clinical medicine. PMID:20551596

  16. Multiple regulatory mechanisms of hepatocyte growth factor expression in malignant cells with a short poly(dA) sequence in the HGF gene promoter.

    PubMed

    Sakai, Kazuko; Takeda, Masayuki; Okamoto, Isamu; Nakagawa, Kazuhiko; Nishio, Kazuto

    2015-01-01

    Hepatocyte growth factor (HGF) expression is a poor prognostic factor in various types of cancer. Expression levels of HGF have been reported to be regulated by shorter poly(dA) sequences in the promoter region. In the present study, the poly(dA) mononucleotide tract in various types of human cancer cell lines was examined and compared with the HGF expression levels in those cells. Short deoxyadenosine repeat sequences were detected in five of the 55 cell lines used in the present study. The H69, IM95, CCK-81, Sui73 and H28 cells exhibited a truncated poly(dA) sequence in which the number of poly(dA) repeats was reduced by ≥5 bp. Two of the cell lines exhibited high HGF expression, determined by reverse transcription quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The CCK-81, Sui73 and H28 cells with shorter poly(dA) sequences exhibited low HGF expression. The cause of the suppression of HGF expression in the CCK-81, Sui73 and H28 cells was clarified by two approaches, suppression by methylation and single nucleotide polymorphisms in the HGF gene. Exposure to 5-Aza-dC, an inhibitor of DNA methyltransferase 1, induced an increased expression of HGF in the CCK-81 cells, but not in the other cells. Single-nucleotide polymorphism (SNP) rs72525097 in intron 1 was detected in the Sui73 and H28 cells. Taken together, it was found that the defect of poly(dA) in the HGF promoter was present in various types of cancer, including lung, stomach, colorectal, pancreas and mesothelioma. The present study proposes the negative regulation mechanisms by methylation and SNP in intron 1 of HGF for HGF expression in cancer cells with short poly(dA).

  17. Gene transfer of a naked plasmid (pUDK-HGF) encoding human hepatocyte growth factor attenuates skin/muscle incision and retraction-induced chronic post-surgical pain in rats.

    PubMed

    Hu, C; Lu, Y; Chen, X; Wu, Z; Zhang, Q

    2018-05-01

    Chronic post-surgical pain (CPSP) remains a major clinical problem and is often refractory to current treatments. New analgesic medications and strategies for pain relief are needed. Hepatocyte growth factor (HGF) is known to be a multi-functional growth factor and regulates various biological activities. We investigated the analgesic effect and underlying mechanism of plasmid pUDK-HGF encoding human HGF gene on CPSP induced by skin/muscle incision and retraction (SMIR) in rats. The possible changes of inflammatory factors, glial cell activation and pain sensitivity after pUDK-HGF administration were investigated by ELISA, western blot and Von Frey tests, respectively. In behavioural assays, we found that a single intramuscular or intrathecal injection of pUDK-HGF significantly attenuated mechanical hypersensitivity to von Frey stimulation of plantar ipsilateral hind paw after SMIR. Intramuscular injection of pUDK-HGF promoted blood flow and proliferation of satellite cells and inhibited inflammatory cells recruitment, collagen accumulation and expression of pronociceptive factors. Intrathecal injection of pUDK-HGF inhibited activation of spinal glial cells and production of inflammatory mediators induced by SMIR. pUDK-HGF has a strong analgesic potency and efficacy in CPSP induced by SMIR in rats. This study highlights a new strategy for the treatment of CPSP. The CPSP occurs following various surgical procedures and remains a major clinical problem due to the lack of study on the mechanisms of CPSP. Our findings provide the first evidence that pUDK-HGF attenuates SMIR-induced pain behaviuors through peripheral or central mechanisms. The peripheral analgesic effect of pUDK-HGF is associated with promoting tissue repair and inhibiting inflammatory response; furthermore, pUDK-HGF inhibits activation of spinal glial cells and overexpression of inflammatory mediators in spinal cord. Therefore, naked pUDK-HGF may be a potential therapeutic strategy for treatment of

  18. [PLA-O-CMC nanoparticles: HGF loading and delivery behaviors in vitro].

    PubMed

    Li, Zhifeng; Chen, Zhong; Chang, Ren'an

    2011-04-01

    This paper is aimed to observe the hepatocyte growth factor (HGF) loading and delivery ability of polylactic acid and oxygen carboxymethylated chitosan copolyer nanoparticles (PLA-O-CMC NPs). We prepared PLA-O-CMC NPs loaded with HGF by ultrasound in combination with magnetic stirring method. The NPs were characterized by transmission electron microscopy, embedding ratio; drug loading and drug delivery behaviors were observed by ELISA. The characteristics of PLA-O-CMC NPs loaded with HGF showed that the mean size was 139. 82 nm, polydispersity was 0.108, maximal HGF-embedding ratio was 76. 32%. The cumulative HGF release gradually increased in the first 24 hours in vitro, with sharp increasing in the first 7 hours, and moderate and steady increasing in the following 17 hours. The HGF had a burst release in the first 24 hours, and in this process the released HGF took up 36.7% of the whole release. From the second day,the HGF release decreased obviously, while it kept on releasing steadily (45-55 ng/d) for quite long time up to 30 days. The experiment proved that PLA-O-CMC NPs is a favourable carrier of HGF. PLA-O-CMC NPs loaded with HGF could rapidly release HGF in vitro. The released HGF reached the effective drug concentration and maintained the certain effective drug concentration for a long time.

  19. HGF and c-Met Interaction Promotes Migration in Human Chondrosarcoma Cells

    PubMed Central

    Tsou, Hsi-Kai; Chen, Hsien-Te; Hung, Ya-Huey; Chang, Chia-Hao; Li, Te-Mao; Fong, Yi-Chin; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is a type of highly malignant tumor with a potent capacity for local invasion and causing distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Hepatocyte growth factor (HGF) has been demonstrated to stimulate cancer proliferation, migration, and metastasis. However, the effect of HGF on migration activity of human chondrosarcoma cells is not well known. Here, we found that human chondrosarcoma tissues demonstrated significant expression of HGF, which was higher than that in normal cartilage. We also found that HGF increased the migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. c-Met inhibitor and siRNA reduced HGF-increased cell migration and MMP-2 expression. HGF treatment resulted in activation of the phosphatidylinositol 3′-kinase (PI3K)/Akt/PKCδ/NF-κB pathway, and HGF-induced expression of MMP-2 and cell migration was inhibited by specific inhibitors or siRNA-knockdown of PI3K, Akt, PKCδ, and NF-κB cascades. Taken together, our results indicated that HGF enhances migration of chondrosarcoma cells by increasing MMP-2 expression through the c-Met receptor/PI3K/Akt/PKCδ/NF-κB signal transduction pathway. PMID:23320110

  20. SNP analyses of growth factor genes EGF, TGF{beta}-1, and HGF reveal haplotypic association of EGF with autism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyoda, Takao; Thanseem, Ismail; Kawai, Masayoshi

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-{beta} (TGF{beta}) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGF{beta}1, and HGF genes with autism, in amore » trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGF{beta}1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism.« less

  1. Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer.

    PubMed

    Kwon, Youngjoo; Godwin, Andrew K

    2017-04-01

    Binding of hepatocyte growth factor (HGF) to the c-MET receptor has mitogenic, motogenic, and morphogenic effects on cells. The versatile biological effects of HGF and c-MET interactions make them important contributors to the development of malignant tumors. We and others have demonstrated a therapeutic value in targeting the interaction of c-MET and HGF in epithelial ovarian cancer (EOC). However, both HGF and c-MET are expressed in the normal ovary as well. Therefore, it is important to understand the differences in mechanisms that control HGF signaling activation and its functional role in the normal ovary and EOC. In the normal ovary, HGF signaling may be under hormonal regulation. During ovulation, HGF-converting proteases are secreted and the subsequent activation of HGF signaling enhances the proliferation of ovarian surface epithelium in order to replenish the area damaged due to expulsion of the ovum. In contrast, EOC cells that exhibit epithelial characteristics constitutively express both c-MET and HGF-converting proteases such as urokinase-type plasminogen activator. In EOC, mechanisms to control the activation of HGF signaling are absent since HGF is provided locally from the tissue microenvironment as well as remotely throughout the body. Potential incessant HGF signaling in EOC may lead to an increase in proliferation, invasion through the stroma, and migration to other tissues of cancer cells. Therefore, targeting the interaction of c-MET and HGF would be beneficial in treating EOC.

  2. Regulation of HGF and c-MET Interaction in Normal Ovary and Ovarian Cancer

    PubMed Central

    Kwon, Youngjoo; Godwin, Andrew K.

    2016-01-01

    Binding of hepatocyte growth factor (HGF) to the c-MET receptor has mitogenic, motogenic, and morphogenic effects on cells. The versatile biological effects of HGF and c-MET interactions make them important contributors to the development of malignant tumors. We and others have demonstrated a therapeutic value in targeting the interaction of c-MET and HGF in epithelial ovarian cancer (EOC). However, both HGF and c-MET are expressed in the normal ovary as well. Therefore, it is important to understand the differences in mechanisms that control HGF signaling activation and its functional role in the normal ovary and EOC. In the normal ovary, HGF signaling may be under hormonal regulation. During ovulation, HGF-converting proteases are secreted and the subsequent activation of HGF signaling enhances the proliferation of ovarian surface epithelium in order to replenish the area damaged due to expulsion of the ovum. In contrast, EOC cells that exhibit epithelial characteristics constitutively express both c-MET and HGF-converting proteases such as urokinase-type plasminogen activator. In EOC, mechanisms to control the activation of HGF signaling are absent since HGF is provided locally from the tissue microenvironment as well as remotely throughout the body. Potential incessant HGF signaling in EOC may lead to an increase in proliferation, invasion through the stroma, and migration to other tissues of cancer cells. Therefore, targeting the interaction of c-MET and HGF would be beneficial in treating EOC. PMID:27170665

  3. Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment

    PubMed Central

    Zhang, Yilong; Jain, Rajul K.; Zhu, Min

    2015-01-01

    The hepatocyte growth factor (HGF): MET axis is a ligand-mediated receptor tyrosine kinase pathway that is involved in multiple cellular functions, including proliferation, survival, motility, and morphogenesis. Aberrancy in the HGF/MET pathway has been reported in multiple tumor types and is associated with tumor stage and prognosis. Thus, targeting the HGF/MET pathway has become a potential therapeutic strategy in oncology development in the last two decades. A number of novel therapeutic agents—either as therapeutic proteins or small molecules that target the HGF/MET pathway—have been tested in patients with different tumor types in clinical studies. In this review, recent progress in HGF/MET pathway-targeted therapy for cancer treatment, the therapeutic potential of HGF/MET-targeted agents, and challenges in the development of such agents will be discussed. PMID:28536405

  4. Neural differentiation of mesenchymal stem cells influences chemotactic responses to HGF.

    PubMed

    Zheng, Bing; Wang, Chunyan; He, Lihong; Xu, Xiaojing; Qu, Jing; Hu, Jun; Zhang, Huanxiang

    2013-01-01

    Recently, mesenchymal stem cells (MSCs) have been extensively used for cell-based therapies in neuronal degenerative disease. Although much effort has been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic responses and the differentiation status of these cells remains elusive. Here, we report that MSCs in varying neural differentiation states display different chemotactic responses to hepatocyte growth factor (HGF): first, the number of chemotaxing MSCs and the optimal concentrations of HGF that induced the peak migration varied greatly; second, time-lapse video analysis showed that MSCs in certain differentiation state migrated more efficiently toward HGF; third, the phosphorylation levels of Akt, ERK1/2, SAPK/JNK, and p38MAPK were closely related to the differentiation levels of MSCs subjected to HGF; and finally, although inhibition of ERK1/2 signaling significantly attenuated HGF-stimulated transfilter migration of both undifferentiated and differentiating MSCs, abolishment of PI3K/Akt, p38MAPK, or SAPK/JNK signaling only decreased the number of migrated cells in certain differentiation state(s). Blocking of PI3K/Akt or MAPK signaling impaired the migration efficiency and/or speed, the extent of which depends on the cell differentiation states. Meanwhile, F-actin rearrangement, which is essential for MSCs chemotaxis, was induced by HGF, and the time points of cytoskeletal reorganization were different among these cells. Collectively, these results demonstrate that neural differentiation of MSCs influences their chemotactic responses to HGF: MSCs in varying differentiation states possess different migratory capacities, thereby shedding light on optimization of the therapeutic potential of MSCs to be employed for neural regeneration after injury. Copyright © 2012 Wiley Periodicals, Inc.

  5. The loss of local HGF, an endogenous gastrotrophic factor, leads to mucosal injuries in the stomach of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakahira, Rie; Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2-E6, Suita 565-0871; Mizuno, Shinya

    2006-03-24

    The stomach is constantly exposed to mechanical and chemical stresses. Under persistent damages, epithelial cell proliferation is required to maintain mucosal integrity. Nevertheless, which ligand system(s) is physiologically involved in gastric defense remains unclear. Herein, we provide evidence that HGF is a key 'natural ligand' to reverse gastric injury. The injection of cisplatin in mice led to the loss of HGF in the gastric interstitium, associated with the decrease in proliferating epithelium and the progression of mucotitis. When c-Met tyrosine phosphorylation was abolished by anti-HGF IgG, mucosal cell proliferation became faint, leading to delayed recovery from mucotitis, and vice versamore » in cases of HGF supplementation. Our findings indicate that: (1) HGF/c-Met signal on mucosa is needed to restore gastric injuries; and (2) the loss of local HGF leads to manifestation of gastric lesions. This study provides a rationale that explains why HGF supplement is useful for reversing gastric diseases.« less

  6. Microenvironment-derived HGF overcomes genetically determined sensitivity to anti-MET drugs.

    PubMed

    Pennacchietti, Selma; Cazzanti, Manuela; Bertotti, Andrea; Rideout, William M; Han, May; Gyuris, Jeno; Perera, Timothy; Comoglio, Paolo M; Trusolino, Livio; Michieli, Paolo

    2014-11-15

    Cell-based drug screenings indicate that tumors displaying c-MET gene amplification are "addicted" to MET signaling and therefore are very sensitive to MET-targeted agents. However, these screenings were conducted in the absence of the MET ligand, hepatocyte growth factor (HGF), which is abundant in the tumor microenvironment. Sensitivity of six MET-addicted human tumor cells to three MET kinase inhibitors (JNJ-38877605, PHA-665752, crizotinib) and one antagonistic anti-MET antibody (DN30 Fab) was analyzed in the absence or presence of HGF, in a stroma-tumor coculture system, and by combining anti-MET drugs with an HGF neutralizing antibody (ficlatuzumab) in human HGF knock-in mice bearing c-MET-amplified tumors. In all models examined, HGF promoted resistance to MET-targeted agents, affecting both their potency and efficacy. HGF-induced resistance was due to restoration of physiologic GAB1-mediated PI3K activation that compensated for loss of aberrant HER3-dependent PI3K signaling. Ficlatuzumab restored sensitivity to MET-targeted agents in coculture systems and overcame resistance to JNJ-38877605, crizotinib, and DN30 Fab in human HGF knock-in mice. These data suggest that c-MET-amplified tumor cells-which normally exhibit ligand-independent, constitutive MET activation-become dependent on HGF for survival upon pharmacologic MET inhibition. Because HGF is frequently overexpressed in human cancer, this mechanism may represent a major cause of resistance to anti-MET therapies. The ability of ficlatuzumab to overcome HGF-mediated resistance generates proof of principle that vertical inhibition of both a tyrosine kinase receptor and its ligand can be therapeutically beneficial and opens new perspectives for the treatment of MET-dependent tumors. ©2014 American Association for Cancer Research.

  7. Pyridine-pyrimidine amides that prevent HGF-induced epithelial scattering by two distinct mechanisms.

    PubMed

    Siddiqui-Jain, Adam; Hoj, Jacob P; Hargiss, J Blade; Hoj, Taylor H; Payne, Carter J; Ritchie, Collin A; Herron, Steven R; Quinn, Colette; Schuler, Jeffrey T; Hansen, Marc D H

    2017-09-01

    Stimulation of cultured epithelial cells with scatter factor/hepatocyte growth factor (HGF) results in individual cells detaching and assuming a migratory and invasive phenotype. Epithelial scattering recapitulates cancer progression and studies have implicated HGF signaling as a driver of cancer metastasis. Inhibitors of HGF signaling have been proposed to act as anti-cancer agents. We previously screened a small molecule library for compounds that block HGF-induced epithelial scattering. Most hits identified in this screen exhibit anti-mitotic properties. Here we assess the biological mechanism of a compound that blocks HGF-induced scattering with limited anti-mitotic activity. Analogs of this compound have one of two distinct activities: inhibiting either cell migration or cell proliferation with cell cycle arrest in G2/M. Each activity bears unique structure-activity relationships. The mechanism of action of anti-mitotic compounds is by inhibition of microtubule polymerization; these compounds entropically and enthalpically bind tubulin in the colchicine binding site, generating a conformational change in the tubulin dimer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. BetaPIX and GIT1 regulate HGF-induced lamellipodia formation and WAVE2 transport.

    PubMed

    Morimura, Shigeru; Suzuki, Katsuo; Takahashi, Kazuhide

    2009-05-08

    Formation of lamellipodia is the first step during cell migration, and involves actin reassembly at the leading edge of migrating cells through the membrane transport of WAVE2. However, the factors that regulate WAVE2 transport to the cell periphery for initiating lamellipodia formation have not been elucidated. We report here that in human breast cancer MDA-MB-231 cells, the hepatocyte growth factor (HGF) induced the association between the constitutive complex of betaPIX and GIT1 with WAVE2, which was concomitant with the induction of lamellipodia formation and WAVE2 transport. Although depletion of betaPIX by RNA interference abrogated the HGF-induced WAVE2 transport and lamellipodia formation, GIT1 depletion caused HGF-independent WAVE2 transport and lamellipodia formation. Collectively, we suggest that betaPIX releases cells from the GIT1-mediated suppression of HGF-independent responses and recruits GIT1 to WAVE2, thereby facilitating HGF-induced WAVE2 transport and lamellipodia formation.

  9. Preclinical development of a humanized neutralizing antibody targeting HGF.

    PubMed

    Kim, Hyori; Hong, Sung Hee; Kim, Jung Yong; Kim, In-Chull; Park, Young-Whan; Lee, Song-Jae; Song, Seong-Won; Kim, Jung Ju; Park, Gunwoo; Kim, Tae Min; Kim, Yun-Hee; Park, Jong Bae; Chung, Junho; Kim, In-Hoo

    2017-03-24

    Hepatocyte growth factor (HGF) and its receptor, cMET, play critical roles in cell proliferation, angiogenesis and invasion in a wide variety of cancers. We therefore examined the anti-tumor activity of the humanized monoclonal anti-HGF antibody, YYB-101, in nude mice bearing human glioblastoma xenografts as a single agent or in combination with temozolomide. HGF neutralization, The extracellular signal-related kinases 1 and 2 (ERK1/2) phosphorylation, and HGF-induced scattering were assessed in HGF-expressing cell lines treated with YYB-101. To support clinical development, we also evaluated the preclinical pharmacokinetics and toxicokinetics in cynomolgus monkeys, and human and cynomolgus monkey tissue was stained with YYB-101 to test tissue cross-reactivity. We found that YYB-101 inhibited cMET activation in vitro and suppressed tumor growth in the orthotopic mouse model of human glioblastoma. Combination treatment with YYB-101 and temozolomide decreased tumor growth and increased overall survival compared with the effects of either agent alone. Five cancer-related genes (TMEM119, FST, RSPO3, ROS1 and NBL1) were overexpressed in YYB-101-treated mice that showed tumor regrowth. In the tissue cross-reactivity assay, critical cross-reactivity was not observed. The terminal elimination half-life was 21.7 days. Taken together, the in vitro and in vivo data demonstrated the anti-tumor efficacy of YYB-101, which appeared to be mediated by blocking the HGF/cMET interaction. The preclinical pharmacokinetics, toxicokinetics and tissue cross-reactivity data support the clinical development of YYB-101 for advanced cancer.

  10. Targeted delivery of HGF to the skeletal muscle improves glucose homeostasis in diet-induced obese mice.

    PubMed

    Sanchez-Encinales, Viviana; Cozar-Castellano, Irene; Garcia-Ocaña, Adolfo; Perdomo, Germán

    2015-12-01

    Hepatocyte growth factor (HGF) is a cytokine that increases glucose transport ex vivo in skeletal muscle. The aim of this work was to decipher the impact of whether conditional overexpression of HGF in vivo could improve glucose homeostasis and insulin sensitivity in mouse skeletal muscle. Following tetracyclin administration, muscle HGF levels were augmented threefold in transgenic mice (SK-HGF) compared to control mice without altering plasma HGF levels. In conditions of normal diet, SK-HGF mice showed no differences in body weight, plasma triglycerides, blood glucose, plasma insulin and glucose tolerance compared to control mice. Importantly, obese SK-HGF mice exhibited improved whole-body glucose tolerance independently of changes in body weight or plasma triglyceride levels compared to control mice. This effect on glucose homeostasis was associated with significantly higher (∼80%) levels of phosphorylated protein kinase B in muscles from SK-HGF mice compared to control mice. In conclusion, muscle expression of HGF counteracts obesity-mediated muscle insulin resistance and improves glucose tolerance in mice.

  11. Epigenetic Upregulation of HGF and c-Met Drives Metastasis in Hepatocellular Carcinoma

    PubMed Central

    Ogunwobi, Olorunseun O.; Puszyk, William; Dong, Hui-Jia; Liu, Chen

    2013-01-01

    Hepatocyte growth factor (HGF) and its receptor, c-Met, are important regulators of growth and differentiation of healthy hepatocytes. However, upregulation of HGF and c-Met have been associated with tumor progression and metastasis in hepatocellular carcinoma (HCC). Hematogenous dissemination is the most common route for cancer metastasis, but the role of HGF and c-Met in circulating tumor cells (CTCs) is unknown. We have isolated and established a circulating tumor cell line from the peripheral blood of a mouse HCC model. Our studies show that these CTCs have increased expression of HGF and c-Met in comparison to the primary tumor cells. The CTCs display phenotypic evidence of epithelial-mesenchymal transition (EMT) and the EMT appears to be inducible by HGF. Epigenetic analysis of the c-Met promoter identified significant loss of DNA methylation in CTCs which correlated with overexpression of c-Met and increased expression of HGF. Six specific CpG sites of c-Met promoter demethylation were identified. CTCs show significantly increased tumorigenicity and metastatic potential in a novel orthotopic syngeneic model of metastatic HCC. We conclude that during hematogenous dissemination in HCC, CTCs undergo EMT under the influence of increased HGF. This process also involves up regulation of c-Met via promoter demethylation at 6 CpG sites. Consequently, targeting HGF and c-Met expression by CTCs may be a novel non-invasive approach with potential clinical applications in HCC management. PMID:23723997

  12. Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer.

    PubMed

    Takeuchi, Shinji; Wang, Wei; Li, Qi; Yamada, Tadaaki; Kita, Kenji; Donev, Ivan S; Nakamura, Takahiro; Matsumoto, Kunio; Shimizu, Eiji; Nishioka, Yasuhiko; Sone, Saburo; Nakagawa, Takayuki; Uenaka, Toshimitsu; Yano, Seiji

    2012-09-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a serious problem in the management of EGFR mutant lung cancer. We recently reported that hepatocyte growth factor (HGF) induces resistance to EGFR-TKIs by activating the Met/PI3K pathway. HGF is also known to induce angiogenesis in cooperation with vascular endothelial growth factor (VEGF), which is an important therapeutic target in lung cancer. Therefore, we hypothesized that dual inhibition of HGF and VEGF may be therapeutically useful for controlling HGF-induced EGFR-TKI-resistant lung cancer. We found that a dual Met/VEGF receptor 2 kinase inhibitor, E7050, circumvented HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer cell lines by inhibiting the Met/Gab1/PI3K/Akt pathway in vitro. HGF stimulated VEGF production by activation of the Met/Gab1 signaling pathway in EGFR mutant lung cancer cell lines, and E7050 showed an inhibitory effect. In a xenograft model, tumors produced by HGF-transfected Ma-1 (Ma-1/HGF) cells were more angiogenic than vector control tumors and showed resistance to gefitinib. E7050 alone inhibited angiogenesis and retarded growth of Ma-1/HGF tumors. E7050 combined with gefitinib induced marked regression of tumor growth. Moreover, dual inhibition of HGF and VEGF by neutralizing antibodies combined with gefitinib also markedly regressed tumor growth. These results indicate the therapeutic rationale of dual targeting of HGF-Met and VEGF-VEGF receptor 2 for overcoming HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Activated HGF-c-Met Axis in Head and Neck Cancer

    PubMed Central

    Arnold, Levi; Enders, Jonathan; Thomas, Sufi Mary

    2017-01-01

    Head and neck squamous cell carcinoma (HNSCC) is a highly morbid disease. Recent developments including Food and Drug Administration (FDA) approved molecular targeted agent’s pembrolizumab and cetuximab show promise but did not improve the five-year survival which is currently less than 40%. The hepatocyte growth factor receptor; also known as mesenchymal–epithelial transition factor (c-Met) and its ligand hepatocyte growth factor (HGF) are overexpressed in head and neck squamous cell carcinoma (HNSCC); and regulates tumor progression and response to therapy. The c-Met pathway has been shown to regulate many cellular processes such as cell proliferation, invasion, and angiogenesis. The c-Met pathway is involved in cross-talk, activation, and perpetuation of other signaling pathways, curbing the cogency of a blockade molecule on a single pathway. The receptor and its ligand act on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K) alpha serine/threonine-protein kinase (Akt), mitogen activate protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. They are also known to cross-talk with other receptors; namely epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) and specifically contribute to treatment resistance. Clinical trials targeting the c-Met axis in HNSCC have been undertaken because of significant preclinical work demonstrating a relationship between HGF/c-Met signaling and cancer cell survival. Here we focus on HGF/c-Met impact on cellular signaling in HNSCC to potentiate tumor growth and disrupt therapeutic efficacy. Herein we summarize the current understanding of HGF/c-Met signaling and its effects on HNSCC. The intertwining of c-Met signaling with other signaling pathways provides opportunities for more robust and specific therapies, leading to better clinical outcomes. PMID:29231907

  14. TGF-beta and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions.

    PubMed

    Mori, Shigeo; Matsuzaki, Koichi; Yoshida, Katsunori; Furukawa, Fukiko; Tahashi, Yoshiya; Yamagata, Hideo; Sekimoto, Go; Seki, Toshihito; Matsui, Hirofumi; Nishizawa, Mikio; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2004-09-23

    Although hepatocyte growth factor (HGF) can act synergistically or antagonistically with transforming growth factor-beta (TGF-beta) signaling, molecular mechanism of their crosstalk remains unknown. Using antibodies which selectively distinguished receptor-regulated Smads (R-Smads) phosphorylated at linker regions from those at C-terminal regions, we herein showed that either HGF or TGF-beta treatment of normal stomach-origin cells activated the JNK pathway, thereafter inducing endogenous R-Smads phosphorylation at linker regions. However, the phosphorylation at their C-terminal regions was not induced by HGF treatment. The activated JNK could directly phosphorylate R-Smads in vitro at the same sites that were phosphorylated in response to TGF-beta or HGF in vivo. Thus, the linker regions of R-Smads were the common phosphorylation sites for HGF and TGF-beta signaling pathways. The phosphorylation induced by simultaneous treatment with HGF and TGF-beta allowed R-Smads to associate with Smad4 and to translocate into the nucleus. JNK pathway involved HGF and TGF-beta-mediated infiltration potency since a JNK inhibitor SP600125 caused the reduction of invasive capacity induced by HGF and TGF-beta signals. Moreover, a combined treatment with HGF and TGF-beta led to a potent increase in plasminogen activator inhibitor type 1 transcriptional activity through Smad3 phosphorylation at the linker region. In contrast, HGF treatment reduced TGF-beta-dependent activation of p15INK4B promoter, in which Smad3 phosphorylation at the C-terminal region was involved. In conclusion, HGF and TGF-beta transmit the signals through JNK-mediated R-Smads phosphorylation at linker regions.

  15. HGF and IGF-1 promote protective effects of allogeneic BMSC transplantation in rabbit model of acute myocardial infarction.

    PubMed

    Zhang, Guang-Wei; Gu, Tian-Xiang; Guan, Xiao-Yu; Sun, Xue-Jun; Qi, Xun; Li, Xue-Yuan; Wang, Xiao-Bing; Lv, Feng; Yu, Lei; Jiang, Da-Qing; Tang, Rui

    2015-12-01

    To explore effects of hepatocyte growth factor (HGF) combined with insulin-like growth factor 1 (IGF-1) on transplanted bone marrow mesenchymal stem cells (BMSCs), for treatment of acute myocardial ischaemia. After ligation of the left anterior descending artery, rabbits were divided into a Control group, a Factors group (HGF+IGF-1), a BMSC group and a Factors+BMSCs group. Allogenous BMSCs (1 × 10(7)) and/or control-released microspheres of 2 μg HGF+2 μg IGF-1 were intramyocardially injected into infarcted regions. Apoptosis and differentiation of implanted BMSCs, histological and morphological results, and cardiac remodelling and function were evaluated at different time points. In vitro, BMSCs were exposed to HGF, IGF-1 and both (50 ng/ml) and subsequently proliferation, migration, myocardial differentiation and apoptosis induced by hypoxia, were analysed. Four weeks post-operatively, the above indices were significantly improved in Factors+BMSCs group compared to the others (P < 0.01), although Factors and BMSCs group also showed better results than Control group (P < 0.05). In vitro, HGF promoted BMSC migration and differentiation into cardiomyocytes, but inhibited proliferation (P < 0.05), while IGF-1 increased proliferation and migration, and inhibited apoptosis induced by hypoxia (P < 0.05), but did not induce myocardial differentiation. Combination of HGF and IGF-1 significantly promoted BMSCs capacity for migration, differentiation and lack of apoptosis (P < 0.05). Combination of HGF and IGF-1 activated BMSCs complementarily, and controlled release of the two factors promoted protective potential of transplanted BMSCs to repair infarcted myocardium. This suggests a new strategy for cell therapies to overcome acute ischemic myocardial injury. © 2015 John Wiley & Sons Ltd.

  16. Regulation of HGF and SDF-1 expression by oral fibroblasts--implications for invasion of oral cancer.

    PubMed

    Daly, Aisling J; McIlreavey, Leanne; Irwin, Chris R

    2008-07-01

    Invasion and metastasis of oral squamous cell carcinoma (OSCC) is dependent on signals received from stromal fibroblasts present in the surrounding connective tissue. The aim of this study was to investigate the regulation of expression of two important signaling molecules--HGF and SDF-1--by both stromal fibroblasts and their 'activated' form, myofibroblasts, and to determine the role of these two factors in stimulating OSCC cell invasion in vitro. Fibroblasts and myofibroblasts produced similar levels of HGF and SDF-1. IL-1alpha and OSCC cell conditioned medium both stimulated HGF and SDF-1 expression, while TGF-beta(1) inhibited production of each factor. Myofibroblast-derived conditioned medium stimulated OSCC cell invasion through matrigel. Blocking antibodies to both HGF and SDF-1 reduced the level of invasion. In fibroblast-free organotypic raft cultures, addition of HGF and SDF-1 stimulated OSCC cell invasion into the underlying collagen gel, although the pattern of invasion differed from that induced by fibroblasts. Fibroblast-derived HGF and SDF-1 appear to play central roles in the reciprocal interactions between OSCC cells and underlying stromal fibroblasts leading to the local invasion of oral cancer.

  17. Predictive values of FAP and HGF for tumor angiogenesis and metastasis in colorectal cancer.

    PubMed

    Ma, T H; Gao, C C; Xie, R; Yang, X Z; Dai, W J; Zhang, J L; Yan, W; Wu, S N

    2017-01-01

    This study aims to explore the correlation of hepatocyte growth factor (HGF) and fibroblast activation protein (FAP) expressions with the angiogenesis and metastasis in colorectal cancer (CRC). The immunohistochemical SABC method was used to detect HGF and FAP expressions in 127 CRC tissues, 51 colorectal polyp tissues and 28 normal tissues. HGF and FAP expressions in liver metastasis were detected using western blot to analyze the correlation of their expressions with lymph node metastasis and liver metastasis. Micro-vessel density (MVD) and clinic-pathologic information of CRC patients were recorded and analyzed. In CRC group, HGF and FAP expressions were greatly higher than those in normal group and colorectal polyps group (P < 0.05). Moreover, the positive rates of HGF and FAP expressions in lymph node metastasis were evidently higher than those in non-lymph node metastasis (P < 0.05). In liver metastasis group, HGF and FAP expressions were obviously higher than non-liver metastasis group (P < 0.05). CRC group had much more MVD in comparison with normal group and colorectal polyps group (P < 0.05).When compared with negative group, MVD was significantly higher than that in CRC tissue with positive HGF and FAP (P < 0.05). Spearman rank correlation analysis showed that HGF and FAP were in positive correlation with MVD (r = 0.542, P < 0.001; r = 0.753, P < 0.001). These results indicate that FAP and HGF play an important role in CRC angiogenesis, and their expression levels are valuable to predict CRC liver metastasis and lymph node metastasis.

  18. Therapeutic potential of fibroblast growth factor-2 for hypertrophic scars: upregulation of MMP-1 and HGF expression.

    PubMed

    Eto, Hitomi; Suga, Hirotaka; Aoi, Noriyuki; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Tabata, Yasuhiko; Yoshimura, Kotaro

    2012-02-01

    Although hypertrophic scars (HTSs) and keloids are challenging problems, their pathogenesis is not well understood, making therapy difficult. We showed that matrix metalloproteinase (MMP)-1 expression was downregulated in HTS compared with normal skin from the same patients, whereas type 1 and 3 collagen and transforming growth factor-β (TGF-β) were upregulated. These differences, however, were not seen in cultured fibroblasts, suggesting the involvement of microenvironmental factors in the pathogenesis of HTS. Fibroblast growth factor-2 (FGF-2) highly upregulated the expression of MMP-1 and hepatocyte growth factor (HGF) in both HTS-derived and control fibroblasts; the upregulation was reversed by extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors. An animal study using human HTS tissue implanted into nude mice indicated that controlled-release FGF-2 resulted in significantly less weight and decreased hydroxyproline content in HTS. Degradation of collagen fibers in FGF-2-treated HTS was also confirmed histologically. Western blotting showed that FGF-2-treated HTS expressed significantly higher MMP-1 protein than control. Decreased MMP-1 expression may be an important transcriptional change in HTS, and its reversal as well as upregulation of HGF by FGF-2 could be a new therapeutic approach for HTS.

  19. Signal transduction and downregulation of C-MET in HGF stimulated low and highly metastatic human osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husmann, Knut, E-mail: khusmann@research.balgrist.ch; Ducommun, Pascal; Division of Plastic Surgery and Hand Surgery, Department of Surgery, University Hospital Zurich, Zurich

    2015-09-04

    The poor outcome of osteosarcoma (OS), particularly in patients with metastatic disease and a five-year survival rate of only 20%, asks for more effective therapeutic strategies targeting malignancy-promoting mechanisms. Dysregulation of C-MET, its ligand hepatocyte growth factor (HGF) and the fusion oncogene product TPR-MET, first identified in human MNNG-HOS OS cells, have been described as cancer-causing factors in human cancers. Here, the expression of these molecules at the mRNA and the protein level and of HGF-stimulated signaling and downregulation of C-MET was compared in the parental low metastatic HOS and MG63 cell lines and the respective highly metastatic MNNG-HOS andmore » 143B and the MG63-M6 and MG63-M8 sublines. Interestingly, expression of TPR-MET was only observed in MNNG-HOS cells. HGF stimulated the phosphorylation of Akt and Erk1/2 in all cell lines investigated, but phospho-Stat3 remained at basal levels. Downregulation of HGF-stimulated Akt and Erk1/2 phosphorylation was much faster in the HGF expressing MG63-M8 cells than in HOS cells. Degradation of HGF-activated C-MET occurred predominantly through the proteasomal and to a lesser extent the lysosomal pathway in the cell lines investigated. Thus, HGF-stimulated Akt and Erk1/2 signaling as well as proteasomal degradation of HGF activated C-MET are potential therapeutic targets in OS. - Highlights: • Expression of TPR-MET was only observed in MNNG-HOS cells. • HGF stimulated the phosphorylation of Akt and Erk1/2 but not of Stat3 in osteosarcoma cell lines. • Degradation of HGF-activated C-MET occurred predominantly through the proteasomal pathway.« less

  20. Triple Inhibition of EGFR, Met, and VEGF Suppresses Regrowth of HGF-Triggered, Erlotinib-Resistant Lung Cancer Harboring an EGFR Mutation

    PubMed Central

    Nakade, Junya; Takeuchi, Shinji; Nakagawa, Takayuki; Ishikawa, Daisuke; Sano, Takako; Nanjo, Shigeki; Yamada, Tadaaki; Ebi, Hiromichi; Zhao, Lu; Yasumoto, Kazuo; Matsumoto, Kunio; Yonekura, Kazuhiko

    2014-01-01

    Introduction: Met activation by gene amplification and its ligand, hepatocyte growth factor (HGF), imparts resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer. We recently reported that Met activation by HGF stimulates the production of vascular endothelial growth factor (VEGF) and facilitates angiogenesis, which indicates that HGF induces EGFR-TKI resistance and angiogenesis. This study aimed to determine the effect of triple inhibition of EGFR, Met, and angiogenesis on HGF-triggered EGFR-TKI resistance in EGFR-mutant lung cancer. Methods: Three clinically approved drugs, erlotinib (an EGFR inhibitor), crizotinib (an inhibitor of anaplastic lymphoma kinase and Met), and bevacizumab (anti-VEGF antibody), and TAS-115, a novel dual TKI for Met and VEGF receptor 2, were used in this study. EGFR-mutant lung cancer cell lines PC-9, HCC827, and HGF-gene–transfected PC-9 (PC-9/HGF) cells were examined. Results: Crizotinib and TAS-115 inhibited Met phosphorylation and reversed erlotinib resistance and VEGF production triggered by HGF in PC-9 and HCC827 cells in vitro. Bevacizumab and TAS-115 inhibited angiogenesis in PC-9/HGF tumors in vivo. Moreover, the triplet erlotinib, crizotinib, and bevacizumab, or the doublet erlotinib and TAS-115 successfully inhibited PC-9/HGF tumor growth and delayed tumor regrowth associated with sustained tumor vasculature inhibition even after cessation of the treatment. Conclusion: These results suggest that triple inhibition of EGFR, HGF/Met, and VEGF/VEGF receptor 2, by either a triplet of clinical drugs or TAS-115 combined with erlotinib, may be useful for controlling progression of EGFR-mutant lung cancer by reversing EGFR-TKI resistance and for inhibiting angiogenesis. PMID:24828661

  1. Expression of HGF and IGF-1 during regeneration of masseter muscle in mdx mice.

    PubMed

    Honda, Hidemitsu; Abe, Shinichi; Ishida, Ryo; Watanabe, Yutaka; Iwanuma, Osamu; Sakiyama, Koji; Ide, Yoshinobu

    2010-07-01

    This study investigated the expression of the growth factors HGF and IGF-1 during the process of muscle regeneration in mdx mice. HGF and IGF-1 are reportedly expressed during the regeneration of muscle tissue in vitro. However, few studies have focused on the role of HGF and IGF-1 during muscle regeneration in mdx mice, which lack expression of the dystrophin gene. In the present study, we examined the expression of HGF and IGF-1 in masseter muscle during muscle regeneration in mdx and B10 (control) mice using histological analysis, immunohistochemistry and Western blotting, as well as examining gene expression by RT-PCR, at 3, 4 and 9 weeks. Mdx mice showed localized HGF and IGF-1 positivity in the cytoplasm of regenerating muscle cells at 3 and 4 weeks, but hardly any reactivity was evident at 9 weeks. The control group was completely negative for IGF-1 at any of the examined time points. Western blotting showed stronger expression of HGF and IGF-1 in mdx mice than in B10 mice at 3 and 4 weeks, but at 9 weeks the expression was absent in both groups. Similar results were obtained using RT-PCR. These present results suggest that HGF and IGF-1 appear to play an important role during regeneration of the masseter muscle in mdx mice.

  2. SNPs of bovine HGF gene and their association with growth traits in Nanyang cattle.

    PubMed

    Cai, Hanfang; Lan, Xianyong; Li, Aimin; Zhou, Yang; Sun, Jiajie; Lei, Chuzhao; Zhang, Chunlei; Chen, Hong

    2013-10-01

    Hepatocyte growth factor (HGF) is one of the multifunctional cell factors that regulates cellular proliferation, motility and morphogenesis in mammalians. And its medical research has deep significance. In this paper, polymorphisms of HGF gene were investigated in 1433 health and irrelated Chinese cattle by PCR-RFLP and DNA sequencing approach. Ten novel Single nucleotide polymorphisms (SNPs) were identified, which included one missense mutation, g.72801G>A in the coding region, and the others in the intron. Association analysis between four of them, g.288T>C, g.72801G>A, g.77172G>T, and g.77408T>G, and growth traits in Nanyang, were performed. The results indicated that SNPs within bovine HGF gene were significantly associated with growth traits. Phylogenetic analysis showed that the genetic background of Caoyuan Red cattle was different from the others in the tested breeds. The findings will provide a background for application of bovine HGF gene in the selection program in Chinese cattle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Role and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma

    PubMed Central

    Cruickshanks, Nichola; Zhang, Ying; Yuan, Fang; Pahuski, Mary; Gibert, Myron; Abounader, Roger

    2017-01-01

    Glioblastoma (GBM) is a lethal brain tumor with dismal prognosis. Current therapeutic options, consisting of surgery, chemotherapy and radiation, have only served to marginally increase patient survival. Receptor tyrosine kinases (RTKs) are dysregulated in approximately 90% of GBM; attributed to this, research has focused on inhibiting RTKs as a novel and effective therapy for GBM. Overexpression of RTK mesenchymal epithelial transition (MET), and its ligand, hepatocyte growth factor (HGF), in GBM highlights a promising new therapeutic target. This review will discuss the role of MET in cell cycle regulation, cell proliferation, evasion of apoptosis, cell migration and invasion, angiogenesis and therapeutic resistance in GBM. It will also discuss the modes of deregulation of HGF/MET and their regulation by microRNAs. As the HGF/MET pathway is a vital regulator of multiple pro-survival pathways, efforts and strategies for its exploitation for GBM therapy are also described. PMID:28696366

  4. Hepatocyte growth factor (HGF) upregulates heparanase expression via the PI3K/Akt/NF-κB signaling pathway for gastric cancer metastasis.

    PubMed

    Hao, Ning-Bo; Tang, Bo; Wang, Guo-Zheng; Xie, Rui; Hu, Chang-Jiang; Wang, Su-Min; Wu, Yu-Yun; Liu, En; Xie, Xia; Yang, Shi-Ming

    2015-05-28

    Heparanase (HPA) is an endoglucuronidase that can promote the shedding of associated cytokines in several types of tumors. However, little is known about what controls the expression of HPA or its role in gastric cancer. In this study, we report for the first time that HGF regulates HPA expression to promote gastric cancer metastasis. In this study, HGF and HPA were found to be significantly expressed in 58 gastric cancer patients. High expression of both HGF and HPA was positively associated with TNM stage, invasion depth and poor prognosis. In MKN74 cells, exogenous HGF significantly increased HPA expression at both the mRNA and protein levels. Further study revealed that HGF first activated PI3K/Akt signaling. NF-κB signaling was activated downstream of PI3K/Akt and promoted HPA expression. However, when c-met, PI3K/Akt or NF-κB signal inhibitors were used, HPA expression was significantly decreased. All of these results indicate that HGF regulates HPA expression by PI3K/Akt and downstream NF-κB signaling. Using bioinformatics and the ChIP assay, p65 was observed to bind to the HPA promoter. Furthermore, HGF significantly induced tumor cell migration, whereas treatment with an NF-κB inhibitor decreased migration. Moreover, when HPA was overexpressed in MKN74 cells, migration was significantly enhanced, and the HGF concentration was increased. However, when HPA was down-regulated in MKN45 cells, migration and HGF levels decreased. Together, these results demonstrate that HGF/c-met can activate PI3K/Akt and downstream NF-κB signaling to promote HPA expression and subsequent tumor metastasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Acute tissue injury activates satellite cells and promotes sarcoma formation via the HGF/c-MET signaling pathway.

    PubMed

    Van Mater, David; Añó, Leonor; Blum, Jordan M; Webster, Micah T; Huang, WeiQiao; Williams, Nerissa; Ma, Yan; Cardona, Diana M; Fan, Chen-Ming; Kirsch, David G

    2015-02-01

    Some patients with soft-tissue sarcoma (STS) report a history of injury at the site of their tumor. Although this phenomenon is widely reported, there are relatively few experimental systems that have directly assessed the role of injury in sarcoma formation. We recently described a mouse model of STS whereby p53 is deleted and oncogenic Kras is activated in muscle satellite cells via a Pax7(CreER) driver following intraperitoneal injection with tamoxifen. Here, we report that after systemic injection of tamoxifen, the vast majority of Pax7-expressing cells remain quiescent despite mutation of p53 and Kras. The fate of these muscle progenitors is dramatically altered by tissue injury, which leads to faster kinetics of sarcoma formation. In adult muscle, quiescent satellite cells will transition into an active state in response to hepatocyte growth factor (HGF). We show that modulating satellite cell quiescence via intramuscular injection of HGF increases the penetrance of sarcoma formation at the site of injection, which is dependent on its cognate receptor c-MET. Unexpectedly, the tumor-promoting effect of tissue injury also requires c-Met. These results reveal a mechanism by which HGF/c-MET signaling promotes tumor formation after tissue injury in a mouse model of primary STS, and they may explain why some patients develop a STS at the site of injury. ©2014 American Association for Cancer Research.

  6. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis

    PubMed Central

    2012-01-01

    Background Hepatocyte growth factor (HGF) induced c-Met activation is known as the main stimulus for hepatocyte proliferation and is essential for liver development and regeneration. Activation of HGF/c-Met signaling has been correlated with aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC). MUC1 is a transmembrane mucin, whose over-expression is reported in most cancers. Many of the oncogenic effects of MUC1 are believed to occur through the interaction of MUC1 with signaling molecules. To clarify the role of MUC1 in HGF/c-Met signaling, we determined whether MUC1 and c-Met interact cooperatively and what their role(s) is in hepatocarcinogenesis. Results MUC1 and c-Met over-expression levels were determined in highly motile and invasive, mesenchymal-like HCC cell lines, and in serial sections of cirrhotic and HCC tissues, and these levels were compared to those in normal liver tissues. Co-expression of both c-Met and MUC1 was found to be associated with the differentiation status of HCC. We further demonstrated an interaction between c-Met and MUC1 in HCC cells. HGF-induced c-Met phosphorylation decreased this interaction, and down-regulated MUC1 expression. Inhibition of c-Met activation restored HGF-mediated MUC1 down-regulation, and decreased the migratory and invasive abilities of HCC cells via inhibition of β-catenin activation and c-Myc expression. In contrast, siRNA silencing of MUC1 increased HGF-induced c-Met activation and HGF-induced cell motility and invasion. Conclusions These findings indicate that the crosstalk between MUC1 and c-Met in HCC could provide an advantage for invasion to HCC cells through the β-catenin/c-Myc pathway. Thus, MUC1 and c-Met could serve as potential therapeutic targets in HCC. PMID:22962849

  7. Cooperative interaction of MUC1 with the HGF/c-Met pathway during hepatocarcinogenesis.

    PubMed

    Bozkaya, Giray; Korhan, Peyda; Cokaklı, Murat; Erdal, Esra; Sağol, Ozgül; Karademir, Sedat; Korch, Christopher; Atabey, Neşe

    2012-09-11

    Hepatocyte growth factor (HGF) induced c-Met activation is known as the main stimulus for hepatocyte proliferation and is essential for liver development and regeneration. Activation of HGF/c-Met signaling has been correlated with aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC). MUC1 is a transmembrane mucin, whose over-expression is reported in most cancers. Many of the oncogenic effects of MUC1 are believed to occur through the interaction of MUC1 with signaling molecules. To clarify the role of MUC1 in HGF/c-Met signaling, we determined whether MUC1 and c-Met interact cooperatively and what their role(s) is in hepatocarcinogenesis. MUC1 and c-Met over-expression levels were determined in highly motile and invasive, mesenchymal-like HCC cell lines, and in serial sections of cirrhotic and HCC tissues, and these levels were compared to those in normal liver tissues. Co-expression of both c-Met and MUC1 was found to be associated with the differentiation status of HCC. We further demonstrated an interaction between c-Met and MUC1 in HCC cells. HGF-induced c-Met phosphorylation decreased this interaction, and down-regulated MUC1 expression. Inhibition of c-Met activation restored HGF-mediated MUC1 down-regulation, and decreased the migratory and invasive abilities of HCC cells via inhibition of β-catenin activation and c-Myc expression. In contrast, siRNA silencing of MUC1 increased HGF-induced c-Met activation and HGF-induced cell motility and invasion. These findings indicate that the crosstalk between MUC1 and c-Met in HCC could provide an advantage for invasion to HCC cells through the β-catenin/c-Myc pathway. Thus, MUC1 and c-Met could serve as potential therapeutic targets in HCC.

  8. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    PubMed

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  9. Hepatocyte growth factor, a biomarker of macroangiopathy in diabetes mellitus

    PubMed Central

    Konya, Hiroyuki; Miuchi, Masayuki; Satani, Kahori; Matsutani, Satoshi; Tsunoda, Taku; Yano, Yuzo; Katsuno, Tomoyuki; Hamaguchi, Tomoya; Miyagawa, Jun-Ichiro; Namba, Mitsuyoshi

    2014-01-01

    Atherosclerotic involvements are an essential causal element of prospect in diabetes mellitus (DM), with carotid atherosclerosis (CA) being a common risk-factor for prospective crisis of coronary artery diseases (CAD) and/or cerebral infarction (CI) in DM subjects. From another point of view, several reports have supplied augmenting proof that hepatocyte growth factor (HGF) has a physiopathological part in DM involvements. HGF has been a mesenchymal-derived polyphenic factor which modulates development, motion, and morphosis of diverse cells, and has been regarded as a humor intermediator of epithelial-mesenchymal interplays. The serum concentrations of HGF have been elevated in subjects with CAD and CI, especially during the acute phase of both disturbances. In our study with 89 type 2 DM patients, the association between serum concentrations of HGF and risk-factors for macrovascular complications inclusive of CA were examined. The average of serum HGF levels in the subjects was more elevated than the reference interval. The serum HGF concentrations associated positively with both intimal-media thickness (IMT) (r = 0.24, P = 0.0248) and plaque score (r = 0.27, P = 0.0126), indicating a relationship between the elevated HGF concentrations and advancement of CA involvements. Multivariate statistical analysis accentuated that serum concentrations of HGF would be associated independently with IMT (standardized = 0.28, P = 0.0499). The review indicates what is presently known regarding serum HGF might be a new and meaningful biomarker of macroangiopathy in DM subjects. PMID:25317245

  10. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons

    PubMed Central

    Maina, Flavio; Hilton, Mark C.; Ponzetto, Carola; Davies, Alun M.; Klein, Rüdiger

    1997-01-01

    The development of the nervous system is a dynamic process during which factors act in an instructive fashion to direct the differentiation and survival of neurons, and to induce axonal outgrowth, guidance to, and terminal branching within the target tissue. Here we report that mice expressing signaling mutants of the hepatocyte growth factor (HGF) receptor, the Met tyrosine kinase, show a striking reduction of sensory nerves innervating the skin of the limbs and thorax, implicating the HGF/Met system in sensory neuron development. Using in vitro assays, we find that HGF cooperates with nerve growth factor (NGF) to enhance axonal outgrowth from cultured dorsal root ganglion (DRG) neurons. HGF also enhances the neurotrophic activities of NGF in vitro, and Met receptor signaling is required for the survival of a proportion of DRG neurons in vivo. This synergism is specific for NGF but not for the related neurotrophins BDNF and NT3. By using a mild signaling mutant of Met, we have demonstrated previously that Met requires signaling via the adapter molecule Grb2 to induce proliferation of myoblasts. In contrast, the actions of HGF on sensory neurons are mediated by Met effectors distinct from Grb2. Our findings demonstrate a requirement for Met signaling in neurons during development. PMID:9407027

  11. Expression of p53/HGF/c-met/STAT3 signal in fetuses with neural tube defects.

    PubMed

    Trovato, Maria; D'Armiento, Maria; Lavra, Luca; Ulivieri, Alessandra; Dominici, Roberto; Vitarelli, Enrica; Grosso, Maddalena; Vecchione, Raffaella; Barresi, Gaetano; Sciacchitano, Salvatore

    2007-02-01

    Neural tube defects (NTD) are morphogenetic alterations due to a defective closure of neural tube. Hepatocyte growth factor (HGF)/c-met system plays a role in morphogenesis of nervous system, lung, and kidney. HGF/c-met morphogenetic effects are mediated by signal transducers and activators of transcription (STAT)3 and both HGF and c-met genes are regulated from p53. The aim of our study was to analyze mRNA and protein expressions of p53, HGF, c-met, and STAT3 in fetuses with NTD. By reverse transcriptase-polymerase chain reaction and immunohistochemistry, we analyzed neural tissues from four NTD fetuses and the corresponding non-malformed lungs, kidneys and placentas. We found a reduced mRNA expression of HGF/c-met/STAT3 pathway, in the malformed nervous systems and placentas. The reduced expression of this pathway correlated with the absence of p53 in all these samples. On the contrary, detectable expression levels of p53, HGF, c-met, and STAT3 were observed in non-malformed lungs and kidneys obtained from the same fetuses. Comparable results were obtained by immunohistochemistry, with the exception of p53, which was undetected in all fetal tissues. In conclusion, in NTD fetuses, both the defective neural tube tissue and the placenta have a reduction in all components of the p53/HGF/c-met/STAT3 cascade. This raises the possibility of using the suppression of these genes for early diagnosis of NTD especially on chorionic villus sampling.

  12. Progesterone dose-dependently modulates hepatocyte growth factor production in 3T3-L1 mouse preadipocytes.

    PubMed

    Ito, Tomoki; Yamaji, Daisuke; Kamikawa, Akihiro; Abd Eldaim, Mabrouk Attia; Okamatsu-Ogura, Yuko; Terao, Akira; Saito, Masayuki; Kimura, Kazuhiro

    2017-08-30

    It is well documented that estrogen is predominant inducer of hepatocyte growth factor (HGF) in a variety of cell types. However, the effect of progesterone (P) remains to be elusive. Thus, in the present study, we examined the effect of P and combined effect of P and 17β-estradiol (E2) on HGF expression and production in 3T3-L1 fibroblastic preadipocytes and mature adipocytes, as a model of stromal cells. Northern blot analysis showed that hgf mRNA expressed in preadipocytes was notably higher than that of mature adipocytes, and increased by treatment of preadipocytes with E2 or 10 nM P, but not with 1,000 nM P. The E2-induced hgf mRNA expression was enhanced by 10 nM P, but suppressed by 1,000 nM P. Western blot analysis revealed that biological active forms of HGF protein was found in the preadipocyte culture medium, while the lesser amount of HGF precursor protein was detected in the mature adipocyte culture medium. The amounts of HGF were changed dependently on the hgf mRNA expression levels. These results indicate that HGF production is intricately regulated by E2 and P at the transcriptional levels in 3T3-L1 cells, and may explain the changes in the HGF production during the mammary gland development, especially decrease in HGF expression during pregnancy when P concentration is high.

  13. Effect of mitomycin C on IL-1R expression, IL-1-related hepatocyte growth factor secretion and corneal epithelial cell migration.

    PubMed

    Chen, Tsan-Chi; Chang, Shu-Wen

    2010-03-01

    To investigate how mitomycin C (MMC) modulates hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) secretions in human corneal fibroblasts and regulates human corneal epithelial (HCE) cell migration. Primary human corneal fibroblasts were treated with MMC (0.05, 0.1, or 0.2 mg/mL for 5 minutes) and were cultivated with or without interleukin (IL)-1beta. Transcript and secretion of HGF and KGF were determined by quantitative real-time RT-PCR and Western blot analysis, respectively. The effect of MMC-treated fibroblasts on HCE cell migration was evaluated using a transwell migration assay. The influence of MMC on HGF expression/secretion and HCE cell migration was further confirmed by RNA interference. The number of IL-1 receptors (IL-1R) on the fibroblast surface was analyzed by flow cytometry. MMC alone did not affect endogenous HGF expression, whereas IL-1beta alone significantly upregulated HGF transcripts and secretion. By modifying IL-1R numbers, MMC further upregulated IL-1beta-related HGF expression at a concentration of 0.05 mg/mL but to a lesser extent at 0.1 and 0.2 mg/mL. KGF transcripts and intracellular expression were suppressed by MMC dose dependently in the presence or absence of IL-1beta, whereas KGF secretion was not affected. Conditioned medium from MMC-treated fibroblasts exerted a similar concentration-dependent effect on HCE cell migration, enhancing migration most significantly at 0.05 mg/mL MMC in the presence of IL-1beta. The MMC dose-dependent modulation of HCE cell migration was abolished in HGF-silenced fibroblasts. MMC differentially modulated IL-1R expression at various concentrations and regulated HGF and KGF differently. MMC alone did not alter HGF expression. In the presence of IL-1beta, MMC-treated corneal fibroblasts modified HCE cell migration through IL-1beta-induced HGF secretion.

  14. Polyphyllin I inhibits gastric cancer cell proliferation by downregulating the expression of fibroblast activation protein alpha (FAP) and hepatocyte growth factor (HGF) in cancer-associated fibroblasts.

    PubMed

    Dong, Ruizeng; Guo, Jianmin; Zhang, Zewei; Zhou, Yimin; Hua, Yonghong

    2018-03-18

    The aim of this study was to identify the anti-cancer mechanism of Polyphyllin I (PPI) on gastric cancer cells via its activity on cancer-associated fibroblasts (CAFs). We cultured purified gastric CAFs obtained from fresh human gastric cancer tissue and examined the effect of Polyphyllin I on CAF proliferation using a colorimetric viability assay. In addition, we established a nude mouse xenograft model to examine the effect of Polyphyllin I administration on tumorigenesis. Using Western analysis, we quantified protein expression of the CAF-derived cytokines fibroblast activation protein alpha (FAP), secreted protein acidic and cysteine rich (SPARC), stromal cell-derived factor 1 (SDF-1), hepatocyte growth factor tenascin-C (TNC), and hepatocyte growth factor (HGF) in both in vitro and in vivo models. We found that Polyphyllin I inhibits the proliferation of CAFs in a concentration-dependent manner. Following treatment with 2 μg/ml PPI for 24 h in vitro, the expression of FAP, SDF-1 and HGF protein in CAFs was significantly lower than that in the control group, but there was no significant difference in SPARC and TNC protein expression between the two groups. In the nude mouse xenograft model, the tumor inhibition rate was 45.5% when PPI was administered early and 29.4% with administration in the third week. The expression of FAP and HGF in the xenografts was significantly decreased, while the expression of SPARC, SDF-1, and TNC was largely unaltered. Altogether, these data suggest that Polyphyllin I can inhibit the proliferation of gastric cancer cells by downregulating the expression of FAP and HGF in CAFs in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Epigenetic regulation of HGF/Met receptor axis is critical for the outgrowth of bone metastasis from breast carcinoma.

    PubMed

    Bendinelli, Paola; Maroni, Paola; Matteucci, Emanuela; Desiderio, Maria Alfonsina

    2017-02-02

    Our translational research deals with the influence of microenvironment on the phenotype and colonization of bone metastases from breast carcinoma, and on pre-metastatic niche formation. The aim of the present study was to clarify the origin of hepatocyte growth factor (HGF), ligand of Met receptor, the control of the axis HGF/Met by DNA methylation, and its importance for the nexus supportive cells-metastatic cells and for metastasis outgrowth. In bone metastasis of the 1833-xenograft model, DNA methyltransferase blockade using the chemotherapic drug 5-aza-2'-deoxycytidine (decitabine) strongly reduced the expression of HGF/Met receptor axis and of E-cadherin, with decrease of metastasis wideness and osteolysis, prolonging mice survival. Thus, DNA methylation events acted as commanders of breast carcinoma cells metastatizing to bone influencing the epithelial phenotype. HGF emerged as a bone-marrow stimulus, and the exosomes seemed to furnish HGF to metastatic cells. In fact, decitabine treatment similarly affected some markers of these microvesicles and HGF, indicating that its supply to recipient cells was prevented. Notably, in bone metastasis the hypomethylation of HGF, Met and E-cadherin promoters did not appear responsible for their elevated expression, but we suggest the involvement of hypermethylated regulators and of Wwox oncosuppressor, the latter being affected by decitabine. Wwox expression increased under decitabine strongly localizing in nuclei of bone metastases. We hypothesize a role of Wwox in Met activity since in vitro Wwox overexpression downregulated the level of nuclear-Met protein fragment and Met stability, also under long exposure of 1833 cells to decitabine. HGF enhanced phosphoMet and the activity in nuclei, an effect partially prevented by decitabine. Altogether, the data indicated the importance to target the tumor microenvironment by blocking epigenetic mechanisms, which control critical events for colonization such as HGF/Met axis

  16. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Feifei; Jiang, Yinan; Zheng, Qiping

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involvedmore » in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.« less

  17. Combined administration of mesenchymal stem cells overexpressing IGF-1 and HGF enhances neovascularization but moderately improves cardiac regeneration in a porcine model.

    PubMed

    Gómez-Mauricio, Guadalupe; Moscoso, Isabel; Martín-Cancho, María-Fernanda; Crisóstomo, Verónica; Prat-Vidal, Cristina; Báez-Díaz, Claudia; Sánchez-Margallo, Francisco M; Bernad, Antonio

    2016-07-16

    Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are among the most promising growth factors for promoting cardiorepair. Here, we evaluated the combination of cell- and gene-based therapy using mesenchymal stem cells (MSC) genetically modified to overexpress IGF-1 or HGF to treat acute myocardial infarction (AMI) in a porcine model. Pig MSC from adipose tissue (paMSC) were genetically modified for evaluation of different therapeutic strategies to improve AMI treatment. Three groups of infarcted Large White pigs were compared (I, control, non-transplanted; II, transplanted with paMSC-GFP (green fluorescent protein); III, transplanted with paMSC-IGF-1/HGF). Cardiac function was evaluated non-invasively using magnetic resonance imaging (MRI) for 1 month. After euthanasia and sampling of the animal, infarcted areas were studied by histology and immunohistochemistry. Intramyocardial transplant in a porcine infarct model demonstrated the safety of paMSC in short-term treatments. Treatment with paMSC-IGF-1/HGF (1:1) compared with the other groups showed a clear reduction in inflammation in some sections analyzed and promoted angiogenic processes in ischemic tissue. Although cardiac function parameters were not significantly improved, cell retention and IGF-1 overexpression was confirmed within the myocardium. The simultaneous administration of IGF-1- and HGF-overexpressing paMSC appears not to promote a synergistic effect or effective repair. The combined enhancement of neovascularization and fibrosis in paMSC-IGF-1/HGF-treated animals nonetheless suggests that sustained exposure to high IGF-1 + HGF levels promotes beneficial as well as deleterious effects that do not improve overall cardiac regeneration.

  18. Semi-synthesis of a HGF/SF kringle one (K1) domain scaffold generates a potent in vivo MET receptor agonist.

    PubMed

    Simonneau, Claire; Bérénice Leclercq; Mougel, Alexandra; Adriaenssens, Eric; Paquet, Charlotte; Raibaut, Laurent; Ollivier, Nathalie; Drobecq, Hervé; Marcoux, Julien; Cianférani, Sarah; Tulasne, David; de Jonge, Hugo; Melnyk, Oleg; Vicogne, Jérôme

    2015-03-01

    The development of MET receptor agonists is an important goal in regenerative medicine, but is limited by the complexity and incomplete understanding of its interaction with HGF/SF (Hepatocyte Growth Factor/Scatter Factor). NK1 is a natural occurring agonist comprising the N-terminal (N) and the first kringle (K1) domains of HGF/SF. In the presence of heparin, NK1 can self-associate into a "head to tail" dimer which is considered as the minimal structural module able to trigger MET dimerization and activation whereas isolated K1 and N domains showed a weak or a complete lack of agonistic activity respectively. Starting from these structural and biological observations, we investigated whether it was possible to recapitulate the biological properties of NK1 using a new molecular architecture of isolated N or K1 domains. Therefore, we engineered multivalent N or K1 scaffolds by combining synthetic and homogeneous site-specifically biotinylated N and K1 domains (NB and K1B) and streptavidin (S). NB alone or in complex failed to activate MET signaling and to trigger cellular phenotypes. Importantly and to the contrary of K1B alone, the semi-synthetic K1B/S complex mimicked NK1 MET agonist activity in cell scattering, morphogenesis and survival phenotypic assays. Impressively, K1B/S complex stimulated in vivo angiogenesis and, when injected in mice, protected the liver against fulminant hepatitis in a MET dependent manner whereas NK1 and HGF were substantially less potent. These data reveal that without N domain, proper multimerization of K1 domain is a promising strategy for the rational design of powerful MET agonists.

  19. Hepatocyte Growth Factor Modulates MET Receptor Tyrosine Kinase and β-Catenin Functional Interactions to Enhance Synapse Formation

    PubMed Central

    Xie, Zhihui; Eagleson, Kathie L.

    2016-01-01

    MET, a pleiotropic receptor tyrosine kinase implicated in autism risk, influences multiple neurodevelopmental processes. There is a knowledge gap, however, in the molecular mechanism through which MET mediates developmental events related to disorder risk. In the neocortex, MET is expressed transiently during periods of peak dendritic outgrowth and synaptogenesis, with expression enriched at developing synapses, consistent with demonstrated roles in dendritic morphogenesis, modulation of spine volume, and excitatory synapse development. In a recent coimmunoprecipitation/mass spectrometry screen, β-catenin was identified as part of the MET interactome in developing neocortical synaptosomes. Here, we investigated the influence of the MET/β-catenin complex in mouse neocortical synaptogenesis. Western blot analysis confirms that MET and β-catenin coimmunoprecipitate, but N-cadherin is not associated with the MET complex. Following stimulation with hepatocyte growth factor (HGF), β-catenin is phosphorylated at tyrosine142 (Y142) and dissociates from MET, accompanied by an increase in β-catenin/N-cadherin and MET/synapsin 1 protein complexes. In neocortical neurons in vitro, proximity ligation assays confirmed the close proximity of these proteins. Moreover, in neurons transfected with synaptophysin-GFP, HGF stimulation increases the density of synaptophysin/bassoon (a presynaptic marker) and synaptophysin/PSD-95 (a postsynaptic marker) clusters. Mutation of β-catenin at Y142 disrupts the dissociation of the MET/β-catenin complex and prevents the increase in clusters in response to HGF. The data demonstrate a new mechanism for the modulation of synapse formation, whereby MET activation induces an alignment of presynaptic and postsynaptic elements that are necessary for assembly and formation of functional synapses by subsets of neocortical neurons that express MET/β-catenin complex. PMID:27595133

  20. Gram-scale production of plasmid pUDK-HGF with current good manufacturing practices for gene therapy of critical limb ischemia.

    PubMed

    Hu, ChunSheng; Cheng, XiaoChen; Lu, YuXin; Wu, ZuZe; Zhang, QingLin

    2016-11-16

    The demand of a plasmid encoding human hepatocyte growth factor gene (pUDK-HGF) in large quantities at high purity and concentration has increased for gene therapy of critical limb ischemia (CLI) in clinical trials. In this article, we produced pUDK-HGF in compliance with current good manufacturing practices at gram scale. The process included a 50-L batch fermentation, continuous alkaline lysis, and integrated three-step chromatography on Sepharose 6 Fast Flow, PlasmidSelect Xtra, and Source 15Q. The production process has been scaled up to yield 4.24 ± 0.41 g of pharmaceutical pUDK-HGF from 1.0 kg bacterial cell paste and the overall yield reached range from 58.37 to 66.70%. The final pUDK-HGF product exhibited high purity with supercoiled percentage of > 95.8% and undetectable residual RNA, contaminated protein, and bacterial endotoxin. The phase I clinical study indicates that intramuscular injection of pUDK-HGF is safe, well tolerated, and may provide symptomatic relief to CLI patients. These results show that our manufacturing process of pUDK-HGF is efficient in producing pharmaceutical-grade plasmid DNA and is safe for clinical applications.

  1. MiR-16 regulates the pro-tumorigenic potential of lung fibroblasts through the inhibition of HGF production in an FGFR-1- and MEK1-dependent manner.

    PubMed

    Andriani, Francesca; Majorini, Maria Teresa; Mano, Miguel; Landoni, Elena; Miceli, Rosalba; Facchinetti, Federica; Mensah, Mavis; Fontanella, Enrico; Dugo, Matteo; Giacca, Mauro; Pastorino, Ugo; Sozzi, Gabriella; Delia, Domenico; Roz, Luca; Lecis, Daniele

    2018-03-20

    Fibroblasts are crucial mediators of tumor-stroma cross-talk through synthesis and remodeling of the extracellular matrix and production of multiple soluble factors. Nonetheless, little is still known about specific determinants of fibroblast pro-tumorigenic activity in lung cancer. Here, we aimed at understanding the role of miRNAs, which are often altered in stromal cells, in reprogramming fibroblasts towards a tumor-supporting phenotype. We employed a co-culture-based high-throughput screening to identify specific miRNAs modulating the pro-tumorigenic potential of lung fibroblasts. Multiplex assays and ELISA were instrumental to study the effect of miRNAs on the secretome of both primary and immortalized lung fibroblasts from lung cancer patients and to evaluate plasmatic levels of HGF in heavy smokers. Direct mRNA targeting by miRNAs was investigated through dual-luciferase reporter assay and western blot. Finally, the pro-tumorigenic activity of fibroblasts and their conditioned media was tested by employing in vitro migration experiments and mouse xenografts. We identified miR-16 as a master regulator of fibroblast secretome and showed that its upregulation reduces HGF secretion by fibroblasts, impairing their capacity to promote cancer cell migration. This effect is due to a pleiotropic activity of miR-16 which prevents HGF expression through direct inhibition of FGFR-1 signaling and targeting of HGF mRNA. Mechanistically, miR-16 targets FGFR-1 downstream mediator MEK1, thus reducing ERK1/2 activation. Consistently, chemical or genetic inhibition of FGFR-1 mimics miR-16 activity and prevents HGF production. Of note, we report that primary fibroblast cell lines derived from lungs of heavy smokers express reduced miR-16 levels compared to those from lungs not exposed to smoke and that HGF concentration in heavy smokers' plasma correlates with levels of tobacco exposure. Finally, in vivo experiments confirmed that restoration of miR-16 expression in fibroblasts

  2. Modulation of hepatocyte growth factor secretion in human female reproductive tract stromal fibroblasts by poly (I:C) and estradiol.

    PubMed

    Coleman, Kimberly D; Ghosh, Mimi; Crist, Sarah G; Wright, Jacqueline A; Rossoll, Richard M; Wira, Charles R; Fahey, John V

    2012-01-01

    Hepatocyte Growth Factor (HGF) secretion facilitates epithelial cell growth and development in the female reproductive tract (FRT) and may contribute to pathological conditions such as cancer and endometriosis. We hypothesized that estradiol and poly (I:C), a synthetic RNA mimic, may have a regulatory effect on HGF secretion by stromal fibroblasts from FRT tissues. Following hysterectomies, normal tissue from the uterus, endocervix, and ectocervix were dispersed into stromal cell fractions by enzymatic digestion and differential filtering. Stromal fibroblasts were cultured and treated with estradiol and/or poly (I:C), and conditioned media were analyzed for HGF via enzyme-linked immunosorbent assay. Treating uterine fibroblasts with estradiol or poly (I:C) significantly increased HGF secretion. When uterine fibroblasts were co-treated with estradiol and poly (I:C), the effect on HGF secretion was additive. In contrast, stromal fibroblasts from endo- and ecto-cervix were unresponsive to estradiol, but were stimulated to secrete HGF by poly (I:C). HGF secretion is uniquely regulated in the uterus, but not in ecto- and endo-cervix, by estradiol. Moreover, potential viral pathogens further induce HGF. These findings have potential applications in understanding both hormonal regulation of normal tissue as well as the role of HGF in tumorogenesis, endometriosis, and human immunodeficiency virus infection. © 2011 John Wiley & Sons A/S.

  3. Identifying ultrasensitive HGF dose-response functions in a 3D mammalian system for synthetic morphogenesis.

    PubMed

    Senthivel, Vivek Raj; Sturrock, Marc; Piedrafita, Gabriel; Isalan, Mark

    2016-12-16

    Nonlinear responses to signals are widespread natural phenomena that affect various cellular processes. Nonlinearity can be a desirable characteristic for engineering living organisms because it can lead to more switch-like responses, similar to those underlying the wiring in electronics. Steeper functions are described as ultrasensitive, and can be applied in synthetic biology by using various techniques including receptor decoys, multiple co-operative binding sites, and sequential positive feedbacks. Here, we explore the inherent non-linearity of a biological signaling system to identify functions that can potentially be exploited using cell genome engineering. For this, we performed genome-wide transcription profiling to identify genes with ultrasensitive response functions to Hepatocyte Growth Factor (HGF). We identified 3,527 genes that react to increasing concentrations of HGF, in Madin-Darby canine kidney (MDCK) cells, grown as cysts in 3D collagen cell culture. By fitting a generic Hill function to the dose-responses of these genes we obtained a measure of the ultrasensitivity of HGF-responsive genes, identifying a subset with higher apparent Hill coefficients (e.g. MMP1, TIMP1, SNORD75, SNORD86 and ERRFI1). The regulatory regions of these genes are potential candidates for future engineering of synthetic mammalian gene circuits requiring nonlinear responses to HGF signalling.

  4. Role of HGF in epithelial–stromal cell interactions during progression from benign breast disease to ductal carcinoma in situ

    PubMed Central

    2013-01-01

    Introduction Basal-like and luminal breast cancers have distinct stromal–epithelial interactions, which play a role in progression to invasive cancer. However, little is known about how stromal–epithelial interactions evolve in benign and pre-invasive lesions. Methods To study epithelial–stromal interactions in basal-like breast cancer progression, we cocultured reduction mammoplasty fibroblasts with the isogenic MCF10 series of cell lines (representing benign/normal, atypical hyperplasia, and ductal carcinoma in situ). We used gene expression microarrays to identify pathways induced by coculture in premalignant cells (MCF10DCIS) compared with normal and benign cells (MCF10A and MCF10AT1). Relevant pathways were then evaluated in vivo for associations with basal-like subtype and were targeted in vitro to evaluate effects on morphogenesis. Results Our results show that premalignant MCF10DCIS cells express characteristic gene expression patterns of invasive basal-like microenvironments. Furthermore, while hepatocyte growth factor (HGF) secretion is upregulated (relative to normal, MCF10A levels) when fibroblasts are cocultured with either atypical (MCF10AT1) or premalignant (MCF10DCIS) cells, only MCF10DCIS cells upregulated the HGF receptor MET. In three-dimensional cultures, upregulation of HGF/MET in MCF10DCIS cells induced morphological changes suggestive of invasive potential, and these changes were reversed by antibody-based blocking of HGF signaling. These results are relevant to in vivo progression because high expression of a novel MCF10DCIS-derived HGF signature was correlated with the basal-like subtype, with approximately 86% of basal-like cancers highly expressing the HGF signature, and because high expression of HGF signature was associated with poor survival. Conclusions Coordinated and complementary changes in HGF/MET expression occur in epithelium and stroma during progression of pre-invasive basal-like lesions. These results suggest that

  5. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    PubMed

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  6. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    PubMed

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  7. Association of extracellular cleavage of E-cadherin mediated by MMP-7 with HGF-induced in vitro invasion in human stomach cancer cells.

    PubMed

    Lee, K H; Choi, E Y; Hyun, M S; Jang, B I; Kim, T N; Kim, S W; Song, S K; Kim, J H; Kim, J-R

    2007-01-01

    Proteolytic shedding of the ectodomain of a variety of transmembrane proteins, including cell-to-cell adhesion molecules, has been observed in solid cancers. We have investigated whether extracellular cleavage of E-cadherin mediated by matrix metalloproteinase-7 (MMP-7) is involved in hepatocyte growth factor (HGF) induced in vitro invasion in stomach cancer cells. The effects of HGF on the expression of E-cadherin/beta-catenin and MMP-7 at both the protein and mRNA levels were assessed in stomach cancer cells, NUGC-3 and MKN-28, and in cells in which the expression of MMP-7 was downregulated by transfection with a MMP-7 short hairpin RNA plasmid. Treatment with HGF increased the extracellular cleavage of E-cadherin and the release of MMP-7 and reduced the level of E-cadherin in a dose- and time-dependent manner. HGF treatment repressed the phosphorylation of beta-catenin in a Triton-soluble fraction, but enhanced this phosphorylation in a Triton-insoluble fraction. The association of E-cadherin with beta-catenin was decreased by HGF treatment in the Triton-soluble fraction. In addition, treatment of MMP-7 short hairpin RNA transfected NUGC-3 cells with HGF resulted in no extracellular cleavage of E-cadherin and also decreased the in vitro cell invasion. These results suggest that incubation with HGF mediated the release of MMP-7, resulting in extracellular cleavage of E-cadherin from stomach cancer cells. This might be a key mechanism in HGF-induced in vitro invasion and metastasis. Copyright 2007 S. Karger AG, Basel.

  8. Supplementation with CTGF, SDF1, NGF, and HGF promotes ovine in vitro oocyte maturation and early embryo development.

    PubMed

    Wang, D H; Ren, J; Zhou, C J; Han, Z; Wang, L; Liang, C G

    2018-05-17

    The strategies for improving the in vitro maturation (IVM) of domestic animal oocytes focus on promoting nuclear and cytoplasmic maturation. The identification of paracrine factors and their supplementation in the culture medium represent effective approaches for oocyte maturation and embryo development. This study investigated the effects of paracrine factor supplementation including connective tissue growth factor (CTGF), nerve growth factor (NGF), hepatocyte growth factor (HGF), and stromal derived factor 1 (SDF1) on ovine oocytes and early parthenogenetic embryos using an in vitro culture system. First, we identified the optimal concentrations of CTGF (30 ng/mL), SDF1 (10 ng/mL), NGF (3 ng/mL), and HGF (100 ng/mL) for promoting oocyte maturation, which combined, induced nuclear maturation in 94.19% of oocytes. This combination also promoted cumulus cell expansion and inhibited oocyte/cumulus apoptosis, while enabling a larger proportion (33.04%) of embryos to develop into blastocysts than in the controls and prevented embryo apoptosis. These novel findings demonstrate that the paracrine factors CTGF, SDF1, NGF, and HGF facilitate ovine oocyte and early parthenogenetic embryo development in vitro. Thus, supplementation with these factors may help optimize the IVM of ovine oocytes and early parthenogenetic embryo development strategies. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Clinical and prognostic value of the C-Met/HGF signaling pathway in cervical cancer.

    PubMed

    Boromand, Nadia; Hasanzadeh, Malihe; ShahidSales, Soodabeh; Farazestanian, Marjaneh; Gharib, Masoumeh; Fiuji, Hamid; Behboodi, Negin; Ghobadi, Niloofar; Hassanian, Seyed Mahdi; Ferns, Gordon A; Avan, Amir

    2018-06-01

    Aberrant activation of the HGF/c-Met signalling pathway is reported to be associated with cell proliferation, progression, and metastasis features of several tumor types, including cervical cancer, suggesting that it may be of potential value as a novel therapeutic target. Furthermore, HPV-positive patients had a higher serum level of HGF or c-Met protein, compared with HPV-negative patients. c-Met or HGF overexpression in lesions of cervical cancer is reported to be related to a poorer prognosis, and hence this may be of value as a prognostic and predictive biomarker. Several approaches have been developed for targeting HGF and/or c-Met. One of these is crizotinib (a dual c-Met/ALK inhibitor). This has been approved by FDA for the treatment of lung-cancer. Further investigations are required to evaluate and optimize the use of c-Met inhibitors in cervical cancer or parallel targeting signalling pathway associated/activated via MET/HGF pathway. The main aim of current review was to give an overview of the potential of the c-Met/HGF pathway as a prognostic, or predictive biomarker in cervical cancer. © 2017 Wiley Periodicals, Inc.

  10. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    PubMed

    Coudriet, Gina M; He, Jing; Trucco, Massimo; Mars, Wendy M; Piganelli, Jon D

    2010-11-02

    The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR). To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF) is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS)-stimulation of bone marrow derived macrophages (BMM). BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274) or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  11. Umbilical Cord-derived Mesenchymal Stem Cells Instruct Monocytes Towards an IL10-producing Phenotype by Secreting IL6 and HGF.

    PubMed

    Deng, Yinan; Zhang, Yingcai; Ye, Linsen; Zhang, Tong; Cheng, Jintao; Chen, Guihua; Zhang, Qi; Yang, Yang

    2016-12-05

    Human UC-MSCs are regarded as an attractive alternative to BM-MSCs for clinical applications due to their easy preparation, higher proliferation and lower immunogenicity. However, the mechanisms underlying immune suppression by UC-MSCs are still unclear. We studied the mechanism of inhibition by UC-MSCs during the differentiation of monocytes into DCs and focused on the specific source and the role of the involved cytokines. We found that UC-MSCs suppressed monocyte differentiation into DCs and instructed monocytes towards other cell types, with clear decreases in the expression of co-stimulatory molecules, in the secretion of inflammatory factors and in allostimulatory capacity. IL6, HGF and IL10 might be involved in this process because they were detected at higher levels in a coculture system. UC-MSCs produce IL-6 and HGF, and neutralization of IL-6 and HGF reversed the suppressive effect of UC-MSCs. IL10 was not produced by UC-MSCs but was exclusively produced by monocytes after exposure to UC-MSCs, IL-6 or HGF. In summary, we found that the UC-MSC-mediated inhibitory effect was dependent on IL6 and HGF secreted by UC-MSCs and that this effect induced monocyte-derived cells to produce IL10, which might indirectly strengthen the suppressive effect of UC-MSCs.

  12. HGF/MET-directed therapeutics in gastroesophageal cancer: a review of clinical and biomarker development.

    PubMed

    Hack, Stephen P; Bruey, Jean-Marie; Koeppen, Hartmut

    2014-05-30

    Aberrant activation of the HGF/MET signaling axis has been strongly implicated in the malignant transformation and progression of gastroesophageal cancer (GEC). MET receptor overexpression in tumor samples from GEC patients has been consistently correlated with an aggressive metastatic phenotype and poor prognosis. In preclinical GEC models, abrogation of HGF/MET signaling has been shown to induce tumor regression as well as inhibition of metastatic dissemination. Promising clinical results in patient subsets in which MET is overexpressed have spurned several randomized studies of HGF/MET-directed agents, including two pivotal global Phase III trials. Available data highlight the need for predictive biomarkers in order to select patients most likely to benefit from HGF/MET inhibition. In this review, we discuss the current knowledge of mechanisms of MET activation in GEC, the current status of the clinical evaluation of MET-targeted therapies in GEC, characteristics of ongoing randomized GEC trials and the associated efforts to identify and validate biomarkers. We also discuss the considerations and challenges for HGF/MET inhibitor drug development in the GEC setting.

  13. HGF/MET-directed therapeutics in gastroesophageal cancer: a review of clinical and biomarker development

    PubMed Central

    Hack, Stephen P.; Bruey, Jean-Marie; Koeppen, Hartmut

    2014-01-01

    Aberrant activation of the HGF/MET signaling axis has been strongly implicated in the malignant transformation and progression of gastroesophageal cancer (GEC). MET receptor overexpression in tumor samples from GEC patients has been consistently correlated with an aggressive metastatic phenotype and poor prognosis. In preclinical GEC models, abrogation of HGF/MET signaling has been shown to induce tumor regression as well as inhibition of metastatic dissemination. Promising clinical results in patient subsets in which MET is overexpressed have spurned several randomized studies of HGF/MET-directed agents, including two pivotal global Phase III trials. Available data highlight the need for predictive biomarkers in order to select patients most likely to benefit from HGF/MET inhibition. In this review, we discuss the current knowledge of mechanisms of MET activation in GEC, the current status of the clinical evaluation of MET-targeted therapies in GEC, characteristics of ongoing randomized GEC trials and the associated efforts to identify and validate biomarkers. We also discuss the considerations and challenges for HGF/MET inhibitor drug development in the GEC setting. PMID:24930887

  14. Nonclinical evaluation of the serum pharmacodynamic biomarkers HGF and shed MET following dosing with the anti-MET monovalent monoclonal antibody onartuzumab.

    PubMed

    Mai, Elaine; Zheng, Zhong; Chen, Youjun; Peng, Jing; Severin, Christophe; Filvaroff, Ellen; Romero, Mally; Mallet, William; Kaur, Surinder; Gelzleichter, Thomas; Nijem, Ihsan; Merchant, Mark; Young, Judy C

    2014-02-01

    Onartuzumab, a humanized, monovalent monoclonal anti-MET antibody, antagonizes MET signaling by inhibiting binding of its ligand, hepatocyte growth factor (HGF). We investigated the effects of onartuzumab on cell-associated and circulating (shed) MET (sMET) and circulating HGF in vitro and nonclinically to determine their utility as pharmacodynamic biomarkers for onartuzumab. Effects of onartuzumab on cell-associated MET were assessed by flow cytometry and immunofluorescence. sMET and HGF were measured in cell supernatants and in serum or plasma from multiple species (mouse, cynomolgus monkey, and human) using plate-based immunoassays. Unlike bivalent anti-MET antibodies, onartuzumab stably associates with MET on the surface of cells without inducing MET internalization or shedding. Onartuzumab delayed the clearance of human xenograft tumor-produced sMET from the circulation of mice, and endogenous sMET in cynomolgus monkeys. In mice harboring MET-expressing xenograft tumors, in the absence of onartuzumab, levels of human sMET correlated with tumor size, and may be predictive of MET-expressing tumor burden. Because binding of sMET to onartuzumab in circulation resulted in increasing sMET serum concentrations due to reduced clearance, this likely renders sMET unsuitable as a pharmacodynamic biomarker for onartuzumab. There was no observed effect of onartuzumab on circulating HGF levels in xenograft tumor-bearing mice or endogenous HGF in cynomolgus monkeys. Although sMET and HGF may serve as predictive biomarkers for MET therapeutics, these data do not support their use as pharmacodynamic biomarkers for onartuzumab.

  15. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and {beta}4 integrin function in MDA-MB-231 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.-J.; Chen, W.-K.; Wang, C.-J.

    2008-01-15

    Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration andmore » anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of {beta}4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin {beta}4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick

  16. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.

    PubMed

    Witt, R; Weigand, A; Boos, A M; Cai, A; Dippold, D; Boccaccini, A R; Schubert, D W; Hardt, M; Lange, C; Arkudas, A; Horch, R E; Beier, J P

    2017-02-28

    Volumetric muscle loss caused by trauma or after tumour surgery exceeds the natural regeneration capacity of skeletal muscle. Hence, the future goal of tissue engineering (TE) is the replacement and repair of lost muscle tissue by newly generating skeletal muscle combining different cell sources, such as myoblasts and mesenchymal stem cells (MSCs), within a three-dimensional matrix. Latest research showed that seeding skeletal muscle cells on aligned constructs enhance the formation of myotubes as well as cell alignment and may provide a further step towards the clinical application of engineered skeletal muscle. In this study the myogenic differentiation potential of MSCs upon co-cultivation with myoblasts and under stimulation with hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) was evaluated. We further analysed the behaviour of MSC-myoblast co-cultures in different 3D matrices. Primary rat myoblasts and rat MSCs were mono- and co-cultivated for 2, 7 or 14 days. The effect of different concentrations of HGF and IGF-1 alone, as well as in combination, on myogenic differentiation was analysed using microscopy, multicolour flow cytometry and real-time PCR. Furthermore, the influence of different three-dimensional culture models, such as fibrin, fibrin-collagen-I gels and parallel aligned electrospun poly-ε-caprolacton collagen-I nanofibers, on myogenic differentiation was analysed. MSCs could be successfully differentiated into the myogenic lineage both in mono- and in co-cultures independent of HGF and IGF-1 stimulation by expressing desmin, myocyte enhancer factor 2, myosin heavy chain 2 and alpha-sarcomeric actinin. An increased expression of different myogenic key markers could be observed under HGF and IGF-1 stimulation. Even though, stimulation with HGF/IGF-1 does not seem essential for sufficient myogenic differentiation. Three-dimensional cultivation in fibrin-collagen-I gels induced higher levels of myogenic differentiation

  17. Umbilical Cord-derived Mesenchymal Stem Cells Instruct Monocytes Towards an IL10-producing Phenotype by Secreting IL6 and HGF

    PubMed Central

    Deng, Yinan; Zhang, Yingcai; Ye, Linsen; Zhang, Tong; Cheng, Jintao; Chen, Guihua; Zhang, Qi; Yang, Yang

    2016-01-01

    Human UC-MSCs are regarded as an attractive alternative to BM-MSCs for clinical applications due to their easy preparation, higher proliferation and lower immunogenicity. However, the mechanisms underlying immune suppression by UC-MSCs are still unclear. We studied the mechanism of inhibition by UC-MSCs during the differentiation of monocytes into DCs and focused on the specific source and the role of the involved cytokines. We found that UC-MSCs suppressed monocyte differentiation into DCs and instructed monocytes towards other cell types, with clear decreases in the expression of co-stimulatory molecules, in the secretion of inflammatory factors and in allostimulatory capacity. IL6, HGF and IL10 might be involved in this process because they were detected at higher levels in a coculture system. UC-MSCs produce IL-6 and HGF, and neutralization of IL-6 and HGF reversed the suppressive effect of UC-MSCs. IL10 was not produced by UC-MSCs but was exclusively produced by monocytes after exposure to UC-MSCs, IL-6 or HGF. In summary, we found that the UC-MSC-mediated inhibitory effect was dependent on IL6 and HGF secreted by UC-MSCs and that this effect induced monocyte-derived cells to produce IL10, which might indirectly strengthen the suppressive effect of UC-MSCs. PMID:27917866

  18. IL-6 modulates hepatocyte proliferation via induction of HGF/p21{sup cip1}: Regulation by SOCS3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Rui; Jaruga, Barbara; Kulkarni, Shailin

    2005-12-30

    The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21{sup cip1} protein expression in primary mouse hepatocytes. Disruption of the p21{sup cip1} gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21{sup cip1} protein expression and a slightly strongermore » inhibition of cell proliferation in SOCS3{sup +/-} mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3{sup +/-} mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21{sup cip1}-dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration.« less

  19. Emergence of HGF/SF-Induced Coordinated Cellular Motility

    PubMed Central

    Zaritsky, Assaf; Natan, Sari; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2012-01-01

    Collective cell migration plays a major role in embryonic morphogenesis, tissue remodeling, wound repair and cancer invasion. Despite many decades of extensive investigations, only few analytical tools have been developed to enhance the biological understanding of this important phenomenon. Here we present a novel quantitative approach to analyze long term kinetics of bright field time-lapse wound healing. Fully-automated spatiotemporal measures and visualization of cells' motility and implicit morphology were proven to be sound, repetitive and highly informative compared to single-cell tracking analysis. We study cellular collective migration induced by tyrosine kinase-growth factor signaling (Met-Hepatocyte Growth Factor/Scatter Factor (HGF/SF)). Our quantitative approach is applied to demonstrate that collective migration of the adenocarcinoma cell lines is characterized by simple morpho-kinetics. HGF/SF induces complex morpho-kinetic coordinated collective migration: cells at the front move faster and are more spread than those further away from the wound edge. As the wound heals, distant cells gradually accelerate and enhance spread and elongation –resembling the epithelial to mesenchymal transition (EMT), and then the cells become more spread and maintain higher velocity than cells located closer to the wound. Finally, upon wound closure, front cells halt, shrink and round up (resembling mesenchymal to epithelial transition (MET) phenotype) while distant cells undergo the same process gradually. Met inhibition experiments further validate that Met signaling dramatically alters the morpho-kinetic dynamics of the healing wound. Machine-learning classification was applied to demonstrate the generalization of our findings, revealing even subtle changes in motility patterns induced by Met-inhibition. It is concluded that activation of Met-signaling induces an elaborated model in which cells lead a coordinated increased motility along with gradual differentiation

  20. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer.

    PubMed

    Yamada, Tadaaki; Takeuchi, Shinji; Kita, Kenji; Bando, Hideaki; Nakamura, Takahiro; Matsumoto, Kunio; Yano, Seiji

    2012-02-01

    Epidermal growth factor receptor (EGFR) is an attractive drug target in lung cancer, with several anti-EGFR antibodies and small-molecule inhibitors showing efficacy in lung cancer patients. Patients, however, may develop resistance to EGFR inhibitors. We demonstrated previously that hepatocyte growth factor (HGF) induced resistance to EGFR tyrosine kinase inhibitors in lung cancers harboring EGFR mutations. We therefore determined whether HGF could induce resistance to the anti-EGFR antibody (EGFR Ab) cetuximab in lung cancer cells, regardless of EGFR gene status. Cetuximab sensitivity and signal transduction in lung cancer cells were examined in the presence or absence of HGF, HGF-producing fibroblasts, and cells tranfected with the HGF gene in vitro and in vivo. HGF induced resistance to cetuximab in H292 (EGFR wild) and Ma-1(EGFR mutant) cells. Western blotting showed that HGF-induced resistance was mediated by the Met/Gab1/Akt signaling pathway. Resistance of H292 and Ma-1 cells to cetuximab was also induced by coculture with lung fibroblasts producing high levels of HGF and by cells stably transfected with the HGF gene. This resistance was abrogated by treatment with anti-HGF neutralizing antibody. HGF-mediated resistance is a novel mechanism of resistance to EGFR Ab in lung cancers, with fibroblast-derived HGF inducing cetuximab resistance in H292 tumors in vivo. The involvement of HGF-Met-mediated signaling should be assessed in acquired resistance to EGFR Ab in lung cancer, regardless of EGFR gene status.

  1. Mutant MMP-9 and HGF gene transfer enhance resolution of CCl4-induced liver fibrosis in rats: role of ASH1 and EZH2 methyltransferases repression.

    PubMed

    Atta, Hussein; El-Rehany, Mahmoud; Hammam, Olfat; Abdel-Ghany, Hend; Ramzy, Maggie; Roderfeld, Martin; Roeb, Elke; Al-Hendy, Ayman; Raheim, Salama Abdel; Allam, Hatem; Marey, Heba

    2014-01-01

    Hepatocyte growth factor (HGF) gene transfer inhibits liver fibrosis by regulating aberrant cellular functions, while mutant matrix metalloproteinase-9 (mMMP-9) enhances matrix degradation by neutralizing the elevated tissue inhibitor of metalloproteinase-1 (TIMP-1). It was shown that ASH1 and EZH2 methyltransferases are involved in development of liver fibrosis; however, their role in the resolution phase of liver fibrosis has not been investigated. This study evaluated the role of ASH1 and EZH2 in two mechanistically different therapeutic modalities, HGF and mMMP-9 gene transfer in CCl4 induced rat liver fibrosis. Liver fibrosis was induced in rats with twice a week intraperitoneal injection of CCl4 for 8 weeks. Adenovirus vectors encoding mMMP-9 or HGF genes were injected through tail vein at weeks six and seven and were sacrificed one week after the second injection. A healthy animal group was likewise injected with saline to serve as a negative control. Rats treated with mMMP-9 showed significantly lower fibrosis score, less Sirius red stained collagen area, reduced hydroxyproline and ALT concentration, decreased transforming growth factor beta 1 (TGF-β1) mRNA and lower labeling indices of α smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) stained cells compared with HGF- or saline-treated rats. Furthermore, TIMP-1 protein expression in mMMP-9 group was markedly reduced compared with all fibrotic groups. ASH1 and EZH2 protein expression was significantly elevated in fibrotic liver and significantly decreased in mMMP-9- and HGF-treated compared to saline-treated fibrotic livers with further reduction in the mMMP-9 group. Gene transfer of mMMP-9 and HGF reduced liver fibrosis in rats. ASH1 and EZH2 methyltransferases are significantly reduced in mMMP-9 and HGF treated rats which underlines the central role of these enzymes during fibrogenesis. Future studies should evaluate the role of selective pharmacologic inhibitors of ASH1 and

  2. Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.

    PubMed

    Kos, L; Aronzon, A; Takayama, H; Maina, F; Ponzetto, C; Merlino, G; Pavan, W

    1999-02-01

    The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.

  3. HGF-induced serine 897 phosphorylation of EphA2 regulates epithelial morphogenesis of MDCK cells in 3D culture.

    PubMed

    Harada, Kohei; Negishi, Manabu; Katoh, Hironori

    2015-05-15

    Expression of EphA2 is upregulated in various cancers that are derived from epithelial cells and correlates with the ability of a cancer cell to undergo migration and invasion. Here we have investigated the role of EphA2 in the epithelial morphogenesis of Madin-Darby canine kidney (MDCK) cells in three-dimensional culture. We show that EphA2 is phosphorylated on serine residue 897 through hepatocyte growth factor (HGF) stimulation using a phosphatidylinositol 3-kinase (PI3K)-Akt-dependent mechanism and that this phosphorylation is required for the formation of extensions, the first step of tubulogenesis, in MDCK cysts. By contrast, stimulation using the ligand ephrinA1 dephosphorylates EphA2 on serine residue 897 and suppresses the HGF-induced morphological change. Furthermore, activation of the small GTPase RhoG is involved in the HGF-induced formation of extensions downstream of EphA2. These observations suggest that a ligand-independent activity of EphA2 contributes to epithelial morphogenesis. © 2015. Published by The Company of Biologists Ltd.

  4. The HGF Receptor c-Met Is Overexpressed in Esophageal Adenocarcinoma1

    PubMed Central

    Herrera, Luis J; El-Hefnawy, Talal; Queiroz de Oliveira, Pierre E; Raja, Siva; Finkelstein, Sydney; Gooding, William; Luketich, James D; Godfrey, Tony E; Hughes, Steven J

    2005-01-01

    Abstract The hepatocyte growth factor (HGF) receptor, Met, has established oncogenic properties; however, its expression and function in esophageal adenocarcinoma (EA) remain poorly understood. We aimed to determine the expression and potential alterations in Met expression in EA. Met expression was investigated in surgical specimens of EA, Barrett's esophagus (BE), and normal esophagus (NE) using immunohistochemistry (IHC) and quantitative reverse transcriptase polymerase chain reaction. Met expression, phosphorylation, and the effect of COX-2 inhibition on expression were examined in EA cell lines. IHC demonstrated intense Met immunoreactivity in all (100%) EA and dysplastic BE specimens. In contrast, minimal immunostaining was observed in BE without dysplasia or NE specimens. Met mRNA and protein levels were increased in three EA cell lines, and Met protein was phosphorylated in the absence of serum. Sequence analysis found the kinase domain of c-met to be wild type in all three EA cell lines. HGF mRNA expression was identified in two EA cell lines. In COX-2-overexpressing cells, COX-2 inhibition decreased Met expression. Met is consistently overexpressed in EA surgical specimens and in three EA cell lines. Met dysregulation occurs early in Barrett's dysplasia to adenocarcinoma sequence. Future study of Met inhibition as a potential biologic therapy for EA is warranted. PMID:15720819

  5. Sustained release of hepatocyte growth factor by cationic self-assembling peptide/heparin hybrid hydrogel improves β-cell survival and function through modulating inflammatory response

    PubMed Central

    Liu, Shuyun; Zhang, Lanlan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping

    2016-01-01

    Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation. PMID:27729786

  6. Ad-HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis.

    PubMed

    Liu, Jiabao; Wu, Peng; Wang, Yunle; Du, Yingqiang; A, Nan; Liu, Shuiyuan; Zhang, Yiming; Zhou, Ningtian; Xu, Zhihui; Yang, Zhijian

    2016-01-01

    Cell death in MI is the most critical determinant of subsequent left ventricular remodeling and heart failure. Besides apoptosis, autophagy and necroptosis have been recently found to be another two regulated cell death styles. HGF has been reported to have a protective role in MI, but its impact on the three death styles remains unclear. Thus, our study was performed to investigate the distribution of autophagy, apoptosis and necroptosis in cardiac tissues after MI and explore the role and mechanism of Ad-HGF on cardiac remodeling by regulating the three death styles. We firstly showed the distribution of autophagy, apoptosis and necroptosis differs in temporal and spatial context after MI using immunofluorescence. Notably, Ad-HGF treatment improves the cardiac remodeling of SD rats following MI by preserving the heart function, reducing the scar size and aggresomes. Further mechanism study reveals Ad-HGF promotes autophagy and necroptosis and inhibits apoptosis in vivo and in vitro . Co-immunoprecipitation assays showed Ad-HGF treatment significantly decreased the binding of Bcl-2 to Beclin1 but enhanced Bcl-2 binding to Bax in H9c2 cells under hypoxia. Moreover, HGF-induced sequestration of Bax by Bcl-2 allows Bax to become inactive, thereby inhibiting apoptosis. In addition, Ad-HGF markedly increased the formation of Beclin1-Vps34-Atg14L complex, which accounted for promoting autophagy. Both the western blot and activity assay showed Ad-HGF significantly decreased the caspase 8 protein and activity levels, which obligated the cell to undergo necroptosis under hypoxia and block apoptosis. Thus, our findings offer new evidence and strategies for the treatment of MI and post-MI cardiac remodeling.

  7. Ad-HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis

    PubMed Central

    Liu, Jiabao; Wu, Peng; Wang, Yunle; Du, Yingqiang; A, Nan; Liu, Shuiyuan; Zhang, Yiming; Zhou, Ningtian; Xu, Zhihui; Yang, Zhijian

    2016-01-01

    Cell death in MI is the most critical determinant of subsequent left ventricular remodeling and heart failure. Besides apoptosis, autophagy and necroptosis have been recently found to be another two regulated cell death styles. HGF has been reported to have a protective role in MI, but its impact on the three death styles remains unclear. Thus, our study was performed to investigate the distribution of autophagy, apoptosis and necroptosis in cardiac tissues after MI and explore the role and mechanism of Ad-HGF on cardiac remodeling by regulating the three death styles. We firstly showed the distribution of autophagy, apoptosis and necroptosis differs in temporal and spatial context after MI using immunofluorescence. Notably, Ad-HGF treatment improves the cardiac remodeling of SD rats following MI by preserving the heart function, reducing the scar size and aggresomes. Further mechanism study reveals Ad-HGF promotes autophagy and necroptosis and inhibits apoptosis in vivo and in vitro. Co-immunoprecipitation assays showed Ad-HGF treatment significantly decreased the binding of Bcl-2 to Beclin1 but enhanced Bcl-2 binding to Bax in H9c2 cells under hypoxia. Moreover, HGF-induced sequestration of Bax by Bcl-2 allows Bax to become inactive, thereby inhibiting apoptosis. In addition, Ad-HGF markedly increased the formation of Beclin1-Vps34-Atg14L complex, which accounted for promoting autophagy. Both the western blot and activity assay showed Ad-HGF significantly decreased the caspase 8 protein and activity levels, which obligated the cell to undergo necroptosis under hypoxia and block apoptosis. Thus, our findings offer new evidence and strategies for the treatment of MI and post-MI cardiac remodeling. PMID:27904666

  8. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction.

    PubMed

    Ju, Guan-qun; Cheng, Jun; Zhong, Liang; Wu, Shuai; Zou, Xiang-yu; Zhang, Guang-yuan; Gu, Di; Miao, Shuai; Zhu, Ying-jian; Sun, Jie; Du, Tao

    2015-01-01

    During acute kidney injury (AKI), tubular cell dedifferentiation initiates cell regeneration; hepatocyte growth factor (HGF) is involved in modulating cell dedifferentiation. Mesenchymal stem cell (MSC)-derived microvesicles (MVs) deliver RNA into injured tubular cells and alter their gene expression, thus regenerating these cells. We boldly speculated that MVs might induce HGF synthesis via RNA transfer, thereby facilitating tubular cell dedifferentiation and regeneration. In a rat model of unilateral AKI, the administration of MVs promoted kidney recovery. One of the mechanisms of action is the acceleration of tubular cell dedifferentiation and growth. Both in vivo and in vitro, rat HGF expression in damaged rat tubular cells was greatly enhanced by MV treatment. In addition, human HGF mRNA present in MVs was delivered into rat tubular cells and translated into the HGF protein as another mechanism of HGF induction. RNase treatment abrogated all MV effects. In the in vitro experimental setting, the conditioned medium of MV-treated injured tubular cells, which contains a higher concentration of HGF, strongly stimulated cell dedifferentiation and growth, as well as Erk1/2 signaling activation. Intriguingly, these effects were completely abrogated by either c-Met inhibitor or MEK inhibitor, suggesting that HGF induction is a crucial contributor to the acceleration of cell dedifferentiation and growth. All these findings indicate that MV-induced HGF synthesis in damaged tubular cells via RNA transfer facilitates cell dedifferentiation and growth, which are important regenerative mechanisms.

  9. The (PrS/HGF-pDNA) multilayer films for gene-eluting stent coating: Gene-protecting, anticoagulation, antibacterial properties, and in vivo antirestenosis evaluation.

    PubMed

    Chang, Hao; Ren, Ke-feng; Zhang, He; Wang, Jin-lei; Wang, Bai-liang; Ji, Jian

    2015-02-01

    Vascular gene-eluting stents (GES) is a promising strategy for treatment of cardiovascular disease. Very recently, we have proved that the (protamine sulfate/plasmid DNA encoding hepatocyte growth factor) (PrS/HGF-pDNA) multilayer can serve as a powerful tool for enhancing competitiveness of endothelial cell over smooth muscle cell, which opens perspectives for the regulation of intercellular competitiveness in the field of interventional therapy. However, before the gene multilayer films could be used in vascular stents for real clinical application, the preservation of gene bioactivity during the industrial sterilization and the hemocompatibility of film should be taken into account. Actually, both are long been ignored issues in the field of gene coating for GES. In this study, we demonstrate that the (PrS/HGF-pDNA) multilayer film exhibits the good gene-protecting abilities, which is confirmed by using the industrial sterilizations (gamma irradiation and ethylene oxide) and a routine storage condition (dry state at 4°C for 30 days). Furthermore, hemocompatible measurements (such as platelet adhesion and whole blood coagulation) and antibacterial assays (bacteria adhesion and growth inhibition) indicate the good anticoagulation and antibacterial properties of the (PrS/HGF-pDNA) multilayer film. The in vivo preliminary data of angiography and histological analysis suggest that the (PrS/HGF-pDNA) multilayer coated stent can reduce the in-stent restenosis. This work reveals that the (PrS/HGF-pDNA) multilayer film could be a promising candidate as coating for GES, which is of great potential in future clinic application. © 2014 Wiley Periodicals, Inc.

  10. [Ischemic brain injury and hepatocyte growth factor].

    PubMed

    Takeo, Satoshi; Takagi, Norio; Takagi, Keiko

    2007-11-01

    Cerebral ischemia causes an irreversible and neurodegenerative disorder that may lead to progressive dementia and global cognitive deterioration. Since the overall process of ischemic brain injuries is extremely complex, treatment with endogenous multifunctional factors would be better choices for preventing complicated ischemic brain injuries. Hepatocyte growth factor, HGF, is a multifunctional cytokine originally identified and purified as a potent mitogen for hepatocyte. The activation of the c-Met/HGF receptor evokes diverse cellular responses, including mitogenic, morphogenic, angiogenic and anti-apoptotic activities in various types of cell. Previous studies showed that HGF and c-Met were expressed in various brain regions under normal conditions and that HGF enhanced the survival of hippocampal and cortical neurons during the aging of cells in culture. The protective effects of HGF on in vivo ischemic brain injuries and their mechanisms have not fully understood. To elucidate therapeutic potencies of HGF for ischemic brain injuries, we examined effects of HGF on ischemia-induced learning and memory dysfunction, neuronal cell death and endothelial cell damage by using the 4-vessel occlusion model and the microsphere embolism model in rats. Our findings suggested that treatment with HGF was capable of protecting hippocampal neurons against ischemia-induced cell death through the prevention of apoptosis-inducing factor translocation to the nucleus. Furthermore, we demonstrated that HGF had the ability to prevent tissue degeneration and improved learning and memory function after cerebral embolism, possibly through prevention of cerebral vessel injuries. As HGF has a potent cerebroprotective effect, it could be a prospective agent for the therapy against complicated ischemic brain diseases.

  11. Cloning of a human hepatocyte growth factor/scatter factor transcription variant from a gastric cancer cell line HSC-39.

    PubMed

    Yokozaki, H; Tahara, H; Oue, N; Tahara, E

    2000-01-01

    A new transcription variant of hepatocyte growth factor/scatter factor (HGF/SF) was cloned from human gastric cancer cell line HSC-39. Northern blot analysis of eight human gastric cancer cell lines (TMK-1, MKN-1, MKN-7, MKN-28, MKN-45, MKN-74, KATO-III and HSC-39) demonstrated that HSC-39 cells expressed a 1.3 kb abnormal HGF/SF transcript. Screening of 1 x 10(6) colonies of cDNA library from HSC-39 constructed in pAP3neo mammalian expression vector selected four positive clones containing HGF/SF transcript. Among them, two contained a 1.3 kbp insert detecting the identical transcript to that obtained with HGF/SF probe by Northern blotting. Deoxynucleotide sequencing of the 1.3 kbp insert revealed that it was composed of a part of HGF/SF cDNA from exon 14 to exon 18, corresponding to the whole sequence of HGF/SF light chain, with 5' 75 nucleotides unrelated to any sequence involved in HGF/SF.

  12. Hepatocyte growth factor in renal failure: promise and reality.

    PubMed

    Vargas, G A; Hoeflich, A; Jehle, P M

    2000-04-01

    Can science discover some secrets of Greek mythology? In the case of Prometheus, we can now suppose that his amazing hepatic regeneration was caused by a peptide growth factor called hepatocyte growth factor (HGF). Increasing evidence indicates that HGF acts as a multifunctional cytokine on different cell types. This review addresses the molecular mechanisms that are responsible for the pleiotropic effects of HGF. HGF binds with high affinity to its specific tyrosine kinase receptor c-met, thereby stimulating not only cell proliferation and differentiation, but also cell migration and tumorigenesis. The three fundamental principles of medicine-prevention, diagnosis, and therapy-may be benefited by the rational use of HGF. In renal tubular cells, HGF induces mitogenic and morphogenetic responses. In animal models of toxic or ischemic acute renal failure, HGF acts in a renotropic and nephroprotective manner. HGF expression is rapidly up-regulated in the remnant kidney of nephrectomized rats, inducing compensatory growth. In a mouse model of chronic renal disease, HGF inhibits the progression of tubulointerstitial fibrosis and kidney dysfunction. Increased HGF mRNA transcripts were detected in mesenchymal and tubular epithelial cells of rejecting kidney. In transplanted patients, elevated HGF levels may indicate renal rejection. When HGF is considered as a therapeutic agent in human medicine, for example, to stimulate kidney regeneration after acute injury, strategies need to be developed to stimulate cell regeneration and differentiation without an induction of tumorigenesis.

  13. Chronic Ethanol consumption modulates growth factor release, mucosal cytokine production and microRNA expression in nonhuman primates

    PubMed Central

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A.; Messaoudi, Ilhem

    2013-01-01

    BACKGROUND Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. METHODS Using a nonhuman primate model of ethanol self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine and growth factor production in peripheral blood, lung and intestinal mucosa following twelve months of chronic ethanol exposure. RESULTS Ethanol exposure inhibited activation-induced production of growth factors HGF, G-CSF and VEGF by peripheral blood mononuclear cells (PBMC). Moreover, ethanol significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of ethanol-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed ethanol-dependent upregulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR181 and 221and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT-3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected CONCLUSION Chronic ethanol consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be mediated by changes in microRNA expression. PMID:24329418

  14. Analysis of hepatocyte growth factor immunostaining in the placenta of HIV-infected normotensive versus preeclamptic pregnant women.

    PubMed

    Cele, S B; Odun-Ayo, F; Onyangunga, O A; Moodley, J; Naicker, T

    2018-08-01

    Hepatocyte Growth Factor (HGF) plays a role in the migration and morphogenesis of different cell types and tissues. Preeclampsia (PE) is associated with deficient trophoblast invasion and placental insufficiency; hence HGF production is expected to be compromised. This study therefore aimed to immunolocalize and morphometrically analyse placental HGF in normotensive versus PE pregnancies stratified by HIV status and gestational age. Normotensive (N; n = 40) and preeclamptic (PE; n = 80) women were stratified by HIV status (HIV- and HIV+), and gestational age i.e. early onset of PE (EOPE; <34 weeks) and late onset of PE (LOPE; ≥34 weeks). Placental tissues were stained using conventional immunohistochemistry, performed using mouse anti-human HGF antibody. Morphometric image analysis was performed using Zeiss Axio-Vision software. HGF was immuno-localized within the syncytiotrophoblast, cytotrophoblast, endothelial and fibroblast-like cell populations of both conducting and exchange villi. Based on pregnancy type, HGF immunoexpression within the conducting villi was significantly different between Nvs EOPE (p = 0.0372) and EOPE vs LOPE (p = 0.0006). Within the exchange villi, no significant difference of HGF immunostaining was noted between N vs EOPE and N vs LOPE. A down-regulation of HGF immuno-expression was observed in LOPE compared to other groups within both villi types, albeit non-significant. Based on HIV status, no significant difference in HGF immuno-expression was demonstrated between HIV- vs HIV + within the exchange and conducting villi. However, the expression of HGF in HIV- group was elevated in both villi types. Across the groups, a significant difference was found between N+ vs EOPE- (p  = 0.0207), EOPE+ vs LOPE- (p = 0.0036) and EOPE- vs LOPE- (p = 0.0016) of the conducting villi while no significant difference was found within the exchange villi. This novel study demonstrates that HGF was two-fold higher in conducting compared to

  15. Role of hepatocyte growth factor in the development of dendritic cells from CD34+ bone marrow cells.

    PubMed

    Ovali, E; Ratip, S; Kibaroglu, A; Tekelioglu, Y; Cetiner, M; Karti, S; Aydin, F; Bayik, M; Akoglu, T

    2000-05-01

    Hepatocyte growth factor (HGF) is known to augment the effects of stem cell factor, interleukin-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), erythropoetin, and granulocyte colony-stimulating factor, all of which are involved in hematopoiesis. HGF is also known to have a role in immune responses. The aim of this study was to investigate whether HGF is involved in the development of dendritic cells (DC) from CD34+ bone marrow cells. CD34+ cells obtained from three healthy donors were incubated in various combinations of HGF, GM-CSF, and tumor necrosis factor (TNF) for 12 days. Developing cell populations were analyzed for surface markers, morphology and functional capacities by flow cytometry, light microscopy and mixed lymphocyte reaction, respectively. Incubation with HGF alone generated greater number of dendritic cells from CD34+ bone marrow cells than incubation with GM-CSF, or a combination of GM-CSF with TNF. HGF was also found to potentiate the effect of GM-CSF on DC and monocyte development. The effects of HGF were inhibited by the concurrent use of TNF. HGF appears to be a significant factor in the development of dendritic cells from CD34+ bone marrow cells.

  16. Chronic ethanol consumption modulates growth factor release, mucosal cytokine production, and microRNA expression in nonhuman primates.

    PubMed

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A; Messaoudi, Ilhem

    2014-04-01

    Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. Using a nonhuman primate model of ethanol (EtOH) self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine, and growth factor production in peripheral blood, lung, and intestinal mucosa following 12 months of chronic EtOH exposure. EtOH exposure inhibited activation-induced production of growth factors hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and vascular-endothelial growth factor (VEGF) by peripheral blood mononuclear cells (PBMC). Moreover, EtOH significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of EtOH-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed EtOH-dependent up-regulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF, and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR-181 and miR-221, and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected. Chronic EtOH consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be

  17. Hepatocyte growth factor/scatter factor enhances the invasion of mesothelioma cell lines and the expression of matrix metalloproteinases

    PubMed Central

    Harvey, P; Clark, I M; Jaurand, M-C; Warn, R M; Edwards, D R

    2000-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional factor involved both in development and tissue repair, as well as pathological processes such as cancer and metastasis. It has been identified in vivo in many types of tumours together with its tyrosine kinase receptor, Met. We show here that exogenous HGF/SF acts as a strong chemoattractant for human mesothelioma cell lines. The factor also enhanced cell adhesion to and invasion into Matrigel. The mesothelioma cell lines synthesized a panel of matrix metalloproteinases critical for tumour progression such as MMP-1, 2, 3, 9 and membrane-bound MT1-MMP. HGF/SF stimulated the expression of MMP-1, 9 and MT1-MMP and had a slight effect on expression of the MMP inhibitor TIMP-1 but not TIMP-2. However, there was no simple correlation between the levels of MMPs and TIMPs of the cell lines and their different invasion properties or between HGF/SF stimulatory effects on MMP expression and invasion. In addition, effects of protease inhibitors on invasion suggested that serine proteases were also expressed in human mesothelioma cell lines and were involved in HGF/SF-induced invasion. The results show a predominant role for HGF/SF in mesothelioma cell invasion, stimulating simultaneously adhesion, motility, invasion and regulation of MMP and TIMP levels. © 2000 Cancer Research Campaign PMID:11027427

  18. HGF/c-Met related activation of β-catenin in hepatoblastoma

    PubMed Central

    2011-01-01

    Background Activation of beta-catenin is a hallmark of hepatoblastoma (HB) and appears to play a crucial role in its pathogenesis. While aberrant accumulation of the beta-catenin is a common event in HB, mutations or deletions in CTNNB1 (beta-catenin gene) do not always account for the high frequency of protein expression. In this study we have investigated alternative activation of beta-catenin by HGF/c-Met signaling in a large cohort of 98 HB patients enrolled in the SIOPEL-3 clinical trial. Methods We performed immunohistochemistry, using antibodies to total beta-catenin and tyrosine654-phosphorylated beta-catenin, which is a good surrogate marker of HGF/c-Met activation. CTNNB1 mutation analysis was also carried out on all samples. We also investigated beta-catenin pathway activation in two liver cancer cell lines, HuH-6 and HuH-7. Results Aberrant beta-catenin expression was seen in the cytoplasm and/or nucleus of 87% of tumour samples. Our results also revealed a large subset of HB, 83%, with cytoplasmic expression of tyrosine654-phosphorylated beta-catenin and 30% showing additional nuclear accumulation. Sequence analysis revealed mutations in 15% of our cohort. Statistical analysis showed an association between nuclear expression of c-Met-activated beta-catenin and wild type CTNNB1 (P-value = 0.015). Analysis of total beta-catenin and Y654-beta-catenin in response to HGF activation in the cell lines, mirrors that observed in our HB tumour cohort. Results We identified a significant subset of hepatoblastoma patients for whom targeting of the c-Met pathway may be a treatment option and also demonstrate distinct mechanisms of beta-catenin activation in HB. PMID:21992464

  19. Hepatocyte Growth Factor Gene-Modified Mesenchymal Stem Cells Augment Sinonasal Wound Healing

    PubMed Central

    Li, Jing; Li, Yong; Yang, Chen; Lin, Hai; Duan, Hong-Gang

    2015-01-01

    This study was designed to investigate the effects of hepatocyte growth factor (HGF) transgenic mesenchymal stem cells (HGF-MSCs) on wound healing in the sinonasal mucosa and nasal epithelial cells (NECs). We also sought to determine whether HGF-MSCs and MSCs can migrate into the injured mucosa and differentiate into ciliated cells. Human HGF-overexpressing umbilical cord MSCs (hHGF-UCMSCs) were established, and upregulation of hHGF expression was confirmed by real-time PCR (RT-PCR) and enzyme-linked immunosorbant assay (ELISA). To investigate the paracrine effect of human MSCs (hMSCs) on nasal epithelial repair, hMSC- and HGF-MSC-conditioned media (CM) were used in NEC proliferation assays and in an in vitro scratch-wound repair model. The in vivo sinonasal wound-healing model was established, and all enrolled rabbits were randomly assigned to four groups: the GFP-MSC group, the HGF-MSC group, the Ad-HGF group, and the surgery control group. The average decreased diameter was recorded, and the medial wall of the maxillary sinus was removed for histological analysis and scanning electron microscopy. Collagen deposition in the wound tissue was detected via Masson trichrome (M&T) staining. The distribution of MSCs and HGF-MSCs was observed by immunofluorescence. MSCs improved nasal wound healing both in vivo and in vitro. HGF overexpression in MSCs augmented the curative effects. Reduced collagen deposition and transforming growth factor beta1 (TGF-β1) expression were detected in the HGF-MSC group compared with the MSC-, Ad-HGF-, and phosphate-buffered saline-treated groups based on M&T staining and ELISA. The enhanced therapeutic effects of HGF-MSCs were accompanied by decreased level of the fibrogenic cytokine TGF-β1. In addition, both HGF-MSCs and MSCs can migrate to the injured mucosa and epithelial layer. PMID:25835956

  20. Hepatocyte Growth Factor Gene-Modified Mesenchymal Stem Cells Augment Sinonasal Wound Healing.

    PubMed

    Li, Jing; Zheng, Chun-Quan; Li, Yong; Yang, Chen; Lin, Hai; Duan, Hong-Gang

    2015-08-01

    This study was designed to investigate the effects of hepatocyte growth factor (HGF) transgenic mesenchymal stem cells (HGF-MSCs) on wound healing in the sinonasal mucosa and nasal epithelial cells (NECs). We also sought to determine whether HGF-MSCs and MSCs can migrate into the injured mucosa and differentiate into ciliated cells. Human HGF-overexpressing umbilical cord MSCs (hHGF-UCMSCs) were established, and upregulation of hHGF expression was confirmed by real-time PCR (RT-PCR) and enzyme-linked immunosorbant assay (ELISA). To investigate the paracrine effect of human MSCs (hMSCs) on nasal epithelial repair, hMSC- and HGF-MSC-conditioned media (CM) were used in NEC proliferation assays and in an in vitro scratch-wound repair model. The in vivo sinonasal wound-healing model was established, and all enrolled rabbits were randomly assigned to four groups: the GFP-MSC group, the HGF-MSC group, the Ad-HGF group, and the surgery control group. The average decreased diameter was recorded, and the medial wall of the maxillary sinus was removed for histological analysis and scanning electron microscopy. Collagen deposition in the wound tissue was detected via Masson trichrome (M&T) staining. The distribution of MSCs and HGF-MSCs was observed by immunofluorescence. MSCs improved nasal wound healing both in vivo and in vitro. HGF overexpression in MSCs augmented the curative effects. Reduced collagen deposition and transforming growth factor beta1 (TGF-β1) expression were detected in the HGF-MSC group compared with the MSC-, Ad-HGF-, and phosphate-buffered saline-treated groups based on M&T staining and ELISA. The enhanced therapeutic effects of HGF-MSCs were accompanied by decreased level of the fibrogenic cytokine TGF-β1. In addition, both HGF-MSCs and MSCs can migrate to the injured mucosa and epithelial layer.

  1. An investigation into the stability of commercial versus MG63-derived hepatocyte growth factor under flow cultivation conditions.

    PubMed

    Meneghello, Giulia; Storm, Michael P; Chaudhuri, Julian B; De Bank, Paul A; Ellis, Marianne J

    2015-03-01

    The scale-up of tissue engineering cell culture must ensure that conditions are maintained while also being cost effective. Here we analyse the stability of hepatocyte growth factor (HGF) to investigate whether concentrations change under dynamic conditions, and compare commercial recombinant human HGF as an additive in 'standard medium', to HGF secreted by the osteosarcoma cell line MG63 as a 'preconditioned medium'. After 3 h under flow conditions, HGF in the standard medium degraded to 40% of its original concentration but HGF in the preconditioned medium remained at 100%. The concentration of secreted HGF was 10 times greater than the working concentration of commercially-available HGF. Thus HGF within this medium has increased stability; MG63-derived HGF should therefore be investigated as a cost-effective alternative to current lyophilised powders for use in in vitro models. Furthermore, we recommend that those intending to use HGF (or other growth factors) should consider similar stability testing before embarking on experiments with media flow.

  2. HEPATOCYTE GROWTH FACTOR ACTS AS A MITOGEN AND CHEMOATTRACTANT FOR POSTNATAL SUBVENTRICULAR ZONE-OLFACTORY BULB NEUROGENESIS

    PubMed Central

    Wang, Tsu-Wei; Zhang, Huailin; Gyetko, Margaret R.; Parent, Jack M.

    2011-01-01

    Neural progenitor cells persist throughout life in the forebrain subventricular zone (SVZ). They generate neuroblasts that migrate to the olfactory bulb and differentiate into interneurons, but mechanisms underlying these processes are poorly understood. Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic factor that influences cell motility, proliferation and morphogenesis in neural and non-neural tissues. HGF and its receptor, c-Met, are present in the rodent SVZ-olfactory bulb pathway. Using in vitro neurogenesis assays and in vivo studies of partially HGF-deficient mice, we find that HGF promotes SVZ cell proliferation and progenitor cell maintenance, while slowing differentiation and possibly altering cell fate choices. HGF also acts as a chemoattractant for SVZ neuroblasts in co-culture assays. Decreased HGF signaling induces ectopic SVZ neuroblast migration and alters the timing of migration to the olfactory bulb. These results suggest that HGF influences multiple steps in postnatal forebrain neurogenesis. HGF is a mitogen for SVZ neural progenitors, and regulates their differentiation and olfactory bulb migration. PMID:21683144

  3. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium

    PubMed Central

    1996-01-01

    Mature adult parenchymal hepatocytes, typically of restricted capacity to proliferate in culture, can now enter into clonal growth under the influence of hepatocyte growth factor (scatter factor) (HGF/SF), epidermal growth factor (EGF), and transforming growth factor alpha (TGFalpha) in the presence of a new chemically defined medium (HGM). The expanding populations of hepatocytes lose expression of hepatocyte specific genes (albumin, cytochrome P450 IIB1), acquire expression of markers expressed by bile duct epithelium (cytokeratin 19), produce TGFalpha and acidic FGF and assume a very simplified morphologic phenotype by electron microscopy. A major change associated with this transition is the decrease in ratio between transcription factors C/EBPalpha and C/EBPbeta, as well as the emergence in the proliferating hepatocytes of transcription factors AP1, NFkappaB. The liver associated transcription factors HNFI, HNF3, and HNF4 are preserved throughout this process. After population expansion and clonal growth, the proliferating hepatocytes can return to mature hepatocyte phenotype in the presence of EHS gel (Matrigel). This includes complete restoration of electron microscopic structure and albumin expression. The hepatocyte cultures however can instead be induced to form acinar/ductular structures akin to bile ductules (in the presence of HGF/SF and type I collagen). These transformations affect the entire population of the hepatocytes and occur even when DNA synthesis is inhibited. Similar acinar/ductular structures are seen in embryonic liver when HGF/SF and its receptor are expressed at high levels. These findings strongly support the hypothesis that mature hepatocytes can function as or be a source of bipotential facultative hepatic stem cells (hepatoblasts). These studies also provide evidence for the growth factor and matrix signals that govern these complex phenotypic transitions of facultative stem cells which are crucial for recovery from acute and

  4. Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors.

    PubMed

    Galimi, F; Bagnara, G P; Bonsi, L; Cottone, E; Follenzi, A; Simeone, A; Comoglio, P M

    1994-12-01

    Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c-MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU-GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.

  5. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway

    PubMed Central

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2017-01-01

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned ‘ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials. PMID:27893712

  6. Hepatocyte growth factor: a regulator of extracellular matrix genes in mouse mesangial cells.

    PubMed

    Laping, N J; Olson, B A; Ho, T; Ziyadeh, F N; Albrightson, C R

    2000-04-01

    The potential role of hepatocyte growth factor (HGF) in regulating extracellular matrix in mouse mesangial cells (MMC) was evaluated. Functional HGF receptors were deed in MMC by HGF-induced extracellular acidification, a response that was inhibited by the HGF inhibitor HGF/NK2, a splice variant expressing the N-terminal domain through the second kringle domain HGF also increased fibronectin and collagen alpha1 (IV) mRNA levels in these cells; the increases were associated with a concentration-dependent increase in transcriptional activity of the collagen alpha1 (IV) gene. HGF also stimulated fibronectin and collagen alpha1 (IV) mRNA levels in primary rabbit proximal tubule epithelial cells To evaluate the potential consequences of chronic elevation of HGF on renal fuction, HGF was administered continuously for 18 days to normal and diabetic C57BLKS/J lepr(db) mice. In the diabetic mice, HGF reduced creatinine clearance and increased microalbuminuria, indicating that chronic exposure to HGF impairs renal function. Thus, chronically elevated HGF may contribute to the progression of chronic renal disease in diabetes by decreasing the glomerular filtration rate and possibly promoting the accumulation of extracellular matrix.

  7. Effect of novobiocin on the viability of human gingival fibroblasts (HGF-1)

    PubMed Central

    2014-01-01

    Background Novobiocin is a coumarin antibiotic, which affects also eukaryotic cells inhibiting activity of Heat shock protein 90 (Hsp90). The Hsp90 represents a molecular chaperone critical for stabilization and activation of many proteins, particularly oncoproteins that drive cancer progression. Currently, Hsp90 inhibitors focus a significant attention since they form a potentially new class of drugs in therapy of cancer. However, in the process of tumorigenesis a significant role is played also by the microenvironment of the tumour, and, in particular, by cancer-associated fibroblasts (CAFs). This study aimed at examination of the effect played by novobiocin on viability of human gingival fibroblasts (HGF-1). Methods The studies were conducted using 24 h cultures of human gingival fibroblasts – HGF-1 (CRL-2014) in Chamber Slides, in presence of 0.1, 0.5, 1.0, 2.5 or 5.0 mM novobiocin. Cell viability was evaluated using fluorescence test, ATP assay and LDH release. Results Viability of HGF-1 was drastically reduced after 5 hour treatment with novobiocin in concentrations of 1 mM or higher. In turn, the percentage of LDH-releasing cells after 5 h did not differ from control value although it significantly increased after 10 h incubation with 1 mM and continued to increase till the 20th hour. Conclusions The obtained data indicate that novobiocin may induce death of human gingival fibroblasts. Therefore, application of the Hsp90 inhibitor in neoplastic therapy seems controversial: on one hand novobiocin reduces tumour-associated CAFs but, on the other, it may induce a significant destruction of periodontium. PMID:24887242

  8. Hepatocyte growth factor improves bone regeneration via the bone morphogenetic protein‑2‑mediated NF‑κB signaling pathway.

    PubMed

    Zhen, Ruixin; Yang, Jianing; Wang, Yu; Li, Yubo; Chen, Bin; Song, Youxin; Ma, Guiyun; Yang, Bo

    2018-04-01

    Bone regeneration is an important process associated with the treatment of osteonecrosis, which is caused by various factors. Hepatocyte growth factor (HGF) is an active biological factor that has multifunctional roles in cell biology, life sciences and clinical medicine. It has previously been suggested that bone morphogenetic protein (BMP)‑2 exerts beneficial roles in bone formation, repair and angiogenesis in the femoral head. The present study aimed to investigate the benefits and molecular mechanisms of HGF in bone regeneration. The viability of osteoblasts and osteoclasts were studied in vitro. In addition, the expression levels of tumor necrosis factor (TNF)‑α, monocyte chemotactic protein (MCP)‑1, interleukin (IL)‑1 and IL‑6 were detected in a mouse fracture model following treatment with HGF. The expression and activity of nuclear factor (NF)‑κB were also analyzed in osteocytes post‑treatment with HGF. Histological analysis was used to determine the therapeutic effects of HGF on mice with fractures. The migration and differentiation of osteoblasts and osteoclasts were investigated in HGF‑incubated cells. Furthermore, angiogenesis and BMP‑2 expression were analyzed in the mouse fracture model post‑treatment with HGF. The results indicated that HGF regulates the cell viability of osteoblasts and osteoclasts, and also balanced the ratio between osteoblasts and osteoclasts. In addition, HGF decreased the serum expression levels of TNF‑α, MCP‑1, IL‑1 and IL‑6 in experimental mice. The results of a mechanistic analysis demonstrated that HGF upregulated p65, IκB kinase‑β and IκBα expression in osteoblasts from experimental mice. In addition, the expression levels of vascular endothelial growth factor, BMP‑2 receptor, receptor activator of NF‑κB ligand and macrophage colony‑stimulating factor were upregulated by HGF, which may effectively promote blood vessel regeneration, and contribute to the formation and

  9. Mechanisms of Hepatocyte Growth Factor Activation in Cancer Tissues

    PubMed Central

    Kawaguchi, Makiko; Kataoka, Hiroaki

    2014-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) plays critical roles in cancer progression through its specific receptor, MET. HGF/SF is usually synthesized and secreted as an inactive proform (pro-HGF/SF) by stromal cells, such as fibroblasts. Several serine proteases are reported to convert pro-HGF/SF to mature HGF/SF and among these, HGF activator (HGFA) and matriptase are the most potent activators. Increased activities of both proteases have been observed in various cancers. HGFA is synthesized mainly by the liver and secreted as an inactive pro-form. In cancer tissues, pro-HGFA is likely activated by thrombin and/or human kallikrein 1-related peptidase (KLK)-4 and KLK-5. Matriptase is a type II transmembrane serine protease that is expressed by most epithelial cells and is also synthesized as an inactive zymogen. Matriptase activation is likely to be mediated by autoactivation or by other trypsin-like proteases. Recent studies revealed that matriptase autoactivation is promoted by an acidic environment. Given the mildly acidic extracellular environment of solid tumors, matriptase activation may, thus, be accelerated in the tumor microenvironment. HGFA and matriptase activities are regulated by HGFA inhibitor (HAI)-1 (HAI-1) and/or HAI-2 in the pericellular microenvironment. HAIs may have an important role in cancer cell biology by regulating HGF/SF-activating proteases. PMID:25268161

  10. The HGF/c-MET Axis as a Critical Driver of Resistance to Androgen Suppression in Metastatic Castrate-Resistant Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    HGF and/or various treatment doses of cabozantinib ( Cabo ) in MET high/AR-negative prostate cancer cells for 24 hours. Subtask 4: Assess whether c...multityrosine kinase inhibitor cabozantinib ( Cabo ) as indicated. Left panel is representative pictures of indicated treatment results by fluorescent...phospho-MET and total MET protein levels. (C) Invasion assays were performed in the presence of HGF and/or various treatment doses of cabozantinib ( Cabo

  11. The effect of hepatocyte growth factor on secretory functions in human eosinophils.

    PubMed

    Yamauchi, Yumiko; Ueki, Shigeharu; Konno, Yasunori; Ito, Wataru; Takeda, Masahide; Nakamura, Yuka; Nishikawa, Junko; Moritoki, Yuki; Omokawa, Ayumi; Saga, Tomoo; Hirokawa, Makoto

    2016-12-01

    Hepatocyte growth factor (HGF), originally identified as a potent mitogen for mature hepatocytes, is now recognized as a humoral mediator in inflammatory and immune responses. Previous studies indicated that HGF negatively regulated allergic airway inflammation. In view of eosinophils playing a role in the pathogenesis of asthma, especially in airway remodeling as a rich source of pro-fibrogenic mediators, the effects of HGF on the different types of eosinophil secretory functions were examined in this study. We found that HGF significantly inhibited IL-5-induced secretion of TGF-β and VEGF from human eosinophils. The inhibitory effect is not associated with TGF-β transcription; rather, it is associated with ultrastructural granule emptying and loss of intracellular TGF-β contents, indicating HGF inhibits the process of piecemeal degranulation. The effect of HGF on extracellular trap cell death (ETosis) that mediates cytolytic degranulation was also investigated; however, immobilized IgG- or phorbol myristate acetate-induced ETosis was only minimally attenuated by HGF. These results reveal the effect of HGF on the distinct pathways of eosinophil secretory functions and also provide novel insights into the role of HGF in the pathogenesis of allergic inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    PubMed

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-Ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  13. Human Hepatocyte Growth Factor Promotes Functional Recovery in Primates after Spinal Cord Injury

    PubMed Central

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI. PMID:22140459

  14. Peritumoral stromal remodeling, pattern of invasion and expression of c-met/HGF in advanced squamous cell carcinoma of the cervix uteri, FIGO stages III and IV.

    PubMed

    Horn, L-C; Hommel, N; Roschlau, U; Bilek, K; Hentschel, B; Einenkel, J

    2012-07-01

    Different patterns of invasion (PIs) have prognostic impact in several types of cancer and are associated with different grades of peritumoral stromal remodeling, characterized by the desmoplastic stromal response (DSR). One key regulator influencing cellular motility and peritumoral stromal response is c-met/HGF. This study evaluates the association between different PI, peritumoral DSR and its correlation to the expression of c-met/HGF in squamous cell carcinomas of the uterine cervix (CX). 131 advanced stage CX (FIGO III/IV) were re-evaluated histologically regarding PI, using a two-level scoring system. The tumor grows in solid cords/trabeculae in finger-like PI and in very small groups or single cells in spray-like PI. DSR was categorized as none/weak and moderate/strong. The tumors were stained with antibodies against c-met and HGF. The staining of >30% of tumor cells was defined as overexpression. The PI was correlated to the prognostic outcome, different categories of DSR and expression status of c-met and HGF. 66.4% of the tumors showed a finger-like, and 33.6% a spray-like PI. The spray-like PI showed a reduced two-year overall survival when compared to the finger-like PI (14.0% vs. 29.1%, respectively; p=0.012), and was associated with moderate/strong DSR. The majority of the tumors showed overexpression of c-met (85.4%) and HGF (74.8%). There was no correlation between the expression status of c-met/HGF and the FIGO stage, peritumoral DSR or the prognostic outcome. Spray-like PI is of prognostic impact in cervical carcinoma FIGO III/IV and is associated with strong peritumoral stromal remodeling. There is no prognostic impact of the immunohistochemical expression of c-met/HGF in advanced stage cervical carcinomas. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. c-Met and its ligand hepatocyte growth factor/scatter factor regulate mature B cell survival in a pathway induced by CD74.

    PubMed

    Gordin, Maya; Tesio, Melania; Cohen, Sivan; Gore, Yael; Lantner, Frida; Leng, Lin; Bucala, Richard; Shachar, Idit

    2010-08-15

    The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Durable B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism involved in mature B cell homeostasis, the hepatocyte growth factor/scatter factor (HGF)/c-Met pathway. We demonstrate that c-Met activation by HGF leads to a survival cascade, whereas its blockade results in induction of mature B cell death. Our results emphasize a unique and critical function for c-Met signaling in the previously described macrophage migration inhibitory factor/CD74-induced survival pathway. Macrophage migration inhibitory factor recruits c-Met to the CD74/CD44 complex and thereby enables the induction of a signaling cascade within the cell. This signal results in HGF secretion, which stimulates the survival of the mature B cell population in an autocrine manner. Thus, the CD74-HGF/c-Met axis defines a novel physiologic survival pathway in mature B cells, resulting in the control of the humoral immune response.

  16. Renoprotective effects of hepatocyte growth factor in the stenotic kidney

    PubMed Central

    Stewart, Nicholas

    2013-01-01

    Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renal artery stenosis (RAS). Hepatocyte growth factor (HGF) is a powerful angiogenic and antifibrotic cytokine that we showed to be decreased in the stenotic kidney. We hypothesized that renal HGF therapy will improve renal function mainly by protecting the renal microcirculation. Unilateral RAS was induced in 15 pigs. Six weeks later, single-kidney RBF and GFR were quantified in vivo using multidetector computed tomography (CT). Then, intrarenal rh-HGF or vehicle was randomly administered into the stenotic kidney (RAS, n = 8; RAS+HGF, n = 7). Pigs were observed for 4 additional weeks before CT studies were repeated. Renal MV density was quantified by 3D micro-CT ex vivo and histology, and expression of angiogenic and inflammatory factors, apoptosis, and fibrosis was determined. HGF therapy improved RBF and GFR compared with vehicle-treated pigs. This was accompanied by improved renal expression of angiogenic cytokines (VEGF, p-Akt) and tissue-healing promoters (SDF-1, CXCR4, MMP-9), reduced MV remodeling, apoptosis, and fibrosis, and attenuated renal inflammation. However, HGF therapy did not improve renal MV density, which was similarly reduced in RAS and RAS+HGF compared with controls. Using a clinically relevant animal model of RAS, we showed novel therapeutic effects of a targeted renal intervention. Our results show distinct actions on the existing renal microcirculation and promising renoprotective effects of HGF therapy in RAS. Furthermore, these effects imply plasticity of the stenotic kidney to recuperate its function and underscore the importance of MV integrity in the progression of renal injury in RAS. PMID:23269649

  17. [Proliferation of hepatocytes after delivery of exogenous hepatocyte growth factor gene].

    PubMed

    Lin, Yong; Xie, Wei fen; Chen, Wei-zhong; Zhang, Xin; Zeng, Xin; Chen, Yue-xiang; Yang, Xiu-jiang; Zhang, Zhong-bing

    2003-06-01

    To explore the proliferation of primary cultured rats hepatocytes after delivery of exogenous hepatocyte growth factor (HGF) gene which was inserted into the genome of replication-deficient recombinant adenovirus vector. The recombinant adenovirus-AdHGF which could express HGF was generated by homologous recombination. After the HGF gene was delivered into the hepatocytes, the expression of both HGF and c-met/HGF receptor mRNA in the cells was detected by RT-PCR and the level of HGF in the culture supernatant was also assayed by ELISA. On the other hand, cell proliferation was compared between before and after delivery of the HGF gene by MTS assay and the percentages of cell cycles were analyzed by flow cytometry. In addition, the expression of proliferating cell nuclear antigen (PCNA) was determined by immunocytofluorescent stain. 4 x 10(10) efu/ml titer of AdHGF was obtained after recombination, RT-PCR indicated that the expression of HGF mRNA in hepatocytes increased on the third day after infected by the viruses and c-met/HGF receptor mRNA was also up-regulated. The HGF level in the culture supernatant assayed by ELISA was (5,939.0+/-414.39) pg/ml, which was much higher than that in the control (208.1pg/ml+/-37.20pg/ml, F=13.661, P<0.01). In addition, the proliferation of hepatocytes infected with AdHGF increased significantly according to MTS method (F>or=15.158, P<0.01) and more hepatocytes in G0/G1 stages changed into S stage (chi2=41.616, P<0.01), accordingly, PCNA index increased from 6.42+/- 1.88 to 14.56+/-2.85 (F=42.122, P<0.01). show that HGF gene delivered into hepatocytes by AdHGF can be expressed with high efficiency in the cells, which can stimulate hepatocytes proliferation. It may be an effective tool for hepatocyte transplantation by gene modified donor hepatocytes.

  18. Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform

    PubMed Central

    Xu, Zhiyun; He, Tianrui; Li, Encheng; Guo, Zhe; Liu, Fen; Jiang, Chunmeng; Wang, Qi

    2015-01-01

    Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening. PMID:26115510

  19. Lipopolysaccharide potentiates the effect of hepatocyte growth factor on hepatocyte replication in rats by augmenting AP-1 activity.

    PubMed

    Gao, C; Jokerst, R; Gondipalli, P; Cai, S R; Kennedy, S; Flye, M W; Ponder, K P

    1999-12-01

    The liver regenerates by replication of differentiated hepatocytes after damage or removal of part of the liver. Although several growth factors and signaling pathways are activated during regeneration, it is unclear as to which of these are essential for hepatocyte replication. We show here that low- (1 mg/kg) and high- (10 mg/kg) dose hepatocyte growth factor (HGF) induced replication of 2.1% and 11.1% of hepatocytes in rats, respectively. Lipopolysaccharide (LPS), an inducer of the acute phase response, augmented hepatocyte replication in response to low- and high-dose HGF by 4- and 2-fold, respectively. HGF alone induced moderate levels of c-Jun-N-terminal kinase (JNK) and p44/p42 mitogen-activated protein kinase (MAPK), resulting in moderate levels of AP-1-DNA binding activity. The combination of LPS + HGF increased JNK and AP-1-DNA binding activity more than levels seen with LPS or HGF alone. The activation of Stat3 that was observed after administration of LPS + HGF, but not HGF alone, could contribute to increased transcription of AP-1 components. Because phosphorylation of the c-Jun component of AP-1 by JNK increases its ability to activate transcription, the AP-1 in hepatocytes from animals treated with LPS + HGF may be more active than in rats treated with LPS or HGF alone. LPS may contribute to hepatocyte replication by potentiating the effect of HGF on the activation of both AP-1-DNA binding and transcriptional activity.

  20. L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor.

    PubMed

    Bae, Sung Hae; Ryu, Hoon; Rhee, Ki-Jong; Oh, Ji-Eun; Baik, Soon Koo; Shim, Kwang Yong; Kong, Jee Hyun; Hyun, Shin Young; Pack, Hyun Sung; Im, Changjo; Shin, Ha Cheol; Kim, Yong Man; Kim, Hyun Soo; Eom, Young Woo; Lee, Jong In

    2015-04-01

    l-ascorbic acid 2-phosphate (Asc-2P) acts as an antioxidant and a stimulator of hepatocyte growth factor (HGF) production. Previously, we reported that depletion of growth factors such as fibroblast growth factor (FGF)-2, epidermal growth factor (EGF), FGF-4 and HGF during serial passage could induce autophagy, senescence and down-regulation of stemness (proliferation via FGF-2/-4 and differentiation via HGF). In this study, we investigated the proliferation and differentiation potential of BMSCs by FGF-2 and Asc-2P. Co-treatment with FGF-2 and Asc-2P induced optimal proliferation of BMSCs and increased the accumulation rate of BMSC numbers during a 2-month culture period. Moreover, differentiation potential was maintained by co-treatment with FGF-2 and Asc-2P via HGF expression. Adipogenic differentiation potential by FGF-2 and Asc-2P was dramatically suppressed by c-Met inhibitors (SU11274). These data suggest that co-treatment with FGF-2 and Asc-2P would be beneficial in obtaining BMSCs that possess "stemness" during long-term culture.

  1. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models.

    PubMed

    Ciamporcero, Eric; Miles, Kiersten Marie; Adelaiye, Remi; Ramakrishnan, Swathi; Shen, Li; Ku, ShengYu; Pizzimenti, Stefania; Sennino, Barbara; Barrera, Giuseppina; Pili, Roberto

    2015-01-01

    Alternative pathways to the VEGF, such as hepatocyte growth factor or HGF/c-met, are emerging as key players in tumor angiogenesis and resistance to anti-VEGF therapies. The aim of this study was to assess the effects of a combination strategy targeting the VEGF and c-met pathways in clear cell renal cell carcinoma (ccRCC) models. Male SCID mice (8/group) were implanted with 786-O tumor pieces and treated with either a selective VEGF receptor tyrosine kinase inhibitor, axitinib (36 mg/kg, 2×/day); a c-met inhibitor, crizotinib (25 mg/kg, 1×/day); or combination. We further tested this drug combination in a human ccRCC patient-derived xenograft, RP-R-01, in both VEGF-targeted therapy-sensitive and -resistant models. To evaluate the resistant phenotype, we established an RP-R-01 sunitinib-resistant model by continuous sunitinib treatment (60 mg/kg, 1×/day) of RP-R-01-bearing mice. Treatment with single-agent crizotinib reduced tumor vascularization but failed to inhibit tumor growth in either model, despite also a significant increase of c-met expression and phosphorylation in the sunitinib-resistant tumors. In contrast, axitinib treatment was effective in inhibiting angiogenesis and tumor growth in both models, with its antitumor effect significantly increased by the combined treatment with crizotinib, independently from c-met expression. Combination treatment also induced prolonged survival and significant tumor growth inhibition in the 786-O human RCC model. Overall, our results support the rationale for the clinical testing of combined VEGF and HGF/c-met pathway blockade in the treatment of ccRCC, both in first- and second-line setting. ©2014 American Association for Cancer Research.

  2. Imbalance in the pro-hepatocyte growth factor activation system in bleomycin-induced lung fibrosis in mice.

    PubMed

    Phin, Sophie; Marchand-Adam, Sylvain; Fabre, Aurélie; Marchal-Somme, Joëlle; Bantsimba-Malanda, Claudie; Kataoka, Hiroaki; Soler, Paul; Crestani, Bruno

    2010-03-01

    Hepatocyte growth factor (HGF) is a growth factor for alveolar epithelial cells. Activation of pro-HGF to HGF is regulated by the HGF activator (HGFA), a serine protease, and a specific inhibitor (HGFA inhibitor-1, HAI-1). An imbalance in the HGFA/HAI-1 system might contribute to lung fibrosis. Pro-HGF activation capacity from bronchoalveolar lavage (BAL) fluid was evaluated 3, 7, and 14 days after the intratracheal bleomycin injection (Bleo) in mice with or without thrombin. BAL fluid from naïve mice was used as control. HGFA and HAI-1 mRNA were evaluated by QPCR in the whole lung or by Western blot in BAL fluid. BAL fluid from control mice and Bleo mice activated pro-HGF in vitro at a similar degree. Thrombin accelerated proHGF activation by Bleo BAL on Day 3 and Day 7, but not on Day 14, or in control BAL. Incubation of pro-HGF with BAL from Bleo Day 3 and Day 7 mice increased phosphorylation of HGFR on A549 cells. Thrombin-induced pro-HGF activation was inhibited by an anti-HGFA antibody and accelerated by an anti-HAI-1 antibody. Active HGFA was not detected in control BAL and was strongly induced in Bleo BAL. HGFA concentrations were higher on Day 3 and Day 7 than on Day 14. HAI-1 was detected at low levels in control BAL and increased strongly by Day 3 with stable concentrations until Day 14. By demonstrating an imbalance between HGFA and HAI-1 expression in BAL fluid, our results highlight a defective thrombin-dependent proHGF activation system at the fibrotic phase of bleomycin-induced pulmonary fibrosis.

  3. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition.

    PubMed

    Yang, Junwei; Dai, Chunsun; Liu, Youhua

    2005-01-01

    Hepatocyte growth factor (HGF) is a potent antifibrotic cytokine that blocks tubular epithelial to mesenchymal transition (EMT) induced by TGF-beta1. However, the underlying mechanism remains largely unknown. This study investigated the signaling events that lead to HGF blockade of the TGF-beta1-initiated EMT. Incubation of human kidney epithelial cells HKC with HGF only marginally affected the expression of TGF-beta1 and its type I and type II receptors, suggesting that disruption of TGF-beta1 signaling likely plays a critical role in mediating HGF inhibition of TGF-beta1 action. However, HGF neither affected TGF-beta1-induced Smad-2 phosphorylation and its subsequent nuclear translocation nor influenced the expression of inhibitory Smad-6 and -7 in tubular epithelial cells. HGF specifically induced the expression of Smad transcriptional co-repressor SnoN but not Ski and TG-interacting factor at both mRNA and protein levels in HKC cells. SnoN physically interacted with activated Smad-2 by forming transcriptionally inactive complex and overrode the profibrotic action of TGF-beta1. In vivo, HGF did not affect Smad-2 activation and its nuclear accumulation in tubular epithelium, but it restored SnoN protein abundance in the fibrotic kidney in obstructive nephropathy. Hence, HGF blocks EMT by antagonizing TGF-beta1's action via upregulating Smad transcriptional co-repressor SnoN expression. These findings not only identify a novel mode of interaction between the signals activated by HGF receptor tyrosine kinase and TGF-beta receptor serine/threonine kinases but also illustrate the feasibility of confining Smad activity as an effective strategy for blocking renal fibrosis.

  4. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanbe, Takamasa; Murai, Rie; Mukoyama, Tomoyuki

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SR{alpha} promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells thanmore » in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.« less

  5. Cloning of a cancer cell-producing hepatocyte growth factor, vascular endothelial growth factor, and interleukin-8 from gastric cancer cells.

    PubMed

    Iwai, Mineko; Matsuda, Masahiko; Iwai, Yoshiaki

    2003-01-01

    A cell colony (IM95m) that produces hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) was cloned from gastric cancer cells (IM95 cell line). In culture medium, the highest levels of HGF, VEGF, and IL-8 were about 1.1, 0.9, and 0.17 ng/ml culture medium at 3 d from 10(5) cells. IM95m may be useful in elucidating the role of tumor cells in angiogenesis.

  6. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacymore » and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.« less

  7. Effects of hepatocyte growth factor in myocarditis rats induced by immunization with porcine cardiac myosin

    PubMed Central

    Nakano, Jota; Marui, Akira; Muranaka, Hiroyuki; Masumoto, Hidetoshi; Noma, Hisashi; Tabata, Yasuhiko; Ido, Akio; Tsubouchi, Hirohito; Ikeda, Tadashi; Sakata, Ryuzo

    2014-01-01

    OBJECTIVES Myocarditis is considered one of the major causes of dilated cardiomyopathy. Hepatocyte growth factor (HGF) has pleiotropic activities that promote tissue regeneration and facilitate functional improvement of injured tissue. We investigated whether the epicardial sustained-release of HGF, using gelatin hydrogel sheets, improves cardiac function in a chronic myocarditis rat model. METHODS Six weeks after Lewis rats were immunized with porcine cardiac myosin to establish autoimmune myocarditis, HGF- or normal saline (NS)-incorporated gelatin hydrogel sheets were applied to the epicardium (G-HGF and G-NS, respectively). At either 2 or 4 weeks after treatment, these were compared with the Control myocarditis group. Cardiac function was evaluated by echocardiography and cardiac catheterization. Development of fibrosis was determined by histological study and expression of transforming growth factor-β1 (TGF-β1). Bax and Bcl-2 levels were measured to evaluate apoptotic activity. RESULTS At both points, fractional shortening and end-systolic elastance were higher in the G-HGF group than in the Control and G-NS groups (P < 0.01). Fractional shortening at 2 weeks of each group were as follows: 31.0 ± 0.9%, 24.8 ± 2.7% and 48.6 ± 2.6% (Control, G-NS and G-HGF, respectively). The ratio of the fibrotic area of the myocardium was lower in the G-HGF group than in the Control and G-NS groups at 2 weeks (G-HGF, 8.8 ± 0.9%; Control, 17.5 ± 0.2%; G-NS, 15.6 ± 0.7%; P < 0.01). The ratio at 4 weeks was lower in the G-HGF group than in the G-NS group (10.9 ± 1.4% vs 18.5 ± 1.3%; P < 0.01). The mRNA expression of TGF-β1 in the G-HGF group was lower than in the Control group at 2 weeks (0.6 ± 0.1 vs 1.1 ± 0.2) and lower than that in the G-NS group at 4 weeks (0.7 ± 0.1 vs 1.3 ± 0.2). The Bax-to-Bcl-2 ratios at both points were lower in the G-HGF group than in the Control group. CONCLUSIONS Sustained-released HGF markedly improves cardiac function in chronic

  8. Cancer-associated fibroblasts promote epithelial-mesenchymal transition and EGFR-TKI resistance of non-small cell lung cancers via HGF/IGF-1/ANXA2 signaling.

    PubMed

    Yi, Yanmei; Zeng, Shanshan; Wang, Zhaotong; Wu, Minhua; Ma, Yuanhuan; Ye, Xiaoxia; Zhang, Biao; Liu, Hao

    2018-03-01

    The involvement of the tumor stromal cells in acquired resistance of non-small cell lung cancers (NSCLCs) to tyrosine kinase inhibitors (TKIs) has previously been reported, but the precise mechanism remains unclear. In the present study, we investigated the role and mechanism underlying Cancer-associated fibroblasts (CAFs) in TKI resistance of NSCLCs. In vitro and in vivo experiments showed that HCC827 and PC9 cells, non-small cell lung cancer cells with EGFR-activating mutations, became resistant to the EGFR-TKI gefitinib when cultured with CAFs isolated from NSCLC tissues. Moreover, we showed that CAFs could induce epithelial-mesenchymal transition (EMT) phenotype of HCC827 and PC9 cells, with an associated change in the expression of epithelial to mesenchymal transition markers. Using proteomics-based method, we identified that CAFs significantly increased the expression of the Annexin A2 (ANXA2). More importantly, knockdown of ANXA2 completely reversed EMT phenotype and gefitinib resistance induced by CAFs. Furthermore, we found that CAFs increased the expression and phosphorylation of ANXA2 by secretion of growth factors HGF and IGF-1 and by activation of the corresponding receptors c-met and IGF-1R. Dual inhibition of HGF/c-met and IGF-1/IGF-1R pathways could significantly suppress ANXA2, and markedly reduced CAFs-induced EMT and gefitinib resistance. Taken together, these findings indicate that CAFs promote EGFR-TKIs resistance through HGF/IGF-1/ANXA2/EMT signaling and may be an ideal therapeutic target in NSCLCs with EGFR-activating mutations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system.

    PubMed

    Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A

    2004-08-01

    In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.

  10. Changes in serum growth factors in stroke rehabilitation patients and their relation to hemiparesis improvement.

    PubMed

    Okazaki, Hideto; Beppu, Hidehiko; Mizutani, Kenmei; Okamoto, Sayaka; Sonoda, Shigeru

    2014-07-01

    Predicting recovery from hemiparesis after stroke is important for rehabilitation. A few recent studies reported that the levels of some growth factors shortly after stroke were positively correlated with the clinical outcomes during the chronic phase. The aim of this study was to examine the relationships between the serum levels of growth factors (vascular endothelial growth factor [VEGF], insulin-like growth factor-I [IGF-I], and hepatocyte growth factor [HGF]) and improvement in hemiparesis in stroke patients who received rehabilitation in a postacute rehabilitation hospital. Subjects were 32 stroke patients (cerebral infarction: 21 and intracerebral hemorrhage [ICH]: 11). We measured serum levels of VEGF, IGF-I, and HGF and 5 items of the Stroke Impairment Assessment Set (SIAS) for hemiparesis on admission and at discharge. Age-matched healthy subjects (n=15) served as controls. Serum levels of VEGF and HGF in cerebral infarct patients on admission were higher than those in control subjects, and the serum levels of IGF-I in stroke patients were lower than those in controls. The level of HGF in ICH patients on admission was negatively correlated with gains in SIAS, and higher outliers in HGF concentration were correlated with lower gains in SIAS. Focusing on the extremely high levels of these factors may be a predictor of the low recovery from hemiparesis after stroke. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  11. Serum Hepatocyte Growth Factor Is Probably Associated With 3-Month Prognosis of Acute Ischemic Stroke.

    PubMed

    Zhu, Zhengbao; Xu, Tan; Guo, Daoxia; Huangfu, Xinfeng; Zhong, Chongke; Yang, Jingyuan; Wang, Aili; Chen, Chung-Shiuan; Peng, Yanbo; Xu, Tian; Wang, Jinchao; Sun, Yingxian; Peng, Hao; Li, Qunwei; Ju, Zhong; Geng, Deqin; Chen, Jing; Zhang, Yonghong; He, Jiang

    2018-02-01

    Serum hepatocyte growth factor (HGF) is positively associated with poor prognosis of heart failure and myocardial infarction, and it can also predict the risk of ischemic stroke in population. The goal of this study was to investigate the association between serum HGF and prognosis of ischemic stroke. A total of 3027 acute ischemic stroke patients were included in this post hoc analysis of the CATIS (China Antihypertensive Trial in Acute Ischemic Stroke). The primary outcome was composite outcome of death or major disability (modified Rankin Scale score ≥3) within 3 months. After multivariate adjustment, elevated HGF levels were associated with an increased risk of primary outcome (odds ratio, 1.50; 95% confidence interval, 1.10-2.03; P trend =0.015) when 2 extreme quartiles were compared. Each SD increase of log-transformed HGF was associated with 14% (95% confidence interval, 2%-27%) increased risk of primary outcome. Adding HGF quartiles to a model containing conventional risk factors improved the predictive power for primary outcome (net reclassification improvement: 17.50%, P <0.001; integrated discrimination index: 0.23%, P =0.022). The association between serum HGF and primary outcome could be modified by heparin pre-treatment ( P interaction =0.001), and a positive linear dose-response relationship between HGF and primary outcome was observed in patients without heparin pre-treatment ( P linearity <0.001) but not in those with heparin pre-treatment. Serum HGF levels were higher in the more severe stroke at baseline, and elevated HGF levels were probably associated with 3-month poor prognosis independently of stroke severity among ischemic stroke patients, especially in those without heparin pre-treatment. Further studies from other samples of ischemic stroke patients are needed to validate our findings. © 2018 American Heart Association, Inc.

  12. Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury.

    PubMed

    Trapp, Thorsten; Kögler, Gesine; El-Khattouti, Abdelouahid; Sorg, Rüdiger V; Besselmann, Michael; Föcking, Melanie; Bührle, Christian P; Trompeter, Ingo; Fischer, Johannes C; Wernet, Peter

    2008-11-21

    An under-agarose chemotaxis assay was used to investigate whether unrestricted somatic stem cells (USSC) that were recently characterized in human cord blood are attracted by neuronal injury in vitro. USSC migrated toward extracts of post-ischemic brain tissue of mice in which stroke had been induced. Moreover, apoptotic neurons secrete factors that strongly attracted USSC, whereas necrotic and healthy neurons did not. Investigating the expression of growth factors and chemokines in lesioned brain tissue and neurons and of their respective receptors in USSC revealed expression of hepatocyte growth factor (HGF) in post-ischemic brain and in apoptotic but not in necrotic neurons and of the HGF receptor c-MET in USSC. Neuronal lesion-triggered migration was observed in vitro and in vivo only when c-MET was expressed at a high level in USSC. Neutralization of the bioactivity of HGF with an antibody inhibited migration of USSC toward neuronal injury. This, together with the finding that human recombinant HGF attracts USSC, document that HGF signaling is necessary for the tropism of USSC for neuronal injury. Our data demonstrate that USSC have the capacity to migrate toward apoptotic neurons and injured brain. Together with their neural differentiation potential, this suggests a neuroregenerative potential of USSC. Moreover, we provide evidence for a hitherto unrecognized pivotal role of the HGF/c-MET axis in guiding stem cells toward brain injury, which may partly account for the capability of HGF to improve function in the diseased central nervous system.

  13. Trans-Ethnic Meta-Analysis Identifies Common and Rare Variants Associated with Hepatocyte Growth Factor Levels in the Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Larson, Nicholas B.; Berardi, Cecilia; Decker, Paul A.; Wassel, Christina L.; Kirsch, Phillip S.; Pankow, James S.; Sale, Michele M.; de Andrade, Mariza; Sicotte, Hugues; Tang, Weihong; Hanson, Naomi Q.; Tsai, Michael Y.; Taylor, Kent D.; Bielinski, Suzette J.

    2015-01-01

    Summary Hepatocyte growth factor (HGF) is a mesenchyme-derived pleiotropic factor that regulates cell growth, motility, mitogenesis, and morphogenesis in a variety of cells, and increased serum levels of HGF have been linked to a number of clinical and subclinical cardiovascular disease phenotypes. However, little is currently known regarding what genetic factors influence HGF levels, despite evidence of substantial genetic contributions to HGF variation. Based upon ethnicity-stratified single-variant association analysis and trans-ethnic meta-analysis of 6201 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we discovered five statistically significant common and low-frequency variants: HGF missense polymorphism rs5745687 (p.E299K) as well as four variants (rs16844364, rs4690098, rs114303452, rs3748034) within or in proximity to HGFAC. We also identified two significant ethnicity-specific gene-level associations (A1BG in African Americans; FASN in Chinese Americans) based upon low-frequency/rare variants, while meta-analysis of gene-level results identified a significant association for HGFAC. However, identified single-variant associations explained modest proportions of the total trait variation and were not significantly associated with coronary artery calcium or coronary heart disease. Our findings indicate genetic factors influencing circulating HGF levels may be complex and ethnically diverse. PMID:25998175

  14. Hepatocyte growth factor regulates cyclooxygenase-2 expression via β-catenin, Akt, and p42/p44 MAPK in human bronchial epithelial cells

    PubMed Central

    Lee, Young H.; Suzuki, Yuichiro J.; Griffin, Autumn J.; Day, Regina M.

    2008-01-01

    Hepatocyte growth factor (HGF) is upregulated in response to lung injury and has been implicated in tissue repair through its antiapoptotic and proliferative activities. Cyclooxygenase-2 (COX-2) is an inducible enzyme in the biosynthetic pathway of prostaglandins, and its activation has been shown to play a role in cell growth. Here, we report that HGF induces gene transcription of COX-2 in human bronchial epithelial cells (HBEpC). Treatment of HBEpC with HGF resulted in phosphorylation of the HGF receptor (c-Met), activation of Akt, and upregulation of COX-2 mRNA. Adenovirus-mediated gene transfer of a dominant negative (DN) Akt mutant revealed that HGF increased COX-2 mRNA in an Akt-dependent manner. COX-2 promoter analysis in luciferase reporter constructs showed that HGF regulation required the β-catenin-responsive T cell factor-4 binding element (TBE). The HGF activation of the COX-2 gene transcription was blocked by DN mutant of β-catenin or by inhibitors that blocked activation of Akt. Inhibition of p42/p44 MAPK pathway blocked HGF-mediated activation of β-catenin gene transcription but not Akt activation, suggesting that p42/p44 MAPK acts in a parallel mechanism for β-catenin activation. We also found that inhibition of COX-2 with NS-398 blocked HGF-induced growth in HBEpC. Together, the results show that the HGF increases COX-2 gene expression via an Akt-, MAPK-, and β-catenin-dependent pathway in HBEpC. PMID:18245266

  15. Hepatocyte growth factor acts as a mitogen for equine satellite cells via protein kinase C δ directed signaling.

    PubMed

    Brandt, Amanda M; Kania, Joanna M; Gonzalez, Madison L; Johnson, Sally E

    2018-06-16

    Hepatocyte growth factor (HGF) signals mediate mouse skeletal muscle stem cell, or satellite cell (SC), reentry into the cell cycle and myoblast proliferation. Because the athletic horse experiences exercise-induced muscle damage, the objective of the experiment was to determine the effect of HGF on equine SC (eqSC) bioactivity. Fresh isolates of adult eqSC were incubated with increasing concentrations of HGF and the initial time to DNA synthesis was measured. Media supplementation with HGF did not shorten (P > 0.05) the duration of G0/G1 transition suggesting the growth factor does not affect activation. Treatment with 25 ng/mL HGF increased (P < 0.05) eqSC proliferation that was coincident with phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and AKT serine/threonine kinase 1 (AKT1). Chemical inhibition of the upstream effectors of ERK1/2 or AKT1 elicited no effect (P > 0.05) on HGF-mediated EdU incorporation. By contrast, treatment of eqSC with 2 µm Gö6983, a pan-protein kinase C (PKC) inhibitor, blocked (P < 0.05) HGF-initiated mitotic activity. Gene expression analysis revealed that eqSC express PKCα, -δ and -ε isoforms. Knockdown of PKCδ with a small interfering RNA (siRNA) prevented (P > 0.05) HGF-mediated EdU incorporation. The siPKCδ was specific to the kinase and did not affect (P > 0.05) expression of either PKCα or PKCε. Treatment of confluent eqSCs with 25 ng/mL HGF suppressed (P < 0.05) nuclear myogenin expression during the early stages of differentiation. These results demonstrate that HGF may not affect activation but can act as a mitogen and modest suppressor of differentiation.

  16. Hepatocyte growth factor demonstrates racial heterogeneity as a biomarker for coronary heart disease.

    PubMed

    Bielinski, Suzette J; Berardi, Cecilia; Decker, Paul A; Larson, Nicholas B; Bell, Elizabeth J; Pankow, James S; Sale, Michele M; Tang, Weihong; Hanson, Naomi Q; Wassel, Christina L; de Andrade, Mariza; Budoff, Matthew J; Polak, Joseph F; Sicotte, Hugues; Tsai, Michael Y

    2017-08-01

    To determine if hepatocyte growth factor (HGF), a promising biomarker of coronary heart disease (CHD) given its release into circulation in response to endothelial damage, is associated with subclinical and clinical CHD in a racial/ethnic diverse population. HGF was measured in 6738 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Highest mean HGF values (pg/mL) were observed in Hispanic, followed by African, non-Hispanic white, then Chinese Americans. In all races/ethnicities, HGF levels were associated with older age, higher systolic blood pressure (SBP) and body mass index, lower high-density lipoprotein, diabetes and current smoking. In fully adjusted models, each SD higher HGF was associated with an average increase in coronary artery calcium (CAC) of 55 Agatston units for non-Hispanic whites (p<0.001) and 51 Agatston units for African-Americans (p=0.007) but was not in the other race/ethnic groups (interaction p=0.02). There were 529 incident CHD events, and CHD risk was 41% higher in African (p<0.001), 17% in non-Hispanic white (p=0.026) and Chinese (p=0.36), and 6% in Hispanic Americans (p=0.56) per SD increase in HGF. In a large and diverse population-based cohort, we report that HGF is associated with subclinical and incident CHD. We demonstrate evidence of racial/ethnic heterogeneity within these associations, as the results are most compelling in African-Americans and non-Hispanic white Americans. We provide evidence that HGF is a biomarker of atherosclerotic disease that is independent of traditional risk factors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. MEK, p38, and PI-3K mediate cross talk between EGFR and TNFR in enhancing hepatocyte growth factor production from human mesenchymal stem cells

    PubMed Central

    Wang, Yue; Weil, Brent R.; Herrmann, Jeremy L.; Abarbanell, Aaron M.; Tan, Jiangning; Markel, Troy A.; Kelly, Megan L.

    2009-01-01

    Human bone marrow mesenchymal stem cells (MSCs) are a potent source of growth factors, which are partly responsible for their beneficial paracrine effects. We reported previously that transforming growth factor-α (TGF-α), a putative mediator of wound healing and the injury response, increases the release of vascular endothelial growth factor (VEGF), augments tumor necrosis factor-α (TNF-α)-stimulated VEGF production, and activates mitogen-activated protein kinases and phosphatidylinositol 3-kinase (PI-3K) pathway in human MSCs. The experiments described in this report indicate that TGF-α increases MSC-derived hepatocyte growth factor (HGF) production. TGF-α-stimulated HGF production was abolished by inhibition of MEK, p38, PI-3K, or by small interfering RNA (siRNA) targeting TNF receptor 2 (TNFR2), but was not attenuated by siRNA targeting TNF receptor 1 (TNFR1). Ablation of TNFR1 significantly increased basal and stimulated HGF. A potent synergy between TGF-α and TNF-α was noted in MSC HGF production. This synergistic effect was abolished by MEK, P38, PI-3K inhibition, or by ablation of both TNF receptors using siRNA. We conclude that 1) novel cross talk occurs between tumor necrosis factor receptor and TGF-α/epidermal growth factor receptor in stimulating MSC HGF production; 2) this cross talk is mediated, at least partially, via activation of MEK, p38, and PI-3K; 3) TGF-α stimulates MSCs to produce HGF by MEK, p38, PI-3K, and TNFR2-dependent mechanisms; and 4) TNFR1 acts to decrease basal TGF-α and TNF-α-stimulated HGF. PMID:19692652

  18. Hepatocyte growth factor enhances the inflammation-alleviating effect of umbilical cord-derived mesenchymal stromal cells in a bronchiolitis obliterans model.

    PubMed

    Cao, Xiao-Pei; Han, Dong-Mei; Zhao, Li; Guo, Zi-Kuan; Xiao, Feng-Jun; Zhang, Yi-Kun; Zhang, Xiao-Yan; Wang, Li-Sheng; Wang, Heng-Xiang; Wang, Hua

    2016-03-01

    Specific and effective therapy for prevention or reversal of bronchiolitis obliterans (BO) is lacking. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF) gene modified mesenchymal stromal cells (MSCs) on BO. A mouse model of experimental BO was established by subcutaneously transplanting the tracheas from C57BL/6 mice into Balb/C recipients, which were then administered saline, Ad-HGF-modified human umbilical cord-MSCs (MSCs-HGF) or Ad-Null-modified MSCs (MSCs-Null). The therapeutic effects of MSCs-Null and MSCs-HGF were evaluated by using fluorescence-activated cell sorting (FACS) for lymphocyte immunophenotype of spleen, enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (rt-PCR) for cytokine expression, and histopathological analysis for the transplanted trachea. The histopathologic recovery of allograft tracheas was improved significantly after MSCs-Null and MSCs-HGF treatment and the beneficial effects were particularly observed in MSCs-HGF-treated mice. Furthermore, the allo-transplantation-induced immunophenotype disorders of the spleen, including regulatory T (Treg), T helper (Th)1, Th2 and Th17, were attenuated in both cell-treated groups. MSCs-HGF treatment reduced expression and secretion of inflammation cytokines interferon-gamma (IFN-γ), and increased expression of anti-inflammatory cytokine interleukin (IL)-4 and IL-10. It also decreased the expression level of the profibrosis factor transforming growth factor (TGF)-β. Treatment of BO with HGF gene modified MSCs results in reduction of local inflammation and promotion in recovery of allograft trachea histopathology. These findings might provide an effective therapeutic strategy for BO. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures.

    PubMed Central

    Joaquin, M; Rosa, J L; Salvadó, C; López, S; Nakamura, T; Bartrons, R; Gil, J; Tauler, A

    1996-01-01

    Hepatocyte growth factor (HGF) and transforming growth factor beta (TGF-beta) are believed to be of major importance for hepatic regeneration after liver damage. We have studied the effect of these growth factors on fructose 2,6-bisphosphate (Fru-2,6-P2) levels and the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/Fru-2,6-BPase) in rat hepatocyte primary cultures. Our results demonstrate that HGF activates the expression of the 6PF2K/Fru-2,6-BPase gene by increasing the levels of its mRNA. As a consequence of this activation, the amount of 6PF2K/Fru-2,6-BPase protein and 6-phosphofructo-2-kinase activity increased, which was reflected by a rise in Fru-2,6-P2 levels. In contrast, TGF-beta decreased the levels of 6PF2K/Fru-2,6-BPase mRNA, which led to a decrease in the amount of 6PF2K/Fru-2,6-BPase protein and Fru-2,6-P2. The different actions of HGF and TGF-beta on 6PF2K/Fru-2,6-BPase gene expression are concomitant with their effect on cell proliferation. Here we show that, in the absence of hormones, primary cultures of hepatocytes express the F-type isoenzyme. In addition, HGF increases the expression of this isoenzyme, and dexamethasone activates the L-type isoform. HGF and TGF-beta were able to inhibit this activation. PMID:8660288

  20. Anti-apoptotic Role of Caspase-cleaved GAB1 Adaptor Protein in Hepatocyte Growth Factor/Scatter Factor-MET Receptor Protein Signaling*

    PubMed Central

    Le Goff, Arnaud; Ji, Zongling; Leclercq, Bérénice; Bourette, Roland P.; Mougel, Alexandra; Guerardel, Cateline; de Launoit, Yvan; Vicogne, Jérôme; Goormachtigh, Gautier; Fafeur, Véronique

    2012-01-01

    The GRB2-associated binder 1 (GAB1) docking/scaffold protein is a key mediator of the MET-tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). Activated MET promotes recruitment and tyrosine phosphorylation of GAB1, which in turn recruits multiple proteins and mediates MET signaling leading to cell survival, motility, and morphogenesis. We previously reported that, without its ligand, MET is a functional caspase target during apoptosis, allowing the generation of a p40-MET fragment that amplifies apoptosis. In this study we established that GAB1 is also a functional caspase target by evidencing a caspase-cleaved p35-GAB1 fragment that contains the MET binding domain. GAB1 is cleaved by caspases before MET, and the resulting p35-GAB1 fragment is phosphorylated by MET upon HGF/SF binding and can interact with a subset of GAB1 partners, PI3K, and GRB2 but not with SHP2. This p35-GAB1 fragment favors cell survival by maintaining HGF/SF-induced MET activation of AKT and by hindering p40-MET pro-apoptotic function. These data demonstrate an anti-apoptotic role of caspase-cleaved GAB1 in HGF/SF-MET signaling. PMID:22915589

  1. Circulating level of hepatocyte growth factor predicts incidence of type 2 diabetes mellitus: The Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Bancks, Michael P.; Bielinski, Suzette J.; Decker, Paul A.; Hanson, Naomi Q.; Larson, Nicholas B.; Sicotte, Hugues; Wassel, Christina L.; Pankow, James S.

    2016-01-01

    Background Hepatocyte growth factor (HGF) is a pleotropic factor posited to have metabolic homeostatic properties. The purpose of this study is to examine whether level of HGF is associated with the development of type 2 diabetes. Methods Data from the Multi-Ethnic Study of Atherosclerosis (MESA) were used to examine the prospective association between serum level of HGF and incident diabetes. Fasting HGF was measured at Exam 1 (2000–2002) in 5395 participants free from diabetes (61.5 ± 10.2 years old) and incidence of diabetes was determined at four subsequent follow-up exams over 12 years. Hazard ratios (HR) for incident diabetes were estimated according to 1 standard deviation (SD) unit increment of HGF (1 SD =26 μg/l), before and after adjustment for age, sex, race/ethnicity, education, study center, smoking status, alcohol consumption, body mass index, waist circumference, fasting glucose and insulin, C-reactive protein, and interleukin-6 levels. Results A 1 SD increment of baseline HGF was associated with a 46% (95% CI =1.37, 1.56) increased risk of diabetes before adjustment. After adjustment, diabetes risk per 1 SD increment of HGF was attenuated but remained significantly increased (HR=1.21; 95% CI=1.12, 1.32). Men had a significantly greater HR compared to women per equivalent increase of HGF (p-value for sex interaction=0.04). There was no evidence of effect modification by race/ethnicity. Conclusions This study advances understanding from cross-sectional studies and investigation of incident insulin resistance, demonstrating higher level of HGF is associated with incident diabetes and may reflect a unique type of impaired metabolism. PMID:26892517

  2. Circulating level of hepatocyte growth factor predicts incidence of type 2 diabetes mellitus: The Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    Bancks, Michael P; Bielinski, Suzette J; Decker, Paul A; Hanson, Naomi Q; Larson, Nicholas B; Sicotte, Hugues; Wassel, Christina L; Pankow, James S

    2016-03-01

    Hepatocyte growth factor (HGF) is a pleotropic factor posited to have metabolic homeostatic properties. The purpose of this study is to examine whether level of HGF is associated with the development of type 2 diabetes. Data from the Multi-Ethnic Study of Atherosclerosis (MESA) were used to examine the prospective association between serum level of HGF and incident diabetes. Fasting HGF was measured at Exam 1 (2000-2002) in 5395 participants free from diabetes (61.5±10.2 years old) and incidence of diabetes was determined at four subsequent follow-up exams over 12 years. Hazard ratios (HR) for incident diabetes were estimated according to 1 standard deviation (SD) unit increment of HGF (1 SD=26 μg/l), before and after adjustment for age, sex, race/ethnicity, education, study center, smoking status, alcohol consumption, body mass index, waist circumference, fasting glucose and insulin, C-reactive protein, and interleukin-6 levels. A 1 SD increment of baseline HGF was associated with a 46% (95% CI=1.37, 1.56) increased risk of diabetes before adjustment. After adjustment, diabetes risk per 1 SD increment of HGF was attenuated but remained significantly increased (HR=1.21; 95% CI=1.12, 1.32). Men had a significantly greater HR compared to women per equivalent increase of HGF (p-value for sex interaction=0.04). There was no evidence of effect modification by race/ethnicity. This study advances understanding from cross-sectional studies and investigation of incident insulin resistance, demonstrating higher level of HGF is associated with incident diabetes and may reflect a unique type of impaired metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Increase in the circulating level of hepatocyte growth factor in pancreatic cancer patients.

    PubMed

    Kemik, Ozgur; Purisa, Sevim; Kemik, Ahu Sarbay; Tuzun, Sefa

    2009-01-01

    Hepatocyte growth factor (HGF) has been reported the cause of many biological events, including cell proliferation, invasiveness, morphogenesis, and angiogenesis. Elevated HGF content in tumor tissue was reported to predict a more aggressive biology in breast and gastric cancer patients. Eighty patients with invasive pancreatic cancer investigated. Venous blood samples were collected before the surgery. Sera were obtained by centrifugation and stored at -70 degrees C until assayed. The control group created from healthy individuals. Serum concentrations of soluble HGF were measured by the quantitative sandwich enzyme immunoassay technique. The mean value of serum soluble HGF in patients with invasive pancreatic cancer was 497.2 +/- 53.8 pg/ml and that of control group was 53.6 +/- 7.5 pg/ml and the difference was significant (p < 0.001). The serum levels of soluble HGF might reflect the severity of invasive pancreatic cancer and deserve further evaluation (Tab. 2, Ref. 19). Full Text (Free, PDF) www.bmj.sk.

  4. Preventive effects of the deleted form of hepatocyte growth factor against various liver injuries.

    PubMed

    Masunaga, H; Fujise, N; Shiota, A; Ogawa, H; Sato, Y; Imai, E; Yasuda, H; Higashio, K

    1998-01-26

    The effects of a naturally occurring deleted form of hepatocyte growth factor (HGF) on hepatic disorder were studied in various models of hepatic failure. The pretreatment of rats and mice with the deleted form of HGF prevented the liver injuries and coagulopathy induced by endotoxin, dimethylnitrosamine and acetaminophen and reduced the mortality due to hepatic dysfunction induced by these hepatotoxins. The concurrent administration of the deleted form of HGF also prevented the liver injury and hepatic fibrosis in mice treated with alpha-naphthylisothiocyanate and in rats treated with dimethylnitrosamine. Moreover, the deleted form of HGF normalized the results of the bromosulphalein-clearance test and ameliorated jaundice in rats with periportal cholangiolitic hepatopathy induced by alpha-naphthylisothiocyanate. The deleted form of HGF also reversed the coagulopathy in rats with hepatic disorder induced by dimethylnitrosamine or by 70% resection of cirrhotic liver (induced by carbon tetrachloride). In Long Evans cinnamon rats receiving vehicle, 20 out of 21 animals died within 4 days after the onset of jaundice. After infusion of the deleted form of HGF for 4 days, 7 out of 20 Long-Evans cinnamon rats survived. These results indicate that the deleted form of HGF could have therapeutic potency in patients with severe hepatic failure.

  5. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Liyan; Liu, Xiaolin; Zhang, Yuelin

    Poor cell survival post transplantation compromises the therapeutic benefits of mesenchymal stem cells (MSCs) in myocardial infarction (MI). Hepatocyte growth factor (HGF) is an important cytokine for angiogenesis, anti-inflammation and anti-apoptosis. This study aimed to evaluate the cardioprotective effects of MSCs overexpressing HGF in a mouse model of MI. The apoptosis of umbilical cord-derived MSCs (UC-MSCs) and HGF-UC-MSCs under normoxic and hypoxic conditions was detected. The conditioned medium (CdM) of UC-MSCs and HGF-UC-MSCs under a hypoxic condition was harvested and its protective effect on neonatal cardiomyocytes (NCMs) exposed to a hypoxic challenge was examined. UC-MSCs and HGF-UC-MSCs were transplanted intomore » the peri-infarct region in mice following MI and heart function assessed 4 weeks post transplantation. The apoptosis of HGF-UC-MSCs under hypoxic conditions was markedly decreased compared with that of UC-MSCs. NCMs treated with HGF-UC-MSC hypoxic CdM (HGF-UC-MSCs-hy-CdM) exhibited less cell apoptosis in response to hypoxic challenge than those treated with UC-MSC hypoxic CdM (UC-MSCs-hy-CdM). HGF-UC-MSCs-hy-CdM released the inhibited p-Akt and lowered the enhanced ratio of Bax/Bcl-2 induced by hypoxia in the NCMs. HGF-UC-MSCs-hy-CdM expressed higher levels of HGF, EGF, bFGF and VEGF than UC-MSCs-hy-CdM. Transplantation of HGF-UC-MSCs or UC-MSCs greatly improved heart function in the mouse model of MI. Compared with UC-MSCs, transplantation of HGF-UC-MSCs was associated with less cardiomyocyte apoptosis, enhanced angiogenesis and increased proliferation of cardiomyocytes. This study may provide a novel therapeutic strategy for MSC-based therapy in cardiovascular disease.« less

  6. Effect of hepatocyte growth factor on endogenous hepatocarcinogenesis in rats fed a choline-deficient L-amino acid-defined diet.

    PubMed

    Nakanishi, Chihiro; Moriuchi, Akihiro; Ido, Akio; Numata, Masatsugu; Kim, Il-Deok; Kusumoto, Kazunori; Hasuike, Satoru; Abe, Hiroo; Nagata, Kenji; Akiyama, Yutaka; Uto, Hirofumi; Kataoka, Hiroaki; Tsubouchi, Hirohito

    2006-07-01

    Hepatocyte growth factor (HGF) is a promising agent for the treatment of intractable liver disease, due to its mitogenic, anti-apoptotic, and anti-fibrotic effects. We investigated the effect of recombinant human HGF (rh-HGF) on the development of both hepatocellular carcinoma (HCC) and preneoplastic nodules in rats fed a choline-deficient L-amino acid-defined (CDAA) diet, an animal model of hepatocarcinogenesis resembling human development of HCC with cirrhosis. From weeks 13 to 48 of the CDAA diet, rh-HGF (0.1 or 0.5 mg/kg/day) was administered intravenously to rats in four-week cycles, with treatment for five consecutive days of each week for two weeks, followed by a two-week washout period. Treatment with rh-HGF significantly inhibited the development of preneoplastic nodules in a dose-dependent manner at 24 weeks. Although the numbers and areas of the preneoplastic nodules in rats treated with rh-HGF were equivalent to those in mock-treated rats by 60 weeks, the incidence of HCC was reduced by HGF treatment. Although one rat treated with low-dose rh-HGF exhibited a massive HCC, which occupied almost the whole liver, and lung metastases, HGF treatment did not increase the overall frequency of HCC. Administration of high-dose rh-HGF, however, induced an increase in the urinary excretion of albumin, leading to decreased serum albumin at 60 weeks. These results indicate that long-term administration of rh-HGF does not accelerate hepatocarcinogenesis in rats fed a CDAA diet. However, these findings do not completely exclude the potential of HGF-induced hepatocarcinogenesis; this issue must be resolved before rh-HGF can be used for patients with intractable liver diseases, especially those with cirrhosis.

  7. Hepatitis A complicated with acute renal failure and high hepatocyte growth factor: A case report.

    PubMed

    Oe, Shinji; Shibata, Michihiko; Miyagawa, Koichiro; Honma, Yuichi; Hiura, Masaaki; Abe, Shintaro; Harada, Masaru

    2015-08-28

    A 58-year-old man was admitted to our hospital. Laboratory data showed severe liver injury and that the patient was positive for immunoglobulin M anti-hepatitis A virus (HAV) antibodies. He was also complicated with severe renal dysfunction and had an extremely high level of serum hepatocyte growth factor (HGF). Therefore, he was diagnosed with severe acute liver failure with acute renal failure (ARF) caused by HAV infection. Prognosis was expected to be poor because of complications by ARF and high serum HGF. However, liver and renal functions both improved rapidly without intensive treatment, and he was subsequently discharged from our hospital on the 21(st) hospital day. Although complication with ARF and high levels of serum HGF are both important factors predicting poor prognosis in acute liver failure patients, the present case achieved a favorable outcome. Endogenous HGF might play an important role as a regenerative effector in injured livers and kidneys.

  8. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression.

    PubMed

    Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R

    2006-01-01

    Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.

  9. Hepatocyte growth factor secreted by ovarian cancer cells stimulates peritoneal implantation via the mesothelial-mesenchymal transition of the peritoneum.

    PubMed

    Nakamura, Michihiko; Ono, Yoshihiro J; Kanemura, Masanori; Tanaka, Tomohito; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide

    2015-11-01

    A current working model for the metastatic process of ovarian carcinoma suggests that cancer cells are shed from the ovarian tumor into the peritoneal cavity and attach to the layer of mesothelial cells that line the inner surface of the peritoneum, and several studies suggest that hepatocyte growth factor (HGF) plays an important role in the dissemination of ovarian cancer. Our objectives were to evaluate the HGF expression of ovarian cancer using clinical data and assess the effect of HGF secreted from human ovarian cancer cells to human mesothelial cells. HGF expression was immunohistochemically evaluated in 165 epithelial ovarian cancer patients arranged as tissue microarrays. HGF expression in four ovarian cancer cell lines was evaluated by using semi-quantitative polymerase chain reaction, Western blotting and enzyme-linked immunosorbent assay. The effect of ovarian cancer cell derived HGF to the human mesothelial cells was assessed by using morphologic analysis, Western blotting and cell invasion assay. The effect of HGF on ovarian cancer metastasis was assessed by using in vivo experimental model. The clinical data showed a significantly high correlation between the HGF expression and the cancer stage. The in vivo and in vitro experimental models revealed that HGF secreted by ovarian cancer cells induces the mesothelial-to-mesenchymal transition and stimulates the invasion of mesothelial cells. Furthermore, manipulating the HGF activity affected the degree of dissemination and ascite formation. We demonstrated that HGF secreted by ovarian cancer cells plays an important role in cancer peritoneal implantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Hepatocyte growth factor is elevated in amniotic fluid from obese women and regulates placental glucose and fatty acid metabolism.

    PubMed

    Visiedo, F; Bugatto, F; Carrasco-Fernández, C; Sáez-Benito, A; Mateos, R M; Cózar-Castellano, I; Bartha, J L; Perdomo, G

    2015-04-01

    To evaluate the impact of the pro-inflammatory cytokine hepatocyte growth factor (HGF) on the regulation of glucose and lipid placental metabolism. HGF levels were quantified in amniotic fluid and placenta from control and obese women. 2-deoxy-glucose (2-DOG) uptake, glycolysis, fatty acid oxidation (FAO), fatty acid esterification, de novo fatty acid synthesis, triglyceride levels and carnitine palmitoyltransferase activities (CPT) were measured in placental explants upon addition of pathophysiological HGF levels. In obese women, total- and -activated-HGF levels in amniotic fluid were elevated ∼24%, and placental HGF levels were ∼3-fold higher than in control women. At a similar dose to that present in amniotic fluid of obese women, HGF (30 ng/mL) increased Glut-1 levels and 2-DOG uptake by ∼25-30% in placental explants. HGF-mediated effect on 2-DOG uptake was dependent on the activation of phosphatidylinositol 3-kinase signaling pathway. In addition, HGF decreased ∼20% FAO, whereas esterification and de novo fatty acid synthesis increased ∼15% and ∼25% respectively, leading to 2-fold triglyceride accumulation in placental explants. In parallel, HGF reduced CPT-I activity ∼70%. HGF is a cytokine elevated in amniotic fluid and placental tissue of obese women, which through its ability to stimulate 2-DOG uptake and metabolism impairs FAO and enhances esterification and de novo fatty acid synthesis, leading to accumulation of placental triglycerides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    PubMed

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. ©AlphaMed Press.

  12. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.

    PubMed

    Zhang, Haiyang; Wang, Yi; Bai, Ming; Wang, Junyi; Zhu, Kegan; Liu, Rui; Ge, Shaohua; Li, JiaLu; Ning, Tao; Deng, Ting; Fan, Qian; Li, Hongli; Sun, Wu; Ying, Guoguang; Ba, Yi

    2018-03-01

    Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF-cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co-culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. Assessment of Growth Factors Secreted by Human Breastmilk Mesenchymal Stem Cells.

    PubMed

    Kaingade, Pankaj Mahipatrao; Somasundaram, Indumathi; Nikam, Amar Babaso; Sarang, Shabari Amit; Patel, Jagdish Shantilal

    2016-01-01

    Human breastmilk is a dynamic, multifaceted biological fluid containing nutrients, bioactive substances, and growth factors. It is effective in supporting growth and development of an infant. As breastmilk has been found to possess mesenchymal stem cells, the importance of the components of breastmilk and their physiological roles is increasing day by day. The present study was intended to identify the secretions of growth factors, mainly vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), from human breastmilk mesenchymal stem cells under basal conditions of in vitro cell culture using synthetic media and human cord serum. The growth factors were analyzed with the enzyme-linked immunosorbent assay technique. The cultured mesenchymal stem cells of breastmilk without serum revealed significant differences in secretions of the VEGF and HGF growth factors (8.55 ± 2.26402 pg/mL and 230.8 ± 45.9861 pg/mL, respectively) compared with mesenchymal stem cells of breastmilk with serum (21.31 ± 4.69 pg/mL and 2,404.42 ± 481.593 pg/mL, respectively). Results obtained from our study demonstrate that both VEGF and HGF are secreted in vitro by human breastmilk mesenchymal stem cells. The roles of VEGF and HGF in surfactant secretion, pulmonary maturation, and neonatal maturity have been well established. Thus, we emphasize that breastmilk-derived MSCs could be a potent therapeutic source in treating neonatal diseases. Besides, due to its immense potency, the study also emphasizes the importance of breastfeeding, which is promoted by organizations like the World Heatlh Organization and UNICEF.

  14. Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice

    PubMed Central

    2011-01-01

    Background Short half-life and low levels of growth factors in the niche of injured microenvironment necessitates the exogenous and sustainable delivery of growth factors along with stem cells to augment the regeneration of injured tissues. Methods Here, recombinant human hepatocyte growth factor (HGF) was incorporated into chitosan nanoparticles (CNP) by ionic gelation method and studied for its morphological and physiological characteristics. Cirrhotic mice received either hematopoietic stem cells (HSC) or mesenchymal stemcells (MSC) with or without HGF incorporated chitosan nanoparticles (HGF-CNP) and saline as control. Biochemical, histological, immunostaining and gene expression assays were carried out using serum and liver tissue samples. One way analysis of variance was used for statics application Results Serum levels of selected liver protein and enzymes were significantly increased in the combination of MSC and HGF-CNP (MSC+HGF-CNP) treated group. Immunopositive staining for albumin (Alb) and cytokeratin 18 (CK18), and reverse transcription-polymerase chain reaction (RT-PCR) for Alb, alpha fetoprotein (AFP), CK18, cytokeratin 19 (CK19) ascertained that MSC-HGF-CNP treatment could be an effective combination to repopulate liver parenchymal cells in the liver cirrhosis. Zymogram and western blotting for matrix metalloproteinases 2 and 9 (MMP2 and MMP9) revealed that MMP2 actively involved in the fibrolysis of cirrhotic tissue. Immunostaining for alpha smooth muscle actin (αSMA) and type I collagen showed decreased expression in the MSC+HGF-CNP treatment. These results indicated that HGF-CNP enhanced the differentiation of stem cells into hepatocytes and supported the reversal of fibrolysis of extracellular matrix (ECM). Conclusion Bone marrow stem cells were isolated, characterized and transplanted in mice model. Biodegradable biopolymeric nanoparticles were prepared with the pleotrophic protein molecule and it worked well for the differentiation of stem

  15. Hepatocyte Growth Factor Is Required for Mesenchymal Stromal Cell Protection Against Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Cahill, Emer F.; Kennelly, Helen; Carty, Fiona; Mahon, Bernard P.

    2016-01-01

    The incidence of idiopathic pulmonary fibrosis is on the rise and existing treatments have failed to halt or reverse disease progression. Mesenchymal stromal cells (MSCs) have potent cytoprotective effects, can promote tissue repair, and have demonstrated efficacy in a range of fibrotic lung diseases; however, the exact mechanisms of action remain to be elucidated. Chemical antagonists and short hairpin RNA knockdown were used to identify the mechanisms of action used by MSCs in promoting wound healing, proliferation, and inhibiting apoptosis. Using the bleomycin induced fibrosis model, the protective effects of early or late MSC administration were examined. The role for hepatocyte growth factor (HGF) in MSC protection against bleomycin lung injury was examined using HGF knockdown MSC. Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling assay was performed on ex vivo lung sections to examine the effects of MSC on apoptosis. MSC conditioned media (CM) enhanced wound closure and inhibited apoptosis of pulmonary cells in vitro. HGF was required for MSC CM enhancement of epithelial cell proliferation and inhibition of apoptosis. In contrast, MSC required COX-2 for CM to inhibit fibroblast proliferation. In a murine model, early administration of MSC protected against bleomycin induced lung fibrosis and correlated with reduced levels of the proinflammatory cytokine interleukin-1β, reduced levels of apoptosis, and significantly increased levels of HGF. These protective effects were in part mediated by MSC derived HGF as HGF knockdown MSC were unable to protect against fibrosis in vivo. These findings delineate the mechanisms of MSC protection in a preclinical model of fibrotic lung disease. Significance The mechanisms used by mesenchymal stromal cells (MSCs) in mediating protective effects in chronic models of lung disease are not understood and remain to be elucidated. These findings from in vitro studies highlight an important role for the MSC

  16. Placental insufficiency decreases pancreatic vascularity and disrupts hepatocyte growth factor signaling in the pancreatic islet endothelial cell in fetal sheep.

    PubMed

    Rozance, Paul J; Anderson, Miranda; Martinez, Marina; Fahy, Anna; Macko, Antoni R; Kailey, Jenai; Seedorf, Gregory J; Abman, Steven H; Hay, William W; Limesand, Sean W

    2015-02-01

    Hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGFA) are paracrine hormones that mediate communication between pancreatic islet endothelial cells (ECs) and β-cells. Our objective was to determine the impact of intrauterine growth restriction (IUGR) on pancreatic vascularity and paracrine signaling between the EC and β-cell. Vessel density was less in IUGR pancreata than in controls. HGF concentrations were also lower in islet EC-conditioned media (ECCM) from IUGR, and islets incubated with control islet ECCM responded by increasing insulin content, which was absent with IUGR ECCM. The effect of ECCM on islet insulin content was blocked with an inhibitory anti-HGF antibody. The HGF receptor was not different between control and IUGR islets, but VEGFA was lower and the high-affinity VEGF receptor was higher in IUGR islets and ECs, respectively. These findings show that paracrine actions from ECs increase islet insulin content, and in IUGR ECs, secretion of HGF was diminished. Given the potential feed-forward regulation of β-cell VEGFA and islet EC HGF, these two growth factors are highly integrated in normal pancreatic islet development, and this regulation is decreased in IUGR fetuses, resulting in lower pancreatic islet insulin concentrations and insulin secretion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. c-Met in esophageal squamous cell carcinoma: an independent prognostic factor and potential therapeutic target.

    PubMed

    Ozawa, Yohei; Nakamura, Yasuhiro; Fujishima, Fumiyoshi; Felizola, Saulo J A; Takeda, Kenichiro; Okamoto, Hiroshi; Ito, Ken; Ishida, Hirotaka; Konno, Takuro; Kamei, Takashi; Miyata, Go; Ohuchi, Noriaki; Sasano, Hironobu

    2015-06-03

    c-Met is widely known as a poor prognostic factor in various human malignancies. Previous studies have suggested the involvement of c-Met and/or its ligand, hepatocyte growth factor (HGF), in esophageal squamous cell carcinoma (ESCC), but the correlation between c-Met status and clinical outcome remains unclear. Furthermore, the identification of a novel molecular therapeutic target might potentially help improve the clinical outcome of ESCC patients. The expression of c-Met and HGF was immunohistochemically assessed in 104 surgically obtained tissue specimens. The correlation between c-Met/HGF expression and patients' clinicopathological features, including survival, was evaluated. We also investigated changes in cell functions and protein expression of c-Met and its downstream signaling pathway components under treatments with HGF and/or c-Met inhibitor in ESCC cell lines. Elevated expression of c-Met was significantly correlated with tumor depth and pathological stage. Patients with high c-Met expression had significantly worse survival. In addition, multivariate analysis identified the high expression of c-Met as an independent prognostic factor. Treatment with c-Met inhibitor under HGF stimulation significantly inhibited the invasive capacity of an ESCC cell line with elevated c-Met mRNA expression. Moreover, c-Met and its downstream signaling inactivation was also detected after treatment with c-Met inhibitor. The results of our study identified c-Met expression as an independent prognostic factor in ESCC patients and demonstrated that c-Met could be a potential molecular therapeutic target for the treatment of ESCC with elevated c-Met expression.

  18. Hepatocyte growth factor is associated with progression of atherosclerosis: The Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    Bell, Elizabeth J; Decker, Paul A; Tsai, Michael Y; Pankow, James S; Hanson, Naomi Q; Wassel, Christina L; Larson, Nicholas B; Cohoon, Kevin P; Budoff, Matthew J; Polak, Joseph F; Stein, James H; Bielinski, Suzette J

    2018-05-01

    Hepatocyte growth factor (HGF) has previously been associated with risk of stroke, coronary heart disease, and atherosclerosis. We hypothesized that higher circulating HGF is associated with greater progression of measures of atherosclerosis: coronary artery calcium (CAC) and carotid plaque. Participants aged 45-84 years from the prospective cohort study Multi-Ethnic Study of Atherosclerosis had HGF measured at baseline (between 2000 and 2002) and were followed for progression of atherosclerosis for up to 12 years. CAC was measured at all five exams using the Agatston method. Mixed-effects models were used to examine the association of HGF and CAC progression among 6695 participants with available data. Relative risk regression was used to assess the association between HGF and new or additional carotid plaque between exams 1 and 5 in 3400 participants with available data. All point estimates were adjusted for potential confounding variables. Each standard deviation higher HGF at baseline was associated with 2.9 Agatston units/year greater CAC progression (95% CI: 1.6-4.2, p < 0.0001), and the magnitude of this association differed by race/ethnicity (p value for interaction by race = 0.003). Each standard deviation higher HGF at baseline was associated with a 4% higher risk of new or additional carotid plaque (95% CI: 1.01-1.08, p = 0.005). Higher levels of HGF were significantly associated with greater progression of atherosclerosis in this large and diverse population. Circulating HGF continues to show promise as a potential clinical biomarker for cardiovascular disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The Multisubstrate Adapter Gab1 Regulates Hepatocyte Growth Factor (Scatter Factor)–c-Met Signaling for Cell Survival and DNA Repair

    PubMed Central

    Fan, Saijun; Ma, Yong Xian; Gao, Min; Yuan, Ren-Qi; Meng, Qinghui; Goldberg, Itzhak D.; Rosen, Eliot M.

    2001-01-01

    Hepatocyte growth factor (scatter factor) (HGF/SF) is a pleiotrophic mediator of epithelial cell motility, morphogenesis, angiogenesis, and tumorigenesis. HGF/SF protects cells against DNA damage by a pathway from its receptor c-Met to phosphatidylinositol 3-kinase (PI3K) to c-Akt, resulting in enhanced DNA repair and decreased apoptosis. We now show that protection against the DNA-damaging agent adriamycin (ADR; topoisomerase IIα inhibitor) requires the Grb2-binding site of c-Met, and overexpression of the Grb2-associated binder Gab1 (a multisubstrate adapter required for epithelial morphogenesis) inhibits the ability of HGF/SF to protect MDCK epithelial cells against ADR. In contrast to Gab1 and its homolog Gab2, overexpression of c-Cb1, another multisubstrate adapter that associates with c-Met, did not affect protection. Gab1 blocked the ability of HGF/SF to cause the sustained activation of c-Akt and c-Akt signaling (FKHR phosphorylation). The Gab1 inhibition of sustained c-Akt activation and of cell protection did not require the Gab1 pleckstrin homology or SHP2 phosphatase-binding domain but did require the PI3K-binding domain. HGF/SF protection of parental MDCK cells was blocked by wortmannin, expression of PTEN, and dominant negative mutants of p85 (regulatory subunit of PI3K), Akt, and Pak1; the protection of cells overexpressing Gab1 was restored by wild-type or activated mutants of p85, Akt, and Pak1. These findings suggest that the adapter Gab1 may redirect c-Met signaling through PI3K away from a c-Akt/Pak1 cell survival pathway. PMID:11438654

  20. The association between thyroid volume, L-thyroxine therapy and hepatocyte growth factor levels among patients with euthyroid and hypothyroid goitrous and non-goitrous Hashimoto's thyroiditis versus healthy subjects.

    PubMed

    Kilic, Mustafa Kemal; Yesilkaya, Yakup; Tezcan, Kadriye; Cinar, Nese; Akin, Safak; Karakaya, Jale; Akata, Deniz; Usman, Aydan; Gurlek, Alper

    2016-05-01

    Hashimoto's thyroiditis (HT) is the most common etiology of hypothyroidism in regions where iodine deficiency is not a concern. To date, many clinical investigations have been conducted to elucidate its pathogenesis. Several growth factors have been shown to have a role in its development. Hepatocyte growth factor (HGF) is one of the aforementioned molecules. We aimed to demonstrate whether HGF is responsible for HT and goiter development. Also, we aimed to test the hypothesis that levo-thyroxine sodium therapy will suppress HGF levels. Sixty-one premenopausal women who were admitted to our outpatient clinic between November 2010 and September 2011 were enrolled. Three groups were determined according to their thyroid function tests (TFTs) as euthyroid Hashimoto's, control and subclinical hypothyroid Hashimoto's groups. Basal TFTs, anti-thyroid peroxidase (anti-TPO), anti-thyroglobulin (anti-tg), thyroid ultrasonography (USG) and HGF were studied and recorded. Subclinical hypothyroid HT patients received levo-thyroxine sodium replacement therapy, and were re-assessed for the same laboratory and radiologic features after a median 3.5 month follow-up. Basal HGF levels were not different between groups. In the subclinical hypothyroidism group, HGF levels (752.75 ± 144.91 pg/ml vs. 719.37 ± 128.05 pg/ml; p = 0.496) and thyroid volumes (12.51 ± 3.67 cc vs. 12.18 ± 4.26 cc; p = 0.7) before and after treatment did not change significantly. No correlations were found between HGF and other parameters. HGF levels were similar between subjects with nodular goiter and normal thyroid structure. HGF was not shown to be associated with HT and goiter development. In addition, levo-thyroxine sodium replacement therapy did not alter serum HGF levels significantly.

  1. Erythropoietin induces production of hepatocyte growth factor from bone marrow mesenchymal stem cells in vitro.

    PubMed

    Tari, Kaveh; Atashi, Amir; Kaviani, Saied; AkhavanRahnama, Mahshid; Anbarlou, Azadeh; Mossahebi-Mohammadi, Majid

    2017-01-01

    Hepatocyte Growth Factor (HGF) plays a pivotal role in hematopoiesis, motility, growth and mobilization of hematopoietic stem/progenitor cells (HSPCs). HGF mainly is produced by bone marrow mesenchymal stem cells (BM-MSCs). MSCs express erythropoietin (EPO) receptor. In this study, we aimed to assess the effect of EPO on HGF secretion in BM-MSCs. The BM-MSCs treated with EPO (4 IU/ml) for 6, 24 and 48 h. HGF gene expression and protein level were assessed using quantitative real time PCR (qRT-PCR) and Enzyme-linked immunosorbant Assay. In order to show the effect of secreted HGF on migration of HSPCs, hematopoietic stem cells (HSCs) were isolated from cord blood and evaluated using transwell migration assay. We observed a significant increase in level of HGF in cell supernatant after 48 h compared to control group (P < 0.05). Also, qRT-PCR results demonstrated a significant elevation in HGF expression level after 24 and 48 h treatment with EPO compared to control group (P < 0.05). Finally, migration assay results showed a significant increase in migration of HSCs in treated group after 48 h. Our data indicated that EPO may play an important role in stem cell mobilization through up regulating HGF in MSCs and inducing migration of HSCs. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  2. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility.

    PubMed

    Fang, Jung-Da; Lee, Sheau-Ling

    2014-07-01

    Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation. Copyright © 2014. Published by Elsevier B.V.

  3. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways

    PubMed Central

    Ogunwobi, Olorunseun O.

    2013-01-01

    Advanced hepatocellular carcinoma (HCC) is an important cause of cancer mortality. Epithelial-mesenchymal transition (EMT) has been shown to be an important biological process in cancer progression and metastasis. We have focused on elucidating factors that induce EMT to promote carcinogenesis and subsequent metastasis in HCC using the BNL CL.2 (BNL) and BNL 1ME A. 7R.1 (1MEA) cell lines. BNL cells are normal hepatocytes whereas the 1MEA cells are HCC cells derived from chemical transformation of the BNL cells. Their morphological characteristics were examined. Expression levels of hepatocyte growth factor (HGF), markers of EMT and mediators of HGF signaling were determined and functional characteristics were compared. BNL cells were treated with HGF and effects on EMT-marker and mediators of HGF signaling were analyzed. BNL cells display characteristic epithelial morphology whereas 1MEA cells display mesenchymal characteristics. 1MEA cells express and secrete more HGF than BNL cells. There was significantly decreased expression of E-cadherin, albumin, AAT and increased expression of fibronectin, collagen-1, vimentin, snail and slug in 1MEA cells. There was also increased expression of cyclooxygenase-2 (COX-2), Akt and phosphorylated Akt (pAkt) in 1MEA cells. Moreover, 1MEA cells had increased migratory capacity inhibited by inhibition of COX-2 and Akt but not extracellular signal regulated kinase (ERK). Molecular mesenchymal characteristics of 1MEA cells were reversed by inhibition of COX-2, Akt and ERK. Treatment of BNL cells with HGF led to decreased expression of E-cadherin and increased expression of fibronectin, vimentin, snail, slug, COX-2, Akt, pAkt and increased migration, invasiveness and clonogenicity. We conclude that development of HCC is associated with upregulation of HGF which promotes EMT and carcinogenesis via upregulation of COX-2 and Akt. Consequently, HGF signaling may be targeted for therapy in advanced and metastatic HCC. PMID:21744257

  4. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways.

    PubMed

    Ogunwobi, Olorunseun O; Liu, Chen

    2011-12-01

    Advanced hepatocellular carcinoma (HCC) is an important cause of cancer mortality. Epithelial-mesenchymal transition (EMT) has been shown to be an important biological process in cancer progression and metastasis. We have focused on elucidating factors that induce EMT to promote carcinogenesis and subsequent metastasis in HCC using the BNL CL.2 (BNL) and BNL 1ME A. 7R.1 (1MEA) cell lines. BNL cells are normal hepatocytes whereas the 1MEA cells are HCC cells derived from chemical transformation of the BNL cells. Their morphological characteristics were examined. Expression levels of hepatocyte growth factor (HGF), markers of EMT and mediators of HGF signaling were determined and functional characteristics were compared. BNL cells were treated with HGF and effects on EMT-marker and mediators of HGF signaling were analyzed. BNL cells display characteristic epithelial morphology whereas 1MEA cells display mesenchymal characteristics. 1MEA cells express and secrete more HGF than BNL cells. There was significantly decreased expression of E-cadherin, albumin, AAT and increased expression of fibronectin, collagen-1, vimentin, snail and slug in 1MEA cells. There was also increased expression of cyclooxygenase-2 (COX-2), Akt and phosphorylated Akt (pAkt) in 1MEA cells. Moreover, 1MEA cells had increased migratory capacity inhibited by inhibition of COX-2 and Akt but not extracellular signal regulated kinase (ERK). Molecular mesenchymal characteristics of 1MEA cells were reversed by inhibition of COX-2, Akt and ERK. Treatment of BNL cells with HGF led to decreased expression of E-cadherin and increased expression of fibronectin, vimentin, snail, slug, COX-2, Akt, pAkt and increased migration, invasiveness and clonogenicity. We conclude that development of HCC is associated with upregulation of HGF which promotes EMT and carcinogenesis via upregulation of COX-2 and Akt. Consequently, HGF signaling may be targeted for therapy in advanced and metastatic HCC.

  5. Up-Regulation of Bcl-xl by Hepatocyte Growth Factor in Human Mesothelioma Cells Involves ETS Transcription Factors

    PubMed Central

    Cao, Xiaobo; Littlejohn, James; Rodarte, Charles; Zhang, Lidong; Martino, Benjamin; Rascoe, Philip; Hamid, Kamran; Jupiter, Daniel; Smythe, W. Roy

    2009-01-01

    Bcl-xl and the hepatocyte growth factor (HGF) receptor c-Met are both highly expressed in mesotheliomas, where they protect cells from apoptosis and can confer resistance to conventional therapeutic agents. In our current study, we investigate a model for the transcriptional control of Bcl-xl that involves ETS transcription factors and the HGF/Met axis. In addition, the effects of activated c-Met on the phosphorylation of the ETS family transcriptional factors were examined. The transient expression of ETS-2 and PU.1 cDNAs in mesothelioma cell lines resulted in an increase in the promoter activity of Bcl-xl and consequently in its mRNA and protein expression levels, whereas the transcriptional repressor Tel suppressed Bcl-xl transcription. The activation of the HGF/Met axis led to rapid phosphorylation of ETS family transcription factors in mesothelioma cells through the mitogen-activated protein kinase pathway and via nuclear accumulation of ETS-2 and PU.1. A chromatin immunoprecipitation assay further demonstrated that the activation of c-Met enhanced the binding of ETS transcriptional factors to the Bcl-x promoter. Finally, we determined the Bcl-xl and phosphorylated c-Met expression levels in mesothelioma patient samples; these data suggest a strong correlation between Bcl-xl and phosphorylated c-Met levels. Taken together, these findings support a role for c-Met as an inhibitor of apoptosis and an activator of Bcl-xl. PMID:19834061

  6. Soluble CD30 and Hepatocyte growth factor as predictive markers of antibody-mediated rejection of the kidney allograft.

    PubMed

    Pavlova, Yelena; Viklicky, Ondrej; Slatinska, Janka; Bürgelova, Marcela; Süsal, Caner; Skibova, Jelena; Honsová, Eva; Striz, Ilja; Kolesar, Libor; Slavcev, Antonij

    2011-07-01

    Our retrospective study was aimed to assess the relevance of pre- and post-transplant measurements of serum concentrations of the soluble CD30 molecule (soluble CD30, sCD30) and the cytokine Hepatocyte growth factor (HGF) for prediction of the risk for development of antibody-mediated rejection (AMR) in kidney transplant patients. Evaluation of sCD30, HGF levels and the presence of HLA-specific antibodies in a cohort of 205 patients was performed before, 2weeks and 6months after transplantation. Patients were followed up for kidney graft function and survival for two years. We found a tendency of higher incidence of AMR in retransplanted patients with elevated pre-transplant sCD30 (≥100U/ml) (p=0.051), however no such correlation was observed in first-transplant patients. Kidney recipients with simultaneously high sCD30 and HLA-specific antibodies (sCD30+/Ab+) before transplantation had significantly lower AMR-free survival compared to the other patient groups (p<0.001). HGF concentrations were not associated with the incidence of AMR at any time point of measurement, nevertheless, the combined analysis HGF and sCD30 showed increased incidence of AMR in recipients with elevated pretransplant sCD30 and low HGF levels. the predictive value of pretransplant sCD30 for the development of antibody-mediated rejection after transplantation is significantly potentiated by the co-presence of HLA specific antibodies. The role of HGF as a rejection-protective factor in patients with high pretransplant HGF levels would need further investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. 89Zr-DFO-AMG102 Immuno-PET to Determine Local Hepatocyte Growth Factor Protein Levels in Tumors for Enhanced Patient Selection.

    PubMed

    Price, Eric W; Carnazza, Kathryn E; Carlin, Sean D; Cho, Andrew; Edwards, Kimberly J; Sevak, Kuntal K; Glaser, Jonathan M; de Stanchina, Elisa; Janjigian, Yelena Y; Lewis, Jason S

    2017-09-01

    The hepatocyte growth factor (HGF) binding antibody rilotumumab (AMG102) was modified for use as a 89 Zr-based immuno-PET imaging agent to noninvasively determine the local levels of HGF protein in tumors. Because recent clinical trials of HGF-targeting therapies have been largely unsuccessful in several different cancers (e.g., gastric, brain, lung), we have synthesized and validated 89 Zr-DFO-AMG102 as a companion diagnostic for improved identification and selection of patients having high local levels of HGF in tumors. To date, patient selection has not been performed using the local levels of HGF protein in tumors. Methods: The chelator p -SCN-Bn-DFO was conjugated to AMG102, radiolabeling with 89 Zr was performed in high radiochemical yields and purity (>99%), and binding affinity of the modified antibody was confirmed using an enzyme-linked immunosorbent assay (ELISA)-type binding assay. PET imaging, biodistribution, autoradiography and immunohistochemistry, and ex vivo HGF ELISA experiments were performed on murine xenografts of U87MG (HGF-positive, MET-positive) and MKN45 (HGF-negative, MET-positive) and 4 patient-derived xenografts (MET-positive, HGF unknown). Results: Tumor uptake of 89 Zr-DFO-AMG102 at 120 h after injection in U87MG xenografts (HGF-positive) was high (36.8 ± 7.8 percentage injected dose per gram [%ID/g]), whereas uptake in MKN45 xenografts (HGF-negative) was 5.0 ± 1.3 %ID/g and a control of nonspecific human IgG 89 Zr-DFO-IgG in U87MG tumors was 11.5 ± 3.3 %ID/g, demonstrating selective uptake in HGF-positive tumors. Similar experiments performed in 4 different gastric cancer patient-derived xenograft models showed low uptake of 89 Zr-DFO-AMG102 (∼4-7 %ID/g), which corresponded with low HGF levels in these tumors (ex vivo ELISA). Autoradiography, immunohistochemical staining, and HGF ELISA assays confirmed that elevated levels of HGF protein were present only in U87MG tumors and that 89 Zr-DFO-AMG102 uptake was closely correlated

  8. Plasma hepatocyte growth factor is a novel marker of AL cardiac amyloidosis.

    PubMed

    Swiger, Kristopher J; Friedman, Eitan A; Brittain, Evan L; Tomasek, Kelsey A; Huang, Shi; Su, Yan R; Sawyer, Douglas B; Lenihan, Daniel J

    2016-12-01

    Cardiac amyloidosis is an infiltrative cardiomyopathy that is challenging to diagnose. We hypothesized that the novel biomarkers hepatocyte growth factor (HGF), galectin-3 (GAL-3), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) would be elevated in cardiac amyloidosis and may be able to discriminate from non-cardiac systemic amyloidosis or other cardiomyopathies with similar clinical or morphologic characteristics. Patients were selected from the Vanderbilt Main Heart Registry according to the following groups: (1) amyloid light-chain (AL) cardiac amyloidosis (n = 26); (2) transthyretin (ATTR) cardiac amyloidosis (n = 7); (3) left ventricular hypertrophy (LVH) (n = 45); (4) systolic heart failure (n = 42); and (5) non-cardiac systemic amyloidosis (n = 7). Biomarkers were measured in stored plasma samples. Biomarkers' discrimination performance in predicting AL cardiac amyloidosis (i.e., Concordance index) was reported. A survival analysis was used to explore the relationship between HGF levels and mortality among AL cardiac amyloidosis patients. HGF levels were markedly elevated in patients with AL cardiac amyloidosis (median = 622, interquartile range (IQR): 299-1228 pg/mL) compared with the other groups, including those with non-cardiac systemic amyloidosis (median = 134, IQR: 94-163 pg/mL, p < 0.001). HGF was not a specific marker for ATTR amyloidosis. Gal-3 was elevated in all groups with amyloidosis but could not differentiate between those with and without cardiac involvement. There was no difference in IL-6 or VEGF between those with AL cardiac amyloidosis compared to other groups (p = 0.13 and 0.057, respectively). HGF may be a specific marker that distinguishes AL cardiac amyloidosis from other cardiomyopathies with similar clinical or morphologic characteristics. Further studies are necessary to determine whether HGF levels predict the likelihood of survival.

  9. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion

    PubMed Central

    Gorin, Caroline; Rochefort, Gael Y.; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Germain, Stéphane

    2016-01-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more

  10. Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31- cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration.

    PubMed

    Wang, Xiaohong; Li, Qinglu; Hu, Qingsong; Suntharalingam, Piradeep; From, Arthur H L; Zhang, Jianyi

    2014-01-01

    Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are two potent cell survival and regenerative factors in response to myocardial injury (MI). We hypothesized that simultaneous delivery of IGF+HGF combined with Sca-1+/CD31- cells would improve the outcome of transplantation therapy in response to the altered hostile microenvironment post MI. One million adenovirus nuclear LacZ-labeled Sca-1+/CD31- cells were injected into the peri-infarction area after left anterior descending coronary artery (LAD) ligation in mice. Recombinant mouse IGF-1+HGF was added to the cell suspension prior to the injection. The left ventricular (LV) function was assessed by echocardiography 4 weeks after the transplantation. The cell engraftment, differentiation and cardiomyocyte regeneration were evaluated by histological analysis. Sca-1+/CD31- cells formed viable grafts and improved LV ejection fraction (EF) (Control, 54.5+/-2.4; MI, 17.6+/-3.1; Cell, 28.2+/-4.2, n = 9, P<0.01). IGF+HGF significantly enhanced the benefits of cell transplantation as evidenced by increased EF (38.8+/-2.2; n = 9, P<0.01) and attenuated adverse structural remodeling. Furthermore, IGF+HGF supplementation increased the cell engraftment rate, promoted the transplanted cell survival, enhanced angiogenesis, and minimally stimulated endogenous cardiomyocyte regeneration in vivo. The in vitro experiments showed that IGF+HGF treatment stimulated Sca-1+/CD31- cell proliferation and inhibited serum free medium induced apoptosis. Supperarray profiling of Sca-1+/CD31- cells revealed that Sca-1+/CD31- cells highly expressed various trophic factor mRNAs and IGF+HGF treatment altered the mRNAs expression patterns of these cells. These data indicate that IGF-1+HGF could serve as an adjuvant to cell transplantation for myocardial repair by stimulating donor cell and endogenous cardiac stem cell survival, regeneration and promoting angiogenesis.

  11. Prognostic implication of serum hepatocyte growth factor in stage II/III breast cancer patients who received neoadjuvant chemotherapy.

    PubMed

    Kim, Hyori; Youk, Jeonghwan; Yang, Yaewon; Kim, Tae-Yong; Min, Ahrum; Ham, Hye-Seon; Cho, Seongcheol; Lee, Kyung-Hun; Keam, Bhumsuk; Han, Sae-Won; Oh, Do-Youn; Ryu, Han Suk; Han, Wonshik; Park, In Ae; Kim, Tae-You; Noh, Dong-Young; Im, Seock-Ah

    2016-03-01

    In stage II/III breast cancer, neoadjuvant chemotherapy (NAC) is a standard treatment. Although several biomarkers are used to predict prognosis in breast cancer, there is no reliable predictive biomarker for NAC success. Recently, the hepatocyte growth factor (HGF) and cMet signaling pathway demonstrated to be involved in breast cancer tumor progression, and its potential as a biomarker is under active investigation. In this study, we assessed the potential of serum HGF as a prognostic biomarker for NAC efficacy. Venous blood samples were drawn from patients diagnosed with stage II/III breast cancer and treated with NAC in Seoul National University Hospital from August 2004 to November 2009. Serum HGF level was determined using an ELISA system. We reviewed the medical records of the patients and investigated the association of HGF level with patients' clinicopathologic characteristics. A total of 121 female patients (median age = 45 years old) were included. Median level of HGF was 934 pg/ml (lower quartile: 772, upper quartile: 1145 pg/ml). Patients with higher HGF level than median value were significantly more likely to have clinically detectable regional node metastasis (p = 0.017, Fisher's exact test). Patients with complete and partial response according to the American Joint Committee on Cancer 7th Edition criteria tended to have higher HGF level (p = 0.105 by t test). Patients with an HGF level higher than the upper quartile value had longer relapse-free survival than the other patients (106 vs. 85 months, p = 0.008). High serum HGF levels in breast cancer patients are associated with clinically detectable regional node metastasis and, paradoxically, with longer relapse-free survival in stage II/III breast cancer.

  12. Obesity-Mediated Regulation of HGF/c-Met Is Associated with Reduced Basal-Like Breast Cancer Latency in Parous Mice

    PubMed Central

    Sundaram, Sneha; Freemerman, Alex J.; Galanko, Joseph A.; McNaughton, Kirk K.; Bendt, Katharine M.; Darr, David B.; Troester, Melissa A.; Makowski, Liza

    2014-01-01

    It is widely thought that pregnancy reduces breast cancer risk, but this lacks consideration of breast cancer subtypes. While a full term pregnancy reduces risk for estrogen receptor positive (ER+) and luminal breast cancers, parity is associated with increased risk of basal-like breast cancer (BBC) subtype. Basal-like subtypes represent less than 10% of breast cancers and are highly aggressive, affecting primarily young, African American women. Our previous work demonstrated that high fat diet-induced obesity in nulliparous mice significantly blunted latency in C3(1)-TAg mice, a model of BBC, potentially through the hepatocyte growth factor (HGF)/c-Met oncogenic pathway. Experimental studies have examined parity and obesity individually, but to date, the joint effects of parity and obesity have not been studied. We investigated the role of obesity in parous mice on BBC. Parity alone dramatically blunted tumor latency compared to nulliparous controls with no effects on tumor number or growth, while obesity had only a minor role in further reducing latency. Obesity-associated metabolic mediators and hormones such as insulin, estrogen, and progesterone were not significantly regulated by obesity. Plasma IL-6 was also significantly elevated by obesity in parous mice. We have previously reported a potential role for stromal-derived hepatocyte growth factor (HGF) via its cognate receptor c-Met in the etiology of obesity-induced BBC tumor onset and in both human and murine primary coculture models of BBC-aggressiveness. Obesity-associated c-Met concentrations were 2.5-fold greater in normal mammary glands of parous mice. Taken together, our studies demonstrate that, parity in C3(1)-TAg mice dramatically reduced BBC latency compared to nulliparous mice. In parous mice, c-Met is regulated by obesity in unaffected mammary gland and is associated with tumor onset. C3(1)-TAg mice recapitulate epidemiologic findings such that parity drives increased BBC risk and potential

  13. STK/RON receptor tyrosine kinase mediates both apoptotic and growth signals via the multifunctional docking site conserved among the HGF receptor family.

    PubMed Central

    Iwama, A; Yamaguchi, N; Suda, T

    1996-01-01

    STK/RON tyrosine kinase, a member of the hepatocyte growth factor (HGF) receptor family, is a receptor for macrophage-stimulating protein (MSP). To examine the STK/RON signalling pathway, we generated STK/ RON transfectants showing opposite features in growth. STK/RON-expressing Ba/F3 pro-B cells (BaF/STK) exhibited MSP-dependent growth, whereas STK/ RON-expressing mouse erythroleukaemia cells (MEL/ STK) displayed MSP-induced apoptosis. This apoptosis was accompanied by the prolonged activation of c-Jun N-terminal kinase (JNK), which has recently been implicated in the initiation of apoptosis. Co-immunoprecipitation analyses showed that autophosphorylated STK/RON associated with PLC-gamma, P13-kinase, Shc and Grb2 in both transfectants. However, major tyrosine-phosphorylated proteins, p61 and p65, specifically associated with STK/RON in MEL/STK cells. Mutations at two C-terminal tyrosine residues, Y1330 and Y1337, in the counterpart of the multifunctional docking site of the HGF receptor abolished both MSP-induced growth and apoptosis. Analyses of these mutants and in vitro association revealed that signalling proteins including p61 and p65 directly bound to the phosphotyrosines in the multifunctional docking site. These results demonstrate that positive or negative signals toward cell growth are generated through the multifunctional docking site and suggest the involvement of p61 and p65 as well as JNK in apoptosis. Our findings provide the first evidence for apoptosis via a receptor tyrosine kinase. Images PMID:8918464

  14. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Young Woo; Oh, Ji-Eun; Lee, Jong In

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, thesemore » secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial

  15. [Growth Factors and Interleukins in Amniotic Membrane Tissue Homogenate].

    PubMed

    Stachon, T; Bischoff, M; Seitz, B; Huber, M; Zawada, M; Langenbucher, A; Szentmáry, N

    2015-07-01

    Application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy resistant corneal epithelial defects. The purpose of this study was to determine the concentrations of epidermal growth factor (EGF), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), interleukin-6 (IL-6) and interleukin-8 (IL-8) in amniotic membrane homogenates. Amniotic membranes of 8 placentas were prepared and thereafter stored at - 80 °C using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz. Following defreezing, amniotic membranes were cut in two pieces and homogenized in liquid nitrogen. One part of the homogenate was prepared in cell-lysis buffer, the other part was prepared in PBS. The tissue homogenates were stored at - 20 °C until enzyme-linked immunosorbent assay (ELISA) analysis for EGF, bFGF, HGF, KGF, IL-6 and IL-8 concentrations. Concentrations of KGF, IL-6 and IL-8 were below the detection limit using both preparation techniques. The EGF concentration in tissue homogenates treated with cell-lysis buffer (2412 pg/g tissue) was not significantly different compared to that of tissue homogenates treated with PBS (1586 pg/g tissue, p = 0.72). bFGF release was also not significantly different using cell-lysis buffer (3606 pg/g tissue) or PBS treated tissue homogenates (4649 pg/g tissue, p = 0.35). HGF release was significantly lower using cell-lysis buffer (23,555 pg/g tissue), compared to PBS treated tissue (47,766 pg/g tissue, p = 0.007). Containing EGF, bFGF and HGF, and lacking IL-6 and IL-8, the application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy-resistant corneal epithelial defects. Georg Thieme Verlag KG Stuttgart · New York.

  16. Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation

    PubMed Central

    Syed, Deeba N.; Afaq, Farrukh; Sarfaraz, Sami; Khan, Naghma; Kedlaya, Rajendra; Setaluri, Vijayasaradhi; Mukhtar, Hasan

    2010-01-01

    The HGF/Met signaling pathway is deregulated in majority of cancers and is associated with poor prognosis in breast cancer. Delphinidin, present in pigmented fruits and vegetables possesses potent anti-oxidant, anti-inflammatory and anti-angiogenic properties. Here, we assessed the anti-proliferative and anti-invasive effects of delphinidin on HGF-mediated responses in the immortalized MCF-10A breast cell line. Treatment of cells with delphinidin prior to exposure to exogenous HGF resulted in the inhibition of HGF-mediated (i) tyrosyl-phosphorylation and increased expression of Met receptor, (ii) phosphorylation of downstream regulators such as FAK and Src and (iii) induction of adaptor proteins including paxillin, Gab-1 and GRB-2. In addition, delphinidin treatment resulted in significant inhibition of HGF-activated (i) Ras-ERK MAPKs and (ii) PI3K/AKT/mTOR/p70S6K pathways. Delphinidin was found to repress HGF-activated NFκB transcription with a decrease in (i) phosphorylation of IKKα/β and IκBα, and (ii) activation and nuclear translocation of NFκB/p65. Inhibition of HGF-mediated membrane translocation of PKCα as well as decreased phosphorylation of STAT3 was further observed in delphinidin treated cells. Finally, decreased cell viability of Met receptor expressing breast cancer cells treated with delphinidin argues for a potential role of the agent in the prevention of HGF-mediated activation of various signaling pathways implicated in breast cancer. PMID:18499206

  17. HSP27 is required for invasion and metastasis triggered by hepatocyte growth factor.

    PubMed

    Pavan, Simona; Musiani, Daniele; Torchiaro, Erica; Migliardi, Giorgia; Gai, Marta; Di Cunto, Ferdinando; Erriquez, Jessica; Olivero, Martina; Di Renzo, Maria Flavia

    2014-03-15

    The hepatocyte growth factor (HGF) also known as scatter factor activates cancer cell invasion and metastasis. We show that in ovarian cancer cells HGF induced the phosphorylation of the small heat shock protein of 27 kDa (HSP27) by activating the p38MAPK. HSP27 is increased in many cancers at advanced stage including ovarian cancer and associated with cancer resistance to therapy and poor patients' survival. The phosphorylation of HSP27 regulates both its chaperone activity and its control of cytoskeletal stability. We show that HSP27 was necessary for the remodeling of actin filaments induced by HGF and that motility in vitro depended on the p38MAPK-MK2 axis. In vivo, HSP27 silencing impaired the ability of the highly metastatic, HGF-secreting ovarian cancer cells to give rise to spontaneous metastases. This was due to defective motility across the vessel wall and reduced growth. Indeed, HSP27 silencing impaired the ability of circulating ovarian cancer cells to home to the lungs and to form experimental hematogenous metastases and the capability of cancer cells to grow as subcutaneous xenografts. Moreover, HSP27 suppression resulted in the sensitization of xenografts to low doses of the chemotherapeutic paclitaxel, likely because HSP27 protected microtubules from bundling caused by the drug. Altogether, these data show that the HSP27 is required for the proinvasive and prometastatic activity of HGF and suggest that HSP27 might be not only a marker of progression of ovarian cancer, but also a suitable target for therapy. © 2013 UICC.

  18. [Combined assay of soluble CD30 and hepatocyte growth factor for diagnosis of acute renal allograft rejection].

    PubMed

    Li, Chuan-jiang; Yu, Li-xin; Xu, Jian; Fu, Shao-jie; Deng, Wen-feng; Du, Chuan-fu; Wang, Yi-bin

    2008-02-01

    To study the value of detection of both preoperative soluble CD30 (sCD30) and hepatocyte growth factor (HGF) level 5 days after transplantation in the diagnosis of acute rejection of renal allograft. Preoperative serum sCD30 levels and HGF level 5 days after transplantation were determined in 65 renal-transplant recipients using enzyme-linked immunosorbent assay. The recipients were divided according to the sCD30 levels positivity. Receiver operating characteristic (ROC) curves were used to assess the value of HGF level on day 5 posttransplantation for diagnosis of acute renal allograft rejection, and the value of combined assay of the sCD30 and HGF levels was also estimated. After transplantation, 26 recipients developed graft rejection and 39 had uneventful recovery without rejection. With the cut-off value of sCD30 of 120 U/ml, the positivity rate of sCD30 was significantly higher in recipients with graft rejection than in those without (61.5% vs 17.9%, P<0.05). Recipients with acute rejection showed also significantly higher HGF levels on day 5 posttransplantation than those without rejection (P<0.05). ROC curve analysis indicated that HGF levels on day 5 posttransplantation was a good marker for diagnosis of acute renal allograft rejection, and at the cut-off value of 90 ug/L, the diagnostic sensitivity was 84.6% and specificity 76.9%. Evaluation of both the sCD30 and HGF levels significantly enhanced the diagnostic accuracy of acute graft rejection. Combined assay of serum sCD30 and HGF levels offers a useful means for diagnosis of acute renal allograft rejection.

  19. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tongxin; Li, Qi; Sun, Quanquan

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediatedmore » by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.« less

  20. Gab1 Mediates Hepatocyte Growth Factor-Stimulated Mitogenicity and Morphogenesis in Multipotent Myeloid Cells

    PubMed Central

    Felici, Angelina; Giubellino, Alessio; Bottaro, Donald P.

    2012-01-01

    Hepatocyte growth factor (HGF)-stimulated mitogenesis, motogenesis and morphogenesis in various cell types begins with activation of the Met receptor tyrosine kinase and the recruitment of intracellular adaptors and kinase substrates. The adapter protein Gab1 is a critical effector and substrate of activated Met, mediating morphogenesis, among other activities, in epithelial cells. To define its role downstream of Met in hematopoietic cells, Gab1 was expressed in the HGF-responsive, Gab1-negative murine myeloid cell line 32D. Interestingly, the adhesion and motility of Gab1-expressing cells were significantly greater than parental cells, independent of growth factor treatment. Downstream of activated Met, Gab1 expression was specifically associated with rapid Shp-2 recruitment and activation, increased mitogenic potency, suppression of GATA-1 expression and concomitant upregulation of GATA-2 transcription. In addition to enhanced proliferation, continuous culture of Gab1-expressing 32D cells in HGF resulted in cell attachment, filopodia extension and phenotypic changes suggestive of monocytic differentiation. Our results suggest that in myeloid cells, Gab1 is likely to enhance HGF mitogenicity by coupling Met to Shp-2 and GATA-2 expression, thereby potentially contributing to normal myeloid differentiation as well as oncogenic transformation. PMID:20506405

  1. Multifaceted Therapeutic Benefits of Factors Derived From Dental Pulp Stem Cells for Mouse Liver Fibrosis.

    PubMed

    Hirata, Marina; Ishigami, Masatoshi; Matsushita, Yoshihiro; Ito, Takanori; Hattori, Hisashi; Hibi, Hideharu; Goto, Hidemi; Ueda, Minoru; Yamamoto, Akihito

    2016-10-01

    : Chronic liver injury from various causes often results in liver fibrosis (LF). Although the liver possesses endogenous tissue-repairing activities, these can be overcome by sustained inflammation and excessive fibrotic scar formation. Advanced LF leads to irreversible cirrhosis and subsequent liver failure and/or hepatic cancer. Here, using the mouse carbon tetrachloride (CCl 4 )-induced LF model, we showed that a single intravenous administration of stem cells derived from human exfoliated deciduous teeth (SHEDs) or of SHED-derived serum-free conditioned medium (SHED-CM) resulted in fibrotic scar resolution. SHED-CM suppressed the gene expression of proinflammatory mediators, such as TNF-α, IL-1β, and iNOS, and eliminated activated hepatic stellate cells by inducing their apoptosis, but protected parenchymal hepatocytes from undergoing apoptosis. In addition, SHED-CM induced tissue-repairing macrophages that expressed high levels of the profibrinolytic factor, matrix metalloproteinase 13. Furthermore, SHED-CM suppressed the CCl 4 -induced apoptosis of primary cultured hepatocytes. SHED-CM contained a high level of hepatocyte growth factor (HGF). Notably, HGF-depleted SHED-CM (dHGF-CM) did not suppress the proinflammatory response or resolve fibrotic scarring. Furthermore, SHED-CM, but not dHGF-CM, inhibited CCl 4 -induced hepatocyte apoptosis. These results suggest that HGF plays a central role in the SHED-CM-mediated resolution of LF. Taken together, our findings suggest that SHED-CM provides multifaceted therapeutic benefits for the treatment of LF. This study demonstrated that a single intravenous administration of stem cells from human exfoliated deciduous teeth (SHEDs) or of the serum-free conditioned medium (CM) derived from SHEDs markedly improved mouse liver fibrosis (LF). SHED-CM suppressed chronic inflammation, eliminated activated hepatic stellate cells by inducing their apoptosis, protected hepatocytes from undergoing apoptosis, and induced

  2. Inhibitory effects of hepatocyte growth factor and interleukin-6 on transforming growth factor-beta1 mediated vocal fold fibroblast-myofibroblast differentiation.

    PubMed

    Vyas, Bimal; Ishikawa, Keiko; Duflo, Suzy; Chen, Xia; Thibeault, Susan L

    2010-05-01

    The role of myofibroblasts in vocal fold scarring has not been extensively studied, partly because of the lack of a robust in vitro model. The objective of this investigation was to develop and characterize a myofibroblast in vitro model that could be utilized to investigate the molecular mechanism of myofibroblast differentiation and function in injured vocal fold tissue. Differentiation of human primary vocal fold fibroblasts (hVFFs) to myofibroblasts was stimulated with 5, 10, or 20 ng/mL of recombinant transforming growth factor-beta1 (TGF-beta1). Cultures were analyzed by immunofluorescence and Western blotting, with an alpha-smooth muscle actin (alpha-SMA) antibody used as a myofibroblast marker. Normal rabbit vocal folds were treated with 10 ng/mL of TGF-beta1 for 7 days for in vivo corroboration. The effects of interleukin-6 (IL-6) and hepatocyte growth factor (HGF) on myofibroblast differentiation were studied with Western blots. The hVFFs demonstrated positive alpha-SMA labeling in cells stimulated by 10 and 20 ng/mL TGF-beta1, indicating that hVFFs were capable of differentiation to myofibroblasts. Transforming growth factor-beta1 induced the largest increase in alpha-SMA at 10 ng/mL on day 5 of treatment. Both HGF and IL-6 suppressed the expression of TGF-beta1-induced alpha-SMA. Our work characterizes a useful in vitro model of TGF-beta1-mediated vocal fold fibroblast-myofibroblast differentiation. The extent of differentiation appears to be attenuated by HGF, suggesting a potential mechanism to support prior work indicating that HGF plays a protective role in reducing scar formation in vocal fold injuries. Paradoxically, IL-6, which has been shown to play a profibrotic role in dermal studies, also attenuated the TGF-beta1 response.

  3. Effect of two different preparations of platelet-rich plasma on synoviocytes.

    PubMed

    Assirelli, Elisa; Filardo, Giuseppe; Mariani, Erminia; Kon, Elizaveta; Roffi, Alice; Vaccaro, Franca; Marcacci, Maurilio; Facchini, Andrea; Pulsatelli, Lia

    2015-09-01

    To analyse the modifications induced by two different platelet-rich plasma (PRP) preparations on osteoarthritis (OA) synoviocytes, by documenting changes in gene expression of factors involved in joint physiopathology. OA synoviocytes were cultured for 7 days in medium with different concentrations of either P-PRP (a pure platelet concentrate without leucocytes but with a limited number of platelets), L-PRP (a higher platelet concentrate containing leucocytes) or platelet-poor plasma (PPP). Gene expression of interleukin (IL)-1beta, IL-6, IL-8/CXCL8, tumour necrosis factor alpha, IL-10, IL-4, IL-13, metalloproteinase-13, tissue inhibitor of metalloproteinase (TIMP)-1, (TIMP)-3, (TIMP)-4, vascular endothelial growth factor, transforming growth factor beta1, fibroblast growth factor (FGF)-2, hepatocyte growth factor (HGF), hyaluronic acid (HA) synthases (HAS)-1, (HAS)-2, and (HAS)-3 was analysed by RT-PCR. HA production was determined in culture supernatants by ELISA. IL-1β, IL-8 and FGF-2 were significantly induced by L-PRP compared to both P-PRP and PPP; HGF was down-modulated by L-PRP versus both P-PRP and PPP, and an inverse dose-response influence was shown for all preparations. Expression level of TIMP-4 was lower in the presence of L-PRP compared with P-PRP. HA production and HAS gene expression did not seem to be modulated by PRP. L-PRP is able to sustain the up-regulation of proinflammatory factors, (IL-1beta, IL-8 and FGF-2), together with a down-modulation of HGF and TIMP-4 expression, two factors that have been recognized as anti-catabolic mediators in cartilage, thus supporting the need to further optimize the PRP preparations to be applied in clinical practice.

  4. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells.

    PubMed

    Crosswell, Hal E; Dasgupta, Anindya; Alvarado, Carlos S; Watt, Tanya; Christensen, James G; De, Pradip; Durden, Donald L; Findley, Harry W

    2009-11-25

    c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-gamma agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. c-Met is highly expressed in most tumors

  5. Potent blockade of hepatocyte growth factor-stimulated cell motility, matrix invasion and branching morphogenesis by antagonists of Grb2 Src homology 2 domain interactions.

    PubMed

    Atabey, N; Gao, Y; Yao, Z J; Breckenridge, D; Soon, L; Soriano, J V; Burke, T R; Bottaro, D P

    2001-04-27

    Hepatocyte growth factor (HGF) stimulates mitogenesis, motogenesis, and morphogenesis in a wide range of cellular targets during development, homeostasis and tissue regeneration. Inappropriate HGF signaling occurs in several human cancers, and the ability of HGF to initiate a program of protease production, cell dissociation, and motility has been shown to promote cellular invasion and is strongly linked to tumor metastasis. Upon HGF binding, several tyrosines within the intracellular domain of its receptor, c-Met, become phosphorylated and mediate the binding of effector proteins, such as Grb2. Grb2 binding through its SH2 domain is thought to link c-Met with downstream mediators of cell proliferation, shape change, and motility. We analyzed the effects of Grb2 SH2 domain antagonists on HGF signaling and observed potent blockade of cell motility, matrix invasion, and branching morphogenesis, with ED(50) values of 30 nm or less, but only modest inhibition of mitogenesis. These compounds are 1000-10,000-fold more potent anti-motility agents than any previously characterized Grb2 SH2 domain antagonists. Our results suggest that SH2 domain-mediated c-Met-Grb2 interaction contributes primarily to the motogenic and morphogenic responses to HGF, and that these compounds may have therapeutic application as anti-metastatic agents for tumors where the HGF signaling pathway is active.

  6. Analysis of soluble factors in conditioned media derived from primary cultures of cirrhotic liver of biliary atresia.

    PubMed

    Yamazaki, Taisuke; Wakai, Mariko; Enosawa, Shin; Tokiwa, Takayoshi

    2017-06-01

    Biliary atresia (BA) is a rare and serious liver disease in newborn infants. Previously, we reported that non-parenchymal cell (NPC) fractions from cirrhotic liver of BA may contain hepatic stem/progenitor cells in primary culture of NPC fractions. In this study, NPC fractions were subjected to primary or passage culture and found that clusters of hepatocyte-like cells appear even without adding hepatocyte growth factor (HGF) to the culture medium, but not in their passage culture used as a control. Based on these findings, conditioned media (CMs) were collected and soluble factors in the CMs were analyzed in order to elucidate the mechanism of the appearance of hepatocyte-like cells or their clusters. A large amount of active HGF consisting of α and β chains was detected in CMs derived from primary culture, but not in CMs from passage culture, as determined by western blot analysis, bone morphogenetic protein (BMP)-4, oncostatin M (OSM), and transforming growth factor (TGF)-β1 were not detected in any of the CMs. The number of hepatocyte-like cells in primary culture tended to decrease following treatment with the HGF receptor c-Met inhibitor, SU11274 in a dose-dependent manner. Furthermore, the clusters of hepatocyte-like cells tended to increase in size and number when freshly isolated NPC fractions were cultured in the presence of 10% of CMs collected after 3-4 wk of primary culture. In conclusion, these findings indicate that CMs derived from primary culture of NPC fractions of BA liver contain a large amount of active HGF, which may activate hepatic stem/progenitor cells and promote the appearance of hepatocyte-like cells or their clusters through HGF/c-Met signaling. The present study would lead to cell therapy using the patient's own cells for the treatment of BA.

  7. N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor.

    PubMed

    Kawamura, Kazuhiro; Takano, Kazunori; Suetsugu, Shiro; Kurisu, Shusaku; Yamazaki, Daisuke; Miki, Hiroaki; Takenawa, Tadaomi; Endo, Takeshi

    2004-12-24

    During skeletal muscle regeneration caused by injury, muscle satellite cells proliferate and migrate toward the site of muscle injury. This migration is mainly induced by hepatocyte growth factor (HGF) secreted by intact myofibers and also released from injured muscle. However, the intracellular machinery for the satellite cell migration has not been elucidated. To examine the mechanisms of satellite cell migration, we utilized satellite cell-derived mouse C2C12 skeletal muscle cells. HGF induced reorganization of actin cytoskeleton to form lamellipodia in C2C12 myoblasts. HGF treatment facilitated both nondirectional migration of the myoblasts in phagokinetic track assay and directional chemotactic migration toward HGF in a three-dimensional migration chamber assay. Endogenous N-WASP and WAVE2 were concentrated in the lamellipodia at the leading edge of the migrating cells. Moreover, exogenous expression of wild-type N-WASP or WAVE2 promoted lamellipodial formation and migration. By contrast, expression of the dominant-negative mutant of N-WASP or WAVE2 and knockdown of N-WASP or WAVE2 expression by the RNA interference prevented the HGF-induced lamellipodial formation and migration. When the cells were treated with LY294002, an inhibitor of phosphatidylinositol 3-kinase, the HGF-induced lamellipodial formation and migration were abrogated. These results imply that both N-WASP and WAVE2, which are activated downstream of phosphati-dylinositol 3-kinase, are required for the migration through the lamellipodial formation of C2C12 cells induced by HGF.

  8. Independent association of elevated serum hepatocyte growth factor levels with development of insulin resistance in a 10-year prospective study.

    PubMed

    Tsukagawa, Eri; Adachi, Hisashi; Hirai, Yuji; Enomoto, Mika; Fukami, Ako; Ogata, Kinuka; Kasahara, Akiko; Yokoi, Kanako; Imaizumi, Tsutomu

    2013-07-01

    Hepatocyte growth factor (HGF) receptors form a hybrid complex with insulin receptors in the liver of mice, which lead to robust signalling to regulate glucose metabolism. Serum HGF levels are high in subjects with metabolic syndrome and/or obesity. Accordingly, we prospectively investigated the relationship between HGF and the development of insulin resistance (IR) in a general population without IR at baseline. A total of 1492 subjects received health examinations. After excluding subjects with diabetes and/or IR (n = 402) at baseline, the remaining subjects (n = 1090) were followed-up 10 years later. Complete data sets were available from 716 subjects for prospective analysis. Logistic regression was performed to determine factors associated with the development of IR after 10 years. In subjects without diabetes at baseline, serum HGF levels were higher (0·26 ± 0·10 ng/ml, n = 259) in subjects with IR than without it (0·22 ± 0·09 ng/ml, n = 1090). After deleting subjects who developed liver disease during follow-up, 188 were found to have developed IR at 10 years after the original screening. HGF (P < 0·05), age (P < 0·001), homoeostasis model assessment index (P < 0·001), HDL-c (P < 0·05; inversely) and hypertensive medication (P < 0·05) were significantly associated with the development of IR by multivariate stepwise logistic regression analysis. A significant (P < 0·05) relative risk [1·75 (95%CI: 1·01-3·12)] for the development of IR was observed in the highest (≥0·30 ng/ml) vs the lowest categories (<0·15 ng/ml) of HGF after adjustments for confounders. Our 10-year prospective study suggests that elevated serum HGF levels were significantly associated with the development of IR. © 2012 John Wiley & Sons Ltd.

  9. Quantitative Analysis of Cancer Cell Migration in Gradients Of EGF, HGF, and SDF-alpha Using a Microfluidic Chemotaxis Device

    DTIC Science & Technology

    2005-01-01

    Quantitative Analysis of Cancer Cell Migration in Gradients of EGF, HGF, and SDF-alpha Using a Microfluidic Chemotaxis Device The University of California...allowing for parallel analysis . Additionally, simple methods of localizing gels into microdevices are demonstrated. The device was characterized by...To overcome some of these drawbacks, several approaches have utilized free diffusion to produce gradients in static environ - ments.5-9 However

  10. Clinical Implications of Hepatocyte Growth Factor, Interleukin-20, and Interleukin-22 in Serum and Bronchoalveolar Fluid of Patients with Non-Small Cell Lung Cancer.

    PubMed

    Naumnik, W; Naumnik, B; Niklińska, W; Ossolińska, M; Chyczewska, E

    2016-01-01

    Hepatocyte growth factor (HGF) is involved in tumorigenesis, interleukin-20 (IL-20) is an inhibitor of angiogenesis, and interleukin-22 (IL-22) stimulates tumor growth. The aim of this study was to determine the level of HGF, IL-20, and IL-22 in both serum and bronchoalveolar lavage fluid (BALF) of non-small cell lung cancer (NSCLC) patients before onset of chemotherapy, the nature of the interrelationships between these markers, and their prognostic significance regarding post-chemotherapy survival time. We studied 46 NSCLC patients and 15 healthy subjects as a control group. We found significantly higher serum levels of HGF and IL-22 in the NSCLC patients than those in controls [pg/ml: HGF - 1911 (693-6510) vs. 1333 (838-3667), p = 0.0004; IL-22 - 10.66 (1.44-70.34) vs. 4.69 (0.35-12.29), p = 0.0007]. In contrast, concentrations of HGF and IL-22 in BALF were lower in NSCLC patients than those in controls [pg/ml: HGF - 72 (6-561) vs. 488 (14-2003), p = 0.0002; IL-22 - 2.28 (0.70-6.52) vs. 3.72 (2.76-5.64), p = 0.002]. In the NSCLC patients, there was a negative correlation between the serum level of IL-20 and time to tumor progression (r = -0.405, p = 0.04) and between the serum level of HGF and survival time (r = -0.41, p = 0.005). In addition, a higher serum level of HGF and a higher BALF level of IL-22 in patients were linked with a shorter overall survival. We conclude that HGF, IL-20, and IL-22 in the serum and BALF of NSCLC patients before chemotherapy may be a prognostic of cancer progression.

  11. Decreased expression of hepatocyte growth factor in the nitrofen model of congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2016-10-01

    Pleuroperitoneal folds (PPFs) are essential for normal diaphragmatic development, representing the only source of the diaphragm's muscle connective tissue. Hepatocyte growth factor (Hgf), which is secreted in PPFs, plays a crucial role in the formation of the muscular diaphragmatic components by regulating the migration of myogenic progenitor cells into the primordial diaphragm. Hgf is also a known downstream target of Gata4 and it has been demonstrated that the expression of Hgf was significantly downregulated in PPF cells of Gata4 knockouts with congenital diaphragmatic hernia (CDH). Furthermore, mutations in PPF-derived cells have been shown to result in CDH. We hypothesized that Hgf expression is decreased in developing diaphragms of fetal rats with nitrofen-induced CDH. Timed-pregnant rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetuses were harvested on selected time-points D13, D15 and D18. Dissected diaphragms (n = 72) were divided into control and nitrofen-exposed specimens (n = 12 per time-point and experimental group, respectively). Diaphragmatic gene expression of Hgf was analyzed by qRT-PCR. Immunofluorescence double staining for Hgf and the mesenchymal marker Gata4 or muscular progenitor marker Myogenin was performed to evaluate protein expression and localization in fetal diaphragms. Relative mRNA expression of Hgf was significantly downregulated in PPFs of nitrofen-exposed fetuses on D13 (3.08 ± 1.46 vs. 5.24 ± 1.93; p < 0.05), developing diaphragms of nitrofen-exposed fetuses on D15 (2.01 ± 0.79 vs. 4.10 ± 1.50; p < 0.05) and fully muscularized diaphragms of nitrofen-exposed fetuses on D18 (1.60 ± 0.78 vs. 3.21 ± 1.89; p < 0.05) compared to controls. Confocal laser scanning microscopy revealed markedly diminished diaphragmatic immunofluorescence of Hgf in nitrofen-exposed fetuses on D13, D15 and D18 compared to controls, which was associated with disruptions in muscle connective tissue

  12. Angiotensin II Type 1 Receptor Knockdown Impairs Interleukin-1β-Induced Cytokines in Human Periodontal Fibroblasts.

    PubMed

    Gabriele, Lilian Gobbo; Morandini, Ana Carolina; Dionísio, Thiago José; Santos, Carlos Ferreira

    2017-01-01

    The renin-angiotensin (Ang) system (RAS) has been reported as an important modulator of inflammatory and immune responses. Evidence suggests an alternative Ang 1-7/Mas receptor axis as counter-regulatory to the classic RAS Ang II/Ang II Type 1 (AT1) receptor axis. It is known that periodontal pathogens elicit host-derived immune response due to release of cytokines such as interleukin (IL)-1β, and fibroblasts are among the most numerous sentinel cells that contribute to this production. The aim of this study is to determine whether AT1 receptor (AT1R) contributes to production of inflammatory cytokines that are important for periodontal pathogenesis using primary human gingival fibroblasts (HGFs) and human periodontal ligament fibroblasts (HPLFs) stimulated with IL-1β. Through RNA interference or pharmacologic inhibition using AT1R antagonist losartan, HGF and HPLF were stimulated by IL-1β for 3 (messenger RNA [mRNA]) or 24 (protein) hours. IL-1β upregulated mRNA expression of AT1R, IL-1β, IL-6, IL-8, tumor necrosis factor-alpha, and osteoprotegerin (OPG) in HGF and HPLF. AT1R knockdown impaired IL-1β-induced IL-6 and IL-8 secretion in cultured HGF and HPLF. AT1R silencing also increased OPG gene expression in HGF only. Pharmacologic inhibition of AT1R through losartan modulated mRNA transcription of IL-6 and IL-8 in HPLF but not in HGF. In contrast, IL-1β-induced secretion of IL-6 and IL-8 was not influenced by losartan in HGF or HPLF. These results suggest that AT1R knockdown and AT1R pharmacologic blockade by losartan may differently control balance of inflammatory cytokines, such as IL-6 and IL-8, in primary human periodontal fibroblasts.

  13. Preclinical Evaluation of MET Inhibitor INC-280 With or Without the Epidermal Growth Factor Receptor Inhibitor Erlotinib in Non–Small-Cell Lung Cancer

    PubMed Central

    Lara, Matthew S.; Holland, William S.; Chinn, Danielle; Burich, Rebekah A.; Lara, Primo N.; Gandara, David R.; Kelly, Karen; Mack, Philip C.

    2018-01-01

    The MET inhibitor INC-280 restored sensitivity to erlotinib and promoted apoptosis in non–small-cell lung cancer models rendered resistant to erlotinib by hepatocyte growth factor. Background Although the epidermal growth factor receptor (EGFR) inhibitor erlotinib is initially effective in non–small-cell lung cancer (NSCLC) patients with tumors harboring activating mutations of EGFR, most subsequently develop acquired resistance. One recognized resistance mechanism occurs through activation of bypass signaling via the hepatocyte growth factor (HGF)-MET pathway. INC-280 is a small molecule kinase inhibitor of MET. We sought to demonstrate the activity of INC-280 on select NSCLC cell lines both as a single agent and in combination with erlotinib using exogenous HGF to simulate MET up-regulation. Methods Four NSCLC cell lines (HCC827, PC9, H1666, and H358) were treated with either single-agent INC-280 or in combination with erlotinib with or without HGF. The activity of the drug treatments was measured by cell viability assays. Immunoblotting was used to monitor expression of EGFR/pEGFR, MET/pMET, GAB1/pGAB1, AKT/pAKT, and ERK/pERK as well as markers of apoptosis (PARP and capase-3 cleavage) in H1666, HCC827, and PC9. Results As a single agent, INC-280 showed minimal cytotoxicity despite potent inhibition of MET kinase activity at concentrations as low as 10 nM. Addition of HGF prevented erlotinib-induced cell death. The addition of INC280 to HGF-mediated erlotinib-resistant models restored erlotinib sensitivity for all cell lines tested, associated with cleavage of both PARP and caspase-3. In these models, INC-280 treatment was sufficient to restore erlotinib-induced inhibition of MET, GAB1, AKT, and ERK in the presence of HGF. Conclusion Although the MET inhibitor INC-280 alone had no discernible effect on cell growth, it was able to restore sensitivity to erlotinib and promote apoptosis in NSCLC models rendered erlotinib resistant by HGF. These data provide a

  14. Transplantation of Hepatocyte Growth Factor-Modified Dental Pulp Stem Cells Prevents Bone Loss in the Early Phase of Ovariectomy-Induced Osteoporosis.

    PubMed

    Kong, Fanxuan; Shi, Xuefeng; Xiao, Fengjun; Yang, Yuefeng; Zhang, Xiaoyan; Wang, Li-Sheng; Wu, Chu-Tse; Wang, Hua

    2018-02-01

    Investigations based on mesenchymal stem cells (MSCs) for osteoporosis have attracted attention recently. MSCs can be derived from various tissues, such as bone marrow, adipose, umbilical cord, placenta, and dental pulp. Among these, dental pulp-derived MSCs (DPSCs) and hepatocyte growth factor (HGF)-modified DPSCs (DPSCs-HGF) highly express osteogenic-related genes and have stronger osteogenic differentiation capacities. DPSCs have more benefits in treating osteoporosis. The purpose of this study was to investigate the roles of HGF gene-modified DPSCs in bone regeneration using a mouse model of ovariectomy (OVX)-induced bone loss. The HGF and luciferase genes were transferred into human DPSCs using recombinant adenovirus. These transduced cells were assayed for distribution or bone regeneration assay by transplantation into an OVX-induced osteoporosis model. By using bioluminogenic imaging, it was determined that some DPSCs could survive for >1 month in vivo. The DPSCs were mainly distributed to the lung in the early stage and to the liver in the late stage of OVX osteoporosis after administration, but they were scarcely distributed to the bone. The homing efficiency of DPSCs is higher when administrated in the early stage of a mouse OVX model. Micro-computed tomography indicated that DPSCs-Null or DPSCs-HGF transplantation significantly reduces OVX-induced bone loss in the trabecular bone of the distal femur metaphysis, and DPSCs-HGF show a stronger capacity to reduce bone loss. The data suggest that systemic infusion of DPSCs-HGF is a potential therapeutic approach for OVX-induced bone loss, which might be mediated by paracrine mechanisms.

  15. Establishment of human hair follicle mesenchymal stem cells with overexpressed human hepatocyte growth factor.

    PubMed

    Zhou, Dan; Cheng, Hongjing; Liu, Jinyu; Zhang, Lei

    2017-06-01

    Chronic liver disease has become a major health problem that causes serious damage to human health. Since the existing treatment effect was not ideal, we need to seek new treatment methods. We utilized the gene recombination technology to obtain the human hair mesenchymal stem cells which overexpression of human hepatocyte growth factor (hHGF). Furthermore, we verified the property of transfected cells through detecting surface marker by flow cytometry. We show here establishment of the hHGF-overexpressing lentivirus vector, and successfully transfection to human hair follicle mesenchymal stem cells. The verified experiments could demonstrate the human hair follicle mesenchymal stem cells which have been transfected still have the properties of stem cells. We successfully constructed human hair follicle mesenchymal stem cells which overexpression hHGF, and maintain the same properties compared with pro-transfected cells.

  16. Involvement of activator protein 1 complexes in the epithelium-specific activation of the laminin gamma2-chain gene promoter by hepatocyte growth factor (scatter factor).

    PubMed Central

    Olsen, J; Lefebvre, O; Fritsch, C; Troelsen, J T; Orian-Rousseau, V; Kedinger, M; Simon-Assmann, P

    2000-01-01

    Laminin-5 is a trimer of laminin alpha3, beta3 and gamma2 chains that is found in the intestinal basement membrane. Deposition of the laminin gamma2 chain at the basement membrane is of great interest because it undergoes a developmental shift in its cellular expression. Here we study the regulatory elements that control basal and cytokine-activated transcriptional expression of the LAMC2 gene, which encodes the laminin gamma2 chain. By using transient transfection experiments we demonstrated the presence of constitutive and cytokine-responsive cis-elements. Comparison of the transcriptional activity of the LAMC2 promoter in the epithelial HT29mtx cells with that in small-intestinal fibroblastic cells (C20 cells) led us to conclude that two regions with constitutive epithelium-specific activity are present between positions -1.2 and -0.12 kb. This was further validated by transfections of primary foetal intestinal endoderm and mesenchyme. A 2.5 kb portion of the LAMC2 5' flanking region was equally responsive to PMA and hepatocyte growth factor (HGF), whereas it was less responsive to transforming growth factor beta1. A minimal promoter limited to the initial 120 bp upstream of the transcriptional start site maintained inducibility by PMA and HGF. This short promoter fragment contains two activator protein 1 (AP-1) elements and the 5'-most of these is a composite AP-1/Sp1 element. The 5'AP-1 element is crucial to the HGF-mediated activity of the promoter; analysis of interacting nuclear proteins demonstrated that AP-1 proteins containing JunD mediate the response to HGF. PMID:10749670

  17. [The expression of serum hepatocyte growth factor in OSAHS].

    PubMed

    Zhou, S L; Meng, B; Ding, J H

    2017-05-05

    Objective: To investigate the clinical significance of detecting peripheral blood hepatocyte growth factor(HGF) in OSAHS patients. Method: Ninety-six cases of OSAHS patients in our hospital were selected as OSAHS group,and were divided into 3 subgroups according to the PSG results:mild,medium and severe. Each group included 32 cases,Thirty-five cases of healthy persons were selected as control group. ELISA method was utilized to detect the HGF level of peripheral blood. HGF concentration was measured in 32 patients with severe OSAHS after 3 months of comprehensive treatment. The relationship between serum HGF and sleep respiration events was further analyzed. Result: The HGF concentration of peripheral blood increased with the severity of OSAHS.The serum levels of HGF in the control,mild,medium and severe group were(487.75±46.74)pg/ml,(519.44±50.77)pg/ml,(753.52±58.91) pg/ml and(829.49±61.74)pg/ml,respectively. There were significant differences among groups( F =117.733, P <0.01). HGF concentration in peripheral blood of OSAHS patients was unrelated to sex,age,and BMI( P >0.05),and positively correlated with AHI,negatively correlated with LSaO₂( P <0.01). After comprehensive treatment,the serum HGF concentration and AHI in severe OSAHS group were significantly decreased,while LSaO₂ was significantly increased. Conclusion: The level of HGF was increased in OSAHS patients and was positively correlated with the severity of OSAHS. Determining the level of HGF in peripheral blood is important for evaluating the severity of OSAHS and the degree of vascular endothelial dysfunction,and assessing the risk of cardiovascular disease. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  18. [Influence of hepatocyte growth factor on iNOS, NO and IL-1β in the cerebrum during cerebral ischemia/reperfusion in rats].

    PubMed

    He, Fang; Ye, Bei; Chen, Jianzhen; Sun, Xiaoyan; Li, Chang

    2014-01-01

    To explore the effect of hepatocyte growth factor (HGF) on inducible nitric oxide synthase (iNOS), NO and interleukin-1β (IL-1β) in the cerebrum of rats subjected to cerebral ischemia/reperfusion (I/R). Sprague-Dawley rats were randomly divided into 5 groups: a sham group, an I/R group,an HGF1 group, an HGF2 group, and an HGF3 group. The latter 3 groups were respectively injected 15, 30 and 60 μg/kg HGF. The focal cerebral I/R model was established by sutureoccluded method. After 1.5 h ischemia followed by 24 h reperfusion, the iNOS activity and NO content in the ischemic cerebral tissue were assessed. The expression of iNOS mRNA and IL-1β mRNA was detected. The level of iNOS protein and IL-1β content were determined. In addition, cultured cerebral cortical neurons in vitro were exposed to I/R. Then the expression of iNOS and IL-1β protein in the neurons was detected, and NO content was assessed. The iNOS activity and NO content in the ischemic cerebral tissue were increased. The expression of iNOS mRNA and IL-1β mRNA was upregulated. The level of iNOS protein and IL- 1β content were increased. Administration of HGF decreased the iNOS activity and NO content, and downregulated the expression of iNOS mRNA, IL-1β mRNA, iNOS protein and IL-1β content in the ischemic cerebral tissue. HGF decreased the expression of IL-1β, iNOS protein and NO content in the cortical neurons exposed to I/R in vitro. HGF can inhibit the expression of IL-1β and decrease the expression of iNOS and content of NO, which is probably one of the mechanisms mediating the protection of HGF against cerebral ischemia injury.

  19. Modulation of DNA binding by gene-specific transcription factors.

    PubMed

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  20. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    PubMed Central

    Snykers, Sarah; Vanhaecke, Tamara; De Becker, Ann; Papeleu, Peggy; Vinken, Mathieu; Van Riet, Ivan; Rogiers, Vera

    2007-01-01

    Background The capability of human mesenchymal stem cells (hMSC) derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF), insulin-transferrin-sodium-selenite (ITS) and dexamethasone)] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone), however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK)18 expression. Additional exposure of the cells to trichostatin A (TSA) considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF)-3β, alpha-fetoprotein (AFP), CK18, albumin (ALB), HNF1α, multidrug resistance-associated protein (MRP)2 and CCAAT-enhancer binding protein (C/EBP)α, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP)-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells. PMID:17407549

  1. Hepatocyte Growth Factor-c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing.

    PubMed

    Shibata, Shumei; Miwa, Toru; Wu, Hsiao-Huei; Levitt, Pat; Ohyama, Takahiro

    2016-08-03

    The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness via melanocyte deficiencies. We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may underlie human deafness DFNB39 and DFNB97. Our findings reveal an additional example of context-dependent c-MET signaling diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related organogenesis. Copyright © 2016 the authors 0270-6474/16/368200-10$15.00/0.

  2. Plasma vemurafenib exposure and pre-treatment hepatocyte growth factor level are two factors contributing to the early peripheral lymphocytes depletion in BRAF-mutated melanoma patients.

    PubMed

    Puszkiel, Alicja; White-Koning, Mélanie; Dupin, Nicolas; Kramkimel, Nora; Thomas-Schoemann, Audrey; Noé, Gaëlle; Chapuis, Nicolas; Vidal, Michel; Goldwasser, François; Chatelut, Etienne; Blanchet, Benoit

    2016-11-01

    The therapeutic response to vemurafenib, a BRAF serine-threonine kinase inhibitor, exhibits large variations between patients. Evaluation of factors predicting the clinical efficacy of vemurafenib may help to identify patients at high risk of non-response in the early phase of treatment. The aim of this study was to analyze the pharmacokinetics of vemurafenib by a population approach and to evaluate the relationship between plasma drug exposure and pre-treatment plasma hepatocyte growth factor (HGF) levels with clinical effects (progression-free survival (PFS), peripheral lymphocytes depletion) in patients with metastatic BRAF V600 mutated melanoma treated with single agent vemurafenib. Concentration-time data (n=332) obtained in 44 patients were analyzed using the NONMEM program. Pre-treatment plasma levels of HGF (n=36) were assayed by ELISA method. A Cox model was used to identify prognostic factors associated with progression-free survival (PFS), and a linear regression to identify factors contributing to the depletion of peripheral lymphocytes at day 15. Steady-state pharmacokinetics of vemurafenib was described by a one compartment model with first order absorption and first order elimination. None of the tested covariates explained the inter-patient variability in CL/F. A significant decrease in total lymphocytes count was observed within the first 15days (median ratio Day15/Day0=0.66, p<0.0001). Patients with Day15/Day0 ratio below 0.66 had longer PFS (14 vs 4 months, HR=0.41, CI95%=[0.15-0.77], p=0.0095). In the multivariate Cox model analysis, ECOG PS was the only parameter independently associated with PFS (grade 1 vs 0, HR=3.26, CI95%=[1.29-8.22], p=0.01 and grade ≥2 vs 0, HR=4.77, CI95%=[1.52-14.95], p=0.007). Plasma vemurafenib exposure (p=0.046) and pre-treatment HGF levels (p=0.003) were independently associated with the total lymphocyte ratio Day15/Day0. These findings show that plasma vemurafenib exposure and pre-treatment HGF levels are two

  3. Correlation between increasing tissue ischemia and circulating levels of angiogenic growth factors in peripheral artery disease.

    PubMed

    Jalkanen, Juho; Hautero, Olli; Maksimow, Mikael; Jalkanen, Sirpa; Hakovirta, Harri

    2018-04-21

    The aim of the present study was to assess the circulating levels of vascular endothelial growth factor (VEGF) and other suggested therapeutic growth factors with the degree of ischemia in patients with different clinical manifestations of peripheral arterial disease (PAD) according to the Rutherford grades. The study cohort consists of 226 consecutive patients admitted to a Department of Vascular Surgery for elective invasive procedures. PAD patients were grouped according to the Rutherford grades after a clinical assessment. Ankle-brachial pressure indices (ABI) and absolute toe pressure (TP) values were measured. Serum levels of circulating VEGF, hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF) were measured from serum and analysed against Rutherford grades and peripheral hemodynamic measurements. The levels of VEGF (P = 0.009) and HGF (P < 0.001) increased significantly as the ischaemic burden became more severe according to the Rutherford grades. PDGF behaved in opposite manner and declined along increasing Rutherford grades (P = 0.004). A significant, inverse correlations between Rutherford grades was detected as follows; VEGF (Pearson's correlation = 0.183, P = 0.004), HGF (Pearson's correlation = 0.253, P < 0.001), bFGF (Pearson's correlation = 0.169, P = 0.008) and PDGF (Pearson's correlation = 0.296, P < 0.001). In addition, VEGF had a clear direct negative correlation with ABI (Pearson's correlation -0.19, P = 0.009) and TP (Pearson's correlation -0.20, P = 0.005) measurements. Our present observations show that the circulating levels of VEGF and other suggested therapeutic growth factors are significantly increased along with increasing ischemia. These findings present a new perspective to anticipated positive effects of gene therapies utilizing VEGF, HGF, and bFGF, because the levels of these growth factors are endogenously high in end

  4. Gestalt factors modulate basic spatial vision.

    PubMed

    Sayim, B; Westheimer, G; Herzog, M H

    2010-05-01

    Human perception of a stimulus varies depending on the context in which the stimulus is presented. Such contextual modulation has often been explained by two basic neural mechanisms: lateral inhibition and spatial pooling. In the present study, we presented observers with a vernier stimulus flanked by single lines; observers' ability to discriminate the offset direction of the vernier stimulus deteriorated in accordance with both explanations. However, when the flanking lines were part of a geometric shape (i.e., a good Gestalt), this deterioration strongly diminished. These findings cannot be explained by lateral inhibition or spatial pooling. It seems that Gestalt factors play an important role in contextual modulation. We propose that contextual modulation can be used as a quantitative measure to investigate the rules governing the grouping of elements into meaningful wholes.

  5. Hepatocyte Growth Factor and MET Support Mouse Enteric Nervous System Development, the Peristaltic Response, and Intestinal Epithelial Proliferation in Response to Injury

    PubMed Central

    Avetisyan, Marina; Wang, Hongtao; Schill, Ellen Merrick; Bery, Saya; Grider, John R.; Hassell, John A.; Stappenbeck, Thaddeus

    2015-01-01

    Factors providing trophic support to diverse enteric neuron subtypes remain poorly understood. We tested the hypothesis that hepatocyte growth factor (HGF) and the HGF receptor MET might support some types of enteric neurons. HGF and MET are expressed in fetal and adult enteric nervous system. In vitro, HGF increased enteric neuron differentiation and neurite length, but only if vanishingly small amounts (1 pg/ml) of glial cell line-derived neurotrophic factor were included in culture media. HGF effects were blocked by phosphatidylinositol-3 kinase inhibitor and by MET-blocking antibody. Both of these inhibitors and MEK inhibition reduced neurite length. In adult mice, MET was restricted to a subset of calcitonin gene-related peptide-immunoreactive (IR) myenteric plexus neurons thought to be intrinsic primary afferent neurons (IPANs). Conditional MET kinase domain inactivation (Metfl/fl; Wnt1Cre+) caused a dramatic loss of myenteric plexus MET-IR neurites and 1–1′-dioctodecyl-3,3,3′,3′-tetramethylindocarbocyamine perchlorate (DiI) labeling suggested reduced MET-IR neurite length. In vitro, Metfl/fl; Wnt1Cre+ mouse bowel had markedly reduced peristalsis in response to mucosal deformation, but normal response to radial muscle stretch. However, whole-bowel transit, small-bowel transit, and colonic-bead expulsion were normal in Metfl/fl; Wnt1Cre+ mice. Finally, Metfl/fl; Wnt1Cre+ mice had more bowel injury and reduced epithelial cell proliferation compared with WT animals after dextran sodium sulfate treatment. These results suggest that HGF/MET signaling is important for development and function of a subset IPANs and that these cells regulate intestinal motility and epithelial cell proliferation in response to bowel injury. SIGNIFICANCE STATEMENT The enteric nervous system has many neuronal subtypes that coordinate and control intestinal activity. Trophic factors that support these neuron types and enhance neurite growth after fetal development are not well

  6. Potent HGF/c-Met axis inhibitors from Eucalyptus globulus: the coupling of phloroglucinol and sesquiterpenoid is essential for the activity.

    PubMed

    Yang, Sheng-Ping; Zhang, Xiao-Wei; Ai, Jing; Gan, Li-She; Xu, Jin-Biao; Wang, Ying; Su, Zu-Shang; Wang, Lu; Ding, Jian; Geng, Mei-Yu; Yue, Jian-Min

    2012-09-27

    Eucalyptin A (1), together with two known compounds 2 and 3 exhibiting potent inhibition on HGF/c-Met axis, was discovered from the fruits of Eucalyptus globulus. 1 possessed an unprecedented carbon framework of phloroglucinol-coupled sesquiterpenoid, and its structure was elucidated by spectroscopic method and ECD calculation. A brief structure-activity relationship discussion indicated that the coupling of a phloroglucinol and a sesquiterpenoid is essential for the activity.

  7. Monocarboxylate transporter 1 contributes to growth factor-induced tumor cell migration independent of transporter activity

    PubMed Central

    Gray, Alana L.; Coleman, David T.; Shi, Runhua; Cardelli, James A.

    2016-01-01

    Tumor progression to metastatic disease contributes to the vast majority of incurable cancer. Understanding the processes leading to advanced stage cancer is important for the development of future therapeutic strategies. Here, we establish a connection between tumor cell migration, a prerequisite to metastasis, and monocarboxylate transporter 1 (MCT1). MCT1 transporter activity is known to regulate aspects of tumor progression and, as such, is a clinically relevant target for treating cancer. Knockdown of MCT1 expression caused decreased hepatocyte growth factor (HGF)-induced as well as epidermal growth factor (EGF)-induced tumor cell scattering and wound healing. Western blot analysis suggested that MCT1 knockdown (KD) hinders signaling through the HGF receptor (c-Met) but not the EGF receptor. Exogenous, membrane-permeable MCT1 substrates were not able to rescue motility in MCT1 KD cells, nor was pharmacologic inhibition of MCT1 able to recapitulate decreased cell motility as seen with MCT1 KD cells, indicating transporter activity of MCT1 was dispensable for EGF- and HGF-induced motility. These results indicate MCT1 expression, independent of transporter activity, is required for growth factor-induced tumor cell motility. The findings presented herein suggest a novel function for MCT1 in tumor progression independent of its role as a monocarboxylate transporter. PMID:27127175

  8. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.

    PubMed

    Son, Bo-Ra; Marquez-Curtis, Leah A; Kucia, Magda; Wysoczynski, Marcin; Turner, A Robert; Ratajczak, Janina; Ratajczak, Mariusz Z; Janowska-Wieczorek, Anna

    2006-05-01

    Human mesenchymal stem cells (MSCs) are increasingly being considered in cell-based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal-derived factor (SDF)-1 and hepatocyte growth factor (HGF) become up-regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo-expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c-met, the cognate receptors of SDF-1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)-MMP, matrix-degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM- or CB-derived MSCs for up to 15-18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c-met, and 3) MMPs. We found that for up to 15-18 passages, both BM- and CB-derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE-cadherin; 2) express CXCR4 and c-met receptors and are strongly attracted by SDF-1 and HGF gradients; 3) express MMP-2 and MT1-MMP transcripts and proteins; and 4) are chemo-invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF-1-CXCR4 and HGF-c-met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.

  9. Hepatocyte Growth Factor Improves the Therapeutic Efficacy of Human Bone Marrow Mesenchymal Stem Cells via RAD51.

    PubMed

    Lee, Eun Ju; Hwang, Injoo; Lee, Ji Yeon; Park, Jong Nam; Kim, Keun Cheon; Kim, Gi-Hwan; Kang, Chang-Mo; Kim, Irene; Lee, Seo-Yeon; Kim, Hyo-Soo

    2018-03-07

    Human embryonic stem cell-derived mesenchymal stem cells (hE-MSCs) have greater proliferative capacity than other human mesenchymal stem cells (hMSCs), suggesting that they may have wider applications in regenerative cellular therapy. In this study, to uncover the anti-senescence mechanism in hE-MSCs, we compared hE-MSCs with adult bone marrow (hBM-MSCs) and found that hepatocyte growth factor (HGF) was more abundantly expressed in hE-MSCs than in hBM-MSCs and that it induced the transcription of RAD51 and facilitated its SUMOylation at K70. RAD51 induction/modification by HGF not only increased telomere length but also increased mtDNA replication, leading to increased ATP generation. Moreover, HGF-treated hBM-MSCs showed significantly better therapeutic efficacy than naive hBM-MSCs. Together, the data suggest that the RAD51-mediated effects of HGF prevent hMSC senescence by promoting telomere lengthening and inducing mtDNA replication and function, which opens the prospect of developing novel therapies for liver disease. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  10. The Involvement of Hepatocyte Growth Factor-MET-Matrix Metalloproteinase 1 Signaling in Bladder Cancer Invasiveness and Proliferation. Effect of the MET Inhibitor, Cabozantinib (XL184), on Bladder Cancer Cells.

    PubMed

    Shintani, Terumichi; Kusuhara, Yoshito; Daizumoto, Kei; Dondoo, Tsogt-Ochir; Yamamoto, Hiroki; Mori, Hidehisa; Fukawa, Tomoya; Nakatsuji, Hiroyoshi; Fukumori, Tomoharu; Takahashi, Masayuki; Kanayama, Hiroomi

    2017-03-01

    To clarify the invasive mechanisms of muscle-invasive bladder cancer (BCa) would be useful for the determination of appropriate treatment strategies. We previously showed that hepatocyte growth factor (HGF)-MET signaling is correlated with invasiveness of BCa cells. Here, we investigated the effects of the MET inhibitor, cabozantinib (XL184), on BCa cells. We first conducted Western blot analysis to investigate MET expression in BCa cell lines. Next, we examined the effect of cabozantinib on their proliferation and invasive abilities using MTT and Matrigel invasion assays, respectively. Invasion assays were performed using the xCELLigence system. Additionally, to investigate the biological function of HGF-MET signaling, we analyzed gene expression profiles and performed real-time polymerase chain reaction analyses of 5637 cells that were cultivated with or without HGF stimulation, with or without cabozantinib. MET was highly expressed in 4 of 5 BCa cell lines, and 5637 and T24 cells showed especially high protein expression of MET. Cabozantinib suppressed cell proliferation and invasion (cell index; mock, 1.49 vs HGF, 2.26 vs HGF + XL184, 1.47, P < .05). Gene expression profile analysis indicated that matrix metalloproteinase 1 (MMP1) was significantly elevated at the mRNA level with addition of HGF. Moreover, cabozantinib suppressed HGF-induced MMP1 expression in 5637 T24 cells. These data indicate that cabozantinib suppressed MMP1 expression by blocking HGF-MET signaling and that HGF-MET-MMP1 signaling is involved in the invasiveness and proliferation of BCa cells. These results suggest that cabozantinib might prove useful for future treatment of muscle-invasive BCa. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Sustained functional improvement by hepatocyte growth factor-like small molecule BB3 after focal cerebral ischemia in rats and mice

    PubMed Central

    Chaparro, Rafael E; Izutsu, Miwa; Sasaki, Toshihiro; Sheng, Huaxin; Zheng, Yi; Sadeghian, Homa; Qin, Tao; von Bornstadt, Daniel; Herisson, Fanny; Duan, Bin; Li, Jing-Song; Jiang, Kai; Pearlstein, Molly; Pearlstein, Robert D; Smith, David E; Goldberg, Itzhak D; Ayata, Cenk; Warner, David S

    2015-01-01

    Hepatocyte growth factor (HGF), efficacious in preclinical models of acute central nervous system injury, is burdened by administration of full-length proteins. A multiinstitutional consortium investigated the efficacy of BB3, a small molecule with HGF-like activity that crosses the blood–brain barrier in rodent focal ischemic stroke using Stroke Therapy Academic Industry Roundtable (STAIR) and Good Laboratory Practice guidelines. In rats, BB3, begun 6 hours after temporary middle cerebral artery occlusion (tMCAO) reperfusion, or permanent middle cerebral artery occlusion (pMCAO) onset, and continued for 14 days consistently improved long-term neurologic function independent of sex, age, or laboratory. BB3 had little effect on cerebral infarct size and no effect on blood pressure. BB3 increased HGF receptor c-Met phosphorylation and synaptophysin expression in penumbral tissue consistent with a neurorestorative mechanism from HGF-like activity. In mouse tMCAO, BB3 starting 10 minutes after reperfusion and continued for 14 days improved neurologic function that persisted for 8 weeks in some, but not all measures. Study in animals with comorbidities and those exposed to common stroke drugs are the next steps to complete preclinical assessment. These data, generated in independent, masked, and rigorously controlled settings, are the first to suggest that the HGF pathway can potentially be harnessed by BB3 for neurologic benefit after ischemic stroke. PMID:25712497

  12. Factors Modulating Estrogen Receptor Activity

    DTIC Science & Technology

    1997-07-01

    public release; distribution unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and should not be...TITLE AND SUBTITLE Activity Factors Modulating Estrogen Receptor 6. AUTHOR( S ) Michael J. Garabedian, Ph.D. 7. PERFORMING ORGANIZATION NAME( S ) AND...ADDRESS(ES) New York University Medical Center New York, New York 10016 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) Commander U.S

  13. A peptide representing the carboxyl-terminal tail of the met receptor inhibits kinase activity and invasive growth.

    PubMed

    Bardelli, A; Longati, P; Williams, T A; Benvenuti, S; Comoglio, P M

    1999-10-08

    Interaction of the hepatocyte growth factor (HGF) with its receptor, the Met tyrosine kinase, results in invasive growth, a genetic program essential to embryonic development and implicated in tumor metastasis. Met-mediated invasive growth requires autophosphorylation of the receptor on tyrosines located in the kinase activation loop (Tyr(1234)-Tyr(1235)) and in the carboxyl-terminal tail (Tyr(1349)-Tyr(1356)). We report that peptides derived from the Met receptor tail, but not from the activation loop, bind the receptor and inhibit the kinase activity in vitro. Cell delivery of the tail receptor peptide impairs HGF-dependent Met phosphorylation and downstream signaling. In normal and transformed epithelial cells, the tail receptor peptide inhibits HGF-mediated invasive growth, as measured by cell migration, invasiveness, and branched morphogenesis. The Met tail peptide inhibits the closely related Ron receptor but does not significantly affect the epidermal growth factor, platelet-derived growth factor, or vascular endothelial growth factor receptor activities. These experiments show that carboxyl-terminal sequences impair the catalytic properties of the Met receptor, thus suggesting that in the resting state the nonphosphorylated tail acts as an intramolecular modulator. Furthermore, they provide a strategy to selectively target the MET proto-oncogene by using small, cell-permeable, peptide derivatives.

  14. The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2

    PubMed Central

    Dong, Li-Hua; Jiang, Yi-Yao; Liu, Yong-Jun; Cui, Shuang; Xia, Cheng-Cheng; Qu, Chao; Jiang, Xin; Qu, Ya-Qin; Chang, Peng-Yu; Liu, Feng

    2015-01-01

    Radiation-induced pulmonary fibrosis is a common disease and has a poor prognosis owing to the progressive breakdown of gas exchange regions in the lung. Recently, a novel strategy of administering mesenchymal stem cells for pulmonary fibrosis has achieved high therapeutic efficacy. In the present study, we attempted to use human adipose tissue-derived mesenchymal stem cells to prevent disease in Sprague-Dawley rats that received semi-thoracic irradiation (15 Gy). To investigate the specific roles of mesenchymal stem cells in ameliorating radiation-induced pulmonary fibrosis, we treated control groups of irradiated rats with human skin fibroblasts or phosphate-buffered saline. After mesenchymal stem cells were infused, host secretions of hepatocyte growth factor (HGF) and prostaglandin E2 (PGE2) were elevated compared with those of the controls. In contrast, tumour necrosis factor-alpha (TNF-α) and transforming growth factor-beta1 (TGF-β1) levels were decreased after infusion of mesenchymal stem cells. Consequently, the architecture of the irradiated lungs was preserved without marked activation of fibroblasts or collagen deposition within the injured sites. Moreover, mesenchymal stem cells were able to prevent the irradiated type II alveolar epithelial cells from undergoing epithelial-mesenchymal transition. Collectively, these data confirmed that mesenchymal stem cells have the potential to limit pulmonary fibrosis after exposure to ionising irradiation. PMID:25736907

  15. Requirement of kinesin-mediated membrane transport of WAVE2 along microtubules for lamellipodia formation promoted by hepatocyte growth factor.

    PubMed

    Takahashi, Kazuhide; Suzuki, Katsuo

    2008-07-01

    Lamellipodia formation necessary for epithelial cell migration and invasion is accomplished by rearrangement of the actin cytoskeleton at the leading edge through membrane transport of WAVE2. However, how WAVE2 is transported to the cell periphery where lamellipodia are formed remains to be established. We report here that hepatocyte growth factor (HGF) promoted lamellipodia formation and intracellular transport of WAVE2 to the cell periphery, depending on Rac1 activity, in MDA-MB-231 human breast cancer cells. Immunoblot analyses indicating the coimmunoprecipitation of WAVE2 with kinesin heavy chain KIF5B, one of the motor proteins, and IQGAP1 suggest that KIF5B and IQGAP1 formed a complex with WAVE2 in serum-starved cells and increased in their amount after HGF stimulation. Both downregulation of KIF5B by the small interfering RNA and depolymerization of microtubules with nocodazole abrogated the HGF-induced lamellipodia formation and WAVE2 transport. Therefore, we propose here that the promotion of lamellipodia formation by HGF in MDA-MB-231 cells is Rac1-dependent and requires KIF5B-mediated transport of WAVE2 and IQGAP1 to the cell periphery along microtubules.

  16. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): Emerging key players in epithelial integrity and cancer.

    PubMed

    Kataoka, Hiroaki; Kawaguchi, Makiko; Fukushima, Tsuyoshi; Shimomura, Takeshi

    2018-03-01

    The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  17. Hepatocyte growth factor is crucial for development of the carapace in turtles

    PubMed Central

    Kawashima-Ohya, Yoshie; Narita, Yuichi; Nagashima, Hiroshi; Usuda, Ryo; Kuratani, Shigeru

    2011-01-01

    Turtles are characterized by their shell, composed of a dorsal carapace and a ventral plastron. The carapace first appears as the turtle-specific carapacial ridge (CR) on the lateral aspect of the embryonic flank. Accompanying the acquisition of the shell, unlike in other amniotes, hypaxial muscles in turtle embryos appear as thin threads of fibrous tissue. To understand carapacial evolution from the perspective of muscle development, we compared the development of the muscle plate, the anlage of hypaxial muscles, between the Chinese soft-shelled turtle, Pelodiscus sinensis, and chicken embryos. We found that the ventrolateral lip (VLL) of the thoracic dermomyotome of P. sinensis delaminates early and produces sparse muscle plate in the lateral body wall. Expression patterns of the regulatory genes for myotome differentiation, such as Myf5, myogenin, Pax3, and Pax7 have been conserved among amniotes, including turtles. However, in P. sinensis embryos, the gene hepatocyte growth factor (HGF), encoding a regulatory factor for delamination of the dermomyotomal VLL, was uniquely expressed in sclerotome and the lateral body wall at the interlimb level. Implantation of COS-7 cells expressing a HGF antagonist into the turtle embryo inhibited CR formation. We conclude that the de novo expression of HGF in the turtle mesoderm would have played an innovative role resulting in the acquisition of the turtle-specific body plan. PMID:21535464

  18. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine.

    PubMed

    Cao, Yu; Liu, Zhenhai; Xie, Yilin; Hu, Jingchao; Wang, Hua; Fan, Zhipeng; Zhang, Chunmei; Wang, Jingsong; Wu, Chu-Tse; Wang, Songlin

    2015-12-15

    Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor (HGF) and human dental pulp stem cells (DPSCs) in periodontal tissue regeneration in swine. In the present study, we transferred an adenovirus that carried HGF gene into human DPSCs (HGF-hDPSCs) under good manufacturing practice (GMP) conditions. These cells were then transplanted into a swine model for periodontal regeneration. Twenty miniature pigs were used to generate periodontitis with bone defect of 5 mm in width, 7 mm in length, and 3 mm in depth. After 12 weeks, clinical, radiological, quantitative and histological assessment of regenerated periodontal tissues was performed to compare periodontal regeneration in swine treated with cell implantation. Our study showed that injecting HGF-hDPSCs into this large animal model could significantly improve periodontal bone regeneration and soft tissue healing. A hDPSC or HGF-hDPSC sheet showed superior periodontal tissue regeneration compared to the injection of dissociated cells. However, the sheets required surgical placement; thus, they were suitable for surgically-managed periodontitis treatments. The adenovirus-mediated transfer of the HGF gene markedly decreased hDPSC apoptosis in a hypoxic environment or in serum-free medium, and it increased blood vessel regeneration. This study indicated that HGF-hDPSCs produced under GMP conditions significantly improved periodontal bone regeneration in swine; thus, this method represents a potential clinical application for periodontal regeneration.

  19. Hepatocyte growth factor sensitizes brain tumors to c-MET kinase inhibition

    PubMed Central

    Zhang, Ying; Farenholtz, Kaitlyn E.; Yang, Yanzhi; Guessous, Fadila; diPierro, Charles G.; Calvert, Valerie S.; Deng, Jianghong; Schiff, David; Xin, Wenjun; Lee, Jae K.; Purow, Benjamin; Christensen, James; Petricoin, Emanuel; Abounader, Roger

    2013-01-01

    Purpose The receptor tyrosine kinase (RTK) c-MET and its ligand hepatocyte growth factor (HGF) are deregulated and promote malignancy in cancer and brain tumors. Consequently, clinically applicable c-MET inhibitors have been developed. The purpose of this study was to investigate the not well known molecular determinants that predict responsiveness to c-MET inhibitors, and to explore new strategies for improving inhibitor efficacy in brain tumors. Experimental design We investigated the molecular factors and pathway activation signatures that determine sensitivity to c-MET inhibitors in a panel of glioblastoma and medulloblastoma cells, glioblastoma stem cells (GSCs), and established cell line-derived xenografts using functional assays, reverse protein microarrays, and in vivo tumor volume measurements, but validation with animal survival analyses remains to be done. We also explored new approaches for improving the efficacy of the inhibitors in vitro and in vivo. Results We found that HGF co-expression is a key predictor of response to c-MET inhibition among the examined factors, and identified an ERK/JAK/p53 pathway activation signature that differentiates c-MET inhibition in responsive and non-responsive cells. Surprisingly, we also found that short pre-treatment of cells and tumors with exogenous HGF moderately but statistically significantly enhanced the anti-tumor effects of c-MET inhibition. We observed a similar ligand-induced sensitization effect to an EGFR small molecule kinase inhibitor. Conclusions These findings allow the identification of a subset of patients that will be responsive to c-MET inhibition, and propose ligand pre-treatment as a potential new strategy for improving the anti-cancer efficacy of RTK inhibitors. PMID:23386689

  20. Modulation of transcription factors by curcumin.

    PubMed

    Shishodia, Shishir; Singh, Tulika; Chaturvedi, Madan M

    2007-01-01

    Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.

  1. SAOS-2 osteosarcoma cells bind fibroblasts via ICAM-1 and this is increased by tumour necrosis factor-α.

    PubMed

    David, Manu S; Kelly, Elizabeth; Cheung, Ivan; Xaymardan, Munira; Moore, Malcolm A S; Zoellner, Hans

    2014-01-01

    We recently reported exchange of membrane and cytoplasmic markers between SAOS-2 osteosarcoma cells and human gingival fibroblasts (h-GF) without comparable exchange of nuclear markers, while similar h-GF exchange was seen for melanoma and ovarian carcinoma cells. This process of "cellular sipping" changes phenotype such that cells sharing markers of both SAOS-2 and h-GF have morphology intermediate to that of either cell population cultured alone, evidencing increased tumour cell diversity without genetic change. TNF-α increases cellular sipping between h-GF and SAOS-2, and we here study binding of SAOS-2 to TNF-α treated h-GF to determine if increased cellular sipping can be accounted for by cytokine stimulated SAOS-2 binding. More SAOS-2 bound h-GF pe-seeded wells than culture plastic alone (p<0.001), and this was increased by h-GF pre-treatment with TNF-α (p<0.001). TNF-α stimulated binding was dose dependent and maximal at 1.16 nM (p<0.05) with no activity below 0.006 nM. SAOS-2 binding to h-GF was independent of serum, while the lipopolysaccharide antagonist Polymyxin B did not affect results, and TNF-α activity was lost on boiling. h-GF binding of SAOS-2 started to increase after 30min TNF-α stimulation and was maximal by 1.5 hr pre-treatment (p<0.001). h-GF retained maximal binding up to 6 hrs after TNF-α stimulation, but this was lost by 18 hrs (p<0.001). FACS analysis demonstrated increased ICAM-1 consistent with the time course of SAOS-2 binding, while antibody against ICAM-1 inhibited SAOS-2 adhesion (p<0.04). Pre-treating SAOS-2 with TNF-α reduced h-GF binding to background levels (p<0.003), and this opposite effect to h-GF cytokine stimulation suggests that the history of cytokine exposure of malignant cells migrating across different microenvironments can influence subsequent interactions with fibroblasts. Since cytokine stimulated binding was comparable in magnitude to earlier reported TNF-α stimulated cellular sipping, we conclude that TNF

  2. Novel Biomarkers in Cardiac Resynchronization Therapy: Hepatocyte Growth Factor Is an Independent Predictor of Clinical Outcome.

    PubMed

    Perge, Péter; Boros, András Mihály; Szilágyi, Szabolcs; Zima, Endre; Molnár, Levente; Gellér, László; Prohászka, Zoltán; Merkely, Béla; Széplaki, Gábor

    2018-03-23

    Cardiac resynchronization therapy (CRT) is beneficial for selected heart failure (HF) patients, although nonresponse to therapy is still prevalent. We investigated a set of novel biomarkers associated with various pathophysiological pathways of HF. Our purpose was to assess their ability to predict clinical outcomes after CRT. We studied 136 chronic HF patients undergoing CRT. We measured the plasma levels of fractalkine, pentraxin-3, hepatocyte growth factor (HGF), carbohydrate antigen-125, and matrix metalloproteinase-9 before and 6 months after CRT. The primary endpoint of the study was 5-year all-cause mortality, and we considered the absence of 6-month reverse remodelling (defined as at least a 15% decrease in end-systolic volume) as a secondary endpoint. Fifty-eight patients died during the 5-year follow-up period and 66 patients were categorized as nonresponders. In multivariable models, only an increased HGF was an independent predictor of both mortality (HR, 1.35; 95%CI, 1.11-1.64; P=.003; per 1 standard deviation increase) and the absence of reverse remodelling (OR, 1.83; 95%CI, 1.10-3.04; P=.01; per 1 standard deviation increase). Applying HGF to the basic multivariable model of both mortality (net reclassification improvement=0.69; 95%CI, 0.39-0.99; P<.0001; integrated discrimination improvement=0.06; 95%CI, 0.02-0.11) and reverse remodelling (net reclassification improvement=0.39; 95%CI, 0.07-0.71; P=.01; integrated discrimination improvement=0.03; 95%CI, 0.00-0.06) resulted in a statistically significant reclassification and discrimination improvement. Of the investigated biomarkers, only HGF predicted clinical outcomes following CRT independently of other parameters. Reclassification analyses showed that HGF measurements could be useful in refining patient selection. Copyright © 2018 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  3. Effects of Plasma Rich in Growth Factors and Platelet-Rich Fibrin on Proliferation and Viability of Human Gingival Fibroblasts

    PubMed Central

    Vahabi, Surena; Vaziri, Shahram; Torshabi, Maryam

    2015-01-01

    Objectives: Platelet preparations are commonly used to enhance bone and soft tissue regeneration. Considering the existing controversies on the efficacy of platelet products for tissue regeneration, more in vitro studies are required. The aim of the present study was to compare the in vitro effects of plasma rich in growth factors (PRGF) and platelet-rich fibrin (PRF) on proliferation and viability of human gingival fibroblasts (HGFs). Materials and Methods: Anitua’s PRGF and Choukran’s PRF were prepared according to the standard protocols. After culture periods of 24, 48 and 72 hours, proliferation of HGFs was evaluated by the methyl thiazol tetrazolium assay. Statistical analysis was performed using one-way ANOVA followed by Tukey-Kramer’s multiple comparisons and P-values<0.05 were considered statistically significant. Results: PRGF treatment induced statistically significant (P<0.001) proliferation of HGF cells compared to the negative control (100% viability) at 24, 48 and 72 hours in values of 123%±2.25%, 102%±2.8% and 101%±3.92%, respectively. The PRF membrane treatment of HGF cells had a statistically significant effect on cell proliferation (21%±1.73%, P<0.001) at 24 hours compared to the negative control. However, at 48 and 72 hours after treatment, PRF had a negative effect on HGF cell proliferation and caused 38% and 60% decrease in viability and proliferation compared to the negative control, respectively. The HGF cell proliferation was significantly higher in PRGF than in PRF group (P< 0.001). Conclusion: This study demonstrated that PRGF had a strong stimulatory effect on HGF cell viability and proliferation compared to PRF. PMID:26877740

  4. Functional modules of sigma factor regulons guarantee adaptability and evolvability

    PubMed Central

    Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael

    2016-01-01

    The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability. PMID:26915971

  5. Reciprocal Activating Crosstalk between c-Met and Caveolin 1 Promotes Invasive Phenotype in Hepatocellular Carcinoma

    PubMed Central

    Korhan, Peyda; Erdal, Esra; Kandemiş, Emine; Çokaklı, Murat; Nart, Deniz; Yılmaz, Funda; Can, Alp; Atabey, Neşe

    2014-01-01

    c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC. PMID:25148256

  6. Reciprocal activating crosstalk between c-Met and caveolin 1 promotes invasive phenotype in hepatocellular carcinoma.

    PubMed

    Korhan, Peyda; Erdal, Esra; Kandemiş, Emine; Cokaklı, Murat; Nart, Deniz; Yılmaz, Funda; Can, Alp; Atabey, Neşe

    2014-01-01

    c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC.

  7. Paracrine Met signaling triggers epithelial–mesenchymal transition in mammary luminal progenitors, affecting their fate

    PubMed Central

    Di-Cicco, Amandine; Petit, Valérie; Chiche, Aurélie; Bresson, Laura; Romagnoli, Mathilde; Orian-Rousseau, Véronique; Vivanco, Maria dM; Medina, Daniel; Faraldo, Marisa M; Glukhova, Marina A; Deugnier, Marie-Ange

    2015-01-01

    HGF/Met signaling has recently been associated with basal-type breast cancers, which are thought to originate from progenitor cells residing in the luminal compartment of the mammary epithelium. We found that ICAM-1 efficiently marks mammary luminal progenitors comprising hormone receptor-positive and receptor-negative cells, presumably ductal and alveolar progenitors. Both cell populations strongly express Met, while HGF is produced by stromal and basal myoepithelial cells. We show that persistent HGF treatment stimulates the clonogenic activity of ICAM1-positive luminal progenitors, controlling their survival and proliferation, and leads to the expression of basal cell characteristics, including stem cell potential. This is accompanied by the induction of Snai1 and Snai2, two major transcription factors triggering epithelial–mesenchymal transition, the repression of the luminal-regulatory genes Elf5 and Hey1, and claudin down-regulation. Our data strongly indicate that paracrine Met signaling can control the function of luminal progenitors and modulate their fate during mammary development and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.06104.001 PMID:26165517

  8. Predictive blood plasma biomarkers for EGFR inhibitor-induced skin rash.

    PubMed

    Hichert, Vivien; Scholl, Catharina; Steffens, Michael; Paul, Tanusree; Schumann, Christian; Rüdiger, Stefan; Boeck, Stefan; Heinemann, Volker; Kächele, Volker; Seufferlein, Thomas; Stingl, Julia

    2017-05-23

    Epidermal growth factor receptor overexpression in human cancer can be effectively targeted by drugs acting as specific inhibitors of the receptor, like erlotinib, gefitinib, cetuximab and panitumumab. A common adverse effect is a typical papulopustular acneiform rash, whose occurrence and severity are positively correlated with overall survival in several cancer types. We studied molecules involved in epidermal growth factor receptor signaling which are quantifiable in plasma, with the aim of identifying biomarkers for the severity of rash. With a predictive value for the rash these biomarkers may also have a prognostic value for survival and disease outcome.The concentrations of amphiregulin, hepatocyte growth factor (HGF) and calcidiol were determined by specific enzyme-linked immunosorbent assays in plasma samples from 211 patients.We observed a significant inverse correlation between the plasma concentration of HGF and overall survival in patients with an inhibitor-induced rash (p-value = 0.0075; mean overall survival low HGF: 299 days, high HGF: 240 days) but not in patients without rash. The concentration of HGF was also significantly inversely correlated with severity of rash (p-value = 0.00124).High levels of HGF lead to increased signaling via its receptor MET, which can activate numerous pathways which are normally also activated by epidermal growth factor receptor. Increased HGF/MET signaling might compensate the inhibitory effect of epidermal growth factor receptor inhibitors in skin as well as tumor cells, leading to less severe skin rash and decreased efficacy of the anti-tumor therapy, rendering the plasma concentration of HGF a candidate for predictive biomarkers.

  9. Human gingival fibroblasts express functional chemokine receptor CXCR6.

    PubMed

    Hosokawa, Y; Hosokawa, I; Ozaki, K; Nakae, H; Matsuo, T

    2009-06-01

    We have reported that CXCL16, a recently discovered transmembrane chemokine, is expressed in human gingival fibroblasts (HGF). However, it is not known whether HGF express CXCR6, the receptor for CXCL16, or CXCL16 affects HGF biology. We have shown that HGF expressed CXCR6 by reverse transcription-polymerase chain reaction and flow cytometric analysis. Moreover, we elucidated that tumour necrosis factor (TNF)-alpha and cytosine-guanine dinucleotide (CpG) DNA (Toll-like receptor-9 ligand) treatment enhanced CXCR6 expression by HGF. Interleukin (IL)-4, IL-13 and CpG DNA up-regulated CXCR6 expression by TNF-alpha-stimulated HGF. On the other hand, IL-1beta and interferon-gamma inhibited CXCR6 expression on TNF-alpha-treated HGF. CXCL16 treatment induced HGF proliferation and phosphorylation of extracellular regulated kinase (ERK) and protein kinase B (AKT) in HGF. In conclusion, HGF expressed CXCR6 functionally, because CXCL16 induced HGF proliferation and ERK and AKT phosphorylation in HGF. These results indicate that CXCL16 may play an important role in the pathogenesis and remodelling in periodontally diseased tissues.

  10. HGF-independent regulation of MET and GAB1 by nonreceptor tyrosine kinase FER potentiates metastasis in ovarian cancer

    PubMed Central

    Fan, Gaofeng; Zhang, Siwei; Gao, Yan; Greer, Peter A.; Tonks, Nicholas K.

    2016-01-01

    Ovarian cancer cells disseminate readily within the peritoneal cavity, which promotes metastasis, and are often resistant to chemotherapy. Ovarian cancer patients tend to present with advanced disease, which also limits treatment options; consequently, new therapies are required. The oncoprotein tyrosine kinase MET, which is the receptor for hepatocyte growth factor (HGF), has been implicated in ovarian tumorigenesis and has been the subject of extensive drug development efforts. Here, we report a novel ligand- and autophosphorylation-independent activation of MET through the nonreceptor tyrosine kinase feline sarcoma-related (FER). We demonstrated that the levels of FER were elevated in ovarian cancer cell lines relative to those in immortalized normal surface epithelial cells and that suppression of FER attenuated the motility and invasive properties of these cancer cells. Furthermore, loss of FER impaired the metastasis of ovarian cancer cells in vivo. Mechanistically, we demonstrated that FER phosphorylated a signaling site in MET: Tyr1349. This enhanced activation of RAC1/PAK1 and promoted a kinase-independent scaffolding function that led to recruitment and phosphorylation of GAB1 and the specific activation of the SHP2–ERK signaling pathway. Overall, this analysis provides new insights into signaling events that underlie metastasis in ovarian cancer cells, consistent with a prometastatic role of FER and highlighting its potential as a novel therapeutic target for metastatic ovarian cancer. PMID:27401557

  11. Tuning the Fano factor of graphene via Fermi velocity modulation

    NASA Astrophysics Data System (ADS)

    Lima, Jonas R. F.; Barbosa, Anderson L. R.; Bezerra, C. G.; Pereira, Luiz Felipe C.

    2018-03-01

    In this work we investigate the influence of a Fermi velocity modulation on the Fano factor of periodic and quasi-periodic graphene superlattices. We consider the continuum model and use the transfer matrix method to solve the Dirac-like equation for graphene where the electrostatic potential, energy gap and Fermi velocity are piecewise constant functions of the position x. We found that in the presence of an energy gap, it is possible to tune the energy of the Fano factor peak and consequently the location of the Dirac point, by a modulation in the Fermi velocity. Hence, the peak of the Fano factor can be used experimentally to identify the Dirac point. We show that for higher values of the Fermi velocity the Fano factor goes below 1/3 at the Dirac point. Furthermore, we show that in periodic superlattices the location of Fano factor peaks is symmetric when the Fermi velocity vA and vB is exchanged, however by introducing quasi-periodicity the symmetry is lost. The Fano factor usually holds a universal value for a specific transport regime, which reveals that the possibility of controlling it in graphene is a notable result.

  12. Structure of pleiotrophin- and hepatocyte growth factor-binding sulfated hexasaccharide determined by biochemical and computational approaches.

    PubMed

    Li, Fuchuan; Nandini, Chilkunda D; Hattori, Tomohide; Bao, Xingfeng; Murayama, Daisuke; Nakamura, Toshikazu; Fukushima, Nobuhiro; Sugahara, Kazuyuki

    2010-09-03

    Endogenous pleiotrophin and hepatocyte growth factor (HGF) mediate the neurite outgrowth-promoting activity of chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chains isolated from embryonic pig brain. CS/DS hybrid chains isolated from shark skin have a different disaccharide composition, but also display these activities. In this study, pleiotrophin- and HGF-binding domains in shark skin CS/DS were investigated. A high affinity CS/DS fraction was isolated using a pleiotrophin-immobilized column. It showed marked neurite outgrowth-promoting activity and strong inhibitory activity against the binding of pleiotrophin to immobilized CS/DS chains from embryonic pig brain. The inhibitory activity was abolished by chondroitinase ABC or B, and partially reduced by chondroitinase AC-I. A pentasulfated hexasaccharide with a novel structure was isolated from the chondroitinase AC-I digest using pleiotrophin affinity and anion exchange chromatographies. It displayed a potent inhibitory effect on the binding of HGF to immobilized shark skin CS/DS chains, suggesting that the pleiotrophin- and HGF-binding domains at least partially overlap in the CS/DS chains involved in the neuritogenic activity. Computational chemistry using molecular modeling and calculations of the electrostatic potential of the hexasaccharide and two pleiotrophin-binding octasaccharides previously isolated from CS/DS hybrid chains of embryonic pig brain identified an electronegative zone potentially involved in the molecular recognition of the oligosaccharides by pleiotrophin. Homology modeling of pleiotrophin based on a related midkine protein structure predicted the binding pocket of pleiotrophin for the oligosaccharides and provided new insights into the molecular mechanism of the interactions between the oligosaccharides and pleiotrophin.

  13. Met-Activating Genetically Improved Chimeric Factor-1 Promotes Angiogenesis and Hypertrophy in Adult Myogenesis.

    PubMed

    Ronzoni, Flavio; Ceccarelli, Gabriele; Perini, Ilaria; Benedetti, Laura; Galli, Daniela; Mulas, Francesca; Balli, Martina; Magenes, Giovanni; Bellazzi, Riccardo; De Angelis, Gabriella C; Sampaolesi, Maurilio

    2017-01-01

    Myogenic progenitor cells (activated satellite cells) are able to express both HGF and its receptor cMet. After muscle injury, HGF-Met stimulation promotes activation and primary division of satellite cells. MAGIC-F1 (Met-Activating Genetically Improved Chimeric Factor-1) is an engineered protein that contains two human Met-binding domains that promotes muscle hypertrophy. MAGIC-F1 protects myogenic precursors against apoptosis and increases their fusion ability enhancing muscle differentiation. Hemizygous and homozygous Magic-F1 transgenic mice displayed constitutive muscle hypertrophy. Here we describe microarray analysis on Magic-F1 myogenic progenitor cells showing an altered gene signatures on muscular hypertrophy and angiogenesis compared to wild-type cells. In addition, we performed a functional analysis on Magic-F1+/+ transgenic mice versus controls using treadmill test. We demonstrated that Magic-F1+/+ mice display an increase in muscle mass and cross-sectional area leading to an improvement in running performance. Moreover, the presence of MAGIC-F1 affected positively the vascular network, increasing the vessel number in fast twitch fibers. Finally, the gene expression profile analysis of Magic-F1+/+ satellite cells evidenced transcriptomic changes in genes involved in the control of muscle growth, development and vascularisation. We showed that MAGIC-F1-induced muscle hypertrophy affects positively vascular network, increasing vessel number in fast twitch fibers. This was due to unique features of mammalian skeletal muscle and its remarkable ability to adapt promptly to different physiological demands by modulating the gene expression profile in myogenic progenitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Laser-induced thermotherapy (LITT) elevates mRNA expression of connective tissue growth factor (CTGF) associated with reduced tumor growth of liver metastases compared to hepatic resection.

    PubMed

    Isbert, Christoph; Ritz, Jörg-Peter; Roggan, André; Schuppan, Detlef; Ajubi, Navid; Buhr, Heinz Johannes; Hohenberger, Werner; Germer, Christoph-Thomas

    2007-01-01

    Proliferation and synthesis of hepatocellular tissue after tissue damage are promoted by specific growth factors such as hepatic tissue growth factor (HGF) and connective growth factor (CTGF). Laser-induced thermotherapy (LITT) for the treatment of liver metastases is deemed to be a parenchyma-saving procedure compared to hepatic resection. The aim of this study was to compare the impact of LITT and hepatic resection on intrahepatic residual tumor tissue and expression levels of mRNA HGF/CTGF within liver and tumor tissue. Two independent adenocarcinomas (CC531) were implanted into 75 WAG rats, one in the right (untreated tumor) and one in the left liver lobe (treated tumor). The left lobe tumor was treated either by LITT or partial hepatectomy. The control tumor was submitted to in-situ hybridization of HGF and CTGF 24-96 hours and 14 days after intervention. Volumes of the untreated tumors prior to intervention were 38+/-8 mm(3) in group I (laser), 39 +/- 7 mm(3) in group II (resection), and 42 +/- 12 mm(3) in group III (control) and did not differ significantly (P > 0.05). Fourteen days after the intervention the mean tumor+/-SEM volume of untreated tumor in group I (laser) [223 +/- 36] was smaller than in group II (resection) [1233.28 +/- 181.52; P < 0.001], and in group III (control) [978.92 +/- 87.57; P < 0.003]. Forty-eight hours after the intervention intrahepatic mRNA expression level of HGF in group II (resection) was almost twofold higher than in group I (laser) [7.2 +/- 1.0 c/mf vs. 3.9 +/- 0.4 c/mf; P<0.01]. Fourteen days after the intervention intrahepatic mRNA expression level of CTGF in group I (laser) was higher than in group II (resection) [13.89 +/- 0.77 c/mf vs. 9.09 +/- 0.78 c/mf; P < 0.003]. LITT leads to a decrease of residual tumor growth in comparison to hepatic resection. Accelerated tumor growth after hepatic resection is associated with higher mRNA level of HGF and reduced tumor growth after LITT with higher mRNA level of CTGF. The

  15. Alpha Power Modulates Perception Independently of Endogenous Factors.

    PubMed

    Brüers, Sasskia; VanRullen, Rufin

    2018-01-01

    Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been proposed to play an important role in sensory perception. Past studies have shown that the power of ongoing EEG oscillations in the alpha band is negatively correlated with visual outcome. Moreover, it also co-varies with other endogenous factors such as attention, vigilance, or alertness. In turn, these endogenous factors influence visual perception. Therefore, it remains unclear how much of the relation between alpha and perception is indirectly mediated by such endogenous factors, and how much reflects a direct causal influence of alpha rhythms on sensory neural processing. We propose to disentangle the direct from the indirect causal routes by introducing modulations of alpha power, independently of any fluctuations in endogenous factors. To this end, we use white-noise sequences to constrain the brain activity of 20 participants. The cross-correlation between the white-noise sequences and the concurrently recorded EEG reveals the impulse response function (IRF), a model of the systematic relationship between stimulation and brain response. These IRFs are then used to reconstruct rather than record the brain activity linked with new random sequences (by convolution). Interestingly, this reconstructed EEG only contains information about oscillations directly linked to the white-noise stimulation; fluctuations in attention and other endogenous factors may still modulate brain alpha rhythms during the task, but our reconstructed EEG is immune to these factors. We found that the detection of near-perceptual threshold targets embedded within these new white-noise sequences depended on the power of the ~10 Hz reconstructed EEG over parieto-occipital channels. Around the time of presentation, higher power led to poorer performance. Thus, fluctuations in alpha power, induced here by random luminance sequences, can directly influence perception: the relation between alpha power and

  16. Capsaicinoids Modulating Cardiometabolic Syndrome Risk Factors: Current Perspectives

    PubMed Central

    2016-01-01

    Capsaicinoids are bioactive nutrients present within red hot peppers reported to cut ad libitum food intake, to increase energy expenditure (thermogenesis) and lipolysis, and to result in weight loss over time. In addition it has shown more benefits such as improvement in reducing oxidative stress and inflammation, improving vascular health, improving endothelial function, lowering blood pressure, reducing endothelial cytokines, cholesterol lowering effects, reducing blood glucose, improving insulin sensitivity, and reducing inflammatory risk factors. All these beneficial effects together help to modulate cardiometabolic syndrome risk factors. The early identification of cardiometabolic risk factors can help try to prevent obesity, hypertension, diabetes, and cardiovascular disease. PMID:27313880

  17. Surface temperature-modulating factors in the Sonoran Desert, Mexico

    NASA Astrophysics Data System (ADS)

    Tereshchenko, I.; Zolotokryin, A.; Titkova, T.; Brito-Castillo, L.; Monzon, C.

    2013-05-01

    This study is focused on seasonal cycle of parameters, which modulate surface temperature in the Sonora desert (North-West Mexico). The understanding of this process is important for monitoring of desertification. In this paper, a new approach to the monitoring of desertification based on the use of the albedo mechanism is proposed. It is known that the positive albedo-precipitation feedback plays a significant role in the desertification process. The originality of the work rest on considering the albedo mechanism not in isolation but as a joint effect of two temperature-modulating factors: radiation and evapotranspiration. It is assumed that the prevalence of the radiation factor is a manifestation of the albedo mechanism. One indirect characteristic of prevalence of the radiation factor is Normalized Difference Vegetation Index (NDVI), which is an indicator of green phytomass. We define and substantiate the criterion of predominance of the radiation factor by using the threshold value of NDVI AVHRR. The area, within which the threshold value is achieved, is a key factor; the data on the variability of this area becomes useful and essential in the process of monitoring of desertification. This is true because in a certain year, the time span of the period, during which the radiation factor is predominant, is an important factor in the desertification process. The main features of the ratio between albedo and surface temperature are discussed in terms of analysis of monthly means (albedo, temperature, NDVI) in the state of Sonora (29-32N, 111-115W), in particular, within the box 30-31N, 112-113W.

  18. Expression of CD73/ecto-5'-nucleotidase on human gingival fibroblasts and contribution to the inhibition of interleukin-1alpha-induced granulocyte-macrophage colony stimulating factor production.

    PubMed

    Nemoto, Eiji; Kunii, Ryotaro; Tada, Hiroyuki; Tsubahara, Taisuke; Ishihata, Hiroshi; Shimauchi, Hidetoshi

    2004-02-01

    CD73/5'-nucleotidase (5'-NT) is an ectoenzyme that participates in immune/inflammatory reactions. We examined the possible expression of CD73/5'-NT on human gingival fibroblasts (hGF), which are important to the immune/inflammatory system in periodontal tissue. We demonstrated that CD73/5'-NT was expressed on hGF by flow cytometry. We found that pre-treatment of hGF with 5'-AMP induced marked inhibition of granulocyte-macrophage colony-stimulating factor (GM-CSF) production from hGF upon stimulation with interleukin-1alpha (IL-1alpha) by enzyme-linked immunosorbent assay (ELISA). A specific inhibitor of 5'-NT, adenosine 5'-[alpha,beta-methylene] diphosphate blocked the inhibition of GM-CSF production, suggesting that adenosine converted from 5'-AMP acts on the inhibitory effects. The GM-CSF inhibition suggested that A3 receptor might be involved. The rank order of agonists was found to be (N6-benzyl-5'-N-ethylcarboxamidoadenosine) A3 receptor agonist > or = (2-chloroadenosine) non-selective agonist > (CGS-21680) A2A receptor agonist > adenosine > or = (N6-cyclohexyladenosine) A1 agonist. Further support for the main role of A3 receptor was the binding A3 antagonist [9-chloro-2-(2-furanyl)-5-([phenylacetyl]amino)[1,2,4]-triazolo[1,5-c]quinazdine] reversed the effect of adenosine, but no significant reverse was observed by A1 (1,3-dipropyl-8-cyclopentylxanthine), A2 [3,7-dimethyl-1-(2-propargyl)xanthine], A2A[8-(3-chlorostyryl)caffeine], and A2B (alloxazine) antagonists. The CD73/5'-NT expression was increased upon stimulation with gamma-interferon, but not other stimulants such as tumor necrosis factor-alpha, IL-4, lipopolysaccharide from Porphyromonas gingivalis and Escherichia coli, and fimbriae from P. gingivalis, and this increase was correlated with the enhanced GM-CSF inhibition by 5'-AMP but not adenosine. These findings suggested that CD73/5'-NT on hGF exerts an anti-inflammatory effects in periodontal disease by conversion from 5'-AMP to adenosine.

  19. Clinical relevance of hepsin and hepatocyte growth factor activator inhibitor type 2 expression in renal cell carcinoma.

    PubMed

    Betsunoh, Hironori; Mukai, Shoichiro; Akiyama, Yutaka; Fukushima, Tsuyoshi; Minamiguchi, Naoki; Hasui, Yoshihiro; Osada, Yukio; Kataoka, Hiroaki

    2007-04-01

    Cell surface proteolysis is important for the generation of bioactive proteins mediating tumor progression. Recent studies suggest that the membrane-anchored cell surface proteinases matriptase and hepsin have significant roles in tumors. We analyzed the expression and clinical relevance of matriptase and hepsin, and their inhibitors hepatocyte growth factor activator inhibitor type 1 (HAI-1) and type 2 (HAI-2) in 66 cases of conventional renal cell carcinomas (RCC). The mRNA level was evaluated in paired samples from tumor and non-tumorous renal tissues by real-time reverse transcription-polymerase chain reaction. As matriptase and hepsin potently activate the proform of hepatocyte growth factor (HGF), the expression of HGF and its receptor, c-Met, was also analyzed. Although upregulation of matriptase was observed occasionally in RCC, the expression level was not associated with prognostic parameters. Hepsin was downregulated in RCC, particularly in early stage disease, but upregulated in advanced stages. There was a trend of higher hepsin expression in RCC with distant metastasis, and Kaplan-Meier survival curves showed that high hepsin expression was associated with reduced overall survival (P<0.01, log-rank test). Moreover, multivariate analysis indicated that hepsin was an independent prognostic factor. Overexpression of HGF or c-Met also showed reduced overall survival. We also observed a tendency of low HAI-2 expression with reduced overall survival and a statistical association between high hepsin and low HAI-2 level. No associations were observed between matriptase and HAI-1 and HAI-2. Our findings suggest that the balance between hepsin and its inhibitor, HAI-2, may have prognostic value in RCC.

  20. Cardiovagal modulation, oxidative stress, and cardiovascular risk factors in prehypertensive subjects: cross-sectional study.

    PubMed

    Thiyagarajan, Ramkumar; Pal, Pravati; Pal, Gopal Krushna; Subramanian, Senthil Kumar; Bobby, Zachariah; Das, Ashok Kumar; Trakroo, Madanmohan

    2013-07-01

    Hypertension, one of the modifiable risk factors for cardiovascular disease (CVD), is known to be associated with increased oxidative stress and reduced cardiovagal modulation. Similar to hypertension, prehypertension is associated with increased risk of adverse cardiovascular (CV) events. We planned this study to find the association between prehypertension, cardiovagal modulation, oxidative stress, and associated CV risk factors. We recruited 178 subjects through hypertension screening camps conducted in Puducherry, India. Subjects were grouped into prehypertensive (n = 97) and normotensive (n = 81) groups. They were further subdivided, based on age, as young (20-39 years) and middle-aged (40-60 years) adults. We measured basal physiological parameters, heart rate variability, oxidative stress (thiobarbituric acid reactive substance and total antioxidant capacity (TAC)), and CV risk factors. We found significant increase in oxidative stress in prehypertensive subjects of both age groups but the cardiovagal modulation decreased significantly in young prehypertensive subjects when compared with normotensive subjects. Correlation of TAC with root mean square of the sum of successive R wave to R wave (RR) interval differences (RMSSD), a cardiovagal modulation parameter (r = 0. 437; P < 0.001), and mean arterial pressure (MAP) (r = -0.318; P < 0.001) was significant even after adjusting for CV risk factors. The correlation between MAP and RMSSD (r = 0.199; P = 0.009) was reduced after adjusting for CV risk factors. Prehypertension in young adults is associated with increased oxidative stress and altered cardiovagal modulation. The risk factors for CVDs in prehypertensive young adults were found to be equivalent to that of middle-aged adults who are in the twilight zone for developing CV dysfunctions.

  1. Factors That Modulate Neurogenesis: A Top-Down Approach.

    PubMed

    LaDage, Lara D

    2016-08-24

    Although hippocampal neurogenesis in the adult brain has been conserved across the vertebrate lineage, laboratory studies have primarily examined this phenomenon in rodent models. This approach has been successful in elucidating important factors and mechanisms that can modulate rates of hippocampal neurogenesis, including hormones, environmental complexity, learning and memory, motor stimulation, and stress. However, recent studies have found that neurobiological research on neurogenesis in rodents may not easily translate to, or explain, neurogenesis patterns in nonrodent systems, particularly in species examined in the field. This review examines some of the evolutionary and ecological variables that may also modulate neurogenesis patterns. This 'top-down' and more naturalistic approach, which incorporates ecology and natural history, particularly of nonmodel species, may allow for a more comprehensive understanding of the functional significance of neurogenesis. © 2016 S. Karger AG, Basel.

  2. Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Galvez-Contreras, Alma Y.; Campos-Ordonez, Tania; Gonzalez-Castaneda, Rocio E.; Gonzalez-Perez, Oscar

    2017-01-01

    Growth factors (GFs) are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF), glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders. PMID:28751869

  3. Confirmatory factor analysis of the Chinese version of the Pediatric Quality-of-Life Inventory Cancer Module.

    PubMed

    Li, Ho Cheung William; Williams, Phoebe D; Williams, Arthur R; Chung, Joyce O K; Chiu, Sau Ying; Lopez, Violeta

    2013-01-01

    Before the Chinese version of the Pediatric Quality-of-Life Inventory Cancer Module can be used to assess the multidimensional construct of quality of life among Hong Kong Chinese pediatric patients with cancer, its psychometric properties need to be further empirically tested. The objectives of the study were to establish the construct validity, including hypothesis testing and a confirmatory factor analysis of factor structure, of the Chinese version of the Pediatric Quality-of-Life Inventory Cancer Module. A cross-sectional study was used; 200 children hospitalized with cancer (9- to 16-year-olds) were recruited. Participants were asked to respond to the Chinese version of the Cancer Module, Therapy-Related Symptom Checklist, and Rosenberg's Self-esteem Scale. The results showed that there was a strong positive correlation between children's self-esteem and quality of life (r = 0.50) and a strong negative correlation between children's therapy-related symptoms and quality of life (r = -0.65). Confirmatory factor analysis indicated that there were 7 factors underlying the Chinese version of the Cancer Module. The study added further evidence of the construct validity of the Chinese version of the Cancer Module, patient version. The Cancer Module can be used to assess and evaluate psychological interventions directed toward promoting the quality of life of children hospitalized with cancer.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ying; Adachi, Hiroaki, E-mail: hadachi-ns@umin.org; Department of Neurology, University of Occupational and Environmental Health School of Medicine, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555

    Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with anmore » expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA. - Highlights: • HGF overexpression ameliorates the motor phenotypes of the SBMA mouse model. • HGF overexpression induces Akt phosphorylation in the SBMA mouse model. • This is the first report of combination therapy in a mouse model of polyQ diseases.« less

  5. PECAM1 regulates flow-mediated Gab1 tyrosine phosphorylation and signaling

    PubMed Central

    Xu, Suowen; Ha, Chang Hoon; Wang, Weiye; Xu, Xiangbin; Yin, Meimei; Jin, Felix Q.; Mastrangelo, Michael; Koroleva, Marina; Fujiwara, Keigi; Jin, Zheng Gen

    2016-01-01

    Endothelial dysfunction, characterized by impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued decrease of NO production, is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Laminar blood flow-mediated specific signaling cascades modulate vascular endothelial cells (ECs) structure and functions. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation in ECs, which in part confers laminar flow atheroprotective action. However, the molecular mechanisms whereby flow regulates Gab1 tyrosine phosphorylation and its downstream signaling events remain unclear. Here we show that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in flow signaling and HGF signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K decreased flow-, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs. PMID:26706435

  6. Enhanced Growth and Hepatic Differentiation of Fetal Liver Epithelial Cells through Combinational and Temporal Adjustment of Soluble Factors

    PubMed Central

    Qian, Lichuan; Krause, Diane S.; Saltzman, W. Mark

    2012-01-01

    Fetal liver epithelial cells (FLEC) are valuable for liver cell therapy and tissue engineering, but methods for culture and characterization of these cells are not well developed. This work explores the influence of multiple soluble factors on FLEC, with the long-term goal of developing an optimal culture system to generate functional liver tissue. Our comparative analysis suggests hepatocyte growth factor (HGF) is required throughout the culture period. In the presence of HGF, addition of oncostatin M (OSM) at culture initiation results in concurrent growth and maturation, while constant presence of protective agents like ascorbic acid enhances cell survival. Study observations led to the development of a culture medium that provided optimal growth and hepatic differentiation conditions. FLEC expansion was observed to be ~2 fold of that under standard conditions, albumin secretion rate was 2 – 3 times greater than maximal values obtained with other media, and the highest level of glycogen accumulation among all conditions was observed with the developed medium. Our findings serve to advance culture methods for liver progenitors in cell therapy and tissue engineering applications. PMID:21922669

  7. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  8. Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae.

    PubMed

    Schuhmacher, D A; Klose, K E

    1999-03-01

    The regulatory protein ToxT directly activates the transcription of virulence factors in Vibrio cholerae, including cholera toxin (CT) and the toxin-coregulated pilus (TCP). Specific environmental signals stimulate virulence factor expression by inducing the transcription of toxT. We demonstrate that transcriptional activation by the ToxT protein is also modulated by environmental signals. ToxT expressed from an inducible promoter activated high-level expression of CT and TCP in V. cholerae at 30 degrees C, but expression of CT and TCP was significantly decreased or abolished by the addition of 0.4% bile to the medium and/or an increase of the temperature to 37 degrees C. Also, expression of six ToxT-dependent TnphoA fusions was modulated by temperature and bile. Measurement of ToxT-dependent transcription of genes encoding CT and TCP by ctxAp- and tcpAp-luciferase fusions confirmed that negative regulation by 37 degrees C or bile occurs at the transcriptional level in V. cholerae. Interestingly, ToxT-dependent transcription of these same promoters in Salmonella typhimurium was relatively insensitive to regulation by temperature or bile. These data are consistent with ToxT transcriptional activity being modulated by environmental signals in V. cholerae and demonstrate an additional level of complexity governing the expression of virulence factors in this pathogen. We propose that negative regulation of ToxT-dependent transcription by environmental signals prevents the incorrect temporal and spatial expression of virulence factors during cholera pathogenesis.

  9. Decreased Phosphorylated Protein Kinase B (Akt) in Individuals with Autism Associated with High Epidermal Growth Factor Receptor (EGFR) and Low Gamma-Aminobutyric Acid (GABA).

    PubMed

    Russo, Anthony J

    2015-01-01

    Dysregulation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway could contribute to the pathogenesis of autism spectrum disorders. In this study, phosphorylated Akt concentration was measured in 37 autistic children and 12, gender and age similar neurotypical, controls using an enzyme-linked immunosorbent assay. Akt levels were compared to biomarkers known to be associated with epidermal growth factor receptor (EGFR) and c-Met (hepatocyte growth factor (HGF) receptor) pathways and severity levels of 19 autism-related symptoms. We found phosphorylated Akt levels significantly lower in autistic children and low Akt levels correlated with high EGFR and HGF and low gamma-aminobutyric acid, but not other biomarkers. Low Akt levels also correlated significantly with increased severity of receptive language, conversational language, hypotonia, rocking and pacing, and stimming, These results suggest a relationship between decreased phosphorylated Akt and selected symptom severity in autistic children and support the suggestion that the AKT pathways may be associated with the etiology of autism.

  10. Ellagitannin-rich cloudberry inhibits hepatocyte growth factor induced cell migration and phosphatidylinositol 3-kinase/AKT activation in colon carcinoma cells and tumors in Min mice

    PubMed Central

    Pajari, Anne-Maria; Päivärinta, Essi; Paavolainen, Lassi; Vaara, Elina; Koivumäki, Tuuli; Garg, Ritu; Heiman-Lindh, Anu; Mutanen, Marja; Marjomäki, Varpu; Ridley, Anne J.

    2016-01-01

    Berries have been found to inhibit colon carcinogenesis in animal models, and thus represent a potential source of compounds for prevention and treatment of colorectal cancer. The mechanistic basis for their effects is not well understood. We used human colon carcinoma cells and Min mice to investigate the effects of ellagitannin-rich cloudberry (Rubus chamaemorus) extract on cancer cell migration and underlying cell signaling. Intrinsic and hepatocyte growth factor (HGF) -induced cell motility in human HT29 and HCA7 colon carcinoma cells was assessed carrying out cell scattering and scratch wound healing assays using time-lapse microscopy. Activation of Met, AKT, and ERK in cell lines and tumors of cloudberry-fed Min mice were determined using immunoprecipitation, Western blot and immunohistochemical analyses. Cloudberry extract significantly inhibited particularly HGF-induced cancer cell migration in both cell lines. Cloudberry extract inhibited the Met receptor tyrosine phosphorylation by HGF and strongly suppressed HGF-induced AKT and ERK activation in both HT29 and HCA7 cells. Consistently, cloudberry feeding (10% w/w freeze-dried berries in diet for 10 weeks) reduced the level of active AKT and prevented phosphoMet localization at the edges in tumors of Min mice. These results indicate that cloudberry reduces tumor growth and cancer cell motility by inhibiting Met signaling and consequent activation of phosphatidylinositol 3-kinase/AKT in vitro and in tumors in vivo. As the Met receptor is recognized to be a major target in cancer treatment, our results suggest that dietary phytochemicals may have therapeutic value in reducing cancer progression and metastasis. PMID:27270323

  11. In vitro differentiation of rat bone marrow mesenchymal stem cells into hepatocytes.

    PubMed

    Feng, Zhihui; Li, Changying; Jiao, Shuxian; Hu, Bin; Zhao, Lin

    2011-01-01

    To investigate the mechanism and regulation of differentiation from bone marrow mesenchymal stem cells (BMSCs) into hepatocytes and to find a new source for therapies of hepatic diseases. We isolated BMSCs for subsequent differentiation in the presence of hepatocyte growth factor (HGF) or beta-nerve growth factor (beta-NGF). Cell morphology was observed and cell surface phenotypings were detected by flow cytometry. a1-antitrypsin (AAT) expression of the hepatocytes was confirmed by immunocytochemistry and albumin expression was validated by real time PCR and western blotting. The expression of high-affinity nerve growth factor receptor (TrkA) and the activation of Erk pathway were detected by western blotting. Hepatocyte functional activity was confirmed by uptake of indocyanine green (ICG) assay. Small round cells appeared in the presence of HGF on day 10 or beta-NGF on day 12. Differentiated cells expressed albumin and had functional characteristics of hepatocytes, such as uptake of ICG. BMSCs were positive for TrkA. HGF and beta-NGF significantly upregulated the protein levels of phospho-Erk. BMSCs could differentiate into hepatocytes in the differentiation media including HGF or beta-NGF. Combination of HGF and beta-NGF significantly increased the efficiency of hepatic differentiation.

  12. MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling.

    PubMed

    He, Lihong; Wang, Xianyao; Kang, Naixin; Xu, Jianwei; Dai, Nan; Xu, Xiaojing; Zhang, Huanxiang

    2018-04-01

    The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3'phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.

  13. Pro-osteogenic effects of fibrin glue in treatment of avascular necrosis of the femoral head in vivo by hepatocyte growth factor-transgenic mesenchymal stem cells

    PubMed Central

    2014-01-01

    Background Autologous transplantation of modified mesenchymal stem cells (MSCs) is a promising candidate for the treatment of the refractory clinical disease, avascular necrosis of the femoral head (ANFH). Our previous attempts by compounding MSCs with medical fibrin glue to treat ANFH in animal model have achieved excellent effects. However, the underlying molecular mechanism is unclear, especially on the transgenic gene expression. Methods Rabbit MSCs were isolated and compounded with fibrin glue. Following degrading of fibrin glue, proliferation, viability, expression of transgenic hepatocyte growth factor gene as well as osteogenic differentiation of MSCs were evaluated together with that of uncompounded MSCs. Fibrin glue-compounded MSCs were transplanted into the lesion of ANFH model, and the therapeutic efficacy was compared with uncompounded MSCs. One-Way ANOVA was used to determine the statistical significance among treatment groups. Results Fibrin glue compounding will not affect molecular activities of MSCs, including hepatocyte growth factor (HGF) secretion, cell proliferation and viability, and osteogenic differentiation in vitro. When applying fibrin glue-compounded MSCs for the therapy of ANFH in vivo, fibrin glue functioned as a drug delivery system and provided a sustaining microenvironment for MSCs which helped the relatively long-term secretion of HGF in the femoral head lesion and resulted in improved therapeutic efficacy when compared with uncompounded MSCs as indicated by hematoxylin-eosin staining and immunohistochemistry of osteocalcin, CD105 and HGF. Conclusion Transplantation of fibrin glue-compounding MSCs is a promising novel method for ANFH therapy. PMID:24885252

  14. Complement factor H family proteins in their non-canonical role as modulators of cellular functions.

    PubMed

    Józsi, Mihály; Schneider, Andrea E; Kárpáti, Éva; Sándor, Noémi

    2018-01-04

    Complement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence. Factor H and some of the factor H-related proteins also appear in a non-canonical function that is beyond their role in the modulation of complement activation. This review covers our current understanding on this emerging role of factor H family proteins in modulating the activation and function of various cells by binding to receptors or receptor ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. c-Met must translocate to the nucleus to initiate calcium signals.

    PubMed

    Gomes, Dawidson A; Rodrigues, Michele A; Leite, M Fatima; Gomez, Marcus V; Varnai, Peter; Balla, Tamas; Bennett, Anton M; Nathanson, Michael H

    2008-02-15

    Hepatocyte growth factor (HGF) is important for cell proliferation, differentiation, and related activities. HGF acts through its receptor c-Met, which activates downstream signaling pathways. HGF binds to c-Met at the plasma membrane, where it is generally believed that c-Met signaling is initiated. Here we report that c-Met rapidly translocates to the nucleus upon stimulation with HGF. Ca(2+) signals that are induced by HGF result from phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate formation within the nucleus rather than within the cytoplasm. Translocation of c-Met to the nucleus depends upon the adaptor protein Gab1 and importin beta1, and formation of Ca(2+) signals in turn depends upon this translocation. HGF may exert its particular effects on cells because it bypasses signaling pathways in the cytoplasm to directly activate signaling pathways in the nucleus.

  16. Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration.

    PubMed

    Liu, Xiaoguang; Liu, Yu; Zhao, Linlin; Zeng, Zhigang; Xiao, Weihua; Chen, Peijie

    2017-03-01

    Though macrophages are essential for skeletal muscle regeneration, which is a complex process, the roles and mechanisms of the macrophages in the process of muscle regeneration are still not fully understood. The objective of this study is to explore the roles of macrophages and the mechanisms involved in the regeneration of injured skeletal muscle. One hundred and twelve C57BL/6 mice were randomly divided into muscle contusion and macrophages depleted groups. Their gastrocnemius muscles were harvested at the time points of 12 h, 1, 3, 5, 7, 14 d post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (HE) stain. The gene expression was analyzed by real-time polymerase chain reaction. The data showed that CL-liposomes treatment did affect the expression of myogenic regulatory factors (MyoD, myogenin) after injury. In addition, CL-liposomes treatment decreased the expression of regulatory factors of muscle regeneration (HGF, uPA, COX-2, IGF-1, MGF, FGF6) and increased the expression of inflammatory cytokines (TGF-β1, TNF-α, IL-1β, RANTES) in the late stage of regeneration. Moreover, there were significant correlations between macrophages and some regulatory factors (such as HGF, uPA) for muscle regeneration. These results suggested that macrophages depletion impairs skeletal muscle regeneration and that the regulatory factors for muscle regeneration may play important roles in this process. © 2017 International Federation for Cell Biology.

  17. Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression.

    PubMed

    Kumar, Dhruv; New, Jacob; Vishwakarma, Vikalp; Joshi, Radhika; Enders, Jonathan; Lin, Fangchen; Dasari, Sumana; Gutierrez, Wade R; Leef, George; Ponnurangam, Sivapriya; Chavan, Hemantkumar; Ganaden, Lydia; Thornton, Mackenzie M; Dai, Hongying; Tawfik, Ossama; Straub, Jeffrey; Shnayder, Yelizaveta; Kakarala, Kiran; Tsue, Terance Ted; Girod, Douglas A; Van Houten, Bennett; Anant, Shrikant; Krishnamurthy, Partha; Thomas, Sufi Mary

    2018-05-16

    Despite aggressive therapies, head and neck squamous cell carcinoma (HNSCC) is associated with a less than 50% 5-year survival rate. Late stage HNSCC frequently consists of up to 80% cancer-associated fibroblasts (CAF). We previously reported that CAF-secreted hepatocyte growth factor (HGF) facilitates HNSCC progression, however very little is known about the role of CAFs in HNSCC metabolism. Here we demonstrate that CAF-secreted HGF increases extracellular lactate levels in HNSCC via upregulation of glycolysis. CAF-secreted HGF induced basic fibroblast growth factor (bFGF) secretion from HNSCC. CAFs were more efficient than HNSCC in using lactate as a carbon source. HNSCC-secreted bFGF increased mitochondrial oxidative phosphorylation (OXPHOS) and HGF secretion from CAFs. Combined inhibition of c-Met and FGFR significantly inhibited CAF-induced HNSCC growth in vitro and in vivo (p<0.001). Our cumulative findings underscore reciprocal signaling between CAF and HNSCC involving bFGF and HGF. This contributes to metabolic symbiosis and a targetable therapeutic axis involving c-Met and FGFR. Copyright ©2018, American Association for Cancer Research.

  18. Dietary Factors in the Modulation of Inflammatory Bowel Disease Activity

    PubMed Central

    Shah, Shinil

    2007-01-01

    Context As patients look to complementary therapies for management of their diseases, it is important that the physician know the effectiveness and/or lack of effectiveness of a variety of dietary approaches/interventions. Although the pathogenesis of the inflammatory bowel diseases (ulcerative colitis and Crohn's disease) is not fully understood, many suspect that diet and various dietary factors may play a modulating role in the disease process. Evidence Acquisition The purpose of this article is to present some of what is known about various dietary/nutritional factors in inflammatory bowel disease, with inclusion of evidence from various studies regarding their putative effect. MedLINE was searched (1965-present) using combinations of the following search terms: diet, inflammatory bowel disease, Crohn's disease, and ulcerative colitis. Additionally, references of the articles obtained were searched to identify further potential sources of information. Evidence Synthesis While much information is available regarding various dietary interventions/supplements in regard to inflammatory bowel disease, the lack of controlled trials limits broad applicability. Probiotics are one of the few interventions with promising results and controlled trials. Conclusion While there are many potential and promising dietary factors that may play a role in the modulation of inflammatory bowel disease, it is prudent to await further controlled studies before broad application/physician recommendation in the noted patient population. PMID:17435660

  19. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  20. Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components

    PubMed Central

    2013-01-01

    Background Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel. Findings This study investigated the effect of five commercial tea (green, oolong, black, pu-erh and chrysanthemum) extracts and tea components (epigallocatechin gallate and gallic acid) on the attachment of five oral pathogens (Streptococcus mutans ATCC 25175, Streptococcus mutans ATCC 35668, Streptococcus mitis ATCC 49456, Streptococcus salivarius ATCC 13419 and Actinomyces naeslundii ATCC 51655) to the HGF-1 gingival cell line. Extracts of two of the teas (pu-erh and chrysanthemum) significantly (p < 0.05) reduced attachment of all the Streptococcus strains by up to 4 log CFU/well but effects of other teas and components were small. Conclusions Pu-erh and chrysanthemum tea may have the potential to reduce attachment of oral pathogens to gingival tissue and improve the health of oral soft tissues. PMID:23578062

  1. Inhibition of attachment of oral bacteria to immortalized human gingival fibroblasts (HGF-1) by tea extracts and tea components.

    PubMed

    Wang, Yi; Chung, Felicia F L; Lee, Sui M; Dykes, Gary A

    2013-04-11

    Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel. This study investigated the effect of five commercial tea (green, oolong, black, pu-erh and chrysanthemum) extracts and tea components (epigallocatechin gallate and gallic acid) on the attachment of five oral pathogens (Streptococcus mutans ATCC 25175, Streptococcus mutans ATCC 35668, Streptococcus mitis ATCC 49456, Streptococcus salivarius ATCC 13419 and Actinomyces naeslundii ATCC 51655) to the HGF-1 gingival cell line. Extracts of two of the teas (pu-erh and chrysanthemum) significantly (p < 0.05) reduced attachment of all the Streptococcus strains by up to 4 log CFU/well but effects of other teas and components were small. Pu-erh and chrysanthemum tea may have the potential to reduce attachment of oral pathogens to gingival tissue and improve the health of oral soft tissues.

  2. Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules

    DOE PAGES

    Marion, Bill

    2017-03-27

    Here, a numerical method is provided for solving the integral equation for the angle-of-incidence (AOI) correction factor for diffuse radiation incident photovoltaic (PV) modules. The types of diffuse radiation considered include sky, circumsolar, horizon, and ground-reflected. The method permits PV module AOI characteristics to be addressed when calculating AOI losses associated with diffuse radiation. Pseudo code is provided to aid users in the implementation, and results are shown for PV modules with tilt angles from 0° to 90°. Diffuse AOI losses are greatest for small PV module tilt angles. Including AOI losses associated with the diffuse irradiance will improve predictionsmore » of PV system performance.« less

  3. Reinke's edema: investigations on the role of MIB-1 and hepatocyte growth factor.

    PubMed

    Artico, M; Bronzetti, E; Ionta, B; Bruno, M; Greco, A; Ruoppolo, G; De Virgilio, A; Longo, L; De Vincentiis, M

    2010-07-08

    Reinke's edema is a benign disease of the human vocal fold, which mainly affects the sub-epithelial layer of the vocal fold. Microscopic observations show a strongly oedematous epithelium with loosened intercellular junctions, a disruption of the extracellular connections between mucosal epithelium and connective tissue, closely adherent to the thyroarytenoid muscle. Thickening of the basal layer of epithelium, known as Reinke's space, high deposition of fibronectin and chronic inflammatory infiltration it is also visible. We analyzed, together with the hepatocyte growth factor (HGF), the expression level of MIB-1 in samples harvested from patients affected by Reinke's edema, in order to define its biological role and consider it as a possible prognostic factor in the follow-up after surgical treatment. We observed a moderate expression of HGF in the lamina propria of the human vocal fold and in the basal membrane of the mucosal epithelium. Our finding suggests that this growth factor acts as an antifibrotic agent in Reinke's space and affects the fibronectin deposition in the lamina propria. MIB-1, on the contrary, showed a weak expression in the basement membrane of the mucosal epithelium and a total absence in the lamina propria deep layer, thus suggesting that only the superficial layer is actively involved in the reparatory process with a high regenerative capacity, together with a high deposition of fibronectin. The latter is necessary for the cellular connections reconstruction, after the inflammatory infiltration.

  4. Reinke's Edema: investigations on the role of MIB-1 and hepatocyte growth factor

    PubMed Central

    Artico, M.; Bronzetti, E.; Ionta, B.; Bruno, M.; Greco, A.; Ruoppolo, G.; De Virgilio, A.; Longo, L.; De Vincentiis, M.

    2010-01-01

    Reinke's edema is a benign disease of the human vocal fold, which mainly affects the sub-epithelial layer of the vocal fold. Microscopic observations show a strongly oedematous epithelium with loosened intercellular junctions, a disruption of the extracellular connections between mucosal epithelium and connective tissue, closely adherent to the thyroarytenoid muscle. Thickening of the basal layer of epithelium, known as Reinke's space, high deposition of fibronectin and chronic inflammatory infiltration it is also visible. We analyzed, together with the hepatocyte growth factor (HGF), the expression level of MIB-1 in samples harvested from patients affected by Reinke's edema, in order to define its biological role and consider it as a possible prognostic factor in the follow-up after surgical treatment. We observed a moderate expression of HGF in the lamina propria of the human vocal fold and in the basal membrane of the mucosal epithelium. Our finding suggests that this growth factor acts as an anti - fibrotic agent in Reinke's space and affects the fibronectin deposition in the lamina propria. MIB-1, on the contrary, showed a weak expression in the basement membrane of the mucosal epithelium and a total absence in the lamina propria deep layer, thus suggesting that only the superficial layer is actively involved in the reparatory process with a high regenerative capacity, together with a high deposition of fibronectin. The latter is necessary for the cellular connections reconstruction, after the inflammatory infiltration. PMID:20819770

  5. Inhibition of neuropathic hyperalgesia by intrathecal bone marrow stromal cells is associated with alteration of multiple soluble factors in cerebrospinal fluid.

    PubMed

    Fischer, Gregory; Wang, Fei; Xiang, Hongfei; Bai, Xiaowen; Yu, Hongwei; Hogan, Quinn H

    2017-09-01

    Injury-induced neuropathic pain remains a serious clinical problem. Recent studies indicate that bone marrow stromal cells (BMSCs) effectively attenuate chronic neuropathic pain in animal models. Here, we examined the therapeutic effect of intrathecal administration of BMSCs isolated from young (1-month-old) rats on pain hypersensitivity induced by tibial nerve injury. Cerebrospinal fluid (CSF) was collected and analyzed to examine the effect of BMSC administration on the expression of 67 soluble factors in CSF. A sustained remission in injury-induced mechanical hyperalgesia was observed in BMSC-treated rats but not in control animals. Engrafted BMSCs were observed in spinal cords and dorsal root ganglia at 5 weeks after cell injection. Injury significantly decreased the levels of six soluble factors in CSF: intercellular adhesion molecule 1 (ICAM-1), interleukin-1β (IL-1β), IL-10, hepatocyte growth factor (HGF), Nope protein, and neurogenic locus notch homolog protein 1 (Notch-1). Intrathecal BMSCs significantly attenuated the injury-induced reduction of ICAM-1, IL-1β, HGF, IL-10, and Nope. This study adds to evidence supporting the use of intrathecal BMSCs in pain control and shows that this effect is accompanied by the reversal of injury-induced reduction of multiple CSF soluble factors. Our findings suggest that these soluble factors may be potential targets for treating chronic pain.

  6. 100-Gb/s InP DP-IQ modulator for small-form-factor pluggable coherent transceivers

    NASA Astrophysics Data System (ADS)

    Kikuchi, Nobuhiro; Ogiso, Yoshihiro; Yamada, Eiichi

    2016-02-01

    We developed a compact InP-based DP-IQ modulator for small-form-factor pluggable coherent transceivers. The modulator achieves 112-Gb/s DP-QPSK modulation with a driving voltage of 6 Vppd. In addition, it provides 86-Gb/s DP-16 QAM signal generation and 240-km transmission with negligible degradation of BER performance. The halfwavelength voltage of our recent device is 1.9 V, and a high median extinction ratio of over 32 dB was achieved for more than 1,400 child MZ modulators. We have also proposed an athermal InP-based twin IQ modulator that enables us to use a modulator in a TEC-free operation. It contributes to lowering the power consumption of transceivers. Under a constant driving condition, there is little change in 56-Gb/s x 2 QPSK modulation characteristics in the range of 20 to 80°C.

  7. Biochemical factors modulating female genital sexual arousal physiology.

    PubMed

    Traish, Abdulmaged M; Botchevar, Ella; Kim, Noel N

    2010-09-01

    Female genital sexual arousal responses are complex neurophysiological processes consisting of central and peripheral components that occur following sexual stimulation. The peripheral responses in sexual arousal include genital vasocongestion, engorgement and lubrication resulting from a surge of vaginal and clitoral blood flow. These hemodynamic events are mediated by a host of neurotransmitters and vasoactive agents. To discuss the role of various biochemical factors modulating female genital sexual arousal responses. A comprehensive literature review was conducted using the PubMed database and citations were selected, based on topical relevance, and examined for study methodology and major findings. Data from peer-reviewed publications. Adrenergic as well as non-adrenergic non-cholinergic neurotransmitters play an important role in regulating genital physiological responses by mediating vascular and non-vascular smooth muscle contractility. Vasoactive peptides and neuropeptides also modulate genital sexual responses by regulating vascular and non-vascular smooth muscle cells and epithelial function. The endocrine milieu, particularly sex steroid hormones, is critical in the maintenance of tissue structure and function. Reduced levels of estrogens and androgen are associated with dramatic alterations in genital tissue structure, including the nerve network, as well as the response to physiological modulators. Furthermore, estrogen and androgen deficiency is associated with reduced expression of sex steroid receptors and most importantly with attenuated genital blood flow and lubrication in response to pelvic nerve stimulation. This article provides an integrated framework describing the physiological and molecular basis of various pathophysiological conditions associated with female genital sexual arousal dysfunction. © 2010 International Society for Sexual Medicine.

  8. The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production.

    PubMed

    Litwin, Monika; Radwańska, Agata; Paprocka, Maria; Kieda, Claudine; Dobosz, Tadeusz; Witkiewicz, Wojciech; Baczyńska, Dagmara

    2015-12-01

    In recent years, special attention has been paid to finding new pro-angiogenic factors which could be used in gene therapy of vascular diseases such as critical limb ischaemia (CLI). Angiogenesis, the formation of new blood vessels, is a complex process dependent on different cytokines, matrix proteins, growth factors and other pro- or anti-angiogenic stimuli. Numerous lines of evidence suggest that key mediators of angiogenesis, vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) together with fibroblast growth factor2 (FGF2) are involved in regulation of the normal and pathological process of angiogenesis. However, less information is available on the complex interactions between these and other angiogenic factors. The aim of this study was to characterise the effect of fibroblast growth factor2 on biological properties of human endothelial progenitor cells with respect to the expression level of other regulatory cytokines. Ectopic expression of FGF2 in EP cells stimulates their pro-angiogenic behaviour, leading to increased proliferation, migration and tube formation abilities. Moreover, we show that the expression profile of VEGF and other pro-angiogenic cytokines, such as HGF, MCP2, and interleukins, is affected differently by FGF2 in EPC. In conclusion, we provide evidence that FGF2 directly affects not only the biological properties of EP cells but also the expression pattern and secretion of numerous chemocytokines. Our results suggest that FGF2 could be applied in therapeutic approaches for CLI and other ischaemic diseases of the vascular system in vivo.

  9. Dermasence refining gel modulates pathogenetic factors of rosacea in vitro.

    PubMed

    Borelli, C; Becker, B; Thude, S; Fehrenbacher, B; Isermann, D

    2017-12-01

    Over the counter cosmetics sold for local treatment of slight to moderate rosacea often state the claim of actively modulating rosacea pathogenesis. Factors involved in the pathogenesis of this common yet complex skin disorder include kallikrein-related peptidase 5 (KLK5), LL-37, as well as protease-activated receptor 2 (PAR2) and vascular endothelial growth factor (VEGF). The objective was to prove the modulating effect of the cosmetic skin care agent Dermasence Refining Gel (DRG) on factors involved in rosacea pathogenesis. We analyzed the effect of DRG on the expression of KLK5, LL-37, PAR2, and VEGF in an in vitro skin model of human reconstituted epidermis. The expression of CAMP (LL-37 gene, fold change -4.19 [±0.11]), VEGFA (fold change -2.55 [±0.12]) and PAR2 (-1.33 [±0.12]) was reduced, KLK5 expression increased (fold change 2.06 (±0.08)) after 18 h of treatment with DRG in comparison to treatment with the matrix gel only. The reduction in CAMP expression was significant (P<.01). The protein expression of all four inflammatory markers was markedly reduced after 18 hours of DRG treatment in comparison to baseline (0 hour), by measure of fluorescence intensity. We show evidence explaining the anti-inflammatory effect of Dermasence Refining Gel in rosacea pathogenesis in vitro. The adjunctive use of DRG in mild to moderate rosacea as a topical cosmetic seems medically reasonable. © 2017 Wiley Periodicals, Inc.

  10. Tyrosine residues 654 and 670 in {beta}-cat enin are crucial in regulation of Met-{beta}-catenin interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Gang; Apte, Udayan; Micsenyi, Amanda

    2006-11-01

    {beta}-catenin, a key component of the canonical Wnt pathway, is also regulated by tyrosine phosphorylation that regulates its association to E-cadherin. Previously, we reported its association with the hepatocyte growth factor (HGF) receptor Met at the membrane. HGF induced Met-{beta}-catenin dissociation and nuclear translocation of {beta}-catenin, which was tyrosine-phosphorylation-dependent. Here, we further investigate the Met-{beta}-catenin interaction by selectively mutating several tyrosine residues, alone or in combination, in {beta}-catenin. The mutants were subcloned into FLAG-CMV vector and stably transfected into rat hepatoma cells, which were treated with HGF. All single or double-mutant-transfected cells continued to show HGF-induced nuclear translocation of FLAG-{beta}-cateninmore » except the mutations affecting 654 and 670 simultaneously (Y654/670F), which coincided with the lack of formation of {beta}-catenin-TCF complex and DNA synthesis, in response to the HGF treatment. In addition, the Y654/670F-transfected cells also showed no phosphorylation of {beta}-catenin or dissociation from Met in response to HGF. Thus, intact 654 and 670 tyrosine residues in {beta}-catenin are crucial in HGF-mediated {beta}-catenin translocation, activation and mitogenesis.« less

  11. A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration.

    PubMed

    Peplow, Philip V; Chatterjee, Marissa P

    2013-04-01

    Keratinocyte migration from the wound edge is a crucial step in the reepithelization of cutaneous wounds. Growth factors and cytokines, released from cells that invade the wound matrix, play an important role, and several in vitro assays have been performed to elucidate this. The purposes of this study were to review in vitro human studies on keratinocyte migration to identify those growth factors or cytokines that stimulate keratinocyte migration and whether these assays might serve as a screening procedure prior to testing combinations of growth factors or cytokines to promote wound closure in vivo. Research papers investigating effect of growth factors and cytokines on human keratinocyte migration in vitro were retrieved from library sources, PubMed databases, reference lists of papers, and searches of relevant journals. Fourteen different growth factors and cytokines enhanced migration in scratch wound assay and HGF together with TGF-β, and IGF-1 with EGF, were more stimulatory than either growth factor alone. HGF with TGF-β1 had a greater chemokinetic effect than either growth factor alone in transmigration assay. TGF-β1, FGF-7, FGF-2 and AGF were chemotactic to keratinocytes. EGF, TGF-α, IL-1α, IGF and MGSA enhanced cell migration on ECM proteins. Many growth factors and cytokines enhanced migration of keratinocytes in vitro, and certain combinations of growth factors were more stimulatory than either alone. These and other combinations that stimulate keratinocyte migration in vitro should be tested for effect on wound closure and repair in vivo. The scratch wound assay provides a useful, inexpensive and easy-to-perform screening method for testing individual or combinations of growth factors or cytokines, or growth factors combined with other modalities such as laser irradiation, prior to performing wound healing studies with laboratory animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Dietary Factors Modulate Helicobacter-Associated Gastric Cancer in Rodent Models

    PubMed Central

    Fox, James G.; Wang, Timothy C.

    2014-01-01

    Since its discovery in 1982, the global importance of H. pylori-induced disease, particularly in developing countries, remains high. The use of rodent models particularly mice, and the unanticipated usefulness of the gerbil to study H. pylori pathogenesis have been used extensively to study the interactions of the host, the pathogen and the environmental conditions influencing the outcome of persistent H. pylori infection. Dietary factors in humans are increasingly recognized as being important factors in modulating progression and severity of H. pylori-induced gastric cancer. Studies using rodent models to verify and help explain mechanisms whereby various dietary ingredients impact disease outcome should continue to be extremely productive. PMID:24301796

  13. Ultrasound Irradiation Combined with Hepatocyte Growth Factor Accelerate the Hepatic Differentiation of Human Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Li, Fan; Liu, Yang; Cai, Yingyu; Li, Xin; Bai, Min; Sun, Ting; Du, Lianfang

    2018-05-01

    This study investigated the impact of ultrasound (US) irradiation on the hepatic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) induced by hepatocyte growth factor (HGF) and the possible mechanisms. We treated hBMSCs, using HGF with and without US irradiation. Cell viability and stem cell surface markers were analyzed. Hepatocyte-like cell markers and functional markers including α-fetoprotein (αFP/AFP), cytokeratin 18 (CK18), albumin (ALB) and glycogen content were analyzed at the time point of day 1, 3 and 5 after treatment. The involvement of Wnt/β-catenin signaling pathway was evaluated as well. The results showed that the US treatment at 1.0 W/cm 2 or 1.5 W/cm 2 for 30 s or 60 s conditions yielded favorable cell viability and engendered stem cell differentiation. At day 5, the expressions of AFP, CK18, ALB and the glycogen content were significantly elevated in the US-treated group at both messenger ribonucleic acid and protein levels (all p <0.05), in comparison with HGF and control groups. Among all the US treated groups, the expression levels of specific hepatic markers in the (1.5 W/cm 2 for 60 s) group were the highest. Furthermore, Wnt1, β-Catenin, c-Myc and Cyclin D1 were significantly increased after US irradiation (all p <0.05), and the enhancements of c-Myc and Cyclin D1 could be obviously impaired by the inhibitor ICG-001 (p <0.05, p <0.05), in accordance with decreased ALB and CK18 expression and glycogen content (all p <0.05). In conclusion, US irradiation was able to promote the hBMSCs' differentiation mediated by HGF in vitro safely, easily and controllably. The activation of Wnt/β-catenin signaling pathway was involved in this process. US irradiation could serve as a potentially beneficial tool for the research and application of stem cell differentiation. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  14. Association between serum ligands and the skin toxicity of anti-epidermal growth factor receptor antibody in metastatic colorectal cancer.

    PubMed

    Takahashi, Naoki; Yamada, Yasuhide; Furuta, Koh; Nagashima, Kengo; Kubo, Akiko; Sasaki, Yusuke; Shoji, Hirokazu; Honma, Yoshitaka; Iwasa, Satoru; Okita, Natsuko; Takashima, Atsuo; Kato, Ken; Hamaguchi, Tetsuya; Shimada, Yasuhiro

    2015-05-01

    Skin toxicity is a known clinical signature used to predict the prognosis of anti-epidermal growth factor receptor (EGFR) antibody treatment in metastatic colorectal cancer (mCRC). There are no biological markers to predict skin toxicity before anti-EGFR antibody treatment in mCRC patients. Between August 2008 and August 2011, pretreatment serum samples were obtained from KRAS wild-type (WT) patients who received anti-EGFR antibody treatment. Serum levels of ligands were measured by ELISA. A total of 103 KRAS WT patients were enrolled in the study. Progression-free survival and overall survival of patients with a high grade (grade 2-3) of skin toxicity were significantly longer than those with a low grade (grade 0-1) of skin toxicity (median progression-free survival, 6.4 months vs 2.4 months, P < 0.001; median overall survival, 14.6 months vs 7.1 months, P = 0.006). There were significant differences in distribution of serum levels of epiregulin (EREG), amphiregulin (AREG), and hepatocyte growth factor (HGF) between groups of low/high grade of skin toxicity (P < 0.048, P < 0.012, P < 0.012, respectively). In addition, serum levels of HGF, EREG, and AREG were inversely proportional to grades of skin toxicity as determined by the Cochran-Armitage test (P = 0.019, P = 0.047, P = 0.021, respectively). Our study indicated that serum levels such as HGF, EREG, and AREG may be significant markers to predict the grade of skin toxicity and the prognosis of anti-EGFR antibody treatment, which contribute to improvement of the management of skin toxicity and survival time in mCRC patients. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  15. Opposite cytokine synthesis by fibroblasts in contact co-culture with osteosarcoma cells compared with transwell co-cultures.

    PubMed

    David, Manu S; Kelly, Elizabeth; Zoellner, Hans

    2013-04-01

    We recently reported exchange of membrane and cytoplasm during contact co-culture between human Gingival Fibroblasts (h-GF) and SAOS-2 osteosarcoma cells, a process we termed 'cellular sipping' to reflect the manner in which cells become morphologically diverse through uptake of material from the opposing cell type, independent of genetic change. Cellular sipping is increased by Tumor Necrosis Factor-α (TNF-α), and we here show for the first time altered cytokine synthesis in contact co-culture supporting cellular sipping compared with co-culture where h-GF and SAOS-2 were separated in transwells. SAOS-2 had often undetectably low cytokine levels, while Interleukin-6 (IL-6), Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) were secreted primarily by TNF-α stimulated h-GF and basic Fibroblast Growth Factor (FGF) was prominent in h-GF lysates (p < 0.001). Contact co-cultures permitting cellular sipping had lower IL-6, G-CSF and GM-CSF levels, as well as higher lysate FGF levels compared with TNF-α treated h-GF alone (p < 0.05). The opposite was the case for co-cultures in transwells, with increased IL-6, G-CSF and GM-CSF levels (p < 0.03) and no clear difference in FGF. We thus demonstrate significant phenotypic change in cultures where cellular sipping occurs, potentially contributing to tumor inflammatory responses. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Internal shocks in microquasar jets with a continuous Lorentz factor modulation

    NASA Astrophysics Data System (ADS)

    Pjanka, Patryk; Stone, James M.

    2018-06-01

    We perform relativistic hydrodynamic simulations of internal shocks formed in microquasar jets by continuous variation of the bulk Lorentz factor, in order to investigate the internal shock model. We consider one-, two-, and flicker noise 20-mode variability. We observe emergence of a forward-reverse shock structure for each peak of the Lorentz factor modulation. The high pressure in the shocked layer launches powerful outflows perpendicular to the jet beam into the ambient medium. These outflows dominate the details of the jet's kinetic energy thermalization. They are responsible for mixing between the jet and the surrounding medium and generate powerful shocks in the latter. These results do not concur with the popular picture of well-defined internal shells depositing energy as they collide within the confines of the jet, in fact collisions between internal shells themselves are quite rare in our continuous formulation of the problem. For each of our simulations, we calculate the internal energy deposited in the system, the `efficiency' of this deposition (defined as the ratio of internal to total flow energy), and the maximum temperature reached in order to make connections to emission mechanisms. We probe the dependence of these diagnostics on the Lorentz factor variation amplitudes, modulation frequencies, as well as the initial density ratio between the jet and the ambient medium.

  17. Enhanced actions of insulin-like growth factor-I and interferon-alpha co-administration in experimental cirrhosis.

    PubMed

    Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma

    2009-01-01

    Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.

  18. Appl1 Is Dispensable for Mouse Development, and Loss of Appl1 Has Growth Factor-selective Effects on Akt Signaling in Murine Embryonic Fibroblasts*

    PubMed Central

    Tan, Yinfei; You, Huihong; Wu, Chao; Altomare, Deborah A.; Testa, Joseph R.

    2010-01-01

    The adaptor protein APPL1 (adaptor protein containing pleckstrin homology (PH), phosphotyrosine binding (PTB), and leucine zipper motifs) was first identified as a binding protein of AKT2 by yeast two-hybrid screening. APPL1 was subsequently found to bind to several membrane-bound receptors and was implicated in their signal transduction through AKT and/or MAPK pathways. To determine the unambiguous role of Appl1 in vivo, we generated Appl1 knock-out mice. Here we report that Appl1 knock-out mice are viable and fertile. Appl1-null mice were born at expected Mendelian ratios, without obvious phenotypic abnormalities. Moreover, Akt activity in various fetal tissues was unchanged compared with that observed in wild-type littermates. Studies of isolated Appl1−/− murine embryonic fibroblasts (MEFs) showed that Akt activation by epidermal growth factor, insulin, or fetal bovine serum was similar to that observed in wild-type MEFs, although Akt activation by HGF was diminished in Appl1−/− MEFs. To rule out a possible redundant role played by the related Appl2, we used small interfering RNA to knock down Appl2 expression in Appl1−/− MEFs. Unexpectedly, cell survival was unaffected under normal culture conditions, and activation of Akt was unaltered following epidermal growth factor stimulation, although Akt activity did decrease further after HGF stimulation. Furthermore, we found that Appl proteins are required for HGF-induced cell survival and migration via activation of Akt. Our studies suggest that Appl1 is dispensable for development and only participate in Akt signaling under certain conditions. PMID:20040596

  19. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.

    2010-08-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF)more » in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.« less

  20. E2F1 transcription factor and its impact on growth factor and cytokine signaling.

    PubMed

    Ertosun, Mustafa Gokhan; Hapil, Fatma Zehra; Osman Nidai, Ozes

    2016-10-01

    E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases.

    PubMed

    Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Banecka-Majkutewicz, Zyta; Banecki, Bogdan; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2014-03-01

    Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70%) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal storage diseases are monogenic, clear genotype-phenotype correlations occur only in some cases. In this article, we present an overview on various factors and processes, both general and specific for certain disorders, that can significantly modulate expression of phenotypes in these diseases. On the basis of recent reports describing studies on both animal models and clinical data, we propose a hypothesis that efficiency of production of compounds that cannot be degraded due to enzyme deficiency might be especially important in modulation of phenotypes of patients suffering from lysosomal storage diseases.

  2. Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis

    PubMed Central

    Raghavan, Srivatsan; Shen, Colette J.; Desai, Ravi A.; Sniadecki, Nathan J.; Nelson, Celeste M.; Chen, Christopher S.

    2010-01-01

    We present a novel microfabricated platform to culture cells within arrays of micrometer-scale three-dimensional (3D) extracellular matrix scaffolds (microgels). These microscale cultures eliminate diffusion barriers that are intrinsic to traditional 3D culture systems (macrogels) and enable uniform cytokine stimulation of the entire culture population, as well as allow immunolabeling, imaging and population-based biochemical assays across the relatively coplanar microgels. Examining early signaling associated with hepatocyte growth factor (HGF)-mediated scattering and tubulogenesis of MDCK cells revealed that 3D culture modulates cellular responses both through dimensionality and altered stimulation rates. Comparing responses in 2D culture, microgels and macrogels demonstrated that HGF-induced ERK signaling was driven by the dynamics of stimulation and not by whether cells were in a 2D or 3D environment, and that this ERK signaling was equally important for HGF-induced cell scattering on 2D substrates and tubulogenesis in 3D. By contrast, we discovered a specific HGF-induced increase in myosin expression leading to sustained downregulation of myosin activity that occurred only within 3D contexts and was required for 3D tubulogenesis but not 2D scattering. Interestingly, although absent in cells on collagen-coated plates, downregulation of myosin activity also occurred for cells on collagen gels, but was transient and mediated by a combination of myosin dephosphorylation and enhanced myosin expression. Furthermore, upregulating myosin activity via siRNA targeted to a myosin phosphatase did not attenuate scattering in 2D but did inhibit tubulogenesis in 3D. Together, these results demonstrate that cellular responses to soluble cues in 3D culture are regulated by both rates of stimulation and by matrix dimensionality, and highlight the importance of decoupling these effects to identify early signals relevant to cellular function in 3D environments. PMID:20682635

  3. Oral microbe-host interactions: influence of β-glucans on gene expression of inflammatory cytokines and metabolome profile.

    PubMed

    Silva, Viviam de Oliveira; Pereira, Luciano José; Murata, Ramiro Mendonça

    2017-03-07

    The aim of this study was to evaluate the effects of β-glucan on the expression of inflammatory mediators and metabolomic profile of oral cells [keratinocytes (OBA-9) and fibroblasts (HGF-1) in a dual-chamber model] infected by Aggregatibacter actinomycetemcomitans. The periodontopathogen was applied and allowed to cross the top layer of cells (OBA-9) to reach the bottom layer of cells (HGF-1) and induce the synthesis of immune factors and cytokines in the host cells. β-glucan (10 μg/mL or 20 μg/mL) were added, and the transcriptional factors and metabolites produced were quantified in the remaining cell layers and supernatant. The relative expression of interleukin (IL)-1-α and IL-18 genes in HGF-1 decreased with 10 μg/mL or 20 μg/mL of β-glucan, where as the expression of PTGS-2 decreased only with 10 μg/mL. The expression of IL-1-α increased with 20 μg/mL and that of IL-18 increased with 10 μg/mL in OBA-9; the expression of BCL 2, EP 300, and PTGS-2 decreased with the higher dose of β-glucan. The production of the metabolite 4-aminobutyric acid presented lower concentrations under 20 μg/mL, whereas the concentrations of 2-deoxytetronic acid NIST and oxalic acid decreased at both concentrations used. Acetophenone, benzoic acid, and pinitol presented reduced concentrations only when treated with 10 μg/mL of β-glucan. Treatment with β-glucans positively modulated the immune response and production of metabolites.

  4. The regulatory role of heparin on c-Met signaling in hepatocellular carcinoma cells.

    PubMed

    İşcan, Evin; Güneş, Aysim; Korhan, Peyda; Yılmaz, Yeliz; Erdal, Esra; Atabey, Neşe

    2017-06-01

    The role of heparin as an anticoagulant is well defined; however, its role in tumorigenesis and tumor progression is not clear yet. Some studies have shown that anticoagulant treatment in cancer patients improve overall survival, however, recent clinical trials have not shown a survival benefit in cancer patients receiving heparin treatment. In our previous studies we have shown the inhibitory effects of heparin on Hepatocyte Growth Factor (HGF)-induced invasion and migration in hepatocellular carcinoma (HCC) cells. In this study, we showed the differential effects of heparin on the behaviors of HCC cells based on the presence or absence of HGF. In the absence of HGF, heparin activated HGF/c-Met signaling and promoted motility and invasion in HCC cells. Heparin treatment led to c-Met receptor dimerization and activated c-Met signaling in an HGF independent manner. Heparin-induced c-Met activation increased migration and invasion through ERK1/2, early growth response factor 1 (EGR1) and Matrix Metalloproteinases (MMP) axis. Interestingly, heparin modestly decreased the proliferation of HCC cells by inhibiting activatory phosphorylation of Akt. The inhibition of c-Met signaling reversed heparin-induced increase in motility and invasion and, proliferation inhibition. Our study provides a new perspective into the role of heparin on c-Met signaling in HCC.

  5. Differential prooxidative effects of the green tea polyphenol, (-)-epigallocatechin-3-gallate, in normal and oral cancer cells are related to differences in sirtuin 3 signaling.

    PubMed

    Tao, Ling; Park, Jong-Yung; Lambert, Joshua D

    2015-02-01

    We have previously reported that the green tea catechin, (-)-epigallocatechin-3-gallate (EGCG), can induce oxidative stress in oral cancer cells but exerts antioxidant effects in normal cells. Here, we report that these differential prooxidative effects are associated with sirtuin 3 (SIRT3), an important mitochondrial redox modulator. EGCG rapidly induced mitochondria-localized reactive oxygen species in human oral squamous carcinoma cells (SCC-25, SCC-9) and premalignant leukoplakia cells (MSK-Leuk1), but not in normal human gingival fibroblast cells (HGF-1). EGCG suppressed SIRT3 mRNA and protein expression, as well as, SIRT3 activity in SCC-25 cells, whereas it increased SIRT3 activity in HGF-1 cells. EGCG selectively decreased the nuclear localization of the estrogen-related receptor α (ERRα), the transcription factor regulating SIRT3 expression, in SCC-25 cells. This indicates that EGCG may regulate SIRT3 transcription in oral cancer cells via ERRα. EGCG also differentially modulated the mRNA expressions of SIRT3-associated downstream targets including glutathione peroxidase 1 and superoxide dismutase 2 in normal and oral cancer cells. SIRT3 represents a novel potential target through which EGCG exerts differential prooxidant effects in cancer and normal cells. Our results provide new biomarkers to be further explored in animal studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The C-module-binding factor supports amplification of TRE5-A retrotransposons in the Dictyostelium discoideum genome.

    PubMed

    Bilzer, Annika; Dölz, Heike; Reinhardt, Alexander; Schmith, Anika; Siol, Oliver; Winckler, Thomas

    2011-01-01

    Retrotransposable elements are molecular parasites that have invaded the genomes of virtually all organisms. Although retrotransposons encode essential proteins to mediate their amplification, they also require assistance by host cell-encoded machineries that perform functions such as DNA transcription and repair. The retrotransposon TRE5-A of the social amoeba Dictyostelium discoideum generates a notable amount of both sense and antisense RNAs, which are generated from element-internal promoters, located in the A module and the C module, respectively. We observed that TRE5-A retrotransposons depend on the C-module-binding factor (CbfA) to maintain high steady-state levels of TRE5-A transcripts and that CbfA supports the retrotransposition activity of TRE5-A elements. The carboxy-terminal domain of CbfA was found to be required and sufficient to mediate the accumulation of TRE5-A transcripts, but it did not support productive retrotransposition of TRE5-A. This result suggests different roles for CbfA protein domains in the regulation of TRE5-A retrotransposition frequency in D. discoideum cells. Although CbfA binds to the C module in vitro, the factor regulates neither C-module nor A-module promoter activity in vivo. We speculate that CbfA supports the amplification of TRE5-A retrotransposons by suppressing the expression of an as yet unidentified component of the cellular posttranscriptional gene silencing machinery.

  7. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    PubMed

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  8. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    PubMed Central

    Rhode, Jennifer; Fogoros, Sarah; Zick, Suzanna; Wahl, Heather; Griffith, Kent A; Huang, Jennifer; Liu, J Rebecca

    2007-01-01

    Background Ginger (Zingiber officinale Rosc) is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer. PMID:18096028

  9. Does Platelet-Rich Plasma Freeze-Thawing Influence Growth Factor Release and Their Effects on Chondrocytes and Synoviocytes?

    PubMed Central

    Cavallo, Carola; Cenacchi, Annarita; Facchini, Andrea; Grigolo, Brunella; Kon, Elizaveta; Mariani, Erminia; Pratelli, Loredana; Marcacci, Maurilio

    2014-01-01

    PRP cryopreservation remains a controversial point. Our purpose was to investigate the effect of freezing/thawing on PRP molecule release, and its effects on the metabolism of chondrocytes and synoviocytes. PRP was prepared from 10 volunteers, and a half volume underwent one freezing/thawing cycle. IL-1β, HGF, PDGF AB/BB, TGF-β1, and VEGF were assayed 1 hour and 7 days after activation. Culture media of chondrocytes and synoviocytes were supplemented with fresh or frozen PRP, and, at 7 days, proliferation, gene expression, and secreted proteins levels were evaluated. Results showed that in the freeze-thawed PRP the immediate and delayed molecule releases were similar or slightly lower than those in fresh PRP. TGF-β1 and PDGF AB/BB concentrations were significantly reduced after freezing both at 1 hour and at 7 days, whereas HGF concentration was significantly lower in frozen PRP at 7 days. In fresh PRP IL-1β and HGF concentrations underwent a significant further increase after 7 days. Similar gene expression was found in chondrocytes cultured with both PRPs, whereas in synoviocytes HGF gene expression was higher in frozen PRP. PRP cryopreservation is a safe procedure, which sufficiently preserves PRP quality and its ability to induce proliferation and the production of ECM components in chondrocytes and synoviocytes. PMID:25136613

  10. Neural progenitor cell implants modulate vascular endothelial growth factor and brain-derived neurotrophic factor expression in rat axotomized neurons.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Pastor, Angel M

    2013-01-01

    Axotomy of central neurons leads to functional and structural alterations which largely revert when neural progenitor cells (NPCs) are implanted in the lesion site. The new microenvironment created by NPCs in the host tissue might modulate in the damaged neurons the expression of a high variety of molecules with relevant roles in the repair mechanisms, including neurotrophic factors. In the present work, we aimed to analyze changes in neurotrophic factor expression in axotomized neurons induced by NPC implants. For this purpose, we performed immunofluorescence followed by confocal microscopy analysis for the detection of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) on brainstem sections from rats with axotomy of abducens internuclear neurons that received NPC implants (implanted group) or vehicle injections (axotomized group) in the lesion site. Control abducens internuclear neurons were strongly immunoreactive to VEGF and BDNF but showed a weak staining for NT-3 and NGF. Comparisons between groups revealed that lesioned neurons from animals that received NPC implants showed a significant increase in VEGF content with respect to animals receiving vehicle injections. However, the immunoreactivity for BDNF, which was increased in the axotomized group as compared to control, was not modified in the implanted group. The modifications induced by NPC implants on VEGF and BDNF content were specific for the population of axotomized abducens internuclear neurons since the neighboring abducens motoneurons were not affected. Similar levels of NT-3 and NGF immunolabeling were obtained in injured neurons from axotomized and implanted animals. Among all the analyzed neurotrophic factors, only VEGF was expressed by the implanted cells in the lesion site. Our results point to a role of NPC implants in the modulation of neurotrophic factor expression by lesioned central neurons, which might

  11. Crew Factors in Flight Operations XV: Alertness Management in General Aviation Education Module

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.; Cannon, Mary M. (Technical Monitor)

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  12. Brain-derived neurotrophic factor Val66Met genotype modulates amygdala habituation.

    PubMed

    Perez-Rodriguez, M Mercedes; New, Antonia S; Goldstein, Kim E; Rosell, Daniel; Yuan, Qiaoping; Zhou, Zhifeng; Hodgkinson, Colin; Goldman, David; Siever, Larry J; Hazlett, Erin A

    2017-05-30

    A deficit in amygdala habituation to repeated emotional stimuli may be an endophenotype of disorders characterized by emotion dysregulation, such as borderline personality disorder (BPD). Amygdala reactivity to emotional stimuli is genetically modulated by brain-derived neurotrophic factor (BDNF) variants. Whether amygdala habituation itself is also modulated by BDNF genotypes remains unknown. We used imaging-genetics to examine the effect of BDNF Val66Met genotypes on amygdala habituation to repeated emotional stimuli. We used functional magnetic resonance imaging (fMRI) in 57 subjects (19 BPD patients, 18 patients with schizotypal personality disorder [SPD] and 20 healthy controls [HC]) during a task involving viewing of unpleasant, neutral, and pleasant pictures, each presented twice to measure habituation. Amygdala responses across genotypes (Val66Met SNP Met allele-carriers vs. Non-Met carriers) and diagnoses (HC, BPD, SPD) were examined with ANOVA. The BDNF 66Met allele was significantly associated with a deficit in amygdala habituation, particularly for emotional pictures. The association of the 66Met allele with a deficit in habituation to unpleasant emotional pictures remained significant in the subsample of BPD patients. Using imaging-genetics, we found preliminary evidence that deficient amygdala habituation may be modulated by BDNF genotype. Copyright © 2017. Published by Elsevier B.V.

  13. Genomic profiling of a Hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma.

    PubMed

    Johnson, Jennifer; Ascierto, Maria Libera; Mittal, Sandeep; Newsome, David; Kang, Liang; Briggs, Michael; Tanner, Kirk; Marincola, Francesco M; Berens, Michael E; Vande Woude, George F; Xie, Qian

    2015-09-17

    Constitutive MET signaling promotes invasiveness in most primary and recurrent GBM. However, deployment of available MET-targeting agents is confounded by lack of effective biomarkers for selecting suitable patients for treatment. Because endogenous HGF overexpression often causes autocrine MET activation, and also indicates sensitivity to MET inhibitors, we investigated whether it drives the expression of distinct genes which could serve as a signature indicating vulnerability to MET-targeted therapy in GBM. Interrogation of genomic data from TCGA GBM (Student's t test, GBM patients with high and low HGF expression, p ≤ 0.00001) referenced against patient-derived xenograft (PDX) models (Student's t test, sensitive vs. insensitive models, p ≤ 0.005) was used to identify the HGF-dependent signature. Genomic analysis of GBM xenograft models using both human and mouse gene expression microarrays (Student's t test, treated vs. vehicle tumors, p ≤ 0.01) were performed to elucidate the tumor and microenvironment cross talk. A PDX model with EGFR(amp) was tested for MET activation as a mechanism of erlotinib resistance. We identified a group of 20 genes highly associated with HGF overexpression in GBM and were up- or down-regulated only in tumors sensitive to MET inhibitor. The MET inhibitors regulate tumor (human) and host (mouse) cells within the tumor via distinct molecular processes, but overall impede tumor growth by inhibiting cell cycle progression. EGFR (amp) tumors undergo erlotinib resistance responded to a combination of MET and EGFR inhibitors. Combining TCGA primary tumor datasets (human) and xenograft tumor model datasets (human tumor grown in mice) using therapeutic efficacy as an endpoint may serve as a useful approach to discover and develop molecular signatures as therapeutic biomarkers for targeted therapy. The HGF dependent signature may serve as a candidate predictive signature for patient enrollment in clinical trials using MET inhibitors

  14. Experiment module concepts study. Volume 3: Module and subsystem design

    NASA Technical Reports Server (NTRS)

    Hunter, J. R.; Chiarappa, D. J.

    1970-01-01

    The final common module set exhibiting wide commonality is described. The set consists of three types of modules: one free flying module and two modules that operate attached to the space station. The common module designs provide for the experiment program as defined. The feasibility, economy, and practicality of these modules hinges on factors that do not affect the approach or results of the commonality process, but are important to the validity of the common module concepts. Implementation of the total experiment program requires thirteen common modules: five CM-1, five CM-3, and three CM-4 modules.

  15. Sema4D, the ligand for Plexin B1, suppresses c-Met activation and migration and promotes melanocyte survival and growth

    PubMed Central

    Soong, Joanne; Chen, Yulin; Shustef, Elina; Scott, Glynis

    2011-01-01

    Semaphorins are secreted and membrane bound proteins involved in neural pathfinding, organogenesis, and tumor progression, through Plexin and neuropilins receptors. We recently reported that Plexin B1, the Semaphorin 4D receptor, is a tumor suppressor protein for melanoma, in part, through inhibition of the oncogenic c-Met tyrosine kinase receptor. In this report we show that Sema4D is a protective paracrine factor for normal human melanocyte survival in response to ultraviolet irradiation, that it stimulates proliferation, and regulates the activity of the c-Met receptor. c-Met receptor signaling stimulates melanocyte migration, in part through down-regulation of the cell adhesion molecule E-cadherin. Sema4D suppressed activation of c-Met in response to its ligand hepatocyte growth factor (HGF), and partially blocked the suppressive effects of HGF on E-cadherin expression in melanocytes and HGF-dependent migration. These data demonstrate a role for Plexin B1 in maintenance of melanocyte survival and proliferation in the skin, and suggest that Semaphorin 4D and Plexin B1 act cooperatively with HGF and c-Met to regulate c-Met dependent effects in human melanocytes. Because our data show that Plexin B1 is profoundly down-regulated by UVB in melanocytes, loss of Plexin B1 may accentuate HGF dependent effects on melanocytes, including melanocyte migration. PMID:22189792

  16. Sema4D, the ligand for Plexin B1, suppresses c-Met activation and migration and promotes melanocyte survival and growth.

    PubMed

    Soong, Joanne; Chen, Yulin; Shustef, Elina M; Scott, Glynis A

    2012-04-01

    Semaphorins are secreted and membrane-bound proteins involved in neural pathfinding, organogenesis, and tumor progression, through Plexin and neuropilin receptors. We recently reported that Plexin B1, the Semaphorin 4D (Sema4D) receptor, is a tumor-suppressor protein for melanoma, which functions, in part, through inhibition of the oncogenic c-Met tyrosine kinase receptor. In this report, we show that Sema4D is a protective paracrine factor for normal human melanocyte survival in response to UV irradiation, and that it stimulates proliferation and regulates the activity of the c-Met receptor. c-Met receptor signaling stimulates melanocyte migration, partly through downregulation of the cell adhesion molecule E-cadherin. Sema4D suppressed activation of c-Met in response to its ligand, hepatocyte growth factor (HGF), and partially blocked the suppressive effects of HGF on E-cadherin expression in melanocytes and HGF-dependent migration. These data demonstrate a role for Plexin B1 in maintenance of melanocyte survival and proliferation in the skin, and suggest that Sema4D and Plexin B1 act cooperatively with HGF and c-Met to regulate c-Met-dependent effects in human melanocytes. Because our data show that Plexin B1 is profoundly downregulated by UVB in melanocytes, loss of Plexin B1 may accentuate HGF-dependent effects on melanocytes, including melanocyte migration.

  17. Glucose impairs tamoxifen responsiveness modulating connective tissue growth factor in breast cancer cells.

    PubMed

    Ambrosio, Maria Rosaria; D'Esposito, Vittoria; Costa, Valerio; Liguoro, Domenico; Collina, Francesca; Cantile, Monica; Prevete, Nella; Passaro, Carmela; Mosca, Giusy; De Laurentiis, Michelino; Di Bonito, Maurizio; Botti, Gerardo; Franco, Renato; Beguinot, Francesco; Ciccodicola, Alfredo; Formisano, Pietro

    2017-12-12

    Type 2 diabetes and obesity are negative prognostic factors in patients with breast cancer (BC). We found that sensitivity to tamoxifen was reduced by 2-fold by 25 mM glucose (High Glucose; HG) compared to 5.5 mM glucose (Low Glucose; LG) in MCF7 BC cells. Shifting from HG to LG ameliorated MCF7 cell responsiveness to tamoxifen. RNA-Sequencing of MCF7 BC cells revealed that cell cycle-related genes were mainly affected by glucose. Connective Tissue Growth Factor (CTGF) was identified as a glucose-induced modulator of cell sensitivity to tamoxifen. Co-culturing MCF7 cells with human adipocytes exposed to HG, enhanced CTGF mRNA levels and reduced tamoxifen responsiveness of BC cells. Inhibition of adipocyte-released IL8 reverted these effects. Interestingly, CTGF immuno-detection in bioptic specimens from women with estrogen receptor positive (ER + ) BC correlated with hormone therapy resistance, distant metastases, reduced overall and disease-free survival. Thus, glucose affects tamoxifen responsiveness directly modulating CTGF in BC cells, and indirectly promoting IL8 release by adipocytes.

  18. The C-Module-Binding Factor Supports Amplification of TRE5-A Retrotransposons in the Dictyostelium discoideum Genome ▿

    PubMed Central

    Bilzer, Annika; Dölz, Heike; Reinhardt, Alexander; Schmith, Anika; Siol, Oliver; Winckler, Thomas

    2011-01-01

    Retrotransposable elements are molecular parasites that have invaded the genomes of virtually all organisms. Although retrotransposons encode essential proteins to mediate their amplification, they also require assistance by host cell-encoded machineries that perform functions such as DNA transcription and repair. The retrotransposon TRE5-A of the social amoeba Dictyostelium discoideum generates a notable amount of both sense and antisense RNAs, which are generated from element-internal promoters, located in the A module and the C module, respectively. We observed that TRE5-A retrotransposons depend on the C-module-binding factor (CbfA) to maintain high steady-state levels of TRE5-A transcripts and that CbfA supports the retrotransposition activity of TRE5-A elements. The carboxy-terminal domain of CbfA was found to be required and sufficient to mediate the accumulation of TRE5-A transcripts, but it did not support productive retrotransposition of TRE5-A. This result suggests different roles for CbfA protein domains in the regulation of TRE5-A retrotransposition frequency in D. discoideum cells. Although CbfA binds to the C module in vitro, the factor regulates neither C-module nor A-module promoter activity in vivo. We speculate that CbfA supports the amplification of TRE5-A retrotransposons by suppressing the expression of an as yet unidentified component of the cellular posttranscriptional gene silencing machinery. PMID:21076008

  19. MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor

    PubMed Central

    Caenepeel, Sean; Cooke, Keegan; Wadsworth, Sarah; Huang, Guo; Robert, Lidia; Moreno, Blanca Homet; Parisi, Giulia; Cajulis, Elaina; Kendall, Richard; Beltran, Pedro; Ribas, Antoni; Coxon, Angela; Hughes, Paul E.

    2017-01-01

    Therapeutic resistance is a major obstacle to achieving durable clinical responses with targeted therapies, highlighting a need to elucidate the underlying mechanisms responsible for resistance and identify strategies to overcome this challenge. An emerging body of data implicates the tyrosine kinase MET in mediating resistance to BRAF inhibitors in BRAFV600E mutant melanoma. In this study we observed a dominant role for the HGF/MET axis in mediating resistance to BRAF and MEK inhibitors in models of BRAFV600E and NRAS mutant melanoma. In addition, we showed that MAPK pathway inhibition induced rapid increases in MET and GAB1 levels, providing novel mechanistic insight into how BRAFV600E mutant melanoma is primed for HGF-mediated rescue. We also determined that tumor-derived HGF, not systemic HGF, may be required to convey resistance to BRAF inhibition in vivo and that resistance could be reversed following treatment with AMG 337, a selective MET inhibitor. In summary, these findings support the clinical evaluation of MET-directed targeted therapy to circumvent resistance to BRAF and MEK inhibitors in BRAFV600E mutant melanoma. In addition, the induction of MET following treatment with BRAF and MEK inhibitors has the potential to serve as a predictive biomarker for identifying patients best suited for MET inhibitor combination therapy. PMID:28147313

  20. Psychological Factors and Conditioned Pain Modulation: A Meta-Analysis.

    PubMed

    Nahman-Averbuch, Hadas; Nir, Rony-Reuven; Sprecher, Elliot; Yarnitsky, David

    2016-06-01

    Conditioned pain modulation (CPM) responses may be affected by psychological factors such as anxiety, depression, and pain catastrophizing; however, most studies on CPM do not address these relations as their primary outcome. The aim of this meta-analysis was to analyze the findings regarding the associations between CPM responses and psychological factors in both pain-free individuals and pain patients. After a comprehensive PubMed search, 37 articles were found to be suitable for inclusion. Analyses used DerSimonian and Laird's random-effects model on Fisher's z-transforms of correlations; potential publication bias was tested using funnel plots and Egger's regression test for funnel plot asymmetry. Six meta-analyses were performed examining the correlations between anxiety, depression, and pain catastrophizing, and CPM responses in healthy individuals and pain patients. No significant correlations between CPM responses and any of the examined psychological factors were found. However, a secondary analysis, comparing modality-specific CPM responses and psychological factors in healthy individuals, revealed the following: (1) pressure-based CPM responses were correlated with anxiety (grand mean correlation in original units r=-0.1087; 95% confidence limits, -0.1752 to -0.0411); (2) heat-based CPM was correlated with depression (r=0.2443; 95% confidence limits, 0.0150 to 0.4492); and (3) electrical-based CPM was correlated with pain catastrophizing levels (r=-0.1501; 95% confidence limits, -0.2403 to -0.0574). Certain psychological factors seem to be associated with modality-specific CPM responses in healthy individuals. This potentially supports the notion that CPM paradigms evoked by different stimulation modalities represent different underlying mechanisms.

  1. Modulation limit of semiconductor lasers by some parametric modulation schemes

    NASA Astrophysics Data System (ADS)

    Iga, K.

    1985-07-01

    Using the simple rate equations and small signal analysis, the modulation speed limit of semiconductor lasers with modulation schemes such as gain switching, modulation of nonradiative recombination lifetime of minority carriers, and cavity Q modulation, is calculated and compared with the injection modulation scheme of Ikegami and Suematsu (1968). It is found that the maximum modulation frequency for the gain and Q modulation can exceed the resonance-like frequency by a factor equal to the coefficient of the time derivative of the modulation parameter, though the nonradiative lifetime modulation is not shown to be different from the injection modulation. A solution for the carrier lifetime modulation of LED is obtained, and the possibility of wideband modulation in this scheme is demonstrated.

  2. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes.

    PubMed

    Subramanian, Devika; Natarajan, Jeyakumar

    2015-12-10

    Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Detection of eQTL modules mediated by activity levels of transcription factors.

    PubMed

    Sun, Wei; Yu, Tianwei; Li, Ker-Chau

    2007-09-01

    Studies of gene expression quantitative trait loci (eQTL) in different organisms have shown the existence of eQTL hot spots: each being a small segment of DNA sequence that harbors the eQTL of a large number of genes. Two questions of great interest about eQTL hot spots arise: (1) which gene within the hot spot is responsible for the linkages, i.e. which gene is the quantitative trait gene (QTG)? (2) How does a QTG affect the expression levels of many genes linked to it? Answers to the first question can be offered by available biological evidence or by statistical methods. The second question is harder to address. One simple situation is that the QTG encodes a transcription factor (TF), which regulates the expression of genes linked to it. However, previous results have shown that TFs are not overrepresented in the eQTL hot spots. In this article, we consider the scenario that the propagation of genetic perturbation from a QTG to other linked genes is mediated by the TF activity. We develop a procedure to detect the eQTL modules (eQTL hot spots together with linked genes) that are compatible with this scenario. We first detect 27 eQTL modules from a yeast eQTL data, and estimate TF activity profiles using the method of Yu and Li (2005). Then likelihood ratio tests (LRTs) are conducted to find 760 relationships supporting the scenario of TF activity mediation: (DNA polymorphism --> cis-linked gene --> TF activity --> downstream linked gene). They are organized into 4 eQTL modules: an amino acid synthesis module featuring a cis-linked gene LEU2 and the mediating TF Leu3; a pheromone response module featuring a cis-linked gene GPA1 and the mediating TF Ste12; an energy-source control module featuring two cis-linked genes, GSY2 and HAP1, and the mediating TF Hap1; a mitotic exit module featuring four cis-linked genes, AMN1, CSH1, DEM1 and TOS1, and the mediating TF complex Ace2/Swi5. Gene Ontology is utilized to reveal interesting functional groups of the downstream

  4. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    PubMed Central

    Augustin, Regina; Lichtenthaler, Stefan F.; Greeff, Michael; Hansen, Jens; Wurst, Wolfgang; Trümbach, Dietrich

    2011-01-01

    The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD) pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases. PMID:21559189

  5. Increased bone morphogenetic protein 7 signalling in the kidneys of dogs affected with a congenital portosystemic shunt.

    PubMed

    van Dongen, Astrid M; Heuving, Susanne M; Tryfonidou, Marianna A; van Steenbeek, Frank G; Rothuizen, Jan; Penning, Louis C

    2015-05-01

    Dogs with a congenital portosystemic shunt (CPSS) often have enlarged and hyper-filtrating kidneys. Although expression of different growth factors has been well-described in the livers of dogs affected with a CPSS, their expression in the kidneys has yet to be determined. Bone morphogenetic protein 7 (BMP-7), hepatocyte growth factor (HGF) and transforming growth factor (TGF)-β have been implicated in renal development (BMP-7, HGF) or the onset of renal fibrosis (TGF-β). Moreover, BMP-7 and HGF have protective properties in renal fibrosis. In this study, the expression and activity of BMP-7 were investigated in renal biopsies obtained from 13 dogs affected with a CPSS and compared to similar samples from age-matched healthy control dogs. Both quantitative reverse-transcriptase PCR and Western blotting showed up-regulated BMP-7 signalling in kidneys of CPPS-affected dogs. These research findings may help to explain the renal pathology/dysfunction in dogs affected with a CPSS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Crew Factors in Flight Operations XIV: Alertness Management in Regional Flight Operations Education Module

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  7. Colony-stimulating factors: clinical evidence for treatment and prophylaxis of chemotherapy-induced febrile neutropenia.

    PubMed

    Gómez Raposo, César; Pinto Marín, Alvaro; González Barón, Manuel

    2006-10-01

    The hematopoietic growth factors (HGFs) are a family of glycoproteins which plays a major role in the proliferation, differentiation, and survival of primitive hematopoietic stem and progenitor cells, and in the functions of some mature cells. More than 20 different molecules of HGF have been identified. Among them, granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) have been demostrated to be effective in reducing the incidence of febrile neutropenia when administered inmediately after chemotherapy and as supportive therapy in patients undergoing bone marrow transplantation. Chemotherapy used for treatment of cancer often causes neutropenia, which may be profound, requiring hospitalization, and leading to potentially fatal infection. The uses of the recombinant human hematopoietic colony-stimulating factors G-CSF and GM-CSF for treatment and prophylaxis of chemotherapy-induced febrile neutropenia will be reviewed here.

  8. Effects of High Intensity Training and High Volume Training on Endothelial Microparticles and Angiogenic Growth Factors

    PubMed Central

    Achtzehn, Silvia; Schmitz, Theresa; Bloch, Wilhelm; Mester, Joachim; Werner, Nikos

    2014-01-01

    Aims Endothelial microparticles (EMP) are complex vesicular structures shed from activated or apoptotic endothelial cells. As endurance exercise affects the endothelium, the objective of the study was to examine levels of EMP and angiogenic growth factors following different endurance exercise protocols. Methods 12 subjects performed 3 different endurance exercise protocols: 1. High volume training (HVT; 130 min at 55% peak power output (PPO); 2. 4×4 min at 95% PPO; 3. 4×30 sec all-out. EMPs were quantified using flow cytometry after staining platelet-poor-plasma. Events positive for Annexin-V and CD31, and negative for CD42b, were classified as EMPs. Vascular endothelial growth factor (VEGF), migratory inhibiting factor (MIF) and hepatocyte growth factor (HGF) were determined by ELISA technique. For all these measurements venous blood samples were taken pre, 0′, 30′, 60′ and 180′ after each intervention. Furthermore, in vitro experiments were performed to explore the effect of collected sera on target endothelial functions and MP uptake capacities. Results VEGF and HGF significantly increased after HIT interventions. All three interventions caused a significant decrease in EMP levels post exercise compared to pre values. The sera taken after exercise increased the uptake of EMP in target endothelial cells compared to sera taken under resting conditions, which was shown to be phosphatidylserin-dependent. Increased EMP uptake was associated with an improved protection of target cells against apoptosis. Sera taken prior and after exercise promoted target endothelial cell migration, which was abrogated after inhibition of VEGF. Conclusion Physical exercise leads to decreased EMP levels and promotes a phosphatidylserin-dependent uptake of EMP into target endothelial cells, which is associated with a protection of target cells against apoptosis. PMID:24770423

  9. Integrins as Modulators of Transforming Growth Factor Beta Signaling in Dermal Fibroblasts During Skin Regeneration After Injury.

    PubMed

    Boo, Stellar; Dagnino, Lina

    2013-06-01

    Abnormal wound repair results from disorders in granulation tissue remodeling, and can lead to hypertrophic scarring and fibrosis. Excessive scarring can compromise tissue function and decrease tissue resistance to additional injuries. The development of potential therapies to minimize scarring is, thus, necessary to address an important clinical problem. It has been clearly established that multiple cytokines and growth factors participate in the regulation of cutaneous wound healing. More recently, it has become apparent that these factors do not necessarily activate isolated signaling pathways. Rather, in some cases, there is cross-modulation of several cellular pathways involved in this process. Two of the key pathways that modulate each other during wound healing are activated by transforming growth factor-β and by extracellular matrix proteins acting through integrins. The pathogenesis of excessive scarring upon wound healing is not fully understood, as a result of the complexity of this process. However, the fact that many pathways combine to produce fibrosis provides multiple potential therapeutic targets. Some of them have been identified, such as focal adhesion kinase and integrin-linked kinase. Currently, a major challenge is to develop pharmacological inhibitors of these proteins with therapeutic value to promote efficient wound repair. The ability to better understand how different pathways crosstalk during wound repair and to identify and pharmacologically modulate key factors that contribute to the regulation of multiple wound-healing pathways could potentially provide effective therapeutic targets to decrease or prevent excessive scar formation and/or development of fibrosis.

  10. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism.

    PubMed

    Li, Jia; Mao, QiuXian; He, JingJun; She, HaoQing; Zhang, Zhi; Yin, ChunYan

    2017-03-09

    Human umbilical cord mesenchymal stem cells (hUCMSCs) are a type of pluripotent stem cell which are isolated from the umbilical cord of newborns. hUCMSCs have great therapeutic potential. We designed this experimental study in order to investigate whether the transplantation of hUCMSCs can improve the ovarian reserve function of perimenopausal rats and delay ovarian senescence. We selected naturally aging rats confirmed by vaginal smears as models of perimenopausal rats, divided into the control group and the treatment group, and selected young fertile female rats as normal controls. hUCMSCs were transplanted into rats of the treatment group through tail veins. Enzyme-linked immunosorbent assay (ELISA) detected serum levels of sex hormones, H&E staining showed ovarian tissue structure and allowed follicle counting, immunohistochemistry and western blot analysis revealed ovarian expression of hepatocyte growth factor (HGF), vascular endothelial cell growth factor (VEGF), and insulin-like growth factor-1 (IGF-1), polymerase chain reaction (PCR) and western blot analysis revealed hUCMSCs expression of HGF, VEGF, and IGF-1. At time points of 14, 21, and 28 days after hUCMSCs transplantation, estradiol (E 2 ) and anti-Müllerian hormone (AMH) increased while follicle-stimulating hormone (FSH) decreased; ovarian structure improved and follicle number increased; ovarian expression of HGF, VEGF, and IGF-1 protein elevated significantly. Meanwhile, PCR and western blot analysis indicated hUCMSCs have the capacity of secreting HGF, VEGF, and IGF-1 cytokines. Our results suggest that hUCMSCs can promote ovarian expression of HGF, VEGF, and IGF-1 through secreting those cytokines, resulting in improving ovarian reserve function and withstanding ovarian senescence.

  11. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesano, Roberto; Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hithertomore » unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.« less

  12. Constitutively active c-Met kinase in PC-3 cells is autocrine-independent and can be blocked by the Met kinase inhibitor BMS-777607

    PubMed Central

    2012-01-01

    Background The c-Met receptor tyrosine kinase is aberrantly activated in many solid tumors. In a prior study we showed that prostate cancer PC-3 cells exhibit constitutively activated c-Met without exogenous hepatocyte growth factor (HGF); however whether this characteristic is due to an endogenous HGF/c-Met autocrine loop remains controversial. In the current study we examined the response of PC-3 cells to an anti-HGF neutralizing antibody or a small molecule Met kinase inhibitor (BMS-777607). Methods Cell scattering was tested by monitoring cell morphology after HGF stimulation. Cell migration was examined by both “wound-healing” and transwell assasy and invasion was detected by Matrigel-coated transwell assay. Proliferation, survival and anoikis were determined by MTT, colony formation and trypan blue exclusion assay, respectively. Gene and protein expression were assessed by real-time PCR and Western blot, respectively. Results Although HGF mRNA could be detected in PC-3 cells, the molecular weight of secreted “HGF” protein was inconsistent with the functional recombinant HGF. Furthermore, conditioned medium from PC-3 cell cultures was ineffective at triggering either motogenic behavior or c-Met signaling in DU145, another prostate cancer cell line expressing c-Met but lacking basal c-Met activation. PC-3 cells also were not responsive to the anti-HGF neutralizing antibody in experiments assessing proliferation, migration, or c-Met signaling. BMS-777607 treatment with micromolar doses nonetheless led to significant inhibition of multiple PC-3 cell functions including proliferation, clonogenicity, migration and invasion. At the molecular level, BMS-777607 suppressed autophosphorylated c-Met and downstream c-Src and Akt pathways. Conclusions These results suggest that the constitutive c-Met activation in PC-3 is independent of autocrine stimulation. Because PC-3 cells were responsive to BMS-777607 but not the anti-HGF antibody, the findings also indicate

  13. Kinetic Model Facilitates Analysis of Fibrin Generation and Its Modulation by Clotting Factors: Implications for Hemostasis-Enhancing Therapies

    DTIC Science & Technology

    2014-01-01

    facilitates analysis of fibrin generation and its modulation by clotting factors : implications for hemostasis-enhancing therapies† Alexander Y...investigate the ability of fibrinogen and a recently proposed prothrombin complex concentrate composition, PCC-AT (a combination of the clotting factors II...kinetics. Moreover, the model qualitatively predicted the impact of tissue factor and tPA/tenecteplase level variations on the fibrin output. In the

  14. Cloud forming potential of oligomers relevant to secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Guo, Song; Gomez-Hernandez, Mario; Zamora, Misti L.; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Zhang, Annie L.; Collins, Don R.; Zhang, Renyi

    2014-09-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity are measured for surrogates that mimic atmospherically relevant oligomers, including glyoxal trimer dihydrate, methyl glyoxal trimer dihydrate, sucrose, methyl glyoxal mixtures with sulfuric acid and glycolic acid, and 2,4-hexandienal mixtures with sulfuric acid and glycolic acid. For the single-component aerosols, the measured HGF ranges from 1.3 to 1.4 at a relative humidity of 90%, and the hygroscopicity parameter (κ) is in the range of 0.06 to 0.19 on the basis of the measured CCN activity and 0.13 to 0.22 on the basis of the measured HGF, compared to the calculated values of 0.08 to 0.16. Large differences exist in the κ values derived using the measured HGF and CCN data for the multi-component aerosols. Our results reveal that, in contrast to the oxidation process, oligomerization decreases particle hygroscopicity and CCN activity and provides guidance for analyzing the organic species in ambient aerosols.

  15. A novel antiangiogenic peptide derived from hepatocyte growth factor inhibits neovascularization in vitro and in vivo

    PubMed Central

    Xu, Yi; Zhao, Hui; Zheng, Ying; Gu, Qing; Ma, Jianxing

    2010-01-01

    Purpose To study the antiangiogenic activity of two small peptides (H-RN and H-FT) derived from the hepatocyte growth factor kringle 1 domain (HGF K1) using in vitro and in vivo assays. Methods RF/6A rhesus macaque choroid-retina endothelial cells were used for in vitro studies. The inhibiting effect of two peptides on a vascular endothelial growth factor (VEGF)-stimulated cell proliferation, cell migration, and endothelial cell tube formation were investigated. For in vivo assays, the antiangiogenic activity of H-RN and H-FT in the chick chorioallantoic membrane model (CAM) and a mice oxygen-induced retinopathy model (OIR) were studied. A recombinant mouse VEGF-neutralizing antibody, bevacizumab, and a scrambled peptide were used as two control groups in separate studies. Results H-RN effectively inhibited VEGF-stimulated RF/6A cell proliferation, migration, and tube formation on Matrigel™, while H-FT did not. H-RN was also able to inhibit angiogenesis when applied to the CAM, and had antineovascularization activity in the retinal neovascularization of a mouse OIR model when administrated as an intravitreous injection. The antiangiogenic activity of H-RN was not as strong as that of VEGF antibodies. The H-FT and scrambled peptide had no such activity. Conclusions H-RN, a new peptide derived from the HGF K1 domain, was shown to have antiangiogenic activity in vitro and in vivo. It may lead to new potential drug discoveries and the development of new treatments for pathological retinal angiogenesis. PMID:21031024

  16. Integrins as Modulators of Transforming Growth Factor Beta Signaling in Dermal Fibroblasts During Skin Regeneration After Injury

    PubMed Central

    Boo, Stellar; Dagnino, Lina

    2013-01-01

    Significance Abnormal wound repair results from disorders in granulation tissue remodeling, and can lead to hypertrophic scarring and fibrosis. Excessive scarring can compromise tissue function and decrease tissue resistance to additional injuries. The development of potential therapies to minimize scarring is, thus, necessary to address an important clinical problem. Recent Advances It has been clearly established that multiple cytokines and growth factors participate in the regulation of cutaneous wound healing. More recently, it has become apparent that these factors do not necessarily activate isolated signaling pathways. Rather, in some cases, there is cross-modulation of several cellular pathways involved in this process. Two of the key pathways that modulate each other during wound healing are activated by transforming growth factor-β and by extracellular matrix proteins acting through integrins. Critical Issues The pathogenesis of excessive scarring upon wound healing is not fully understood, as a result of the complexity of this process. However, the fact that many pathways combine to produce fibrosis provides multiple potential therapeutic targets. Some of them have been identified, such as focal adhesion kinase and integrin-linked kinase. Currently, a major challenge is to develop pharmacological inhibitors of these proteins with therapeutic value to promote efficient wound repair. Future Directions The ability to better understand how different pathways crosstalk during wound repair and to identify and pharmacologically modulate key factors that contribute to the regulation of multiple wound-healing pathways could potentially provide effective therapeutic targets to decrease or prevent excessive scar formation and/or development of fibrosis. PMID:24527345

  17. Reciprocal modulation of internal and external factors determines individual movements.

    PubMed

    Martin, Jodie; van Moorter, Bram; Revilla, Eloy; Blanchard, Pierrick; Dray, Stéphane; Quenette, Pierre-Yves; Allainé, Dominique; Swenson, Jon E

    2013-03-01

    Movement is fundamental to individual and population dynamics, as it allows individuals to meet their basic requirements. Although movement patterns reflect interactions between internal and external factors, only few studies have examined the effects of these factors on movement simultaneously, and they generally focused on particular biological contexts (e.g. dispersal, foraging). However, the relative importance of these factors in driving individual routine movements might reflect a species' potential flexibility to cope with landscape changes and therefore buffer their potential impact on fitness. We used data from GPS collars on Scandinavian brown bears to investigate the relative role of these factors, as well as an additional factor (period of the year) on routine movements at two spatial scales (hourly and daily relocations). As expected, internal factors played a major role in driving movement, compared to external factors at both scales, but its relative importance was greater at a finer scale. In particular, the interaction between reproductive status and period of the year was one of the most influential variables, females being constrained by the movement capacity of their cubs in the first periods of the year. The effect of human disturbance on movement was also greater for females with cubs than for lone females. This study showed how reciprocal modulation of internal and external factors is shaping space use of brown bears. We stress that these factors should be studied simultaneously to avoid the risk of obtaining context-dependent inferences. Moreover, the study of their relative contribution is also highly relevant in the context of multiple-use landscapes, as human activities generally affect the landscape more than they affect the internal states of an individual. Species or individuals with important internal constraints should be less responsive to changes in their environment as they have less freedom from internal constraints and should

  18. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    PubMed

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  19. Predictive factors for acute radiation pneumonitis in postoperative intensity modulated radiation therapy and volumetric modulated arc therapy of esophageal cancer.

    PubMed

    Zhao, Yaqin; Chen, Lu; Zhang, Shu; Wu, Qiang; Jiang, Xiaoqin; Zhu, Hong; Wang, Jin; Li, Zhiping; Xu, Yong; Zhang, Ying Jie; Bai, Sen; Xu, Feng

    2015-01-01

    Radiation pneumonitis (RP) is a common side reaction in radiotherapy for esophageal cancer. There are few reports about RP in esophageal cancer patients receiving postoperative intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). This study aims to analyze clinical or dosimetric factors associated with RP, and provides data for radiotherapy planning. We reviewed 68 postoperative esophageal cancer patients who were treated with radiotherapy at the West China Hospital from October 2010 to November 2012 to identify any correlation between the clinical or dosimetric parameters and acute radiation pneumonitis (ARP) or severe acute radiation pneumonitis (SARP) by t-test, chi-square test, and logistic regression analysis. Of the 68 patients, 33 patients (48.5%) developed ARP, 13 of which (19.1%) developed SARP. Of these 33 patients, 8 (11.8%), 12 (17.6%), 11 (16.2%), and 2 (2.9%) patients were grade 1, 2, 3, and 4 ARP, respectively. Univariate analysis showed that lung infection during radiotherapy, use of VMAT, mean lung dose (MLD), and dosimetric parameters (e.g. V20, V30) are significantly correlated with RP. Multivariate analysis found that lung infection during radiotherapy, MLD ≥ 12 Gy, and V30 ≥ 13% are significantly correlated with an increased risk of RP. Lung infection during radiotherapy and low radiation dose volume distribution were predictive factors associated with RP and should be accounted for during radiation planning.

  20. Restoration of Corneal Transparency by Mesenchymal Stem Cells.

    PubMed

    Mittal, Sharad K; Omoto, Masahiro; Amouzegar, Afsaneh; Sahu, Anuradha; Rezazadeh, Alexandra; Katikireddy, Kishore R; Shah, Dhvanit I; Sahu, Srikant K; Chauhan, Sunil K

    2016-10-11

    Transparency of the cornea is indispensable for optimal vision. Ocular trauma is a leading cause of corneal opacity, leading to 25 million cases of blindness annually. Recently, mesenchymal stem cells (MSCs) have gained prominence due to their inflammation-suppressing and tissue repair functions. Here, we investigate the potential of MSCs to restore corneal transparency following ocular injury. Using an in vivo mouse model of ocular injury, we report that MSCs have the capacity to restore corneal transparency by secreting high levels of hepatocyte growth factor (HGF). Interestingly, our data also show that HGF alone can restore corneal transparency, an observation that has translational implications for the development of HGF-based therapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Ischemia-reperfusion injury and pregnancy initiate time-dependent and robust signs of up-regulation of cardiac progenitor cells.

    PubMed

    Genead, Rami; Fischer, Helene; Hussain, Alamdar; Jaksch, Marie; Andersson, Agneta B; Ljung, Karin; Bulatovic, Ivana; Franco-Cereceda, Anders; Elsheikh, Elzafir; Corbascio, Matthias; Smith, C I Edvard; Sylvén, Christer; Grinnemo, Karl-Henrik

    2012-01-01

    To explore how cardiac regeneration and cell turnover adapts to disease, different forms of stress were studied for their effects on the cardiac progenitor cell markers c-Kit and Isl1, the early cardiomyocyte marker Nkx2.5, and mast cells. Adult female rats were examined during pregnancy, after myocardial infarction and ischemia-reperfusion injury with/out insulin like growth factor-1(IGF-1) and hepatocyte growth factor (HGF). Different cardiac sub-domains were analyzed at one and two weeks post-intervention, both at the mRNA and protein levels. While pregnancy and myocardial infarction up-regulated Nkx2.5 and c-Kit (adjusted for mast cell activation), ischemia-reperfusion injury induced the strongest up-regulation which occurred globally throughout the entire heart and not just around the site of injury. This response seems to be partly mediated by increased endogenous production of IGF-1 and HGF. Contrary to c-Kit, Isl1 was not up-regulated by pregnancy or myocardial infarction while ischemia-reperfusion injury induced not a global but a focal up-regulation in the outflow tract and also in the peri-ischemic region, correlating with the up-regulation of endogenous IGF-1. The addition of IGF-1 and HGF did boost the endogenous expression of IGF and HGF correlating to focal up-regulation of Isl1. c-Kit expression was not further influenced by the exogenous growth factors. This indicates that there is a spatial mismatch between on one hand c-Kit and Nkx2.5 expression and on the other hand Isl1 expression. In conclusion, ischemia-reperfusion injury was the strongest stimulus with both global and focal cardiomyocyte progenitor cell marker up-regulations, correlating to the endogenous up-regulation of the growth factors IGF-1 and HGF. Also pregnancy induced a general up-regulation of c-Kit and early Nkx2.5+ cardiomyocytes throughout the heart. Utilization of these pathways could provide new strategies for the treatment of cardiac disease.

  2. An RNA decay factor wears a new coat: UPF3B modulates translation termination

    PubMed Central

    Gao, Zhaofeng; Wilkinson, Miles

    2017-01-01

    Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that has been subject to intense scrutiny. NMD identifies and degrades subsets of normal RNAs, as well as abnormal mRNAs containing premature termination codons. A core factor in this pathway—UPF3B—is an adaptor protein that serves as an NMD amplifier and an NMD branch-specific factor. UPF3B is encoded by an X-linked gene that when mutated causes intellectual disability and is associated with neurodevelopmental disorders, including schizophrenia and autism. Neu-Yilik et al. now report a new function for UPF3B: it modulates translation termination. Using a fully reconstituted in vitro translation system, they find that UPF3B has two roles in translation termination. First, UPF3B delays translation termination under conditions that mimic premature translation termination. This could drive more efficient RNA decay by allowing more time for the formation of RNA decay-stimulating complexes. Second, UPF3B promotes the dissociation of post-termination ribosomal complexes that lack nascent peptide. This implies that UPF3B could promote ribosome recycling. Importantly, the authors found that UPF3B directly interacts with both RNA and the factors that recognize stop codons—eukaryotic release factors (eRFs)—suggesting that UPF3B serves as a direct regulator of translation termination. In contrast, a NMD factor previously thought to have a central regulatory role in translation termination—the RNA helicase UPF1—was found to indirectly interact with eRFs and appears to act exclusively in post-translation termination events, such as RNA decay, at least in vitro. The finding that an RNA decay-promoting factor, UFP3B, modulates translation termination has many implications. For example, the ability of UPF3B to influence the development and function of the central nervous system may be not only through its ability to degrade specific RNAs but also through its impact on translation

  3. ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition

    PubMed Central

    Wang, Belinda; Krall, Elsa Beyer; Aguirre, Andrew James; Kim, Miju; Widlund, Hans Ragnar; Doshi, Mihir Bhavik; Sicinska, Ewa; Sulahian, Rita; Goodale, Amy; Cowley, Glenn Spencer; Piccioni, Federica; Doench, John Gerard; Root, David Edward; Hahn, William Chun

    2017-01-01

    SUMMARY Intrinsic resistance and RTK-RAS-MAPK pathway reactivation has limited the effectiveness of MEK and RAF inhibitors (MAPKi) in RAS- and RAF-mutant cancers. To identify genes that modulate sensitivity to MAPKi, we performed genome scale CRISPR-Cas9 loss-of-function screens in two KRAS-mutant pancreatic cancer cell lines treated with the MEK1/2 inhibitor trametinib. Loss of CIC, a transcriptional repressor of ETV1, 4, and 5, promoted survival in the setting of MAPKi in cancer cells derived from several lineages. ATXN1L deletion, which reduces CIC protein, or ectopic expression of ETV1, 4, or 5 also modulated sensitivity to trametinib. ATXN1L expression inversely correlates with response to MAPKi inhibition in clinical studies. These observations identify the ATXN1L-CIC-ETS transcription factor axis as a mediator of resistance to MAPKi. PMID:28178529

  4. Modulation of Food Reward by Endocrine and Environmental Factors: Update and Perspective.

    PubMed

    Figlewicz, Dianne P

    2015-01-01

    Palatable foods are frequently high in energy density. Chronic consumption of high-energy density foods can contribute to the development of cardiometabolic pathology including obesity, diabetes, and cardiovascular disease. This article reviews the contributions of extrinsic and intrinsic factors that influence the reward components of food intake. A narrative review was conducted to determine the behavioral and central nervous system (CNS) related processes involved in the reward components of high-energy density food intake. The rewarding aspects of food, particularly palatable and preferred foods, are regulated by CNS circuitry. Overlaying this regulation is modulation by intrinsic endocrine systems and metabolic hormones relating to energy homeostasis, developmental stage, or gender. It is now recognized that extrinsic or environmental factors, including ambient diet composition and the provocation of stress or anxiety, also contribute substantially to the expression of food reward behaviors such as motivation for, and seeking of, preferred foods. High-energy density food intake is influenced by both physiological and pathophysiological processes. Contextual, behavioral, and psychological factors and CNS-related processes represent potential targets for multiple types of therapeutic intervention.

  5. Implication of anti-inflammatory macrophages in regenerative moto-neuritogenesis: promotion of myoblast migration and neural chemorepellent semaphorin 3A expression in injured muscle.

    PubMed

    Sakaguchi, Shohei; Shono, Jun-ichi; Suzuki, Takahiro; Sawano, Shoko; Anderson, Judy E; Do, Mai-Khoi Q; Ohtsubo, Hideaki; Mizunoya, Wataru; Sato, Yusuke; Nakamura, Mako; Furuse, Mitsuhiro; Yamada, Koji; Ikeuchi, Yoshihide; Tatsumi, Ryuichi

    2014-09-01

    Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed a heretofore unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) triggered its expression exclusively at the early-differentiation phase. In order to verify this concept, the present study was designed to clarify a paracrine source of HGF release. In vitro experiments demonstrated that activated anti-inflammatory macrophages (CD206-positive M2) produce HGF and thereby promote myoblast chemoattraction and Sema3A expression. Media from pro-inflammatory macrophage cultures (M1) did not show any significant effect. M2 also enhanced the expression of myoblast-differentiation markers in culture, and infiltrated predominantly at the early-differentiation phase (3-5 days post-injury); M2 were confirmed to produce HGF as monitored by in vivo/ex vivo immunocytochemistry of CD11b/CD206/HGF-positive cells and by HGF in situ hybridization of cardiotoxin- or crush-injured tibialis anterior muscle, respectively. These studies advance our understanding of the stage-specific activation of Sema3A expression signaling. Findings, therefore, encourage the idea that M2 contribute to spatiotemporal up-regulation of extracellular Sema3A concentrations by producing HGF that, in turn, stimulates a burst of Sema3A secretion by myoblasts that are recruited to site of injury. This model may ensure a coordinated delay in re-attachment of motoneuron terminals onto damaged fibers early in muscle regeneration, and thus synchronize the recovery of muscle-fiber integrity and the early resolution of inflammation after injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Hepatocyte Growth Factor–c-MET Signaling Mediates the Development of Nonsensory Structures of the Mammalian Cochlea and Hearing

    PubMed Central

    Shibata, Shumei; Miwa, Toru; Wu, Hsiao-Huei; Levitt, Pat

    2016-01-01

    The stria vascularis is a nonsensory structure that is essential for auditory hair cell function by maintaining potassium concentration of the scala media. During mouse embryonic development, a subpopulation of neural crest cell-derived melanocytes migrates and incorporates into a subregion of the cochlear epithelium, forming the intermediate cell layer of the stria vascularis. The relation of this developmental process to stria vascularis function is currently unknown. In characterizing the molecular differentiation of developing peripheral auditory structures, we discovered that hepatocyte growth factor (Hgf) is expressed in the future stria vascularis of the cochlear epithelium. Its receptor tyrosine kinase, c-Met, is expressed in the cochlear epithelium and melanocyte-derived intermediate cells in the stria vascularis. Genetic dissection of HGF signaling via c-MET reveals that the incorporation of the melanocytes into the future stria vascularis of the cochlear duct requires c-MET signaling. In addition, inactivation of either the ligand or receptor developmentally resulted in a profound hearing loss at young adult stages. These results suggest a novel connection between HGF signaling and deafness via melanocyte deficiencies. SIGNIFICANCE STATEMENT We found the roles of hepatocyte growth factor (HGF) signaling in stria vascularis development for the first time and that lack of HGF signaling in the inner ear leads to profound hearing loss in the mouse. Our findings reveal a novel mechanism that may underlie human deafness DFNB39 and DFNB97. Our findings reveal an additional example of context-dependent c-MET signaling diversity, required here for proper cellular invasion developmentally that is essential for specific aspects of auditory-related organogenesis. PMID:27488639

  7. Factors modulating expression of Renilla luciferase from control plasmids used in luciferase reporter gene assays1

    PubMed Central

    Shifera, Amde Selassie; Hardin, John A.

    2009-01-01

    The Renilla luciferase gene is commonly used as an internal control in luciferase-based reporter gene assays to normalize the values of the experimental reporter gene for variations that could be caused by transfection efficiency and sample handling. Various plasmids encoding Renilla luciferase under different promoter constructs are commercially available. The validity of the use of Renilla luciferase as an internal control is based on the assumption that it is constitutively expressed in transfected cells and that its constitutive expression is not modulated by experimental factors that could result in either the upregulation or the downregulation of the amounts of the enzyme produced. During the past ten years, a number of reports have appeared that identified a variety of conditions that could alter the basal constitutive expression of Renilla luciferase. The use of Renilla luciferase in those circumstances would not be valid and an alternative way of normalization would be necessary. This review covers the factors that have been reported thus far as modulating the expression of Renilla luciferase from plasmid constructs. PMID:19788887

  8. The role of proteosome-mediated proteolysis in modulating potentially harmful transcription factor activity in Saccharomyces cerevisiae

    PubMed Central

    Bonzanni, Nicola; Zhang, Nianshu; Oliver, Stephen G.; Fisher, Jasmin

    2011-01-01

    Motivation: The appropriate modulation of the stress response to variable environmental conditions is necessary to maintain sustained viability in Saccharomyces cerevisiae. Particularly, controlling the abundance of proteins that may have detrimental effects on cell growth is crucial for rapid recovery from stress-induced quiescence. Results: Prompted by qualitative modeling of the nutrient starvation response in yeast, we investigated in vivo the effect of proteolysis after nutrient starvation showing that, for the Gis1 transcription factor at least, proteasome-mediated control is crucial for a rapid return to growth. Additional bioinformatics analyses show that potentially toxic transcriptional regulators have a significantly lower protein half-life, a higher fraction of unstructured regions and more potential PEST motifs than the non-detrimental ones. Furthermore, inhibiting proteasome activity tends to increase the expression of genes induced during the Environmental Stress Response more than those in the rest of the genome. Our combined results suggest that proteasome-mediated proteolysis of potentially toxic transcription factors tightly modulates the stress response in yeast. Contact: jasmin.fisher@microsoft.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21685082

  9. Autologous cell therapy for cisplatin-induced acute kidney injury by using non-expanded adipose tissue-derived cells.

    PubMed

    Yasuda, Kaoru; Ozaki, Takenori; Saka, Yousuke; Yamamoto, Tokunori; Gotoh, Momokazu; Ito, Yasuhiko; Yuzawa, Yukio; Matsuo, Seiichi; Maruyama, Shoichi

    2012-10-01

    Recent studies have demonstrated that cultured mesenchymal stromal cells derived from adipose tissue are useful for regenerative cell therapy. The stromal vascular fraction (SVF) can be obtained readily without culturing and may be clinically applicable. We investigated the therapeutic effects of SVF and used it in the treatment of acute kidney injury (AKI). Liposuction aspirates were obtained from healthy donors who had provided written informed consent. We harvested the SVF and determined the growth factor secretion and anti-apoptotic ability with conditioned medium. To investigate the effect of SVF on AKI, cisplatin was injected into rats and SVF was administrated into the subcupsula of the kidney. Both human and rat SVF cells secreted vascular endothelial growth factor-A (VEGF) and hepatocyte growth factor (HGF). Human SVF-conditioned media had an anti-apoptotic effect, which was inhibited by anti-HGF antibody (Ab) but not by anti-VEGF Ab. In vivo, SVF significantly ameliorated renal function, attenuated tubular damage and increased the cortical blood flow speed. In the SVF-treated group, VEGF levels in the cortex and HGF levels in both the cortex and medulla, especially tubules in the medulla, were significantly higher. Immunostaining revealed that SVF cells expressing VEGF and HGF and remained in the subcapsule on day 14. The present study demonstrates that a subcapsular injection of non-expanded SVF cells ameliorates rat AKI, and that the mechanism probably involves secretion of renoprotective molecules. Administration of human SVF may be clinically applicable and useful as a novel autologous cell therapy against kidney diseases.

  10. Factors modulating the delivery and effect of enzymatic cargo conjugated with antibodies targeted to the pulmonary endothelium

    PubMed Central

    Shuvaev, Vladimir V.; Christofidou-Solomidou, Melpo; Scherpereel, Arnaud; Simone, Eric; Arguiri, Evguenia; Tliba, Samira; Pick, Jeremy; Kennel, Stephen; Albelda, Steven M.; Muzykantov, Vladimir R.

    2007-01-01

    Vascular drug targeting may improve therapies, yet a thorough understanding of the factors that regulate effects of drugs directed to the endothelium is needed to translate this approach into the clinical domain. To define factors modulating the efficacy and effects of endothelial targeting, we used a model enzyme (glucose oxidase, GOX) coupled with monoclonal antibodies (anti-TM34 or anti-TM201) to distinct epitopes of thrombomodulin, a surface determinant enriched in the pulmonary endothelium. GOX delivery results in conversion of glucose and oxygen into H2O2 leading to lung damage, a clear physiologic endpoint. Results of in vivo studies in mice showed that the efficiency of cargo delivery and its effect are influenced by a number of factors including: 1) The level of pulmonary uptake of the targeting antibody (anti-TM201 was more efficient than anti-TM34); 2) The amount of an active drug delivered to the target; 3) The amount of target antigen on the endothelium (animals with suppressed TM levels showed less targeting); and, 4) The substrate availability for the enzyme cargo in the target tissue (hyperoxia augmented GOX-induced injury). Therefore, both activity of the conjugates and biological factors control targeting and effects of enzymatic cargo. Understanding the nature of such “modulating biological factors” will hopefully allow optimization and ultimately applications of drug targeting for “individualized” pharmacotherapy. PMID:17270308

  11. Splicing Factor 1 Modulates Dietary Restriction and TORC1 Pathway Longevity in C. elegans

    PubMed Central

    Heintz, Caroline; Escoubas, Caroline; Zhang, Yue; Weir, Heather J.; Dutta, Sneha; Silva-García, Carlos Giovanni; Bruun, Gitte Hoffmann; Morantte, Ianessa; Hoxhaj, Gerta; Manning, Brendan D.; Andresen, Brage S.; Mair, William B.

    2016-01-01

    Ageing is driven by a loss of transcriptional and protein homeostasis1–3 and is the key risk factor for multiple chronic diseases. Interventions that attenuate or reverse systemic dysfunction seen with age therefore have potential to reduce overall disease risk in the elderly. Pre-mRNA splicing is a fundamental link between gene expression and the proteome, and deregulation of the splicing machinery is linked to multiple age-related chronic diseases4,5. However, the role of splicing homeostasis in healthy ageing remains unclear. Here we demonstrate that pre-mRNA splicing homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or on dietary restriction (DR), we find defects in global pre-mRNA splicing with age that are reduced by DR via the branch point binding protein (BBP)/splicing factor 1 (SFA-1). We show that SFA-1 is specifically required for lifespan extension both by DR, and modulation of TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 Kinase. Lastly, we demonstrate that overexpression of SFA-1 is sufficient to extend lifespan. Together, these data demonstrate a role for RNA splicing homeostasis in DR longevity and suggest modulation of specific spliceosome components can prolong healthy ageing. PMID:27919065

  12. Hypothesis: Leukocyte Endogenous Mediator/Endogenous Pyrogen/Lymphocyte-Activating Factor Modulates the Development of Nonspecific and Specific Immunity and Affects Nutritional Status

    DTIC Science & Technology

    1982-04-01

    Hypothesis: leukocyte endogenous mediator/ endogenous pyrogen /lymphocyte-activating factor modulates the development of nonspecific and specific... endogenous pyrogen /lympho- NI cyte-activating factor (LEM/EP/LAF) integrates the host’s nonspecific and specific immune responses to infection by...mediator/ endogenous pyrogen /lymphocyte-activating factor, nonspecific and specific immunity, infection, metabolism, nutrition. Introduction LAF which lead

  13. MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms.

    PubMed

    Joosten, Sander P J; Zeilstra, Jurrit; van Andel, Harmen; Mijnals, R Clinton; Zaunbrecher, Joost; Duivenvoorden, Annet A M; van de Wetering, Marc; Clevers, Hans; Spaargaren, Marcel; Pals, Steven T

    2017-10-01

    Resistance of metastatic human colorectal cancer cells to drugs that block epidermal growth factor (EGF) receptor signaling could be caused by aberrant activity of other receptor tyrosine kinases, activating overlapping signaling pathways. One of these receptor tyrosine kinases could be MET, the receptor for hepatocyte growth factor (HGF). We investigated how MET signaling, and its interaction with CD44 (a putative MET coreceptor regulated by Wnt signaling and highly expressed by intestinal stem cells [ISCs] and adenomas) affects intestinal homeostasis, regeneration, and adenoma formation in mini-gut organoids and mice. We established organoid cultures from ISCs stimulated with HGF or EGF and assessed intestinal differentiation by immunohistochemistry. Mice with total epithelial disruption of MET (Ah Cre /Met fl/fl /LacZ) or ISC-specific disruption of MET (Lgr5 Creert2 /Met fl/fl /LacZ) and control mice (Ah Cre /Met +/+ /LacZ, Lgr5 Creert2 /Met +/+ /LacZ) were exposed to 10 Gy total body irradiation; intestinal tissues were collected, and homeostasis and regeneration were assessed by immunohistochemistry. We investigated adenoma organoid expansion stimulated by HGF or EGF using adenomas derived from Lgr5 Creert2 /Met fl/fl /Apc fl/fl and Lgr5 Creert2 /Met +/+ /Apc fl/fl mice. The same mice were evaluated for adenoma prevalence and size. We also quantified adenomas in Ah Cre /Met fl/fl /Apc fl/+ mice compared with Ah Cre /Met +/+ /Apc fl/+ control mice. We studied expansion of organoids generated from crypts and adenomas, stimulated by HGF or EGF, that were derived from mice expressing different CD44 splice variants (Cd44 +/+ , Cd44 -/- , Cd44 s/s , or Cd44 v4-10/v4-10 mice). Crypts incubated with EGF or HGF expanded into self-organizing mini-guts with similar levels of efficacy and contained all differentiated cell lineages. MET-deficient mice did not have defects in intestinal homeostasis. Total body irradiation reduced numbers of proliferating crypts in Ah Cre

  14. ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition.

    PubMed

    Wang, Belinda; Krall, Elsa Beyer; Aguirre, Andrew James; Kim, Miju; Widlund, Hans Ragnar; Doshi, Mihir Bhavik; Sicinska, Ewa; Sulahian, Rita; Goodale, Amy; Cowley, Glenn Spencer; Piccioni, Federica; Doench, John Gerard; Root, David Edward; Hahn, William Chun

    2017-02-07

    Intrinsic resistance and RTK-RAS-MAPK pathway reactivation has limited the effectiveness of MEK and RAF inhibitors (MAPKi) in RAS- and RAF-mutant cancers. To identify genes that modulate sensitivity to MAPKi, we performed genome-scale CRISPR-Cas9 loss-of-function screens in two KRAS mutant pancreatic cancer cell lines treated with the MEK1/2 inhibitor trametinib. Loss of CIC, a transcriptional repressor of ETV1, ETV4, and ETV5, promoted survival in the setting of MAPKi in cancer cells derived from several lineages. ATXN1L deletion, which reduces CIC protein, or ectopic expression of ETV1, ETV4, or ETV5 also modulated sensitivity to trametinib. ATXN1L expression inversely correlates with response to MAPKi inhibition in clinical studies. These observations identify the ATXN1L-CIC-ETS transcription factor axis as a mediator of resistance to MAPKi. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Pigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila

    PubMed Central

    Krupp, Joshua J.; Billeter, Jean-Christophe; Wong, Amy; Choi, Charles; Nitabach, Michael N.; Levine, Joel D.

    2014-01-01

    Summary Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the central nervous system (CNS) to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes which govern social interactions. PMID:23849197

  16. EFG solar modules

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Six photovoltaic modules using solar cells fabricated from silicon ribbons were assembled and delivered to JPL. Each module was comprised of four separate submodules which were parallel connected. The submodules contained 45 EFG cells which were series interconnected by a shingle or overlapping design. The inherent rectangular shape of the cells allowed a high packing factor to be achieved. The average efficiency of the six modules, corrected to AM1 at 28 C was 8.7%, which indicates that the average encapsulated cell efficiency was 10.0%.

  17. Protein kinase-A-dependent osteoprotegerin production on interleukin-1 stimulation in human gingival fibroblasts is distinct from periodontal ligament fibroblasts

    PubMed Central

    Hormdee, D; Nagasawa, T; Kiji, M; Yashiro, R; Kobayashi, H; Koshy, G; Noguchi, K; Nitta, H; Ishikawa, I

    2005-01-01

    Periodontitis, a chronic inflammatory disease, is characterized by increased expression of interleukin (IL)-1 and other inflammatory mediators resulting in extensive osteoclast formation and bone loss. Expression of receptor activator of nuclear factor kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG), by osteoblasts is important to regulate osteoclast differentiation. The aim of the present study was to investigate the regulatory effects of IL-1 on RANKL and OPG production by mesenchymal fibroblasts in periodontal tissue. Human gingival fibroblasts (HGF) and periodontal ligament fibroblasts (PDL) were stimulated with IL-1α with or without protein synthesis inhibitor cycloheximide (CHX), protein kinase A (PKA) inhibitors, protein kinase C (PKC) inhibitors and prostaglandin E2 (PGE2) inhibitor. In some experiments, the cultured cells were directly stimulated with either PKA or PKC activators. In HGF, IL-1α-stimulated OPG mRNA expression was high and could be reduced by CHX. PKA inhibitor completely abrogated IL-1α-induced OPG mRNA expression and OPG production. Endogenous PGE2 further enhanced IL-1α-induced OPG production in HGF. In PDL, RANKL mRNA expression was greatly augmented by IL-1α. IL-1α induced OPG mRNA expression and protein production. PKC inhibitor partially reduced IL-1α-induced OPG production and PKC activator enhanced OPG production in PDL. The IL-1α-stimulated OPG mRNA expression in HGF was greater than PDL. These results provide new evidence for the possible osteoclastogenesis-inhibitory function of HGF through PKA activity pathway. PDL utilized PKC for OPG production. Thus, we emphasize that HGF and PDL have different characteristics of host defence mechanism against inflammatory process. PMID:16297161

  18. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis.

    PubMed

    Cao, Zhongwei; Ye, Tinghong; Sun, Yue; Ji, Gaili; Shido, Koji; Chen, Yutian; Luo, Lin; Na, Feifei; Li, Xiaoyan; Huang, Zhen; Ko, Jane L; Mittal, Vivek; Qiao, Lina; Chen, Chong; Martinez, Fernando J; Rafii, Shahin; Ding, Bi-Sen

    2017-08-30

    The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. We show that targeting both the vascular niche and perivascular fibroblasts establishes "hospitable soil" to foster the incorporation of "seed," in this case, the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NOX4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 4] synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs ( Hgf iΔEC/iΔEC ) aberrantly up-regulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in Hgf iΔEC/iΔEC mice recapitulated the phenotype of human and mouse liver and lung fibrosis. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans.

    PubMed

    van der Voort, R; Keehnen, R M; Beuling, E A; Spaargaren, M; Pals, S T

    2000-10-16

    Recently, biochemical, cell biological, and genetic studies have converged to reveal that integral membrane heparan sulfate proteoglycans (HSPGs) are critical regulators of growth and differentiation of epithelial and connective tissues. As a large number of cytokines involved in lymphoid tissue homeostasis or inflammation contain potential HS-binding domains, HSPGs presumably also play important roles in the regulation of the immune response. In this report, we explored the expression, regulation, and function of HSPGs on B lymphocytes. We demonstrate that activation of the B cell antigen receptor (BCR) and/or CD40 induces a strong transient expression of HSPGs on human tonsillar B cells. By means of these HSPGs, the activated B cells can bind hepatocyte growth factor (HGF), a cytokine that regulates integrin-mediated B cell adhesion and migration. This interaction with HGF is highly selective since the HSPGs did not bind the chemokine stromal cell-derived factor (SDF)-1 alpha, even though the affinities of HGF and SDF-1alpha for heparin are similar. On the activated B cells, we observed induction of a specific HSPG isoform of CD44 (CD44-HS), but not of other HSPGs such as syndecans or glypican-1. Interestingly, the expression of CD44-HS on B cells strongly promotes HGF-induced signaling, resulting in an HS-dependent enhanced phosphorylation of Met, the receptor tyrosine kinase for HGF, as well as downstream signaling molecules including Grb2-associated binder 1 (Gab1) and Akt/protein kinase B (PKB). Our results demonstrate that the BCR and CD40 control the expression of HSPGs, specifically CD44-HS. These HSPGs act as functional coreceptors that selectively promote cytokine signaling in B cells, suggesting a dynamic role for HSPGs in antigen-specific B cell differentiation.

  20. Dynamic Modulation of Expression of Lentiviral Restriction Factors in Primary CD4+ T Cells following Simian Immunodeficiency Virus Infection.

    PubMed

    Rahmberg, Andrew R; Rajakumar, Premeela A; Billingsley, James M; Johnson, R Paul

    2017-04-01

    Although multiple restriction factors have been shown to inhibit HIV/SIV replication, little is known about their expression in vivo Expression of 45 confirmed and putative HIV/SIV restriction factors was analyzed in CD4 + T cells from peripheral blood and the jejunum in rhesus macaques, revealing distinct expression patterns in naive and memory subsets. In both peripheral blood and the jejunum, memory CD4 + T cells expressed higher levels of multiple restriction factors compared to naive cells. However, relative to their expression in peripheral blood CD4 + T cells, jejunal CCR5 + CD4 + T cells exhibited significantly lower expression of multiple restriction factors, including APOBEC3G , MX2 , and TRIM25 , which may contribute to the exquisite susceptibility of these cells to SIV infection. In vitro stimulation with anti-CD3/CD28 antibodies or type I interferon resulted in upregulation of distinct subsets of multiple restriction factors. After infection of rhesus macaques with SIVmac239, the expression of most confirmed and putative restriction factors substantially increased in all CD4 + T cell memory subsets at the peak of acute infection. Jejunal CCR5 + CD4 + T cells exhibited the highest levels of SIV RNA, corresponding to the lower restriction factor expression in this subset relative to peripheral blood prior to infection. These results illustrate the dynamic modulation of confirmed and putative restriction factor expression by memory differentiation, stimulation, tissue microenvironment and SIV infection and suggest that differential expression of restriction factors may play a key role in modulating the susceptibility of different populations of CD4 + T cells to lentiviral infection. IMPORTANCE Restriction factors are genes that have evolved to provide intrinsic defense against viruses. HIV and simian immunodeficiency virus (SIV) target CD4 + T cells. The baseline level of expression in vivo and degree to which expression of restriction factors is

  1. Bilirubin modulated cytokines, growth factors and angiogenesis to improve cutaneous wound healing process in diabetic rats.

    PubMed

    Ram, Mahendra; Singh, Vishakha; Kumawat, Sanjay; Kant, Vinay; Tandan, Surendra Kumar; Kumar, Dinesh

    2016-01-01

    Bilirubin has shown cutaneous wound healing potential in some preliminary studies. Here we hypothesize that bilirubin facilitates wound healing in diabetic rats by modulating important healing factors/candidates and antioxidant parameters in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin. In all diabetic rats wounds were created under pentobarbitone anesthesia. All the rats were divided into two groups, of which one (control) was treated with ointment base and other with bilirubin ointment (0.3%). Wound closer measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 alpha (SDF-1α), transforming growth factor- beta1 (TGF-β1()), tumor necrosis factor-α (TNF-α) and interlukin-10 (IL-10) mRNA and proteins and the mRNA of interlukin-1 beta (IL-1β) and matrix metalloprteinase-9 (MMP-9) were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histopathological changes were assessed by H&E staining. The per cent wound closer was significantly higher from day 7 onwards in bilirubin-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and protein levels were significantly higher on days 3, 7 and 14 in bilirubin-treated rats. The mRNA expression and protein level of TNF-α and the mRNA of IL-1β and MMP-9 were progressively and markedly reduced in bilirubin-treated rats. The collagen deposition and formation of blood vessels were greater in bilirubin-treated rats. Bilirubin markedly facilitated cutaneous wound healing in diabetic rats by modulating growth factors, cytokines, neovasculogenesis and collagen contents to the wound site. Topical application of bilirubin ointment might be of great use in cutaneous wound healing in diabetic patients. Copyright © 2015

  2. Crystal Structure of a Fibroblast Growth Factor Homologous Factor (FHF) Defines a Conserved Surface on FHFs for Binding and Modulation of Voltage-gated Sodium Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetz, R.; Dover, K; Laezza, F

    2009-01-01

    Voltage-gated sodium channels (Nav) produce sodium currents that underlie the initiation and propagation of action potentials in nerve and muscle cells. Fibroblast growth factor homologous factors (FHFs) bind to the intracellular C-terminal region of the Nav alpha subunit to modulate fast inactivation of the channel. In this study we solved the crystal structure of a 149-residue-long fragment of human FHF2A which unveils the structural features of the homology core domain of all 10 human FHF isoforms. Through analysis of crystal packing contacts and site-directed mutagenesis experiments we identified a conserved surface on the FHF core domain that mediates channel bindingmore » in vitro and in vivo. Mutations at this channel binding surface impaired the ability of FHFs to co-localize with Navs at the axon initial segment of hippocampal neurons. The mutations also disabled FHF modulation of voltage-dependent fast inactivation of sodium channels in neuronal cells. Based on our data, we propose that FHFs constitute auxiliary subunits for Navs.« less

  3. Modulation of Caenorhabditis elegans transcription factor activity by HIM-8 and the related Zinc-Finger ZIM proteins.

    PubMed

    Sun, Hongliu; Nelms, Brian L; Sleiman, Sama F; Chamberlin, Helen M; Hanna-Rose, Wendy

    2007-10-01

    The previously reported negative regulatory activity of HIM-8 on the Sox protein EGL-13 is shared by the HIM-8-related ZIM proteins. Furthermore, mutation of HIM-8 can modulate the effects of substitution mutations in the DNA-binding domains of at least four other transcription factors, suggesting broad regulatory activity by HIM-8.

  4. Enhancement of curcumin wound healing ability by complexation with 2-hydroxypropyl-γ-cyclodextrin in sacran hydrogel film.

    PubMed

    Wathoni, Nasrul; Motoyama, Keiichi; Higashi, Taishi; Okajima, Maiko; Kaneko, Tatsuo; Arima, Hidetoshi

    2017-05-01

    Curcumin is one of promising agents to accelerate the wound-healing process. However, the efficacy of curcumin is limited due to its poor water solubility and stability. To enhance the properties of curcumin, 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CyD) can be used through complexation. Recently, we revealed that sacran has the potential to form a hydrogel film (HGF) as a wound dressing material. Therefore, in the present study, we investigated the wound healing ability of curcumin/HP-γ-CyD (Cur/HP-γ-CyD) complex in sacran-based HGF (Sac-HGF). We prepared the Cur/HP-γ-CyD complex in Sac-HGF without surface roughness. Additionally, the amorphous form in the Cur/HP-γ-CyD complex in Sac-HGF were observed. In contrast, the curcumin in Sac-HGF and curcumin/HP-γ-CyD physical mixture in Sac-HGF formed inhomogeneous films due to crystallization of curcumin. Furthermore, HP-γ-CyD played an important role to increase the elastic modulus of the Sac-HGF with high re-swelling ability. The Cur/HP-γ-CyD complex in Sac-HGF maintained antioxidant properties of curcumin. Curcumin was gradually released from the HP-γ-CyD complex in Sac-HGF. Notably, the Cur/HP-γ-CyD complex in Sac-HGF provided the highest wound healing ability in hairless mice. These results suggest that the Cur/HP-γ-CyD complex in Sac-HGF has the potential for use as a new transdermal therapeutic system to promote the wound-healing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The endogenous zinc finger transcription factor, ZNF24, modulates the angiogenic potential of human microvascular endothelial cells

    PubMed Central

    Jia, Di; Huang, Lan; Bischoff, Joyce; Moses, Marsha A.

    2015-01-01

    We have previously identified a zinc finger transcription factor, ZNF24 (zinc finger protein 24), as a novel inhibitor of tumor angiogenesis and have demonstrated that ZNF24 exerts this effect by repressing the transcription of VEGF in breast cancer cells. Here we focused on the role of ZNF24 in modulating the angiogenic potential of the endothelial compartment. Knockdown of ZNF24 by siRNA in human primary microvascular endothelial cells (ECs) led to significantly decreased cell migration and invasion compared with control siRNA. ZNF24 knockdown consistently led to significantly impaired VEGF receptor 2 (VEGFR2) signaling and decreased levels of matrix metalloproteinase-2 (MMP-2), with no effect on levels of major regulators of MMP-2 activity such as the tissue inhibitors of metalloproteinases and MMP-14. Moreover, silencing ZNF24 in these cells led to significantly decreased EC proliferation. Quantitative PCR array analyses identified multiple cell cycle regulators as potential ZNF24 downstream targets which may be responsible for the decreased proliferation in ECs. In vivo, knockdown of ZNF24 specifically in microvascular ECs led to significantly decreased formation of functional vascular networks. Taken together, these results demonstrate that ZNF24 plays an essential role in modulating the angiogenic potential of microvascular ECs by regulating the proliferation, migration, and invasion of these cells.— Jia, D., Huang, L., Bischoff, J., Moses, M. A. The endogenous zinc finger transcription factor, ZNF24, modulates the angiogenic potential of human microvascular endothelial cells. PMID:25550468

  6. Distinct c-Met activation mechanisms induce cell rounding or invasion through pathways involving integrins, RhoA and HIP1.

    PubMed

    Mai, Anja; Muharram, Ghaffar; Barrow-McGee, Rachel; Baghirov, Habib; Rantala, Juha; Kermorgant, Stéphanie; Ivaska, Johanna

    2014-05-01

    Many carcinomas have acquired oncogenic mechanisms for activating c-Met, including c-Met overexpression and excessive autocrine or paracrine stimulation with hepatocyte growth factor (HGF). However, the biological outcome of c-Met activation through these distinct modes remains ambiguous. Here, we report that HGF-mediated c-Met stimulation triggers a mesenchymal-type collective cell invasion. By contrast, the overexpression of c-Met promotes cell rounding. Moreover, in a high-throughput siRNA screen that was performed using a library of siRNAs against putative regulators of integrin activity, we identified RhoA and the clathrin-adapter protein HIP1 as crucial c-Met effectors in these morphological changes. Transient RhoA activation was necessary for the HGF-induced invasion, whereas sustained RhoA activity regulated c-Met-induced cell rounding. In addition, c-Met-induced cell rounding correlated with the phosphorylation of filamin A and the downregulation of active cell-surface integrins. By contrast, a HIP1-mediated increase in β1-integrin turnover was required for the invasion triggered by HGF. Taken together, our results indicate that c-Met induces distinct cell morphology alterations depending on the stimulus that activates c-Met.

  7. Summer Research Paper

    NASA Technical Reports Server (NTRS)

    Patel, Zarana

    2011-01-01

    Certain populations such as chemotherapy patients and atomic bomb survivors have been exposed to ionizing radiation and experience tissue damage and cancer initiation and progression. One cancer that can be initiated from radiation is esophageal squamous cell carcinoma (ESCC), an epithelial cancer that has a survival rate as low as 20%. Researchers have found that when protein tyrosine kinase receptors (RPTK) activate oncogenes, they can create epithelial tumors and cause deadly cancers like ESCC. The RPTK family has one group, MET, that has only two receptors, MET and RON, present in the human body. MET s ligand is the hepatocyte growth factor (HGF) and RON's ligand is the macrophage-stimulating protein (MSP-1). Both HGF and MSP-1 have been shown to activate their receptors and are implicated in certain processes. Since radiation damages cells throughout the biological system, researchers are investigating whether or not HGF and MSP-1 protects or kills certain normal and cancerous cells by being part of cell recovery processes. One research group recently reviewed that the HGF-MET pathway has an important role in the embryonic development in the liver, migration of myogenic precursor cells, regulation of epithelial morphogenesis and growth, and regeneration and protection in tissues. In addition, since the RON receptor is more commonly expressed in cells of epithelial origin, and when activated is part of epithelial cell matrix invasion, dissociation, and migration processes, scientists conclude that RON might be one of the factors causing epithelial cancer initiation in the biological system. In order to examine HGF and MSP-1 s effect on cancer initiation and progression we used two immortalized esophageal epithelial cell lines. One is a normal human cell line (EPC2-hTERT), while the other had a p53 mutation at the 175th amino acid position (EPC2-hTERT-p53(sup R175H)). For this investigation, we used 0(control), 2, and 4 Gray doses of gamma (Cs137) radiation and

  8. Cytokines, hepatic cell profiling and cell interactions during bone marrow cell therapy for liver fibrosis in cholestatic mice

    PubMed Central

    Pinheiro, Daphne; Leirós, Luana; Dáu, Juliana Barbosa Torreão; Stumbo, Ana Carolina; Thole, Alessandra Alves; Cortez, Erika Afonso Costa; Mandarim-de-Lacerda, Carlos Alberto; de Carvalho, Lais

    2017-01-01

    Bone marrow cells (BMC) migrate to the injured liver after transplantation, contributing to regeneration through multiple pathways, but mechanisms involved are unclear. This work aimed to study BMC migration, characterize cytokine profile, cell populations and proliferation in mice with liver fibrosis transplanted with GFP+ BMC. Confocal microscopy analysis showed GFP+ BMC near regions expressing HGF and SDF-1 in the fibrotic liver. Impaired liver cell proliferation in fibrotic groups was restored after BMC transplantation. Regarding total cell populations, there was a significant reduction in CD68+ cells and increased Ly6G+ cells in transplanted fibrotic group. BMC contributed to the total populations of CD144, CD11b and Ly6G cells in the fibrotic liver, related to an increment of anti-fibrotic cytokines (IL-10, IL-13, IFN-γ and HGF) and reduction of pro-inflammatory cytokines (IL-17A and IL-6). Therefore, HGF and SDF-1 may represent important chemoattractants for transplanted BMC in the injured liver, where these cells can give rise to populations of extrahepatic macrophages, neutrophils and endothelial progenitor cells that can interact synergistically with other liver cells towards the modulation of an anti-fibrotic cytokine profile promoting the onset of liver regeneration. PMID:29176797

  9. Epithelial Keratins Modulate cMet Expression and Signaling and Promote InlB-Mediated Listeria monocytogenes Infection of HeLa Cells.

    PubMed

    Cruz, Rui; Pereira-Castro, Isabel; Almeida, Maria T; Moreira, Alexandra; Cabanes, Didier; Sousa, Sandra

    2018-01-01

    The host cytoskeleton is a major target for bacterial pathogens during infection. In particular, pathogens usurp the actin cytoskeleton function to strongly adhere to the host cell surface, to induce plasma membrane remodeling allowing invasion and to spread from cell to cell and disseminate to the whole organism. Keratins are cytoskeletal proteins that are the major components of intermediate filaments in epithelial cells however, their role in bacterial infection has been disregarded. Here we investigate the role of the major epithelial keratins, keratins 8 and 18 (K8 and K18), in the cellular infection by Listeria monocytogenes . We found that K8 and K18 are required for successful InlB/cMet-dependent L. monocytogenes infection, but are dispensable for InlA/E-cadherin-mediated invasion. Both K8 and K18 accumulate at InlB-mediated internalization sites following actin recruitment and modulate actin dynamics at those sites. We also reveal the key role of K8 and K18 in HGF-induced signaling which occurs downstream the activation of cMet. Strikingly, we show here that K18, and at a less extent K8, controls the expression of cMet and other surface receptors such TfR and integrin β1, by promoting the stability of their corresponding transcripts. Together, our results reveal novel functions for major epithelial keratins in the modulation of actin dynamics at the bacterial entry sites and in the control of surface receptors mRNA stability and expression.

  10. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    PubMed

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. The obesity-associated transcription factor ETV5 modulates circulating glucocorticoids

    PubMed Central

    Gutierrez-Aguilar, Ruth; Thompson, Abigail; Marchand, Nathalie; Dumont, Patrick; Woods, Stephen C.; de Launoit, Yvan; Seeley, Randy J.; Ulrich-Lai, Yvonne M.

    2015-01-01

    The transcription factor E-twenty-six version 5 (ETV5) has been linked with obesity in genome-wide association studies. Moreover, ETV5-deficient mice (knockout; KO) have reduced body weight, lower fat mass, and are resistant to diet-induced obesity, directly linking ETV5 to the regulation of energy balance and metabolism. ETV5 is expressed in hypothalamic brain regions that regulate both metabolism and HPA axis activity, suggesting that ETV5 may also modulate HPA axis function. In order to test this possibility, plasma corticosterone levels were measured in ETV5 KO and wildtype (WT) mice before (pre-stress) and after (post-stress) a mild stressor (intraperitoneal injection). ETV5 deficiency increased both pre- and post-stress plasma corticosterone, suggesting that loss of ETV5 elevated glucocorticoid tone. Consistent with this idea, ETV5 KO mice have reduced thymus weight, suggestive of increased glucocorticoid-induced thymic involution. ETV5 deficiency also decreased the mRNA expression of glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and vasopressin receptor 1A in the hypothalamus, without altering vasopressin, corticotropin-releasing hormone, or oxytocin mRNA expression. In order to test whether reduced MR and GR expression affected glucocorticoid negative feedback, a dexamethasone suppression test was performed. Dexamethasone reduced plasma corticosterone in both ETV5 KO and WT mice, suggesting that glucocorticoid negative feedback was unaltered by ETV5 deficiency. In summary, these data suggest that the obesity-associated transcription factor ETV5 normally acts to diminish circulating glucocorticoids. This might occur directly via ETV5 actions on HPA-regulatory brain circuitry, and/or indirectly via ETV5-induced alterations in metabolic factors that then influence the HPA axis. PMID:25813907

  12. SU-E-T-97: Dependence Of Optically Stimulated Luminescent Dosimeter (OSLD) Out Of Field Response On Volumetric Modulated Arc Therapy (VMAT) Field Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ware, S; Clouser, E

    2014-06-01

    Purpose: To determine the out of field response of Microstar ii OSLDs as a function of field modulation and distance in VMAT plan delivery. This work has potential application in fetal dose monitoring or measurements on cardiac pacemakers Methods: VMAT plans were created in Eclipse and optimized to varying degrees of modulation. Three plans were chosen to represent low, medium and high degrees of modulation (modulation factors as defined by MU/cGy). Plans were delivered to slabs of solid water with dimensions 60cm length, 30cm width, and 10cm height. For each modulation factor, 2 OSLDs were placed at 1cm depth withmore » out of field distances of 1, 2, 3, 5, 8 and 10cm and the plan delivered isocentrically to a depth of 5cm. This technique was repeated for a Farmer Chamber by incrementing the table by the appropriate distance. The charge readings for the Farmer Chamber were converted to dose and the ratios taken as functions of modulation factors and distances out of field Results: Examination of the results as a function of out of field distance shows a trend of increasing OSLD/Farmer Chamber ratios for all modulation factors. The slopes appear to be roughly equivalent for all modulation factors investigated. Results as a function of modulation showed a downward trend for all out of field distances, with the greatest differences seen at 5cm and 8cm Conclusion: This study demonstrates that the response of OSLD dosimeters change as a function of out of field distance and modulation. The differences seen are within the stated accuracy of the system for the out of field distances and modulations investigated. Additional investigation is warranted to see if the OSLD response changes appreciably with longer out of field distances or wider ranges of modulation.« less

  13. Membrane transport of WAVE2 and lamellipodia formation require Pak1 that mediates phosphorylation and recruitment of stathmin/Op18 to Pak1-WAVE2-kinesin complex.

    PubMed

    Takahashi, Kazuhide; Suzuki, Katsuo

    2009-05-01

    Membrane transport of WAVE2 that leads to lamellipodia formation requires a small GTPase Rac1, the motor protein kinesin, and microtubules. Here we explore the possibility of whether the Rac1-dependent and kinesin-mediated WAVE2 transport along microtubules is regulated by a p21-activated kinase Pak as a downstream effector of Rac1. We find that Pak1 constitutively binds to WAVE2 and is transported with WAVE2 to the leading edge by stimulation with hepatocyte growth factor (HGF). Concomitantly, phosphorylation of tubulin-bound stathmin/Op18 at serine 25 (Ser25) and Ser38, microtubule growth, and stathmin/Op18 binding to kinesin-WAVE2 complex were induced. The HGF-induced WAVE2 transport, lamellipodia formation, stathmin/Op18 phosphorylation at Ser38 and binding to kinesin-WAVE2 complex, but not stathmin/Op18 phosphorylation at Ser25 and microtubule growth, were abrogated by Pak1 inhibitor IPA-3 and Pak1 depletion with small interfering RNA (siRNA). Moreover, stathmin/Op18 depletion with siRNA caused significant inhibition of HGF-induced WAVE2 transport and lamellipodia formation, with HGF-independent promotion of microtubule growth. Collectively, it is suggested that Pak1 plays a critical role in HGF-induced WAVE2 transport and lamellipodia formation by directing Pak1-WAVE2-kinesin complex toward the ends of growing microtubules through phosphorylation and recruitment of tubulin-bound stathmin/Op18 to the complex.

  14. Interferon-γ differentially modulates the impact of tumor necrosis factor-α on human endometrial stromal cells.

    PubMed

    Spratte, Julia; Oemus, Anne; Zygmunt, Marek; Fluhr, Herbert

    2015-09-01

    The pro-inflammatory T helper (Th)-1 cytokines, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), are immunological factors relevant at the feto-maternal interface and involved in the pathophysiology of implantation disorders. The synergistic action of the two cytokines has been described with regard to apoptotic cell death and inflammatory responses in different cell types, but little is known regarding the human endometrium. Therefore, we examined the interaction of TNF-α and IFN-γ in human endometrial stromal cells (ESCs). ESCs were isolated from specimens obtained during hysterectomy and decidualized in vitro. Cells were incubated with TNF-α, IFN-γ or signaling-inhibitor. Insulin-like growth factor binding protein (IGFBP)-1, prolactin (PRL), leukemia inhibitory factor (LIF), interleukin (IL)-6, IL-8, regulated on activation normal T-cell expressed and secreted protein (RANTES) and monocyte chemotactic protein (MCP)-1 were measured using ELISA and real-time RT-PCR. Nuclear factor of transcription (NF)-κB and its inhibitor (IκBα) were analyzed by in-cell western assay and transcription factor assay. TNF-α inhibited and IFN-γ did not affect the decidualization of ESCs. In contrast, IFN-gamma differentially modulated the stimulating effect of TNF-alpha on cytokines by enhancing IL-6, RANTES and MCP-1 and attenuating LIF mRNA expression. These effects were time- and dose-dependent. IFN-γ had no impact on the initial activation of NF-κB signaling. Histone-deacetylase activity was involved in the modulating effect of IFN-γ on RANTES secretion. These observations showed a distinct pattern of interaction of the Th-1 cytokines, TNF-α and IFN-γ in the human endometrium, which could play an important role in the pathophysiology of implantation disorders. Copyright © 2015 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z

  15. Physiological factors that regulate skin pigmentation

    PubMed Central

    Yamaguchi, Yuji; Hearing, Vincent J.

    2009-01-01

    More than 150 genes have been identified that affect skin color either directly or indirectly, and we review current understanding of physiological factors that regulate skin pigmentation. We focus on melanosome biogenesis, transport and transfer, melanogenic regulators in melanocytes and factors derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells and nerves. Enzymatic components of melanosomes include tyrosinase, tyrosinase-related protein 1 and dopachrome tautomerase, which depend on the functions of OA1, P, MATP, ATP7A and BLOC-1 to synthesize eumelanins and pheomelanins. The main structural component of melanosomes is Pmel17/gp100/Silv, whose sorting involves adaptor protein 1A (AP1A), AP1B, AP2 and spectrin, as well as a chaperone-like component, MART-1. During their maturation, melanosomes move from the perinuclear area toward the plasma membrane. Microtubules, dynein, kinesin, actin filaments, Rab27a, melanophilin, myosin Va and Slp2-a are involved in melanosome transport. Foxn1 and p53 up-regulate skin pigmentation via bFGF and POMC derivatives including α-MSH and ACTH, respectively. Other critical factors that affect skin pigmentation include MC1R, CREB, ASP, MITF, PAX3, SOX9/10, LEF-1/TCF, PAR-2, DKK1, SCF, HGF, GM-CSF, endothelin-1, prostaglandins, leukotrienes, thromboxanes, neurotrophins and neuropeptides. UV radiation up-regulates most factors that increase melanogenesis. Further studies will elucidate the currently unknown functions of many other pigment genes/proteins. PMID:19449448

  16. Enhancement of Gastric Ulcer Healing and Angiogenesis by Hepatocyte Growth Factor Gene Mediated by Attenuated Salmonella in Rats.

    PubMed

    Ha, Xiaoqin; Peng, Junhua; Zhao, Hongbin; Deng, Zhiyun; Dong, Juzi; Fan, Hongyan; Zhao, Yong; Li, Bing; Feng, Qiangsheng; Yang, Zhihua

    2017-02-01

    The present study developed an oral hepatocyte growth factor (HGF) gene therapy strategy for gastric ulcers treatment. An attenuated Salmonella typhimurium that stably expressed high HGF (named as TPH) was constructed, and the antiulcerogenic effect of TPH was evaluated in a rat model of gastric ulcers that created by acetic acid subserosal injection. From day 5 after injection, TPH (1 × 10⁹ cfu), vehicle (TP, 1 × 10⁹ cfu), or sodium bicarbonate (model control) was administered orally every alternate day for three times. Then ulcer size was measured at day 21 after ulcer induction. The ulcer area in TPH-treated group was 10.56 ± 3.30 mm², which was smaller when compared with those in the TP-treated and model control groups (43.47 ± 4.18 and 56.25 ± 6.38 mm², respectively). A higher level of reepithelialization was found in TPH-treated group and the crawling length of gastric epithelial cells was significantly longer than in the other two groups (P < 0.05). The microvessel density in the ulcer granulation tissues of the TPH-treated rats was 39.9 vessels/mm², which was greater than in the TP-treated and model control rats, with a significant statistical difference. These results suggest that TPH treatment significantly accelerates the healing of gastric ulcers via stimulating proliferation of gastric epithelial cells and enhancing angiogenesis on gastric ulcer site.

  17. Enhancement of Gastric Ulcer Healing and Angiogenesis by Hepatocyte Growth Factor Gene Mediated by Attenuated Salmonella in Rats

    PubMed Central

    2017-01-01

    The present study developed an oral hepatocyte growth factor (HGF) gene therapy strategy for gastric ulcers treatment. An attenuated Salmonella typhimurium that stably expressed high HGF (named as TPH) was constructed, and the antiulcerogenic effect of TPH was evaluated in a rat model of gastric ulcers that created by acetic acid subserosal injection. From day 5 after injection, TPH (1 × 109 cfu), vehicle (TP, 1 × 109 cfu), or sodium bicarbonate (model control) was administered orally every alternate day for three times. Then ulcer size was measured at day 21 after ulcer induction. The ulcer area in TPH-treated group was 10.56 ± 3.30 mm2, which was smaller when compared with those in the TP-treated and model control groups (43.47 ± 4.18 and 56.25 ± 6.38 mm2, respectively). A higher level of reepithelialization was found in TPH-treated group and the crawling length of gastric epithelial cells was significantly longer than in the other two groups (P < 0.05). The microvessel density in the ulcer granulation tissues of the TPH-treated rats was 39.9 vessels/mm2, which was greater than in the TP-treated and model control rats, with a significant statistical difference. These results suggest that TPH treatment significantly accelerates the healing of gastric ulcers via stimulating proliferation of gastric epithelial cells and enhancing angiogenesis on gastric ulcer site. PMID:28049228

  18. Extracellular matrix protein laminin enhances mesenchymal stem cell (MSC) paracrine function through αvβ3/CD61 integrin to reduce cardiomyocyte apoptosis.

    PubMed

    Peng, Kai-Yen; Liu, Yuan-Hung; Li, Yu-Wei; Yen, Betty Linju; Yen, Men-Luh

    2017-08-01

    Myocardial ischaemia (MI) results in extensive cardiomyocyte death and reactive oxygen species (ROS)-induced damage in an organ with little or no regenerative capacity. Although the use of adult bone marrow mesenchymal stem cells (BMMSCs) has been proposed as a treatment option, the high cell numbers required for clinical use are difficult to achieve with this source of MSCs, and animal studies have produced inconsistent data. We recently demonstrated in small and large animal models of acute MI that the application of human term placenta-derived multipotent cells (PDMCs), a foetal-stage MSC, resulted in reversal of cardiac injury with therapeutic efficacy. However, the mechanisms involved are unclear, making it difficult to strategize for therapeutic improvements. We found that PDMCs significantly reduced cardiomyocyte apoptosis and ROS production through the paracrine factors GRO-α, HGF and IL-8. Moreover, culturing PDMCs on plates coated with laminin, an extracellular matrix (ECM) protein, resulted in significantly enhanced secretion of all three paracrine factors, which further reduced cardiomyocyte apoptosis. The enhancement of PDMC paracrine function by laminin was mediated through αvβ3 integrin, with involvement of the signalling pathways of JNK, for GRO-α and IL-8 secretion, and PI3K/AKT, for HGF secretion. Our results demonstrated the utility of PDMC therapy to reduce cardiomyocyte apoptosis through modulation of ECM proteins in in vitro culture systems as a strategy to enhance the therapeutic functions of stem cells. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. Markers of hepatic regeneration associated with surgical attenuation of congenital portosystemic shunts in dogs.

    PubMed

    Tivers, Michael S; Lipscomb, Victoria J; Smith, Kenneth C; Wheeler-Jones, Caroline P D; House, Arthur K

    2014-05-01

    Dogs with congenital portosystemic shunts (CPSS) have liver hypoplasia and hepatic insufficiency. Surgical CPSS attenuation results in liver growth associated with clinical improvement. The mechanism of this hepatic response is unknown, although liver regeneration is suspected. This study investigated whether markers of liver regeneration were associated with CPSS attenuation. Dogs treated with CPSS attenuation were prospectively recruited. Residual liver tissue was collected for gene expression analysis (seven genes) from 24 CPSS dogs that tolerated complete attenuation, 25 dogs that tolerated partial attenuation and seven control dogs. Relative gene expression was measured using quantitative polymerase chain reaction (qPCR). Blood samples were collected before, 24 h and 48 h post-surgery from 36 CPSS dogs and from 10 control dogs. Serum hepatocyte growth factor (HGF) concentration was measured using a canine specific enzyme-linked immunosorbent assay (ELISA). HGF mRNA expression was significantly decreased in CPSS compared with control dogs (P = 0.046). There were significant increases in HGF (P = 0.050) and methionine adenosyltransferase 2 A (MAT2A; P = 0.002) mRNA expression following partial CPSS attenuation. Dogs with complete attenuation had significantly greater MAT2A (P = 0.024) mRNA expression compared with dogs with partial attenuation. Serum HGF concentration significantly increased 24 h following CPSS attenuation (P < 0.001). Hepatic mRNA expression of two markers of hepatocyte proliferation (HGF and MAT2A) was associated with the response to surgery in dogs with CPSS, and serum HGF significantly increased following surgery, suggesting hepatocyte proliferation. These findings support the concept that hepatic regeneration is important in the hepatic response to CPSS surgery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. pH Modulates the Binding of EGR1 Transcription Factor to DNA

    PubMed Central

    Mikles, David C.; Bhat, Vikas; Schuchardt, Brett J.; Deegan, Brian J.; Seldeen, Kenneth L.; McDonald, Caleb B.; Farooq, Amjad

    2013-01-01

    EGR1 transcription factor orchestrates a plethora of signaling cascades involved in cellular homeostasis and its down-regulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with increasing pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as H382 by virtue of the fact that its substitution to non-ionizable residues abolishes pH-dependence of the binding of EGR1 to DNA. Notably, H382 inserts into the major groove of DNA and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, H382 is predominantly conserved across other members of EGR1 family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating protein-DNA interactions central to this family of transcription factors. Collectively, our findings uncover an unexpected but a key step in the molecular recognition of EGR1 family of transcription factors and suggest that they may act as sensors of pH within the intracellular environment. PMID:23718776

  1. Estrogen modulates mesenchyme-epidermis interactions in the adult nipple

    PubMed Central

    Wu, Hsing-Jung; Oh, Ji Won; Spandau, Dan F.; Tholpady, Sunil; Diaz, Jesus; Schroeder, Laura J.; Offutt, Carlos D.; Glick, Adam B.; Plikus, Maksim V.; Koyama, Sachiko

    2017-01-01

    Maintenance of specialized epidermis requires signals from the underlying mesenchyme; however, the specific pathways involved remain to be identified. By recombining cells from the ventral skin of the K14-PTHrP transgenic mice [which overexpress parathyroid hormone-related protein (PTHrP) in their developing epidermis and mammary glands] with those from wild type, we show that transgenic stroma is sufficient to reprogram wild-type keratinocytes into nipple-like epidermis. To identify candidate nipple-specific signaling factors, we compared gene expression signatures of sorted Pdgfrα-positive ventral K14-PTHrP and wild-type fibroblasts, identifying differentially expressed transcripts that are involved in WNT, HGF, TGFβ, IGF, BMP, FGF and estrogen signaling. Considering that some of the growth factor pathways are targets for estrogen regulation, we examined the upstream role of this hormone in maintaining the nipple. Ablation of estrogen signaling through ovariectomy produced nipples with abnormally thin epidermis, and we identified TGFβ as a negatively regulated target of estrogen signaling. Estrogen treatment represses Tgfβ1 at the transcript and protein levels in K14-PTHrP fibroblasts in vitro, while ovariectomy increases Tgfb1 levels in K14-PTHrP ventral skin. Moreover, ectopic delivery of Tgfβ1 protein into nipple connective tissue reduced epidermal proliferation. Taken together, these results show that specialized nipple epidermis is maintained by estrogen-induced repression of TGFβ signaling in the local fibroblasts. PMID:28289136

  2. Ultrastructural evaluation of gingival connective tissue in hereditary gingival fibromatosis.

    PubMed

    Pêgo, Sabina Pena B; de Faria, Paulo Rogério; Santos, Luis Antônio N; Coletta, Ricardo D; de Aquino, Sibele Nascimento; Martelli-Júnior, Hercílio

    2016-07-01

    To describe the ultrastructural features of hereditary gingival fibromatosis (HGF) in affected family members and compare microscopic findings with normal gingival (NG) tissue. Gingival tissue samples from nine patients with HGF from five unrelated families were evaluated by transmission electron microscopy. Nine NG tissue samples were used for comparison. Areas containing collagen fibrils forming loops and folds were observed in both groups, whereas oxytalan fibers were frequently identified in the HGF group. The diameter of collagen fibrils and the interfibrillar space among them were more uniform in the NG group than in the HGF group. Fibroblasts were the most common cells found in both the HGF and NG groups and exhibited enlarged, rough endoplasmic reticulum, mitochondria with well-preserved crests, conspicuous nucleoli, and euchromatic chromatin. Other cells, such as mast cells, plasma cells, and macrophages, were also observed. HGF tissues had ultrastructural characteristics that were very similar to those of NG tissues. Oxytalan fibers were observed more frequently in the HGF samples than in the NG samples. Other studies of HGF in patients from different families should be performed to better understand the pathogenesis of this hereditary condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Angiogenesis-Based Cancer Therapeutic | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Urologic Oncology Branch seeks interested parties to co-develop antagonists to VEGF-A and hepatocyte growth factor (HGF) that block signal transduction and associated cellular responses.

  4. [MATCHE: Management Approach to Teaching Consumer and Homemaking Education.] Consumer Approach Strand: Foods and Nutrition. Module I-C-1: Technological, Sociological, Ecological, and Environmental Factors Related to Food.

    ERIC Educational Resources Information Center

    Newsome, Ratana

    This competency-based preservice home economics teacher education module on technological, sociological, ecological, and environmental factors related to food is the first in a set of five modules on consumer education related to foods and nutrition. (This set is part of a larger series of sixty-seven modules on the Management Approach to Teaching…

  5. Highly Sensitive Electro-Optic Modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVore, Peter S

    2015-10-26

    There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestationmore » of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.« less

  6. Gingival Fibroblasts as Autologous Feeders for Induced Pluripotent Stem Cells.

    PubMed

    Yu, G; Okawa, H; Okita, K; Kamano, Y; Wang, F; Saeki, M; Yatani, H; Egusa, H

    2016-01-01

    Human gingival fibroblasts (hGFs) present an attractive source of induced pluripotent stem cells (iPSCs), which are expected to be a powerful tool for regenerative dentistry. However, problems to be addressed prior to clinical application include the use of animal-derived feeder cells for cultures. The aim of this study was to establish an autologous hGF-derived iPSC (hGF-iPSC) culture system by evaluating the feeder ability of hGFs. In both serum-containing and serum-free media, hGFs showed higher proliferation than human dermal fibroblasts (hDFs). Three hGF strains were isolated under serum-free conditions, although 2 showed impaired proliferation. When hGF-iPSCs were transferred onto mitomycin C-inactivated hGFs, hDFs, or mouse-derived SNL feeders, hGF and SNL feeders were clearly hGF-iPSC supportive for more than 50 passages, whereas hDF feeders were only able to maintain undifferentiated hGF-iPSC growth for a few passages. After 20 passages on hGF feeders, embryonic stem cell marker expression and CpG methylation at the NANOG and OCT3/4 promoters were similar for hGF-iPSCs cultured on hGF and SNL feeder cells. Long-term cultures of hGF-iPSCs on hGF feeders sustained their normal karyotype and pluripotency. On hGF feeders, hGF-iPSC colonies were surrounded by many colony-derived fibroblast-like cells, and the size of intact colonies at 7 d after passage was significantly larger than that on SNL feeders. Allogeneic hGF strains also maintained hGF-iPSCs for 10 passages. Compared with hDFs, hGFs showed a higher production of laminin-332, laminin α5 chain, and insulin-like growth factor-II, which have been reported to sustain the long-term self-renewal of pluripotent stem cells. These results suggest that hGFs possess an excellent feeder capability and thus can be used as alternatives to conventional mouse-derived SNL and hDF feeders. In addition, our findings suggest that hGF feeders are promising candidates for animal component-free ex vivo expansion of

  7. Tumour necrosis factors modulate the affinity state of the leukotriene B4 receptor on human neutrophils.

    PubMed Central

    Brom, J; Knöller, J; Köller, M; König, W

    1988-01-01

    Pre-incubation of human polymorphonuclear granulocytes with recombinant human tumour necrosis factors (TNF) revealed a time- and dose-dependent reduction of the expression of leukotriene B4-receptor sites. Analysis of the binding data by Scatchard plots showed a shift from a heterologous receptor population (indicating high- and low-affinity subsets) to a homologous population. From the results it is considered that TNF can influence host defence through the modulation of leukotriene B4 receptor affinity. PMID:2851543

  8. Numb regulates cell–cell adhesion and polarity in response to tyrosine kinase signalling

    PubMed Central

    Wang, Zezhou; Sandiford, Shelley; Wu, Chenggang; Li, Shawn Shun-Cheng

    2009-01-01

    Epithelial-mesenchymal transition (EMT), which can be caused by aberrant tyrosine kinase signalling, marks epithelial tumour progression and metastasis, yet the underlying molecular mechanism is not fully understood. Here, we report that Numb interacts with E-cadherin (E-cad) through its phosphotyrosine-binding domain (PTB) and thereby regulates the localization of E-cad to the lateral domain of epithelial cell–cell junction. Moreover, Numb engages the polarity complex Par3–aPKC–Par6 by binding to Par3 in polarized Madin-Darby canine kidney cells. Intriguingly, after Src activation or hepatocyte growth factor (HGF) treatment, Numb decouples from E-cad and Par3 and associates preferably with aPKC–Par6. Binding of Numb to aPKC is necessary for sequestering the latter in the cytosol during HGF-induced EMT. Knockdown of Numb by small hairpin RNA caused a basolateral-to-apicolateral translocation of E-cad and β-catenin accompanied by elevated actin polymerization, accumulation of Par3 and aPKC in the nucleus, an enhanced sensitivity to HGF-induced cell scattering, a decrease in cell–cell adhesion, and an increase in cell migration. Our work identifies Numb as an important regulator of epithelial polarity and cell–cell adhesion and a sensor of HGF signalling or Src activity during EMT. PMID:19609305

  9. Correlation of Factor IXa Subsite Modulations with Effects on Substrate Discrimination

    PubMed Central

    Neuenschwander, Pierre F.; Deadmond, Kimberly J.; Zepeda, Karla; Rutland, Joshua

    2012-01-01

    Summary Background A key feature of factor IXa (fIXa) is its allosteric transformation from an enzymatically latent form into a potent procoagulant. Whilst several small molecules have been found capable of partially effecting fIXa function (i.e. ethylene glycol, calcium ion and LMWH), the resulting modest changes in peptidolytic activity have made the study of their mechanisms of action challenging. Since these effects yield hints into potential regulatory forces that may be operational in full expression of fIXa coagulant activity, their description remains of high interest. Studies of crystal structures have yielded insight into structural changes induced by these effectors, but there remains a paucity of information to correlate any given structural change with specific consequences on fIXa function. Objectives To correlate structural changes induced by these modulators with defined consequences in fIXa substrate discrimination and function. Methods A peptidomics-based MS approach was used to examine patterns of hydrolysis of four combinatorial chemistry-derived pentapeptide libraries by fIXa under various conditions in a soluble, active enzyme system. Results Ethylene glycol specifically alters the S3 subsite of fIXa to render it more tolerant to side chains at the P3 substrate position, while calcium enhances tolerance at the S2 subsite. In contrast, LMWH alters both S2 and S1' subsites. Conclusions These results demonstrate the role of plasticity in regulating fIXa function with respect to discrimination of extended substrate sequences, as well as provide crucial insight into active site modulations that may be capitalized upon by various physiological cofactors of fIXa and in future drug design. PMID:22212890

  10. An automated framework for hypotheses generation using literature.

    PubMed

    Abedi, Vida; Zand, Ramin; Yeasin, Mohammed; Faisal, Fazle Elahi

    2012-08-29

    In bio-medicine, exploratory studies and hypothesis generation often begin with researching existing literature to identify a set of factors and their association with diseases, phenotypes, or biological processes. Many scientists are overwhelmed by the sheer volume of literature on a disease when they plan to generate a new hypothesis or study a biological phenomenon. The situation is even worse for junior investigators who often find it difficult to formulate new hypotheses or, more importantly, corroborate if their hypothesis is consistent with existing literature. It is a daunting task to be abreast with so much being published and also remember all combinations of direct and indirect associations. Fortunately there is a growing trend of using literature mining and knowledge discovery tools in biomedical research. However, there is still a large gap between the huge amount of effort and resources invested in disease research and the little effort in harvesting the published knowledge. The proposed hypothesis generation framework (HGF) finds "crisp semantic associations" among entities of interest - that is a step towards bridging such gaps. The proposed HGF shares similar end goals like the SWAN but are more holistic in nature and was designed and implemented using scalable and efficient computational models of disease-disease interaction. The integration of mapping ontologies with latent semantic analysis is critical in capturing domain specific direct and indirect "crisp" associations, and making assertions about entities (such as disease X is associated with a set of factors Z). Pilot studies were performed using two diseases. A comparative analysis of the computed "associations" and "assertions" with curated expert knowledge was performed to validate the results. It was observed that the HGF is able to capture "crisp" direct and indirect associations, and provide knowledge discovery on demand. The proposed framework is fast, efficient, and robust in

  11. Factors Modulating Recovery Rate after Intermittent Tetanic Fatigue in Atrophic Soleus

    NASA Astrophysics Data System (ADS)

    Li, Hui; Jiao, Bo; Yu, Zhibin

    2008-06-01

    To specify the factors modulating the recovery rate after intermittent tetanic fatigue in soleus, and to seek the reasons for the decrease of recovery rate in atrophic soleus, we observed the recovery time course of different types of fatigue in isolated muscle strips. A 10 % or 50 % decrease in maximal contraction tension of tetani was defined respectively as slight or moderate fatigue. Tetanic tension recovery rates after short-term and long-term of slight or moderate fatigue were observed, some pharmacological intervention were also used. The results showed that slight fatigue only induced an inhibition to myofibril, while moderate fatigue induced an inhibition in myofibril and sarcoplasmic reticulum Ca2+ release channels. There were significant decreases in all of the fatigue groups in one-week tail-suspended rats. These suggest that both slight and moderate fatigue inhibit the myofibrils and the sarcoplasmic reticulum Ca2+ release channels in one-week unloaded soleus.

  12. Modulation of epidermal growth factor effects on epithelial ion transport by intestinal trefoil factor.

    PubMed Central

    Chinery, R.; Cox, H. M.

    1995-01-01

    1. The direct epithelial effects of epidermal growth factor (EGF) and its modulation by intestinal trefoil factor (ITF) have been studied in a human colonic adenocarcinoma cell line called Colony-29 (Col-29). 2. When grown in culture as confluent monolayers and voltage-clamped in Ussing chambers, these epithelia responded with an increase in short circuit current (SCC) to basolateral as well as to apically applied EGF although the latter responses (at 10 nM) were only 25% of those observed following basolateral peptide. 3. Recombinant rat ITF (added to the basolateral surface) did not alter basal SCC levels, but it did enhance the electrogenic effects of basolateral EGF. The EC50 values for EGF-induced ion transport were 0.25 nM in control, and 0.26 nM in ITF pretreated Col-29 epithelia. A significant increase in the size of EGF responses (0.1 nM-10 nM) was observed in the presence of 10 nM ITF and the half-maximal concentration for this modulatory effect of ITF was 7.6 nM. 4. The EGF-induced increases in SCC were partially inhibited (50%) by piretanide pretreatment, indicating that Cl- secretion is involved. EGF responses either in the presence or absence of ITF were also significantly reduced (84% and 66% respectively) by the cyclo-oxygenase inhibitor, piroxicam, therefore implicating prostaglandins as mediators of EGF-stimulated anion secretion. 5. We conclude that in confluent Col-29 epithelia, basolateral EGF stimulates a predominantly prostaglandin-dependent increase in Cl- secretion that is enhanced by basolateral ITF, and that these two peptides may interact in normal and damaged mucosa to alter the local apical solute and fluid environment. PMID:7647987

  13. Modulation of oncogenic transcription factors by bioactive natural products in breast cancer.

    PubMed

    Hasanpourghadi, Mohadeseh; Pandurangan, Ashok Kumar; Mustafa, Mohd Rais

    2018-02-01

    Carcinogenesis, a multi-step phenomenon, characterized by alterations at genetic level and affecting the main intracellular pathways controlling cell growth and development. There are growing number of evidences linking oncogenes to the induction of malignancies, especially breast cancer. Modulations of oncogenes lead to gain-of-function signals in the cells and contribute to the tumorigenic phenotype. These signals yield a large number of proteins that cause cell growth and inhibit apoptosis. Transcription factors such as STAT, p53, NF-κB, c-JUN and FOXM1, are proteins that are conserved among species, accumulate in the nucleus, bind to DNA and regulate the specific genes targets. Oncogenic transcription factors resulting from the mutation or overexpression following aberrant gene expression relay the signals in the nucleus and disrupt the transcription pattern. Activation of oncogenic transcription factors is associated with control of cell cycle, apoptosis, migration and cell differentiation. Among different cancer types, breast cancer is one of top ten cancers worldwide. There are different subtypes of breast cancer cell-lines such as non-aggressive MCF-7 and aggressive and metastatic MDA-MB-231 cells, which are identified with distinct molecular profile and different levels of oncogenic transcription factor. For instance, MDA-MB-231 carries mutated and overexpressed p53 with its abnormal, uncontrolled downstream signalling pathway that account for resistance to several anticancer drugs compared to MCF-7 cells with wild-type p53. Appropriate enough, inhibition of oncogenic transcription factors has become a potential target in discovery and development of anti-tumour drugs against breast cancer. Plants produce diverse amount of organic metabolites. Universally, these metabolites with biological activities are known as "natural products". The chemical structure and function of natural products have been studied since 1850s. Investigating these properties leaded

  14. Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-α

    PubMed Central

    Aubin, Kim; Safoine, Meryem; Proulx, Maryse; Audet-Casgrain, Marie-Alice; Côté, Jean-François; Têtu, Félix-André; Roy, Alphonse; Fradette, Julie

    2015-01-01

    Representative modelling of human adipose tissue functions is central to metabolic research. Tridimensional models able to recreate human adipogenesis in a physiological tissue-like context in vitro are still scarce. We describe the engineering of white adipose tissues reconstructed from their cultured adipose-derived stromal precursor cells. We hypothesize that these reconstructed tissues can recapitulate key functions of AT under basal and pro-inflammatory conditions. These tissues, featuring human adipocytes surrounded by stroma, were stable and metabolically active in long-term cultures (at least 11 weeks). Secretion of major adipokines and growth factors by the reconstructed tissues was determined and compared to media conditioned by human native fat explants. Interestingly, the secretory profiles of the reconstructed adipose tissues indicated an abundant production of leptin, PAI-1 and angiopoietin-1 proteins, while higher HGF levels were detected for the human fat explants. We next demonstrated the responsiveness of the tissues to the pro-inflammatory stimulus TNF-α, as reflected by modulation of MCP-1, NGF and HGF secretion, while VEGF and leptin protein expression did not vary. TNF-α exposure induced changes in gene expression for adipocyte metabolism-associated mRNAs such as SLC2A4, FASN and LIPE, as well as for genes implicated in NF-κB activation. Finally, this model was customized to feature adipocytes representative of progressive stages of differentiation, thereby allowing investigations using newly differentiated or more mature adipocytes. In conclusion, we produced tridimensional tissues engineered in vitro that are able to recapitulate key characteristics of subcutaneous white adipose tissue. These tissues are produced from human cells and their neo-synthesized matrix elements without exogenous or synthetic biomaterials. Therefore, they represent unique tools to investigate the effects of pharmacologically active products on human stromal cells

  15. Anti-fibrotic effects of L-2-oxothiazolidine-4-carboxylic acid via modulation of nuclear factor erythroid 2-related factor 2 in rats.

    PubMed

    Kim, In Hee; Kim, Dae-Ghon; Hao, Peipei; Wang, Yunpeng; Kim, Seong Hun; Kim, Sang Wook; Lee, Seung Ok; Lee, Soo Teik

    2012-06-01

    L-2-Oxothiazolidine-4-carboxylic acid (OTC) is a cysteine prodrug that maintains glutathione in tissues. The present study was designed to investigate anti-fibrotic and anti-oxidative effects of OTC via modulation of nuclear factor erythroid 2-related factor 2 (Nrf2) in an in vivo thioacetamide (TAA)-induced hepatic fibrosis model. Treatment with OTC (80 or 160 mg/kg) improved serum liver function parameters and significantly ameliorated liver fibrosis. The OTC treatment groups exhibited significantly lower expression of α-smooth muscle actin, transforming growth factor-β 1, and collagen α 1 mRNA than that in the TAA model group. Furthermore, the OTC treatment groups showed a significant decrease in hepatic malondialdehyde level compared to that in the TAA model group. Nrf2 and heme oxygenase-1 expression increased significantly in the OTC treatment groups compared with that in the TAA model group. Taken together, these results suggest that OTC restores the anti- oxidative system by upregulating Nrf2; thus, ameliorating liver injury and a fibrotic reaction.

  16. Physiological factors that regulate skin pigmentation.

    PubMed

    Yamaguchi, Yuji; Hearing, Vincent J

    2009-01-01

    More than 150 genes have been identified that affect skin color either directly or indirectly, and we review current understanding of physiological factors that regulate skin pigmentation. We focus on melanosome biogenesis, transport and transfer, melanogenic regulators in melanocytes, and factors derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells, and nerves. Enzymatic components of melanosomes include tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase, which depend on the functions of OA1, P, MATP, ATP7A, and BLOC-1 to synthesize eumelanins and pheomelanins. The main structural component of melanosomes is Pmel17/gp100/Silv, whose sorting involves adaptor protein 1A (AP1A), AP1B, AP2, and spectrin, as well as a chaperone-like component, MART-1. During their maturation, melanosomes move from the perinuclear area toward the plasma membrane. Microtubules, dynein, kinesin, actin filaments, Rab27a, melanophilin, myosin Va, and Slp2-a are involved in melanosome transport. Foxn1 and p53 up-regulate skin pigmentation via bFGF and POMC derivatives including alpha-MSH and ACTH, respectively. Other critical factors that affect skin pigmentation include MC1R, CREB, ASP, MITF, PAX3, SOX9/10, LEF-1/TCF, PAR-2, DKK1, SCF, HGF, GM-CSF, endothelin-1, prostaglandins, leukotrienes, thromboxanes, neurotrophins, and neuropeptides. UV radiation up-regulates most factors that increase melanogenesis. Further studies will elucidate the currently unknown functions of many other pigment genes/proteins. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.

  17. Novel culture system of mesenchymal stromal cells from human subcutaneous adipose tissue.

    PubMed

    Iwashima, Shigejiro; Ozaki, Takenori; Maruyama, Shoichi; Saka, Yousuke; Kobori, Masato; Omae, Kaoru; Yamaguchi, Hirotake; Niimi, Tomoaki; Toriyama, Kazuhiro; Kamei, Yuzuru; Torii, Shuhei; Murohara, Toyoaki; Yuzawa, Yukio; Kitagawa, Yasuo; Matsuo, Seiichi

    2009-05-01

    Accumulating evidence suggests that the delivery of human adipose tissue-derived stromal cells (hASCs) has great potential as regenerative therapy. This was performed to develop a method for expanding hASCs by reducing the amount of serum required. We demonstrate that hASCs were able to expand efficiently in media containing 2% serum and fibroblast growth factor-2. These cells, or low serum cultured hASCs (hLASCs), expressed cell surface markers similar to those on bone marrow-derived mesenchymal stem cells, and could be differentiated into cells of mesenchymal lineage. Of interest, hLASCs secreted higher levels of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) than hASCs cultured in 20% serum (hHASCs). Moreover, hLASC-conditioned media significantly increased endothelial cell (EC) proliferation and decreased EC apoptosis compared to that obtained from hHASCs or control media only. Antibodies against VEGF and HGF virtually negated these effects. When hASCs were administered into the ischemic hindlimbs of nude rats, hLASCs improved blood flow, increased capillary density, and raised the levels of VEGF and HGF in the muscles as compared with hHASCs. In conclusion, we demonstrate a novel low serum culture system for hASCs, which may have great potential in regenerative cell therapy for damaged organs in the clinical setting.

  18. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    PubMed

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. Copyright © 2016 by the Genetics Society of America.

  19. Design of Optical I/Q Modulator Using Dual-drive Mach-Zehnder Modulators in Coherent Optical-OFDM System

    NASA Astrophysics Data System (ADS)

    Nehra, Monika; Kedia, Deepak

    2018-04-01

    A CO-OFDM system combines the advantages of both coherent detection and OFDM modulation for future high speed fiber transmission. In this paper, we propose an I/Q modulation technique using dual-drive MZMs for high rate 10 Gb/s CO-OFDM system. The proposed modulator provides 10.63 dBm improved optical spectra compared to a single dual-drive MZM. The simulation results in terms of BER and Q factor are quite satisfactory upto a transmission reach of 3,000 km and that to without making use of any dispersion compensation. A BER of about 8.03×10-10 and 15.06 dB Q factor have been achieved at -10.43 dBm received optical power.

  20. PV Module Reliability Workshop | Photovoltaic Research | NREL

    Science.gov Websites

    -year old PV system in Quebec, Canada-Alex Bradley, Tanya Dhir, Yves Poissant Solar panel design factors PV Module Reliability Workshop PV Module Reliability Workshop Tuesday, February 24, 2015 Chair : Michael Kempe The 2015 PV Module Reliability Workshop (PVMRW) continued in the tradition of this annual

  1. Thin film module electrical configuration versus electrical performance

    NASA Technical Reports Server (NTRS)

    Morel, D. L.

    1985-01-01

    The as made and degraded states of thin film silicon (TFS) based modules have been modelled in terms of series resistance losses. The origins of these losses lie in interface and bulk regions of the devices. When modules degrade under light exposure, increases occur in both the interface and bulk components of the loss based on series resistance. Actual module performance can thus be simulated by use of only one unknown parameter, shunt losses. Use of the simulation to optimize module design indicates that the current design of 25 cells per linear foot is near optimum. Degradation performance suggests a shift to approx. 35 cells to effect maximum output for applications not constrained to 12 volts. Earlier studies of energy based performance and tandem structures should be updated to include stability factors, not only the initial loss factor tested here, but also appropriate annealing factors.

  2. Spiritual quality of life and spiritual coping: evidence for a two-factor structure of the WHOQOL spirituality, religiousness, and personal beliefs module.

    PubMed

    Krägeloh, Christian U; Billington, D Rex; Henning, Marcus A; Chai, Penny Pei Minn

    2015-02-25

    The WHOQOL-SRPB has been a useful module to measure aspects of QOL related to spirituality, religiousness, and personal beliefs, but recent research has pointed to potential problems with its proposed factor structure. Three of the eight facets of the WHOQOL-SRPB have been identified as potentially different from the others, and to date only a limited number of factor analyses of the instrument have been published. Analyses were conducted using data from a sample of 679 university students who had completed the WHOQOL-BREF quality of life questionnaire, the WHOQOL-SRPB module, the Perceived Stress scale, and the Brief COPE coping strategies questionnaire. Informed by these analyses, confirmatory factor analyses suitable for ordinal-level data explored the potential for a two-factor solution as opposed to the originally proposed one-factor solution. The facets WHOQOL-SRPB facets connected, strength, and faith were highly correlated with each other as well as with the religious coping sub-scale of the Brief COPE. Combining these three facets to one factor in a two-factor solution for the WHOQOL-SRPB yielded superior goodness-of-fit indices compared to the original one-factor solution. A two-factor solution for the WHOQOL-SRPB is more tenable, in which three of the eight WHOQOL-SRPB facets group together as a spiritual coping factor and the remaining facets form a factor of spiritual quality of life. While discarding the facets connectedness, strength, and faith without additional research would be premature, users of the scale need to be aware of this alternative two-factor structure, and may wish to analyze scores using this structure.

  3. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease

    PubMed Central

    Romero-Garmendia, Irati; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora

    2018-01-01

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models. PMID:29748492

  4. Transcription Factor Binding Site Enrichment Analysis in Co-Expression Modules in Celiac Disease.

    PubMed

    Romero-Garmendia, Irati; Garcia-Etxebarria, Koldo; Hernandez-Vargas, Hector; Santin, Izortze; Jauregi-Miguel, Amaia; Plaza-Izurieta, Leticia; Cros, Marie-Pierre; Legarda, Maria; Irastorza, Iñaki; Herceg, Zdenko; Fernandez-Jimenez, Nora; Bilbao, Jose Ramon

    2018-05-10

    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models.

  5. Cavity Preparation/assembly Techniques and Impact on Q, Realistic Q - Factors in a Module, Review of Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Kneisel

    2005-03-19

    This contribution summarizes the surface preparation procedures for niobium cavities presently used both in laboratory experiments and for modules, such as buffered chemical polishing (BCP), electropolishing (EP), high pressure ultrapure water rinsing (HPR), CO{sub 2} snow cleaning and high temperature heat treatments for hydrogen degassing or postpurification. The impact of surface treatments and the degree of cleanliness during assembly procedures on cavity performance (Q - value and accelerating gradient E{sub acc}) will be discussed. In addition, an attempt will be made to summarize the experiences made in module assemblies in different labs/projects such as DESY(TTF), Jlab (Upgrade) and SNS.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Shunying; Chen Yundai; Li Libing

    Purpose: Irradiation to the heart may lead to late cardiovascular complications. The purpose of this study was to investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor gene could reduce post-irradiation damage of the rat heart and improve heart function. Methods and Materials: Twenty rats received single-dose irradiation of 20 Gy gamma ray locally to the heart and were randomized into two groups. Two weeks after irradiation, these two groups of rats received Ad-HGF or mock adenovirus vector intramyocardial injection, respectively. Another 10 rats served as sham-irradiated controls. At post-irradiation Day 120, myocardial perfusion was tested by myocardial contrastmore » echocardiography with contrast agent injected intravenously. At post-irradiation Day 180, cardiac function was assessed using the Langendorff technique with an isolated working heart model, after which heart samples were collected for histological evaluation. Results: Myocardial blood flow was significantly improved in HGF-treated animals as measured by myocardial contrast echocardiography at post-irradiation Day 120 . At post-irradiation Day 180, cardiac function was significantly improved in the HGF group compared with mock vector group, as measured by left ventricular peak systolic pressure (58.80 +- 9.01 vs. 41.94 +- 6.65 mm Hg, p < 0.05), the maximum dP/dt (5634 +- 1303 vs. 1667 +- 304 mm Hg/s, p < 0.01), and the minimum dP/dt (3477 +- 1084 vs. 1566 +- 499 mm Hg/s, p < 0.05). Picrosirius red staining analysis also revealed a significant reduction of fibrosis in the HGF group. Conclusion: Based on the study findings, hepatocyte growth factor gene transfer can attenuate radiation-induced cardiac injury and can preserve cardiac function.« less

  7. Effects of Calendula officinalis on human gingival fibroblasts.

    PubMed

    Saini, Pragtipal; Al-Shibani, Nouf; Sun, Jun; Zhang, Weiping; Song, Fengyu; Gregson, Karen S; Windsor, L Jack

    2012-04-01

    Calendula officinalis is commonly called the marigold. It is a staple topical remedy in homeopathic medicine. It is rich in quercetin, carotenoids, lutein, lycopene, rutin, ubiquinone, xanthophylls, and other anti-oxidants. It has anti-inflammatory properties. Quercetin, one of the active components in Calendula, has been shown to inhibit recombinant human matrix metalloproteinase (MMP) activity and decrease the expression of tumor necrosis factor-α, interleukin-1β (IL), IL-6 and IL-8 in phorbol 12-myristate 13-acetate and calcium ionophore-stimulated human mast cells. To examine the effects of Calendula on human gingival fibroblast (HGF) mediated collagen degradation and MMP activity. Lactate dehydrogenate assays were performed to determine the non-toxic concentrations of Calendula, doxycycline and quercetin. Cell-mediated collagen degradation assays were performed to examine the inhibitory effect on cell-mediated collagen degradation. Gelatin zymography was performed to examine their effects on MMP-2 activity. The experiments were repeated three times and ANOVA used for statistical analyses. Calendula at 2-3% completely inhibited the MMP-2 activity in the zymograms. Doxycycline inhibited HGF-mediated collagen degradation at 0.005, 0.01, 0.02 and 0.05%, and MMP-2 activity completely at 0.05%. Quercetin inhibited HGF-mediated collagen degradation at 0.005, 0.01 and 0.02%, and MMP-2 activity in a dose-dependent manner. Calendula inhibited HGF-mediated collagen degradation and MMP-2 activity more than the same correlated concentration of pure quercetin. Calendula inhibits HGF-mediated collagen degradation and MMP-2 activity more than the corresponding concentration of quercetin. This may be attributed to additional components in Calendula other than quercetin. Published by Elsevier Ltd.

  8. Autophagy-dependent generation of Axin2+ cancer stem-like cells promotes hepatocarcinogenesis in liver cirrhosis

    PubMed Central

    Li, J; Hu, S B; Wang, L Y; Zhang, X; Zhou, X; Yang, B; Li, J H; Xiong, J; Liu, N; Li, Y; Wu, Y Z; Zheng, Q C

    2017-01-01

    Autophagy is a pathophysiological phenomenon in liver cirrhosis that can further progress into hepatocarcinoma. Liver cancer stem cells (CSCs) are believed to initiate hepatocarcinogenesis. To investigate the precise mechanism related to the origin of CSCs in liver cirrhosis and hepatocarcinogenesis, we labeled Axin2+ hepatic cells with EGFP in Axin2Cre;Rosa26EGFP transgenic rats, and then stratified clinical and rat liver cirrhosis samples by autophagy flux. Clinical follow-up and lineage tracing in transgenic rat liver cirrhosis revealed that while Axin2/EGFP+ hepatic cells were present in normal livers and cirrhotic livers without aberrant autophagy, hepatic Axin2/EGFP+CD90+ cells were generated exclusively in cirrhotic livers with aberrant autophagy and promoted hepatocarcinogenesis. Aberrant autophagy in liver cirrhosis resulted in hepatocyte growth factor (HGF) expression, leading to activation of Met/JNK and Met/STAT3 signaling in sorted hepatic Axin2/EGFP+ cells and their transition into Axin2/EGFP+CD90+ cells that possess CSC properties. In a transgenic rat liver cirrhosis model, induction or inhibition of autophagy in cirrhotic livers by systemic administration of rapamycin or chloroquine or transfection with Atg3- and Atg7-shRNAs significantly induced or suppressed HGF expression, which in turn increased or reduced generation of EGFP+CD90+ hepatic cells by activating or inactivating Met/JNK and Met/STAT3 signaling, thereby promoting or preventing hepatocarcinogenesis. Systemic treatment with HGF-shRNA, SP600125 or stattic also reduced generation of EGFP(Axin2)+ hepatic cell-originated CD90+ CSCs in aberrant autophagic cirrhotic livers by inactivating HGF/Met/JNK or HGF/Met/STAT3 signaling, further preventing hepatocarcinogenesis. These data suggest that activation of Met/JNK and Met/STAT3 signaling in Axin2+ hepatic cells via autophagy-dependent HGF expression and the resultant generation of Axin2+CD90+ CSCs is a major mechanism of hepatocarcinogenesis

  9. Autophagy-dependent generation of Axin2+ cancer stem-like cells promotes hepatocarcinogenesis in liver cirrhosis.

    PubMed

    Li, J; Hu, S B; Wang, L Y; Zhang, X; Zhou, X; Yang, B; Li, J H; Xiong, J; Liu, N; Li, Y; Wu, Y Z; Zheng, Q C

    2017-11-30

    Autophagy is a pathophysiological phenomenon in liver cirrhosis that can further progress into hepatocarcinoma. Liver cancer stem cells (CSCs) are believed to initiate hepatocarcinogenesis. To investigate the precise mechanism related to the origin of CSCs in liver cirrhosis and hepatocarcinogenesis, we labeled Axin2+ hepatic cells with EGFP in Axin2Cre;Rosa26EGFP transgenic rats, and then stratified clinical and rat liver cirrhosis samples by autophagy flux. Clinical follow-up and lineage tracing in transgenic rat liver cirrhosis revealed that while Axin2/EGFP+ hepatic cells were present in normal livers and cirrhotic livers without aberrant autophagy, hepatic Axin2/EGFP+CD90+ cells were generated exclusively in cirrhotic livers with aberrant autophagy and promoted hepatocarcinogenesis. Aberrant autophagy in liver cirrhosis resulted in hepatocyte growth factor (HGF) expression, leading to activation of Met/JNK and Met/STAT3 signaling in sorted hepatic Axin2/EGFP+ cells and their transition into Axin2/EGFP+CD90+ cells that possess CSC properties. In a transgenic rat liver cirrhosis model, induction or inhibition of autophagy in cirrhotic livers by systemic administration of rapamycin or chloroquine or transfection with Atg3- and Atg7-shRNAs significantly induced or suppressed HGF expression, which in turn increased or reduced generation of EGFP+CD90+ hepatic cells by activating or inactivating Met/JNK and Met/STAT3 signaling, thereby promoting or preventing hepatocarcinogenesis. Systemic treatment with HGF-shRNA, SP600125 or stattic also reduced generation of EGFP(Axin2)+ hepatic cell-originated CD90+ CSCs in aberrant autophagic cirrhotic livers by inactivating HGF/Met/JNK or HGF/Met/STAT3 signaling, further preventing hepatocarcinogenesis. These data suggest that activation of Met/JNK and Met/STAT3 signaling in Axin2+ hepatic cells via autophagy-dependent HGF expression and the resultant generation of Axin2+CD90+ CSCs is a major mechanism of hepatocarcinogenesis

  10. Agonist Met antibodies define the signalling threshold required for a full mitogenic and invasive program of Kaposi's Sarcoma cells.

    PubMed

    Bardelli, Claudio; Sala, Marilena; Cavallazzi, Umberto; Prat, Maria

    2005-09-09

    We previously showed that the Kaposi Sarcoma line KS-IMM express a functional Met tyrosine kinase receptor, which, upon HGF stimulation, activates motogenic, proliferative, and invasive responses. In this study, we investigated the signalling pathways activated by HGF, as well as by Met monoclonal antibodies (Mabs), acting as full or partial agonists. The full agonist Mab mimics HGF in all biological and biochemical aspects. It elicits the whole spectrum of responses, while the partial agonist Mab induces only wound healing. These differences correlated with a more prolonged and sustained tyrosine phosphorylation of the receptor and MAPK evoked by HGF and by the full agonist Mab, relative to the partial agonist Mab. Since Gab1, JNK and PI 3-kinase are activated with same intensity and kinetics by HGF and by the two agonist antibodies, it is concluded that level and duration of MAPK activation by Met receptor are crucial for the induction of a full HGF-dependent mitogenic and invasive program in KS cells.

  11. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context*

    PubMed Central

    Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2013-01-01

    The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389

  12. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  13. Development of training modules for magnetic particle inspection

    NASA Astrophysics Data System (ADS)

    Kosaka, Daigo; Eisenmann, David J.; Enyart, Darrel; Nakagawa, Norio; Lo, Chester; Orman, David

    2015-03-01

    Magnetic particle inspection (MPI) is a nondestructive evaluation technique used with ferromagnetic materials. Although the application of this method may appear straightforward, MPI combines the complicated nature of electromagnetics, metallurgical material effects, fluid-particle motion dynamics, and physiological human factors into a single inspection. To fully appreciate industry specifications such as ASTM E-1444, users should develop a basic understanding of the many factors that are involved in MPI. We have developed a series of MPI training modules that are aimed at addressing this requirement. The modules not only offer qualitative explanations, but also show quantitative explanations in terms of measurement and numerical simulation data in many instances. There are five modules in all. Module ♯1 shows characteristics of waveforms and magnetizing methods. This allows MPI practitioners to make optimum choice of waveform and magnetizing method. Module ♯2 explains how material properties relate to the magnetic characteristics. Module ♯3 shows the strength of the excitation field or the flux leakage from a crack and how it compares to the detectability of a crack by MPI. Module ♯4 shows how specimen status may influence defect detection. Module ♯5 shows the effects of particle properties on defect detection.

  14. Mediator kinase module and human tumorigenesis.

    PubMed

    Clark, Alison D; Oldenbroek, Marieke; Boyer, Thomas G

    2015-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.

  15. Mediator kinase module and human tumorigenesis

    PubMed Central

    Clark, Alison D.; Oldenbroek, Marieke; Boyer, Thomas G.

    2016-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit “kinase” module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways. PMID:26182352

  16. Venlafaxine treatment after endothelin-1-induced cortical stroke modulates growth factor expression and reduces tissue damage in rats.

    PubMed

    Zepeda, Rodrigo; Contreras, Valentina; Pissani, Claudia; Stack, Katherine; Vargas, Macarena; Owen, Gareth I; Lazo, Oscar M; Bronfman, Francisca C

    2016-08-01

    Neuromodulators, such as antidepressants, may contribute to neuroprotection by modulating growth factor expression to exert anti-inflammatory effects and to support neuronal plasticity after stroke. Our objective was to study whether early treatment with venlafaxine, a serotonin-norepinephrine reuptake inhibitor, modulates growth factor expression and positively contributes to reducing the volume of infarcted brain tissue resulting in increased functional recovery. We studied the expression of BDNF, FGF2 and TGF-β1 by examining their mRNA and protein levels and cellular distribution using quantitative confocal microscopy at 5 days after venlafaxine treatment in control and infarcted brains. Venlafaxine treatment did not change the expression of these growth factors in sham rats. In infarcted rats, BDNF mRNA and protein levels were reduced, while the mRNA and protein levels of FGF2 and TGF-β1 were increased. Venlafaxine treatment potentiated all of the changes that were induced by cortical stroke alone. In particular, increased levels of FGF2 and TGF-β1 were observed in astrocytes at 5 days after stroke induction, and these increases were correlated with decreased astrogliosis (measured by GFAP) and increased synaptophysin immunostaining at twenty-one days after stroke in venlafaxine-treated rats. Finally, we show that venlafaxine reduced infarct volume after stroke resulting in increased functional recovery, which was measured using ladder rung motor tests, at 21 days after stroke. Our results indicate that the early oral administration of venlafaxine positively contributes to neuroprotection during the acute and late events that follow stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of fluorescent particle size on the modulation efficiency of ultrasound-modulated fluorescence.

    PubMed

    Liu, Yuan; Yuan, Baohong; Vignola, Joseph

    2012-01-01

    To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes.

  18. Effect of fluorescent particle size on the modulation efficiency of ultrasound-modulated fluorescence

    PubMed Central

    Liu, Yuan; Yuan, Baohong; Vignola, Joseph

    2013-01-01

    To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes. PMID:24179476

  19. Very late antigen integrins are involved in the adhesive interaction of lymphoid cells to human gingival fibroblasts.

    PubMed Central

    Murakami, S; Saho, T; Shimabukuro, Y; Isoda, R; Miki, Y; Okada, H

    1993-01-01

    To date, it is still unclear how the trafficking and retention of activated lymphocytes in periodontal lesions are regulated. In this study, we investigated the molecular basis for the adhesive interactions between lymphocytes and human gingival fibroblasts (HGF). Peripheral blood T lymphocytes (PBT) exhibited binding ability, but only when the calls were activated with phorbol 12-myristate 13-acetate (PMA). Among several human cell lines tested, PMA-stimulated Molt-4, a human T-cell leukaemia line, also displayed significant binding ability to HGF. In order to clarify the molecule(s) involved in this cell-cell interaction, a panel of monoclonal antibodies (mAb) was prepared to PMA-activated Molt-4 and one clone, 4-145, was selected on the basis of its ability to block the binding of PMA-activated Molt-4 to HGF. Moreover, 4-145 inhibited the binding of not only activated Molt-4 but also activated PBT and other cell types to HGF. Biochemical and flow cytometric analyses revealed that 4-145 probably recognizes the beta 1 chain of very late antigen (VLA) integrins. Blocking experiments using mAb specific for the alpha-chain of VLA integrins demonstrated the involvement of alpha 4 (VLA-4) and, to a lesser extent, alpha 5 (VLA-5) chains in the adhesive interactions between T cells and HGF. Despite the significant involvement of VLA integrins in the adhesive interaction between PBT and HGF, the binding of PBT to human dermal fibroblasts (HDF) was not abrogated by 4-145, suggesting that HGF and HDF differ in their requirement of VLA integrins for adhesion to activated PBT. Furthermore, the fact that vascular cell adhesion molecule-1 (VCAM-1), one of the ligands of VLA-4, was not detected on HGF by flow cytometry and anti-fibronectin (FN) Ab did not block the adhesive interaction to HGF suggests that not-yet-identified ligand(s) for VLA-4 might be present on HGF. Images Figure 4 PMID:8406571

  20. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    PubMed

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons. Copyright © 2012 Wiley Periodicals, Inc.

  1. Structural modulation of factor VIIa by full-length tissue factor (TF1-263): implication of novel interactions between EGF2 domain and TF.

    PubMed

    Prasad, Ramesh; Sen, Prosenjit

    2018-02-01

    Tissue factor (TF)-mediated factor VII (FVII) activation and a subsequent proteolytic TF-FVIIa binary complex formation is the key step initiating the coagulation cascade, with implications in various homeostatic and pathologic scenarios. TF binding allosterically modifies zymogen-like free FVIIa to its highly catalytically active form. As a result of unresolved crystal structure of the full-length TF 1-263 -FVIIa binary complex and free FVIIa, allosteric alterations in FVIIa following its binding to full-length TF and the consequences of these on function are not entirely clear. The present study aims to map and identify structural alterations in FVIIa and TF resulting from full-length TF binding to FVIIa and the key events responsible for enhanced FVIIa activity in coagulation. We constructed the full-length TF 1-263 -FVIIa membrane bound complex using computational modeling and subjected it to molecular dynamics (MD) simulations. MD simulations showed that TF alters the structure of each domain of FVIIa and these combined alterations contribute to enhanced TF-FVIIa activity. Detailed, domain-wise investigation revealed several new non-covalent interactions between TF and FVIIa that were not found in the truncated soluble TF-FVIIa crystal structure. The structural modulation of each FVIIa domain imparted by TF indicated that both inter and intra-domain communication is crucial for allosteric modulation of FVIIa. Our results suggest that these newly formed interactions can provide additional stability to the protease domain and regulate its activity profile by governing catalytic triad (CT) orientation and localization. The unexplored newly formed interactions between EGF2 and TF provides a possible explanation for TF-induced allosteric activation of FVIIa.

  2. Modulation of Enhancer Looping and Differential Gene Targeting by Epstein-Barr Virus Transcription Factors Directs Cellular Reprogramming

    PubMed Central

    McClellan, Michael J.; Wood, C. David; Ojeniyi, Opeoluwa; Cooper, Tim J.; Kanhere, Aditi; Arvey, Aaron; Webb, Helen M.; Palermo, Richard D.; Harth-Hertle, Marie L.; Kempkes, Bettina; Jenner, Richard G.; West, Michelle J.

    2013-01-01

    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of

  3. Soluble Factors from Biofilms of Wound Pathogens Modulate Human Bone Marrow-derived Stromal Cell Differentiation, Migration, Angiogenesis, and Cytokine Secretion

    DTIC Science & Technology

    2015-03-28

    Becerra, Christopher R Rathbone and Joseph C Wenke Abstract Background: Chronic, non- healing wounds are often characterized by the persistence of bacteria...within biofilms - aggregations of cells encased within a self -produced polysaccharide matrix. Biofilm bacteria exhibit unique characteristics from...modulation of host-immune responses by secreting factors that promote wound healing . While these characteristics make MSCs an attractive therapeutic

  4. Modulation of mutant Huntingtin aggregates and toxicity by human myeloid leukemia factors.

    PubMed

    Banerjee, Manisha; Datta, Moumita; Bhattacharyya, Nitai P

    2017-01-01

    Increased poly glutamine (polyQ) stretch at N-terminal of Huntingtin (HTT) causes Huntington's disease. HTT interacts with large number of proteins, although the preference for such interactions with wild type or mutated HTT protein remains largely unknown. HYPK, an intrinsically unstructured protein chaperone and interactor of mutant HTT was found to interact with myeloid leukemia factor 1 (MLF1) and 2 (MLF2). To identify the role of these two proteins in mutant HTT mediated aggregate formation and toxicity in a cell model, both the proteins were found to preferentially interact with the mutated N-terminal HTT. They significantly reduced the number of cells containing mutant HTT aggregates and subsequent apoptosis in Neuro2A cells. Additionally, in FRAP assay, mobile fraction of mutant HTT aggregates was increased in the presence of MLF1 or MLF2. Further, MLF1 could release transcription factors like p53, CBP and CREB from mutant HTT aggregates. Moreover, in HeLa cell co-expressing mutant HTT exon1 and full length MLF1, p53 was released from the aggregates, leading to the recovery of the expression of the GADD45A transcript, a p53 regulated gene. Taking together, these results showed that MLF1 and MLF2 modulated the formation of aggregates and induction of apoptosis as well as the expressions of genes indirectly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway

    PubMed Central

    WANG, DONGDONG; SAGA, YASUSHI; SATO, NAOTO; NAKAMURA, TOSHIKAZU; TAKIKAWA, OSAMU; MIZUKAMI, HIROAKI; MATSUBARA, SHIGEKI; FUJIWARA, HIROYUKI

    2016-01-01

    Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme involved in tumor malignancy. However, the regulatory mechanism underlying its involvement remains largely uncharacterized. The present study aimed to investigate the hypothesis that NK4, an antagonist of hepatocyte growth factor (HGF), can regulate IDO and to characterize the signaling mechanism involved. Following successful transfection of the human ovarian cancer cell line SKOV-3 (which constitutively expresses IDO) with an NK4 expression vector, we observed that NK4 expression suppressed IDO expression; furthermore, NK4 expression did not suppress cancer cell growth in vitro [in the absence of natural killer (NK) cells], but did influence tumor growth in vivo. In addition, NK4 enhanced the sensitivity of cancer cells to NK cells in vitro and promoted NK cell accumulation in the tumor stroma in vivo. In an effort to clarify the mechanisms by which NK4 interacts with IDO, we performed investigations utilizing various biochemical inhibitors. The results of these investigations were as follows. First, c-Met (a receptor of HGF) tyrosine kinase inhibitor PHA-665752, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 both suppress IDO expression. Second, enhanced expression of PTEN (a known tumor suppressor) via negative regulation within a PI3K-AKT pathway, inhibits IDO expression. Conversely, neither the MEK1/2 inhibitor U0126 nor the STAT3 inhibitor WP1066 affects IDO expression. These results suggest that NK4 inhibits IDO expression via a c-Met-PI3K-AKT signaling pathway. PMID:27082119

  6. Kruppel-like Factor 4 Protein Regulates Isoproterenol-induced Cardiac Hypertrophy by Modulating Myocardin Expression and Activity*

    PubMed Central

    Yoshida, Tadashi; Yamashita, Maho; Horimai, Chihiro; Hayashi, Matsuhiko

    2014-01-01

    Kruppel-like factor 4 (KLF4) plays an important role in vascular diseases, including atherosclerosis and vascular injury. Although KLF4 is expressed in the heart in addition to vascular cells, the role of KLF4 in cardiac disease has not been fully determined. The goals of this study were to investigate the role of KLF4 in cardiac hypertrophy and to determine the underlying mechanisms. Cardiomyocyte-specific Klf4 knockout (CM Klf4 KO) mice were generated by the Cre/LoxP technique. Cardiac hypertrophy was induced by chronic infusion of the β-adrenoreceptor agonist isoproterenol (ISO). Results showed that ISO-induced cardiac hypertrophy was enhanced in CM Klf4 KO mice compared with control mice. Accelerated cardiac hypertrophy in CM Klf4 KO mice was accompanied by the augmented cellular enlargement of cardiomyocytes as well as the exaggerated expression of fetal cardiac genes, including atrial natriuretic factor (Nppa). Additionally, induction of myocardin, a transcriptional cofactor regulating fetal cardiac genes, was enhanced in CM Klf4 KO mice. Interestingly, KLF4 regulated Nppa expression by modulating the expression and activity of myocardin, providing a mechanical basis for accelerated cardiac hypertrophy in CM Klf4 KO mice. Moreover, we showed that KLF4 mediated the antihypertrophic effect of trichostatin A, a histone deacetylase inhibitor, because ISO-induced cardiac hypertrophy in CM Klf4 KO mice was attenuated by olmesartan, an angiotensin II type 1 antagonist, but not by trichostatin A. These results provide novel evidence that KLF4 is a regulator of cardiac hypertrophy by modulating the expression and the activity of myocardin. PMID:25100730

  7. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis

    PubMed Central

    Cao, Zhongwei; Ye, Tinghong; Sun, Yue; Ji, Gaili; Shido, Koji; Chen, Yutian; Luo, Lin; Na, Feifei; Li, Xiaoyan; Huang, Zhen; Ko, Jane L.; Mittal, Vivek; Qiao, Lina; Chen, Chong; Martinez, Fernando J.; Rafii, Shahin; Ding, Bi-Sen

    2017-01-01

    The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. Here, we show that targeting both the vascular niche and perivascular fibroblasts establishes “hospitable soil” to foster incorporation of “seed”, in this case the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NADPH Oxidase 4 (NOX4) synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs (HgfiΔEC/iΔEC) aberrantly upregulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially-inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in HgfiΔEC/iΔEC mice recapitulated the phenotype of human and mouse fibrotic livers and lungs. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration. PMID:28855398

  8. Inhibition of c-Met as a Therapeutic Strategy for Esophageal Adenocarcinoma

    PubMed Central

    Watson, Gregory A; Zhang, Xinglu; Stang, Michael T; Levy, Ryan M; Queiroz de Oliveira, Pierre E; Gooding, William E; Christensen, James G; Hughes, Steven J

    2006-01-01

    Abstract The hepatocyte growth factor (HGF) receptor c-Met is a tyrosine kinase receptor with established oncogenic properties. We have previously shown that c-Met is usually overexpressed in esophageal adenocarcinoma (EA), yet the implications of c-Met inhibition in EA remain unknown. Three c-Met-overexpressing EA cell lines (Seg-1, Bic-1, and Flo-1) were used to examine the effects of a c-Met-specific small molecule inhibitor (PHA665752) on cell viability, apoptosis, motility, invasion, and downstream signaling pathways. PHA665752 demonstrated dose-dependent inhibition of constitutive and/or HGF-induced phosphorylation of c-Met, which correlated with reduced cell viability and inhibition of extracellular regulated kinase 1/2 phosphorylation in all three EA cell lines. In contrast, PHA665752 induced apoptosis and reduced motility and invasion in only one EA cell line, Flo-1. Interestingly, Flo-1 was the only cell line in which phosphatidylinositol 3-kinase (PI3K)/Akt was induced following HGF stimulation. The PI3K inhibitor LY294002 produced effects equivalent to those of PHA665752 in these cells. We conclude that inhibition of c-Met may be a useful therapeutic strategy for EA. Factors other than receptor overexpression, such as c-Met-dependent PI3K/Akt signaling, may be predictive of an individual tumor's response to c-Met inhibition. PMID:17132227

  9. Tumor and circulating biomarkers in patients with second-line hepatocellular carcinoma from the randomized phase II study with tivantinib

    PubMed Central

    Rimassa, Lorenza; Abbadessa, Giovanni; Personeni, Nicola; Porta, Camillo; Borbath, Ivan; Daniele, Bruno; Salvagni, Stefania; Van Laethem, Jean-Luc; Van Vlierberghe, Hans; Trojan, Jörg; De Toni, Enrico N.; Weiss, Alan; Miles, Steven; Gasbarrini, Antonio; Lencioni, Monica; Lamar, Maria E.; Wang, Yunxia; Shuster, Dale; Schwartz, Brian E.; Santoro, Armando

    2016-01-01

    ARQ 197-215 was a randomized placebo-controlled phase II study testing the MET inhibitor tivantinib in second-line hepatocellular carcinoma (HCC) patients. It identified tumor MET as a key biomarker in HCC. Aim of this research was to study the prognostic and predictive value of tumor (MET, the receptor tyrosine kinase encoded by the homonymous MNNG-HOS transforming gene) and circulating (MET, hepatocyte growth factor [HGF], alpha-fetoprotein [AFP], vascular endothelial growth factor [VEGF]) biomarkers in second-line HCC. Tumor MET-High status was centrally assessed by immunohistochemistry. Circulating biomarkers were centrally analyzed on serum samples collected at baseline and every 4-8 weeks, using medians as cut-off to determine High/Low status. Tumor MET, tested in 77 patients, was more frequently High after (82%) versus before (40%) sorafenib. A significant interaction (p = 0.04) between tivantinib and baseline tumor MET in terms of survival was observed. Baseline circulating MET and HGF (102 patients) High status correlated with shorter survival (HR 0.61, p = 0.03, and HR 0.60, p = 0.02, respectively), while the association between AFP (104 patients) or VEGF (103 patients) status and survival was non-significant. Conclusions: Tumor MET levels were higher in patients treated with sorafenib. Circulating biomarkers such as MET and HGF may be prognostic in second-line HCC. These results need to be confirmed in larger randomized clinical trials. PMID:27579536

  10. Low irradiance losses of photovoltaic modules

    DOE PAGES

    Mavromatakis, F.; Vignola, F.; Marion, Bill

    2017-09-01

    Here, the efficiency of a photovoltaic cell/module changes, as the intensity of incident irradiance decreases, in a non linear way and these changes are referred to as low irradiance losses. In this study data from field experiments, developed and organized by the National Renewable Energy Laboratory, are used to evaluate the low irradiance losses for a variety of module technologies. The results demonstrate that the ratio of the normalized power divided by the normalized short circuit current provide a good measure of the module's low light efficiency losses after both the maximum power and the short circuit current are adjustedmore » for temperature effects. The normalized efficiencies determined through the field data, spanning for several months, are in good agreement with those determined under controlled conditions in a solar simulator. An analytical relation for the normalized efficiency is proposed based on existing formulation for the fill factor. Despite the approximate nature of the fill factor relation, this approach produces reliable results. It will be shown that a normalized efficiency curve can be used to extract information on the series and shunt resistances of the PV module and that the shunt resistance as a function of solar irradiance can be studied. Alternately, this formulation can be used to study the low irradiance losses of a module when the internal resistances are known.« less

  11. Low irradiance losses of photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatakis, F.; Vignola, F.; Marion, Bill

    Here, the efficiency of a photovoltaic cell/module changes, as the intensity of incident irradiance decreases, in a non linear way and these changes are referred to as low irradiance losses. In this study data from field experiments, developed and organized by the National Renewable Energy Laboratory, are used to evaluate the low irradiance losses for a variety of module technologies. The results demonstrate that the ratio of the normalized power divided by the normalized short circuit current provide a good measure of the module's low light efficiency losses after both the maximum power and the short circuit current are adjustedmore » for temperature effects. The normalized efficiencies determined through the field data, spanning for several months, are in good agreement with those determined under controlled conditions in a solar simulator. An analytical relation for the normalized efficiency is proposed based on existing formulation for the fill factor. Despite the approximate nature of the fill factor relation, this approach produces reliable results. It will be shown that a normalized efficiency curve can be used to extract information on the series and shunt resistances of the PV module and that the shunt resistance as a function of solar irradiance can be studied. Alternately, this formulation can be used to study the low irradiance losses of a module when the internal resistances are known.« less

  12. Social and environmental factors modulate leucocyte profiles in free-living Greylag geese (Anser anser)

    PubMed Central

    Ludwig, Sonja C.; Hemetsberger, Josef; Kotrschal, Kurt; Wascher, Claudia A.F.

    2017-01-01

    Background Blood parameters such as haematocrit or leucocyte counts are indicators of immune status and health, which can be affected, in a complex way, by exogenous as well as endogenous factors. Additionally, social context is known to be among the most potent stressors in group living individuals, therefore potentially influencing haematological parameters. However, with few exceptions, this potential causal relationship received only moderate scientific attention. Methods In a free-living and individually marked population of the highly social and long-lived Greylag goose, Anser anser, we relate variation in haematocrit (HCT), heterophils to lymphocytes ratio (H/L) and blood leucocyte counts to the following factors: intrinsic (sex, age, raising condition, i.e. goose- or hand-raised), social (pair-bond status, pair-bond duration and parental experience) and environmental (biologically relevant periods, ambient temperature) factors. Blood samples were collected repeatedly from a total of 105 focal birds during three biologically relevant seasons (winter flock, mating season, summer). Results We found significant relationships between haematological parameters and social as well as environmental factors. During the mating season, unpaired individuals had higher HCT compared to paired and family individuals and this pattern reversed in fall. Similarly, H/L ratio was positively related to pair-bond status in a seasonally dependent way, with highest values during mating and successful pairs had higher H/L ratio than unsuccessful ones. Also, absolute number of leucocytes tended to vary depending on raising condition in a seasonally dependent way. Discussion Haematology bears a great potential in ecological and behavioural studies on wild vertebrates. In sum, we found that HTC, H/L ratio and absolute number of leucocytes are modulated by social factors and conclude that they may be considered valid indicators of individual stress load. PMID:28070455

  13. Analysis of factors influencing the development of xerostomia during intensity-modulated radiotherapy.

    PubMed

    Randall, Ken; Stevens, Jason; Yepes, Juan Fernando; Randall, Marcus E; Kudrimoti, Mahesh; Feddock, Jonathan; Xi, Jing; Kryscio, Richard J; Miller, Craig S

    2013-06-01

    Factors influencing xerostomia during intensity-modulated radiation therapy (IMRT) were assessed. A 6-week study of 32 head and neck cancer (HNC) patients was performed. Subjects completed the Xerostomia Inventory (XI) and provided stimulated saliva (SS) at baseline, week 2 and at end of IMRT. Influence of SS flow rate (SSFR), calcium and mucin 5b (MUC5b) concentrations and radiation dose on xerostomia was determined. HNC subjects experienced mean SSFR decline of 36% by visit 2 (N = 27; P = .012) and 57% by visit 3 (N = 20; P = .0004). Concentrations of calcium and MUC5b increased, but not significantly during IMRT (P > .05). Xerostomia correlated most with decreasing salivary flow rate as determined by Spearman correlations (P < .04) and linear mixed models (P < .0001). Although IMRT is sparing to the parotid glands, it has an early effect on SSFR and the constituents in saliva in a manner that is associated with the perception of xerostomia. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Analysis of Factors Influencing the Development of Xerostomia during Intensity-Modulated Radiotherapy

    PubMed Central

    Randall, Ken; Stevens, Jason; Yepes, Juan Fernando; Randall, Marcus E.; Kudrimoti, Mahesh; Feddock, Jonathan; Xi, Jing; Kryscio, Richard J.; Miller, Craig S.

    2013-01-01

    OBJECTIVES Factors influencing xerostomia during intensity-modulated radiation therapy (IMRT) were assessed. METHODS A 6-week study of 32 head and neck cancer (HNC) patients was performed. Subjects completed the Xerostomia Inventory (XI) and provided stimulated saliva (SS) at baseline, week two and at end of IMRT. Influence of SS flow rate (SSFR), calcium and mucin 5b (MUC5b) concentrations and radiation dose on xerostomia was determined. RESULTS HNC subjects experienced mean SSFR decline of 36% by visit two (N=27; p=0.012) and 57% by visit three (N=20; p=0.0004), Concentrations of calcium and MUC5b increased, but not significantly during IMRT (p>0.05). Xerostomia correlated most with decreasing salivary flow rate as determined by Spearman correlations (p<0.04) and linear mixed models (p<0.0001). CONCLUSIONS Although IMRT is sparing to the parotid glands, it has an early effect on SSFR and the constituents in saliva in a manner that is associated with the perception of xerostomia. PMID:23523462

  15. [Construction of injectable tissue engineered adipose tissue with fibrin glue scaffold and human adipose-derived stem cells transfected by lentivirus vector expressing hepatocyte growth factor].

    PubMed

    Zhu, Yuanzheng; Yi, Yangyan; Yang, Shuifa; Zhang, Jing; Wu, Shu; Wang, Zhaohui

    2017-09-01

    To discuss the possibility of constructing injectable tissue engineered adipose tissue, and to provide a new approach for repairing soft tissue defects. Human adipose-derived stem cells (hADSCs) were extracted from the lipid part of human liposuction aspirate by enzymatic digestion and identified by morphological observation, flow cytometry, and adipogenic induction. The hADSCs underwent transfection by lentivirus vector expressing hepatocyte growth factor and green fluorescent protein (HGF-GFP-LVs) of different multiplicity of infection (MOI, 10, 30, 50, and 100), the transfection efficiency was calculated to determine the optimum MOI. The hADSCs transfected by HGF-GFP-LVs of optimal MOI and being adipogenic inducted were combined with injectable fibrin glue scaffold, and were injected subcutaneously into the right side of the low back of 10 T-cell deficiency BALB/c female nude mice (transfected group); non-HGF-GFP-LVs transfected hADSCs (being adipogenic inducted) combined with injectable fibrin glue scaffold were injected subcutaneously into the left side of the low back (untransfected group); and injectable fibrin glue scaffold were injected subcutaneously into the middle part of the neck (blank control group); 0.4 mL at each point. Twelve weeks later the mice were killed and the implants were taken out. Gross observation, wet weight measurement, HE staining, GFP fluorescence labeling, and immunofluorescence staining were performed to assess the in vivo adipogenic ability of the seed cells and the neovascularization of the grafts. The cultured cells were identified as hADSCs. Poor transfection efficiency was observed in MOI of 10 and 30, the transfection efficiency of MOI of 50 and 100 was more than 80%, so the optimum MOI was 50. Adipose tissue-like new-born tissues were found in the injection sites of the transfected and untransfected groups after 12 weeks of injection, and no new-born tissues was found in the blank control group. The wet-weight of new

  16. Outdoor module testing and comparison of photovoltaic technologies

    NASA Astrophysics Data System (ADS)

    Fabick, L. B.; Rifai, R.; Mitchell, K.; Woolston, T.; Canale, J.

    A comparison of outdoor test results for several module technologies is presented. The technologies include thin-film silicon:hydrogen alloys (TFS), TFS modules with semitransparent conductor back contacts, and CuInSe2 module prototypes. A method for calculating open-circuit voltage and fill-factor temperature coefficients is proposed. The method relies on the acquisition of large statistical data samples to average effects due to varying insolation level.

  17. Synergistic action of protease-modulating matrix and autologous growth factors in healing of diabetic foot ulcers. A prospective randomized trial.

    PubMed

    Kakagia, Despoina D; Kazakos, Konstantinos J; Xarchas, Konstantinos C; Karanikas, Michael; Georgiadis, George S; Tripsiannis, Gregory; Manolas, Constantinos

    2007-01-01

    This study tests the hypothesis that addition of a protease-modulating matrix enhances the efficacy of autologous growth factors in diabetic ulcers. Fifty-one patients with chronic diabetic foot ulcers were managed as outpatients at the Democritus University Hospital of Alexandroupolis and followed up for 8 weeks. All target ulcers were > or = 2.5 cm in any one dimension and had been previously treated only with moist gauze. Patients were randomly allocated in three groups of 17 patients each: Group A was treated only with the oxidized regenerated cellulose/collagen biomaterial (Promogran, Johnson & Johnson, New Brunswick, NJ), Group B was treated only with autologous growth factors delivered by Gravitational Platelet Separation System (GPS, Biomet), and Group C was managed by a combination of both. All ulcers were digitally photographed at initiation of the study and then at change of dressings once weekly. Computerized planimetry (Texas Health Science Center ImageTool, Version 3.0) was used to assess ulcer dimensions that were analyzed for homogeneity and significance using the Statistical Package for Social Sciences, Version 13.0. Post hoc analysis revealed that there was significantly greater reduction of all three dimensions of the ulcers in Group C compared to Groups A and B (all P<.001). Although reduction of ulcer dimensions was greater in Group A than in Group B, these differences did not reach statistical significance. It is concluded that protease-modulating dressings act synergistically with autologous growth factors and enhance their efficacy in diabetic foot ulcers.

  18. Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines

    PubMed Central

    2013-01-01

    Background MET is a receptor tyrosine kinase that is activated by the ligand HGF and this pathway promotes cell survival, migration, and motility. In accordance with its oncogenic role, MET is constitutively active, mutated, or over-expressed in many cancers. Corollary to its impact, inhibition of MET kinase activity causes reduction of the downstream signaling and demise of cells. In myeloma, a B-cell plasma malignancy, MET is neither mutated nor over-expressed, however, HGF is increased in plasma or serum obtained from myeloma patients and this was associated with poor prognosis. The small-molecule, amuvatinib, inhibits MET receptor tyrosine kinase. Based on this background, we hypothesized that targeting the HGF/MET signaling pathway is a rational approach to myeloma therapy and that myeloma cells would be sensitive to amuvatinib. Methods Expression of MET and HGF mRNAs in normal versus malignant plasma cells was compared during disease progression. Cell death and growth as well as MET signaling pathway were assessed in amuvatinib treated primary myeloma cells and cell lines. Results There was a progressive increase in the transcript levels of HGF (but not MET) from normal plasma cells to refractory malignant plasma cells. Amuvatinib readily inhibited MET phosphorylation in primary CD138+ cells from myeloma patients and in concordance, increased cell death. A 48-hr amuvatinib treatment in high HGF-expressing myeloma cell line, U266, resulted in growth inhibition. Levels of cytotoxicity were time-dependent; at 24, 48, and 72 h, amuvatinib (25 μM) resulted in 28%, 40%, and 55% cell death. Consistent with these data, there was an amuvatinib-mediated decrease in MET phosphorylation in the cell line. Amuvatinib at concentrations of 5, 10, or 25 μM readily inhibited HGF-dependent MET, AKT, ERK and GSK-3-beta phosphorylation. MET-mediated effects were not observed in myeloma cell line that has low MET and/or HGF expression. Conclusions These data suggest that at

  19. Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy.

    PubMed

    Basilico, Cristina; Modica, Chiara; Maione, Federica; Vigna, Elisa; Comoglio, Paolo M

    2018-04-25

    MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and subsequent neutralization-we identified a single aminoacid in the extracellular domain of MET-lysine 842-that is critical for MvDN30 binding and engineered the corresponding recombinant decoyMET (K842E). DecoyMET K842E retains the ability to bind HGF with high affinity and inhibits HGF-induced MET phosphorylation. In HGF-dependent cellular models, MvDN30 antibody and decoyMET K842E used in combination cooperate in restraining invasive growth, and synergize in blocking cancer cell "scattering." The antibody and the decoy unbridle apoptosis of colon cancer stem cells grown in vitro as spheroids. In a preclinical model, built by orthotopic transplantation of a human pancreatic carcinoma in SCID mice engineered to express human HGF, concomitant treatment with antibody and decoy significantly reduces metastatic spread. The data reported indicate that vertical targeting of the MET/HGF axis results in powerful inhibition of ligand-dependent MET activation, providing proof of concept in favor of combined target therapy of MET "expedience." © 2018 UICC.

  20. Accelerated Tumor Cell Death by Angiogenic Modifiers

    DTIC Science & Technology

    2003-08-01

    complex process Two huge molecules called plasminogen-related growth is regulated by a delicate balance of angiogenesis in- factors ( PRGFs ...Increased activator(s) and/or decreased inhibi- cancer progression. PRGF -1 is also called hepatocyte tor(s) alter the balance and lead to the growth of...new growth factor/scatter factor (HGF/SF). PRGF -2 is also blood vessels (Hanahan, 1997). Several growth factors, known as macrophage-stimulating

  1. Role of Autophagy in Keratin Homeostasis in Breast Cancer

    DTIC Science & Technology

    2012-12-01

    commences where the mammary gland reverts to its pre- pregnant state (Brisken and O’Malley, 2010). Pubertal mouse mammary gland development, which...prolactin and local growth factors such as Insulin growth factor-1 (IGF-1), Hepatocyte growth factor (HGF), and Fibroblast growth factor (FGF) (Parmar...iMMECs   overexpressing  Bcl-­‐2  by  lentiviral  infection.    Following  infection,   resistant  colonies   were

  2. Topics in electrochemical degradation of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1984-01-01

    Electrochemical degradation of photovoltaic modules was examined. It is found that the extent of electrochemical damage is dependent on the integrated leakage current. The PV electrochemical degradation mechanisms in the two polarities are different: (1) degradation rates in the two polarities are of the same order of magnitude; (2) center tapped grounded arrays are a preferred system configuration to minimize electrochemical degradation. The use of thicker pottant layers and polymer substrate films to reduce equilibrium leakage current values is suggested. A metallized substrate layer, if used, should be isolated from the pottant and the frame by polyester layers, and EVA modules appear to be consistent with 30 year life allocation levels for electrochemical damage. Temperature acceleration factors are well behaved and moderately well understood; humidity acceleration factors vary radically with module construction and materials and require additional research.

  3. Stress modulation of cognitive and affective processes

    PubMed Central

    CAMPEAU, SERGE; LIBERZON, ISRAEL; MORILAK, DAVID; RESSLER, KERRY

    2012-01-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects. PMID:21790481

  4. Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response.

    PubMed

    Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els

    2003-12-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.

  5. NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression.

    PubMed

    Baldwin, Amy; Pirisi, Lucia; Creek, Kim E

    2004-04-01

    Human papillomaviruses (HPVs) are present in virtually all cervical cancers. An important step in the development of malignant disease, including cervical cancer, involves a loss of sensitivity to transforming growth factor beta (TGF-beta). HPV type 16 (HPV16) early gene expression, including that of the E6 and E7 oncoprotein genes, is under the control of the upstream regulatory region (URR), and E6 and E7 expression in HPV16-immortalized human epithelial cells is inhibited at the transcriptional level by TGF-beta. While the URR contains a myriad of transcription factor binding sites, including seven binding sites for nuclear factor I (NFI), the specific sequences within the URR or the transcription factors responsible for TGF-beta modulation of the URR remain unknown. To identify potential transcription factors and binding sites involved in TGF-beta modulation of the URR, we performed DNase I footprint analysis on the HPV16 URR using nuclear extracts from TGF-beta-sensitive HPV16-immortalized human keratinocytes (HKc/HPV16) treated with and without TGF-beta. Differentially protected regions were found to be located around NFI binding sites. Electrophoretic mobility shift assays, using the NFI binding sites as probes, showed decreased binding upon TGF-beta treatment. This decrease in binding was not due to reduced NFI protein or NFI mRNA levels. Mutational analysis of individual and multiple NFI binding sites in the URR defined their role in TGF-beta sensitivity of the promoter. Overexpression of the NFI family members in HKc/HPV16 decreased the ability of TGF-beta to inhibit the URR. Since the oncoprotein Ski has been shown to interact with and increase the transcriptional activity of NFI and since cellular Ski levels are decreased by TGF-beta treatment, we explored the possibility that Ski may provide a link between TGF-beta signaling and NFI activity. Anti-NFI antibodies coimmunoprecipitated endogenous Ski in nuclear extracts from HKc/HPV16, confirming that NFI

  6. Ethanol and corticotropin releasing factor receptor modulation of central amygdala neurocircuitry: An update and future directions.

    PubMed

    Silberman, Yuval; Winder, Danny G

    2015-05-01

    The central amygdala is a critical brain region for many aspects of alcohol dependence. Much of the work examining the mechanisms by which the central amygdala mediates the development of alcohol dependence has focused on the interaction of acute and chronic ethanol with central amygdala corticotropin releasing factor signaling. This work has led to a great deal of success in furthering the general understanding of central amygdala neurocircuitry and its role in alcohol dependence. Much of this work has primarily focused on the hypothesis that ethanol utilizes endogenous corticotropin releasing factor signaling to upregulate inhibitory GABAergic transmission in the central amygdala. Work that is more recent suggests that corticotropin releasing factor also plays an important role in mediating anxiety-like behaviors via the enhancement of central amygdala glutamatergic transmission, implying that ethanol/corticotropin releasing factor interactions may modulate excitatory neurotransmission in this brain region. In addition, a number of studies utilizing optogenetic strategies or transgenic mouse lines have begun to examine specific central amygdala neurocircuit dynamics and neuronal subpopulations to better understand overall central amygdala neurocircuitry and the role of neuronal subtypes in mediating anxiety-like behaviors. This review will provide a brief update on this literature and describe some potential future directions that may be important for the development of better treatments for alcohol addiction. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Human adipose-derived mesenchymal stem cells in vitro: evaluation of an optimal expansion medium preserving stemness.

    PubMed

    Baer, Patrick C; Griesche, Nadine; Luttmann, Werner; Schubert, Ralf; Luttmann, Arlette; Geiger, Helmut

    2010-01-01

    The potential of cultured adipose-derived stem cells (ASC) in regenerative medicine and new cell therapeutic concepts has been shown recently by many investigations. However, while the method of isolation of ASC from liposuction aspirates depending on plastic adhesion is well established, a standard expansion medium optimally maintaining the undifferentiated state has not been described. We cultured ASC in five commonly used culture media (two laboratory-made media and three commercially available media) and compared them with a standard medium. We analyzed the effects on cell morphology, proliferation, hepatocyte growth factor (HGF) expression, stem cell marker profile and differentiation potential. Proliferation was measured with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a fluorescent assay. Release of HGF was assessed by an immunoassay. Expression of characteristic stem cell-related transcription factors and markers was evaluated by quantitative polymerase chain reaction (qPCR) (Nanog, Sox-2, Rex-1, nestin and Oct-4) and flow cytometry (CD44, CD73, CD90, CD105 and CD166), and differentiation was shown by adipogenic medium. The morphology and expansion of ASC were significantly affected by the media used, whereas none of the media influenced the ASC potential to differentiate into adipocytes. Furthermore, two of the media induced an increase in expression of transcription factors, an increased secretion of HGF and a decrease in CD105 expression. Culture of ASC in one of these two media before using the cells in cell therapeutic approaches may have a benefit on their regenerative potential.

  8. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    PubMed Central

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  9. Protein arginine Methyltransferase 8 gene is expressed in pluripotent stem cells and its expression is modulated by the transcription factor Sox2.

    PubMed

    Solari, Claudia; Echegaray, Camila Vázquez; Luzzani, Carlos; Cosentino, María Soledad; Waisman, Ariel; Petrone, María Victoria; Francia, Marcos; Sassone, Alina; Canizo, Jésica; Sevlever, Gustavo; Barañao, Lino; Miriuka, Santiago; Guberman, Alejandra

    2016-04-22

    Addition of methyl groups to arginine residues is catalyzed by a group of enzymes called Protein Arginine Methyltransferases (Prmt). Although Prmt1 is essential in development, its paralogue Prmt8 has been poorly studied. This gene was reported to be expressed in nervous system and involved in neurogenesis. In this work, we found that Prmt8 is expressed in mouse embryonic stem cells (ESC) and in induced pluripotent stem cells, and modulated along differentiation to neural precursor cells. We found that Prmt8 promoter activity is induced by the pluripotency transcription factors Oct4, Sox2 and Nanog. Moreover, endogenous Prmt8 mRNA levels were reduced in ESC transfected with Sox2 shRNA vector. As a whole, our results indicate that Prmt8 is expressed in pluripotent stem cells and its transcription is modulated by pluripotency transcription factors. These findings suggest that besides its known function in nervous system, Prmt8 could play a role in pluripotent stem cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Spectral changes induced by a phase modulator acting as a time lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plansinis, B. W.; Donaldson, W. R.; Agrawal, G. P.

    2015-07-06

    We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phasemore » shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.« less

  11. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics

    NASA Astrophysics Data System (ADS)

    Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.

    2018-01-01

    We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.

  12. Searching for statistically significant regulatory modules.

    PubMed

    Bailey, Timothy L; Noble, William Stafford

    2003-10-01

    The regulatory machinery controlling gene expression is complex, frequently requiring multiple, simultaneous DNA-protein interactions. The rate at which a gene is transcribed may depend upon the presence or absence of a collection of transcription factors bound to the DNA near the gene. Locating transcription factor binding sites in genomic DNA is difficult because the individual sites are small and tend to occur frequently by chance. True binding sites may be identified by their tendency to occur in clusters, sometimes known as regulatory modules. We describe an algorithm for detecting occurrences of regulatory modules in genomic DNA. The algorithm, called mcast, takes as input a DNA database and a collection of binding site motifs that are known to operate in concert. mcast uses a motif-based hidden Markov model with several novel features. The model incorporates motif-specific p-values, thereby allowing scores from motifs of different widths and specificities to be compared directly. The p-value scoring also allows mcast to only accept motif occurrences with significance below a user-specified threshold, while still assigning better scores to motif occurrences with lower p-values. mcast can search long DNA sequences, modeling length distributions between motifs within a regulatory module, but ignoring length distributions between modules. The algorithm produces a list of predicted regulatory modules, ranked by E-value. We validate the algorithm using simulated data as well as real data sets from fruitfly and human. http://meme.sdsc.edu/MCAST/paper

  13. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Keigo; Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp; Yamamoto, Satomi

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response.more » ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.« less

  14. pH modulates the binding of early growth response protein 1 transcription factor to DNA.

    PubMed

    Mikles, David C; Bhat, Vikas; Schuchardt, Brett J; Deegan, Brian J; Seldeen, Kenneth L; McDonald, Caleb B; Farooq, Amjad

    2013-08-01

    The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment. © 2013 FEBS.

  15. Modulation of Immune Function by Polyphenols: Possible Contribution of Epigenetic Factors

    PubMed Central

    Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A.; Abdalla, Dulcineia S. P.

    2013-01-01

    Several biological activities have been described for polyphenolic compounds, including a modulator effect on the immune system. The effects of these biologically active compounds on the immune system are associated to processes as differentiation and activation of immune cells. Among the mechanisms associated to immune regulation are epigenetic modifications as DNA methylation of regulatory sequences, histone modifications and posttranscriptional repression by microRNAs that influences the gene expression of key players involved in the immune response. Considering that polyphenols are able to regulate the immune function and has been also demonstrated an effect on epigenetic mechanisms, it is possible to hypothesize that there exists a mediator role of epigenetic mechanisms in the modulation of the immune response by polyphenols. PMID:23812304

  16. A Human Factors Evaluation of a Methodology for Pressurized Crew Module Acceptability for Zero-Gravity Ingress of Spacecraft

    NASA Technical Reports Server (NTRS)

    Sanchez, Merri J.

    2000-01-01

    This project aimed to develop a methodology for evaluating performance and acceptability characteristics of the pressurized crew module volume suitability for zero-gravity (g) ingress of a spacecraft and to evaluate the operational acceptability of the NASA crew return vehicle (CRV) for zero-g ingress of astronaut crew, volume for crew tasks, and general crew module and seat layout. No standard or methodology has been established for evaluating volume acceptability in human spaceflight vehicles. Volume affects astronauts'ability to ingress and egress the vehicle, and to maneuver in and perform critical operational tasks inside the vehicle. Much research has been conducted on aircraft ingress, egress, and rescue in order to establish military and civil aircraft standards. However, due to the extremely limited number of human-rated spacecraft, this topic has been un-addressed. The NASA CRV was used for this study. The prototype vehicle can return a 7-member crew from the International Space Station in an emergency. The vehicle's internal arrangement must be designed to facilitate rapid zero-g ingress, zero-g maneuverability, ease of one-g egress and rescue, and ease of operational tasks in multiple acceleration environments. A full-scale crew module mockup was built and outfitted with representative adjustable seats, crew equipment, and a volumetrically equivalent hatch. Human factors testing was conducted in three acceleration environments using ground-based facilities and the KC-135 aircraft. Performance and acceptability measurements were collected. Data analysis was conducted using analysis of variance and nonparametric techniques.

  17. Caspase-8 regulates the expression of pro- and anti-inflammatory cytokines in human bone marrow-derived mesenchymal stromal cells.

    PubMed

    Moen, Siv H; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J; Sponaas, Anne-Marit; Standal, Therese

    2016-09-01

    Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll-like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase-8 is involved in activation of NF-kB downstream of TLRs in immune cells. Here we investigated the role of caspase-8 in regulating TLR-induced cytokine production from human bone marrow-derived mesenchymal stromal cells (hBMSCs). Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase-8 were silenced using siRNA. Caspase-8 was also inhibited using a caspase-8 inhibitor, z-IEDT. We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro-inflammatory cytokines in a TLR-dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti-inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase-8 was involved in the induction of IL- IL-1β, IL-6, CXCL10, and in the inhibition of HGF and TGFβ. Caspase-8 appears to modulate hBMSCs into gaining a pro-inflammatory phenotype. Therefore, inhibiting caspase-8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders.

  18. Caspase‐8 regulates the expression of pro‐ and anti‐inflammatory cytokines in human bone marrow‐derived mesenchymal stromal cells

    PubMed Central

    Moen, Siv H.; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N.; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J.; Sponaas, Anne‐Marit

    2016-01-01

    Abstract Introduction Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll‐like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase‐8 is involved in activation of NF‐kB downstream of TLRs in immune cells. Here we investigated the role of caspase‐8 in regulating TLR‐induced cytokine production from human bone marrow‐derived mesenchymal stromal cells (hBMSCs). Methods Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase‐8 were silenced using siRNA. Caspase‐8 was also inhibited using a caspase‐8 inhibitor, z‐IEDT. Results We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro‐inflammatory cytokines in a TLR‐dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti‐inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase‐8 was involved in the induction of IL‐ IL‐1β, IL‐6, CXCL10, and in the inhibition of HGF and TGFβ. Conclusion Caspase‐8 appears to modulate hBMSCs into gaining a pro‐inflammatory phenotype. Therefore, inhibiting caspase‐8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders. PMID:27621815

  19. Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells.

    PubMed

    Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian

    2016-11-01

    Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Sensory modulation in preterm children: Theoretical perspective and systematic review

    PubMed Central

    Oostrom, Kim J.; Lafeber, Harrie N.; Jansma, Elise P.; Oosterlaan, Jaap

    2017-01-01

    Background Neurodevelopmental sequelae in preterm born children are generally considered to result from cerebral white matter damage and noxious effects of environmental factors in the neonatal intensive care unit (NICU). Cerebral white matter damage is associated with sensory processing problems in terms of registration, integration and modulation. However, research into sensory processing problems and, in particular, sensory modulation problems, is scarce in preterm children. Aim This review aims to integrate available evidence on sensory modulation problems in preterm infants and children (<37 weeks of gestation) and their association with neurocognitive and behavioral problems. Method Relevant studies were extracted from PubMed, EMBASE.com and PsycINFO following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Selection criteria included assessment of sensory modulation in preterm born children (<37 weeks of gestation) or with prematurity as a risk factor. Results Eighteen studies were included. Results of this review support the presence of sensory modulation problems in preterm children. Although prematurity may distort various aspects of sensory modulation, the nature and severity of sensory modulation problems differ widely between studies. Conclusions Sensory modulation problems may play a key role in understanding neurocognitive and behavioral sequelae in preterm children. Some support is found for a dose-response relationship between both white matter brain injury and length of NICU stay and sensory modulation problems. PMID:28182680

  1. An Embedded Reconfigurable Logic Module

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)

    2002-01-01

    A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.

  2. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    PubMed

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  3. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    PubMed Central

    Wang, Lei; Cao, Shibin

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted. PMID:24348146

  4. Packaging of electronic modules

    NASA Technical Reports Server (NTRS)

    Katzin, L.

    1966-01-01

    Study of design approaches that are taken toward optimizing the packaging of electronic modules with respect to size, shape, component orientation, interconnections, and structural support. The study does not present a solution to specific packaging problems, but rather the factors to be considered to achieve optimum packaging designs.

  5. The Axolotl Fibula as a Model for the Induction of Regeneration across Large Segment Defects in Long Bones of the Extremities

    PubMed Central

    Chen, Xiaoping; Song, Fengyu; Jhamb, Deepali; Li, Jiliang; Bottino, Marco C.; Palakal, Mathew J.; Stocum, David L.

    2015-01-01

    We tested the ability of the axolotl (Ambystoma mexicanum) fibula to regenerate across segment defects of different size in the absence of intervention or after implant of a unique 8-braid pig small intestine submucosa (SIS) scaffold, with or without incorporated growth factor combinations or tissue protein extract. Fractures and defects of 10% and 20% of the total limb length regenerated well without any intervention, but 40% and 50% defects failed to regenerate after either simple removal of bone or implanting SIS scaffold alone. By contrast, scaffold soaked in the growth factor combination BMP-4/HGF or in protein extract of intact limb tissue promoted partial or extensive induction of cartilage and bone across 50% segment defects in 30%-33% of cases. These results show that BMP-4/HGF and intact tissue protein extract can promote the events required to induce cartilage and bone formation across a segment defect larger than critical size and that the long bones of axolotl limbs are an inexpensive model to screen soluble factors and natural and synthetic scaffolds for their efficacy in stimulating this process. PMID:26098852

  6. The autism susceptibility gene met regulates zebrafish cerebellar development and facial motor neuron migration

    PubMed Central

    Elsen, Gina E.; Choi, Louis Y.; Prince, Victoria E.; Ho, Robert K.

    2009-01-01

    During development, Met signaling regulates a range of cellular processes including growth, differentiation, survival and migration. The Met gene encodes a tyrosine kinase receptor, which is activated by Hgf (hepatocyte growth factor) ligand. Altered regulation of human MET expression has been implicated in autism. In mouse, Met signaling has been shown to regulate cerebellum development. Since abnormalities in cerebellar structure have been reported in some autistic patients, we have used the zebrafish to address the role of Met signaling during cerebellar development and thus further our understanding of the molecular basis of autism. We find that zebrafish met is expressed in the cerebellar primordium, later localizing to the ventricular zone (VZ), with the hgf1 and hgf2 ligand genes expressed in surrounding tissues. Morpholino knockdown of either Met or its Hgf ligands leads to a significant reduction in the size of the cerebellum, primarily as a consequence of reduced proliferation. Met signaling knockdown disrupts specification of VZ-derived cell types, and also reduces granule cell numbers, due to an early effect on cerebellar proliferation and/or as an indirect consequence of loss of signals from VZ-derived cells later in development. These patterning defects preclude analysis of cerebellar neuronal migration, but we have found that Met signaling is necessary for migration of hindbrain facial motor neurons. In summary, we have described roles for Met signaling in coordinating growth and cell type specification within the developing cerebellum, and in migration of hindbrain neurons. These functions may underlie the correlation between altered MET regulation and Autism Spectrum Disorders. PMID:19732764

  7. Superoxide dismutase 1 expression is modulated by the core pluripotency transcription factors Oct4, Sox2 and Nanog in embryonic stem cells.

    PubMed

    Solari, Claudia; Petrone, María Victoria; Echegaray, Camila Vázquez; Cosentino, María Soledad; Waisman, Ariel; Francia, Marcos; Barañao, Lino; Miriuka, Santiago; Guberman, Alejandra

    2018-06-19

    Redox homeostasis is vital for cellular functions and to prevent the detrimental consequences of oxidative stress. Pluripotent stem cells (PSCs) have an enhanced antioxidant system which supports the preservation of their genome. Besides, reactive oxygen species (ROS) are proposed to be involved in both self-renewal maintenance and in differentiation in embryonic stem cells (ESCs). Increasing evidence shows that cellular systems related to the oxidative stress defense decline along differentiation of PSCs. Although redox homeostasis has been extensively studied for many years, the knowledge about the transcriptional regulation of the genes involved in these systems is still limited. In this work, we studied Sod1 gene modulation by the PSCs fundamental transcription factors Oct4, Sox2 and Nanog. We found that this gene, which is expressed in mouse ESCs (mESCs), was repressed when they were induced to differentiate. Accordingly, these factors induced Sod1 promoter activity in a trans-activation assay. Finally, Sod1 mRNA levels were reduced when Oct4, Sox2 and Nanog were down-regulated by a shRNA approach in mESCs. Taken together, we found that PSCs' key transcription factors are involved in the modulation of Sod1 gene, suggesting a relationship between the pluripotency core and redox homeostasis in these cells. Copyright © 2018. Published by Elsevier B.V.

  8. Krüppel-like Factor 3 (KLF3/BKLF) Is Required for Widespread Repression of the Inflammatory Modulator Galectin-3 (Lgals3)*

    PubMed Central

    Knights, Alexander J.; Yik, Jinfen J.; Mat Jusoh, Hanapi; Norton, Laura J.; Funnell, Alister P. W.; Pearson, Richard C. M.; Bell-Anderson, Kim S.; Crossley, Merlin; Quinlan, Kate G. R.

    2016-01-01

    The Lgals3 gene encodes a multifunctional β-galactoside-binding protein, galectin-3. Galectin-3 has been implicated in a broad range of biological processes from chemotaxis and inflammation to fibrosis and apoptosis. The role of galectin-3 as a modulator of inflammation has been studied intensively, and recent evidence suggests that it may serve as a protective factor in obesity and other metabolic disorders. Despite considerable interest in galectin-3, little is known about its physiological regulation at the transcriptional level. Here, using knockout mice, chromatin immunoprecipitations, and cellular and molecular analyses, we show that the zinc finger transcription factor Krüppel-like factor 3 (KLF3) directly represses galectin-3 transcription. We find that galectin-3 is broadly up-regulated in KLF3-deficient mouse tissues, that KLF3 occupies regulatory regions of the Lgals3 gene, and that KLF3 directly binds its cognate elements (CACCC boxes) in the galectin-3 promoter and represses its activation in cellular assays. We also provide mechanistic insights into the regulation of Lgals3, demonstrating that C-terminal binding protein (CtBP) is required to drive optimal KLF3-mediated silencing. These findings help to enhance our understanding of how expression of the inflammatory modulator galectin-3 is controlled, opening up avenues for potential therapeutic interventions in the future. PMID:27226561

  9. DIRECT MODULATION OF THE PROTEIN KINASE A CATALYTIC SUBUNIT α BY GROWTH FACTOR RECEPTOR TYROSINE KINASES

    PubMed Central

    Caldwell, George B.; Howe, Alan K.; Nickl, Christian K.; Dostmann, Wolfgang R.; Ballif, Bryan A.; Deming, Paula B.

    2011-01-01

    The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The Km for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF and FGF2 and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechansim for regulating PKA activity. PMID:21866565

  10. Performance Analysis of the Automotive TEG with Respect to the Geometry of the Modules

    NASA Astrophysics Data System (ADS)

    Yu, C. G.; Zheng, S. J.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.

    2017-05-01

    Recently there has been increasing interest in applying thermoelectric technology to recover waste heat in automotive exhaust gas. Due to the limited space in the vehicle, it's meaningful to improve the TEG (thermoelectric generator) performance by optimizing the module geometry. This paper analyzes the performance of bismuth telluride modules for two criteria (power density and power output per area), and researches the relationship between the performance and the geometry of the modules. A geometry factor is defined for the thermoelectric element to describe the module geometry, and a mathematical model is set up to study the effects of the module geometry on its performance. It has been found out that the optimal geometry factors for maximum output power, power density and power output per unit area are different, and the value of the optimal geometry factors will be affected by the volume of the thermoelectric material and the thermal input. The results can be referred to as the basis for optimizing the performance of the thermoelectric modules.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xue-Feng; Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850; Department of Respiration, Qinghai Provincial People's Hospital, Xining

    MicroRNA-486 (miR-486) was first identified from human fetal liver cDNA library and validated as a regulator of hematopoiesis. Its roles in regulating the biological function of bone marrow-derived mesnechymal stem cells (BM-MSCs) under hypoxia have not been explored yet. In this study, we demonstrated that exposure to hypoxia upregulates miR-486 expression in BM-MSCs. Lentivirus-mediated overexpression of miR-486 resulted in increase of hepatocyte growth factor (HGF) and vascular endothelial growth factor(VEGF) in both mRNA and protein levels. MiR-486 expression also promotes proliferation and reduces apoptosis of BM-MSCs. Whereas MiR-486 knockdown downregulated the secretion of HGF and VEGF and induced apoptosis ofmore » BM-MSCs. Furthermore, PTEN-PI3K/AKT signaling was validated to be involved in changes of BM-MSC biological functions regulated by miR-486. These results suggested that MiR-486 mediated the hypoxia-induced angiogenic activity and promoted the proliferation and survival of BM-MSCs through regulating PTEN-PI3K/AKT signaling. These findings might provide a novel understanding of effective therapeutic strategy for hypoxic-ischemic diseases. - Highlights: • miR-486 is a hypoxia-induced miRNA. • miR-486 regulates the secretion of HGF and VEGF, promotes proliferation, and inhibits apoptosis of BM-MSCs. • miR-486 enhances PI3K/AKT activity signaling by targeting PTEN molecule.« less

  12. Research on a new magnetic-field-modulated brushless double-rotor machine with sinusoidal-permeance modulating ring

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Liu, Jiaqi; Bai, Jingang; Song, Zhiyi; Liu, Yong

    2017-05-01

    The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM), composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs). In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM) is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.

  13. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration.

    PubMed

    Busilacchi, Alberto; Gigante, Antonio; Mattioli-Belmonte, Monica; Manzotti, Sandra; Muzzarelli, Riccardo A A

    2013-10-15

    The idea of using chitosan as a functional delivery aid to support simultaneously PRP, stem cells and growth factors (GF) is associated with the intention to use morphogenic biomaterials to modulate the natural healing sequence in bone and other tissues. For example, chitosan-chondroitin sulfate loaded with platelet lysate was included in a poly(D,L-lactate) foam that was then seeded with human adipose-derived stem cells and cultured in vitro under osteogenic stimulus: the platelet lysate provided to the bone tissue the most suitable assortment of GF which induces the osteogenic differentiation of the mesenchymal stem cells. PDGF, FGF, IGF and TGF-β were protagonists in the repair of callus fractures. The release of GF from the composites of chitosan-PRP and either nano-hydroxyapatite or tricalcium phosphate was highly beneficial for enhancing MSC proliferation and differentiation, thus qualifying chitosan as an excellent vehicle. A number of biochemical characteristics of chitosan exert synergism with stem cells in the regeneration of soft tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Redox-Dependent Modulation of Anthocyanin Biosynthesis by the TCP Transcription Factor TCP15 during Exposure to High Light Intensity Conditions in Arabidopsis.

    PubMed

    Viola, Ivana L; Camoirano, Alejandra; Gonzalez, Daniel H

    2016-01-01

    TCP proteins integrate a family of transcription factors involved in the regulation of developmental processes and hormone responses. It has been shown that most members of class I, one of the two classes in which the TCP family is divided, contain a conserved Cys that leads to inhibition of DNA binding when oxidized. In this work, we describe that the class-I TCP protein TCP15 inhibits anthocyanin accumulation during exposure of plants to high light intensity by modulating the expression of transcription factors involved in the induction of anthocyanin biosynthesis genes, as suggested by the study of plants that express TCP15 from the 35SCaMV promoter and mutants in TCP15 and the related gene TCP14. In addition, the effect of TCP15 on anthocyanin accumulation is lost after prolonged incubation under high light intensity conditions. We provide evidence that this is due to inactivation of TCP15 by oxidation of Cys-20 of the TCP domain. Thus, redox modulation of TCP15 activity in vivo by high light intensity may serve to adjust anthocyanin accumulation to the duration of exposure to high irradiation conditions. © 2016 American Society of Plant Biologists. All Rights Reserved.

  15. Inventory of Personal Factors Influencing Conditioned Pain Modulation in Healthy People: A Systematic Literature Review.

    PubMed

    Hermans, Linda; Van Oosterwijck, Jessica; Goubert, Dorien; Goudman, Lisa; Crombez, Geert; Calders, Patrick; Meeus, Mira

    2016-07-01

    Conditioned pain modulation (CPM) is believed to play an important role in the development and exacerbation of chronic pain, because dysfunction of CPM is associated with a shift in balance between pain facilitation and pain inhibition. In many patients with central sensitization, CPM is less efficacious. Besides that, efficacy of CPM is highly variable in healthy people. Consequently, it seems that several individual variables may influence CPM. A systematic review examining personal factors influencing CPM was conducted. This systematic review follows the PRISMA guidelines. "Pubmed" and "Web of Science" were searched using different synonyms of CPM. Full-text clinical reports addressing the influence of personal factors on CPM in healthy adults were included. Checklists for RCTs and case-control studies provided by the Dutch Institute for Healthcare Improvement (CBO) and the Dutch Cochrane Centre were utilized to assess methodological quality. Levels of evidence and strength of conclusion were assigned using the CBO guidelines. Forty-six articles were identified that reported the influence of personal factors on CPM. Quality assessment revealed 10 studies with a methodological quality less than 50% wherefore they were excluded (21.8%), resulting in a general total methodological quality score of 72.5%. Overall younger adult age, male gender, ovulatory phase, positive expectations, attention to the conditioning stimulus, and carrier of the 5-HTTLPR long allele result in better CPM. It is advised for future studies to take these factors into account. Further research regarding the influence of oral contraceptives, catastrophizing, information about conditioning stimulation, distraction, physical activity, and genetics on CPM magnitude is required. © 2015 World Institute of Pain.

  16. Modulation of the Endocannabinoid System: Vulnerability Factor and New Treatment Target for Stimulant Addiction

    PubMed Central

    Olière, Stéphanie; Jolette-Riopel, Antoine; Potvin, Stéphane; Jutras-Aswad, Didier

    2013-01-01

    Cannabis is one of the most widely used illicit substance among users of stimulants such as cocaine and amphetamines. Interestingly, increasing recent evidence points toward the involvement of the endocannabinoid system (ECBS) in the neurobiological processes related to stimulant addiction. This article presents an up-to-date review with deep insights into the pivotal role of the ECBS in the neurobiology of stimulant addiction and the effects of its modulation on addictive behaviors. This article aims to: (1) review the role of cannabis use and ECBS modulation in the neurobiological substrates of psychostimulant addiction and (2) evaluate the potential of cannabinoid-based pharmacological strategies to treat stimulant addiction. A growing number of studies support a critical role of the ECBS and its modulation by synthetic or natural cannabinoids in various neurobiological and behavioral aspects of stimulants addiction. Thus, cannabinoids modulate brain reward systems closely involved in stimulants addiction, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for treating addiction across different classes of stimulants. PMID:24069004

  17. Mining a human transcriptome database for Nrf2 modulators

    EPA Science Inventory

    Nuclear factor erythroid-2 related factor 2 (Nrf2) is a key transcription factor important in the protection against oxidative stress. We developed computational procedures to enable the identification of chemical, genetic and environmental modulators of Nrf2 in a large database ...

  18. A Brief Review of Handgrip Strength and Sport Performance.

    PubMed

    Cronin, John; Lawton, Trent; Harris, Nigel; Kilding, Andrew; McMaster, Daniel T

    2017-11-01

    Cronin, J, Lawton, T, Harris, N, Kilding, A, and McMaster, DT. A brief review of handgrip strength and sport performance. J Strength Cond Res 31(11): 3187-3217, 2017-Tests of handgrip strength (HGS) and handgrip force (HGF) are commonly used across a number of sporting populations. Measures of HGS and HGF have also been used by practitioners and researchers to evaluate links with sports performance. This article first evaluates the validity and reliability of various handgrip dynamometers (HGD) and HGF sensors, providing recommendations for procedures to ensure that precise and reliable data are collected as part of an athlete's testing battery. Second, the differences in HGS between elite and subelite athletes and the relationships between HGS, HGF, and sports performance are discussed.

  19. "Smart" Sensor Module

    NASA Technical Reports Server (NTRS)

    Mahajan, Ajay

    2007-01-01

    -monitoring system is to detect damage and, therefore, the health-monitoring system must be able to function effectively in the presence of damage and should be capable of distinguishing between damage to itself and damage to the system being monitored. A major benefit afforded by the self-assessment algorithms is that in the output of the module, the sensor data indicative of the health of the engineering system being monitored are coupled with a confidence factor that quantifies the degree of reliability of the data. Hence, the output includes information on the health of the sensor module itself in addition to information on the health of the engineering system being monitored.

  20. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells

    PubMed Central

    Li, Min; Piao, Longzhu; Chen, Chie-Pein; Wu, Xianqing; Yeh, Chang-Ching; Masch, Rachel; Chang, Chi-Chang; Huang, S. Joseph

    2017-01-01

    During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF–positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli. PMID:26970370

  1. Angiogenic and angiostatic factors in the molecular control of angiogenesis.

    PubMed

    Distler, J H W; Hirth, A; Kurowska-Stolarska, M; Gay, R E; Gay, S; Distler, O

    2003-09-01

    The vascular system that ensures an adequate blood flow is required to provide the cells with sufficient supply of nutrients and oxygen. Two different mechanisms of the formation of new vessels can be distinguished: vasculogenesis, the formation of the first primitive vascular plexus de novo and angiogenesis, the formation of new vessels from preexisting ones. Both processes are regulated by a delicate balance of pro- and anti-angiogenic factors. Physiologically, angiostatic mediators outweigh the angiogenic molecules and angiogenesis does not occur. Under certain conditions such as tumor formation or wound healing, the positive regulators of angiogenesis predominate and the endothelium becomes activated. Angiogenesis is initiated by vasodilatation and an increased permeability. After destabilization of the vessel wall, endothelial cells proliferate, migrate and form a tube, which is finally stabilized by pericytes and smooth muscle cells. Numerous soluble growth factors and inhibitors, cytokines and proteases as well as extracellular matrix proteins and adhesion molecules strictly control this multi-step process. The properties and interactions of angiogenic molecules such as VEGFs, FGFs, angiopoietins, PDGF, angiogenin, angiotropin, HGF, CXC chemokines with ELR motif, PECAM-1, integrins and VE-cadherin as well as angiostatic key players such as angiostatin, endostatin, thrombospondin, CXC chemokines without ELR motif, PEDF are discussed in this review with respect to their molecular impact on angiogenesis.

  2. Novel biomarker-based model for the prediction of sorafenib response and overall survival in advanced hepatocellular carcinoma: a prospective cohort study.

    PubMed

    Kim, Hwi Young; Lee, Dong Hyeon; Lee, Jeong-Hoon; Cho, Young Youn; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Yoon, Jung-Hwan

    2018-03-20

    Prediction of the outcome of sorafenib therapy using biomarkers is an unmet clinical need in patients with advanced hepatocellular carcinoma (HCC). The aim was to develop and validate a biomarker-based model for predicting sorafenib response and overall survival (OS). This prospective cohort study included 124 consecutive HCC patients (44 with disease control, 80 with progression) with Child-Pugh class A liver function, who received sorafenib. Potential serum biomarkers (namely, hepatocyte growth factor [HGF], fibroblast growth factor [FGF], vascular endothelial growth factor receptor-1, CD117, and angiopoietin-2) were tested. After identifying independent predictors of tumor response, a risk scoring system for predicting OS was developed and 3-fold internal validation was conducted. A risk scoring system was developed with six covariates: etiology, platelet count, Barcelona Clinic Liver Cancer stage, protein induced by vitamin K absence-II, HGF, and FGF. When patients were stratified into low-risk (score ≤ 5), intermediate-risk (score 6), and high-risk (score ≥ 7) groups, the model provided good discriminant functions on tumor response (concordance [c]-index, 0.884) and 12-month survival (area under the curve [AUC], 0.825). The median OS was 19.0, 11.2, and 6.1 months in the low-, intermediate-, and high-risk group, respectively (P < 0.001). In internal validation, the model maintained good discriminant functions on tumor response (c-index, 0.825) and 12-month survival (AUC, 0.803), and good calibration functions (all P > 0.05 between expected and observed values). This new model including serum FGF and HGF showed good performance in predicting the response to sorafenib and survival in patients with advanced HCC.

  3. Microbiota source impact in vitro metabolite colonic production and anti-proliferative effect of spent coffee grounds on human colon cancer cells (HT-29).

    PubMed

    Hernández-Arriaga, Angélica María; Dave Oomah, B; Campos-Vega, Rocio

    2017-07-01

    Human gut flora-mediated non-digestible fraction of spent coffee grounds (hgf-NDSCG) was evaluated for its chemopreventive effect and molecular mechanisms involved on human colon adenocarcinoma HT-29 cell survival using two different microbiota source [lean (L) and overweight (OW)]. The source of human gut flora (hgf) (L or OW) affected the pH of hgf-NDSCG only minimally, but linearly reduced those of hgf-inulin. The variability between lean and overweight microbiota was characterized by the metabolism and/or bioaccessibility of different phenolic metabolites, their intermediate and end products as well as by variable time courses. Apoptosis of colon cancer HT-29 cells depended on the microbiota source with the lean microbiota expressing a low lethal concentration 50 (LC 50 /L-hgf-NDSCG=13.5%). We demonstrate that NDSCG and its colonic metabolite from lean microbiota induced HT-29 cell apoptosis by reducing catalase and 8-iso-prostaglandin F2α as biomarkers of in vivo oxidative stress as the primary mechanism underlying its overall chemoprotection against colon cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Membrane-type matrix metalloproteinases mediate curcumin-induced cell migration in non-tumorigenic colon epithelial cells differing in Apc genotype.

    PubMed

    Fenton, Jenifer I; Wolff, Margaret S; Orth, Michael W; Hord, Norman G

    2002-06-01

    Colonic epithelial cell migration is required for normal differentiated cell function. This migratory phenotype is dependent upon wild-type adenomatous polyposis coli (Apc) expression. Non-tumorigenic murine colon epithelial cell lines with distinct Apc genotypes, i.e. young adult mouse colon (YAMC; Apc(+/+)) and immortomouse/Min colon epithelial (IMCE; Apc(Min/+) cells) were used to assess the association between the Apc genotype, cell motility and matrix metalloproteinase (MMP) activity. Cells were treated with epidermal growth factor (EGF; 1, 10 and 25 ng/ml), hepatocyte growth factor (HGF; 1, 10 and 25 ng/ml) and/or curcumin (0.1-100 microM). EGF (25 ng/ml) and HGF (25 ng/ml) induced a greater migratory response in YAMC compared with IMCE cells after 24 h (P < 0.05). Treatment with curcumin induced a greater or equivalent migratory response in IMCE than YAMC cells. When migrating cells were treated with Ilomastat (MMP inhibitor), migration was inhibited in both cell types. High concentrations of Ilomastat (25 and 50 microM) inhibited migration in both cell types, while low concentrations (10 microM) inhibited HGF-induced IMCE migration. Curcumin-induced migration was inhibited in both cell types at the highest concentration of Ilomastat (50 microM). Immuno-localization analysis of membrane type-1 (MT1)-MMP indicated that migration is associated with the redistribution of this protein from the endoplasmic reticulum to the plasma membrane. Addition of neutralizing polyclonal antibodies against MT1-MMP or a mixture of MT1, 2- and 3-MMPs demonstrated partial or complete inhibition of cell migration in both cell types, respectively. The data provide the first evidence that migration in non-tumorigenic murine colon epithelial cells is: (i) inducible by EGF and HGF in an Apc genotype-dependent manner, (ii) dependent on MT-MMP activity and (iii) inducible by curcumin in an Apc genotype-independent manner. The data suggest a potential mechanism by which curcumin may

  5. Distinct Effects of Adipose-Derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy.

    PubMed

    Anjanappa, Manjushree; Burnett, Riesa; Zieger, Michael A; Merfeld-Clauss, Stephanie; Wooden, William; March, Keith; Tholpady, Sunil; Nakshatri, Harikrishna

    2016-07-01

    Adipose-derived stem cells (ASC) have received considerable attention in oncology because of the known direct link between obesity and cancer as well as the use of ASCs in reconstructive surgery after tumor ablation. Previous studies have documented how cancer cells commandeer ASCs to support their survival by altering extracellular matrix composition and stiffness, migration, and metastasis. This study focused on delineating the effects of ASCs and adipocytes on the self-renewal of stem/progenitor cells and hierarchy of breast epithelial cells. The immortalized breast epithelial cell line MCF10A, ductal carcinoma in situ (DCIS) cell lines MCF10DCIS.com and SUM225, and MCF10A-overexpressing SRC oncogene were examined using a mammosphere assay and flow cytometry for the effects of ASCs on their self-renewal and stem-luminal progenitor-differentiated cell surface marker profiles. Interestingly, ASCs promoted the self-renewal of all cell types except SUM225. ASC coculture or treatment with ASC conditioned media altered the number of CD49f(high)/EpCAM(low) basal/stem-like and CD49f(medium)/EpCAM(medium) luminal progenitor cells. Among multiple factors secreted by ASCs, IFNγ and hepatocyte growth factor (HGF) displayed unique actions on epithelial cell hierarchy. IFNγ increased stem/progenitor-like cells while simultaneously reducing the size of mammospheres, whereas HGF increased the size of mammospheres with an accompanying increase in luminal progenitor cells. ASCs expressed higher levels of HGF, whereas adipocytes expressed higher levels of IFNγ. As luminal progenitor cells are believed to be prone for transformation, IFNγ and HGF expression status of ASCs may influence susceptibility for developing breast cancer as well as on outcomes of autologous fat transplantation on residual/dormant tumor cells. This study suggests that the ratio of ASCs to adipocytes influences cancer cell hierarchy, which may impact incidence and progression. Mol Cancer Res; 14(7); 660

  6. Control of main risk factors after ischaemic stroke across Europe: data from the stroke-specific module of the EUROASPIRE III survey.

    PubMed

    Heuschmann, Peter U; Kircher, Julia; Nowe, Tim; Dittrich, Ralf; Reiner, Zeljko; Cifkova, Renata; Malojcic, Branko; Mayer, Otto; Bruthans, Jan; Wloch-Kopec, Dorota; Prugger, Christof; Heidrich, Jan; Keil, Ulrich

    2015-10-01

    Previous cross-sectional surveys in different European countries within the EUROASPIRE programme demonstrated a high prevalence of modifiable risk factors, unhealthy lifestyles and inadequate drug treatment in coronary heart disease patients. Comparable data for ischaemic stroke patients is lacking. A stroke-specific study module was added to the EUROASPIRE III core survey. This cross-sectional multicentre survey included consecutive patients with first-ever ischaemic stroke from four European countries. Data were obtained from medical records, patient interviews and patient examinations within 6-36 months after the stroke event. Control of modifiable risk factors after stroke was evaluated against contemporary European guidelines. A total of 881 patients was recruited. Median age was 66 years, 37.5% were female; average time from the stroke event to interview was 550 days. At the time of the interview, 17.6% of stroke patients smoked cigarettes, 35.5% had a body mass index ≥30 kg/m(2), 62.4% showed elevated blood pressure and 75.7% exhibited elevated LDL cholesterol levels. Antiplatelet drugs or oral anticoagulants were used by 87.2%, antihypertensive medication by 84.4% and statins by 56.8% of stroke patients. Among patients using antihypertensive drugs and lipid-lowering medication at the time of the interview, 34.3% and 34.4%, respectively, achieved target blood pressure and total cholesterol values according to current European guidelines. The EUROASPIRE III stroke-specific module shows that secondary prevention and risk factor control in patients after ischaemic stroke need to be improved in four European centres at the time of the study since about half of patients are not achieving risk factor targets defined in European guidelines. © The European Society of Cardiology 2014.

  7. FusionArc optimization: a hybrid volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) planning strategy.

    PubMed

    Matuszak, Martha M; Steers, Jennifer M; Long, Troy; McShan, Daniel L; Fraass, Benedick A; Romeijn, H Edwin; Ten Haken, Randall K

    2013-07-01

    To introduce a hybrid volumetric modulated arc therapy/intensity modulated radiation therapy (VMAT/IMRT) optimization strategy called FusionArc that combines the delivery efficiency of single-arc VMAT with the potentially desirable intensity modulation possible with IMRT. A beamlet-based inverse planning system was enhanced to combine the advantages of VMAT and IMRT into one comprehensive technique. In the hybrid strategy, baseline single-arc VMAT plans are optimized and then the current cost function gradients with respect to the beamlets are used to define a metric for predicting which beam angles would benefit from further intensity modulation. Beams with the highest metric values (called the gradient factor) are converted from VMAT apertures to IMRT fluence, and the optimization proceeds with the mixed variable set until convergence or until additional beams are selected for conversion. One phantom and two clinical cases were used to validate the gradient factor and characterize the FusionArc strategy. Comparisons were made between standard IMRT, single-arc VMAT, and FusionArc plans with one to five IMRT∕hybrid beams. The gradient factor was found to be highly predictive of the VMAT angles that would benefit plan quality the most from beam modulation. Over the three cases studied, a FusionArc plan with three converted beams achieved superior dosimetric quality with reductions in final cost ranging from 26.4% to 48.1% compared to single-arc VMAT. Additionally, the three beam FusionArc plans required 22.4%-43.7% fewer MU∕Gy than a seven beam IMRT plan. While the FusionArc plans with five converted beams offer larger reductions in final cost--32.9%-55.2% compared to single-arc VMAT--the decrease in MU∕Gy compared to IMRT was noticeably smaller at 12.2%-18.5%, when compared to IMRT. A hybrid VMAT∕IMRT strategy was implemented to find a high quality compromise between gantry-angle and intensity-based degrees of freedom. This optimization method will allow

  8. Ebola virus modulates transforming growth factor β signaling and cellular markers of mesenchyme-like transition in hepatocytes.

    PubMed

    Kindrachuk, Jason; Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E; Feldmann, Heinz; Jahrling, Peter B

    2014-09-01

    Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most

  9. Ebola Virus Modulates Transforming Growth Factor β Signaling and Cellular Markers of Mesenchyme-Like Transition in Hepatocytes

    PubMed Central

    Wahl-Jensen, Victoria; Safronetz, David; Trost, Brett; Hoenen, Thomas; Arsenault, Ryan; Feldmann, Friederike; Traynor, Dawn; Postnikova, Elena; Kusalik, Anthony; Napper, Scott; Blaney, Joseph E.; Feldmann, Heinz; Jahrling, Peter B.

    2014-01-01

    ABSTRACT Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-β)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-β signaling in the kinome data sets correlated with the upregulation of TGF-β secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-β signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-β signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-β signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-β that may contribute to this process. From these observations, we propose a model for a broader role of TGF-β-mediated signaling responses in the pathogenesis of Ebola virus disease. IMPORTANCE Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman

  10. Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes

    PubMed Central

    Sawaki, Daigo; Hou, Lianguo; Tomida, Shota; Sun, Junqing; Zhan, Hong; Aizawa, Kenichi; Son, Bo-Kyung; Kariya, Taro; Takimoto, Eiki; Otsu, Kinya; Conway, Simon J.; Manabe, Ichiro; Komuro, Issei; Friedman, Scott L.; Nagai, Ryozo; Suzuki, Toru

    2015-01-01

    Aims Krüppel-like factors (KLFs) are a family of transcription factors which play important roles in the heart under pathological and developmental conditions. We previously identified and cloned Klf6 whose homozygous mutation in mice results in embryonic lethality suggesting a role in cardiovascular development. Effects of KLF6 on pathological regulation of the heart were investigated in the present study. Methods and results Mice heterozygous for Klf6 resulted in significantly diminished levels of cardiac fibrosis in response to angiotensin II infusion. Intriguingly, a similar phenotype was seen in cardiomyocyte-specific Klf6 knockout mice, but not in cardiac fibroblast-specific knockout mice. Microarray analysis revealed increased levels of the extracellular matrix factor, thrombospondin 4 (TSP4), in the Klf6-ablated heart. Mechanistically, KLF6 directly suppressed Tsp4 expression levels, and cardiac TSP4 regulated the activation of cardiac fibroblasts to regulate cardiac fibrosis. Conclusion Our present studies on the cardiac function of KLF6 show a new mechanism whereby cardiomyocytes regulate cardiac fibrosis through transcriptional control of the extracellular matrix factor, TSP4, which, in turn, modulates activation of cardiac fibroblasts. PMID:25987545

  11. Insulin catalyzes the curcumin-induced wound healing: An in vitro model for gingival repair

    PubMed Central

    Singh, Neetu; Ranjan, Vishal; Zaidi, Deeba; Shyam, Hari; Singh, Aparna; Lodha, Divya; Sharma, Ramesh; Verma, Umesh; Dixit, Jaya; Balapure, Anil K.

    2012-01-01

    Objectives: Human gingival fibroblasts (hGFs) play a major role in the maintenance and repair of gingival connective tissue. The mitogen insulin with IGFs etc. synergizes in facilitating wound repair. Although curcumin (CUR) and insulin regulate apoptosis, their impact as a combination on hGF in wound repair remains unknown. Our study consists of: 1) analysis of insulin-mediated mitogenesis on CUR-treated hGF cells, and 2) development of an in vitro model of wound healing. Materials and Methods: Apoptotic rate in CUR-treated hGF cells with and without insulin was observed by AnnexinV/PI staining, nuclear morphological analysis, FACS and DNA fragmentation studies. Using hGF confluent cultures, wounds were mechanically created in vitro and incubated with the ligands for 48 h in 0.2% fetal bovine serum DMEM. Results: CUR alone showed dose-dependent (1–50 μM) effects on hGF. Insulin (1 μg/ml) supplementation substantially enhanced cell survival through up-regulation of mitogenesis/anti-apoptotic elements. Conclusions: The in vitro model for gingival wound healing establishes that insulin significantly enhanced wound filling faster than CUR-treated hGF cells over 48 h. This reinforces the pivotal role of insulin in supporting CUR-mediated wound repair. The findings have significant bearing in metabolic dysfunctions, e.g. diabetes, atherosclerosis, etc., especially under Indian situations. PMID:23087505

  12. Role of Autophagy in Keratin Homeostasis in Breast Cancer

    DTIC Science & Technology

    2014-03-01

    weaning of pups, involution commences where the mammary gland reverts to its pre- pregnant state (Brisken and O’Malley, 2010). Pubertal mouse mammary...estrogen, progesterone and prolactin and local growth factors such as Insulin growth factor-1 (IGF-1), Hepatocyte growth factor (HGF), and Fibroblast growth...lentiviral  infection.    Following  infection,   resistant  colonies   were  allowed  to  emerge  and  independent  colonies

  13. Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser.

    PubMed

    Zhao, Gang; Tan, Wei; Hou, Jiajia; Qiu, Xiaodong; Ma, Weiguang; Li, Zhixin; Dong, Lei; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-25

    A methodology for calibration-free wavelength modulation spectroscopy (CF-WMS) that is based upon an extensive empirical description of the wavelength-modulation frequency response (WMFR) of DFB laser is presented. An assessment of the WMFR of a DFB laser by the use of an etalon confirms that it consists of two parts: a 1st harmonic component with an amplitude that is linear with the sweep and a nonlinear 2nd harmonic component with a constant amplitude. Simulations show that, among the various factors that affect the line shape of a background-subtracted peak-normalized 2f signal, such as concentration, phase shifts between intensity modulation and frequency modulation, and WMFR, only the last factor has a decisive impact. Based on this and to avoid the impractical use of an etalon, a novel method to pre-determine the parameters of the WMFR by fitting to a background-subtracted peak-normalized 2f signal has been developed. The accuracy of the new scheme to determine the WMFR is demonstrated and compared with that of conventional methods in CF-WMS by detection of trace acetylene. The results show that the new method provides a four times smaller fitting error than the conventional methods and retrieves concentration more accurately.

  14. Is colour modulation an independent factor in human visual photosensitivity?

    PubMed

    Parra, Jaime; Lopes da Silva, Fernando H; Stroink, Hans; Kalitzin, Stiliyan

    2007-06-01

    Considering that the role of colour in photosensitive epilepsy (PSE) remains unclear, we designed a study to determine the potential of different colours, colour combinations and white light to trigger photoparoxysmal responses (PPRs) under stringent controlled conditions. After assessing their photosensitivity to stroboscopic white light and black and white patterns, we studied 43 consecutive PSE patients (mean age 19 years, 34 women), using a specially designed colour stimulator. Stimuli included: pulse trains between 10 and 30 Hz of white light and of all primary colours, and also isoluminant alternating time-sequences of colours. Illuminance was kept constant at 100 lux. A progressive stepwise increase of the modulation-depth (MD) of the stimuli was used to determine PPRs threshold. Whereas all the 43 patients were found to be sensitive during the stroboscopic and pattern protocol, only 25 showed PPRs (Waltz's score >2) at least in one session when studied with the colour stimulator. Coloured stimuli elicited PPRs in all these patients, whereas white light did so only in 17 patients. Of the primary colours, red elicited more PPRs (54 in 22 patients) and at a lower MD (max Z-score 0.93 at 10 Hz). Of the alternating sequences, the red-blue was the most provocative stimulus, especially below 30 Hz (100% of patients, max Z-score: 1.65 at 15 Hz). Blue-green was the least provocative stimulus, since it elicited only seven PPRs in seven (28%) patients (max Z-score 0.44 at 10 Hz). Sensitivity to alternating colours was not correlated to sensitivity to individual colours. We conclude that colour sensitivity follows two different mechanisms: one, dependent on colour modulation, plays a role at lower frequencies (<30 Hz). Another, dependent on single-colour light intensity modulation correlates to white light sensitivity and is activated at higher frequencies. Our results suggest that the prescription of spectacles with coloured lenses, tailored to the patient, can be an

  15. Resveratrol, by modulating RNA processing factor levels, can influence the alternative splicing of pre-mRNAs.

    PubMed

    Markus, M Andrea; Marques, Francine Z; Morris, Brian J

    2011-01-01

    Alternative pre-mRNA splicing defects can contribute to, or result from, various diseases, including cancer. Aberrant mRNAs, splicing factors and other RNA processing factors have therefore become targets for new therapeutic interventions. Here we report that the natural polyphenol resveratrol can modulate alternative splicing in a target-specific manner. We transfected minigenes of several alternatively spliceable primary mRNAs into HEK293 cells in the presence or absence of 1, 5, 20 and 50 µM resveratrol and measured exon levels by semi-quantitative PCR after separation by agarose gel electrophoresis. We found that 20 µg/ml and 50 µg/ml of resveratrol affected exon inclusion of SRp20 and SMN2 pre-mRNAs, but not CD44v5 or tau pre-mRNAs. By Western blotting and immunofluorescence we showed that this effect may be due to the ability of resveratrol to change the protein level but not the localization of several RNA processing factors. The processing factors that increased significantly were ASF/SF2, hnRNPA1 and HuR, but resveratrol did not change the levels of RBM4, PTBP1 and U2AF35. By means of siRNA-mediated knockdown we depleted cells of SIRT1, regarded as a major target of resveratrol, and showed that the effect on splicing was not dependent on SIRT1. Our results suggest that resveratrol might be an attractive small molecule to treat diseases in which aberrant splicing has been implicated, and justify more extensive research on the effects of resveratrol on the splicing machinery.

  16. A randomized, single-blind comparison of the efficacy and tolerability of hylan G-F 20 and triamcinolone hexacetonide in patients with osteoarthritis of the knee.

    PubMed

    Caborn, David; Rush, Joel; Lanzer, William; Parenti, Dennis; Murray, Christopher

    2004-02-01

    To assess prospectively the efficacy and tolerability of hylan G-F 20 (HG-F 20; Synvisc) and intraarticular triamcinolone hexacetonide (TH; Aristospan) for treatment of osteoarthritis (OA) knee pain in a 26 week, randomized, multicenter, evaluator-blind study. Patients with OA were treated with typical regimens of HG-F 20 (n = 113) and TH (n = 102). Primary assessments were the WOMAC question A1 (pain walking on a flat surface), and a 100 mm visual analog scale (VAS) for patient and investigator overall assessments. Total WOMAC and WOMAC domain C (function) scores were also assessed. The intent-to-treat population was analyzed using a last-observation carried forward approach. Maximum pain relief occurred at 1-2 weeks for TH and at Week 12 for HG-F 20. At Weeks 12 and 26, HG-F 20 was significantly better than TH for the WOMAC question A1 responses (p = 0.0071 and p = 0.0129, respectively), and patient VAS (p < 0.0001 and p < 0.0001) and investigator VAS (p < 0.0300 and p = 0.0004) assessments. Similar significant (p < 0.01) results were observed at Weeks 12 and 26 for total WOMAC and domain C scores. While 15 TH-treated patients discontinued the study due to lack of efficacy, none did so with HG-F 20 treatment (p < 0.01). Both agents were well tolerated with similar adverse event profiles. Viscosupplementation with HG-F 20 resulted in a longer duration of effect than TH with a comparable tolerability profile. These data support the preferential use of HG-F 20 over TH for treatment of chronic OA knee pain.

  17. Basic Fibroblast Growth Factor Influences Epidermal Homeostasis of Living Skin Equivalents through Affecting Fibroblast Phenotypes and Functions.

    PubMed

    Yang, Lujun; Zhang, Dangui; Wu, Hongjuan; Xie, Sitian; Zhang, Mingjun; Zhang, Bingna; Tang, Shijie

    2018-05-30

    To elucidate the possible mechanisms of how basic fibroblast growth factor (bFGF) influences epidermal homeostasis in a living skin equivalent (LSE) model. Several wound healing-related growth factors were analyzed at protein and mRNA levels for dermal fibroblasts of induced alpha-smooth muscle actin (α-SMA)-positive or α-SMA-negative phenotypes. During culturing an LSE model by seeding normal human keratinocytes on a fibroblast-populated type I collagen gel, bFGF or neutralizing antibody for keratinocyte growth factor (KGF) was added to investigate its effects on fibroblast phenotypes and, subsequently, epidermal homeostasis by histology and immunohistochemistry. The α-SMA-positive phenotype of fibroblasts induced by transforming growth factor beta-1 (TGF-β1) markedly suppressed the expression of KGF and hepatocyte growth factor (HGF), and slightly upregulated vascular endothelial growth factor (VEGF) and TGF-β1 at mRNA and protein levels, compared with α-SMA-negative fibroblasts treated with bFGF. α-SMA expression of fibroblasts at the epidermal-mesenchymal junction of the LSEs was suppressed by the addition of bFGF, and a better-differentiated epidermis was presented. The abrogation of KGF from fibroblasts by the addition of the KGF neutralizing antibody disenabled the LSE culturing system to develop an epidermis. bFGF, through affecting the phenotypes and functions of fibroblasts, especially KGF expression, influenced epidermal homeostasis in an LSE model. © 2018 S. Karger AG, Basel.

  18. Ballasted photovoltaic module and module arrays

    DOEpatents

    Botkin, Jonathan [El Cerrito, CA; Graves, Simon [Berkeley, CA; Danning, Matt [Oakland, CA

    2011-11-29

    A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

  19. Sustained Partial Sleep Deprivation: Effects on Immune Modulation and Growth Factors

    NASA Technical Reports Server (NTRS)

    Mullington, Janet M.

    1999-01-01

    from this larger study: a 4.2 hour per night condition, and a 8.2 hour per night condition. During space flight, muscle mass and bone density are reduced, apparently due to loss of GH and IGF-I, associated with microgravity. Since >70% of growth hormone (GH) is secreted at night in normal adults, we hypothesized that the chronic sleep restriction to 4 hours per night would reduce GH levels as measured in the periphery. In this synergy project, in collaboration with the "Muscle Alterations and Atrophy Team ", we are measuring insulin-like growth factor-I (IGF-I) in peripheral circulation to test the prediction that it will be reduced by chronic sleep restriction. In addition to stress modulation of immune function, recent research suggests that sleep is also involved. While we all have the common experience of being sleepy when suffering from infection, and being susceptible to infection when not getting enough sleep, the mechanisms involved in this process are not understood and until recently have gone largely overlooked. We believe that the immune function changes seen in spaceflight may also be related to the cumulative effects of sleep loss. Moreover, in space flight, the possibility of compromised immune function or of the reactivation of latent viruses are serious potential hazards for the success of long term missions. Confined living conditions, reduced sleep, altered diet and stress are all factors that may compromise immune function, thereby increasing the risks of developing and transmitting disease. Medical complications, which would not pose serious problems on earth, may be disastrous if they emerged in space.

  20. Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography.

    PubMed

    Creese, Mari E; Creese, Mathew J; Foley, Joe P; Cortes, Hernan J; Hilder, Emily F; Shellie, Robert A; Breadmore, Michael C

    2017-01-17

    Longitudinal on-column thermal modulation for comprehensive two-dimensional liquid chromatography is introduced. Modulation optimization involved a systematic investigation of heat transfer, analyte retention, and migration velocity at a range of temperatures. Longitudinal on-column thermal modulation was realized using a set of alkylphenones and compared to a conventional valve-modulator employing sample loops. The thermal modulator showed a reduced modulation-induced pressure impact than valve modulation, resulting in reduced baseline perturbation by a factor of 6; yielding a 6-14-fold improvement in signal-to-noise. A red wine sample was analyzed to demonstrate the potential of the longitudinal on-column thermal modulator for separation of a complex sample. Discrete peaks in the second dimension using the thermal modulator were 30-55% narrower than with the valve modulator. The results shown herein demonstrate the benefits of an active focusing modulator, such as reduced detection limits and increased total peak capacity.

  1. RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation.

    PubMed

    Azmi, Peter; Seth, Arun

    2005-11-01

    Our laboratory has found that the 154aa RING finger protein 11 (RNF11), has modular domains and motifs including a RING-H2 finger domain, a PY motif, an ubiquitin interacting motif (UIM), a 14-3-3 binding sequence and an AKT phosphorylation site. RNF11 represents a unique protein with no other known immediate family members yet described. Comparative genetic analysis has shown that RNF11 is highly conserved throughout evolution. This may indicate a conserved and non-redundant role for the RNF11 protein. Molecular binding assays using RNF11 have shown that RNF11 has important roles in growth factor signalling, ubiquitination and transcriptional regulation. RNF11 has been shown to interact with HECT-type E3 ubiquitin ligases Nedd4, AIP4, Smurf1 and Smurf2, as well as with Cullin1, the core protein in the multi-subunit SCF E3 ubiquitin ligase complex. Work done in our laboratory has shown that RNF11 is capable of antagonizing Smurf2-mediated inhibition of TGFbeta signalling. Furthermore, RNF11 is capable of degrading AMSH, a positive regulator of both TGFbeta and EGFR signalling pathways. Recently, we have found that RNF11 can directly enhance TGFbeta signalling through a direct association with Smad4, the common signal transducer and transcription factor in the TGFbeta, BMP, and Activin pathways. Through its association with Smad4 and other transcription factors, RNF11 may have a role in direct transcriptional regulation. Our laboratory and others have found nearly 80 protein interactions for RNF11, placing RNF11 at the cross-roads of cell signalling and transcriptional regulation. RNF11 is highly expressed in breast tumours. Deregulation of RNF11 function may prove to be harmful to patient therapeutic outcomes. RNF11 may therefore provide a novel target for cancer therapeutics. The purpose of this review is to discuss the role of RNF11 in cell signalling and transcription factor modulation with special attention given to the ubiquitin-proteasomal pathway, TGFbeta

  2. Modulation of keratinocyte motility. Correlation with production of extracellular matrix molecules in response to growth promoting and antiproliferative factors.

    PubMed Central

    Nickoloff, B. J.; Mitra, R. S.; Riser, B. L.; Dixit, V. M.; Varani, J.

    1988-01-01

    Normal human epidermal keratinocytes (KC) grown under conditions that maintain the undifferentiated state are highly motile. Migration of these cells as measured in two different assays (migration out of an agarose drop explant, and into micropore filters in a modified Boyden chamber), is stimulated by fibronectin (FN) and to a lesser extent by thrombospondin (TSP). In contrast, laminin (LN) inhibits KC migration. Cultivation of the cells for 1 day under conditions that induce differentiation (ie, in the presence of 1.4 mM Ca2+) suppresses KC motility. A number of soluble growth modulating polypeptide factors also influence KC migration. Transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) stimulate KC motility. These factors simultaneously induce KC production of FN and a significant portion of the stimulated motility can be inhibited with antibodies to FN. EGF and somatomedin-C (SM-C), but not TGF-beta, also stimulate TSP production while EGF and SM-C (but not TGF-beta) induce KC proliferation. In contrast to these factors, interferon-gamma (INF-gamma) inhibits KC production of both FN and TSP and concomitantly inhibits both motility and proliferation. These data suggest that KC properties essential for normal wound healing (ie, motility and proliferation) are regulated by both extracellular matrix molecules and soluble peptide factors. Finally, these effects of various growth promoting and antiproliferative factors on KCs may, in part, be mediated through alteration in the endogenous production of extracellular matrix molecules by KCs. Images Figure 2 PMID:2458044

  3. Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hangauer, Andreas, E-mail: hangauer@princeton.edu; Nikodem, Michal; Wysocki, Gerard, E-mail: gwysocki@princeton.edu

    2013-11-04

    Chirped laser dispersion spectroscopy (CLaDS) utilizing direct modulation of a quantum cascade laser (QCL) is presented. By controlling the laser bias nearly single- and dual-sideband CLaDS operation can be realized in an extremely simplified optical setup with no external optical modulators. Capability of direct single-sideband modulation is a unique feature of QCLs that exhibit a low linewidth enhancement factor. The developed analytical model shows excellent agreement with the experimental, directly modulated CLaDS spectra. This method overcomes major technical limitations of mid-infrared CLaDS systems by allowing significantly higher modulation frequencies and eliminating optical fringes introduced by external modulators.

  4. Autophagy Has a Beneficial Role in Relieving Cigarette Smoke-Induced Apoptotic Death in Human Gingival Fibroblasts.

    PubMed

    Kim, Moon-Soo; Yun, Jeong-Won; Park, Jin-Ho; Park, Bong-Wook; Kang, Young-Hoon; Hah, Young-Sool; Hwang, Sun-Chul; Woo, Dong Kyun; Byun, June-Ho

    2016-01-01

    The deleterious role of cigarette smoke has long been documented in various human diseases including periodontal complications. In this report, we examined this adverse effect of cigarette smoke on human gingival fibroblasts (HGFs) which are critical not only in maintaining gingival tissue architecture but also in mediating immune responses. As well documented in other cell types, we also observed that cigarette smoke promoted cellular reactive oxygen species in HGFs. And we found that this cigarette smoke-induced oxidative stress reduced HGF viability through inducing apoptosis. Our results indicated that an increased Bax/Bcl-xL ratio and resulting caspase activation underlie the apoptotic death in HGFs exposed to cigarette smoke. Furthermore, we detected that cigarette smoke also triggered autophagy, an integrated cellular stress response. Interesting, a pharmacological suppression of the cigarette smoke-induced autophagy led to a further reduction in HGF viability while a pharmacological promotion of autophagy increased the viability of HGFs with cigarette smoke exposures. These findings suggest a protective role for autophagy in HGFs stressed with cigarette smoke, highlighting that modulation of autophagy can be a novel therapeutic target in periodontal complications with cigarette smoke.

  5. Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro.

    PubMed

    López-Barrera, Dunia Maria; Vázquez-Sánchez, Kenia; Loarca-Piña, Ma Guadalupe Flavia; Campos-Vega, Rocio

    2016-12-01

    Spent coffee grounds (SCG), rich in dietary fiber can be fermented by colon microbiota producing short-chain fatty acids (SCFAs) with the ability to prevent inflammation. We investigated SCG anti-inflammatory effects by evaluating its composition, phenolic compounds, and fermentability by the human gut flora, SCFAs production, nitric oxide and cytokine expression of the human gut fermented-unabsorbed-SCG (hgf-NDSCG) fraction in LPS-stimulated RAW 264.7 macrophages. SCG had higher total fiber content compared with coffee beans. Roasting level/intensity reduced total phenolic contents of SCG that influenced its colonic fermentation. Medium roasted hgf-NDSCG produced elevated SCFAs (61:22:17, acetate, propionate and butyrate) after prolonged (24h) fermentation, suppressed NO production (55%) in macrophages primarily by modulating IL-10, CCL-17, CXCL9, IL-1β, and IL-5 cytokines. SCG exerts anti-inflammatory activity, mediated by SCFAs production from its dietary fiber, by reducing the release of inflammatory mediators, providing the basis for SCG use in the control/regulation of inflammatory disorders. The results support the use of SGC in the food industry as dietary fiber source with health benefits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Photovoltaic module and interlocked stack of photovoltaic modules

    DOEpatents

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  7. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NF{kappa}B and AhR and EGFR-ERK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potapovich, Alla I.; Biology Department, Belarus State University, Skorina Prosp. 10, Minsk 220050; Lulli, Daniela

    Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure,more » the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 {mu}M resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted

  8. The DAN family: modulators of TGF-β signaling and beyond.

    PubMed

    Nolan, Kristof; Thompson, Thomas B

    2014-08-01

    Extracellular binding proteins or antagonists are important factors that modulate ligands in the transforming growth factor (TGF-β) family. While the interplay between antagonists and ligands are essential for developmental and normal cellular processes, their imbalance can lead to the pathology of several disease states. In particular, recent studies have implicated members of the differential screening-selected gene in neuroblastoma (DAN) family in disease such as renal fibrosis, pulmonary arterial hypertension, and reactivation of metastatic cancer stem cells. DAN family members are known to inhibit the bone morphogenetic proteins (BMP) of the TGF-β family. However, unlike other TGF-β antagonist families, DAN family members have roles beyond ligand inhibition and can modulate Wnt and vascular endothelial growth factor (VEGF) signaling pathways. This review describes recent structural and functional advances that have expanded our understanding of DAN family proteins with regards to BMP inhibition and also highlights their emerging roles in the modulation of Wnt and VEGF signaling pathways. © 2014 The Protein Society.

  9. KRC-327, a selective novel inhibitor of c-Met receptor tyrosine kinase with anticancer activity.

    PubMed

    Park, Byung Hee; Jung, Kyung Hee; Yun, Sun-Mi; Hong, Sang-Won; Ryu, Jae Wook; Jung, Heejung; Ha, Jae Du; Lee, Jongkook; Hong, Soon-Sun

    2013-05-01

    c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), have been reported to be involved in tumorigenesis and metastatic progression. We synthesized a novel triazolopyridazine derivative KRC-327 which selectively targets the c-Met. When we performed receptor tyrosine kinases (RTKs) array with 42 different phosphorylated-RTKs, KRC-327 strongly inhibited expression of activated c-Met in MKN-45 cancer cells. This was confirmed by immunofluorescence staining. Also, KRC-327 decreased the expression of Gab1, Akt, signal transducer and activator of transcription 3 (STAT3) and Erk, down-stream signals of c-Met. KRC-327 strongly suppressed the growth of c-Met over-expressed cancer cells (MKN-45, SNU-638, SNU-5), while not in c-Met absent cancer cell lines (MKN-1, SNU-1). Furthermore, KRC-327 effectively induced cell cycle arrest, especially G0/G1 arrest by increasing expression of p21, p27 and decreasing that of cyclin D1. In the ligand-induced functional studies, KRC-327 inhibited proliferation of HGF-stimulated BxPC-3 cells, the migration of HGF-stimulated AGS cancer cells, and suppressed colony formation in HGF-stimulated U-87MG cells. In xenograft animal models, KRC-327 significantly not only delayed tumor growth but also suppressed phosphorylation of c-Met and its signaling cascades as well as proliferation. Taken together, these results demonstrate that KRC-327 selectively targets c-Met, resulting in inhibition of cell growth and proliferation. Therefore, we suggest that KRC-327 may be a novel drug candidate with the therapeutic potential of targeting c-Met in human cancer. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  10. KLK14 interactions with HAI-1 and HAI-2 serine protease inhibitors: A molecular dynamics and relative free-energy calculations study.

    PubMed

    Solís-Calero, Christian; Carvalho, Hernandes F

    2017-11-01

    Kallikrein 14 (KLK14) is a serine protease linked to several pathologies including prostate cancer and positively correlates with Gleason score. Though KLK14 functioning in cancer is poorly understood, it has been implicated in HGF/Met signaling, given that KLK14 proteolytically inhibits HGF activator-inhibitor 1 (HAI-1), which strongly inhibits pro-HGF activators, thereby contributing to tumor progression. In this work, KLK14 binding to either hepatocyte growth factor activator inhibitor type-1 (HAI-1) or type-2 (HAI-2) was essayed using homology modeling, molecular dynamic simulations and free-energy calculations through MM/PBSA and MM/GBSA. KLK14 was successfully modeled. Calculated free energies suggested higher binding affinity for the KLK14/HAI-1 interaction than for KLK14/HAI-2. This difference in binding affinity is largely explained by the higher stability of the hydrogen-bond networks in KLK14/HAI-1 along the simulation trajectory. A key arginine residue in both HAI-1 and HAI-2 is responsible for their interaction with the S1 pocket in KLK14. Additionally, MM/GBSA free-energy decomposition postulates that KLK14 Asp174 and Trp196 are hotspots for binding HAI-1 and HAI-2. © 2017 International Federation for Cell Biology.

  11. Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization

    DOE PAGES

    Yang, Mengjin; Kim, Dong Hoe; Klein, Talysa R.; ...

    2018-01-02

    To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules withmore » a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.« less

  12. Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mengjin; Kim, Dong Hoe; Klein, Talysa R.

    To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules withmore » a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.« less

  13. Influence of modulation frequency in rubidium cell frequency standards

    NASA Technical Reports Server (NTRS)

    Audoin, C.; Viennet, J.; Cyr, N.; Vanier, J.

    1983-01-01

    The error signal which is used to control the frequency of the quartz crystal oscillator of a passive rubidium cell frequency standard is considered. The value of the slope of this signal, for an interrogation frequency close to the atomic transition frequency is calculated and measured for various phase (or frequency) modulation waveforms, and for several values of the modulation frequency. A theoretical analysis is made using a model which applies to a system in which the optical pumping rate, the relaxation rates and the RF field are homogeneous. Results are given for sine-wave phase modulation, square-wave frequency modulation and square-wave phase modulation. The influence of the modulation frequency on the slope of the error signal is specified. It is shown that the modulation frequency can be chosen as large as twice the non-saturated full-width at half-maximum without a drastic loss of the sensitivity to an offset of the interrogation frequency from center line, provided that the power saturation factor and the amplitude of modulation are properly adjusted.

  14. Novel Modulation Method for Multidirectional Matrix Converter

    PubMed Central

    Misron, Norhisam; Aris, Ishak Bin; Yamada, Hiroaki

    2014-01-01

    This study presents a new modulation method for multidirectional matrix converter (MDMC), based on the direct duty ratio pulse width modulation (DDPWM). In this study, a new structure of MDMC has been proposed to control the power flow direction through the stand-alone battery based system and hybrid vehicle. The modulation method acts based on the average voltage over one switching period concept. Therefore, in order to determine the duty ratio for each switch, the instantaneous input voltages are captured and compared with triangular waveform continuously. By selecting the proper switching pattern and changing the slope of the carriers, the sinusoidal input current can be synthesized with high power factor and desired output voltage. The proposed system increases the discharging time of the battery by injecting the power to the system from the generator and battery at the same time. Thus, it makes the battery life longer and saves more energy. This paper also derived necessary equation for proposed modulation method as well as detail of analysis and modulation algorithm. The theoretical and modulation concepts presented have been verified in MATLAB simulation. PMID:25298969

  15. Preclinical Efficacy of the Anti-Hepatocyte Growth Factor Antibody Ficlatuzumab in a Mouse Brain Orthotopic Glioma Model Evaluated by Bioluminescence, PET, and MRI

    PubMed Central

    Mittra, Erik S.; Fan-Minogue, Hua; Lin, Frank I.; Karamchandani, Jason; Sriram, Venkataraman; Han, May; Gambhir, Sanjiv S.

    2016-01-01

    Purpose Ficlatuzumab is a novel therapeutic agent targeting the hepatocyte growth factor (HGF)/c-MET pathway. We summarize extensive preclinical work using this agent in a mouse brain orthotopic model of glioblastoma. Experimental Design Sequential experiments were done using eight- to nine-week-old nude mice injected with 3 × 105 U87 MG (glioblastoma) cells into the brain. Evaluation of ficlatuzumab dose response for this brain tumor model and comparison of its response to ficlatuzumab and to temozolamide were conducted first. Subsequently, various small-animal imaging modalities, including bioluminescence imaging (BLI), positron emission tomography (PET), and MRI, were used with a U87 MG-Luc 2 stable cell line, with and without the use of ficlatuzumab, to evaluate the ability to non-invasively assess tumor growth and response to therapy. ANOVA was conducted to evaluate for significant differences in the response. Results There was a survival benefit with ficlatuzumab alone or in combination with temozolamide. BLI was more sensitive than PET in detecting tumor cells. Fluoro-D-thymidine (FLT) PET provided a better signal-to-background ratio than 2[18F]fluoro-2-deoxy-D-glucose (FDG) PET. In addition, both BLI and FLT PET showed significant changes over time in the control group as well as with response to therapy. MRI does not disclose any time-dependent change. Also, the MRI results showed a temporal delay in comparison to the BLI and FLT PET findings, showing similar results one drug cycle later. Conclusions Targeting the HGF/c-MET pathway with the novel agent ficlatuzumab appears promising for the treatment of glioblastoma. Various clinically applicable imaging modalities including FLT, PET, and MRI provide reliable ways of assessing tumor growth and response to therapy. Given the clinical applicability of these findings, future studies on patients with glioblastoma may be appropriate. PMID:23983258

  16. Spatial resolution limitation of liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Wang, Bin; McManamon, Paul F., III; Pouch, John J.; Miranda, Felix A.; Anderson, James E.; Bos, Philip J.

    2004-10-01

    The effect of fringing electric fields in a liquid crystal (LC) Optical Phased Array (OPA), also referred to as a spatial light modulator (SLM), is a governing factor that determines the diffraction efficiency (DE) of the LC OPA for high resolution spatial phase modulation. In this article, the fringing field effect in a high resolution LC OPA is studied by accurate modeling the DE of the LC blazed gratings by LC director simulation and Finite Difference Time Domain (FDTD) simulation. Influence factors that contribute significantly to the DE are discussed. Such results provide fundamental understanding for high resolution LC devices.

  17. CCR researchers provide insight into pathway that initiates a common type of skin cancer | Center for Cancer Research

    Cancer.gov

    Since studies in mice have elucidated much about tumor biology, Stuart Yuspa, M.D., and Christophe Cataisson, Ph.D., of CCR’s Laboratory of Cancer Biology and Genetics, and their colleagues decided to study mice that overexpress hepatocyte growth factor (HGF) to understand the role the pathway plays in squamous cell cancer (SCC).

  18. Maximizing the Use of a Web-Based Soils Module: Targeting Diverse Populations

    ERIC Educational Resources Information Center

    Lippert, Robert

    2006-01-01

    This article deals with an on-line soils module project. The two goals for this part of the project were to determine if an on-line soils module could be successfully used for asynchronous instruction of two diverse populations and to determine which demographic factors are related to test performance. The module was presented to an eighth-grade…

  19. Role of HLA-G1 in trophoblast cell proliferation, adhesion and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Feng, E-mail: jiangfeng1161@163.com; Zhao, Hongxi; Wang, Li

    Trophoblast cells are important in embryo implantation and fetomaternal tolerance. HLA-G is specifically expressed at the maternal–fetal interface and is a regulator in pregnancy. The aim of the present study was to detect the effect of HLA-G1 on trophoblast cell proliferation, adhesion, and invasion. Human trophoblast cell lines (JAR and HTR-8/SVneo cells) were infected with HLA-G1-expressing lentivirus. After infection, HLA-G1 expression of the cells was detected by western blotting. Cell proliferation was detected by the BrdU assay. The cell cycle and apoptosis of JAR and HTR-8/SVneo cells was measured by flow cytometry (FCM). The invasion of the cells under different conditionsmore » was detected by the transwell invasion chamber assay. HLA-G1 didn't show any significant influence on the proliferation, apoptosis, adhesion, and invasion of trophocytes in normal culture conditions. However, HLA-G1 inhibited JAR and HTR-8/SVneo cells invasion induced by hepatocyte growth factor (HGF) under normal oxygen conditions. In conditions of hypoxia, HLA-G1 couldn't inhibit the induction of cell invasion by HGF. HLA-G1 is not an independent factor for regulating the trophocytes. It may play an indirect role in embryo implantation and formation of the placenta. - Highlights: • HLA-G1 could not influence trophocytes under normal conditions. • HLA-G1 inhibited cell invasion induced by HGF under normal oxygen condition. • HLA-G1 could not influence cell invasion under hypoxia conditions.« less

  20. Glycoprotein production for structure analysis with stable, glycosylation mutant CHO cell lines established by fluorescence-activated cell sorting.

    PubMed

    Wilke, Sonja; Krausze, Joern; Gossen, Manfred; Groebe, Lothar; Jäger, Volker; Gherardi, Ermanno; van den Heuvel, Joop; Büssow, Konrad

    2010-06-01

    Stable mammalian cell lines are excellent tools for the expression of secreted and membrane glycoproteins. However, structural analysis of these molecules is generally hampered by the complexity of N-linked carbohydrate side chains. Cell lines with mutations are available that result in shorter and more homogenous carbohydrate chains. Here, we use preparative fluorescence-activated cell sorting (FACS) and site-specific gene excision to establish high-yield glycoprotein expression for structural studies with stable clones derived from the well-established Lec3.2.8.1 glycosylation mutant of the Chinese hamster ovary (CHO) cell line. We exemplify the strategy by describing novel clones expressing single-chain hepatocyte growth factor/scatter factor (HGF/SF, a secreted glycoprotein) and a domain of lysosome-associated membrane protein 3 (LAMP3d). In both cases, stable GFP-expressing cell lines were established by transfection with a genetic construct including a GFP marker and two rounds of cell sorting after 1 and 2 weeks. The GFP marker was subsequently removed by heterologous expression of Flp recombinase. Production of HGF/SF and LAMP3d was stable over several months. 1.2 mg HGF/SF and 0.9 mg LAMP3d were purified per litre of culture, respectively. Homogenous glycoprotein preparations were amenable to enzymatic deglycosylation under native conditions. Purified and deglycosylated LAMP3d protein was readily crystallized. The combination of FACS and gene excision described here constitutes a robust and fast procedure for maximizing the yield of glycoproteins for structural analysis from glycosylation mutant cell lines.