Nordqvist, A C; Peyrard, M; Pettersson, H; Mathiesen, T; Collins, V P; Dumanski, J P; Schalling, M
1997-07-01
Insulin-like growth factors (IGFs) I and II have been implicated as autocrine or paracrine growth promoters. These growth factors bind to specific receptors, and the response is modulated by interaction with IGF-binding proteins (IGFBPs). We observed a strong correlation between anaplastic/atypical histopathology and a high IGF-II/IGFBP-2 mRNA ratio in a set of 68 sporadic meningiomas. A strong correlation was also found between clinical outcome and IGF-II/IGFBP-2 ratio, whereas previously used histochemical markers were less correlated to outcome. We suggest that a high IGF-II/IGFBP-2 mRNA ratio may be a sign of biologically aggressive behavior in meningiomas that can influence treatment strategies. We propose that low IGFBP-2 levels in combination with increased levels of IGF-II would result in more free IGF-II and consequently greater stimulation of proliferation.
Sferruzzi-Perri, A N; Owens, J A; Standen, P; Roberts, C T
2008-04-01
In guinea pigs, maternal insulin-like growth factor (IGF) infusion in early-pregnancy enhances placental transport near-term, increasing fetal growth and survival. The effects of IGF-II, but not IGF-I, appear due to enhanced placental labyrinthine (exchange) development. To determine if the type-2 IGF receptor (IGF2R) mediates these distinct actions of exogenous IGF-II in the mother, we compared the impact of IGF-II with an IGF-II analogue, Leu(27)-IGF-II, which only binds the IGF2R. IGF-II, Leu(27)-IGF-II (1mg/kg per day.sc) or vehicle were infused from days 20-38 of pregnancy (term = 67 days) and placental structure and uptake and transfer of [(3)H]-methyl-D-glucose (MG) and [(14)C]-amino-isobutyric acid (AIB) and fetal growth and plasma metabolites, were measured on day 62. Both IGF-II and Leu(27)-IGF-II increased the volume of placental labyrinth, trophoblast and maternal blood space within the labyrinth and total surface area of trophoblast for exchange, compared to vehicle. Leu(27)-IGF-II also reduced the barrier to diffusion (trophoblast thickness) compared to vehicle and IGF-II. Both IGF-II and Leu(27)-IGF-II increased fetal plasma amino acid concentrations and placental transfer of MG to the fetus compared to vehicle, with Leu(27)-IGF-II also increasing AIB transport compared with vehicle and IGF-II. In addition, Leu(27)-IGF-II increased fetal weight compared to vehicle. In conclusion, maternal treatment with IGF-II or Leu(27)-IGF-II in early gestation, induce similar placental and fetal outcomes near term. This suggests that maternal IGF-II in early gestation acts in part via the IGF2R to persistently enhance placental functional development and nutrient delivery and promote fetal growth.
Greenall, Sameer A; Bentley, John D; Pearce, Lesley A; Scoble, Judith A; Sparrow, Lindsay G; Bartone, Nicola A; Xiao, Xiaowen; Baxter, Robert C; Cosgrove, Leah J; Adams, Timothy E
2013-01-04
Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed "pro" and "big" IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.
Cytokines and growth factors which regulate bone cell function
NASA Astrophysics Data System (ADS)
Seino, Yoshiki
Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.
Greenall, Sameer A.; Bentley, John D.; Pearce, Lesley A.; Scoble, Judith A.; Sparrow, Lindsay G.; Bartone, Nicola A.; Xiao, Xiaowen; Baxter, Robert C.; Cosgrove, Leah J.; Adams, Timothy E.
2013-01-01
Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed “pro” and “big” IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling. PMID:23166326
Insulin-like growth factor-II regulates bone sialoprotein gene transcription.
Choe, Jin; Sasaki, Yoko; Zhou, Liming; Takai, Hideki; Nakayama, Yohei; Ogata, Yorimasa
2016-09-01
Insulin-like growth factor-I and -II (IGF-I and IGF-II) have been found in bone extracts of several different species, and IGF-II is the most abundant growth factor stored in bone. Bone sialoprotein (BSP) is a noncollagenous extracellular matrix glycoprotein associated with mineralized connective tissues. In this study, we have investigated the regulation of BSP transcription by IGF-II in rat osteoblast-like ROS17/2.8 cells. IGF-II (50 ng/ml) increased BSP mRNA and protein levels after 6-h stimulation, and enhanced luciferase activities of the constructs pLUC3 (-116 to +60), pLUC4 (-425 to +60), pLUC5 (-801 to +60) and pLUC6 (-938 to +60). Effects of IGF-II were inhibited by tyrosine kinase, extracellular signal-regulated kinase1/2 and phosphatidylinositol 3-kinase inhibitors, and abrogated by 2-bp mutations in cAMP response element (CRE), FGF2 response element (FRE) and homeodomain protein-binding site (HOX). The results of gel shift assays showed that nuclear proteins binding to CRE, FRE and HOX sites were increased by IGF-II (50 ng/ml) at 3 and 6 h. CREB1, phospho-CREB1, c-Fos and c-Jun antibodies disrupted the formation of the CRE-protein complexes. Dlx5 and Runx2 antibodies disrupted the FRE- and HOX-protein complex formations. These studies therefore demonstrated that IGF-II increased BSP transcription by targeting CRE, FRE and HOX elements in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB1, c-Fos, c-Jun, Dlx5 and Runx2 transcription factors appear to be key regulators of IGF-II effects on BSP transcription.
Divergent mechanisms of insulin-like growth factor I and II on rat hepatocyte proliferation.
Raper, S; Kothary, P; Ishoo, E; Dikin, M; Kokudo, N; Hashimoto, M; DeMatteo, R P
1995-07-21
Insulin-like growth factors I and II are peptides with a structural homology for proinsulin, and are involved in hepatocyte proliferation. IGF-I and IGF-II, however, have different metabolic roles, and their mechanisms of action are incompletely known. We hypothesized that IGF-I and IGF-II act by different signal transduction pathways. To test this hypothesis, hepatocytes from 200 g male Sprague-Dawley rats were isolated by a two-step collagenase perfusion technique and plated at a density of 10(5) cells/16 mm Primaria plate. Proliferation was measured by [3H]thymidine ([3H]thy) incorporation into DNA, and an autoradiographic nuclear labeling index (LI). To analyze signal transduction, cyclic AMP (cAMP) levels were measured 5 min after addition of reagents by a radioimmunoassay. Reagents (doses) used were: IGF-I (2 nM), IGF-II (2 nM), the inhibitory peptide somatostatin-14 (SS14) (10 nM), and the adenylyl cyclase antagonist dideoxyadenosine (DDA) (10 microM). A summary of the findings is as follows: (1) IGF-I stimulates [3H]thy, LI and cAMP accumulation. (2) IGF-II stimulates [3H]thy and LI but not cAMP; (3) IGF-I but not IGF-II effects are inhibited by SS14 and DDA. We conclude that the hepatotrophic effects of IGF-I and IGF-II occur by different mechanisms: IGF-I is cAMP-dependent, IGF-II is cAMP-independent.
Hughes, Amy; Mohanasundaram, Daisy; Kireta, Svjetlana; Jessup, Claire F; Drogemuller, Chris J; Coates, P Toby H
2013-03-15
The early loss of functional islet mass (50-70%) due to apoptosis after clinical transplantation contributes to islet allograft failure. Insulin-like growth factor (IGF)-II is an antiapoptotic protein that is highly expressed in β-cells during development but rapidly decreases in postnatal life. We used an adenoviral (Ad) vector to overexpress IGF-II in isolated rat islets and investigated its antiapoptotic action against exogenous cytokines interleukin-1β- and interferon-γ-induced islet cell death in vitro. Using an immunocompromised marginal mass islet transplant model, the ability of Ad-IGF-II-transduced rat islets to restore euglycemia in nonobese diabetic/severe combined immunodeficient diabetic recipients was assessed. Ad-IGF-II transduction did not affect islet viability or function. Ad-IGF-II cytokine-treated islets exhibited decreased cell death (40% ± 2.8%) versus Ad-GFP and untransduced control islets (63.2% ± 2.5% and 53.6% ± 2.3%, respectively). Ad-IGF-II overexpression during cytokine treatment resulted in a marked reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells (8.3% ± 1.4%) versus Ad-GFP control (41% ± 4.2%) and untransduced control islets (46.5% ± 6.2%). Western blot analysis confirmed that IGF-II inhibits apoptosis via activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Transplantation of IGF-II overexpressing islets under the kidney capsule of diabetic mice restored euglycemia in 77.8% of recipients compared with 18.2% and 47.5% of Ad-GFP and untransduced control islet recipients, respectively (P<0.05, log-rank [Mantel-Cox] test). Antiapoptotic IGF-II decreases apoptosis in vitro and significantly improved islet transplant outcomes in vivo. Antiapoptotic gene transfer is a potentially powerful tool to improve islet survival after transplantation.
Ji, Yuanyuan; Wang, Zhidong; Chen, Haiyan; Zhang, Lei; Zhuo, Fei; Yang, Qingqing
2018-05-09
Chronic hepatitis B virus (HBV) infection (CHB) plays a central role in the etiology of hepatocellular carcinoma (HCC). Emerging evidence implicates insulin-like growth factor (IGF)-II as a major risk factor for the growth and development of HCC. However, the relationship between HBV infection and IGF-II functions remains to be elucidated. Levels of circulating IGF-II and IGF-I receptor (IGF-IR) in healthy donors (HDs) and CHB patients were tested by ELISA. Human HCC cell lines (HepG-2, SMMC-7721, MHCC97-H) were incubated with serum from HDs and CHB patients at various concentrations for 24, 48, and 72 h. MTT and plate colony formation assays, BrdU ELISA, ELISA, small-interfering RNA (siRNA) transfection, quantitative real-time PCR, and western blot were applied to assess the functional and molecular mechanisms in HCC cell lines. Serum levels of IGF-II and IGF-IR were significantly higher in CHB patients than in HDs. Additionally, serum from CHB patients directly induced cell growth, proliferation, IGF-II secretion, and HDGF-related protein-2 (HRP-2) and nuclear protein 1 (NUPR1) mRNA and protein expression in HCC cells. Moreover, serum from CHB patients increased IGF-II-induced cell growth, proliferation, and HRP-2 and NUPR1 mRNA and protein expression in HCC cells. Blockade of IGF-IR clearly inhibited the above effects. Most importantly, interference with IGF-II function markedly repressed the cell proliferation and HRP-2 and NUPR1 mRNA and protein expression induced by serum from CHB patients. Furthermore, serum from CHB patients induced ERK phosphorylation via IGF-IR, with the MEK inhibitor PD98059 significantly decreasing CHB patient serum-induced IGF-II secretion, cell proliferation, and HRP-2 and NUPR1 mRNA and protein expression. Serum from CHB patients increases cell growth and proliferation and enhances HRP-2 and NUPR1 expression in HCC cells via the IGF-II/IGF-IR/MEK/ERK signaling pathway. These findings help to explain the molecular mechanisms underlying HBV-related HCC and may lead to the development of effective therapies. © 2018 The Author(s). Published by S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep
2002-01-01
Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.
Insulin-Like Growth Factors and Metabolic Syndrome in Obese Children.
Inzaghi, Elena; Baldini Ferroli, Barbara; Fintini, Danilo; Grossi, Armando; Nobili, Valerio; Cianfarani, Stefano
2017-01-01
Insulin-like growth factor (IGF)-I is related to cardiometabolic risk in adults, whereas the metabolic role of IGF-II is unclear. The aim of this study was to assess IGFs in obese children and correlate them with metabolic syndrome (MetS) components. This is a retrospective study including 574 obese children (11.34 ± 3.16 years). All subjects underwent complete anthropometry and biochemical assessment. In a subgroup of 136 subjects, body composition was evaluated. IGF-I was measured in 300 obese subjects and IGF-II in 77 obese and 15 lean children. 177 subjects were divided according to the presence of 1 or more MetS criteria: group 1, subjects with 1 MetS criterion; group 2, subjects with 2 components; and group 3, subjects with MetS diagnosis. IGF-I, IGF-II, and IGF-I/insulin-like growth factor-binding protein-3 ratio were not different among subjects with an increasing number of MetS criteria and were not associated with single components of MetS as well as with body composition parameters. In children younger than 10 years, IGF-I directly correlated with high-density lipoprotein cholesterol (p < 0.005) even after controlling for confounders. IGF-II was significantly higher in obese children and correlated with parameters of insulin sensitivity (p < 0.05). IGFs were neither related to MetS nor to body composition parameters in obese children. Further studies are needed to clarify the mechanisms underlying the relationship between IGF-II and insulin sensitivity. © 2017 S. Karger AG, Basel.
Relaxation of Insulin-Like Growth Factor II Imprinting in Prostate Cancer Development
2005-01-01
in the Results in Senescence and Biallelic IGF2 Expression- Hypo - mouse and are putative ICRs (Fig. 3A). At MR2, located within methylation has been...elderly. In In mammals, reproduction is controlled by the hypo - the case of prostate cancer, the most commonly diagnosed thalamic--pituitary-gonadal... caloric the ligands IGF-I, IGF-II, cell-surface receptors and binding intake or hormonal exposure), loss of imprinting of IGF-II proteins. Epidemiological
Mu, Xiaoyu; Qi, Weihong; Liu, Yunzhang; Zhou, Jianfeng; Li, Yun; Rong, Xiaozhi; Lu, Ling
2017-08-01
Insulin-like growth factor II (IGF-II) can stimulate myogenesis and is critically involved in skeletal muscle differentiation. The presence of negative regulators of this process, however, is not well explored. Here, we showed that in myoblast cells, IGF-II negatively regulated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA expression, while constitutive expression of PGC-1α induced myoblast differentiation. These results suggest that the negative regulation of PGC-1α by IGF-II may act as a negative feedback mechanism in IGF-II-induced myogenic differentiation. Reporter assays demonstrated that IGF-II suppresses the basal PGC-1α promoter activity. Blocking the IGF-II signaling pathway increased the endogenous PGC-1α levels. In addition, pharmacological inhibition of PI3 kinase activity prevented the downregulation of PGC-1α but the activation of mTOR was not required for this process. Importantly, further analysis showed that forkhead transcription factor FoxO1 contributes to mediating the effects of IGF-II on PGC-1 promoter activity. These findings indicate that IGF-II reduces PGC-1α expression in skeletal muscle cells through a mechanism involving PI3K-Akt-FoxO1 but not p38 MAPK or Erk1/2 MAPK pathways.
Ververis, J J; Ku, L; Delafontaine, P
1993-06-01
Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.
Woodson, Karen; Flood, Andrew; Green, Lisa; Tangrea, Joseph A; Hanson, Jeffrey; Cash, Brooks; Schatzkin, Arthur; Schoenfeld, Phillip
2004-03-03
Loss of imprinting (LOI) of insulin-like growth factor-II (IGF-II) may be an inherited epigenetic trait that is polymorphic in the population, and its presence may predispose an individual to the development of colorectal cancer. We evaluated the association between LOI of IGF-II in normal colonic mucosal samples and adenomas in women participating in a colonoscopy screening study. Among 40 participants, 11 (27.5%) had LOI of IGF-II in their normal colonic mucosal tissue. After adjusting for body mass index and family history of colorectal cancer, LOI status was associated with a fivefold increased risk of adenoma formation (odds ratio = 5.2, 95% confidence interval = 1.0 to 26.7). On average, IGF-II expression was more than threefold higher among women with LOI of IGF-II than among women with normal imprinting status. Our findings support the hypothesis that LOI of IGF-II is an epigenetic trait polymorphic in the population and suggest that LOI of IGF-II may play a role in colorectal cancer. These findings are intriguing and need to be confirmed in larger studies.
Mohan, Subburaman; Richman, Charmaine; Guo, Rongqing; Amaar, Yousef; Donahue, Leah Rea; Wergedal, Jon; Baylink, David J.
2010-01-01
To evaluate the relative contribution of the GH/IGF axis to the development of peak bone mineral density (BMD), we measured skeletal changes in IGF-I knockout (KO), IGF-II KO, and GH-deficient lit/lit mice and their corresponding control mice at d 23 (prepubertal), 31 (pubertal), and 56 (postpubertal) in the entire femur by dual energy x-ray absorptiometry and in the mid-diaphysis by peripheral quantitative computed tomography. Lack of growth factors resulted in different degrees of failure of skeletal growth depending on the growth period and the growth factor involved. At d 23, femoral length, size, and BMD were reduced by 25–40%, 15–17%, and 8–10%, respectively, in mice deficient in IGF-I, IGF-II, and GH compared with the control mice. During puberty, BMD increased by 40% in control mice and by 15% in IGF-II KO and GH-deficient mice, whereas it did not increase in the IGF-I KO mice. Disruption of IGF-I, but not IGF-II, completely prevented the periosteal expansion that occurs during puberty, whereas it was reduced by 50% in GH-deficient mice. At d 56, femoral length, size, and BMD were reduced by 40–55%, 11–18%, and 25–32%, respectively, in mice deficient in IGF-I, IGF-II, and GH compared with the control mice. Our data demonstrate that: 1) mice deficient in IGF-I exhibit a greater impairment in bone accretion than mice deficient in IGF-II or GH; 2) GH/IGF-I, but not IGF-II, is critical for puberty-induced bone growth; and 3) IGF-I effects on bone accretion during prepuberty are mediated predominantly via mechanisms independent of GH, whereas during puberty they are mediated via both GH-dependent and GH-independent mechanisms. PMID:12586770
NASA Technical Reports Server (NTRS)
Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.
1994-01-01
Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.
IGF-II receptors and IGF-II-stimulated glucose transport in human fat cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, M.K.; Buchanan, C.; Raineri-Maldonado, C.
1990-03-01
Insulin-like growth factor II (IGF-II) receptors have been described in rat but not in human adipocytes. In both species, IGF-II has been reported to stimulate glucose transport by interacting with the insulin receptor. In this study, we have unequivocally demonstrated the presence of IGF-II receptors in human adipocytes. 125I-labeled IGF-II specifically binds to intact adipocytes, membranes, and lectin-purified detergent solubilized extracts. Through the use of 0.5 mM disuccinimidyl suberate, 125I-IGF-II is cross-linked to a 260-kDa protein that is identified as the IGF-II receptor by displacement experiments with unlabeled IGF-II, IGF-I, and insulin and either by immunoprecipitation or by Western blotmore » analysis with mannose 6-phosphate receptor antibodies. The concentrations of IGF-II required for half-maximal and maximal stimulation of glucose transport in human adipocytes are 35 and 100 times more than that of insulin. The possibility of IGF-II stimulating glucose transport by interacting predominantly with the insulin receptor is suggested by the following: (1) the concentration of IGF-II that inhibits half of insulin binding is only 20 times more than that of insulin; (2) the lack of an additive effect of IGF-II and insulin for maximal stimulation of glucose transport; (3) the ability of monoclonal insulin receptor antibodies to decrease glucose transport stimulated by submaximal concentrations of both IGF-II and insulin; and (4) the ability of IGF-II to stimulate insulin receptor autophosphorylation albeit at a reduced potency when compared with insulin.« less
Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F
2014-07-24
MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep.
Moerth, Corinna; Schneider, Marlon R; Renner-Mueller, Ingrid; Blutke, Andreas; Elmlinger, Martin W; Erben, Reinhold G; Camacho-Hübner, Cecilia; Hoeflich, Andreas; Wolf, Eckhard
2007-01-01
This study tested whether elevated levels of IGF-II in the postnatal period can rescue the dwarfism in IGF-I-deficient mice. Heterozygous Igf1 mutant mice [I(+/-) II(wt)] were crossed with heterozygous Igf1 mutant, phosphoenolpyruvate carboxykinase promoter IGF-II transgenic mice [I(+/-) II(tg)], and [I(+/+) II(wt)], [I(+/+) II(tg)], [I(-/-) II(wt)], and [I(-/-) II(tg)] offspring were investigated. IGF-II levels were 11- and 6-fold higher in male and female [I(-/-) II(tg)] vs. [I(-/-) II(wt)] animals. Western ligand blot analysis revealed markedly reduced activities of 30- and 32-kDa IGF binding proteins (IGFBPs) (most likely IGFBP-1 and IGFBP-2) and the 39- to 43-kDa IGFBP-3 double band in serum from IGF-I-deficient mice. These binding proteins were partially restored by overexpression of IGF-II. Analysis of weight data from the early postnatal period until d 60 showed that, in the absence of IGF-I, elevated levels of IGF-II have no effect on body weight gain. A detailed analysis of body proportions, bone parameters, and organ weights of 60-d-old mice also failed to show effects of IGF-II with one important exception: in Igf1 mutant and also Igf1 intact male mice, IGF-II overexpression significantly increased absolute (+32.4 and +28.6%; P < 0.01) and relative kidney weights (+29.0 and +22.4%; P < 0.001). These changes in kidney weight were associated with reduced phosphorylation of p38 MAPK. In summary, our genetic model shows that substantial amounts of IGF-II in the circulation do not rescue the postnatal growth deficit of IGF-I-deficient mice but increase absolute and relative kidney weights of normal and IGF-I-deficient male mice, suggesting a gender-specific role of IGF-II for kidney growth.
Huang, Chih-Yang; Kuo, Chia-Hua; Pai, Pei-Ying; Ho, Tsung-Jung; Lin, Yueh-Min; Chen, Ray-Jade; Tsai, Fuu-Jen; Vijaya Padma, V; Kuo, Wei-Wen; Huang, Chih-Yang
2018-04-15
Cardiac hypertrophy is a major characteristic of early-stage hypertension-related heart failure. We have found that the insulin-like growth factor receptor II (IGF-IIR) signaling was critical for hypertensive angiotensin II-induced cardiomyocyte hypertrophy and apoptosis. Moreover, this IGF-IIR signaling was elegantly modulated by the heat shock transcription factors (HSFs) during heart failure. However, the detailed mechanism by which HSFs regulates IGF-IIR during hypertension-induced cardiac hypertrophy remains elusive. In this study, we found that heat shock transcription factor 2 (HSF2) activated IGF-IIR to induce cardiac hypertrophy for hypertension-induced heart failure. The transcriptional activity of HSF2 appeared to be primarily mediated by SUMOylation via conjugation with small ubiquitin-like modifier-1 (SUMO-1). The SUMOylation of HSF2 was severely attenuated by MEL18 (also known as polycomb group ring finger 2 or PCGF2) in the heart of spontaneously hypertensive rats (SHR). Inhibition of HSF2 SUMOylation severely induced cardiac hypertrophy via IGF-IIR-mediated signaling in hypertensive rats. Angiotensin II receptor type I blocker (ARB) treatment in spontaneously hypertensive rats restored HSF2 SUMOylation and alleviated the cardiac defects. Thus, our study uncovered a novel MEL18-SUMO-1-HSF2-IGF-IIR pathway in the heart that profoundly influences cardiac hypertrophy for hypertension-induced heart failure. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, H; Mistry, J; Nicar, M J; Khosravi, M J; Diamandis, A; van Doorn, J; Juul, A
1999-01-01
Insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) play an important role in cell growth and differentiation. Clinical and epidemiological studies have indicated that measuring IGFs and IGFBPs in blood has potential implications in assessing growth-related abnormalities and risks of certain types of cancer. To facilitate the application, we reported a large collection of reference ranges of IGFs and IGFBPs in normal population and evaluations of these molecules in serum and plasma as well as the impact of freeze-thaw cycles on the measurement. IGF-I, IGFBP-3 andALS showed a similar pattern of change associated with age. Levels of these molecules were low at birth and increased with age through puberty. After puberty the levels declined slowly with age. Overall, IGF-I, IGFBP-3 and ALS were slightly higher in females than in males. Free IGF-I accounted for about 1% of the total IGF-I and its variation with age was similar to total IGF-I. IGF-II levels were also increased with age from birth to puberty, but became stable after puberty. There was little difference in IGF-II levels between genders. IGFBP-2 levels declined with age from birth to puberty. Levels of IGFBP-6 in contrast were increased with age. These IGF binding proteins were higher in males than in females. IGFs, IGFBP-3 and ALS were 5-10% higher in serum than in plasma. IGFBP-2 and IGFBP-6 differed substantially between serum and plasma. Freeze-thaw treatment up to five cycles had little impact on plasma levels of IGFs and IGFBP-3. Our observations suggest that levels of IGFs and their binding proteins are varied with age, gender, and types of specimen and that these variations need to be taken into consideration when IGFs and their binding proteins are utilized in clinic and research.
Akanji, A O; Suresh, C G; Al-Radwan, R; Fatania, H R
2007-01-01
Insulin-like growth factors (IGF-I, IGF-II) and their binding protein (IGFBP-3) may be risk markers for coronary heart disease (CHD). This study aimed to assess the levels and determinants of the serum levels of IGF-I, IGF-II and IGFBP-3 in Arab patients with established CHD. Two groups of subjects were matched for age, gender, BMI and waist-hip ratio (WHR): (i) CHD (n = 105), median age 51.0 (range 40.0-60.0) years; (ii) controls (n = 97) aged 49.0 (range 37.0-60.0) years. We measured fasting serum levels of glucose and lipoproteins (total cholesterol, triglycerides, LDL, HDL, apo B), insulin, HOMA-IR, IGF-I, IGF-II and IGFBP-3 and compared the results between groups. The effects of body mass and the metabolic syndrome (MS) on IGF levels were also examined, and linear correlations were sought between the various parameters. The levels of IGF-I, IGF-II and IGFBP-3 were significantly lower (all p<0.01) for the CHD group than for the control group. These differences were not influenced by BMI or with the presence of MS. In CHD, there were no significant correlations between levels of IGF-I and IGF-II and age, BMI, WHR, lipoprotein concentrations and insulin sensitivity, although IGFBP-3 had weakly significant relationships with some of the lipoproteins. Levels of IGF-I, IGF-II and IGFBP3 are reduced in male Arab patients with CHD, and did not appear influenced by traditional CHD risk factors such as age, BMI, insulin sensitivity and presence of MS. Perturbations in the IGF/IGFBP-3 axis may be potential additional targets for pharmacological manipulation in CHD.
Fuchs, Charles S; Goldberg, Richard M; Sargent, Daniel J; Meyerhardt, Jeffrey A; Wolpin, Brian M; Green, Erin M; Pitot, Henry C; Pollak, Michael
2008-12-15
Insulin-like growth factor (IGF)-I and IGF-II stimulate neoplastic cell growth and inhibit apoptosis, whereas IGF-binding protein-3 (IGFBP-3) inhibits the bioavailability of IGF-I and has independent proapoptotic activity. We examined the influence of baseline plasma levels of IGF-I, IGF-II, IGFBP-3, and C-peptide on outcome among patients receiving first-line chemotherapy for metastatic colorectal cancer. The plasma levels of IGF-I, IGF-II, IGFBP-3, and C-peptide as well as data on prognostic factors and body size were measured at baseline among 527 patients participating in a randomized trial of first-line chemotherapy for metastatic colorectal cancer. Higher baseline plasma IGFBP-3 levels were associated with a significantly greater chemotherapy response rate (P = 0.03) after adjusting for other prognostic factors, whereas neither IGF-I nor IGF-II levels significantly predicted tumor response. Higher levels of IGF-I, IGF-II, and IGFBP-3 were all univariately associated with improved overall survival (P = 0.0001 for all). In a model that mutually adjusted for IGF-I and IGFBP-3, as well as other prognostic factors, increasing baseline-circulating IGFBP-3 was associated with a significantly longer time to tumor progression (P = 0.03), whereas circulating IGF-I was not associated with disease progression (P = 0.95). Levels of C-peptide were not associated with any measure of patient outcome. Among colorectal cancer patients receiving first-line chemotherapy, increasing levels of IGFBP-3, an endogenous antagonist to IGF-I, are associated with an improved objective treatment response and a prolonged time to cancer progression. The IGF pathway may represent an important target for future treatment strategies.
Association of IGF-I and IGF-II with myofiber regeneration in vivo.
Keller, H L; St Pierre Schneider, B; Eppihimer, L A; Cannon, J G
1999-03-01
This study examined expression of insulinlike growth factor (IGF) in the myofibers and nonmyofibrillar structures of murine soleus muscle following contraction-induced damage. Identifying the cellular sources of this myogenic growth factor could improve muscle rehabilitation strategies. Immunohistochemical analysis of muscle sections indicated that the number of myofibers expressing both IGF-I and IGF-II increased significantly at 4, 7, and 10 days following injury, compared with control. Muscle spindles and vascular tissue expressed only IGF-II, and staining intensity did not change following injury. The number of fibers expressing developmental myosin heavy chain increased significantly at 7 and 10 days postinjury, and these usually coexpressed IGF. No IGF-specific staining of interstitial/inflammatory cells was observed. Therefore, expression of IGF after mechanically induced fiber damage occurs exclusively within regenerating fibers without supplemental delivery of IGF to the tissue by inflammatory cells or changes in constitutive expression of IGF-II in vascular tissue.
Alexander, Thomas H; Sage, August B; Chen, Albert C; Schumacher, Barbara L; Shelton, Elliot; Masuda, Koichi; Sah, Robert L; Watson, Deborah
2010-10-01
Tissue engineering of human nasal septal chondrocytes offers the potential to create large quantities of autologous material for use in reconstructive surgery of the head and neck. Culture with recombinant human growth factors may improve the biochemical and biomechanical properties of engineered tissue. The objectives of this study were to (1) perform a high-throughput screen to assess multiple combinations of growth factors and (2) perform more detailed testing of candidates identified in part I. In part I, human nasal septal chondrocytes from three donors were expanded in monolayer with pooled human serum (HS). Cells were then embedded in alginate beads for 2 weeks of culture in medium supplemented with 2% or 10% HS and 1 of 90 different growth factor combinations. Combinations of insulin-like growth factor-I (IGF-1), bone morphogenetic protein (BMP)-2, BMP-7, BMP-13, growth differentiation factor-5 (GDF-5), transforming growth factor β (TGFβ)-2, insulin, and dexamethasone were evaluated. Glycosaminoglycan (GAG) accumulation was measured. A combination of IGF-1 and GDF-5 was selected for further testing based on the results of part I. Chondrocytes from four donors underwent expansion followed by three-dimensional alginate culture for 2 weeks in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5. Chondrocytes and their associated matrix were then recovered and cultured for 4 weeks in 12 mm transwells in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5 (the same medium used for alginate culture). Biochemical and biomechanical properties of the neocartilage were measured. In part I, GAG accumulation was highest for growth factor combinations including both IGF-1 and GDF-5. In part II, the addition of IGF-1 and GDF-5 to 2% HS resulted in a 12-fold increase in construct thickness compared with 2% HS alone (p < 0.0001). GAG and type II collagen accumulation was significantly higher with IGF-1 and GDF-5. Confined compression modulus was greatest with 2% HS, IGF-1, and GDF-5. Supplementation of medium with IGF-1 and GDF-5 during creation of neocartilage constructs results in increased accumulation of GAG and type II collagen and improved biomechanical properties compared with constructs created without the growth factors.
Keku, Temitope O.; Vidal, Adriana; Oliver, Shannon; Hoyo, Catherine; Hall, Ingrid J.; Omofoye, Seun; McDoom, Maya; Worley, Kendra; Galanko, Joseph; Sandler, Robert S.; Millikan, Robert
2014-01-01
Purpose Evaluating genetic susceptibility may clarify effects of known environmental factors and also identify individuals at high risk. We evaluated the association of four insulin-related pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)n repeat, insulin-like growth factor-2 (IGF-II) (rs680), insulin-like growth factor binding protein-3 (IGFBP-3) (rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study. Methods Participants were African Americans (231cases, 306 controls) and Whites (297 cases, 530 controls). Consenting subjects provided blood specimens, and lifestyle/diet information. Genotyping for all genes except IGF-I was performed by the 5′-exonuclease (Taqman) assay. The IGF-I (CA)n repeat was assayed by PCR, and fragment analysis. Circulating proteins were measured by enzyme immunoassays. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression. Results The IGF-I (CA)19 repeat was higher in White controls (50%) than African American controls (31%). Whites homozygous for the IGF-I (CA)19 repeat had a nearly two fold increase in risk of colon cancer (OR=1.77; 95%CI=1.15–2.73), but not African Americans (OR= 0.73, 95%CI 0.50–1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon cancer risk (OR= 0.49, 95%CI 0.28–0.88) in Whites only. Carrying the IGFBP-3 variant alleles was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p- trend < 0.05). Conclusions These results support an association between insulin pathway-related genes and elevated colon cancer risk in Whites but not in African Americans. PMID:22565227
Keku, Temitope O; Vidal, Adriana; Oliver, Shannon; Hoyo, Catherine; Hall, Ingrid J; Omofoye, Oluwaseun; McDoom, Maya; Worley, Kendra; Galanko, Joseph; Sandler, Robert S; Millikan, Robert
2012-07-01
Evaluating genetic susceptibility may clarify effects of known environmental factors and also identify individuals at high risk. We evaluated the association of four insulin-related pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)( n ) repeat, insulin-like growth factor-2 (IGF-II) (rs680), insulin-like growth factor-binding protein-3 (IGFBP-3) (rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study. Participants were African Americans (231 cases and 306 controls) and Whites (297 cases, 530 controls). Consenting subjects provided blood specimens and lifestyle/diet information. Genotyping for all genes except IGF-I was performed by the 5'-exonuclease (Taqman) assay. The IGF-I (CA)(n) repeat was assayed by PCR and fragment analysis. Circulating proteins were measured by enzyme immunoassays. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated by logistic regression. The IGF-I (CA)( 19 ) repeat was higher in White controls (50 %) than African American controls (31 %). Whites homozygous for the IGF-I (CA)(19) repeat had a nearly twofold increase in risk of colon cancer (OR = 1.77; 95 % CI = 1.15-2.73), but not African Americans (OR = 0.73, 95 % CI 0.50-1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon cancer risk (OR = 0.49, 95 % CI 0.28-0.88) in Whites only. Carrying the IGFBP-3 variant alleles was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p-trend <0.05). These results support an association between insulin pathway-related genes and elevated colon cancer risk in Whites but not in African Americans.
Lee, Kate L; Middleditch, Martin J; Williams, Geoffrey M; Brimble, Margaret A; Cooper, Garth J S
2015-03-01
The search for an islet β-cell growth factor has been a key objective in recent diabetes research, because the ability to regenerate and/or protect the functioning β-cell population in patients could result in a great advancement for diabetes treatment. IGF-I and IGF-II are known to play crucial roles in fetal growth and prenatal development, and there is growing evidence that IGF-II increases β-cell proliferation and survival in vitro and in vivo. A search for the source of IGF-II-like immunoreactivity in isolated β-cell secretory granules from the murine cell line βTC6-F7 revealed a novel 2-chain IGF-II-derived peptide, which we named vesiculin and which has been shown to be a full insulin agonist. Here, we present a liquid chromatography-tandem mass spectrometry method that enables selective detection and semiquantitation of the highly related IGF-II and vesiculin molecules. We have used this method to measure these 2 peptides in conditioned media from 2 β-cell lines, produced under increasing glucose concentrations. This technique detected both IGF-II and vesiculin in media conditioned by MIN6 and βTC6-F7 cells at levels in the range of 0 to 6 μM (total insulin, 80-450 μM) and revealed a glucose-stimulated increase in insulin, IGF-II, and vesiculin. IGF-II was detected in adult human and neonatal mouse serum in high levels, but vesiculin was not present. The methodology we present herein has utility for detecting and differentiating active peptides that are highly related and of low abundance.
Rapid molecular evolution across amniotes of the IIS/TOR network
McGaugh, Suzanne E.; Bronikowski, Anne M.; Kuo, Chih-Horng; Reding, Dawn M.; Addis, Elizabeth A.; Flagel, Lex E.; Janzen, Fredric J.
2015-01-01
The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades. PMID:25991861
Rapid molecular evolution across amniotes of the IIS/TOR network.
McGaugh, Suzanne E; Bronikowski, Anne M; Kuo, Chih-Horng; Reding, Dawn M; Addis, Elizabeth A; Flagel, Lex E; Janzen, Fredric J; Schwartz, Tonia S
2015-06-02
The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.
A novel two-chain IGF-II-derived peptide from purified β-cell granules.
Buchanan, Christina M; Phillips, Anthony R J; Cooper, Garth J S
2010-10-01
Insulin-like growth factor II (IGF-II) is a potent mitogen that regulates prenatal growth and development in both humans and rodents. Its role in post-natal life is less clear although immunohistochemical studies have observed IGF-II-like immunoreactivity (IGF-II-LI) associated with insulin-producing pancreatic β-cells. Here we isolated secretory granules from a β-cell line, βTC6-F7, and characterized the nature of the IGF-II-LI located therein. Secretory granules were isolated from cultured mouse βTC6-F7 cells by ultracentrifugation. Granule protein content was separated by reversed-phase HPLC, and assayed for IGF-II (radioimmunoassay) prior to identification by gas-phase NH(2)-terminal sequencing and MALDI-TOF MS. Effects of glucose incorporation into muscle glycogen were determined by incubating with isolated rat soleus muscle strips. βTC6-F7 cells contained 60 ± 8 pmol of IGF-II-LI per 10⁶ cells compared to 340 ± 44 pmol insulin-LI per 10⁶ cells. IGF-II immunoreactive fractions were found to contain an IGF-II-like molecule with a molecular mass of 6847.6 Da. The protein was found to be a two-chain insulin-like product of Igf2 that corresponds to mouse des(37-40)IGF-II, which we termed 'vesiculin'. This molecule was also detectable in βTC6-F7 cells by intact-cell mass spectrometry. Mouse vesiculin evoked concentration-dependent stimulation of muscle glycogen synthesis ex vivo with an EC(50) value of 131 nM ± 1.35. Vesiculin, des(37-40)IGF-II, is a novel two-chain insulin-like hormone and the major "IGF-II-like" peptide found in purified mouse βTC6-F7 secretory granules. It stimulated ex vivo muscle glycogen synthesis with an efficacy greater than or equal to the intrinsic potency of IGF-II when compared to insulin derived from the same species. Copyright © 2010 Growth Hormone Research Society. Published by Elsevier Ltd. All rights reserved.
Trojan, J; Johnson, T R; Rudin, S D; Blossey, B K; Kelley, K M; Shevelev, A; Abdul-Karim, F W; Anthony, D D; Tykocinski, M L; Ilan, J
1994-01-01
Teratocarcinoma is a germ-line carcinoma giving rise to an embryoid tumor with structures derived from the three embryonic layers: mesoderm, endoderm, and ectoderm. Teratocarcinoma is widely used as an in vitro model system to study regulation of cell determination and differentiation during mammalian embryogenesis. Murine embryonic carcinoma (EC) PCC3 cells express insulin-like growth factor I(IGF-I) and its receptor, while all derivative tumor structures express IGF-I and IGF-II and their receptors. Therefore the system lends itself to dissect the role of these two growth factors during EC differentiation. With an episomal antisense strategy, we define a role for IGF-I in tumorigenicity and evasion of immune surveillance. Antisense IGF-I EC transfectants are shown to elicit a curative anti-tumor immune response with tumor regression at distal sites. In contrast, IGF-II is shown to drive determination and differentiation in EC cells. Since IGF-I and IGF-II bind to type I receptor and antisense sequence used for IGF-II cannot form duplex with endogenous IGF-I transcripts, it follows that this receptor is not involved in determination and differentiation. Images PMID:8016120
IGF-II and IGFBP-6 regulate cellular contractility and proliferation in Dupuytren's disease.
Raykha, Christina; Crawford, Justin; Gan, Bing Siang; Fu, Ping; Bach, Leon A; O'Gorman, David B
2013-10-01
Dupuytren's disease (DD) is a common and heritable fibrosis of the palmar fascia that typically manifests as permanent finger contractures. The molecular interactions that induce the development of hyper-contractile fibroblasts, or myofibroblasts, in DD are poorly understood. We have identified IGF2 and IGFBP6, encoding insulin-like growth factor (IGF)-II and IGF binding protein (IGFBP)-6 respectively, as reciprocally dysregulated genes and proteins in primary cells derived from contracture tissues (DD cells). Recombinant IGFBP-6 inhibited the proliferation of DD cells, patient-matched control (PF) cells and normal palmar fascia (CT) cells. Co-treatments with IGF-II, a high affinity IGFBP-6 ligand, were unable to rescue these effects. A non-IGF-II binding analog of IGFBP-6 also inhibited cellular proliferation, implicating IGF-II-independent roles for IGFBP-6 in this process. IGF-II enhanced the proliferation of CT cells, but not DD or PF cells, and significantly enhanced DD and PF cell contractility in stressed collagen lattices. While IGFBP-6 treatment did not affect cellular contractility, it abrogated the IGF-II-induced contractility of DD and PF cells in stressed collagen lattices. IGF-II also significantly increased the contraction of DD cells in relaxed lattices, however this effect was not evident in relaxed collagen lattices containing PF cells. The disparate effects of IGF-II on DD and PF cells in relaxed and stressed contraction models suggest that IGF-II can enhance lattice contractility through more than one mechanism. This is the first report to implicate IGFBP-6 as a suppressor of cellular proliferation and IGF-II as an inducer of cellular contractility in this connective tissue disease. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wen, Haishen; Qi, Qian; Hu, Jian; Si, Yufeng; He, Feng; Li, Jifang
2015-04-01
The insulin-like growth factors I and II (IGF-I and IGF-II) are important proteins involved in fish growth and development. Here, we report the isolation of IGF-II and expression analysis of IGFs in turbot Scophthalmus maximus, aiming to clarify their function in embryonic and larval development of fish. The deduced IGF-II gene is 808 bp in full length, which encodes a protein of 219 amino acids and is 93% similar with that of Paralichthys olicaceus in amino acid sequence. The tissue abundance and the expression pattern of IGFs in a turbot at early development stages were investigated via reverse transcription-polymer chain reaction. Result showed that the IGF-I and IGF-II genes were widely expressed in tissues of S. maximus. IGF-I was detected in all tissues except intestines with the highest level in liver, while IGF-II transcript presented in all tissues except muscle. At the stages of embryonic and larval development, the mRNA levels of IGFs sharply increased from the stage of unfertilized egg to post larva, followed by a decrease with larval development. However, there was an increase in IGF-I at the embryonic stage and IGF-II at the gastrula stage, respectively. These results suggested that IGFs play important roles in cell growth and division of the turbot. Our study provides reference data for further investigation of growth regulation in turbot, which can guarantee better understanding of the physiological role that IGFs play in fish.
Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying
2015-02-01
In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder.
Abellan, Rosario; Ventura, Rosa; Palmi, Ilaria; di Carlo, Simonetta; Bacosi, Antonella; Bellver, Montse; Olive, Ramon; Pascual, Jose Antonio; Pacifici, Roberta; Segura, Jordi; Zuccaro, Piergiorgio; Pichini, Simona
2008-11-04
Insulin-like growth factor-II (IGF-II), insulin-like growth factor binding proteins (IGFBPs) -2 and -3 and C-terminal telopeptide of type I collagen (ICTP) have been proposed, among others, as indirect biomarkers of the recombinant human growth hormone misuse in sport. An extended intra- and inter-laboratory validation of commercially available immunoassays for biomarkers detection was performed. ELISA assays for total IGF-II, IGFBP-2 and IGFBP-3 (IGF-II/ELISA1: DSLabs, IGFBP-2/ELISA2: Biosource, and IGFBP-3/ELISA3: BioSource) and an EIA assay for ICTP (ICTP/EIA: Orion Diagnostica) were evaluated. The inter- and intra-laboratory precision values were acceptable for all evaluated assays (maximum imprecision of 30% and 66% were found only for the lowest quality control samples of IGF-II and IGFBP-3). Correct accuracy was obtained for all inter-laboratory immunoassays and for IGFBP-2 intra-laboratory immunoassay. The range of concentrations found in serum samples under investigation was always covered by the calibration curves of the studied immunoassays. However, 11% and 15% of the samples felt below the estimated LOQ for IGF-II and ICTP, respectively, in the zone where lower precision was obtained. Although the majority of evaluated assays showed an overall reliability not always suitable for antidoping control analysis, relatively high concordances between laboratory results were obtained for all assays. Evaluated immunoassays were used to measure serum concentrations of IGF-II, IGFBP-2 and -3 and ICTP in elite athletes of various sport disciplines at different moments of the training season; in recreational athletes at baseline conditions and finally in sedentary individuals. Serum IGF-II was statistically higher both in recreational and elite athletes compared to sedentary individuals. Elite athletes showed lower IGFBP-2 and higher IGFBP-3 concentration with respect to recreational athletes and sedentary people. Among elite athletes, serum IGFBP-3 (synchronized swimming), and ICTP (rhythmic gymnastics) concentrations were sport-dependent. Over the training season, within athlete variability was observed for IGFBP-2 in case of taekwondo and IGFBP-2 and -3 in case of weightlifting. Variations due to those aspects should be taken in careful consideration in the hypothesis of setting reference concentration ranges for doping detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daughaday, W.H.; Kapadia, M.
1989-09-01
The authors reported that serum and tumor from a hypoglycemic patient with a fibrosarcoma contained insulin-like growth factor II (IGF-II), mostly in a large molecular form designated big IGF-II. They now describe two additional patients with non-islet-cell tumor with hypoglycemia (NICTH) whose sera contained big IGF-II. Removal of the tumor eliminated most of the big IGF-II from the sera of two patients. Because specific IGF-binding proteins modify the bioactivity of IGFs, the sizes of the endogenous IGF-binding protein complexes were determined after neutral gel filtration through Sephadex G-200. Normally about 75% of IGFs are carried as a ternary complex ofmore » 150 kDa consisting of IGF, a growth hormone (GH)-dependent IGF-binding protein, and an acid-labile complexing component. The three patients with NICTH completely lacked the 150-kDa complex. IGF-II was present as a 60-kDa complex with variable contributions of smaller complexes. In the immediate postoperative period, a 110-kDa complex appeared rather than the expected 150-kDa complex. Abnormal IGF-II binding may be important in NICTH because the 150-kDa complexes cross the capillary membrane poorly. The smaller complexes present in our patients' sera would be expected to enter interstitial fluid readily, and a 4- to 5-fold increase in the fraction of IGFs reaching the target cells would result.« less
Association of tRNA methyltransferase NSUN2/IGF-II molecular signature with ovarian cancer survival.
Yang, Jia-Cheng; Risch, Eric; Zhang, Meiqin; Huang, Chan; Huang, Huatian; Lu, Lingeng
2017-09-01
To investigate the association between NSUN2/IGF-II signature and ovarian cancer survival. Using a publicly accessible dataset of RNA sequencing and clinical follow-up data, we performed Classification and Regression Tree and survival analyses. Patients with NSUN2 high IGF-II low had significantly superior overall and disease progression-free survival, followed by NSUN2 low IGF-II low , NSUN2 high IGF-II high and NSUN2 low IGF-II high (p < 0.0001 for overall, p = 0.0024 for progression-free survival, respectively). The associations of NSUN2/IGF-II signature with the risks of death and relapse remained significant in multivariate Cox regression models. Random-effects meta-analyses show the upregulated NSUN2 and IGF-II expression in ovarian cancer versus normal tissues. The NSUN2/IGF-II signature associates with heterogeneous outcome and may have clinical implications in managing ovarian cancer.
Akanji, Abayomi O; Ohaeri, Jude U; Al-Shammri, Suhail A; Fatania, Hasmukh R
2007-01-01
Insulin-like growth factors (IGFs) are believed to be important in brain development and repair following neuronal damage. It is also speculated that IGFs are involved in the association of foetal and pre-adult growth with schizophrenia (SZ). The aim of this study was to assess levels of IGF-I, IGF-II and IGF binding protein (IGFBP)-3 and their associations in male Arab patients with SZ (n=53) and healthy control subjects (HC; n=52). Anthropometric and demographic data were collected for each subject for whom blood specimens were analysed for serum lipoproteins, apolipoprotein B (apoB), IGF-I, IGF-II and IGFBP-3. The SZ group had lower serum total cholesterol, apoB and uric acid levels than the HC group (p<0.05). IGF-II levels were significantly higher in the SZ group (p=0.02) and correlated positively with levels of atherogenic lipoproteins--total cholesterol, low-density lipoprotein, apoB--and IGFBP-3. The pattern of correlations between the IGFs and the various parameters differed somewhat between the HC and SZ groups. These results demonstrate that IGF-II levels are increased in patients with SZ and show significant associations with atherogenic lipoproteins. We suggest a possible link between IGF-II metabolism and atherogenesis in SZ.
Liu, Rui; Wang, Qing; Xu, Guangying; Li, Kexin; Zhou, Lingli; Xu, Baofeng
2016-01-01
Recently, the adaptor protein CrkII has been proved to function in initiating signals for proliferation and invasion in some malignancies. However, the specific mechanisms underlying insulin-like growth factor 1 (IGF-1)-CrkII signaling-induced proliferation of pancreatic ductal adenocarcinoma (PDAC) were not unraveled. In this work, PDAC tissues and cell lines were subjected to in vitro and in vivo assays. Our findings showed that CrkII was abundantly expressed in PDAC tissues and closely correlated with tumor-node-metastasis (TNM) stage and invasion. When cells were subjected to si-CrkII, si-CrkII inhibited IGF-1-mediated PDAC cell growth. In vitro, we demonstrated the upregulation of CrkII, p-Erk1/2, and p-Akt occurring in IGF-1-treated PDAC cells. Conversely, si-CrkII affected upregulation of CrkII, p-Erk1/2, and p-Akt. In addition, cell cycle and in vivo assay identified that knockdown of CrkII inhibited the entry of G1 into S phase and the increase of PDAC tumor weight. In conclusion, CrkII mediates IGF-1 signaling and further balanced PDAC biological behaviors via Erk1/2 and Akt pathway, which indicates that CrkII gene and protein may act as an effective target for the treatment of PDAC.
Insulin-Like Growth Factor II Targets the mTOR Pathway to Reverse Autism-Like Phenotypes in Mice.
Steinmetz, Adam B; Stern, Sarah A; Kohtz, Amy S; Descalzi, Giannina; Alberini, Cristina M
2018-01-24
Autism spectrum disorder (ASD) is a developmental disability characterized by impairments in social interaction and repetitive behavior, and is also associated with cognitive deficits. There is no current treatment that can ameliorate most of the ASD symptomatology; thus, identifying novel therapies is urgently needed. We used male BTBR T + Itpr3 tf /J (BTBR) mice, a model that reproduces most of the core behavioral phenotypes of ASD, to test the effects of systemic administration of insulin-like growth factor II (IGF-II), a polypeptide that crosses the blood-brain barrier and acts as a cognitive enhancer. We show that systemic IGF-II treatments reverse the typical defects in social interaction, cognitive/executive functions, and repetitive behaviors reflective of ASD-like phenotypes. In BTBR mice, IGF-II, via IGF-II receptor, but not via IGF-I receptor, reverses the abnormal levels of the AMPK-mTOR-S6K pathway and of active translation at synapses. Thus, IGF-II may represent a novel potential therapy for ASD. SIGNIFICANCE STATEMENT Currently, there is no effective treatment for autism spectrum disorder (ASD), a developmental disability affecting a high number of children. Using a mouse model that expresses most of the key core as well as associated behavioral deficits of ASD, that are, social, cognitive, and repetitive behaviors, we report that a systemic administration of the polypeptide insulin-like growth factor II (IGF-II) reverses all these deficits. The effects of IGF-II occur via IGF-II receptors, and not IGF-I receptors, and target both basal and learning-dependent molecular abnormalities found in several ASD mice models, including those of identified genetic mutations. We suggest that IGF-II represents a potential novel therapeutic target for ASD. Copyright © 2018 the authors 0270-6474/18/371015-15$15.00/0.
Zhao, Xin; Liu, Xiaoliang; Wang, Guanjun; Wen, Xue; Zhang, Xiaoying; Hoffman, Andrew R; Li, Wei; Hu, Ji-Fan; Cui, Jiuwei
2016-08-09
Insulin-like growth factor II (IGF2) is maternally imprinted in most tissues, but the epigenetic regulation of the gene in cancer stem cells (CSCs) has not been defined. To study the epigenetic mechanisms underlying self-renewal, we isolated CSCs and non-CSCs from colon cancer (HT29, HRT18, HCT116), hepatoma (Hep3B), breast cancer (MCF7) and prostate cancer (ASPC) cell lines. In HT29 and HRT18 cells that show loss of IGF2 imprinting (LOI), IGF2 was biallelically expressed in the isolated CSCs. Surprisingly, we also found loss of IGF2 imprinting in CSCs derived from cell lines HCT116 and ASPC that overall demonstrate maintenance of IGF2 imprinting. Using chromatin conformation capture (3C), we found that intrachromosomal looping between the IGF2 promoters and the imprinting control region (ICR) was abrogated in CSCs, in parallel with loss of IGF2 imprinting in these CSCs. Loss of imprinting led to increased IGF2 expression in CSCs, which have a higher rate of colony formation and greater resistance to chemotherapy and radiotherapy in vitro. These studies demonstrate that IGF2 LOI is a common feature in CSCs, even when the stem cells are derived from a cell line in which the general population of cells maintain IGF2 imprinting. This finding suggests that aberrant IGF2 imprinting may be an intrinsic epigenetic control mechanism that enhances stemness, self-renewal and chemo/radiotherapy resistance in cancer stem cells.
NASA Astrophysics Data System (ADS)
Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng
2003-12-01
Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.
Morales González, E; Contreras, I; Estrada, J A
2014-09-01
Many studies have demonstrated that iron deficiency modifies the normal function of the central nervous system and alters cognitive abilities. When cellular damage occurs in the central nervous system, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF- II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified. Mixed primary cell cultures from the central nervous system were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the western blot test. We observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in iron-deficient cultures. In vitro iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
IGF-II Promotes Stemness of Neural Restricted Precursors
Ziegler, Amber N.; Schneider, Joel S.; Qin, Mei; Tyler, William A.; Pintar, John E.; Fraidenraich, Diego; Wood, Teresa L.; Levison, Steven W.
2016-01-01
Insulin-like growth factor (IGF)-I and IGF-II regulate brain development and growth through the IGF type 1 receptor (IGF-1R). Less appreciated is that IGF-II, but not IGF-I, activates a splice variant of the insulin receptor (IR) known as IR-A. We hypothesized that IGF-II exerts distinct effects from IGF-I on neural stem/progenitor cells (NSPs) via its interaction with IR-A. Immunofluorescence revealed high IGF-II in the medial region of the subventricular zone (SVZ) comprising the neural stem cell niche, with IGF-II mRNA predominant in the adjacent choroid plexus. The IGF-1R and the IR isoforms were differentially expressed with IR-A predominant in the medial SVZ, whereas the IGF-1R was more abundant laterally. Similarly, IR-A was more highly expressed by NSPs, whereas the IGF-1R was more highly expressed by lineage restricted cells. In vitro, IGF-II was more potent in promoting NSP expansion than either IGF-I or standard growth medium. Limiting dilution and differentiation assays revealed that IGF-II was superior to IGF-I in promoting stemness. In vivo, NSPs propagated in IGF-II migrated to and took up residence in periventricular niches while IGF-I-treated NSPs predominantly colonized white matter. Knockdown of IR or IGF-1R using shRNAs supported the conclusion that the IGF-1R promotes progenitor proliferation, whereas the IR is important for self-renewal. Q-PCR revealed that IGF-II increased Oct4, Sox1, and FABP7 mRNA levels in NSPs. Our data support the conclusion that IGF-II promotes the self-renewal of neural stem/progenitors via the IR. By contrast, IGF-1R functions as a mitogenic receptor to increase precursor abundance. PMID:22593020
Lin, Kuan-Ho; Kuo, Chia-Hua; Kuo, Wei-Wen; Ho, Tsung-Jung; Pai, Peiying; Chen, Wei-Kung; Pan, Lung-Fa; Wang, Chien-Cheng; Padma, V Vijaya; Huang, Chih-Yang
2015-06-01
The insulin-like growth factor-II/mannose 6-phosphate receptor (IGF2R) over-expression correlates with heart disease progression. The IGF2R is not only an IGF2 clearance receptor, but it also triggers signal transduction, resulting in cardiac hypertrophy, apoptosis and fibrosis. The present study investigated the nuclear factor IL-3 (NFIL3), a transcription factor of the basic leucine zipper superfamily, and its potential pro-survival effects in cardiomyocytes. NFIL3 might play a key role in heart development and act as a survival factor in the heart, but the regulatory mechanisms are still unclear. IGF2 and IGF2R protein expression were highly increased in rat hearts subjected to hemorrhagic shock. IGF2R protein expression was also up-regulated in H9c2 cells exposed to hypoxia. Over-expression of NFIL3 in H9c2 cardiomyoblast cells inhibited the induction of hypoxia-induced apoptosis and down-regulated IGF2R expression levels. Gel shift assay, double-stranded DNA pull-down assay and chromatin immune-precipitation analyses indicated that NFIL3 binds directly to the IGF2R promoter region. Using a luciferase assay, we further observed NFIL3 repress IGF2R gene promoter activity. Our results demonstrate that NFIL3 is an important negative transcription factor, which through binding to the promoter of IGF2R, suppresses the apoptosis induced by IGF2R signaling in H9c2 cardiomyoblast cells under hypoxic conditions. © 2015 Wiley Periodicals, Inc.
Xu, Yongjiang; Wang, Bin; Liu, Xuezhou; Shi, Bao; Zang, Kun
2017-04-01
Although gonadotrophins are major regulators of ovarian function in teleosts and other vertebrates, accumulating evidence indicates that the growth hormone (GH)-insulin-like growth factor (IGF) axis also plays an important role in fish reproduction. As a first step to understand the physiological role of the GH-IGF system in the ovarian development of starry flounder (Platichthys stellatus), the expression profiles of GH and IGF messenger RNAs (mRNAs) and plasma GH, IGF-I, estradiol-17β (E2), and testosterone (T) levels during the ovarian development were investigated. The developmental stages of ovaries were divided into five stages (II, III, IV, V, and VI) by histological analysis. The hepatosomatic index (HSI) and gonadosomatic index (GSI) values increased and peaked at stage IV and stage V, respectively, and then declined at stage VI. Pituitary GH mRNA levels decreased sharply at stage III and raised to top level at stage VI. The hepatic IGF-I mRNA levels ascended to maximum value at stage V and then declined significantly at stage VI. However, the hepatic IGF-II mRNA levels remained stable and increased significantly at stage VI. In contrast, the ovarian IGF-I mRNA levels increased gradually and peaked at stage VI. The ovarian IGF-II mRNA levels were initially stable and increased significantly at stage V until the top level at stage VI. Consistent with the pituitary GH mRNA levels, plasma GH levels reduced sharply at stage III and remained depressed until stage V and then raised remarkably at stage VI. Plasma IGF-I level peaked at stage V and then declined to initial level. Plasma E2 level peaked at stage IV and then dramatically descended to the basal level. Plasma T level peaked at stage V and then declined significantly back to the basal level. Based on statistical analysis, significant positive correlations between hepatic IGF-I mRNA and GSI, ovarian IGF-II mRNA and hepatic IGF-II mRNA, ovarian IGF-I mRNA and ovarian IGF-II mRNA, and plasma IGF-I and plasma T were observed, respectively. These results suggest that the GH-IGF system may be involved in the ovarian development of starry flounder; GH and IGFs appear to play distinct roles in the regulation of the ovarian development in paracrine/autocrine manners. These findings extend our knowledge of the roles of the GH-IGF axis on reproduction regulation in fish.
Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J
1999-09-15
We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.
Bale, Laurie K; Conover, Cheryl A
2005-08-01
Pregnancy-associated plasma protein-A (PAPP-A), an insulin-like growth factor-binding protein (IGFBP) protease, increases insulin-like growth factor (IGF) activity through cleavage of inhibitory IGFBP-4 and the consequent release of IGF peptide for receptor activation. Mice homozygous for targeted disruption of the PAPP-A gene are born as proportional dwarfs and exhibit retarded bone ossification during fetal development. Phenotype and in vitro data support a model in which decreased IGF-II bioavailability during embryogenesis results in growth retardation and reduction in overall body size. To test the hypothesis that an increase in IGF-II during embryogenesis would overcome the growth deficiencies, PAPP-A-null mice were crossed with DeltaH19 mutant mice, which have increased IGF-II expression and fetal overgrowth due to disruption of IgfII imprinting. DeltaH19 mutant mice were 126% and PAPP-A-null mice were 74% the size of controls at birth. These size differences were evident at embryonic day 16.5. Importantly, double mutants were indistinguishable from controls both in terms of size and skeletal development. Body size programmed during embryo development persisted post-natally. Thus, disruption of IgfII imprinting and consequent elevation in IGF-II during fetal development was associated with rescue of the dwarf phenotype and ossification defects of PAPP-A-null mice. These data provide strong genetic evidence that PAPP-A plays an essential role in determining IGF-II bioavailability for optimal fetal growth and development.
Reding, Dawn M; Addis, Elizabeth A; Palacios, Maria G; Schwartz, Tonia S; Bronikowski, Anne M
2016-07-01
The insulin/insulin-like signaling pathway (IIS) has been shown to mediate life history trade-offs in mammalian model organisms, but the function of this pathway in wild and non-mammalian organisms is understudied. Populations of western terrestrial garter snakes (Thamnophis elegans) around Eagle Lake, California, have evolved variation in growth and maturation rates, mortality senescence rates, and annual reproductive output that partition into two ecotypes: "fast-living" and "slow-living". Thus, genes associated with the IIS network are good candidates for investigating the mechanisms underlying ecological divergence in this system. We reared neonates from each ecotype for 1.5years under two thermal treatments. We then used qPCR to compare mRNA expression levels in three tissue types (brain, liver, skeletal muscle) for four genes (igf1, igf2, igf1r, igf2r), and we used radioimmunoassay to measure plasma IGF-1 and IGF-2 protein levels. Our results show that, in contrast to most mammalian model systems, igf2 mRNA and protein levels exceed those of igf1 and suggest an important role for igf2 in postnatal growth in reptiles. Thermal rearing treatment and recent growth had greater impacts on IGF levels than genetic background (i.e., ecotype), and the two ecotypes responded similarly. This suggests that observed ecotypic differences in field measures of IGFs may more strongly reflect plastic responses in different environments than evolutionary divergence. Future analyses of additional components of the IIS pathway and sequence divergence between the ecotypes will further illuminate how environmental and genetic factors influence the endocrine system and its role in mediating life history trade-offs. Copyright © 2016 Elsevier Inc. All rights reserved.
Bai, Zhe; Guo, Xiao-Hui; Tang, Chi; Yue, Si-Tong; Shi, Long; Qiang, Bo
2018-01-01
The study aims to explore the effects of artesunate on insulin-like growth factor-1 (IGF-1), Osteopontin (OPN), and C-telopeptides of type II collagen (CTX-II) in serum, synovial fluid (SF), and cartilage tissues of rats with osteoarthritis (OA). OA models were established. Normal model, artesunate, and Viatril-S groups (20 rats respectively) were set. Enzyme-linked immunosorbent assay, IHC staining, and quantitative real-time polymerase chain reaction were conducted to calculate IGF-1, OPN, and CTX-II levels in serum, SF, and cartilage tissues of rats. The pathological changes in cartilage tissues were evaluated with Mankin score and Hematoxylin-Eosin staining. Compared with the normal group, the model group showed increased IGF-1 level; decreased OPN, CTX-II levels in the serum and SF; and contrary results were seen in the cartilage tissues. A gradual ascending IGF-1 level and descending OPN and CTX-II levels existed in the serum and SF in the artesunate and Viatril-S groups after 2 weeks. The model group showed the most obvious pathological changes and highest Mankin score compared with the other groups. Higher IGF-1 level and lower OPN, CTX-II levels were exhibited in the cartilage tissue in the artesunate and Viatril-S groups but not in the model group. Artesunate and Viatril-S inhibit OA development by elevating IGF-1 level and reducing OPN and CTX-II levels. © 2017 S. Karger AG, Basel.
Mancera, J.M.; McCormick, S.D.
1998-01-01
The ability of ovine growth hormone (oGH), recombinant bovine insulin- like growth factor I (rbIGF-I), recombinant human insulin-like growth factor II (rhIGF-II), and bovine insulin to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity, 320 mOsm/kg H2O) were injected with a single dose of hormone and transferred to seawater (SW, 35 ppt salinity, 1120 mOsm/kg H2O) 2 days later. Fish were sampled 24 h after transfer and plasma osmolality, plasma glucose, and gill Na+,K+-ATPase activity were examined. Transfer from BW to SW increased plasma osmolality and gill Na+,K+-ATPase activity. Transfer from BW to BW had no effect on these parameters. rbIGF-I (0.05, 0.1, and 0.2 ??g/g) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity in a dose-dependent manner. oGH (0.5, 1, and 2 ??g/g) also increased hypoosmoregulatory ability but only the higher doses (2 ??g/g) significantly increased gill Na+,K+-ATPase activity. oGH (1 ??g/g) and rbIGF-I (0.1 ??g/g) had a significantly greater effect on plasma osmolality and gill Na+,K+-ATPase activity than either hormone alone. rhIGF-II (0.05, 0.1, and 0.2 ??g/g) and bovine insulin (0.01 and 0.05 ??g/g) were without effect. The results suggest a role of GH and insulin-like growth factor I (IGF-I) in seawater acclimation of E heteroclitus. Based on these findings and previous studies, it is concluded that the capacity of the GH/IGF-I axis to increase hypoosmoregulatory ability may be a common feature of euryhalinity in teleosts.
Lappas, M; Jinks, D; Shub, A; Willcox, J C; Georgiou, H M; Permezel, M
2016-12-01
Women with previous gestational diabetes mellitus (GDM) are at greater risk of developing type 2 diabetes. In the general population, the insulin-like growth factor (IGF) system has been implicated in the development of type 2 diabetes. The aim of this study was to determine if circulating IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels 12weeks following a GDM pregnancy are associated with an increased risk of developing type 2 diabetes. IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels were measured in 98 normal glucose tolerant women, 12weeks following an index GDM pregnancy using enzyme immunoassay. Women were assessed for up to 10years for the development of overt type 2 diabetes. Among the 98 women with previous GDM, 21 (21%) developed diabetes during the median follow-up period of 8.5years. After adjusting for age and BMI, IGF-I and IGFBP-2 were significantly associated with the development of type 2 diabetes. In a clinical model of prediction of type 2 diabetes that included age, BMI, pregnancy fasting glucose and postnatal fasting glucose, the addition of IGF-I and IGFBP-2 resulted in an improvement in the net reclassification index of 17.8%. High postpartum IGF-I and low postpartum IGFBP-2 levels are a significant risk factor for the development of type 2 diabetes in women with a previous history of GDM. This is the first report that identifies IGF-I and IGFBP-2 as a potential biomarker for the prediction of type 2 diabetes in women with a history of GDM. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Schwartz, Tonia S; Bronikowski, Anne M
2016-08-01
The insulin and insulin-like signaling (IIS) molecular network regulates cellular growth and division, and influences organismal metabolism, growth and development, reproduction, and lifespan. As a group, reptiles have incredible diversity in the complex life history traits that have been associated with the IIS network, yet the research on the IIS network in ectothermic reptiles is sparse. Here, we review the IIS network and synthesize what is known about the function and evolution of the IIS network in ectothermic reptiles. The primary hormones of this network-the insulin-like growth factors 1 and 2 (IGFs) likely function in reproduction in ectothermic reptiles, but the precise mechanisms are unclear, and likely range from influencing mating and ovulation to maternal investment in embryonic development. In general, plasma levels of IGF1 increase with food intake in ectothermic reptiles, but the magnitude of the response to food varies across species or populations and the ages of animals. Long-term temperature treatments as well as thermal stress can alter expression of genes within the IIS network. Although relatively little work has been done on IGF2 in ectothermic reptiles, IGF2 is consistently expressed at higher levels than IGF1 in juvenile ectothermic reptiles. Furthermore, in contrast to mammals that have genetic imprinting that silences the maternal IGF2 allele, in reptiles IGF2 is bi-allelically expressed (based on findings in chickens, a snake, and a lizard). Evolutionary analyses indicate some members of the IIS network are rapidly evolving across reptile species, including IGF1, insulin (INS), and their receptors. In particular, IGF1 displays extensive nucleotide variation across lizards and snakes, which suggests that its functional role may vary across this group. In addition, genetic variation across families and populations in the response of the IIS network to environmental conditions illustrates that components of this network may be evolving in natural populations. The diversity in reproductive physiology, metabolic plasticity, and lifespan among reptiles makes the study of the IIS network in this group a potentially rich avenue for insight into the evolution and function of this network. The field would benefit from future studies that discern the respective functions of IGF1 and IGF2 and how these functions vary across taxa, perfecting additional assays for measuring IIS components, and determining the role of IIS in different tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Yandell, C A; Dunbar, A J; Wheldrake, J F; Upton, Z
1999-09-17
The mammalian cation-independent mannose 6-phosphate receptor (CI-MPR) binds mannose 6-phosphate-bearing glycoproteins and insulin-like growth factor (IGF)-II. However, the CI-MPR from the opossum has been reported to bind bovine IGF-II with low affinity (Dahms, N. M., Brzycki-Wessell, M. A., Ramanujam, K. S., and Seetharam, B. (1993) Endocrinology 133, 440-446). This may reflect the use of a heterologous ligand, or it may represent the intrinsic binding affinity of this receptor. To examine the binding of IGF-II to a marsupial CI-MPR in a homologous system, we have previously purified kangaroo IGF-II (Yandell, C. A., Francis, G. L., Wheldrake, J. F., and Upton, Z. (1998) J. Endocrinol. 156, 195-204), and we now report the purification and characterization of the CI-MPR from kangaroo liver. The interaction of the kangaroo CI-MPR with IGF-II has been examined by ligand blotting, radioreceptor assay, and real-time biomolecular interaction analysis. Using both a heterologous and homologous approach, we have demonstrated that the kangaroo CI-MPR has a lower binding affinity for IGF-II than its eutherian (placental mammal) counterparts. Furthermore, real-time biomolecular interaction analysis revealed that the kangaroo CI-MPR has a higher affinity for kangaroo IGF-II than for human IGF-II. The cDNA sequence of the kangaroo CI-MPR indicates that there is considerable divergence in the area corresponding to the IGF-II binding site of the eutherian receptor. Thus, the acquisition of a high-affinity binding site for regulating IGF-II appears to be a recent event specific to the eutherian lineage.
Bonilla, Carolina; Lewis, Sarah J; Rowlands, Mari-Anne; Gaunt, Tom R; Davey Smith, George; Gunnell, David; Palmer, Tom; Donovan, Jenny L; Hamdy, Freddie C; Neal, David E; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Al Olama, Ali Amin; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Wiklund, Fredrik; Grönberg, Henrik; Haiman, Christopher A; Schleutker, Johanna; Nordestgaard, Børge G; Travis, Ruth C; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Park, Jong; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Pandha, Hardev; Lathrop, Mark; Martin, Richard M; Holly, Jeff M P
2016-10-01
Circulating insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) are associated with prostate cancer. Using genetic variants as instruments for IGF peptides, we investigated whether these associations are likely to be causal. We identified from the literature 56 single nucleotide polymorphisms (SNPs) in the IGF axis previously associated with biomarker levels (8 from a genome-wide association study [GWAS] and 48 in reported candidate genes). In ∼700 men without prostate cancer and two replication cohorts (N ∼ 900 and ∼9,000), we examined the properties of these SNPS as instrumental variables (IVs) for IGF-I, IGF-II, IGFBP-2 and IGFBP-3. Those confirmed as strong IVs were tested for association with prostate cancer risk, low (< 7) vs. high (≥ 7) Gleason grade, localised vs. advanced stage, and mortality, in 22,936 controls and 22,992 cases. IV analysis was used in an attempt to estimate the causal effect of circulating IGF peptides on prostate cancer. Published SNPs in the IGFBP1/IGFBP3 gene region, particularly rs11977526, were strong instruments for IGF-II and IGFBP-3, less so for IGF-I. Rs11977526 was associated with high (vs. low) Gleason grade (OR per IGF-II/IGFBP-3 level-raising allele 1.05; 95% CI: 1.00, 1.10). Using rs11977526 as an IV we estimated the causal effect of a one SD increase in IGF-II (∼265 ng/mL) on risk of high vs. low grade disease as 1.14 (95% CI: 1.00, 1.31). Because of the potential for pleiotropy of the genetic instruments, these findings can only causally implicate the IGF pathway in general, not any one specific biomarker. © 2016 UICC.
A, Ajith Kumar; Nadimpalli, Siva Kumar
2018-07-01
Mannose 6-phosphate/IGF-II receptor mediated lysosomal clearance of insulin-like growth factor-II is significantly associated with the evolution of placental mammals. The protein is also referred to as the IGF-II receptor. Earlier studies suggested relatively low binding affinity between the receptor and ligand in prototherian and metatherian mammals. In the present study, we cloned the IGF-II binding domain of the early vertebrate fugu fish and expressed it in bacteria. A 72000Da truncated receptor containing the IGF-II binding domain was obtained. Analysis of this protein (covering domains 11-13 of the CIMPR) for its affinity to fish and human IGF-II by ligand blot assays and ELISA showed that the expressed receptor can specifically bind to both fish and human IGF-II. Additionally, a peptide-specific antibody raised against the region of the IGF-II binding domain also was able to recognize the IGF-II binding regions of mammalian and non-mammalian cation independent MPR protein. These interactions were further characterized by Surface Plasma resonance support that the receptor binds to fish IGF-II, with a dissociation constant of 548nM. Preliminary analysis suggests that the binding mechanism as well as the affinity of the fish and human receptor for IGF-II may have varied according to different evolutionary pressures. Copyright © 2018. Published by Elsevier B.V.
Voutilainen, R; Miller, W L
1987-01-01
Insulin-like growth factors (IGFs) are single-chain polypeptides important for cell proliferation and growth. IGFs are produced in several tissues, suggesting that they function in a paracrine or autocrine fashion as well as functioning as endocrine hormones. We studied the hormonal regulation of IGF-I and IGF-II mRNA in human steroidogenic tissues. In cultured human ovarian granulosa cells, follicle-stimulating hormone, human chorionic gonadotropin, and dibutyryl cAMP increased IGF-II mRNA, but corticotropin [adrenocorticotropic hormone (ACTH)], chorionic somatomammotropin, growth hormone, prolactin, dexamethasone, estradiol, and progesterone had no effect. In cultured human fetal adrenal cells, ACTH and dibutyryl cAMP increased IGF-II mRNA accumulation, but human chorionic gonadotropin and angiotensin II did not. The same five size species of IGF-II mRNA were detected in transfer blots of RNA from granulosa cells and fetal adrenal cells, and all of these increased after hormonal stimuli. Dibutyryl cAMP also increased IGF-II mRNA accumulation in cultured human placental cells. Accumulation of mRNA for the cholesterol side-chain-cleavage monooxygenase [P450scc [corrected]; cholesterol, reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving), EC 1.14.15.6] was regulated in parallel with IGF-II mRNA in all these steroidogenic tissues. IGF-I mRNA was not detected in transfer blots of these RNAs, and the minimal amounts detected in dot blots showed no detectable change after any of the hormonal stimuli studied. The data indicate that the IGF-II gene is expressed in human steroidogenic tissues and is regulated by cAMP. These data suggest that IGF-II may act in an autocrine or paracrine fashion to stimulate the adrenal and gonadal growth stimulated by ACTH and gonadotropins, respectively. Images PMID:3031644
2013-01-01
Introduction Adipose-derived stem cells (ASCs) have the potential to differentiate into cartilage under stimulation with some reported growth and transcriptional factors, which may constitute an alternative for cartilage replacement approaches. In this study, we analyzed the in vitro chondrogenesis of ASCs transduced with adenoviral vectors encoding insulin-like growth factor-1 (IGF-1), transforming growth factor beta-1 (TGF-β1), fibroblast growth factor-2 (FGF-2), and sex-determining region Y-box 9 (SOX9) either alone or in combinations. Methods Aggregate cultures of characterized ovine ASCs were transduced with 100 multiplicity of infections of Ad.IGF-1, Ad.TGF-β1, Ad.FGF-2, and Ad.SOX9 alone or in combination. These were harvested at various time points for detection of cartilage-specific genes expression by quantitative real-time PCR or after 14 and 28 days for histologic and biochemical analyses detecting proteoglycans, collagens (II, I and X), and total sulfated glycosaminoglycan and collagen content, respectively. Results Expression analyses showed that co-expression of IGF-1 and FGF-2 resulted in higher significant expression levels of aggrecan, biglycan, cartilage matrix, proteoglycan, and collagen II (all P ≤0.001 at 28 days). Aggregates co-transduced with Ad.IGF-1/Ad.FGF-2 showed a selective expression of proteoglycans and collagen II, with limited expression of collagens I and × demonstrated by histological analyses, and had significantly greater glycosaminoglycan and collagen production than the positive control (P ≤0.001). Western blot analyses for this combination also demonstrated increased expression of collagen II, while expression of collagens I and × was undetectable and limited, respectively. Conclusion Combined overexpression of IGF-1/FGF-2 within ASCs enhances their chondrogenic differentiation inducing the expression of chondrogenic markers, suggesting that this combination is more beneficial than the other factors tested for the development of cell-based therapies for cartilage repair. PMID:23899094
Martín-Montañez, E; Millon, C; Boraldi, F; Garcia-Guirado, F; Pedraza, C; Lara, E; Santin, L J; Pavia, J; Garcia-Fernandez, M
2017-10-01
Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc.). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Transgenic mice overexpressing insulin-like growth factor-II in β cells develop type 2 diabetes
Devedjian, Jean-Christophe; George, Monica; Casellas, Alba; Pujol, Anna; Visa, Joana; Pelegrín, Mireia; Gros, Laurent; Bosch, Fatima
2000-01-01
During embryonic development, insulin-like growth factor-II (IGF-II) participates in the regulation of islet growth and differentiation. We generated transgenic mice (C57BL6/SJL) expressing IGF-II in β cells under control of the rat Insulin I promoter in order to study the role of islet hyperplasia and hyperinsulinemia in the development of type 2 diabetes. In contrast to islets from control mice, islets from transgenic mice displayed high levels of IGF-II mRNA and protein. Pancreases from transgenic mice showed an increase in β-cell mass (about 3-fold) and in insulin mRNA levels. However, the organization of cells within transgenic islets was disrupted, with glucagon-producing cells randomly distributed throughout the core. We also observed enhanced glucose-stimulated insulin secretion and glucose utilization in islets from transgenic mice. These mice displayed hyperinsulinemia, mild hyperglycemia, and altered glucose and insulin tolerance tests, and about 30% of these animals developed overt diabetes when fed a high-fat diet. Furthermore, transgenic mice obtained from the N1 backcross to C57KsJ mice showed high islet hyperplasia and insulin resistance, but they also developed fatty liver and obesity. These results indicate that local overexpression of IGF-II in islets might lead to type 2 diabetes and that islet hyperplasia and hypersecretion of insulin might occur early in the pathogenesis of this disease. PMID:10727441
Characterization of the Igf-II Binding Site of the IGF-II/MAN-6-P Receptor Extracellular Domain.
NASA Astrophysics Data System (ADS)
Garmroudi, Farideh
1995-01-01
In mammals, insulin-like growth factor II (IGF -II) and glycoproteins bearing the mannose 6-phosphate (Man -6-P) recognition marker bind with high affinity to the same receptor. The functional consequences of IGF-II binding to the receptor at the cell surface are not clear. In these studies, we sought to broaden our understanding of the functional regions of the receptor regarding its IGF -II binding site. The IGF-II binding/cross-linking domain of the IGF-II/Man-6-P receptor was mapped by sequencing receptor fragments covalently attached to IGF-II. Purified rat placental or bovine liver receptors were affinity-labeled, with ^{125}I-IGF-II and digested with endoproteinase Glu-C. Analysis of digests by gel electrophoresis revealed a major radiolabeled band of 18 kDa, which was purified by gel filtration chromatography followed by reverse-phase HPLC and electroblotting. Sequence analysis revealed that, the peptide S(H)VNSXPMF, located within extracellular repeat 10 and beginning with serine 1488 of the bovine receptor, was the best candidate for the IGF-II cross-linked peptide. These data indicated that residues within repeats 10-11 were important for IGF -II binding. To define the location of the IGF-II binding site further, a nested set of six human receptor cDNA constructs was designed to produce epitope-tagged fusion proteins encompassing the region between repeats 8 and 11 of the human IGF-II/Man-6-P receptor extracellular domain. These truncated receptors were transiently expressed in COS-7 cells, immunoprecipitated and analyzed for their abilities to bind and cross-link to IGF-II. All of the constructs were capable of binding/cross-linking to IGF-II, except for the 9.0-11 construct. Displacement curve analysis indicated that the truncated receptors were approximately equivalent in IGF-II binding affinity, but were of 5- to 10-fold lower affinity than full-length receptors. Sequencing of the 9.0-11 construct indicated the presence of a point mutation substituting threonine for isoleucine at position 1621, which is located in the N-terminal half of repeat 11, and was found to abrogate IGF-II binding. Collectively, our work indicates that repeat 11 of the IGF-II/Man-6-P receptor's extracellular domain encompasses the elements both for binding and cross-linking to IGF-II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Qing; Manolopoulou, Marika; Bian, Yao
2010-02-11
Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-{beta}, peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intramolecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-like growth factor (IGF)-II and transforming growth factor-{alpha} (TGF-{alpha}) over IGF-I and epidermal growth factor, respectively. Here, we used high-accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-{alpha}, amylin, reduced amylin, and amyloid-{beta} bymore » human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-{alpha} at 2.3 {angstrom} and IDE-amylin at 2.9 {angstrom}. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (amino acids 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and epidermal growth factor families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors.« less
Shved, Natallia; Berishvili, Giorgi; Häusermann, Eliane; D'Cotta, Helena; Baroiller, Jean-François; Eppler, Elisabeth
2009-03-01
The enormous expansion of world-wide aquaculture has led to increasing interest in the regulation of fish immune system. Estrogen has recently been shown to inhibit the endocrine (liver-derived) and autocrine/paracrine local insulin-like growth factor-I system in fish. In order to address the potential actions of estrogen on the IGF system in immune organs, tilapia were fed with 17alpha-ethinylestradiol (EE2)-enriched food from 10 to 40 days post fertilization (DPF) to induce functional feminization, an approach commonly used in aquaculture. EE2-treated and control fish were sampled at 75 and 165 DPF. The expression levels of ER-alpha, IGF-I, IGF-II and growth hormone receptor (GH-R) mRNA in spleen and head kidney were determined by real-time PCR and the expressing sites of IGF-I mRNA identified by in situ hybridisation. Ratios of spleen length and weight to body length and weight were determined. At 165 DPF, the length (4.9% vs. 7.6%) and weight (0.084% vs. 0.132%) ratios were significantly lowered in EE2-treated fish and number and size of the melanomacrophage centres were considerably reduced. At 75 DPF, both in spleen and head kidney of EE2-treated fish the expression levels of IGF-I and IGF-II mRNA were markedly diminished. The suppression was more pronounced for IGF-I (spleen: -12.071-fold; head kidney: -8.413-fold) than for IGF-II (spleen: -4.102-fold; head kidney: -1.342-fold). In agreement, clearly fewer leucocytes and macrophages in head kidney and spleen of EE2-treated fish contained IGF-I mRNA as shown by in situ hybridisation. ER-alpha mRNA expression in spleen was increased at 75 DPF but unchanged in head kidney. GH-R gene expression showed a mild upregulation at 165 DPF in both tissues. Thus, exposure to EE2 during early development affected distinctly the IGF system in tilapia immune organs. It led to lasting impairment of spleen growth and differentiation that can be attributed to an interaction of EE2 with IGF-I and, less pronouncedly, IGF-II. Especially, the impairment of spleen and melanomacrophage centres might interfere with the antigen presentation capacity of the immune system and, thus, alter susceptibility to infection.
Production of insulin-like growth factor binding proteins by small-cell lung cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaques, G.; Kiefer, P.; Rotsch, M.
1989-10-01
Conditioned serum-free media (CM) from small-cell lung cancer (SCLC) cell lines were examined for the presence of insulin-like growth-factor-binding proteins (IGF-BP). 6/9 SCLC cell lines secreted binding proteins with high affinity for IGFs. When ({sup 125}I)IGF-1 or ({sup 125}I)IGF-II was incubated with the CMs, complexes of tracer with proteins could be demonstrated by gel filtration, by precipitation with polyethylenglycol, and after adsorption of unbound tracer with activated charcoal. Analysis of binding data according to the method of Scatchard resulted in linear plots for IGF-I and IGF-II. Cross-linking of ({sup 125}I)IGF-I or ({sup 125}I)IGF-II to the CMs followed by sodium dodecylmore » sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions revealed the presence of IGF-BPs with molecular masses in the range of 24-32 kDa. Northern blot hybridization with an IGF-BP cDNA probe encoding a low-molecular-weight IGF-BP from a human placenta cDNA library and Western blot analysis with a corresponding polyclonal antibody showed no expression of this gene. These data demonstrate that SCLC cell lines release IGF-BPs in culture supernatants, which differ from IGF-BPs detected in liver and placenta. These IGF-BPs might be important mediators in the autocrine/paracrine growth regulation of IGFs in SCLC.« less
Zanou, Nadège; Gailly, Philippe
2013-11-01
Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.
Probst, Olivia C.; Karayel, Evren; Schida, Nicole; Nimmerfall, Elisabeth; Hehenberger, Elisabeth; Puxbaum, Verena; Mach, Lukas
2013-01-01
The M6P (mannose 6-phosphate)/IGF2R (insulin-like growth factor II receptor) interacts with a variety of factors that impinge on tumour invasion and metastasis. It has been shown that expression of wild-type M6P/IGF2R reduces the tumorigenic and invasive properties of receptor-deficient SCC-VII squamous cell carcinoma cells. We have now used mutant forms of M6P/IGF2R to assess the relevance of the different ligand-binding sites of the receptor for its biological activities in this cellular system. The results of the present study demonstrate that M6P/IGF2R does not require a functional binding site for insulin-like growth factor II for inhibition of anchorage-independent growth and matrix invasion by SCC-VII cells. In contrast, the simultaneous mutation of both M6P-binding sites is sufficient to impair all cellular functions of the receptor tested. These findings highlight that the interaction between M6P/IGF2R and M6P-modified ligands is not only important for intracellular accumulation of lysosomal enzymes and formation of dense lysosomes, but is also crucial for the ability of the receptor to suppress SCC-VII growth and invasion. The present study also shows that some of the biological activities of M6P/IGF2R in SCC-VII cells strongly depend on a functional M6P-binding site within domain 3, thus providing further evidence for the non-redundant cellular functions of the individual carbohydrate-binding domains of the receptor. PMID:23347038
Hatt, P J; Liebon, C; Morinière, M; Oberlander, H; Porcheron, P
1997-01-01
Ecdysteroids, or molting hormones, have been proven to be key differentiation regulators for epidermal cells in the postembryonic development of arthropods. Regulators of cell proliferation, however, remain largely unknown. To date, no diffusible insect peptidic growth factors have been characterized. Molecules structurally related to insulin have been discovered in insects, as in other eucaryotes. We developed in vitro tests for the preliminary characterization of potential growth factors in arthropods by adapting the procedures designed to detect such factors in vertebrates to an insect cell line (IAL-PID2) established from imaginal discs of the Indian meal moth. We verified the ability of these tests to measure the proliferation of IAL-PID2 cells. We tested mammalian insulin and insulin-like growth factors (IGF-I, IGF-II). Following an arrest of cell proliferation by serum deprivation, IGF-I and IGF-II caused partial resumption of the cell cycle, evidenced by DNA synthesis. In contrast, the addition of 20-hydroxyecdysone arrested the proliferation of the IAL-PID2 cells. The cell line was then used in a test for functional characterization of potential growth factors originating from the penaeid shrimp, Penaeus vannamei. Crude extracts of neurosecretory and nervous tissues, eyestalks, and ventral neural chain compensated for serum deprivation and stimulated completion of mitosis. Arch.
Boari, A; Barreca, A; Bestetti, G E; Minuto, F; Venturoli, M
1995-06-01
A 12-year-old mixed-breed male dog was referred to the Clinica Medica Veterinaria of Bologna University for recurrent episodes of seizures due to hypoglycemia with abnormally low plasma insulin levels (18 pmol/l). Resection of a large leiomyoma (780 g) of the gastric wall resulted in a permanent resolution of the hypoglycemic episodes. Insulin-like growth factors I and II (IGF-I and -II) were measured by RIA in serum before and after surgery and in tumor tissue. Results were compared to the serum concentration of 54 normal and to the tissue concentration observed in eight non-hypoglycemic dog gastric wall extracts. Before surgery, circulating immunoreactive IGF-I was 0.92 nmol/l, which is significantly lower than the control values (16.92 +/- 8.44 nmol/l, range 3.53-35.03), while IGF-II was 152 nmol/l, which is significantly higher than the control values (42.21 +/- 3.75, range 31.99-50.74). After surgery, IGF-I increased to 6.80 nmol/l while IGF-II decreased to 45.52 nmol/l. Tumor tissue IGF-II concentration was higher than normal (5.66 nmol/kg tissue as compared to a range in normal gastric wall tissue of 1.14-3.72 nmol/kg), while IGF-I was 0.08 nmol/kg tissue, which is close to the lowest normal value (range in controls, 0.08-1.18 nmol/kg). Partial characterization of IGF-II immunoreactivity extracted from tissue evidenced a molecular weight similar to that of mature IGF-II, thus excluding that peptide released by the tumor is a precursor molecule.(ABSTRACT TRUNCATED AT 250 WORDS)
Papaioannou, Anastasios; Kuyucak, Serdar; Kuncic, Zdenka
2016-01-01
The insulin-family proteins bind to their own receptors, but insulin-like growth factor II (IGF-II) can also bind to the A isoform of the insulin receptor (IR-A), activating unique and alternative signaling pathways from those of insulin. Although extensive studies of insulin have revealed that its activation is associated with the opening of the B chain-C terminal (BC-CT), the activation mechanism of the insulin-like growth factors (IGFs) still remains unknown. Here, we present the first comprehensive study of the insulin-family proteins comparing their activation process and mechanism using molecular dynamics simulations to reveal new insights into their specificity to the insulin receptor. We have found that all the proteins appear to exhibit similar stochastic dynamics in their conformational change to an active state. For the IGFs, our simulations show that activation involves two opening locations: the opening of the BC-CT section away from the core, similar to insulin; and the additional opening of the BC-CT section away from the C domain. Furthermore, we have found that these two openings occur simultaneously in IGF-I, but not in IGF-II, where they can occur independently. This suggests that the BC-CT section and the C domain behave as a unified domain in IGF-I, but as two independent domains in IGF-II during the activation process, implying that the IGFs undergo different activation mechanisms for receptor binding. The probabilities of the active and inactive states of the proteins suggest that IGF-II is hyperactive compared to IGF-I. The hinge residue and the hydrophobic interactions in the core are found to play a critical role in the stability and activity of IGFs. Overall, our simulations have elucidated the crucial differences and similarities in the activation mechanisms of the insulin-family proteins, providing new insights into the molecular mechanisms responsible for the observed differences between IGF-I and IGF-II in receptor binding.
Catrina, S-B; Lewitt, M; Massambu, C; Dricu, A; Grünler, J; Axelson, M; Biberfeld, P; Brismar, K
2005-04-25
Kaposi's sarcoma (KS) is a highly vascular tumour and is the most common neoplasm associated with human immunodeficiency virus (HIV-1) infection. Growth factors, in particular vascular endothelial growth factor (VEGF), have been shown to play an important role in its development. The role of insulin-like growth factors (IGFs) in the pathophysiology of different tumours led us to evaluate the role of IGF system in KS. The IGF-I receptors (IGF-IR) were identified by immunohistochemistry in biopsies taken from patients with different AIDS/HIV-related KS stages and on KSIMM cells (an established KS-derived cell line). Insulin-like growth factor-I is a growth factor for KSIMM cells with a maximum increase of 3H-thymidine incorporation of 130 +/- 27.6% (P < 0.05) similar to that induced by VEGF and with which it is additive (281 +/- 13%) (P < 0.05). Moreover, specific blockade of the receptor (either by alpha IR3 antibody or by picropodophyllin, a recently described selective IGF-IR tyrosine phosphorylation inhibitor) induced KSIMM apoptosis, suggesting that IGF-IR agonists (IGF-I and -II) mediate antiapoptotic signals for these cells. We were able to identify an autocrine loop essential for KSIMM cell survival in which IGF-II is the IGF-IR agonist secreted by the cells. In conclusion, IGF-I pathway inhibition is a promising therapeutical approach for KS tumours.
IGF-II gene region polymorphisms related to exertional muscle damage.
Devaney, Joseph M; Hoffman, Eric P; Gordish-Dressman, Heather; Kearns, Amy; Zambraski, Edward; Clarkson, Priscilla M
2007-05-01
We examined the association of a novel single-nucleotide polymorphism (SNP) in IGF-I (IGF-I -C1245T located in the promoter) and eight SNPs in the IGF-II gene region with indicators of muscle damage [strength loss, muscle soreness, and increases in circulating levels of creatine kinase (CK) and myoglobin] after eccentric exercise. We also examined two SNPs in the IGF binding protein-3 (IGFBP-3). The age, height, and body mass of the 151 subjects studied were 24.1 +/- 5.2 yr, 170.8 +/- 9.9 cm, and 73.3 +/- 17.0 kg, respectively. There were no significant associations of phenotypes with IGF-I. IGF-II SNP (G12655A, rs3213216) and IGFBP-3 SNP (A8618T, rs6670) were not significantly associated with any variable. The most significant finding in this study was that for men, IGF-II (C13790G, rs3213221), IGF-II (ApaI, G17200A, rs680), IGF-II antisense (IGF2AS) (G11711T, rs7924316), and IGFBP-3 (-C1592A, rs2132570) were significantly associated with muscle damage indicators. We found that men who were 1) homozygous for the rare IGF-II C13790G allele and rare allele for the ApaI (G17200A) SNP demonstrated the greatest strength loss immediately after exercise, greatest soreness, and highest postexercise serum CK activity; 2) homozygous wild type for IGF2AS (G11711T, rs7924316) had the greatest strength loss and most muscle soreness; and 3) homozygous wild type for the IGF2AS G11711T SNP showed the greatest strength loss, highest muscle soreness, and greater CK and myoglobin response to exercise. In women, fewer significant associations appeared.
D’Amario, Domenico; Cabral-Da-Silva, Mauricio; Zheng, Hanqiao; Fiorini, Claudia; Goichberg, Polina; Steadman, Elisabeth; Ferreira-Martins, João; Sanada, Fumihiro; Piccoli, Marco; Cappetta, Donato; D’Alessandro, David A.; Michler, Robert E.; Hosoda, Toru; Anastasia, Luigi; Rota, Marcello; Leri, Annarosa; Anversa, Piero; Kajstura, Jan
2012-01-01
Rationale Age and coronary artery disease may negatively affect the function of human cardiac stem cells (hCSCs) and their potential therapeutic efficacy for autologous cell transplantation in the failing heart. Objective Insulin-like growth factor 1 (IGF-1) and 2 (IGF-2), and angiotensin II (Ang II) and their receptors, IGF-1R, IGF-2R and AT1R, were characterized in c-kit-positive-hCSCs to establish whether these systems would allow us to separate hCSC classes with different growth reserve in the aging and diseased myocardium. Methods and Results C-kit-positive-hCSCs were collected from myocardial samples obtained from 24 patients, 48 to 86 years of age, undergoing elective cardiac surgery for coronary artery disease. The expression of IGF-1R in hCSCs recognized a young cell phenotype defined by long telomeres, high telomerase activity, enhanced cell proliferation and attenuated apoptosis. In addition to IGF-1, IGF-1R-positive-hCSCs secreted IGF-2 that promoted myocyte differentiation. Conversely, the presence of IGF-2R and AT1R, in the absence of IGF-1R, identified senescent hCSCs with impaired growth reserve and increased susceptibility to apoptosis. The ability of IGF-1R-positive-hCSCs to regenerate infarcted myocardium was then compared with that of unselected c-kit-positive-hCSCs. IGF-1R-positive-hCSCs improved cardiomyogenesis and vasculogenesis. Pretreatment of IGF-1R-positive-hCSCs with IGF-2 resulted in the formation of more mature myocytes and superior recovery of ventricular structure. Conclusions hCSCs expressing only IGF-1R synthesize both IGF-1 and IGF-2, which are potent modulators of stem cell replication, commitment to the myocyte lineage and myocyte differentiation, pointing to this hCSC subset as the ideal candidate cell for the management of human heart failure. PMID:21546606
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, S.; Bautista, C.M.; Wergedal, J.
1989-11-01
Inhibitory insulin-like growth factor binding protein (In-IGF-BP) has been purified to homogeneity from medium conditioned by TE89 human osteosarcoma cells by two different methods using Sephadex G-100 gel filtration, FPLC Mono Q ion-exchange, HPLC C{sub 4} reverse-phase, HPLC CN reverse-phase and affinity chromatographies. In-IGF-BP thus purified appeared to be homogeneous and unique by the following criteria. (i) N-terminal sequence analysis yielded a unique sequence (Asp-Glu-Ala-Ile-His-Cys-Pro-Pro-Glu-Ser-Glu-Ala-Lys-Leu-Ala). (ii) Amino acid composition of In-IGF-BP revealed marked differences with the amino acid compositions of other known PBs. (iii) In-IGF-BP exhibited a single band with molecular mass of 25 kDa under reducing conditions on sodiummore » dodecyl sulfate/polyacrylamide gels. IGF-I and IGF-II but not insulin displaced the binding of {sup 125}I-labeled IGF-I or {sup 125}I-labeled IGF-II binding to In-IGF-BP. In-IGF-BP inhibited basal, IGF-stimulated bone cell proliferation and serum-stimulated bone cell proliferation. Forskolin increases synthesis of In-IGF-BP in TE85 human osteosarcoma cells in a dose-dependent manner. Based on these findings, the authors conclude that In-IGF-BP is a protein that has a unique sequence and significant biological actions on bone cells.« less
Faienza, Maria Felicia; Acquafredda, Angelo; D'Aniello, Mariangela; Soldano, Lucia; Marzano, Flaviana; Ventura, Annamaria; Cavallo, Luciano
2013-01-01
We report the case of a boy affected by severe intrauterine and postnatal growth retardation, microcephaly, facial dysmorphisms and postnecrotic cirrhosis, diagnosed at birth as having Seckel syndrome, and subsequently confirmed as Majewski osteodysplastic primordial dwarfism type II (MOPD II) on the basis of clinical and radiological features of skeletal dysplasia. At our observation (6 years 7 months) he presented height -10.3 standard deviation score (SDS), weight -22.1 SDS, head circumference -8 SDS, delayed bone age of 4 years with respect to chronological age. In consideration of the low levels of insulin-like growth factor-1 (IGF-1) as well as of hepatic insufficiency, we started the treatment with recombinant human IGF-1 (rhIGF-1) at the dose of 0.04 mg/kg in 2 doses/day, with an increase of 0.04 mg/kg after 1 week until the maximum dose of 0.12 mg/kg. We observed an early response to rhIGF-1 treatment, with a shift of height velocity from 1.8 cm/year (-4.6 SDS) at 4 cm/year (-1.9 SDS), and an increase in bone age of 1.5 years during the first 6 months. rhIGF-1 treatment does not seem to be able to replace the physiological action of IGF-1 in patients with MOPD II and hepatic insufficiency, however, it seems to preserve the typical growth pattern of MOPD II patients, avoiding a further widening of the growth deficiency in these subjects.
Vinciguerra, Manlio; Santini, Maria Paola; Claycomb, William C; Ladurner, Andreas G; Rosenthal, Nadia
2009-12-10
Oxidative and hypertrophic stresses contribute to the pathogenesis of heart failure. Insulin-like growth factor-1 (IGF-1) is a peptide hormone with a complex post-transcriptional regulation, generating distinct isoforms. Locally acting IGF-1 isoform (mIGF-1) helps the heart to recover from toxic injury and from infarct. In the murine heart, moderate overexpression of the NAD(+)-dependent deacetylase SirT1 was reported to mitigate oxidative stress. SirT1 is known to promote lifespan extension and to protect from metabolic challenges. Circulating IGF-1 and SirT1 play antagonizing biological roles and share molecular targets in the heart, in turn affecting cardiomyocyte physiology. However, how different IGF-1 isoforms may impact SirT1 and affect cardiomyocyte function is unknown. Here we show that locally acting mIGF-1 increases SirT1 expression/activity, whereas circulating IGF-1 isoform does not affect it, in cultured HL-1 and neonatal cardiomyocytes. mIGF-1-induced SirT1 activity exerts protection against angiotensin II (Ang II)-triggered hypertrophy and against paraquat (PQ) and Ang II-induced oxidative stress. Conversely, circulating IGF-1 triggered itself oxidative stress and cardiomyocyte hypertrophy. Interestingly, potent cardio-protective genes (adiponectin, UCP-1 and MT-2) were increased specifically in mIGF-1-overexpressing cardiomyocytes, in a SirT1-dependent fashion. Thus, mIGF-1 protects cardiomyocytes from oxidative and hypertrophic stresses via SirT1 activity, and may represent a promising cardiac therapeutic.
Vinciguerra, Manlio; Santini, Maria Paola; Claycomb, William C.; Ladurner, Andreas G.; Rosenthal, Nadia
2010-01-01
Oxidative and hypertrophic stresses contribute to the pathogenesis of heart failure. Insulin-like growth factor-1 (IGF-1) is a peptide hormone with a complex post-transcriptional regulation, generating distinct isoforms. Locally acting IGF-1 isoform (mIGF-1) helps the heart to recover from toxic injury and from infarct. In the murine heart, moderate overexpression of the NAD+-dependent deacetylase SirT1 was reported to mitigate oxidative stress. SirT1 is known to promote lifespan extension and to protect from metabolic challenges. Circulating IGF-1 and SirT1 play antagonizing biological roles and share molecular targets in the heart, in turn affecting cardiomyocyte physiology. However, how different IGF-1 isoforms may impact SirT1 and affect cardiomyocyte function is unknown. Here we show that locally acting mIGF-1 increases SirT1 expression/activity, whereas circulating IGF-1 isoform does not affect it, in cultured HL-1 and neonatal cardiomyocytes. mIGF-1-induced SirT1 activity exerts protection against angiotensin II (Ang II)-triggered hypertrophy and against paraquat (PQ) and Ang II-induced oxidative stress. Conversely, circulating IGF-1 triggered itself oxidative stress and cardiomyocyte hypertrophy. Interestingly, potent cardio-protective genes (adiponectin, UCP-1 and MT-2) were increased specifically in mIGF-1-overexpressing cardiomyocytes, in a SirT1-dependent fashion. Thus, mIGF-1 protects cardiomyocytes from oxidative and hypertrophic stresses via SirT1 activity, and may represent a promising cardiac therapeutic. PMID:20228935
Travis, Ruth C.; Appleby, Paul N.; Martin, Richard M.; Holly, Jeff M.P.; Albanes, Demetrius; Black, Amanda; Bueno-de-Mesquita, H.B(as).; Chan, June M.; Chen, Chu; Chirlaque, Maria-Dolores; Cook, Michael B.; Deschasaux, Mélanie; Donovan, Jenny L.; Ferrucci, Luigi; Galan, Pilar; Giles, Graham G.; Giovannucci, Edward L.; Gunter, Marc J.; Habel, Laurel A.; Hamdy, Freddie C.; Helzlsouer, Kathy J.; Hercberg, Serge; Hoover, Robert N.; Janssen, Joseph A.M.J.L.; Kaaks, Rudolf; Kubo, Tatsuhiko; Le Marchand, Loic; Metter, E. Jeffrey; Mikami, Kazuya; Morris, Joan K.; Neal, David E.; Neuhouser, Marian L.; Ozasa, Kotaro; Palli, Domenico; Platz, Elizabeth A.; Pollak, Michael; Price, Alison J.; Roobol, Monique J.; Schaefer, Catherine; Schenk, Jeannette M.; Severi, Gianluca; Stampfer, Meir J.; Stattin, Pär; Tamakoshi, Akiko; Tangen, Catherine M.; Touvier, Mathilde; Wald, Nicholas J.; Weiss, Noel S.; Ziegler, Regina G.
2016-01-01
The role of insulin-like growth factors (IGFs) in prostate cancer development is not fully understood. To investigate the association between circulating concentrations of IGFs (IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3) and prostate cancer risk, we pooled individual participant data from 17 prospective and two cross-sectional studies, including up to 10,554 prostate cancer cases and 13,618 control participants. Conditional logistic regression was used to estimate the odds ratios (ORs) for prostate cancer based on the study-specific fifth of each analyte. Overall, IGF-I, IGF-II, IGFBP-2, and IGFBP-3 concentrations were positively associated with prostate cancer risk (Ptrend all ≤ 0.005), and IGFBP-1 was weakly inversely associated with risk (Ptrend = 0.05). However, heterogeneity between the prospective and cross-sectional studies was evident (Pheterogeneity = 0.03), unless the analyses were restricted to prospective studies (with the exception of IGF-II, Pheterogeneity = 0.02). For prospective studies, the OR for men in the highest versus the lowest fifth of each analyte was 1.29 (95% confidence interval=1.16-1.43) for IGF-I, 0.81 (0.68-0.96) for IGFBP-1, and 1.25 (1.12-1.40) for IGFBP-3. These associations did not differ significantly by time-to-diagnosis or tumor stage or grade. After mutual adjustment for each of the other analytes, only IGF-I remained associated with risk. Our collaborative study represents the largest pooled analysis of the relationship between prostate cancer risk and circulating concentrations of IGF-I, providing strong evidence that IGF-I is highly likely to be involved in prostate cancer development. PMID:26921328
Rodriguez-Perez, Ana I; Borrajo, Ana; Diaz-Ruiz, Carmen; Garrido-Gil, Pablo; Labandeira-Garcia, Jose L
2016-05-24
The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals.
Rodriguez-Perez, Ana I.; Borrajo, Ana; Diaz-Ruiz, Carmen; Garrido-Gil, Pablo; Labandeira-Garcia, Jose L.
2016-01-01
The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals. PMID:27167199
Switkowski, Karen M; Jacques, Paul F; Must, Aviva; Hivert, Marie-France; Fleisch, Abby; Gillman, Matthew W; Rifas-Shiman, Sheryl; Oken, Emily
2017-07-01
Background: Prenatal exposure to dietary protein may program growth-regulating hormones, consequently influencing early-life growth patterns and later risk of associated chronic diseases. The insulin-like growth factor (IGF) axis is of particular interest in this context given its influence on pre- and postnatal growth and its sensitivity to the early nutritional environment. Objective: Our objective was to examine associations of maternal protein intake during pregnancy with cord blood concentrations of IGF-I, IGF-II, IGF binding protein-3 (IGFBP-3), and insulin. Methods: We studied 938 mother-child pairs from early pregnancy through delivery in the Project Viva cohort. Using multivariable linear regression models adjusted for maternal race/ethnicity, education, income, smoking, parity, height, and gestational weight gain and for child sex, we examined associations of second-trimester maternal protein intake [grams per kilogram (weight before pregnancy) per day], as reported on a food frequency questionnaire, with IGF-I, IGF-II, IGFBP-3, and insulin concentrations in cord blood. We also examined how these associations may differ by child sex and parity. Results: Mothers were predominantly white (71%), college-educated (64%), and nonsmokers (67%). Mean ± SD protein intake was 1.35 ± 0.35 g ⋅ kg -1 ⋅ d -1 Each 1-SD increment in second-trimester protein intake corresponded to a change of -0.50 ng/mL (95% CI: -2.26, 1.26 ng/mL) in IGF-I and -0.91 μU/mL (95% CI: -1.45, -0.37 μU/mL) in insulin. Child sex and parity modified associations of maternal protein intake with IGF-II and IGFBP-3: protein intake was inversely associated with IGF-II in girls ( P -interaction = 0.04) and multiparous mothers ( P -interaction = 0.05), and with IGFBP-3 in multiparous mothers ( P -interaction = 0.04). Conclusions: In a cohort of pregnant women with relatively high mean protein intakes, higher intake was associated with lower concentrations of growth-promoting hormones in cord blood, suggesting a pathway that may link higher protein intake to lower fetal growth. This trial was registered at clinicaltrials.gov as NCT02820402. © 2017 American Society for Nutrition.
Chen, Xiaochuan; Rozance, Paul J; Hay, William W; Limesand, Sean W
2012-05-01
Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.
Fielder, P J; Guevara-Aguirre, J; Rosenbloom, A L; Carlsson, L; Hintz, R L; Rosenfeld, R G
1992-04-01
Recently, an isolated population of apparent GH-receptor deficient (GHRD) patients has been identified in the Loja province of southern Ecuador. These individuals presented many of the physical and biochemical phenotypes characteristic of Laron-Syndrome and are believed to have a defect in the GH-receptor gene. In this study, we have compared the biochemical phenotypes between the affected individuals and their parents, considered to be obligate heterozygotes for the disorder. Serum GH, insulin-like growth factor I and II (IGF-I and IGF-II) levels were measured by RIA Insulin-like growth factor binding proteins. (IGFBPs) were measured by Western ligand blotting (WLB) of serum samples, following separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and relative quantitation of serum IGFBPs was performed with a scanning laser densitometer. Serum GH-binding protein (GHBP) levels were measured with a ligand-mediated immunofunctional assay using a monoclonal antibody raised against the GHBP. These values were then compared to values obtained from normal, sex-matched adult Ecuadorian controls, to determine if the above parameters were abnormal in the heterozygotes. The serum IGF-I levels of the GHRD patients were less than 13% of control values for adults and 2% for children. However, the IGF-I levels of both the mothers and fathers were not significantly different from that of the control population. The serum IGF-II levels of the GHRD patients were approximately 20% of control values for adults and 12% for the children. The IGF-II levels of the mothers were reduced, but were not significantly different from that of the control population. However, IGF-II levels of the fathers were significantly lower than those of controls (64% of control male levels). WLB analysis of serum IGFBP levels of the affected subjects demonstrated increased IGFBP-2 and decreased IGFBP-3, suggesting an inverse relationship between these IGFBPs. The GHRD patients who had the lowest serum IGFBP-3 levels (as measured by WLB) demonstrated a serum protease activity that could proteolyze 125I-IGFBP-3. GHRD patients who had higher serum IGFBP-3 levels lacked this serum protease activity. There were no differences in the serum IGFBP profiles of the mothers or the fathers for either IGFBP-2 or IGFBP-3, and serum from both groups lacked the ability to significantly proteolyze 125I-IGFBP-3. While GHRD patients had very low levels of serum GHBP, some patients did have measurable GHBP levels.(ABSTRACT TRUNCATED AT 400 WORDS)
Role of insulin-like growth factor-1 (IGF-1) in regulating cell cycle progression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Qi-lin; Yang, Tian-lun; Yin, Ji-ye
2009-11-06
Aims: Insulin-like growth factor-1 (IGF-1) is a polypeptide protein hormone, similar in molecular structure to insulin, which plays an important role in cell migration, cell cycle progression, cell survival and proliferation. In this study, we investigated the possible mechanisms of IGF-1 mediated cell cycle redistribution and apoptosis of vascular endothelial cells. Method: Human umbilical vein endothelial cells (HUVECs) were pretreated with 0.1, 0.5, or 2.5 {mu}g/mL of IGF-1 for 30 min before the addition of Ang II. Cell cycle redistribution and apoptosis were examined by flow cytometry. Expression of Ang II type 1 (AT{sub 1}) mRNA and cyclin E proteinmore » were determined by RT-PCR and Western blot, respectively. Results: Ang II (1 {mu}mol/L) induced HUVECs arrested at G{sub 0}/G{sub 1}, enhanced the expression level of AT{sub 1} mRNA in a time-dependent manner, reduced the enzymatic activity of nitric oxide synthase (NOS) and nitric oxide (NO) content as well as the expression level of cyclin E protein. However, IGF-1 enhanced NOS activity, NO content, and the expression level of cyclin E protein, and reduced the expression level of AT{sub 1} mRNA. L-NAME significantly counteracted these effects of IGF-1. Conclusions: Our data suggests that IGF-1 can reverse vascular endothelial cells arrested at G{sub 0}/G{sub 1} and apoptosis induced by Ang II, which might be mediated via a NOS-NO signaling pathway and is likely associated with the expression levels of AT1 mRNA and cyclin E proteins.« less
Vélez, Emilio J; Perelló, Miquel; Azizi, Sheida; Moya, Alberto; Lutfi, Esmail; Pérez-Sánchez, Jaume; Calduch-Giner, Josep A; Navarro, Isabel; Blasco, Josefina; Fernández-Borràs, Jaume; Capilla, Encarnación; Gutiérrez, Joaquim
2018-02-01
The growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes. Thus, body weight and specific growth rate were significantly increased in rBGH-treated fish respect to control fish at 6weeks post-injection, whereas the hepatosomatic index was decreased and the condition factor and mesenteric fat index were unchanged, altogether indicating enhanced somatic growth. Moreover, rBGH injection increased the plasma IGF-I levels in parallel with a rise of hepatic mRNA from total IGF-I, IGF-Ic and IGF-II, the binding proteins IGFBP-1a and IGFBP-2b, and also the receptors IGF-IRb, GHR-I and GHR-II. In skeletal muscle, the expression of IGF-Ib and GHR-I was significantly increased but that of IGF-IRb was reduced; the mRNA levels of myogenic regulatory factors, proliferation and differentiation markers (PCNA and MHC, respectively), or that of different molecules of the signaling pathway (TOR/AKT) were unaltered. Besides, the growth inhibitor myostatin (MSTN1 and MSTN2) and the hypertrophic marker (MLC2B) expression resulted significantly enhanced, suggesting altogether that the muscle is in a non-proliferative stage of development. Contrarily in bone, although the expression of most molecules of the GH/IGF axis was decreased, the mRNA levels of several osteogenic genes were increased. The histology analysis showed a GH induced lipolytic effect with a clear decrease in the subcutaneous fat layer. Overall, these results reveal that a better growth potential can be achieved on this species and supports the possibility to improve growth and quality through the optimization of its culture conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Huang, Chih-Yang; Lee, Fa-Lun; Peng, Shu-Fen; Lin, Kuan-Ho; Chen, Ray-Jade; Ho, Tsung-Jung; Tsai, Fu-Jen; Padma, Vijaya V; Kuo, Wei-Wen; Huang, Chih-Yang
2018-02-01
Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT 1 R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1 S303 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. © 2017 Wiley Periodicals, Inc.
Gatford, K L; Quinn, K J; Walton, P E; Grant, P A; Hosking, B J; Egan, A R; Owens, P C
1997-10-01
The ontogeny of the IGF endocrine system was investigated in 15 young lambs before and after weaning at 62 days of age. Before weaning, plasma IGF-I concentrations were higher in rams than ewes, and plasma concentrations of IGF-II and IGF-binding protein-3 (IGFBP-3) also tended to be higher in rams than in ewes. Feed intake of ewes and rams was restricted after weaning to remove sex differences in feed intake. Plasma concentrations of IGF-I and IGFBP-3 did not differ between rams and ewes at 100 days of age, but plasma IGF-II was higher in rams than in ewes at this time. Since circulating concentrations of GH were higher in rams than in ewes at 100 days of age, this implies that the restricted feed intake blocked the IGF-I and IGFBP-3 responses to GH. We conclude that sex differences in circulating IGF-I and IGFBP-3 concentrations in the growing lamb alter with age, and are not present when nutrition is restricted.
Zeng, Y F; Ding, X Z; Cheng, S R; Yu, S J
2013-12-11
Insulin-like growth factor II (IGF-II) plays a key role in mammalian growth and is involved in stimulating fetal cell division, differentiation, and metabolic regulation. IGF-II is considered a candidate gene for genetic markers of growth and carcass traits. Therefore, in this study, the associations of single nucleotide polymorphisms (SNPs) in the IGF-II gene region with growth and carcass characteristics in five yak breeds were investigated. Two SNPs, G(330)C and A(358)G, were identified by sequencing intron 8 of the IGF-II gene in homozygotes. Two alleles, A and B, and three genotypes, AA, AB, and BB, were identified by polymerase chain reaction. Genotypic frequencies of IGF-II allele B were 0.8623, 0.8936, 0.8535, 0.8676, and 0.8300 for Datong yak, Gannan yak, Tianzhu white yak, Qinghai Plateau yak, and Xinjiang yak, respectively. Allele and the genotype of IGF-II were strongly associated with growth and carcass traits. Least square analysis revealed a significant effect (P < 0.01) of genotypes AA and AB compared with genotype BB on live-weight (at 12, 13-24, and 25-36 months of age), average daily weight gain (P < 0.01) and carcass weight (P < 0.05). Animals with genotype AB had a higher mean rib eye area, and a lower mean yield grade. The results indicated that the IGF-II gene acts by a primarily additive biological mechanism by adding weight independently of skeletal growth.
Huang, Chih-Yang; Pai, Pei-Ying; Kuo, Chia-Hua; Ho, Tsung-Jung; Lin, Jing-Ying; Lin, Ding-Yu; Tsai, Fu-Jen; Padma, V Vijaya; Kuo, Wei-Wen; Huang, Chih-Yang
2017-08-10
Hypertension-induced cardiac hypertrophy and attenuated cardiac function are the major characteristics of early stage heart failure. Cardiomyocyte death in pathological cardiac conditions is the primary cause of heart failure and mortality. Our previous studies found that heat shock factor 1 (HSF1) protected cardiomyocytes from death by suppressing the IGF-IIR signaling pathway, which is critical for hypertensive angiotensin II-induced cardiomyocyte apoptosis. However, the role of heat shock factor 2 (HSF2) in hypertension-induced cardiac hypertrophy is unknown. We identified HSF2 as a miR-18 target for cardiac hypertrophy. p53 activation in angiotensin II (ANG II)-stimulated NRVMs is responsible for miR-18 downregulation both in vitro and in vivo, which triggers HSF2 expression and the activation of IGF-IIR-induced cardiomyocyte hypertrophy. Finally, we provide genetic evidence that miR-18 is required for cardiomyocyte functions in the heart based on the gene transfer of cardiac-specific miR-18 via adenovirus-associated virus 2 (AAV2). Transgenic overexpression of miR-18 in cardiomyocytes is sufficient to protect against dilated cardiomyopathy during hypertension-induced heart failure. Our results demonstrated that the p53-miR-18-HSF2-IGF-IIR axis was a critical regulatory pathway of cardiomyocyte hypertrophy in vitro and in vivo, suggesting that miR-18 could be a therapeutic target for the control of cardiac functions and the alleviation of cardiomyopathy during hypertension-induced heart failure.
Purification, amino acid sequence and characterisation of kangaroo IGF-I.
Yandell, C A; Francis, G L; Wheldrake, J F; Upton, Z
1998-01-01
Insulin-like growth factor-I (IGF-I) and IGF-II have been purified to homogeneity from kangaroo (Macropus fuliginosus) serum, thus this represents the first report of the purification, sequencing and characterisation of marsupial IGFs. N-Terminal protein sequencing reveals that there are six amino acid differences between kangaroo and human IGF-I. Kangaroo IGF-II has been partially sequenced and no differences were found between human and kangaroo IGF-II in the 53 residues identified. Thus the IGFs appear to be remarkably structurally conserved during mammalian radiation. In addition, in vitro characterisation of kangaroo IGF-I demonstrated that the functional properties of human, kangaroo and chicken IGF-I are very similar. In an assay measuring the ability of the proteins to stimulate protein synthesis in rat L6 myoblasts, all IGF-I proteins were found to be equally potent. The ability of all three proteins to compete for binding with radiolabelled human IGF-I to type-1 IGF receptors in L6 myoblasts and in Sminthopsis crassicaudata transformed lung fibroblasts, a marsupial cell line, was comparable. Furthermore, kangaroo and human IGF-I react equally in a human IGF-I RIA using a human reference standard, radiolabelled human IGF-I and a polyclonal antibody raised against recombinant human IGF-I. This study indicates that not only is the primary structure of eutherian and metatherian IGF-I conserved, but also the proteins appear to be functionally similar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuloaga, R.; Fuentes, E.N.; Molina, A.
2013-10-18
Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1more » during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.« less
Llewellyn, S; Fitzpatrick, R; Kenny, D A; Patton, J; Wathes, D C
2008-05-01
Rapid uterine involution in the postpartum period of dairy cows is important to achieve a short interval to conception. Expression patterns for members of the insulin-like growth factor (IGF) family were determined by in situ hybridisation at day 14+/-0.4 postpartum (n=12 cows) to investigate a potential role for IGFs in modulating uterine involution. Expression in each uterine tissue region was measured as optical density units and data were analysed according to region and horn. IGF-I mRNA was localized to the sub-epithelial stroma (SES) of inter-caruncular and caruncular endometrium. Both IGF-II and IGF-1R expression was detected in the deep endometrial stroma (DES), the caruncular stroma and myometrium. IGFBP-2, IGFBP-4 and IGFBP-6 mRNAs were all localised to the SES of inter-caruncular and caruncular uterine tissue, and in the DES and caruncular stroma, with IGFBP-4 mRNA additionally expressed in myometrium. IGFBP-3 mRNA was only detectable in luminal epithelium. IGFBP-5 mRNA was found in myometrium, inter-caruncular and caruncular SES and caruncular stroma. These data support a role for IGF-I and IGF-II in the extensive tissue remodelling and repair which the postpartum uterus undergoes to return to its non-pregnant state. The differential expression of binding proteins between tissues (IGFBP-3 in epithelium, IGFBP-2, -4, -5 and -6 in stroma and IGFBP-4 and -5 in myometrium) suggest tight control of IGF activity within each compartment. Differential expression of many members of the IGF family between the significantly larger previously gravid horn and the previously non-gravid horn may relate to differences in their rate of tissue remodelling.
Llewellyn, S.; Fitzpatrick, R.; Kenny, D.A.; Patton, J.; Wathes, D.C.
2008-01-01
Rapid uterine involution in the postpartum period of dairy cows is important to achieve a short interval to conception. Expression patterns for members of the insulin-like growth factor (IGF) family were determined by in situ hybridisation at day 14 ± 0.4 postpartum (n = 12 cows) to investigate a potential role for IGFs in modulating uterine involution. Expression in each uterine tissue region was measured as optical density units and data were analysed according to region and horn. IGF-I mRNA was localized to the sub-epithelial stroma (SES) of inter-caruncular and caruncular endometrium. Both IGF-II and IGF-1R expression was detected in the deep endometrial stroma (DES), the caruncular stroma and myometrium. IGFBP-2, IGFBP-4 and IGFBP-6 mRNAs were all localised to the SES of inter-caruncular and caruncular uterine tissue, and in the DES and caruncular stroma, with IGFBP-4 mRNA additionally expressed in myometrium. IGFBP-3 mRNA was only detectable in luminal epithelium. IGFBP-5 mRNA was found in myometrium, inter-caruncular and caruncular SES and caruncular stroma. These data support a role for IGF-I and IGF-II in the extensive tissue remodelling and repair which the postpartum uterus undergoes to return to its non-pregnant state. The differential expression of binding proteins between tissues (IGFBP-3 in epithelium, IGFBP-2, -4, -5 and -6 in stroma and IGFBP-4 and -5 in myometrium) suggest tight control of IGF activity within each compartment. Differential expression of many members of the IGF family between the significantly larger previously gravid horn and the previously non-gravid horn may relate to differences in their rate of tissue remodelling. PMID:18258405
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexia, Catherine; Fourmatgeat, Pascal; Delautier, Daniele
2006-04-15
Although hepatocytes are the primary source of endocrine IGF-I and -II in mammals, their autocrine/paracrine role in the dysregulation of proliferation and apoptosis during hepatocarcinogenesis and in hepatocarcinomas (HCC) remains to be elucidated. Indeed, IGF-II and type-I IGF receptors are overexpressed in HCC cells, and IGF-I is synthesized in adjacent non-tumoral liver tissue. In the present study, we have investigated the effects of type-I IGF receptor signaling on H{sub 4}II rat hepatoma cell proliferation, as estimated by {sup 3}H-thymidine incorporation into DNA. IGF-I stimulated the rate of DNA synthesis of serum-deprived H{sub 4}II cells, stimulation being maximal 3 h aftermore » the onset of IGF-I treatment and remaining elevated until at least 6 h. The IGF-I-induced increase in DNA replication was abolished by LY294002 and only partially inhibited by PD98059, suggesting that phosphoinositol-3' kinase (PI-3'K) and to a lesser extent MEK/Erk signaling were involved. Furthermore, the 3- to 19-fold activation of the Erks in the presence of LY294002 suggested a down-regulation of the MEK/Erk cascade by PI-3'K signaling. Finally, the effect of IGF-I on DNA replication was almost completely abolished in clones of H{sub 4}II cells expressing a dominant-negative form of Akt but was unaltered by rapamycin treatment of wild-type H{sub 4}II cells. Altogether, these data support the notion that the stimulation of H{sub 4}II rat hepatoma cell proliferation by IGF-I is especially dependent on Akt activation but independent on the Akt/mTOR signal0009i.« less
Roles of insulin-like growth factors in metamorphic development of turbot (Scophthalmus maximus).
Jia, Yudong
2018-01-31
Larval turbot (Scophthalmus maximus) undergo metamorphosis, a late post-embryonic developmental event that precedes juvenile transition. Insulin-like growth factors (IGFs) are important endocrine/autocrine/paracrine factors that provide essential signals to control of the embryonic and postnatal development of vertebrate species, including fish. Accumulating evidence suggests that IGFs are involved in regulating the metamorphic development of flatfish. This mini review focus on the functions of all known IGFs (IGF-I and IGF-II) during the metamorphic development of turbot. Information about IGFs and insulin-like growth factors binding proteins (IGFBPs) from other teleosts is also included in this review to provide an overview of IGFs functions in the metamorphic development of turbot. These findings may enhance our understanding of the potential roles of the IGFs system in controlling of flatfish metamorphosis and contributing to the improvement of broodstock management strategies for larval turbot. Copyright © 2018 Elsevier Inc. All rights reserved.
Fuentes-Santamaría, V; Alvarado, J C; Rodríguez-de la Rosa, L; Murillo-Cuesta, S; Contreras, J; Juiz, J M; Varela-Nieto, I
2016-03-01
Insulin-like growth factor 1 (IGF-1) is a neurotrophic protein that plays a crucial role in modulating neuronal function and synaptic plasticity in the adult brain. Mice lacking the Igf1 gene exhibit profound deafness and multiple anomalies in the inner ear and spiral ganglion. An issue that remains unknown is whether, in addition to these peripheral abnormalities, IGF-1 deficiency also results in structural changes along the central auditory pathway that may contribute to an imbalance between excitation and inhibition, which might be reflected in abnormal auditory brainstem responses (ABR). To assess such a possibility, we evaluated the morphological and physiological alterations in the cochlear nucleus complex of the adult mouse. The expression and distribution of the vesicular glutamate transporter 1 (VGluT1) and the vesicular inhibitory transporter (VGAT), which were used as specific markers for labeling excitatory and inhibitory terminals, and the involvement of the activity-dependent myocyte enhancer factor 2 (MEF2) transcription factors in regulating excitatory synapses were assessed in a 4-month-old mouse model of IGF-1 deficiency and neurosensorial deafness (Igf1 (-/-) homozygous null mice). The results demonstrate decreases in the cochlear nucleus area and cell size along with cell loss in the cochlear nuclei of the deficient mouse. Additionally, our results demonstrate that there is upregulation of VGluT1, but not VGAT, immunostaining and downregulation of MEF2 transcription factors together with increased wave II amplitude in the ABR recording. Our observations provide evidence of an abnormal neuronal cytoarchitecture in the cochlear nuclei of Igf1 (-/-) null mice and suggest that the increased efficacy of glutamatergic synapses might be mediated by MEF2 transcription factors.
Huang, Chih-Yang; Kuo, Wei-Wen; Ho, Tsung-Jung; Chiang, Shu-Fen; Pai, Pei-Ying; Lin, Jing-Ying; Lin, Ding-Yu; Kuo, Chia-Hua; Huang, Chih-Yang
2018-03-25
Mitochondria dysfunction is the major characteristic of mitophagy, which is essential in mitochondrial quality control. However, excessive mitophagy contributes to cell death in a number of diseases, including ischemic stroke and hepatotoxicity. Insulin-like growth factor II (IGF-II) and its receptor (IGF-IIR) play vital roles in the development of heart failure during hypertension. We found that IGF-II triggers IGF-IIR receptor activation, causing mitochondria dysfunction, resulting in mitophagy, and cardiomyocyte cell death. These results indicated that IGF-IIR activation triggers mitochondria fragmentation, leading to autophagosome formation, and loss of mitochondria content. These results are associated with Parkin-dependent mitophagy. Additionally, autophagic proteins Atg5, and Atg7 deficiency did not suppress IGF-IIR-induced mitophagy. However, Rab9 knockdown reduced mitophagy and maintained mitochondrial function. These constitutive mitophagies through IGF-IIR activation trigger mitochondria loss and mitochondrial ROS accumulation for cardiomyocyte viability decrease. Together, our results indicate that IGF-IIR predominantly induces mitophagy through the Rab9-dependent alternative autophagy. © 2018 Wiley Periodicals, Inc.
Melnik, Bodo C; John, Swen Malte; Schmitz, Gerd
2011-06-24
The insulin/insulin-like growth factor-1 (IGF-1) pathway drives an evolutionarily conserved network that regulates lifespan and longevity. Individuals with Laron syndrome who carry mutations in the growth hormone receptor (GHR) gene that lead to severe congenital IGF-1 deficiency with decreased insulin/IGF-1 signaling (IIS) exhibit reduced prevalence rates of acne, diabetes and cancer. Western diet with high intake of hyperglycemic carbohydrates and insulinotropic dairy over-stimulates IIS. The reduction of IIS in Laron subjects unmasks the potential role of persistent hyperactive IIS mediated by Western diet in the development of diseases of civilization and offers a rational perspective for dietary adjustments with less insulinotropic diets like the Paleolithic diet.
IGF-II promoter methylation and ovarian cancer prognosis.
Beeghly, A C; Katsaros, D; Wiley, A L; Rigault de la Longrais, I A; Prescott, A T; Chen, H; Puopolo, M; Rutherford, T J; Yu, H
2007-10-01
The insulin-like growth factor-II (IGF-II) gene has four promoters that produce distinct transcripts which vary by tissue type and developmental stage. Dysregulation of normal promoter usage has been shown to occur in cancer; DNA methylation regulates promoter use. Thus, we sought to examine if DNA methylation varies among IGF-II promoters in ovarian cancer and if methylation patterns are related to clinical features of the disease. Tumor tissue, clinical data, and follow-up information were collected from 215 patients diagnosed with primary epithelial ovarian cancer. DNA extracted from tumor tissues was analyzed for IGF-II promoter methylation with seven methylation specific PCR (MSP) assays: three for promoter 2 (P2) and two assays each for promoters 3 and 4 (P3 and P4). Methylation was found to vary among the seven assays: 19.3% in P2A, 45.6% in P2B, 50.9% in P2C, 48.4% in P3A, 13.1% in P3B, 5.1% in P4A, and 6.1% in P4B. Methylation in any of the three P2 assays was associated with high tumor grade (P = 0.043), suboptimal debulking (P = 0.036), and disease progression [hazards ratio (HR) = 1.73, 95% confidence interval (CI) 1.09-2.74]. When comparing promoter methylation patterns, differential methylation of P2 and P3 was found to be associated with disease prognosis; patients with P3 but not P2 methylation were less likely to have disease progression (HR = 0.39, 95% CI 0.17-0.91) compared to patients with P2 but not P3 methylation. This study shows that methylation varies among three IGF-II promoters in ovarian cancer and that this variation seems to have biologic implications as it relates to clinical features and prognosis of the disease.
Neira, J A; Tainturier, D; Peña, M A; Martal, J
2010-03-15
This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; P<0.05) on Day 8 after in vitro fertilization and similar results to use of SOF+10% fetal calf serum (38% and 16%, at the same stages, respectively). The averages of total cells, inner cell mass cells, and trophectoderm cells of exclusively in vitro Day-8 blastocysts for pooled GF-CYK treatments were higher than those for SOF and similar to those for fetal calf serum. The presence of these growth factors and cytokines in the embryo culture medium therefore has a combined stimulatory action on embryonic development; in particular through an increase in hatching rate and in the number of cells of both the inner cell mass and trophoblast. These results are the first to demonstrate that use of a combination of recombinant growth factors and cytokine, as IGF-I, IGF-II, bFGF, TGF-beta1, LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the biosecurity of embryo transfer. Copyright 2010 Elsevier Inc. All rights reserved.
Witt, Anika; Salamon, Achim; Boy, Diana; Hansmann, Doris; Büttner, Andreas; Wree, Andreas; Bader, Rainer; Jonitz-Heincke, Anika
2017-01-01
The main goal of cartilage repair is to create functional tissue by enhancing the in vitro conditions to more physiological in vivo conditions. Chondrogenic growth factors play an important role in influencing cartilage homeostasis. Insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β1 affect the expression of collagen type II (Col2) and glycosaminoglycans (GAGs) and, therefore, the targeted use of growth factors could make chondrogenic redifferentiation more efficient. In the present study, human chondrocytes were postmortally isolated from healthy articular cartilage and cultivated as monolayer or 3D pellet cultures either under normoxia or hypoxia and stimulated with IGF-1 and/or TGF-β1 to compare the impact of the different growth factors. The mRNA levels of the specific receptors (IGF1R, TGFBR1, TGFBR2) were analyzed at different time points. Moreover, gene expression rates of collagen type 1 and 2 in pellet cultures were observed over a period of 5 weeks. Additionally, hyaline-like Col2 protein and sulphated GAG (sGAG) levels were quantified. Stimulation with IGF-1 resulted in an enhanced expression of IGF1R and TGFBR2 whereas TGF-β1 stimulated TGFBR1 in the monolayer and pellet cultures. In monolayer, the differences reached levels of significance. This effect was more pronounced under hypoxic culture conditions. In pellet cultures, increased amounts of Col2 protein and sGAGs after incubation with TGF-β1 and/or IGF-1 were validated. In summary, constructing a gene expression profile regarding mRNA levels of specific growth factor receptors in monolayer cultures could be helpful for a targeted application of growth factors in cartilage tissue engineering. PMID:28534942
Goodrich, L R; Hidaka, C; Robbins, P D; Evans, C H; Nixon, A J
2007-05-01
Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 x 10(7) AdIGF-1 modified chondrocytes and the contralateral joint received 2 x 10(7) naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated. Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation.
Carew, L B; McMurtry, J P; Alster, F A
2003-12-01
We showed previously that Met deficiency at 0.25% of the diet causes elevations in plasma triiodothyronine (T3) in broilers. In the present study, plasma levels of thyroid hormones as well as insulin-like growth factors (IGF)-I and -II were measured in chicks fed 3 deficient levels of total Met. Control (0.5%) and Met-deficient diets (0.4, 0.3, and 0.2%) were fed to male broilers from 8 to 22 d of age. Additional groups of control chicks were pair-fed with the Met-deficient ones. Chicks receiving 0.4% Met increased feed intake by 10% with no significant change in body weight. The more severe Met deficiencies of 0.3 and 0.2% caused graded reductions in feed intake and weight gain. However, corresponding pair-fed control chicks were significantly heavier. These changes suggest more marked alterations in metabolic processes with 0.3 and 0.2% Met than with 0.4% Met. Liver weights were heavier in chicks fed 0.3 and 0.2% Met but not 0.4%. Plasma T3 was higher in all deficient chicks compared with the free-fed control, which was significant only with 0.3% Met. However, with 0.3 and 0.2% Met, plasma T3 was significantly elevated compared to pair-fed controls. Plasma thyroxine (T4) was lower in all deficient groups, which was significant only with 0.2% Met, whereas no significant differences occurred between deficient chicks and their pair-fed controls. Plasma IGF-I levels were not significantly different, but they were consistently lower in deficient chicks and deserve further study. Plasma IGF-II was significantly less in chicks fed 0.2% Met compared to pair-fed controls suggesting that Met deficiency interferes with IGF-II metabolism. We concluded that a deficit of dietary Met altered plasma T3 and IGF-II levels, but the effect was dependent on the degree of deficiency.
Kangaroo IGF-II is structurally and functionally similar to the human [Ser29]-IGF-II variant.
Yandell, C A; Francis, G L; Wheldrake, J F; Upton, Z
1999-06-01
Kangaroo IGF-II has been purified from western grey kangaroo (Macropus fuliginosus) serum and characterised in a number of in vitro assays. In addition, the complete cDNA sequence of mature IGF-II has been obtained by reverse-transcription polymerase chain reaction. Comparison of the kangaroo IGF-II cDNA sequence with known IGF-II sequences from other species revealed that it is very similar to the human variant, [Ser29]-hIGF-II. Both the variant and kangaroo IGF-II contain an insert of nine nucleotides that encode the amino acids Leu-Pro-Gly at the junction of the B and C domains of the mature protein. The deduced kangaroo IGF-II protein sequence also contains three other amino acid changes that are not observed in human IGF-II. These amino acid differences share similarities with the changes described in many of the IGF-IIs reported for non-mammalian species. Characterisation of human IGF-II, kangaroo IGF-II, chicken IGF-II and [Ser29]-hIGF-II in a number of in vitro assays revealed that all four proteins are functionally very similar. No significant differences were observed in the ability of the IGF-IIs to bind to the bovine IGF-II/cation-independent mannose 6-phosphate receptor or to stimulate protein synthesis in rat L6 myoblasts. However, differences were observed in their abilities to bind to IGF-binding proteins (IGFBPs) present in human serum. Kangaroo, chicken and [Ser29]-hIGF-II had lower apparent affinities for human IGFBPs than did human IGF-II. Thus, it appears that the major circulating form of IGF-II in the kangaroo and a minor form of IGF-II found in human serum are structurally and functionally very similar. This suggests that the splice site that generates both the variant and major form of human IGF-II must have evolved after the divergence of marsupials from placental mammals.
2011-01-01
The insulin/insulin-like growth factor-1 (IGF-1) pathway drives an evolutionarily conserved network that regulates lifespan and longevity. Individuals with Laron syndrome who carry mutations in the growth hormone receptor (GHR) gene that lead to severe congenital IGF-1 deficiency with decreased insulin/IGF-1 signaling (IIS) exhibit reduced prevalence rates of acne, diabetes and cancer. Western diet with high intake of hyperglycemic carbohydrates and insulinotropic dairy over-stimulates IIS. The reduction of IIS in Laron subjects unmasks the potential role of persistent hyperactive IIS mediated by Western diet in the development of diseases of civilization and offers a rational perspective for dietary adjustments with less insulinotropic diets like the Paleolithic diet. PMID:21699736
Neurodevelopmental effects of insulin-like growth factor signaling
O’Kusky, John; Ye, Ping
2012-01-01
Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development. PMID:22710100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.
1988-05-03
Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta..more » heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.« less
Effects of the Insulin-like Growth Factor Pathway on the Regulation of Mammary Gland Development.
Ha, Woo Tae; Jeong, Ha Yeon; Lee, Seung Yoon; Song, Hyuk
2016-09-01
The insulin-like growth factor (IGF) pathway is a key signal transduction pathway involved in cell proliferation, migration, and apoptosis. In dairy cows, IGF family proteins and binding receptors, including their intracellular binding partners, regulate mammary gland development. IGFs and IGF receptor interactions in mammary glands influence the early stages of mammogenesis, i.e., mammary ductal genesis until puberty. The IGF pathway includes three major components, IGFs (such as IGF-I, IGF-II, and insulin), their specific receptors, and their high-affinity binding partners (IGF binding proteins [IGFBPs]; i.e., IGFBP1-6), including specific proteases for each IGFBP. Additionally, IGFs and IGFBP interactions are critical for the bioactivities of various intracellular mechanisms, including cell proliferation, migration, and apoptosis. Notably, the interactions between IGFs and IGFBPs in the IGF pathway have been difficult to characterize during specific stages of bovine mammary gland development. In this review, we aim to describe the role of the interaction between IGFs and IGFBPs in overall mammary gland development in dairy cows.
Yıldırım, Koray; Vural, M Rıfat; Küplülü, Sükrü; Ozcan, Ziya; Polat, I Mert
2014-04-01
The objective of this study was to evaluate the influence of epidermal growth factor (EGF) and insulin like growth factor-I (IGF-1) on the in vitro maturation of cat oocytes recovered from follicular and luteal stage ovaries. Oocytes from follicular (n=580) and luteal (n=209) stages were harvested and divided into four groups, which were cultured in FSH-mediated maturation medium supplemented with: (1) EGF alone (25ng/mL); (2) IGF-1 alone (100ng/mL); (3) EGF+IGF-1 (25ng/mL EGF+100ng/mL IGF-I); or (4) no growth factor (control). The proportion of follicular stage oocytes reaching the metaphase II stage was significantly higher than that of oocytes obtained at the luteal stage in both control and study groups (p<0.001). The percentages of oocytes reaching the metaphase II stage during the follicular period were 62.6% in control; 70.9% in EGF; 72.8% in IGF-1, and 78.1% in EGF+IGF-1 groups, whereas the respective values for gametes collected from luteal stage ovaries were 12.5%, 17.5%, 12.5%, and 16.9%. Additionally, the differences between the study and control groups were significant in the case of follicular stage oocytes. Finally, supplementing the maturation medium with EGF and/or IGF-1 significantly enhanced the meiotic maturation of oocytes recovered from follicular stage ovaries. The present study also demonstrated that the combination of EGF and IGF-I provides an additional or synergic effect on meiotic maturation of oocytes recovered from the follicular stage. Copyright © 2014 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Archetti, Marco; Ferraro, Daniela A; Christofori, Gerhard
2015-02-10
The extensive intratumor heterogeneity revealed by sequencing cancer genomes is an essential determinant of tumor progression, diagnosis, and treatment. What maintains heterogeneity remains an open question because competition within a tumor leads to a strong selection for the fittest subclone. Cancer cells also cooperate by sharing molecules with paracrine effects, such as growth factors, and heterogeneity can be maintained if subclones depend on each other for survival. Without strict interdependence between subclones, however, nonproducer cells can free-ride on the growth factors produced by neighboring producer cells, a collective action problem known in game theory as the "tragedy of the commons," which has been observed in microbial cell populations. Here, we report that similar dynamics occur in cancer cell populations. Neuroendocrine pancreatic cancer (insulinoma) cells that do not produce insulin-like growth factor II (IGF-II) grow slowly in pure cultures but have a proliferation advantage in mixed cultures, where they can use the IGF-II provided by producer cells. We show that, as predicted by evolutionary game theory, producer cells do not go extinct because IGF-II acts as a nonlinear public good, creating negative frequency-dependent selection that leads to a stable coexistence of the two cell types. Intratumor cell heterogeneity can therefore be maintained even without strict interdependence between cell subclones. Reducing the amount of growth factors available within a tumor may lead to a reduction in growth followed by a new equilibrium, which may explain relapse in therapies that target growth factors.
Udayakumar, T S; Jeyaraj, D A; Rajalakshmi, M; Sharma, R S
1999-09-01
Rhesus monkey prostate epithelial cells from the cranial lobe were isolated and cultured in flasks coated either with collagen IV or laminin. The effects of stromal cell medium, androgens and growth factors on cell number, thymidine incorporation and secretory activity were assessed. The results indicate that dihydrotestosterone (DHT) and androstenedione have stimulatory influences on cell proliferation and secretion in coated flasks. DHT was more effective in increasing cell number but the induction of secretory activity was similar with both steroids. The combination of IGF-I and -II resulted in inducing better cell proliferation and secretory activity than the individual IGFs but, of the two IGFs, IGF-I was more effective than IGF-II. DHT with IGFs was more potent in inducing proliferation, differentiation and secretion than androstenedione. Even in the absence of steroids or growth factors, colony formation and confluence occurred in coated flasks but cell differentiation and secretion only to a limited extent. In conclusion, we were able to establish an in vitro primary culture of prostate epithelial cells from rhesus monkey using extracellular matrix proteins, steroids and growth factors as additional supplements. This culture system may be useful to study prostate cell physiology and to identify drugs that can inhibit cell proliferation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh
2009-07-17
c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, andmore » IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.« less
González-Guerra, José Luis; Castilla-Cortazar, Inma; Aguirre, Gabriel A; Muñoz, Úrsula; Martín-Estal, Irene; Ávila-Gallego, Elena; Granado, Miriam; Puche, Juan E; García-Villalón, Ángel Luis
2017-01-01
Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R). In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides); carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions.
Aguirre, Gabriel A.; Muñoz, Úrsula; Martín-Estal, Irene; Ávila-Gallego, Elena; Granado, Miriam; Puche, Juan E.; García-Villalón, Ángel Luis
2017-01-01
Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R). In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides); carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions. PMID:28806738
Fenwick, M A; Llewellyn, S; Fitzpatrick, R; Kenny, D A; Murphy, J J; Patton, J; Wathes, D C
2008-01-01
Negative energy balance (NEB) during early lactation in dairy cows leads to an altered metabolic state that has major effects on the production of IGF family members. Low IGF-I concentrations are associated with poor fertility and therefore we aimed to determine whether NEB exerts a direct effect on IGF expression in the postpartum oviduct. Multiparous Holstein cows were allocated to two treatments (each n=6) designed using differential feeding and milking regimes to produce either mild NEB (MNEB) or severe NEB (SNEB). Animals were slaughtered in week 2 of lactation when divergent metabolic profiles were evident. Oviducts were collected for RNA analysis by real-time RT-PCR and in situ hybridisation. Quantitative measures in oviduct gene expression were obtained for all members of the IGF family (IGF-I/II, IGF-binding proteins (IGFBP) 1–6 and receptors for IGF types 1 and 2), insulin A/B, GH, glucocorticoid and oestrogen α/β. Expression of IGFBP-2 and IGFBP-6 (both of which have a high affinity for IGF-II) was decreased in SNEB relative to MNEB (P<0.05). No other gene was altered by NEB, but IGF-II, IGFBP-3, IGFBP-5 and IGFBP-6 all showed differential expression in different regions of the oviduct. These results indicate that, in addition to low circulating IGF-I after calving, NEB may also influence IGF availability in the oviduct indirectly through changes in specific IGFBP expression. It is possible that the predicted increased signalling by IGF-II may perturb embryo development, contributing to the high rates of embryonic mortality in dairy cows. PMID:18159084
Saera-Vila, Alfonso; Calduch-Giner, Josep Alvar; Prunet, Patrick; Pérez-Sánchez, Jaume
2009-10-01
The time courses of liver GH/IGF axis and selected stress markers were analyzed in juvenile gilthead sea bream (Sparus aurata) sampled at zero time and at fixed intervals (1.5, 3, 6, 24, 72 and 120 h) after acute confinement (120 kg/m(3)). Fish remained unfed throughout the course of the confinement study, and the fasting-induced increases in plasma growth hormone (GH) levels were partially masked by the GH-stress inhibitory tone. Hepatic mRNA levels of growth hormone receptor-I (GHR-I) were not significantly altered by confinement, but a persistent 2-fold decrease in GHR-II transcripts was found at 24 and 120 h. A consistent decrease in circulating levels of insulin-like growth factor-I (IGF-I) was also found through most of the experimental period, and the down-regulated expression of GHR-II was positively correlated with changes in hepatic IGF-I and IGF-II transcripts. This stress-specific response was concurrent with plasma increases in cortisol and glucose levels, reflecting the cortisol peak (60-70 ng/mL), the intensity and duration of the stressor when data found in the literature were compared. Adaptive responses against oxidative damage were also found, and a rapid enhanced expression was reported in the liver tissue for mitochondrial heat-shock proteins (glucose regulated protein 75). At the same time, the down-regulated expression of proinflammatory cytokines (tumour necrosis factor-alpha) and detoxifying enzymes (cytochrome P450 1A1) might dictate the hepatic depletion of potential sources of reactive oxygen species. These results provide suitable evidence for a functional partitioning of hepatic GHRs under states of reduced IGF production and changing cellular environment resulting from acute confinement.
Dong, Jianying; Demarest, Stephen J; Sereno, Arlene; Tamraz, Susan; Langley, Emma; Doern, Adam; Snipas, Tracey; Perron, Keli; Joseph, Ingrid; Glaser, Scott M; Ho, Steffan N; Reff, Mitchell E; Hariharan, Kandasamy
2010-09-01
The insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor tyrosine kinase that mediates cell survival signaling and supports tumor progression in multiple tumor types. We identified a spectrum of inhibitory IGF-IR antibodies with diverse binding epitopes and ligand-blocking properties. By binding distinct inhibitory epitopes, two of these antibodies, BIIB4 and BIIB5, block both IGF-I and IGF-II binding to IGF-IR using competitive and allosteric mechanisms, respectively. Here, we explored the inhibitory effects of combining BIIB4 and BIIB5. In biochemical assays, the combination of BIIB4 and BIIB5 improved both the potency and extent of IGF-I and IGF-II blockade compared with either antibody alone. In tumor cells, the combination of BIIB4 and BIIB5 accelerated IGF-IR downregulation and more efficiently inhibited IGF-IR activation as well as downstream signaling, particularly AKT phosphorylation. In several carcinoma cell lines, the antibody combination more effectively inhibited ligand-driven cell growth than either BIIB4 or BIIB5 alone. Notably, the enhanced tumor growth-inhibitory activity of the BIIB4 and BIIB5 combination was much more pronounced at high ligand concentrations, where the individual antibodies exhibited substantially reduced activity. Compared with single antibodies, the BIIB4 and BIIB5 combination also significantly further enhanced the antitumor activity of the epidermal growth factor receptor inhibitor erlotinib and the mTOR inhibitor rapamycin. Moreover, in osteosarcoma and hepatocellular carcinoma xenograft models, the BIIB4 and BIIB5 combination significantly reduced tumor growth to a greater degree than each single antibody. Taken together, our results suggest that targeting multiple distinct inhibitory epitopes on IGF-IR may be a more effective strategy of affecting the IGF-IR pathway in cancer.
Placental IGF-I, IGFBP-1, zinc, and iron, and maternal and infant anthropometry at birth.
Akram, Shahzad K; Carlsson-Skwirut, Christine; Bhutta, Zulfiqar A; Söder, Olle
2011-11-01
To correlate placental protein levels of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-1, with previously determined levels of IGF-I and IGF-II mRNA expression, and the micronutrients zinc and iron, and maternal and newborn anthropometry. Placental samples were collected from rural field sites in Pakistan. Samples were divided into small and large for gestational age groups (SGA and LGA, respectively). IGFBP-1 levels were assessed using Western immunoblotting. IGF-I protein levels were assessed using ELISA techniques. IGF mRNA expression, zinc, and iron, were quantified as previously described and were used for comparative purposes only. Thirty-three subjects were included (SGA, n = 12; LGA n = 21). Higher levels of IGFBP-1 were seen in the SGA group (p < 0.01). IGFBP-1 correlated positively with maternal and infant triceps skin-fold thickness in the LGA and SGA groups, respectively (p < 0.05). Significantly lower IGF-I protein levels were seen in the SGA group. IGF-I levels correlated significantly with maternal and newborn anthropometry. IGFBP-1 correlated significantly with IGF-II mRNA expression (p < 0.05). Placental protein levels of IGF-I and IGFBP-1 appear to be associated with maternal anthropometry. Maternal anthropometry may thus influence IGFBP-1 and IGF-I levels and may possibly be used for screening of pregnancies, with the potential for timely identification of these high-risk pregnancies. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.
Carrasco, Loreto; Cea, Paola; Rocco, Paola; Peña-Oyarzún, Daniel; Rivera-Mejias, Pablo; Sotomayor-Flores, Cristian; Quiroga, Clara; Criollo, Alfredo; Ibarra, Cristian; Chiong, Mario; Lavandero, Sergio
2014-04-01
In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gβγ signaling, βARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, βARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and β-myosin heavy chain (β-MHC), was prevented by AG538, PTX, βARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/βγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin. © 2013 Wiley Periodicals, Inc.
Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S.; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan
2018-01-01
Objective IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in diabetes. PMID:29534073
Botusan, Ileana Ruxandra; Zheng, Xiaowei; Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan
2018-01-01
IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in diabetes.
Melis, Daniela; Pivonello, Rosario; Parenti, Giancarlo; Della Casa, Roberto; Salerno, Mariacarolina; Balivo, Francesca; Piccolo, Pasquale; Di Somma, Carolina; Colao, Annamaria; Andria, Generoso
2010-04-01
To investigate the growth hormone (GH)-insulin-like growth factor (IGF) system in patients with glycogen storage disease type 1 (GSD1). This was a prospective, case-control study. Ten patients with GSD1a and 7 patients with GSD1b who were given dietary treatment and 34 sex-, age-, body mass index-, and pubertal stage-matched control subjects entered the study. Auxological parameters were correlated with circulating GH, either at basal or after growth hormone releasing hormone plus arginine test, insulin-like growth factors (IGF-I and IGF-II), and anti-pituitary antibodies (APA). Short stature was detected in 10.0% of patients with GSD1a, 42.9% of patients with GSD1b (P = .02), and none of the control subjects. Serum IGF-I levels were lower in patients with GSD1b (P = .0001). An impaired GH secretion was found in 40% of patients with GSD1a (P = .008), 57.1% of patients with GSD1b (P = .006), and none of the control subjects. Short stature was demonstrated in 3 of 4 patients with GSD1b and GH deficiency. The prevalence of APA was significantly higher in patients with GSD1b than in patients with GSD1a (P = .02) and control subjects (P = .03). The GH response to the provocative test inversely correlated with the presence of APA (P = .003). Compared with levels in control subjects, serum IGF-II and insulin levels were higher in both groups of patients, in whom IGF-II levels directly correlated with height SD scores (P = .003). Patients with GSD1a have an impaired GH secretion associated with reference range serum IGF-I levels and normal stature, whereas in patients with GSD1b, the impaired GH secretion, probably because of the presence of APA, was associated with reduced IGF-I levels and increased prevalence of short stature. The increased IGF-II levels, probably caused by increased insulin levels, in patients with GSD1 are presumably responsible for the improved growth pattern observed in patients receiving strict dietary treatment. Copyright 2010 Mosby, Inc. All rights reserved.
Hu, Ankang; Yuan, Honghua; Wu, Lianlian; Chen, Renjin; Chen, Quangang; Zhang, Tengye; Wang, Zhenzhen; Liu, Peng; Zhu, Xiaorong
2016-01-15
The neurotrophic factor insulin-like growth factor (IGF)-1 promotes neurogenesis in the mammalian brain and provides protection against brain injury. However, studies regarding the effects of IGF-1 on cognitive function in aged mice remain limited. We investigated the effects of overexpression of IGF-1 specifically in neural stem cells of the hippocampal dentate gyrus on the recognitive function in 18-month-old transgenic mice. Immunohistocytochemistry and Nissl staining revealed the increased population of BrdU-positive cells as well as the upregulated expression of Nestin and neuronal nuclei (NeuN), respective markers for neural progenitors and neurons, in the hippocampus of the aged IGF-1 transgenic mice versus the wild-type, suggesting that IGF-1 overexpression promotes neurogenesis. In addition, the IGF-1 receptor (IGF-1R), the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) were enhanced in the transgenic mice than in the wild-type. Transgenic mice also showed superior performance in the Morris water maze and step-down memory tests to their wild-type counterparts. Moreover, the learning and memory abilities of transgenic mice were significantly undermined with the blockage of CaMKII and ERK signaling pathway. Accordingly, our findings indicated that IGF-1 may mitigate the aged-associated cognitive decline via promoting neurogenesis in the hippocampus and activating CaMKII and ERK signaling by binding with IGF-1R. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prado, Paula S.; Pinheiro, Ana Paula B.; Bazzoli, Nilo
2014-05-01
Field studies evaluating the effects of endocrine disruption chemicals (EDCs) on the fish reproduction are scarce worldwide. The goal of this study was to assess hepatic levels of vitellogenin (Vtg), zona radiata proteins (Zrp) and insulin-like growth factors (IGF-I and IGF-II), and relating them to reproductive endpoints in a wild fish population habiting a reservoir that receive domestic sewage, agricultural and industrial residues. Adult fish Astyanax fasciatus were sampled during the reproductive season in five sites from the Furnas Reservoir, Grande River, and Paraguay–Paraná basin. As a control to field data, fish were experimentally exposed via dietary intake, to oestradiolmore » benzoate (OB) for 7 days. Fish from site with little anthropogenic interference showed hepatic levels of Vtg, Zrp and IGF-I and IGF-II similar to those from the non-treated experimental group. In sites located immediately downstream from the municipal wastewater discharges, the water total oestrogen was >120 ng/l, and male fish displayed increased Vtg and Zrp and decreased IGF-I levels similar to OB treated fish. In females, levels of Vtg, Zrp, IGF-I and IGF-II suggest an impairment of final oocyte maturation and spawning, as also detected by frequency of over-ripening, follicular atresia and fecundity. At the sites that receive agricultural and industrial residues, the water total oestrogen was <50 ng/l and females showed decreased Zrp and increased IGF-II levels associated to reduced diameter of vitellogenic follicles, indicating an inhibition of oocyte growth. Overall, the current study reports oestrogenic contamination impairing the reproduction of a wild fish from a hydroeletric reservoir and, the data contribute to improving the current knowledge on relationship between hepatic Vtg, Zrp and IGF-I and IGF-II, and reproductive endpoints in a teleost fish. In addition, our data point out novel reproductive biomarkers (IGF-I, IGF-II and over-ripening) to assessing xenoestrogenic contamination in freshwater ecosystems. - Highlights: • We point out novel reproductive biomarkers to assess xenoestrogenic contamination. • Field captured fish showed altered hepatic Vtg and Zrp. • Hepatic IGF-I and II levels were associated to reproductive disturbances. • Over-ripening is a better xenoestrogen biomarker than follicular atresia.« less
Uniyal, S; Panda, R P; Chouhan, V S; Yadav, V P; Hyder, I; Dangi, S S; Gupta, M; Khan, F A; Sharma, G T; Bag, S; Sarkar, M
2015-01-01
This study investigated the expression and localization of insulin-like growth factor (IGF) system at different stages of buffalo CL and the role of IGF-I in stimulating vascular endothelial growth factor (VEGF) and progesterone (P4) production in cultured luteal cells. The mRNA expression of IGF system, VEGF, steroidogenic acute regulatory protein, P450scc, and hydroxysteroid dehydrogenase (HSD) was investigated by quantitative real-time polymerase chain reaction (PCR). Protein expression of IGF was demonstrated by Western blot and localization by immunohistochemistry. Progesterone and VEGF production was assayed using RIA and ELISA. A relatively high mRNA expression of IGF-I and IGF-II in early, mid- and late luteal phases with immunoreactivity mostly restricted to cytoplasm of large luteal cells indicates their autocrine role, whereas very weak immunoreactivity in endothelial cells during the mid-luteal phase indicates their paracrine role. Insulin-like growth factor receptors, IGF-IR and IGF-IIR, were restricted to large luteal cells with high mRNA and protein expressions in the mid-luteal phase. The significantly higher expression of insulin-like growth factor binding protein (IGFBP)-1, -3, -5, and -6 in the early or mid-luteal phase suggested their stimulatory role, whereas that of IGFBP-2 and -4 in mid-, late, and regressive luteal stages implied their inhibitory role. The mRNA expressions of key steroidogenic factors and VEGF were significantly higher (P < 0.05) when the culture medium was supplemented with 100 ng/mL of IGF-I for 72 hours. Moreover, IGF-I at a dose of 100 ng/mL increased P4 and VEGF production (P < 0.05). It can be concluded that IGF family members via their autocrine and paracrine effect play significant roles in promoting angiogenesis through the production of VEGF in luteal cells and steroid synthesis through the production of key steroidogenic factors. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritvos, O.; Ranta, T.; Jalkanen, J.
1988-05-01
The placenta expresses genes for insulin-like growth factors (IGFs) and possesses IGF-receptors, suggesting that placental growth is regulated by IGFs in an autocrine manner. We have previously shown that human decidua, but not placenta, synthesizes and secretes a 34 K IGF-binding protein (34 K IGF-BP) called placental protein 12. We now used human choriocarcinoma JEG-3 cell monolayer cultures and recombinant (Thr59)IGF-I as a model to study whether the decidual 34 K IGF-BP is able to modulate the receptor binding and biological activity of IGFs in trophoblasts. JEG-3 cells, which possess type I IGF receptors, were unable to produce IGF-BPs. Purifiedmore » 34 K IGF-BP specifically bound (125I)iodo-(Thr59)IGF-I. Multiplication-stimulating activity had 2.5% the potency of (Thr59)IGF-I, and insulin had no effect on the binding of (125I) iodo-(Thr59)IGF-I. 34 K IGF-BP inhibited the binding of (125I) iodo-(Thr59)IGF-I to JEG-3 monolayers in a concentration-dependent manner by forming with the tracer a soluble complex that could not bind to the cell surface as demonstrated by competitive binding and cross-linking experiments. After incubating the cell monolayers with (125I)iodo-(Thr59)IGF-I in the presence of purified binding protein, followed by cross-linking, no affinity labeled bands were seen on autoradiography. In contrast, an intensely labeled band at 40 K was detected when the incubation medium was analyzed, suggesting that (Thr59)IGF-I and 34 K IGF-BP formed a complex in a 1:1 molar ratio. Also, 34 K IGF-BP inhibited both basal and IGF-I-stimulated uptake of alpha-(3H)aminoisobutyric acid in JEG-3 cells. RNA analysis revealed that IGF-II is expressed in JEG-3 cells.« less
Sullivan, T M; Micke, G C; Perkins, N; Martin, G B; Wallace, C R; Gatford, K L; Owens, J A; Perry, V E A
2009-10-01
The influence of supplemental protein during gestation on maternal hormones and fetal growth was determined in composite beef heifers. At AI, 118 heifers were stratified by BW within each composite genotype (BeefX = 1/2 Senepol, 1/4 Brahman, 1/8 Charolais, 1/8 Red Angus and CBX = 1/2 Senepol, 1/4 Brahman, 1/4 Charolais) into 4 treatment groups: high high (HH = 1.4 kg CP/d for first and second trimesters of gestation), high low (HL = 1.4 kg of CP/d for first trimester and 0.4 kg of CP/d for second trimester), low high (lowH = 0.4 kg CP/d for first trimester and 1.4 kg of CP/d and for second trimester), or low low (LL = 0.4 kg CP/d for first and second trimesters). Maternal plasma IGF-I and -II, total IGFBP, and leptin concentrations were determined at 14 d before AI and at d 28, 82, 179, and 271 post-AI (mean gestation length 286 d), and leptin concentrations were also determined at calving. Increased dietary protein increased maternal plasma IGF-I (P < 0.001 on d 28, 82, and 179), IGF-II (P = 0.01 on d 82; P = 0.04 on d 271), and total IGFBP (P = 0.002 on d 82; P = 0.005 on d 179; P = 0.03 on d 271). Maternal plasma IGF-I at d 271 was negatively associated with calf crown-rump length at birth (P = 0.003). BeefX had greater birth weight calves (P = 0.01), greater IGF-II (P < 0.001), increased ratios of IGF-I:total IGFBP (P = 0.008) and IGF-II:total IGFBP (P < 0.001), and reduced total IGFBP compared with CBX (P = 0.02). Increased dietary protein during second trimester increased maternal plasma leptin at calving (P = 0.005). Maternal plasma leptin near term was positively associated with heifer BCS (P = 0.02) and with calf birth weight (P = 0.04), and at calving was positively associated with heifer age at AI (P = 0.02). These findings suggest that maternal dietary protein, age, and genotype influence plasma concentrations of metabolic hormones and fetal growth in Bos indicus-influenced heifers.
Hyatt, Melanie A; Budge, Helen; Walker, David; Stephenson, Terence; Symonds, Michael E
2007-10-01
The liver is an important metabolic and endocrine organ in the fetus, but the extent to which its hormone receptor sensitivity is developmentally regulated in early life is not fully established. Therefore, we examined developmental changes in mRNA abundance for the GH receptor (GHR) and prolactin receptor (PRLR) plus IGF-I and -II and their receptors. Fetal and postnatal sheep were sampled at either 80 or 140 d gestation, 1 or 30 d, or 6 months of age. The effect of maternal nutrient restriction between early gestation to midgestation (i.e. 28-80 d gestation, the time of early liver growth) on gene expression was also examined in the fetus and juvenile offspring. Gene expression for the GHR, PRLR, and IGF-I receptor increased through gestation peaking at birth, whereas IGF-I was maximal near to term. In contrast, IGF-II mRNA decreased between midgestation and late gestation to increase after birth, whereas IGF-II receptor remained unchanged. A substantial decline in mRNA abundance for GHR, PRLR, and IGF-I receptor then occurred up to 6 months. Maternal nutrient restriction reduced GHR and IGF-II receptor mRNA abundance in the fetus, but caused a precocious increase in the PRLR. Gene expression for IGF-I and -II were increased in juvenile offspring born to nutrient-restricted mothers. In conclusion, there are marked differences in the ontogeny and nutritional programming of specific hormones and their receptors involved in hepatic growth and development in the fetus. These could contribute to changes in liver function during adult life.
IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.
Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S
2017-11-01
The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Iunusova, N V; Spirina, L V; Kondakova, L A; Kolomiets, A L; Chernyshova, A L; Koval', V D; Nedosekov, V V; Savenkova, O V
2013-01-01
We have examined for the first time the relationship between the expression of PAPP-A metalloproteinase and insulin-like growth factors (IGF-I, IGF-II, VEGF) and transcription factors (NF-kappaB, HIF-1) playing an important role in pathogenesis of cancer. We also demonstrated a positive association between the level of PAPP-A metalloproteinase and the level of growth (VEGF and IGF-I) and transcription factors (NF-kappaB p50, NF-kappaB p65, HIF-1alpha). The current findings suggest an important role of PAPP-A in regulation of bioavailability of IGF-I, VEGF, activated forms of NF-kappaB, and alpha-subunits of HIF-1 in endometrial tumors.
Liu, Dewu; Zhang, Yushan; Du, Yinjun; Yang, Guanfu; Zhang, Xiquan
2007-06-01
The growth-correlated genes that are part of the neuroendocrine growth axis play crucial roles in the regulation of growth and development of pig. The identification of genetic polymorphisms in these genes will enable the scientist to evaluate the biological relevance of such polymorphisms and to gain a better understanding of quantitative traits like growth. In the present study, seven pairs of primers were designed to obtain unknown sequences of growth-correlated genes, and other 25 pairs of primers were designed to identify single nucleotide polymorphisms (SNP) using the denaturing high-performance liquid chromatography (DHPLC) technology in four pig breeds (Duroc, Landrace, Lantang and Wuzhishan), significantly differing in growth and development characteristics. A total of 101 polymorphisms were discovered in 10,707 base pairs (bp) from six genes of the ghrelin (GHRL), leptin (LEP), insulin-like growth factor II (IGF-II), insulin-like growth factor binding protein 2 (IGFBP-2), insulin-like growth factor binding protein 3 (IGFBP-3), and somatostatin (SS). The observed average distances between the SNP in the 5'UTR, coding regions, introns and 3'UTR were 134, 521, 81 and 92 bp, respectively. Four SNPs were found in the coding regions of IGF-II, IGFBP-2 and LEP, respectively. Two synonymous mutations were obtained in IGF-II and LEP genes respectively, and two non-synonymous were found in IGFBP-2 and LEP genes, respectively. Seven other mutations were also observed. Thirty-two PCR-RFLP markers were found among 101 polymorphisms of the six genes. The SNP discovered in this study would provide suitable markers for association studies of candidate genes with growth related traits in pig.
Morimura, Shigeru; Suzuki, Katsuo; Takahashi, Kazuhide
2011-01-21
Investigation of the mechanism underlying cell membrane-targeted WAVE2 capture by phosphatidylinositol 3,4,5-triphosphate (PIP(3)) through IRSp53 revealed an unidentified 250-kDa protein (p250) bound to PIP(3). We identified p250 as nonmuscle myosin IIA heavy chain (MYH9) by mass spectrometry and immunoblot analysis using anti-MYH9 antibody. After stimulation with insulin-like growth factor I (IGF-I), MYH9 colocalized with PIP(3) in lamellipodia at the leading edge of cells. Depletion of MYH9 expression by small interfering RNA (siRNA) and inhibition of myosin II activity by blebbistatin abrogated the formation of actin filament (F-actin) arcs and lamellipodia induced by IGF-I. MYH9 was constitutively associated with WAVE2, which was dependent on myosin II activity, and the MYH9-WAVE2 complex colocalized to PIP(3) at the leading edge after IGF-I stimulation. These results indicate that MYH9 is required for lamellipodia formation since it provides contractile forces and tension for the F-actin network to form convex arcs at the leading edge through constitutive binding to WAVE2 and colocalization with PIP(3) in response to IGF-I. Copyright © 2010 Elsevier Inc. All rights reserved.
Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A
1993-01-01
Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7683417
IGF binding proteins in cancer: mechanistic and clinical insights.
Baxter, Robert C
2014-05-01
The six members of the family of insulin-like growth factor (IGF) binding proteins (IGFBPs) were originally characterized as passive reservoirs of circulating IGFs, but they are now understood to have many actions beyond their endocrine role in IGF transport. IGFBPs also function in the pericellular and intracellular compartments to regulate cell growth and survival - they interact with many proteins, in addition to their canonical ligands IGF-I and IGF-II. Intranuclear roles of IGFBPs in transcriptional regulation, induction of apoptosis and DNA damage repair point to their intimate involvement in tumour development, progression and resistance to treatment. Tissue or circulating IGFBPs might also be useful as prognostic biomarkers.
Alvarez, P; Spicer, L J; Chase, C C; Payton, M E; Hamilton, T D; Stewart, R E; Hammond, A C; Olson, T A; Wettemann, R P
2000-05-01
To determine breed differences in ovarian function and endocrine secretion, daily rectal ultrasonography was conducted on multiparous lactating Angus (temperate Bos taurus; n = 12), Brahman (tropical Bos indicus; n = 12), and Senepol (tropical Bos taurus; n = 12) cows during an estrous cycle in summer. Blood was collected daily to quantify plasma concentrations of FSH, LH, progesterone, estradiol, GH, insulin-like growth factor (IGF)-I, IGF-II, IGF binding proteins (IGFBP), insulin, glucose, and plasma urea nitrogen (PUN). Numbers of small (2 to 5 mm), medium (6 to 8 mm), and large follicles (> or = 9 mm) were greater (P < .05) in Brahman than in Angus and(or) Senepol cows. Length of the estrous cycle (SEM = .6 d) was similar (P > .10) among Senepol (20.4 d), Angus (19.5 d), and Brahman (19.7 d) cows. Senepol cows had greater (P < .05) diameters of the corpus luteum (CL) and a delayed regression of the CL as compared with Angus cows. The secondary surge of FSH (between d 1 and 2; d 0 = estrus) was greater in Angus than Brahman or Senepol cows (breed x day, P < .05). Between d 2 and 14 of the estrous cycle, concentrations of progesterone, LH, IGF-II, and binding activities of IGFBP-3, IGFBP-2, and the 27- to 29-kDa IGFBP in plasma did not differ (P > .10) among breeds. Concentrations of GH, IGF-I, insulin, and PUN were greater (P < .001) and binding activities of the 22-kDa and 20-kDa IGFBP tended (P < .10) to be greater in plasma of Brahman than in Angus or Senepol cows. Plasma glucose concentrations were greater (P < .05) in Senepol than in Brahman or Angus cows. In conclusion, Brahman (Bos indicus) and Senepol cows (tropical Bos taurus) had greater numbers of follicles in all size categories and greater diameter of CL than Angus (temperate Bos taurus) cows. These ovarian differences may be due to changes in the pattern of secretion of FSH, insulin, IGF-I, and GH but not LH, IGF-II, or IGFBP-2 or -3.
Aleksic, Tamara; Gray, Nicki E; Wu, Xiaoning; Rieunier, Guillaume; Osher, Eliot; Mills, Jack; Verrill, Clare; Bryant, Richard J; Han, Cheng; Hutchinson, Kathryn; Lambert, Adam; Kumar, Rajeev; Hamdy, Freddie C; Weyer-Czernilofsky, Ulrike; Sanderson, Michael; Bogenrieder, Thomas; Taylor, Stephen; Macaulay, Valentine M
2018-05-07
Internalization of ligand-activated type 1 IGF receptor (IGF-1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF-1R reportedly associates with clinical response to IGF-1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here we investigated the significance of nuclear IGF-1R in clinical cancers and cell line models. In prostate cancers, IGF-1R was predominantly membrane-localized in benign glands, while malignant epithelium contained prominent internalized (nuclear/cytoplasmic) IGF-1R, and nuclear IGF-1R associated significantly with advanced tumor stage. Using ChIP-seq to assess global chromatin occupancy, we identified IGF-1R binding sites at or near transcription start sites of genes including JUN and FAM21, most sites coinciding with occupancy by RNA polymerase II (RNAPol2) and histone marks of active enhancers/promoters. IGF-1R was inducibly recruited to chromatin, directly binding DNA and interacting with RNAPol2 to upregulate expression of JUN and FAM21, shown to mediate tumor cell survival and IGF-induced migration. IGF-1 also enriched RNAPol2 on promoters containing IGF-1R binding sites. These functions were inhibited by IGF-1/2 neutralizing antibody xentuzumab (BI 836845), or by blocking receptor internalization. We detected nuclear IGF-1R on JUN and FAM21 promoters in fresh prostate cancers that contained abundant nuclear IGF-1R, with evidence of correlation between nuclear IGF-1R content and JUN expression in malignant prostatic epithelium. Taken together, these data reveal previously unrecognized molecular mechanisms through which IGFs promote tumorigenesis, with implications for therapeutic evaluation of anti-IGF drugs. Copyright ©2018, American Association for Cancer Research.
Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).
Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E
2014-08-01
The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.
PAPP-A proteolytic activity enhances IGF bioactivity in ascites from women with ovarian carcinoma
Thomsen, Jacob; Hjortebjerg, Rikke; Espelund, Ulrick; Ørtoft, Gitte; Vestergaard, Poul; Magnusson, Nils E.; Conover, Cheryl A.; Tramm, Trine; Hager, Henrik; Høgdall, Claus; Høgdall, Estrid; Oxvig, Claus; Frystyk, Jan
2015-01-01
Pregnancy-associated plasma protein-A (PAPP-A) stimulates insulin-like growth factor (IGF) action through proteolysis of IGF-binding protein (IGFBP)-4. In experimental animals, PAPP-A accelerates ovarian tumor growth by this mechanism. To investigate the effect of PAPP-A in humans, we compared serum and ascites from 22 women with ovarian carcinoma. We found that ascites contained 46-fold higher PAPP-A levels as compared to serum (P < 0.001). The majority (80%) of PAPP-A was enzymatically active. This is supported by the finding that ascites contained more cleaved than intact IGFBP-4 (P < 0.03). Ascites was more potent than serum in activating the IGF-I receptor (IGF-IR) in vitro (+31%, P < 0.05); in 8 of 22 patients by more than two-fold. In contrast, ascites contained similar levels of immunoreactive IGF-I, and lower levels of IGF-II (P < 0.001). Immunohistochemistry demonstrated the presence of IGF-IR in all but one tumor, whereas all tumors expressed PAPP-A, IGFBP-4, IGF-I and IGF-II. Addition of recombinant PAPP-A to ascites increased the cleavage of IGFBP-4 and enhanced IGF-IR activation (P < 0.05). In conclusion, human ovarian tumors express PAPP-A, IGFBP-4 and IGFs and these proteins are also present in ascites. We suggest that both soluble PAPP-A in ascites and tissue-associated PAPP-A serve to increase IGF bioactivity and, thereby, to stimulate IGF-IR-mediated tumor growth. PMID:26336825
Alagappan, Dhivyaa; Ziegler, Amber N.; Chidambaram, Shravanthi; Min, Jungsoo; Wood, Teresa L.; Levison, Steven W.
2014-01-01
In this study, we assessed the importance of insulin-like growth factor (IGF) and epidermal growth factor (EGF) receptor co-signaling for rat neural precursor (NP) cell proliferation and self-renewal in the context of a developmental brain injury that is associated with cerebral palsy. Consistent with previous studies, we found that there is an increase in the in vitro growth of subventricular zone NPs isolated acutely after cerebral hypoxia–ischemia; however, when cultured in medium that is insufficient to stimulate the IGF type 1 receptor, neurosphere formation and the proliferative capacity of those NPs was severely curtailed. This reduced growth capacity could not be attributed simply to failure to survive. The growth and self-renewal of the NPs could be restored by addition of both IGF-I and IGF-II. Since the size of the neurosphere is predominantly due to cell proliferation we hypothesized that the IGFs were regulating progression through the cell cycle. Analyses of cell cycle progression revealed that IGF-1R activation together with EGFR co-signaling decreased the percentage of cells in G1 and enhanced cell progression into S and G2. This was accompanied by increases in expression of cyclin D1, phosphorylated histone 3, and phosphorylated Rb. Based on these data, we conclude that coordinate signaling between the EGF receptor and the IGF type 1 receptor is necessary for the normal proliferation of NPs as well as for their reactive expansion after injury. These data indicate that manipulations that maintain or amplify IGF signaling in the brain during recovery from developmental brain injuries will enhance the production of new brain cells to improve neurological function in children who are at risk for developing cerebral palsy. PMID:24904523
Wirthgen, Elisa; Goumon, Sébastien; Kunze, Martin; Walz, Christina; Spitschak, Marion; Tuchscherer, Armin; Brown, Jennifer; Höflich, Christine; Faucitano, Luigi; Hoeflich, Andreas
2018-01-01
In previous work using market-weight pigs, we had demonstrated that insulin-like growth factors (IGFs) and insulin-like growth factor binding proteins (IGFBPs) are regulated during shipment characterized by changing conditions of stress due to loading or unloading, transportation, lairage, and slaughter. In addition, we found in a previous study that IGFBP-2 concentrations were lower in pigs transported for longer periods of time. Therefore, we performed a more detailed study on the effects of transport duration and season on the plasma concentrations of IGFs and IGFBPs in adult pigs. For the study, exsanguination blood was collected from 240 market-weight barrows that were transported for 6, 12, or 18 h in January or July. IGF-I and -II were detected using commercial ELISAs whereas IGFBPs were quantified by quantitative Western ligand blotting. In addition, established markers of stress and metabolism were studied in the animals. The results show that plasma concentrations of IGFBP-3 were significantly reduced after 18 h of transport compared to shorter transport durations (6 and 12 h; p < 0.05). The concentrations of IGF-I in plasma were higher (p < 0.001) in pigs transported 12 h compared to shorter or longer durations. Season influenced plasma concentrations of IGFBP-3 and IGF-II (p < 0.05 and p < 0.01, respectively). Neither transport duration nor differential environmental conditions of winter or summer had an effect on glucocorticoids, albumin, triglycerides, or glucose concentrations (p > 0.05). However, low-density lipoprotein concentrations decreased after 18 h compared to 6 h of transport (p < 0.05), whereas high-density lipoprotein concentrations were higher (p < 0.05) in pigs transported for 12 or 18 h compared to those transported for only 6 h. Our findings indicate differential regulation of IGF-compounds in response to longer transport duration or seasonal changes and support current evidence of IGFs and IGFBPs as innovative animal-based indicators of psycho-social or metabolic stress in pigs. PMID:29487569
Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer.
Spirina, Ludmila V; Yunusova, Nataliya V; Kondakova, Irina V; Kolomiets, Larisa A; Koval, Valeriya D; Chernyshova, Alena L; Shpileva, Olga V
2012-09-01
Insulin-like growth factors (IGFs), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF-1), and nuclear factor kappa-B (NF-κB) are known to play an important role in endometrial cancer pathogenesis. However, the proteolytic regulation of these factors is still poorly understood. We studied the correlation between chymotrypsin-like activity of proteasomes and IGF-I, IGF-II, VEGF, HIF-1, and NF-κB levels in endometrial cancer tissues. It was shown that the total activity of proteasomes and the activity of the 20S and 26S proteasomes in malignant tumors were significantly higher than those observed in the normal endometrium. Negative relationships between the proteasome activity and IGF-I, HIF-1, and NF-κB p50 expressions were found. High 20S proteasome activity was associated with increase of HIF-1 level. Positive relationships between IGF-I expression and two classic forms of NF-κB p50 and p65 in endometrial cancer were revealed. The data obtained indicate the possible proteasomal regulation of growth and transcription factors. The major pool of IGF-I is located in the extracellular space, and it is likely that extracellular proteasomes also take part in the regulation of the IGF-I content. The present data show the evidence of proteasome regulation of growth and nuclear factors that can play an important role in cancer pathogenesis.
Ley, David; Hansen-Pupp, Ingrid; Niklasson, Aimon; Domellöf, Magnus; Friberg, Lena E; Borg, Jan; Löfqvist, Chatarina; Hellgren, Gunnel; Smith, Lois E H; Hård, Anna-Lena; Hellström, Ann
2013-01-01
In preterm infants, low levels of insulin-like growth factor-I (IGF-I) and IGF binding protein 3 (IGFBP-3) are associated with impaired brain growth and retinopathy of prematurity (ROP). Treatment with IGF-I/IGFBP-3 may be beneficial for brain development and may decrease the prevalence of ROP. In a phase II pharmacokinetics and safety study, five infants (three girls) with a median (range) gestational age (GA) of 26 wk + 6 d (26 wk + 0 d to 27 wk + 2 d) and birth weight of 990 (900-1,212) g received continuous intravenous infusion of recombinant human (rh)IGF-I/rhIGFBP-3. Treatment was initiated during the first postnatal day and continued for a median (range) duration of 168 (47-168) h in dosages between 21 and 111 µg/kg/24 h. Treatment with rhIGF-I/rhIGFBP-3 was associated with higher serum IGF-I and IGFBP-3 concentrations (P < 0.001) than model-predicted endogenous levels. Of 74 IGF-I samples measured during study drug infusion, 37 (50%) were within the target range, 4 (5%) were above, and 33 (45%) were below. The predicted dose of rhIGF-I/rhIGFBP-3 required to establish circulating levels of IGF-I within the intrauterine range in a 1,000 g infant was 75-100 µg/kg/24 h. No hypoglycemia or other adverse effects were recorded. In this study, continuous intravenous infusion of rhIGF-I/rhIGFBP-3 was effective in increasing serum concentrations of IGF-I and IGFBP-3, and was found to be safe.
Ley, David; Hansen-Pupp, Ingrid; Niklasson, Aimon; Domellöf, Magnus; Friberg, Lena E.; Borg, Jan; Löfqvist, Chatarina; Hellgren, Gunnel; Smith, Lois E.H.; Hård, Anna-Lena; Hellström, Ann
2014-01-01
BACKGROUND In preterm infants, low levels of insulin-like growth factor-I (IGF-I) and IGF binding protein 3 (IGFBP-3) are associated with impaired brain growth and retinopathy of prematurity (ROP). Treatment with IGF-I/IGFBP-3 may be beneficial for brain development and may decrease the prevalence of ROP. METHODS In a phase II pharmacokinetics and safety study, five infants (three girls) with a median (range) gestational age (GA) of 26 wk + 6 d (26 wk + 0 d to 27 wk + 2 d) and birth weight of 990 (900–1,212) g received continuous intravenous infusion of recombinant human (rh)IGF-I/rhIGFBP-3. Treatment was initiated during the first postnatal day and continued for a median (range) duration of 168 (47–168) h in dosages between 21 and 111 µg/kg/24 h. RESULTS Treatment with rhIGF-I/rhIGFBP-3 was associated with higher serum IGF-I and IGFBP-3 concentrations (P < 0.001) than model-predicted endogenous levels. Of 74 IGF-I samples measured during study drug infusion, 37 (50%) were within the target range, 4 (5%) were above, and 33 (45%) were below. The predicted dose of rhIGF-I/rhIGFBP-3 required to establish circulating levels of IGF-I within the intrauterine range in a 1,000 g infant was 75–100 µg/kg/24 h. No hypoglycemia or other adverse effects were recorded. CONCLUSION In this study, continuous intravenous infusion of rhIGF-I/rhIGFBP-3 was effective in increasing serum concentrations of IGF-I and IGFBP-3, and was found to be safe. PMID:23095978
Diabetic retinopathy in two patients with congenital IGF-I deficiency (Laron syndrome).
Laron, Zvi; Weinberger, Dov
2004-07-01
Animal and clinical studies have shown that excessive amounts of growth hormone or insulin-like growth factor-I (IGF-I) promote the development of diabetes and diabetic retinopathy. Forthwith, we present two patients with congenital IGF-I deficiency who developed type II diabetes and subsequently retinopathy. Eighteen adult patients with classical Laron syndrome (8 males, 10 females, aged 20-62 years) were followed by us since childhood or underwent fundus photography with a Nikon NF 505 instrument. Three had been treated in childhood with IGF-I, the rest were never treated, including the two patients reported. Two never-treated patients were diagnosed with type II diabetes (DM) at ages 39 and 41 respectively. There was no diabetes in the families. Oral treatment was followed by insulin injections. Metabolic control was not optimal and one patient developed proliferative diabetic retinopathy, necessitating laser surgery. He also has nephropathy and severe neuropathy. The other patient has background diabetic retinopathy and has developed, progressively, exudates, microaneurisms, hemorrhages and clinically significant macular edema. He also has subacute ischemic heart disease. Our findings show that congenital IGF-I deficiency, similar to excess, causes vascular complications of DM, denoting also that vascular endothelial growth factor can induce neovascularization in the presence of congenital IGF-I deficiency.
Addiction to the IGF2-ID1-IGF2 circuit for maintenance of the breast cancer stem-like cells
Tominaga, K; Shimamura, T; Kimura, N; Murayama, T; Matsubara, D; Kanauchi, H; Niida, A; Shimizu, S; Nishioka, K; Tsuji, E-i; Yano, M; Sugano, S; Shimono, Y; Ishii, H; Saya, H; Mori, M; Akashi, K; Tada, K-i; Ogawa, T; Tojo, A; Miyano, S; Gotoh, N
2017-01-01
The transcription factor nuclear factor-κB (NF-κB) has important roles for tumorigenesis, but how it regulates cancer stem cells (CSCs) remains largely unclear. We identified insulin-like growth factor 2 (IGF2) is a key target of NF-κB activated by HER2/HER3 signaling to form tumor spheres in breast cancer cells. The IGF2 receptor, IGF1 R, was expressed at high levels in CSC-enriched populations in primary breast cancer cells. Moreover, IGF2-PI3K (IGF2-phosphatidyl inositol 3 kinase) signaling induced expression of a stemness transcription factor, inhibitor of DNA-binding 1 (ID1), and IGF2 itself. ID1 knockdown greatly reduced IGF2 expression, and tumor sphere formation. Finally, treatment with anti-IGF1/2 antibodies blocked tumorigenesis derived from the IGF1Rhigh CSC-enriched population in a patient-derived xenograft model. Thus, NF-κB may trigger IGF2-ID1-IGF2-positive feedback circuits that allow cancer stem-like cells to appear. Then, they may become addicted to the circuits. As the circuits are the Achilles' heels of CSCs, it will be critical to break them for eradication of CSCs. PMID:27546618
The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz, Juan Pablo; Collao, Andres; Chiong, Mario
2009-10-09
Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-inducedmore » MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.« less
Al-Daghri, Nasser M; Yakout, Sobhy M; Wani, Kaiser; Khattak, Malak Nawaz Khan; Garbis, Spiro D; Chrousos, George P; Al-Attas, Omar S; Alokail, Majed S
2018-05-01
Vitamin D deficiency is common in the Kingdom of Saudi Arabia (KSA). Therefore, it is significant to recognize which biochemical markers modulate serum 25 hydroxyvitamin D (25(OH)D) in response to vitamin D supplementation in such a population. Our aim was to study the correlation of insulin-like growth factor (IGF) and insulin growth factor binding protein (IGFBP) with serum 25(OH)D in response to vitamin D supplementation in a Saudi population. A total of 199 (89 males/110 females) vitamin D deficient subjects (25(OH)D level <50 nmol/L), aged 40.4 ± 11.4 years, were given vitamin D supplements (50,000 IU/mL every week) for the first 2 months, then twice a month for 2 months, followed by daily 1000 IU in the last 2 months. Fasting blood samples were taken at baseline and 6 months after the final dose of vitamin D. Serum 25(OH)D, IGF-1 and IGF-2, and IGFBPs 2-5 were measured. Vitamin D response was computed for all subjects as the difference in levels of serum 25(OH)D concentration at the end of 6 months compared to baseline. After intervention, serum 25(OH)D concentration significantly increased from 35.6 nmol/L (26.6-43.5) to 61.8 nmol/L (54.8-73.3) in responder subjects (P < .01) and from 35.1 nmol/L (21.2-58.2) to 38.3 nmol/L (25.5-48.3) in nonresponders (P = .13). Subjects with lower baseline serum IGF-II, IGFBP-2, and IGF-1/IGFBP-3 ratio are more sensitive to acute vitamin D status changes. IGF1 and IGF-1/IGFBP-3 ratio significantly increased in all subjects after 6 months (P = .01). Changes in 25(OH)D was significantly associated with changes in IGFBP-2 and IGF-1/IGFBP-3 ratio in responders only. This study proposes that changes in circulating IGF-I and IGFBP-3 are modulated by vitamin D supplementation and can be taken into consideration in investigations involving vitamin D correction. Moreover, increase in serum 25(OH)D and IGF-I/IGFBP-3 molar ratio are more sensitive markers for the response to vitamin D supplementation in Saudi population.
Saber, Mohamed A; MM AbdelHafiz, Samah; Khorshed, Fatma E; Aboushousha, Tarek S; Hamdy, Hussam EM; Seleem, Mohamed I; Soliman, Amira H
2017-01-01
Background: Increasing evidence indicates that in hepatocellular carcinomas (HCCs) abnormal gene expression, for example of glypican-3 (GPC-3) and insulin-like growth factor-II (IGF-II), are associated with the occurrence and progression of HCC. The objective of this study was to evaluate the differential expression of GPC-3 and IGF-II mRNAs in HCC tissues with a background of chronic hepatitis C virus (HCV) genotype 4 cirrhosis, in relation to Ki-67 and alpha-feto protein (AFP) tissue markers. Methods: One hundred and five patients with HCCs who had undergone hepatectomy, were included, after obtaining informed consent. Total RNA was extracted from malignant and corresponding peri-malignant liver tissues, and GPC-3 and IGF-II mRNAs in addition to beta-actin mRNA as an internal control, were evaluated in all samples by reverse transcriptase-polymerase chain reactions (RT-PCR). Routine histopathological diagnosis as well as immunohistochemical (IHC) staining using monoclonal antibodies for Ki-67 and AFP were also performed. Result: Expression of GPC-3 mRNA was positive in all HCC malignant tissue, with overexpression in 86/105 (81.9%); in respect to the grade of the tumor (1-3 grades), while in peri-malignant tissue it was over expressed only in 20/105 (19%). The IGF-II mRNA was over expressed in only 10/105 (9.5%) malignant and peri-malignant samples. AFP was expressed in 33.3% of malignant samples but absent in peri-malignant tissues. Ki-67 expression was significantly increased in malignant compared to peri-malignant tissue. Conclusion: GPC-3 and IGF II mRNAs may be good molecular markers for HCC, especially with a background of cirrhosis due to chronic HCV infection. Significant correlations were noted with the pattern of AFP and Ki-67 expression. Creative Commons Attribution License
Li, Jianjun; Zhao, Qun; Wang, Enbo; Zhang, Chuanhui; Wang, Guangbin; Yuan, Quan
2012-05-01
Articular cartilage is routinely subjected to mechanical forces and growth factors. Adipose-derived stem cells (ASCs) are multi-potent adult stem cells and capable of chondrogenesis. In the present study, we investigated the comparative and interactive effects of dynamic compression and insulin-like growth factor-I (IGF-I) on the chondrogenesis of rabbit ASCs in chitosan/gelatin scaffolds. Rabbit ASCs with or without a plasmid overexpressing of human IGF-1 were cultured in chitosan/gelatin scaffolds for 2 days, then subjected to cyclic compression with 5% strain and 1 Hz for 4 h per day for seven consecutive days. Dynamic compression induced chondrogenesis of rabbit ASCs by activating calcium signaling pathways and up-regulating the expression of Sox-9. Dynamic compression plus IGF-1 overexpression up-regulated expression of chondrocyte-specific extracellular matrix genes including type II collagen, Sox-9, and aggrecan with no effect on type X collagen expression. Furthermore, dynamic compression and IGF-1 expression promoted cellular proliferation and the deposition of proteoglycan and collagen. Intracellular calcium ion concentration and peak currents of Ca(2+) ion channels were consistent with chondrocytes. The tissue-engineered cartilage from this process had excellent mechanical properties. When applied together, the effects achieved by the two stimuli (dynamic compression and IGF-1) were greater than those achieved by either stimulus alone. Our results suggest that dynamic compression combined with IGF-1 overexpression might benefit articular cartilage tissue engineering in cartilage regeneration. Copyright © 2011 Wiley Periodicals, Inc.
Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A
1993-05-01
Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Ho-Keun; Kim, Sun-Young; Hwang, Pyoung-Han
2005-05-13
PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer systemmore » in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells.« less
Spens, Erika; Häggström, Lena
2009-05-20
NS0 cells proliferate without external supply of growth factors in protein-free media. We hypothesize that the cells produce their own factors to support proliferation. Understanding the mechanisms behind this autocrine regulation of proliferation may open for the novel approaches to improve animal cell processes. The following proteins were identified in NS0 conditioned medium (CM): cyclophilin A, cyclophilin B (CypB), cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerase, macrophage migration inhibitory factor (MIF), beta(2)-microglobulin, Niemann pick type C2, secretory leukocyte protease inhibitor, thioredoxin-1, TNF-alpha, tumour protein translationally controlled 1 and ubiquitin. Further, cDNA microarray analysis indicated that the genes for IL-11, TNF receptor 6, TGF-beta receptor 1 and the IFN-gamma receptor were transcribed. CypB, IFN-alpha/beta/gamma, IL-11, IL-25, MIF, TGF-beta and TNF-alpha as well as the known growth factors EGF, IGF-I/II, IL-6, leukaemia inhibitory factor and oncostatin M (OSM) were excluded as involved in autocrine regulation of NS0 cell proliferation. The receptors for TGF-beta, IGF and OSM are however present in NS0 cell membranes since TGF-beta(1) caused cell death, and IGF-I/II and OSM improved cell growth. Even though no ligand was found, the receptor subunit gp130, active in signal transduction of the IL-6 like proteins, was shown to be essential for NS0 cells as demonstrated by siRNA gene silencing.
Lin, Yuan-Chuan; Lin, Chih-Hsueh; Yao, Hsien-Tsung; Kuo, Wei-Wen; Shen, Chia-Yao; Yeh, Yu-Lan; Ho, Tsung-Jung; Padma, V Vijaya; Lin, Yu-Chen; Huang, Chih-Yang; Huang, Chih-Yang
2017-06-09
Platycodon grandiflorum (PG) is a Chinese medical plant used for decades as a traditional prescription to eliminate phlegm, relieve cough, reduce inflammation and lower blood pressure. PG also has a significant effect on the cardiovascular systems. The aqueous extract of Platycodon grandiflorum (JACQ.) A. DC. root was screened for inhibiting Ang II-induced IGF-IIR activation and apoptosis pathway in H9c2 cardiomyocytes. The effects were also studied in spontaneously hypertensive rats (five groups, n=5) using low and high doses of PG for 50 days. The Ang II-induced IGF-IIR activation was analyzed by luciferase reporter, RT-PCR, western blot and surface IGF-IIR expression assay. Furthermore, the major active constituent of PG was carried out by high performance liquid chromatography-mass spectrometry (HPLC-MS). Our results indicate that a crude extract of PG significantly suppresses the Ang II-induced IGF-IIR signaling pathway to prevent cardiomyocyte apoptosis. PG extract inhibits Ang II-mediated JNK activation and SIRT1 degradation to reduce IGF-IIR activity. Moreover, PG maintains SIRT1 stability to enhance HSF1-mediated IGF-IIR suppression, which prevents cardiomyocyte apoptosis. In animal models, the administration of PG markedly reduced this apoptotic pathway in the heart of SHRs. Taken together, PG may be considered as an effective treatment for cardiac diseases in hypertensive patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Dixit, Jaya
2016-01-01
Introduction In recent years, emphasis on the use of growth factors for periodontal healing is gaining great momentum. Several growth factors showed promising results in periodontal regeneration. Aim This study was designed to compare the clinical outcomes of 0.8μg recombinant human Vascular Endothelial Growth Factor (rh-VEGF) and 10μg recombinant human Insulin Like Growth Factor-I (rh-IGF-I) with β-Tricalcium Phosphate (β-TCP) and Polylactide-Polyglycolide Acid (PLGA) membrane in two wall intra-osseous defects. Materials and Methods A total of 29 intra-osseous defects in 27 subjects were randomly divided into 3 test and 1 control group. Test group I (n=8) received rh-VEGF+ rh-IGF-I, Test group II (n=7) rh-VEGF, Test group III (n=7) rh-IGF-I and control group (n=7) with no growth factor, β-TCP and PLGA membrane was used in all the groups. Baseline soft tissue parameters including Probing Pocket Depth (PPD), Clinical Attachment Level (CAL), and Gingival Recession (GR) at selected sites were recorded at baseline and at 6 months. Intrasurgically, intra-osseous component was calculated as a) Cemento-Enamel Junction to Bone Crest (CEJ to BC), b) Bone Crest to Base of the Defect (BC to BD) at baseline and at re-entry. The mean changes at baseline and after 6 months within each group were compared using Wilcoxon Signed Rank Test. The mean changes for each parameter between groups were compared using Mann-Whitney U test. Results After 6 months, maximum mean PPD reduction occurred in test group I followed by test group II, III and control group. Similar trend was observed in CAL gain. Non-significant GR was present in test group I and control group whereas in test group II and III GR was absent. The use of rh-VEGF+ rhIGF-I exhibited 95.8% osseous fill as compared to 54.8% in test group II, 52.7% in test group III and 41.1 % in the control group. Conclusion Within the limitations of this study, it can be concluded that, rh-IGF-I+rh-VEGF treated sites resulted in greater improvement in PPD reduction, CAL gain as well as in osseous fill after 6 months when compared with rh-VEGF, rh-IGF-I and control sites. PMID:27790578
Zimmermann-Belsing, T; Juul, A; Juul Holst, J; Feldt-Rasmussen, U
2004-06-01
Hyperthyroidism is associated with altered growth hormone (GH) secretion. Many patients with thyroid dysfunction experience several poorly described complications such as symptoms and signs also seen in patients with growth hormone deficiency (GHD). We have therefore prospectively evaluated a possible relationship between the thyroid function, body composition, leptin levels and insulin-like growth factor (IGF) related peptides in patients with Graves' disease. DESIGN, PATIENTS, AND MEASUREMENTS: In a prospective group of 24 fasting female patients with Graves' disease (mean age (CI 95%): 40 years (33-47)), we measured serum thyroxine, triiodothyronine, thyrotropine (TSH), TSH receptor antibodies, anti-thyroid peroxidase, leptin, body composition, body mass index (BMI) and IGF-related peptides at diagnosis and after 12 months of treatment with thiamazol (ATD). In thyrotoxic patients IGF-I plus IGF-II correlated positively with IGFBP-3 at baseline (r = 0.90, p < 0.1 x 10(16)) and after 12 months follow-up (r = 0.87, p < 0.1 x 10(-16)). In the thyrotoxic state total IGF-I, IGF-II, IGF binding protein 3 (IGFBP-3) and acid-labile subunit (ALS) but not free IGF-I decreased significantly from 223 microg/L (189-260) (mean (CI 95%), 877 microg/L (801-953), 4165 microg/L (3772-4577) and 22 mg/L (18-26)) to 198 microg/L (172-226), 788 microg/L (711-865), 3431 microg/L (3135-3741) and 19 mg/L (16-26) (p <0.006), respectively, after 12 months of ATD despite an increase in BMI from 22 (21-23) to 23 kg/m(2) (22-25) (p < 0.0004) but no significant changes in leptin. The complex IGF systems seemed intact in thyrotoxic patients but change in body composition and the regulation of leptin and insulin secretion during treatment of autoimmune thyroid disease influence IGF-related peptides leaving the patient in a state somewhat similar to partial GHD, but the mechanism behind these alterations remains unclear.
Espelund, Ulrick; Renehan, Andrew G; Cold, Søren; Oxvig, Claus; Lancashire, Lee; Su, Zhenqiang; Flyvbjerg, Allan; Frystyk, Jan
2018-05-03
Measurement of circulating insulin-like growth factors (IGFs), in particular IGF-binding protein (IGFBP)-2, at the time of diagnosis, is independently prognostic in many cancers, but its clinical performance against other routinely determined prognosticators has not been examined. We measured IGF-I, IGF-II, pro-IGF-II, IGF bioactivity, IGFBP-2, -3, and pregnancy-associated plasma protein A (PAPP-A), an IGFBP regulator, in baseline samples of 301 women with breast cancer treated on four protocols (Odense, Denmark: 1993-1998). We evaluated performance characteristics (expressed as area under the curve, AUC) using Cox regression models to derive hazard ratios (HR) with 95% confidence intervals (CIs) for 10-year recurrence-free survival (RFS) and overall survival (OS), and compared those against the clinically used Nottingham Prognostic Index (NPI). We measured the same biomarkers in 531 noncancer individuals to assess multidimensional relationships (MDR), and evaluated additional prognostic models using survival artificial neural network (SANN) and survival support vector machines (SSVM), as these enhance capture of MDRs. For RFS, increasing concentrations of circulating IGFBP-2 and PAPP-A were independently prognostic [HR biomarker doubling : 1.474 (95% CIs: 1.160, 1.875, P = 0.002) and 1.952 (95% CIs: 1.364, 2.792, P < 0.001), respectively]. The AUC RFS for NPI was 0.626 (Cox model), improving to 0.694 (P = 0.012) with the addition of IGFBP-2 plus PAPP-A. Derived AUC RFS using SANN and SSVM did not perform superiorly. Similar patterns were observed for OS. These findings illustrate an important principle in biomarker qualification-measured circulating biomarkers may demonstrate independent prognostication, but this does not necessarily translate into substantial improvement in clinical performance. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Wirthgen, Elisa; Goumon, Sébastien; Kunze, Martin; Walz, Christina; Spitschak, Marion; Tuchscherer, Armin; Brown, Jennifer; Höflich, Christine; Faucitano, Luigi; Hoeflich, Andreas
2018-01-01
In previous work using market-weight pigs, we had demonstrated that insulin-like growth factors (IGFs) and insulin-like growth factor binding proteins (IGFBPs) are regulated during shipment characterized by changing conditions of stress due to loading or unloading, transportation, lairage, and slaughter. In addition, we found in a previous study that IGFBP-2 concentrations were lower in pigs transported for longer periods of time. Therefore, we performed a more detailed study on the effects of transport duration and season on the plasma concentrations of IGFs and IGFBPs in adult pigs. For the study, exsanguination blood was collected from 240 market-weight barrows that were transported for 6, 12, or 18 h in January or July. IGF-I and -II were detected using commercial ELISAs whereas IGFBPs were quantified by quantitative Western ligand blotting. In addition, established markers of stress and metabolism were studied in the animals. The results show that plasma concentrations of IGFBP-3 were significantly reduced after 18 h of transport compared to shorter transport durations (6 and 12 h; p < 0.05). The concentrations of IGF-I in plasma were higher ( p < 0.001) in pigs transported 12 h compared to shorter or longer durations. Season influenced plasma concentrations of IGFBP-3 and IGF-II ( p < 0.05 and p < 0.01, respectively). Neither transport duration nor differential environmental conditions of winter or summer had an effect on glucocorticoids, albumin, triglycerides, or glucose concentrations ( p > 0.05). However, low-density lipoprotein concentrations decreased after 18 h compared to 6 h of transport ( p < 0.05), whereas high-density lipoprotein concentrations were higher ( p < 0.05) in pigs transported for 12 or 18 h compared to those transported for only 6 h. Our findings indicate differential regulation of IGF-compounds in response to longer transport duration or seasonal changes and support current evidence of IGFs and IGFBPs as innovative animal-based indicators of psycho-social or metabolic stress in pigs.
Shimizu, Masahito; Shirakami, Yohei; Iwasa, Junpei; Shiraki, Makoto; Yasuda, Yoichi; Hata, Kazuya; Hirose, Yoshinobu; Tsurumi, Hisashi; Tanaka, Takuji; Moriwaki, Hisataka
2009-05-01
Obesity and related metabolic abnormalities, including insulin resistance and activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis, are risk factors for colon cancer. Supplementation with branched-chain amino acids (BCAA) reduces the risk of liver cancer in cirrhotic patients who are obese, and this has been associated with an improvement of insulin resistance. The present study examined the effects of BCAA on the development of azoxymethane (AOM)-initiated colonic premalignant lesions in C57BL/KsJ-db/db (db/db) mice that were obese and had hyperinsulinemia. Male db/db mice were given 4 weekly s.c. injections of AOM (15 mg/kg of body weight) and then they were fed a diet containing 3.0% BCAA or casein, a nitrogenc content-matched control diet, for 7 weeks. Feeding with BCAA caused a significant reduction in the number of total aberrant crypt foci and beta-catenin accumulated crypts, both of which are premalignant lesions of the colon, compared with the control diet-fed groups. BCAA supplementation caused a marked decrease in the expression of IGF-IR, the phosphorylated form of IGF-IR, phosphorylated glycogen synthase kinase 3beta, phosphorylated Akt, and cyclooxygenase-2 proteins on the colonic mucosa of AOM-treated mice. The serum levels of insulin, IGF-I, IGF-II, triglyceride, total cholesterol, and leptin were also decreased by supplementation with BCAA. BCAA supplementation in diet improves insulin resistance and inhibits the activation of the IGF/IGF-IR axis, thereby preventing the development of colonic premalignancies in an obesity-related colon cancer model that was also associated with hyperlipidemia and hyperinsulinemia. BCAA, therefore, may be a useful chemoprevention modality for colon cancer in obese people.
Yoshida, Tadashi; Semprun-Prieto, Laura; Sukhanov, Sergiy
2010-01-01
Congestive heart failure is associated with activation of the renin-angiotensin system and skeletal muscle wasting. Angiotensin II (ANG II) has been shown to increase muscle proteolysis and decrease circulating and skeletal muscle IGF-1. We have shown previously that skeletal muscle-specific overexpression of IGF-1 prevents proteolysis and apoptosis induced by ANG II. These findings indicated that downregulation of IGF-1 signaling in skeletal muscle played an important role in the wasting effect of ANG II. However, the signaling pathways and mechanisms whereby IGF-1 prevents ANG II-induced skeletal muscle atrophy are unknown. Here we show ANG II-induced transcriptional regulation of two ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) that precedes the reduction of skeletal muscle IGF-1 expression, suggesting that activation of atrogin-1 and MuRF-1 is an initial mechanism leading to skeletal muscle atrophy in response to ANG II. IGF-1 overexpression in skeletal muscle prevented ANG II-induced skeletal muscle wasting and the expression of atrogin-1, but not MuRF-1. Dominant-negative Akt and constitutively active Foxo-1 blocked the ability of IGF-1 to prevent ANG II-mediated upregulation of atrogin-1 and skeletal muscle wasting. Our findings demonstrate that the ability of IGF-1 to prevent ANG II-induced skeletal muscle wasting is mediated via an Akt- and Foxo-1-dependent signaling pathway that results in inhibition of atrogin-1 but not MuRF-1 expression. These data suggest strongly that atrogin-1 plays a critical role in mechanisms of ANG II-induced wasting in vivo. PMID:20228261
Rajapaksha, Harinda; Forbes, Briony E.
2015-01-01
The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His4, Tyr15, Thr49, Ile51) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I. PMID:26217307
USDA-ARS?s Scientific Manuscript database
Both IGF-1 and -2 stimulate ovarian follicular cell proliferation and antral follicle development. Actions of IGF-1 and -2 are mediated through the IGF type 1 receptor, whereas binding of IGF-2 to the IGF2R results in its degradation. Information on the role of IGF2R in regulating bovine follicula...
Farmer, John T; Weigent, Douglas A
2007-01-01
In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.
Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P
2016-08-01
The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Modulation of GH/IGF-1 axis: potential strategies to counteract sarcopenia in older adults.
Giovannini, Silvia; Marzetti, Emanuele; Borst, Stephen E; Leeuwenburgh, Christiaan
2008-10-01
Aging is associated with progressive decline of skeletal muscle mass and function. This condition, termed sarcopenia, is associated with several adverse outcomes, including loss of autonomy and mortality. Due to the high prevalence of sarcopenia, a deeper understanding of its pathophysiology and possible remedies represents a high public health priority. Evidence suggests the existence of a relationship between declining growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels and age-related changes in body composition and physical function. Therefore, the age-dependent decline of GH and IGF-1 serum levels may promote frailty by contributing to the loss of muscle mass and strength. Preclinical studies showed that infusion of angiotensin II produced a marked reduction in body weight, accompanied by decreased serum and muscle levels of IGF-1. Conversely, overexpression of muscle-specific isoform of IGF-1 mitigates angiotensin II-induced muscle loss. Moreover, IGF-1 serum levels have been shown to increase following angiotensin converting enzyme inhibitors (ACEIs) treatment. Here we will review the most recent evidence regarding age-related changes of the GH/IGF-1 axis and its modulation by several interventions, including ACEIs which might represent a potential novel strategy to delay the onset and impede the progression of sarcopenia.
USDA-ARS?s Scientific Manuscript database
Previously, we showed that levels of different CCAAT/enhancer binding protein (C/EBP) mRNAs in the liver of rainbow trout were modulated by GH and suggested that C/EBPs might be involved in GH induced IGF-II gene expression. As a step toward further investigation, we have developed monospecific poly...
Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Jimenez, Veronica; Garcia, Miquel; Agudo, Judith; Obach, Mercè; Haurigot, Virginia; Vilà, Laia; Molas, Maria; Lage, Ricardo; Morró, Meritxell; Casana, Estefania; Ruberte, Jesús; Bosch, Fatima
2015-01-01
The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function. PMID:25971976
2010-08-01
microtubule-associated protein, RP/EB family, member 3 6.06 211668_s_at PLAU plasminogen activator, urokinase 6.06 207403_at IRS4 insulin receptor...polypeptide 3.48 202410_x_at INS-IGF2 insulin -like growth factor 2 (somatomedin A); insulin ; INS-IGF2 readthrough transcript 3.48 202410_x_at INS insulin -like...growth factor 2 (somatomedin A); insulin ; INS-IGF2 readthrough transcript 3.48 202410_x_at IGF2 insulin -like growth factor 2 (somatomedin A); insulin
Yak IGF2 Promotes Fibroblast Proliferation Via Suppression of IGF1R and PI3KCG Expression
Wang, Qi; Gong, Jishang; Du, Jiaxing; Zhang, Yong; Zhao, Xingxu
2018-01-01
Insulin-like growth factor 2 (IGF2) recapitulates many of the activities of insulin and promotes differentiation of myoblasts and osteoblasts, which likely contribute to genetic variations of growth potential. However, little is known about the functions and signaling properties of IGF2 variants in yaks. The over-expression vector and knockdown sequence of yak IGF2 were transfected into yak fibroblasts, and the effects were detected by a series of assays. IGF2 expression in yak muscle tissues was significantly lower than that of other tissues. In yak fibroblasts, the up-regulated expression of IGF2 inhibits expression of IGF1 and insulin-like growth factor 2 receptor (IGF2R) and significantly up-regulates expression of IGF1R. Inhibition of IGF2 expression caused the up-regulates expression of IGF1, IGF1R and IGF2R. Both over-expression and knockdown of IGF2 resulted in up-regulation of threonine protein kinase 1 (Akt1) expression and down-regulation of phosphatidylinositol 3-kinase, catalytic subunit gamma (PIK3CG). Cell cycle and cell proliferation assays revealed that over-expression of IGF2 enhanced the DNA synthesis phase and promoted yak fibroblasts proliferation. Conversely, knockdown of IGF2 decreased DNA synthesis and inhibited proliferation. These results suggested that IGF2 was negatively correlated with IGF1R and PIK3CG and demonstrated an association with the IGFs-PI3K-Akt (IGFs-phosphatidylinositol 3-kinase- threonine protein kinase) pathway in cell proliferation and provided evidence supporting the functional role of IGF2 for use in improving the production performance of yaks. PMID:29558395
Guevara-Aguirre, J; Rosenbloom, A L; Fielder, P J; Diamond, F B; Rosenfeld, R G
1993-02-01
We have identified 56 patients with GH receptor deficiency (Laron syndrome) from two provinces in southern Ecuador, one group of 26 (Loja province) with a 4:1 female predominance and 30 patients from neighboring El Oro province with a normal sex ratio. There were no significant differences between the Loja and El Oro populations in stature (-5.3 to -11.5 standard deviation score), other auxologic measures, or in biochemical measures. GH binding protein, the circulating extracellular domain of the GH receptor, was measured by ligand immunofunction assay and found to be comparably low in children and adults. Levels of insulin-like growth factor (IGF)-I and -II and the GH-dependent IGF binding protein-3 (measured by RIA) were significantly greater, and GH and IGF binding protein-2 levels significantly lower in adults than children. Levels of IGF-I (adults) and IGF binding protein-3 (children and adults) correlated inversely with statural deviation from normal (P < 0.01). School performance was at an exceptionally high level, 41 out of 47 who had attended school being in the top 3 in classes of 15-50 persons.
USDA-ARS?s Scientific Manuscript database
Insulin-like growth factor 2 (IGF2) is a peptide hormone regulating various cellular processes such as proliferation and apoptosis. IGF2 is vital to embryo development. The IGF2 locus covers approximately 150-kb genomic region on human chromosome 11, containing two imprinted genes, IGF2 and H19, sha...
Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T
1993-06-01
During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium contained low levels of IGF-1 and the stimulation of type I collagen secretion was abolished when the conditioned medium was pre-incubated with antibodies to insulin-like growth factor 1 (IGF-1). There are important reciprocal interactions between alveolar type II cells and fibroblasts in co-culture. Direct contacts between alveolar type II cells and fibroblasts appear to have a trophic effect on cultured alveolar type II cells, increasing the levels of mRNA for SP-A. Rat lung alveolar type II cells appear to release a factor (possibly IGF-1) that stimulates type I collagen secretion by fibroblasts.
Does IGF-1 play a role in the biology of endometrial cancer?
Majchrzak-Baczmańska, Dominika; Malinowski, Andrzej
2016-01-01
Insulin-like growth factor 1 (IGF-1) is a mitogen which plays a key role in regulating cell proliferation, differentiation, and apoptosis. It belongs to the family of proteins also composed of insulin-like growth factor 2 (IGF-2), two types of membrane receptors (IGF-1R and IGF-2R), 6 binding proteins (IGFBP 1-6), hydrolyzing proteases, and reactive molecules binding proteins, which regulate the activity of growth factors. Disturbances in the functioning of IGFBP/IGF/1GF1R can lead to induction of carcinogenesis, which has been demonstrated in breast, prostate or colon cancers. Findings evaluating the role of IGF-1 in endometrial cancer biology are ambiguous and contradictory. Therefore, in the present study, we analyzed the role of IGF-1 in the process of carcinogenesis of endometrial cancer, based on the available literature.
The Possible Potential Therapeutic Targets for Drug Induced Gingival Overgrowth
Alitheen, Noorjahan Banu
2013-01-01
Gingival overgrowth is a side effect of certain medications. The most fibrotic drug-induced lesions develop in response to therapy with phenytoin, the least fibrotic lesions are caused by cyclosporin A, and the intermediate fibrosis occurs in nifedipine-induced gingival overgrowth. Fibrosis is one of the largest groups of diseases for which there is no therapy but is believed to occur because of a persistent tissue repair program. During connective tissue repair, activated gingival fibroblasts synthesize and remodel newly created extracellular matrix. Proteins such as transforming growth factor (TGF), endothelin-1 (ET-1), angiotensin II (Ang II), connective tissue growth factor (CCN2/CTGF), insulin-like growth factor (IGF), and platelet-derived growth factor (PDGF) appear to act in a network that contributes to the development of gingival fibrosis. Since inflammation is the prerequisite for gingival overgrowth, mast cells and its protease enzymes also play a vital role in the pathogenesis of gingival fibrosis. Drugs targeting these proteins are currently under consideration as antifibrotic treatments. This review summarizes recent observations concerning the contribution of TGF-β, CTGF, IGF, PDGF, ET-1, Ang II, and mast cell chymase and tryptase enzymes to fibroblast activation in gingival fibrosis and the potential utility of agents blocking these proteins in affecting the outcome of drug-induced gingival overgrowth. PMID:23690667
Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Jimenez, Veronica; Garcia, Miquel; Agudo, Judith; Obach, Mercè; Haurigot, Virginia; Vilà, Laia; Molas, Maria; Lage, Ricardo; Morró, Meritxell; Casana, Estefania; Ruberte, Jesús; Bosch, Fatima
2015-07-03
The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Effects of different CMV-heat-inactivation-methods on growth factors in human breast milk.
Goelz, Rangmar; Hihn, Eva; Hamprecht, Klaus; Dietz, Klaus; Jahn, Gerhard; Poets, Christian; Elmlinger, Martin
2009-04-01
Preterm infants can inoculate virulent cytomegalovirus (CMV) through their mothers' raw breast milk. Complete virus inactivation is achieved only by heat treatment, but the effect on growth factors has never been assessed systematically. Insulin-like-growth-factor-1-, IGF-2-, insulin-like-growth-factor-binding-protein-2-, and IGFBP-3-concentrations were measured, before and after heating, in 51 breast-milk-samples from 28 mothers, and epidermal-growth-factor-concentrations in a subgroup of 35 samples from 22 mothers. Two heating methods were applied: Short-term (5 s) pasteurisation at 62, 65, and 72 degrees C, and long-term Holder-Pasteurisation (30 min) at 63 degrees C. IGF-1, IGF-2, IGFBP-2, and IGFBP-3 were measured by RIA, and EGF by ELISA. Heating for 30 min decreased significantly IGF-1 by 39.4%, IGF-2 by 9.9%, IGFBP-2 by 19.1%, and IGFBP-3 by 7.0%. In contrast, IGF-1, IGF-2, IGFBP-2, and IGFBP-3 were not altered significantly when using a short heating duration of 5 s, irrespective of the level of temperature, except for IGF-2 at 62 degrees C for 5 s (p = 0.041) and IGFBP-2 at 72 degrees C for 5 s (p = 0.025). Neither long- nor short-time heating methods changed the concentration of EGF. Only short heating methods (5 s, 62-72 degrees C) can preserve, almost completely, the concentrations of IGFs in human milk, whereas Holder-Pasteurization does not.
Insulin signaling pathway protects neuronal cell lines by Sirt3 mediated IRS2 activation.
Mishra, Neha; Lata, Sonam; Deshmukh, Priyanka; Kamat, Kajal; Surolia, Avadhesha; Banerjee, Tanushree
2018-05-01
Cellular stress like ER and oxidative stress are the principle causative agents of various proteinopathies. Multifunctional protein PARK7/DJ-1 provides protection against cellular stress. Recently, insulin/IGF also has emerged as a neuro-protective molecule. However, it is not known whether DJ-1 and insulin/IGF complement each other for cellular protection in response to stress. In this study, we show for the first time, that in human and mouse neuronal cell lines, down regulation of DJ-1 for 48 h leads to compensatory upregulation of insulin/IGF signaling (IIS) pathway genes, namely, insulin receptor, insulin receptor substrate, and Akt under normal physiological conditions as well as in cellular stress conditions. Moreover, upon exogenous supply of insulin there is a marked increase in the IIS components both at gene and protein levels leading to down regulation and inactivation of GSK3β. By immunoprecipitation, it was observed that Sirt3 mediated deacetylation and activation of FoxO3a could not occur under DJ-1 downregulation. Transient DJ-1 downregulation also led to Akt mediated increased phosphorylation and nuclear exclusion of FoxO3a. When DJ-1 was downregulated increased interaction of Sirt3 with IRS2 was observed leading to its activation resulting in IIS upregulation. Thus, transient downregulation of DJ-1 leads to stimulation of IIS pathway by Sirt3 mediated IRS2 activation. Consequently, antiapoptotic program is triggered in neuronal cells via Akt-GSK3β-FoxO3a axis. © 2018 BioFactors, 44(3):224-236, 2018. © 2018 International Union of Biochemistry and Molecular Biology.
NASA Technical Reports Server (NTRS)
Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.
1995-01-01
Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.
Insulin-Like Growth Factor-1 Levels in Term Newborns with Hypoxic-Ischemic Encephalopathy.
Umran, Raid M R; Al-Tahir, Mahir; Jagdish, Desai; Chouthai, Nitin
2016-06-01
Objective This study aims to evaluate the correlation of changes in serum insulin-like growth factor-1 (IGF-1) levels with the clinical staging of hypoxic-ischemic encephalopathy (HIE) in term newborns. Study Design A prospective study of 29 newborns with HIE (stage I = 15, stage II + III = 14) and 28 healthy term newborns as the control group was performed in the neonatal intensive care unit. IGF-1 levels were obtained within 6 hours after birth from HIE and control groups and again on day 3 from HIE group. HIE was classified using the Sarnat staging I to III. Results IGF-1 levels were significantly lower in the HIE group than in the control group (p = 0.024). It was lower in the HIE stage II to III group compared with HIE stage I group at birth (p < 0.0001) and on day 3 (p = 0.009). The mean IGF-1 levels were significantly higher on day 3 than on day 1 among stage II to III HIE (p = 0.006) and it was inversely correlated with staging (R = - 0.475, p = 0.009). There was a significant correlation between IGF-1 levels and Apgar score at 5 (R = 0.39, p = 0.042) and 10 minutes (R = 0.38, p = 0.035). Conclusions IGF-1 was lower in HIE and inversely correlated with clinical staging. It was increased with clinical improvement in the subsequent days. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
IGF-1 as a Drug for Preterm Infants: A Step-Wise Clinical Development.
Hellstrom, Ann; Ley, David; Hallberg, Boubou; Lofqvist, Chatarina; Hansen-Pupp, Ingrid; Ramenghi, Luca A; Borg, Jan; Smith, Lois E H; Hard, Anna-Lena
2017-01-01
Insulin-like growth factor 1 (IGF-1) is a mitogenic hormone involved in many processes such as growth, metabolism, angiogenesis and differentiation. After very preterm birth, energy demands increase while maternal supplies of nutrients and other factors are lost and the infant may become dependent on parenteral nutrition for weeks. Low postnatal IGF-1 concentrations in preterm infants are associated with poor weight gain, retinopathy of prematurity (ROP) and other morbidities. We will describe the process by which we aim to develop supplementation with recombinant human (rh) IGF-1 and its binding protein rhIGFBP-3 as a possible therapy to promote growth and maturation and reduce morbidities in extremely preterm infants. In order to calculate a dose of IGF-1 tolerated by neonates, a pharmacokinetic study of transfusion with fresh frozen plasma was performed, which provided a relatively low dose of IGF-1, (on average 1.4 µg/kg), that increased serum IGF-1 to levels close to those observed in fetuses and preterm infants of similar GAs. Thereafter, a Phase I 3 hours IV infusion of rhIGF-1/rhIGFBP-3 was conducted in 5 infants, followed by a Phase II study with four sections (A-D). In the Phase II, sections A-D studies, time on infusion increased and younger gestational ages were included. IV infusion increased IGF-1 but with short half-life (0.5h) implying a need for continuous infusion. In order to obtain in utero levels of IGF-I, the dose was increased from 100 to 250 µg/kg/24 h and the infusion was prolonged from 3 weeks postnatal age until a postmenstrual age of 29 weeks and 6 days. The purpose has been to ensure high-quality research into the development of a new drug for preterm infants. We hope that our work will help to establish a new standard for the testing of medications for preterm infants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Chinceşan, Mihaela Ioana; Mărginean, Oana; Pitea, Ana-Maria; Dobreanu, Minodora
2013-10-01
The aim of this study was to analyze insulin-like growth factor I (IGF-I) serum level in pediatric patients with cancer compared with pediatric patients with nononcological diseases and to assess the relationship between IGF-I and nutritional status of oncological patients. From January 2009 to July 2012, we assessed 151 consecutively hospitalized patients in a tertiary emergency pediatric hospital. The patients were divided into two groups: group I, consisting of patients with malignant diseases (64 patients), and group II, the control group, consisting of 87 age- and gender-matched patients with different pediatric diseases. The anthropometric parameters (weight, height, body mass index, middle upper arm circumference (MUAC), and tricipital skinfold thickness (TST) and biochemical parameters (proteins, albumin, and total IGF-I) were comparatively evaluated at the diagnosis and after intensive chemotherapy in the malignant group. Anthropometric and biochemical parameters in group I were significantly different from those in group II for height, MUAC, TST, total proteins, and albumin (p < 0.05). Twenty-five out of 64 patients with malignant diseases and 5 out of 87 patients in the control group had malnutrition. IGF-I in patients with cancer was much lower than in the control group (median 48.3 ng/ml, range 25.00-662.00 ng/ml vs 129.00 ng/ml, range 25.00-745.00 ng/ml) (p = 0.014). We found a positive correlation between IGF-I, MUAC, and TST at the diagnosis of the malignant disease. Also, we identified positive correlations between IGF-I, protein, and albumin. Serum IGF-I levels in cancer patients were significantly lower at diagnosis than after chemotherapy (48.3 ng/ml, range 25.00-662.00 ng/ml vs 110.0 ng/ml, range 25.00-573.00 ng/ml; p = 0.04). IGF-I seems to be an accurate biochemical parameter used in malnutrition assessment of children with cancer. IGF-I correlated with the anthropometric parameters of the arm, serum protein, and albumin. These parameters most accurately characterize the nutritional status.
Body shape throughout life and correlations with IGFs and GH.
Schernhammer, Eva S; Tworoger, Shelley S; Eliassen, A Heather; Missmer, Stacey A; Holly, Jeff M; Pollak, Michael N; Hankinson, Susan E
2007-09-01
Both insulin-like growth factors (IGF) and body size have been linked to premenopausal breast cancer risk. However, observational studies of IGF have not been consistent, and they suggest that perhaps earlier levels of IGF might be more strongly related to breast cancer than those measured at mid-age. We therefore sought to explore associations between several measures of body size throughout life and IGF levels in premenopausal women. We examined cross-sectional associations of birth weight, body shape (or somatotype) at ages 5 and 10, body mass index (BMI) at age 18 and adulthood, bra cup size at age 20, adult waist circumference and waist-to-hip ratio (WHR), and attained height with plasma levels of IGF-I, IGF binding protein 3 (IGFBP-3), IGFBP-1, and GH. Participants were 592 healthy premenopausal women aged 34-52 from the Nurses' Health Study II. Using multiple linear regression, we computed least-square mean hormone levels across the categories of early life anthropometric factors. We observed consistent and strong inverse associations between body shape at various stages in life and IGF levels. Somatotype at ages 5 and 10 was inversely associated with IGF-I (P for difference, < 0.01) and positively with IGFBP-3 measured later in adulthood. Further, comparing women with a BMI > or = 25 kg/m(2) at age 18 vs < 19 kg/m(2), similar associations were observed for IGF-I (P for trend, 0.005) and IGFBP-3 (P for trend, 0.01), which were even stronger for BMI at blood collection (BMI< 20 versus BMI > or = 30, mean IGF-I 254 ng/ml, 95% CI, 239-271 vs 208 ng/ml, 95% CI, 195-222). Both waist circumference and WHR were strongly and inversely related to IGFBP-1 levels (top versus bottom quartile of waist circumference: 14.5 vs 40.0 ng/ml, P for trend 0.0005; WHR: 18.3 vs 39.4 ng/ml, P for trend 0.002), with similar results for bra cup size at age 20 although they did not reach statistical significance. There was no association between height and IGF or GH levels. Birth weight, on the other hand, was weakly positively associated with both IGF-I and IGFBP-1 levels, and inversely with GH. Our results suggest that childhood and adult body size may affect premenopausal breast cancer risk differently than birth weight, through associations with IGF and GH levels.
Angiotensin II Infusion Induces Marked Diaphragmatic Skeletal Muscle Atrophy
Rezk, Bashir M.; Yoshida, Tadashi; Semprun-Prieto, Laura; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice
2012-01-01
Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD. PMID:22276172
Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.
Bortvedt, Sarah F; Lund, P Kay
2012-03-01
To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.
Di Cristofori, Andrea; Del Bene, Massimiliano; Locatelli, Marco; Boggio, Francesca; Ercoli, Giulia; Ferrero, Stefano; Del Gobbo, Alessandro
2018-05-02
Several hypothesis have been proposed in order to understand the mechanisms underlying the meningioma related hyperostosis. Objective of our study was to investigate the role of osteoprotegerin(OPG), insulin-like growth factor-1(IGF-1), endothelin-1(ET-1), Bone Morphogenetic Protein(BMP-2 and -4). A total of 149 patients (39 males and 110 females with a mean age of 62 years) that received surgery were included. Depending on the relationship with the bone, meningiomas were classified in hyperostotic, osteolytic, infiltrative and without relation with the bone. Expression of BMP-2,-4; OPG and IGF-1 was evaluated with tissue microarray analysis on the surgical sample. Our series included 132 cases of grade I meningioma, 14 cases of grade II and 3 cases of grade III (according WHO). Relying on pre-operative CT scan the cases were classified as follow: hyperostotic(n=11), osteolytic(n=11), infiltrative(n=15), without relation with the bone(n=108). Four cases were excluded from the statistical analysis. Using ROC curves analysis, we identified a 2% cut-off for IGF-1 mean value that discriminated between osteolytic and osteoblastic lesions: cases with IGF-1 mean expression less than 2% were classified as osteolytic(p=0.0046);while cases with OPG mean expression less than 10% were classified as osteolytic(p=0.048). No other significant relations were found. OPG and IGF-1 found to be associated with development of hyeprostosis. Preliminary findings suggest that hyperostosis can be caused by an overexpression of osteogenic molecules that influence the osteoblast/osteoclast activity. Based on our results, further studies on hyperostotic bony tissue in meningiomas are needed in order to better understand how meningiomas influence the bone overproduction. Copyright © 2018 Elsevier Inc. All rights reserved.
Small-Molecule Inhibition and Activation-Loop Trans-Phosphorylation of the IGF1 Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu,J.; Li, W.; Craddock, B.
2008-01-01
The insulin-like growth factor-1 receptor (IGF1R) is a receptor tyrosine kinase (RTK) that has a critical role in mitogenic signalling during embryogenesis and an antiapoptotic role in the survival and progression of many human tumours. Here, we present the crystal structure of the tyrosine kinase domain of IGF1R (IGF1RK), in its unphosphorylated state, in complex with a novel compound, cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1, 5-a]pyrazin-8-ylamine (PQIP), which we show is a potent inhibitor of both the unphosphorylated (basal) and phosphorylated (activated) states of the kinase. PQIP interacts with residues in the ATP-binding pocket and in the activation loop, which confers specificity for IGF1RK andmore » the highly related insulin receptor (IR) kinase. In this crystal structure, the IGF1RK active site is occupied by Tyr1135 from the activation loop of an symmetry (two-fold)-related molecule. This dimeric arrangement affords, for the first time, a visualization of the initial trans-phosphorylation event in the activation loop of an RTK, and provides a molecular rationale for a naturally occurring mutation in the activation loop of the IR that causes type II diabetes mellitus.« less
Erdem, Cemal; Nagle, Alison M.; Casa, Angelo J.; Litzenburger, Beate C.; Wang, Yu-fen; Taylor, D. Lansing; Lee, Adrian V.; Lezon, Timothy R.
2016-01-01
Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. PMID:27364358
Mullis, P E; Patel, M S; Brickell, P M; Hindmarsh, P C; Brook, C G
1991-04-01
Hypochondroplasia, a heterogeneous and usually mild form of chondrodystrophy, is a common cause of short stature. It often goes unrecognized in childhood and is diagnosed in adult life when disproportionate short stature becomes obvious. We performed restriction enzyme analysis of the insulin-like growth factor I (IGF-I) gene on the families of 20 white British Caucasian children with short stature attributed to hypochondroplasia by radiological and clinical criteria, who were undergoing human growth hormone (r-hGH) treatment, in 60 children with isolated growth hormone deficiency and in 50 normal individuals. The frequency of the heterozygous pattern (Hind III: 8.2, 5.2, 4.8, 3.2 kb fragments, Pvu: 8.4, 5.1, 4.7, 2.5 kb fragments) in children with hypochondroplasia was significantly higher (chi2: P less than 0.05) than in the control groups. The hypochondroplastic children whose response to r-hGH treatment was characterized by a proportionate increase in both spinal and subischial leg length were all heterozygous for two co-inherited IGF-I gene restriction fragment length polymorphism (RFLP) alleles (Hind III: 5.2, 4.8 kb; Pvu II: 5.1, 4.7 kb). Children whose response was characterized by accentuation of the body disproportion by r-hGH treatment were all homozygous for these alleles (Hind III: 4.8, 4.8 kb; Pvu II: 4.7, 4.7 kb). Their response to r-hGH treatment is significantly different (P less than 0.01). Studies of the families of the heterozygous affected children demonstrated strong linkage (lod score 3.311 at zero recombination) of the IGF-I gene locus at chromosome 12q23 to this subgroup of hypochondroplasia. The 5.2 kb Hind III and 5.1 kb Pvu II alleles are in strong linkage disequilibrium with this trait. These data indicate that IGF-I gene may be a candidate gene for involvement in the aetiology of short stature presenting with hypochondroplastic features and a proportionate response to r-hGH treatment; they also provide support for the concept of genetic heterogeneity in chondrodystrophy.
Human blood-brain barrier insulin-like growth factor receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.
1988-02-01
Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefoldmore » greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of /sup 125/I-IGF-1, /sup 125/I-IGF-2, and /sup 125/I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin.« less
Gómez-Mauricio, Guadalupe; Moscoso, Isabel; Martín-Cancho, María-Fernanda; Crisóstomo, Verónica; Prat-Vidal, Cristina; Báez-Díaz, Claudia; Sánchez-Margallo, Francisco M; Bernad, Antonio
2016-07-16
Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are among the most promising growth factors for promoting cardiorepair. Here, we evaluated the combination of cell- and gene-based therapy using mesenchymal stem cells (MSC) genetically modified to overexpress IGF-1 or HGF to treat acute myocardial infarction (AMI) in a porcine model. Pig MSC from adipose tissue (paMSC) were genetically modified for evaluation of different therapeutic strategies to improve AMI treatment. Three groups of infarcted Large White pigs were compared (I, control, non-transplanted; II, transplanted with paMSC-GFP (green fluorescent protein); III, transplanted with paMSC-IGF-1/HGF). Cardiac function was evaluated non-invasively using magnetic resonance imaging (MRI) for 1 month. After euthanasia and sampling of the animal, infarcted areas were studied by histology and immunohistochemistry. Intramyocardial transplant in a porcine infarct model demonstrated the safety of paMSC in short-term treatments. Treatment with paMSC-IGF-1/HGF (1:1) compared with the other groups showed a clear reduction in inflammation in some sections analyzed and promoted angiogenic processes in ischemic tissue. Although cardiac function parameters were not significantly improved, cell retention and IGF-1 overexpression was confirmed within the myocardium. The simultaneous administration of IGF-1- and HGF-overexpressing paMSC appears not to promote a synergistic effect or effective repair. The combined enhancement of neovascularization and fibrosis in paMSC-IGF-1/HGF-treated animals nonetheless suggests that sustained exposure to high IGF-1 + HGF levels promotes beneficial as well as deleterious effects that do not improve overall cardiac regeneration.
Wilms, Christian T; Heim, Nils; Teschke, Marcus; Reich, Rudolf R; Götz, Werner
2017-02-01
Synovial chondromatosis (SC) is a benign disease of the joints without a known cause. It sometimes affects the temporomandibular joint (TMJ) and is accompanied by pain, swelling, malocclusion, and crepitation. It has been divided into three stages by Milgram and is supposed to originate from the synovia and cartilage of a joint (Milgram, 1977b). The aim of this study was to examine an involvement of the insulin-like growth factors (IGF-I/-II) and their binding proteins (IGFBP-1 to -6) in the etiology of this disease. Therefore 23 specimen of SC from 16 patients were immunohistochemically stained and microscopically examined. Staining was assessed semiquantitatively: negative (-), weakly positive ((+)), moderately positive (+), strongly positive (++) and very strongly positive (+++). It could be seen that especially the chondro- and fibrocytes and the synovia showed positive staining for almost all IGFs and IGFBPs. The underlying tissue, consisting of connective tissue or chondroid matrix, was stained as well but more weakly so. We conclude that the IGF/IGFBP system seems to contribute to the pathogenesis of SC, especially IGF-I and -II, and their effects enhancing binding protein 5. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Hedman, Christina A; Frystyk, Jan; Fridell, Karin; Jönsson, Anna; Flyvbjerg, Allan; Lindström, Torbjörn; Arnqvist, Hans J
2005-08-01
In type 1 diabetes the circulating IGF-system is altered with low IGF-I and changes in levels of IGF-binding proteins (IGFBPs) which may be of importance for the development of diabetes complications. Our aim was to study if IGF-I, as supported by experimental data in animals, can be affected by dietary protein intake. Twelve patients with type 1 diabetes, age 37.5+/-10.0 years (mean+/-SD), diabetes duration 20.1+/-9.3 years and HbA1c 6.3+/-0.6% were allocated to isocaloric diets with either low normal protein content (LNP), (10 E%; 0.9 g protein/kg body weight) or high normal protein content (HNP) (20 E%; 1.8 g protein/kg body weight) in an open randomised cross-over study. Each diet was taken for 10 days with a wash-out period of 11 days in between. Circulating levels of total and free IGF-I and -II, IGFBP-1, -2 and -3 and GH-binding protein (GHBP) as well as ghrelin were measured with validated in-house immunoassays. At day 10, urinary urea excretion was 320+/-75 mmol/24h during LNP diet compared with 654+/-159 mmol/24h during HNP diet (p<0.001). There were no changes in body weight or glycaemic control between the diets. Fasting levels of total IGF-I were 121+/-33 microg/L after LNP and 117+/-28 microg/L after HNP diet (ns) and the corresponding concentrations of IGFBP-1 were 142(141) and 132(157)mug/L [median (IQR)] (ns). There were no differences in plasma concentrations of total IGF-II, free IGF-I and -II, IGFBP-3, GHBP and ghrelin, whereas a small difference was found for IGFBP-2 (302+/-97 vs. 263+/-66 microg/L; LNP vs. HNP; p<0.04). A twofold change of the dietary protein intake does not influence the altered circulating IGF-system in type 1 diabetes. In order to affect the IGF-system other interventions must be used.
Le Quang, Khai; Bouchareb, Rihab; Lachance, Dominic; Laplante, Marc-André; El Husseini, Diala; Boulanger, Marie-Chloé; Fournier, Dominique; Fang, Xiang Ping; Avramoglu, Rita Kohen; Pibarot, Philippe; Deshaies, Yves; Sweeney, Gary; Mathieu, Patrick; Marette, André
2014-10-01
This study aimed to determine the potential impact of type 2 diabetes mellitus on left ventricular dysfunction and the development of calcified aortic valve disease using a dyslipidemic mouse model prone to developing type 2 diabetes mellitus. When compared with nondiabetic LDLr(-/-)/ApoB(100/100), diabetic LDLr(-/-)/ApoB(100/100)/IGF-II mice exhibited similar dyslipidemia and obesity but developed type 2 diabetes mellitus when fed a high-fat/sucrose/cholesterol diet for 6 months. LDLr(-/-)/ApoB(100/100)/IGF-II mice showed left ventricular hypertrophy versus C57BL6 but not LDLr(-/-)/ApoB(100/100) mice. Transthoracic echocardiography revealed significant reductions in both left ventricular systolic fractional shortening and diastolic function in high-fat/sucrose/cholesterol fed LDLr(-/-)/ApoB(100/100)/IGF-II mice when compared with LDLr(-/-)/ApoB(100/100). Importantly, we found that peak aortic jet velocity was significantly increased in LDLr(-/-)/ApoB(100/100)/IGF-II mice versus LDLr(-/-)/ApoB(100/100) animals on the high-fat/sucrose/cholesterol diet. Microtomography scans and Alizarin red staining indicated calcification in the aortic valves, whereas electron microscopy and energy dispersive x-ray spectroscopy further revealed mineralization of the aortic leaflets and the presence of inflammatory infiltrates in diabetic mice. Studies showed upregulation of hypertrophic genes (anp, bnp, b-mhc) in myocardial tissues and of osteogenic genes (spp1, bglap, runx2) in aortic tissues of diabetic mice. We have established the diabetes mellitus -prone LDLr(-/-)/ApoB(100/100)/IGF-II mouse as a new model of calcified aortic valve disease. Our results are consistent with the growing body of clinical evidence that the dysmetabolic state of type 2 diabetes mellitus contributes to early mineralization of the aortic valve and calcified aortic valve disease pathogenesis. © 2014 American Heart Association, Inc.
Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.
Biggs, Bradley T; Tang, Tao; Krimm, Robin F
2016-01-01
Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.
Demetriou, Charalambos; Abu-Amero, Sayeda; Thomas, Anna C.; Ishida, Miho; Aggarwal, Reena; Al-Olabi, Lara; Leon, Lydia J.; Stafford, Jaime L.; Syngelaki, Argyro; Peebles, Donald; Nicolaides, Kypros H.; Regan, Lesley; Stanier, Philip; Moore, Gudrun E.
2014-01-01
Context Fetal growth involves highly complex molecular pathways. IGF2 is a key paternally expressed growth hormone that is critical for in utero growth in mice. Its role in human fetal growth has remained ambiguous, as it has only been studied in term tissues. Conversely the maternally expressed growth suppressor, PHLDA2, has a significant negative correlation between its term placental expression and birth weight. Objective The aim of this study is to address the role in early gestation of expression of IGF1, IGF2, their receptors IGF1R and IGF2R, and PHLDA2 on term birth weight. Design Real-time quantitative PCR was used to investigate mRNA expression of IGF1, IGF2, IGF1R, IGF2R and PHLDA2 in chorionic villus samples (CVS) (n = 260) collected at 11–13 weeks' gestation. Expression was correlated with term birth weight using statistical package R including correction for several confounding factors. Results Transcript levels of IGF2 and IGF2R revealed a significant positive correlation with birth weight (0.009 and 0.04, respectively). No effect was observed for IGF1, IGF1R or PHLDA2 and birth weight. Critically, small for gestational age (SGA) neonates had significantly lower IGF2 levels than appropriate for gestational age neonates (p = 3·6×10−7). Interpretation Our findings show that IGF2 mRNA levels at 12 weeks gestation could provide a useful predictor of future fetal growth to term, potentially predicting SGA babies. SGA babies are known to be at a higher risk for type 2 diabetes. This research reveals an imprinted, parentally driven rheostat for in utero growth. PMID:24454871
Tureckova, J; Wilson, E M; Cappalonga, J L; Rotwein, P
2001-10-19
The differentiation and maturation of skeletal muscle require interactions between signaling pathways activated by hormones and growth factors and an intrinsic regulatory network controlled by myogenic transcription factors. Insulin-like growth factors (IGFs) play key roles in muscle development in the embryo and in regeneration in the adult. To study mechanisms of IGF action in muscle, we developed a myogenic cell line that overexpresses IGF-binding protein-5. C2BP5 cells remain quiescent in low serum differentiation medium until the addition of IGF-I. Here we use this cell line to identify signaling pathways controlling IGF-mediated differentiation. Induction of myogenin by IGF-I and myotube formation were prevented by the phosphatidylinositol (PI) 3-kinase inhibitor, LY294002, even when included 2 days after growth factor addition, whereas expression of active PI 3-kinase could promote differentiation in the absence of IGF-I. Differentiation also was induced by myogenin but was blocked by LY294002. The differentiation-promoting effects of IGF-I were mimicked by a modified membrane-targeted inducible Akt-1 (iAkt), and iAkt was able to stimulate differentiation of C2 myoblasts and primary mouse myoblasts incubated with otherwise inhibitory concentrations of LY294002. These results show that an IGF-regulated PI 3-kinase-Akt pathway controls muscle differentiation by mechanisms acting both upstream and downstream of myogenin.
Li, Xi; Sun, Qinwei; Li, Xian; Cai, Demin; Sui, Shiyan; Jia, Yimin; Song, Haogang; Zhao, Ruqian
2015-10-01
The adequate supply of methyl donors is critical for the normal development of brain. The purpose of the present study was to investigate the effects of maternal betaine supplementation on hippocampal gene expression in neonatal piglets and to explore the possible mechanisms. Gestational sows were fed control or betaine-supplemented (3 g/kg) diets throughout the pregnancy. Immediately after birth, male piglets were killed, and the hippocampus was dissected for analyses. The mRNA abundance was determined by reverse transcription real-time polymerase chain reaction. Protein content was measured by Western blot, and DNA methylation was detected by methylated DNA immunoprecipitation assay. Prenatal betaine supplementation did not alter the body weight or the hippocampus weight, but increased the hippocampal DNA content as well as the mRNA expression of proliferation-related genes. Prenatal betaine supplementation increased serum level of methionine (P < 0.05) and up-regulated (P < 0.05) the mRNA and protein expression of betaine-homocysteine methyltransferase, glycine N-methyltransferase and DNA methyltransferase 1 in the neonatal hippocampus. Hippocampal expression of insulin growth factor II (IGF2) and its receptors IGF1R and IGF2R were all significantly up-regulated (P < 0.05) in betaine-treated group, together with a significant activation (P < 0.01) of the downstream extracellular signal-regulated kinase 1/2. Moreover, the differentially methylated region (DMR) 1 and 2 on IGF2 locus was found to be hypermethylated (P < 0.05) in the hippocampus of betaine-treated piglets. These results indicate that maternal betaine supplementation enhances betaine/methionine metabolism and DNA methyltransferase expression, causes hypermethylation of DMR on IGF2 gene, which was associated with augmented expression of IGF2 and cell proliferation/anti-apoptotic markers in the hippocampus of neonatal piglets.
Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury
Genis, Laura; Dávila, David; Fernandez, Silvia; Pozo-Rodrigálvarez, Andrea; Martínez-Murillo, Ricardo; Torres-Aleman, Ignacio
2014-01-01
Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I) in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. We found that IGF-I directly protects astrocytes against oxidative stress (H 2O 2). Indeed, in astrocytes but not in neurons, IGF-I decreases the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H 2O 2 such as stem cell factor (SCF) to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging. PMID:24715976
AKT-induced PKM2 phosphorylation signals for IGF-1-stimulated cancer cell growth
Park, Young Soo; Kim, Dong Joon; Koo, Han; Jang, Se Hwan; You, Yeon-Mi; Cho, Jung Hee; Yang, Suk-Jin; Yu, Eun Sil; Jung, Yuri; Lee, Dong Chul; Kim, Jung-Ae; Park, Zee-Yong; Park, Kyung Chan; Yeom, Young Il
2016-01-01
Pyruvate kinase muscle type 2 (PKM2) exhibits post-translational modifications in response to various signals from the tumor microenvironment. Insulin-like growth factor 1 (IGF-1) is a crucial signal in the tumor microenvironment that promotes cell growth and survival in many human cancers. Herein, we report that AKT directly interacts with PKM2 and phosphorylates it at Ser-202, which is essential for the nuclear translocation of PKM2 protein under stimulation of IGF-1. In the nucleus, PKM2 binds to STAT5A and induces IGF-1-stimulated cyclin D1 expression, suggesting that PKM2 acts as an important factor inducing STAT5A activation under IGF-1 signaling. Concordantly, overexpression of STAT5A in cells deficient in PKM2 expression failed to restore IGF-induced growth, whereas reconstitution of PKM2 in PKM2 knockdown cells restored the IGF-induced growth capacity. Our findings suggest a novel role of PKM2 in promoting the growth of cancers with dysregulated IGF/phosphoinositide 3-kinase/AKT signaling. PMID:27340866
Wang, Kimberley C W; Zhang, Lei; McMillen, I Caroline; Botting, Kimberley J; Duffield, Jaime A; Zhang, Song; Suter, Catherine M; Brooks, Doug A; Morrison, Janna L
2011-10-01
Reduced growth in fetal life together with accelerated growth in childhood, results in a ~50% greater risk of coronary heart disease in adult life. It is unclear why changes in patterns of body and heart growth in early life can lead to an increased risk of cardiovascular disease in adulthood. We aimed to investigate the role of the insulin-like growth factors in heart growth in the growth-restricted fetus and lamb. Hearts were collected from control and placentally restricted (PR) fetuses at 137-144 days gestation and from average (ABW) and low (LBW) birth weight lambs at 21 days of age. We quantified cardiac mRNA expression of IGF-1, IGF-2 and their receptors, IGF-1R and IGF-2R, using real-time RT-PCR and protein expression of IGF-1R and IGF-2R using Western blotting. Combined bisulphite restriction analysis was used to assess DNA methylation in the differentially methylated region (DMR) of the IGF-2/H19 locus and of the IGF-2R gene. In PR fetal sheep, IGF-2, IGF-1R and IGF-2R mRNA expression was increased in the heart compared to controls. LBW lambs had a greater left ventricle weight relative to body weight as well as increased IGF-2 and IGF-2R mRNA expression in the heart, when compared to ABW lambs. No changes in the percentage of methylation of the DMRs of IGF-2/H19 or IGF-2R were found between PR and LBW when compared to their respective controls. In conclusion, a programmed increased in cardiac gene expression of IGF-2 and IGF-2R may represent an adaptive response to reduced substrate supply (e.g. glucose and/or oxygen) in order to maintain heart growth and may be the underlying cause for increased ventricular hypertrophy and the associated susceptibility of cardiomyocytes to ischaemic damage later in life.
Pavelić, Kresimir; Kolak, Toni; Kapitanović, Sanja; Radosević, Senka; Spaventi, Sime; Kruslin, Bozo; Pavelić, Jasminka
2003-11-01
Insulin-like growth factor 2 (IGF 2) appears to be involved in the progression of many tumours. It binds to at least two different types of receptor: IGF type 1 (IGF 1R) and mannose 6-phosphate/IGF type 2 (M6-P/IGF 2R). Ligand binding to IGF 1R provokes mitogenic and anti-apoptotic effects. M6-P/IGF 2R has a tumour suppressor function--it mediates IGF 2 degradation. Mutation of M6-P/IGF 2R causes both diminished growth suppression and augmented growth stimulation. The aim of this study was to investigate the role of IGF 2 and its receptors (IGF 1R and IGF 2R) in human gastric cancer. The expression of IGF 2 and its receptors was measured in order to analyse the possible correlation between the activity of these genes and cell proliferation in two different gastric tumour types: diffuse and intestinal. The effect of IGF 1 receptor blockage on cell proliferation and anchorage-independent cell growth was also examined. Increased expression of IGF 2 and IGF 1R genes (at the mRNA and protein level) was found in gastric cancer when compared with non-tumour tissue. Furthermore, there was a significant difference between IGF 2 expression in the more aggressive diffuse type and that in the intestinal type of gastric cancer. Moreover, the IGF 2 peptide level in the culture media obtained from the diffuse type of cancer cells was significantly higher when compared with the intestinal type. The level of IGF 2 peptide in the conditioned media strongly correlated with [3H]thymidine incorporation and cell proliferation. On the contrary, IGF 2R mRNA expression was much higher in the intestinal type of cancer than in the diffuse type. In addition, IGF 2R protein expression was substantially lower with progression of the diffuse cancer type to a higher stage. The alphaIR3 monoclonal antibody strongly inhibited [3H]thymidine incorporation and decreased the number of colonies in soft agar of cells overexpressing IGF 2. These findings suggest that members of the IGF family are involved in the pathogenesis of gastric cancer, probably by autocrine/paracrine stimulation of cell growth. Such tumours might be excellent candidates for therapeutic strategies aimed at interference with this pathway. Copyright 2003 John Wiley & Sons, Ltd.
Erdem, Cemal; Nagle, Alison M; Casa, Angelo J; Litzenburger, Beate C; Wang, Yu-Fen; Taylor, D Lansing; Lee, Adrian V; Lezon, Timothy R
2016-09-01
Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Gallagher, Philip M; Touchberry, Chad D; Teson, Kelli; McCabe, Everlee; Tehel, Michelle; Wacker, Michael J
2013-05-01
The effects of resistance exercise on fiber-type-specific expression of insulin-like growth factor I receptor (IGF-1R) and glucose transporter 4 (GLUT4) was determined in 6 healthy males. The expression of both genes increased in Type I fibers (p < 0.05), but only GLUT4 increased (p < 0.05) in Type II fibers. These data demonstrates that an acute bout of resistance exercise can up-regulate mechanisms of glucose uptake in slow and fast-twitch fibers, but the IGF signaling axis may not be as effective in fast-twitch fibers.
NASA Technical Reports Server (NTRS)
Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.
1995-01-01
Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.
Ruttenstock, Elke; Doi, Takashi; Dingemann, Jens; Puri, Prem
2010-06-01
In congenital diaphragmatic hernia (CDH), high mortality rates are attributed to severe pulmonary hypoplasia. The insulinlike growth factor receptor type 1 (IGF-1R) and type 2 (IGF-2R) play a critical role in the alveologenesis during lung development. The IGF-1R null mutation mice die after birth because of respiratory failure. The IGF-2R knockout mice showed retarded lungs with poorly formed alveoli. We hypothesized that IGF-1R and IGF-2R gene expression levels are downregulated in the nitrofen-induced CDH model. Pregnant rats were exposed to either olive oil or 100 mg of nitrofen on day 9.5 (D9.5) of gestation. Fetuses were harvested on D18 and D21 and divided into control and nitrofen groups. Relative messenger RNA (mRNA) levels of IGF-1R and IGF-2R were determined using real time reverse transcription polymerase chain reaction. Immunohistochemistry was performed to determine protein expression. Relative levels of IGF-1R mRNA were significantly decreased in the nitrofen group (2.91 +/- 0.81) on D21 compared to controls (5.29 +/- 2.59) (P < .05). Expression levels of IGF-2R mRNA on D21 were also significantly decreased in nitrofen group (1.76 +/- 0.49) compared to controls (3.59 +/- 2.45) (P < .05). Immunohistochemistry performed on D21 showed decreased IGF-1R and also IGF-2R expression in nitrofen group. Downregulation of IGF-1R and IGF-2R gene expression may interfere with normal alveologenesis causing pulmonary hypoplasia in the nitrofen-induced CDH model. Copyright 2010 Elsevier Inc. All rights reserved.
2011-08-01
activator, urokinase 6.06 207403_at IRS4 insulin receptor substrate 4 6.06 208487_at lmx1b LIM homeobox transcription factor 1, beta 6.06 206051_at...3.48 216533_at pccA propionyl Coenzyme A carboxylase, alpha polypeptide 3.48 202410_x_at INS-IGF2 insulin -like growth factor 2 (somatomedin A); insulin ...INS-IGF2 readthrough transcript 3.48 202410_x_at INS insulin -like growth factor 2 (somatomedin A); insulin ; INS-IGF2 readthrough transcript 3.48
Insulin-Like Growth Factor 2 Silencing Restores Taxol Sensitivity in Drug Resistant Ovarian Cancer
Brouwer-Visser, Jurriaan; Lee, Jiyeon; McCullagh, KellyAnne; Cossio, Maria J.; Wang, Yanhua; Huang, Gloria S.
2014-01-01
Drug resistance is an obstacle to the effective treatment of ovarian cancer. We and others have shown that the insulin-like growth factor (IGF) signaling pathway is a novel potential target to overcome drug resistance. The purpose of this study was to validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and to determine the efficacy of targeting IGF2 in vivo. An analysis of The Cancer Genome Atlas (TCGA) data in the serous ovarian cancer cohort showed that high IGF2 mRNA expression is significantly associated with shortened interval to disease progression and death, clinical indicators of drug resistance. In a genetically diverse panel of ovarian cancer cell lines, the IGF2 mRNA levels measured in cell lines resistant to various microtubule-stabilizing agents including Taxol were found to be significantly elevated compared to the drug sensitive cell lines. The effect of IGF2 knockdown on Taxol resistance was investigated in vitro and in vivo. Transient IGF2 knockdown significantly sensitized drug resistant cells to Taxol treatment. A Taxol-resistant ovarian cancer xenograft model, developed from HEY-T30 cells, exhibited extreme drug resistance, wherein the maximal tolerated dose of Taxol did not delay tumor growth in mice. Blocking the IGF1R (a transmembrane receptor that transmits signals from IGF1 and IGF2) using a monoclonal antibody did not alter the response to Taxol. However, stable IGF2 knockdown using short-hairpin RNA in HEY-T30 effectively restored Taxol sensitivity. These findings validate IGF2 as a potential therapeutic target in drug resistant ovarian cancer and show that directly targeting IGF2 may be a preferable strategy compared with targeting IGF1R alone. PMID:24932685
USDA-ARS?s Scientific Manuscript database
Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were up regulated during C2C12 differentiation. The IGF2 expression levels wer...
Belharazem, Djeda; Magdeburg, Julia; Berton, Ann-Kristin; Beissbarth, Li; Sauer, Christian; Sticht, Carsten; Marx, Alexander; Hofheinz, Ralf; Post, Stefan; Kienle, Peter; Ströbel, Philipp
2016-10-01
Loss of imprinting (LOI) of the insulin-like growth factor 2 (IGF2) is an early event in the development of colorectal cancer (CRC). Whether LOI of IGF2 denotes a molecular or clinical cancer subgroup is currently unknown. Tumor biopsies and paired normal mucosa from 399 patients with extensive clinical annotations were analyzed for LOI and IGF2 expression. LOI status in 140 informative cases was correlated with clinicopathologic parameters and outcome. LOI was frequent in normal mucosa and tumors and occurred throughout the large intestine. LOI was unrelated to microsatellite instability, KRAS mutation status, stage, and survival. However, CRC with LOI showed increased IGF2 protein levels and activation of AKT1. Gene expression analysis of tumors with and without LOI and knockdown of IGF2 in cell lines revealed that IGF2 induced distinct sets of activated and repressed genes, including Wnt5a, CEACAM6, IGF2BP3, KPN2A, BRCA2, and CDK1. Inhibition of AKT1 in IGF2-stimulated cells showed that the downstream effects of IGF2 on cell proliferation and gene expression were strictly AKT1-dependent. LOI of IGF2 is a frequent and early event in CRC that occurs both in the adenomatous polyposis coli (APC) gene-mutated and serrated route of carcinogenesis. LOI leads to overexpression of IGF2, activates IGF1R and AKT1, and is a powerful driver of cell proliferation. Moreover, our results suggest that IGF2 via AKT1 also contributes to non-canonical wnt signaling. Although LOI had no significant impact on major clinical parameters and outcome, its potential as a target for preventive and therapeutic interventions merits further investigation.
Targeting the Insulin-Like Growth Factor 1 Receptor in Ewing's Sarcoma: Reality and Expectations
Olmos, David; Martins, Ana Sofia; Jones, Robin L.; Alam, Salma; Scurr, Michelle; Judson, Ian R.
2011-01-01
Ewing's sarcoma family of tumours comprises a group of very aggressive diseases that are potentially curable with multimodality treatment. Despite the undoubted success of current treatment, approximately 30% of patients will relapse and ultimately die of disease. The insulin-like growth factor 1 receptor (IGF-1R) has been implicated in the genesis, growth, proliferation, and the development of metastatic disease in Ewing's sarcoma. In addition, IGF1-R has been validated, both in vitro and in vivo, as a potential therapeutic target in Ewing's sarcoma. Phase I studies of IGF-1R monoclonal antibodies reported several radiological and clinical responses in Ewing's sarcoma patients, and initial reports of several Phase II studies suggest that about a fourth of the patients would benefit from IGF-1R monoclonal antibodies as single therapy, with approximately 10% of patients achieving objective responses. Furthermore, these therapies are well tolerated, and thus far severe toxicity has been rare. Other studies assessing IGF-1R monoclonal antibodies in combination with traditional cytotoxics or other targeted therapies are expected. Despite, the initial promising results, not all patients benefit from IGF-1R inhibition, and consequently, there is an urgent need for the identification of predictive markers of response. PMID:21647361
IGF2 DNA methylation is a modulator of newborn's fetal growth and development.
St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi
2012-10-01
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn's fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn's weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn's fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.
IGF2 DNA methylation is a modulator of newborn’s fetal growth and development
St-Pierre, Julie; Hivert, Marie-France; Perron, Patrice; Poirier, Paul; Guay, Simon-Pierre; Brisson, Diane; Bouchard, Luigi
2012-01-01
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn’s fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn’s weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn’s fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity. PMID:22907587
Growth factors and cytokines in patients with long bone fractures and associated spinal cord injury.
Khallaf, Fathy G; Kehinde, Elijah O; Mostafa, Ahmed
2016-06-01
The aim of the study was to test the effect of acute traumatic spinal cord injury of quadriplegia or paraplegia on bone healing in patients with associated long bone fractures and to investigate the molecular and cellular events of the underlying mechanism for a possible acceleration. Healing indicators of long bone fractures and growth factors, IGF-II, platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), Activin-A, and cytokine I-L-1, in the patients' blood were calculated and measured for 21 patients with spinal cord injuries and associated long bone fractures in prospective controlled study and compared to 20 patients with only spinal cord injuries, 30 patients with only long bone fractures, and 30 healthy volunteers. The study results showed that long bone fractures in patients with associated acute traumatic spinal cord injury of quadriplegia or paraplegia heal more expectedly, faster, and with exuberant florid union callus (P > 0.001) and show statistically significant higher levels of growth factors like PDGF, VEGF, Activin-A, and cytokine I-L-1, along the 3 weeks of follow-up (P > 0.005). I-IGF-II showed statistically significant subnormal level along the whole follow-up period in the same patients (P > 0.005). We concluded that long bone fractures in spinal cord injury patients heal more expectedly, faster, and with exuberant and florid callus formation; growth factors like IGF-II, PDGF, VEGF, Activin-A, and cytokine I-L-I have roles as mediators, in molecular events and as byproducts of the subtle mechanism of accelerated osteogenesis in these patients and may represent therapeutic potentials to serve as agents to enhance bone repair.
Jia, Yudong; Lin, Jinxing; Mi, Yuling; Zhang, Caiqiao
2013-10-01
The interactive effect of insulin-like growth factor I (IGF-I) and prostaglandin E2 (PGE2) on the proliferation of theca externa cells (TECs) was investigated in the prehierarchical small yellow follicles of laying hens. IGF-I manifested a proliferating effect like PGE2 on TECs, but this stimulating effect was restrained by AG1024 (IGF-IR inhibitor), KP372-1 (PKB/AKT inhibitor) or NS398 (COX-2 inhibitor). AG1024, KP372-1 or NS398 abolished IGF-I-stimulated COX-2 expression and PGE2 production. Meanwhile, KP372-1, NS398 or AG1024 depressed the PGE2-stimulated expression of COX-2 and IGF-IR mRNA. Therefore, the IGF-I receptor pathway up-regulates COX-2 expression and PGE2 synthesis via PKB signaling cascade, and then PGE2 stimulates IGF-IR mRNA expression to promote TEC proliferation in an autocrine pattern. Overall, the reciprocal stimulation of intracellular PGE2 and IGF-I may enhance TEC proliferation and facilitate the development of chicken prehierarchical follicles. Copyright © 2013 Elsevier Inc. All rights reserved.
Chen, Xiancheng; Lin, Xiaojuan; Li, Meng
2012-10-01
Progressive tumor-bearing patients deserve to benefit from more realistic approaches. Here, a study revealed the impact of modified periodic fasting and refeeding regimen on tumor progression or regression with little or no loss of food intake and body weight. Human A549 lung, HepG-2 liver, and SKOV-3 ovary progressive tumor-bearing mice were established and subjected to 4 wk of periodic fasting/refeeding cycles (PFRC), including periodic 1-d fasting/6-d refeeding weekly (protocol 1) and periodic 2-d fasting/5-d refeeding weekly (P2DF/5DR, protocol 2), with ad libitum (AL)-fed hosts as controls. Afterwards, PFRC groups exhibited tumor growth arrest with some tendency towards regression; especially, complete regression of progressive tumors and metastases comprised between 43.75 and 56.25% of tumor-challenged hosts in P2DF/5DR group (P < 0.05). AL controls, in contrast, showed continuous tumor progression and metastasis. Finally, 100% hosts in P2DF/5DR and 62.5-68.75% in periodic 1-d fasting/6-d refeeding weekly groups survived a 4-month study period vs. only 31.25-37.5% in AL control group. Immunological assays and Luminex microarray revealed that tumor growth remission is mainly via natural killer cell (NK) reactivity and cross-regulation of IGF-binding protein-3, IGF/IGF-receptor, and megakaryocyte growth and development factor autocrine and paracrine loops. In vivo cellular and humoral assays indicated that tumor-regressive induction by PFRC protocols could be partly terminated by NK cell and IGF-binding protein-3 blockade or replenishment of IGF-I/-II and megakaryocyte growth and development factor. These findings offer a better understanding of comprehensive modulation of periodic fasting/refeeding strategy on the balance between tumor progression and regression.
Kanakis, Georgios A; Grimelius, Lars; Papaioannou, Dimitrios; Kaltsas, Gregory; Tsolakis, Apostolos V
2018-04-27
Altered expression of Insulin-like Growth Factor-1 (IGF-1), its receptor (IGF-1R), Connective Tissue Growth Factor (CTGF) and Hypoxia Inducible Factor-1 (HIF-1), has been implicated in tumorigenesis. So far, these factors have not been studied systematically in Pulmonary Carcinoids (PCs). To examine IGF-1, IGF-1R, CTGF and HIF-1 expression in PCs, and assess their prognostic value over established factors. Retrospective study of 121 PCs (104 Typical and 17 Atypical). The expression of growth factors was studied immunohistochemically and tumors were considered positive if immunoreactivity appeared in >50% of cells. All studied parameters were expressed in the majority of tumors (IGF-1, IGF-1R, CTGF and HIF-1, in 78.5%, 67%, 72% and 78%, respectively). Their expression tended to be more frequent in TCs and in tumors with Ki-67≤2% (significant only for HIF-1; 82 vs. 53%; p=0.023 and 83 vs. 63%; p=0.025 respectively). CTGF was the only factor correlated with more extensive disease (larger size; presence of lymph node and distant metastases). According to logistic regression analysis, only advanced age, Ki-67≥3.4% and lymph node involvement could predict the development of distant metastases. IGF-1, IGF-1R, CTGF and HIF-1 are avidly expressed in PCs; however, their presence did not appear to be of statistically significant value over established prognostic factors.
Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds
Biggs, Bradley T.; Tang, Tao; Krimm, Robin F.
2016-01-01
Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling. PMID:26901525
Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomblin, Justin K.; Salisbury, Travis B., E-mail: salisburyt@marshall.edu
2014-01-17
Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancermore » proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.« less
Eivers, Edward; McCarthy, Karena; Glynn, Catherine; Nolan, Catherine M; Byrnes, Lucy
2004-12-01
The insulin-like growth factor (IGF) signalling pathway has been highly conserved in animal evolution and, in mammals and Xenopus, plays a key role in embryonic growth and development, with the IGF-1 receptor (IGF-1R) being a crucial regulator of the signalling cascade. Here we report the first functional role for the IGF pathway in zebrafish. Expression of mRNA coding for a dominant negative IGF-1R resulted in embryos that were small in size compared to controls and had disrupted head and CNS development. At its most extreme, this phenotype was characterized by a complete loss of head and eye structures, an absence of notochord and the presence of abnormal somites. In contrast, up-regulation of IGF signalling following injection of IGF-1 mRNA, resulted in a greatly expanded development of anterior structures at the expense of trunk and tail. IGF-1R knockdown caused a significant decrease in the expression of Otx2, Rx3, FGF8, Pax6.2 and Ntl, while excess IGF signalling expanded Otx2 expression in presumptive forebrain tissue and widened the Ntl expression domain in the developing notochord. The observation that IGF-1R knockdown reduced expression of two key organizer genes (chordin and goosecoid) suggests that IGF signalling plays a role in regulating zebrafish organizer activity. This is supported by the expression of IGF-1, IGF-2 and IGF-1R in shield-stage zebrafish embryos and the demonstration that IGF signalling influences expression of BMP2b, a gene that plays an important role in zebrafish pattern formation. Our data is consistent with a common pathway for integration of IGF, FGF8 and anti-BMPs in early vertebrate development.
Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS
Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva
2016-01-01
The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807
Intracellular Insulin-like Growth Factor-I Induces Bcl-2 Expression in Airway Epithelial Cells 1
Chand, Hitendra S.; Harris, Jennifer Foster; Mebratu, Yohannes; Chen, Yangde; Wright, Paul S.; Randell, Scott H.; Tesfaigzi, Yohannes
2012-01-01
Bcl-2, a prosurvival protein, regulates programmed cell death during development and repair processes, and can be oncogenic when cell proliferation is deregulated. The present study investigated what factors modulate Bcl-2 expression in airway epithelial cells and identified the pathways involved. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection showed that increased expression of IL-1β and IGF-1 coincided with induced Bcl-2 expression compared to controls. Treatment of cultured airway epithelial cells with IL-1β and IGF-1 induced Bcl-2 expression by increasing Bcl-2 mRNA stability with no discernible changes in promoter activity. Silencing the IGF-1 expression using shRNA showed that intracellular (IC)-IGF-1 was increasing Bcl-2 expression. Blocking EGFR or IGF-1R activation also suppressed IC-IGF-1, and abolished the Bcl-2 induction. Induced expression and co-localization of IC-IGF-1 and Bcl-2 were observed in airway epithelial cells of mice exposed to LPS or cigarette smoke and of patients with cystic fibrosis and chronic bronchitis but not in the respective controls. These studies demonstrate that IC-IGF-1 induces Bcl-2 expression in epithelial cells via IGF-1R and EGFR pathways, and targeting IC-IGF-1 could be beneficial to treat chronic airway diseases. PMID:22461702
Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors.
Marcus-Samuels, Bernice; Krieger, Christine C; Boutin, Alisa; Kahaly, George J; Neumann, Susanne; Gershengorn, Marvin C
2018-05-01
Graves' ophthalmopathy (GO) pathogenesis involves thyrotropin (TSH) receptor (TSHR)-stimulating autoantibodies. Whether there are autoantibodies that directly stimulate insulin-like growth factor 1 receptors (IGF-1Rs), stimulating insulin-like growth factor receptor antibodies (IGFRAbs), remains controversial. This study attempted to determine whether there are stimulating IGFRAbs in patients with GO. Immunoglobulins (Igs) were purified from normal volunteers (NV-Igs) and patients with GO (GO-Igs). The effects of TSH, IGF-1, NV-Igs, and GO-Igs on pAKT and pERK1/2, members of pathways used by IGF-1R and TSHR, were compared in orbital fibroblasts from GO patients (GOFs) and U2OS-TSHR cells overexpressing TSHRs, and U2OS cells that express TSHRs at very low endogenous levels. U2OS-TSHR and U2OS cells were used because GOFs are not easily manipulated using molecular techniques such as transfection, and U2OS cells because they express TSHRs at levels that do not measurably stimulate signaling. Thus, comparing U2OS-TSHR and U2OS cells permits specifically distinguishing signaling mediated by the TSHR and IGF-1R. In GOFs, all GO-Igs stimulated pERK1/2 formation and 69% stimulated pAKT. In U2OS-TSHR cells, 15% of NV-IGs and 83% of GO-Igs stimulated increases in pERK1/2, whereas all NV-Igs and GO-Igs stimulated increases in pAKT. In U2OS cells, 70% of GO-Igs stimulated small increases in pAKT. Knockdown of IGF-1R caused a 65 ± 6.3% decrease in IGF-1-stimulated pAKT but had no effect on GO-Igs stimulation of pAKT. Thus, GO-Igs contain factor(s) that stimulate pAKT formation. However, this factor(s) does not directly activate IGF-1R. Based on the findings analyzing these two signaling pathways, it is concluded there is no evidence of stimulating IGFRAbs in GO patients.
The Insulin Receptor: A New Target for Cancer Therapy
Malaguarnera, Roberta; Belfiore, Antonino
2011-01-01
A large body of evidences have shown that both the IGF-I receptor (IGF-IR) and the insulin receptor (IR) play a role in cancer development and progression. In particular, IR overactivation by IGF-II is common in cancer cells, especially in dedifferentiated/stem-like cells. In spite of these findings, until very recently, only IGF-IR but not IR has been considered a target in cancer therapy. Although several preclinical studies have showed a good anti-cancer activity of selective anti-IGF-IR drugs, the results of the clinical first trials have been disappointing. In fact, only a small subset of malignant tumors has shown an objective response to these therapies. Development of resistance to anti-IGF-IR drugs may include upregulation of IR isoform A (IR-A) in cancer cells and its overactivation by increased secretion of autocrine IGF-II. These findings have led to the concept that co-targeting IR together with IGF-IR may increase therapy efficacy and prevent adaptive resistance to selective anti-IGF-IR drugs. IR blockade should be especially considered in tumors with high IR-A:IGF-IR ratio and high levels of autocrine IGF-II. Conversely, insulin sensitizers, which ameliorate insulin resistance associated with metabolic disorders and cancer treatments, may have important implications for cancer prevention and management. Only few drugs co-targeting the IR and IGF-IR are currently available. Ideally, future IR targeting strategies should be able to selectively inhibit the tumor promoting effects of IR without impairing its metabolic effects. PMID:22654833
Holzhausen, Lars; Araujo, Marcelo Gil; Heppelmann, Maike; Sipka, Anja; Pfarrer, Chistiane; Schuberth, Hans-Joachim; Bollwein, Heinrich
2014-01-01
Cows with different Insulin-like Growth Factor-I (IGF-I) concentrations showed comparable expression levels of hepatic growth hormone receptor (GHR). Suppressor of cytokine signaling 2 (SOCS2), could be responsible for additional inhibition of the GHR signal cascade. The aims were to monitor cows with high or low antepartal IGF-I concentrations (IGF-Ihigh or IGF-Ilow), evaluate the interrelationships of endocrine endpoints, and measure hepatic SOCS2 expression. Dairy cows (n = 20) were selected (240 to 254 days after artificial insemination (AI)). Blood samples were drawn daily (day -17 until calving) and IGF-I, GH, insulin, thyroid hormones, estradiol, and progesterone concentrations were measured. Liver biopsies were taken (day 264 ± 1 after AI and postpartum) to measure mRNA expression (IGF-I, IGFBP-2, IGFBP-3, IGFBP-4, acid labile subunit (ALS), SOCS2, deiodinase1, GHR1A). IGF-I concentrations in the two groups were different (p < 0.0001). However, GH concentrations and GHR1A mRNA expression were comparable (p > 0.05). Thyroxine levels and ALS expression were higher in the IGF-Ihigh cows compared to IGF-Ilow cows. Estradiol concentration tended to be greater in the IGF-Ilow group (p = 0.06). It was hypothesized that low IGF-I levels are associated with enhanced SOCS2 expression although this could not be decisively confirmed by the present study. PMID:24962413
Piechotta, Marion; Holzhausen, Lars; Araujo, Marcelo Gil; Heppelmann, Maike; Sipka, Anja; Pfarrer, Chistiane; Schuberth, Hans-Joachim; Bollwein, Heinrich
2014-01-01
Cows with different Insulin-like Growth Factor-I (IGF-I) concentrations showed comparable expression levels of hepatic growth hormone receptor (GHR). Suppressor of cytokine signaling 2 (SOCS2), could be responsible for additional inhibition of the GHR signal cascade. The aims were to monitor cows with high or low antepartal IGF-I concentrations (IGF-I(high) or IGF-I(low)), evaluate the interrelationships of endocrine endpoints, and measure hepatic SOCS2 expression. Dairy cows (n = 20) were selected (240 to 254 days after artificial insemination (AI)). Blood samples were drawn daily (day -17 until calving) and IGF-I, GH, insulin, thyroid hormones, estradiol, and progesterone concentrations were measured. Liver biopsies were taken (day 264 ± 1 after AI and postpartum) to measure mRNA expression (IGF-I, IGFBP-2, IGFBP-3, IGFBP-4, acid labile subunit (ALS), SOCS2, deiodinase1, GHR1A). IGF-I concentrations in the two groups were different (p < 0.0001). However, GH concentrations and GHR1A mRNA expression were comparable (p > 0.05). Thyroxine levels and ALS expression were higher in the IGF-I(high) cows compared to IGF-I(low) cows. Estradiol concentration tended to be greater in the IGF-I(low) group (p = 0.06). It was hypothesized that low IGF-I levels are associated with enhanced SOCS2 expression although this could not be decisively confirmed by the present study.
Hellström, Ann; Ley, David; Hansen-Pupp, Ingrid; Hallberg, Boubou; Ramenghi, Luca A.; Löfqvist, Chatarina; Smith, Lois E. H.; Hård, Anna-Lena
2018-01-01
The neonatal period of very preterm infants is often characterized by a difficult adjustment to extrauterine life, with an inadequate nutrient supply and insufficient levels of growth factors, resulting in poor growth and a high morbidity rate. Long-term multisystem complications include cognitive, behavioral, and motor dysfunction as a result of brain damage as well as visual and hearing deficits and metabolic disorders that persist into adulthood. Insulinlike growth factor 1 (IGF-1) is a major regulator of fetal growth and development of most organs especially the central nervous system including the retina. Glucose metabolism in the developing brain is controlled by IGF-1 which also stimulates differentiation and prevents apoptosis. Serum concentrations of IGF-1 decrease to very low levels after very preterm birth and remain low for most of the perinatal development. Strong correlations have been found between low neonatal serum concentrations of IGF-1 and poor brain and retinal growth as well as poor general growth with multiorgan morbidities, such as intraventricular hemorrhage, retinopathy of prematurity, bronchopulmonary dysplasia, and necrotizing enterocolitis. Experimental and clinical studies indicate that early supplementation with IGF-1 can improve growth in catabolic states and reduce brain injury after hypoxic/ischemic events. A multicenter phase II study is currently underway to determine whether intravenous replacement of human recombinant IGF-1 up to normal intrauterine serum concentrations can improve growth and development and reduce prematurity-associated morbidities. PMID:27603537
NASA Technical Reports Server (NTRS)
Musaro, A.; McCullagh, K. J.; Naya, F. J.; Olson, E. N.; Rosenthal, N.
1999-01-01
Localized synthesis of insulin-like growth factors (IGFs) has been broadly implicated in skeletal muscle growth, hypertrophy and regeneration. Virally delivered IGF-1 genes induce local skeletal muscle hypertrophy and attenuate age-related skeletal muscle atrophy, restoring and improving muscle mass and strength in mice. Here we show that the molecular pathways underlying the hypertrophic action of IGF-1 in skeletal muscle are similar to those responsible for cardiac hypertrophy. Transfected IGF-1 gene expression in postmitotic skeletal myocytes activates calcineurin-mediated calcium signalling by inducing calcineurin transcripts and nuclear localization of calcineurin protein. Expression of activated calcineurin mimics the effects of IGF-1, whereas expression of a dominant-negative calcineurin mutant or addition of cyclosporin, a calcineurin inhibitor, represses myocyte differentiation and hypertrophy. Either IGF-1 or activated calcineurin induces expression of the transcription factor GATA-2, which accumulates in a subset of myocyte nuclei, where it associates with calcineurin and a specific dephosphorylated isoform of the transcription factor NF-ATc1. Thus, IGF-1 induces calcineurin-mediated signalling and activation of GATA-2, a marker of skeletal muscle hypertrophy, which cooperates with selected NF-ATc isoforms to activate gene expression programs.
IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.
Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan
2014-12-01
Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.
Tang, Hexiao; Liao, Yongde; Xu, Liqiang; Zhang, Chao; Liu, Zhaoguo; Deng, Yu; Jiang, Zhixiao; Fu, Shengling; Chen, Zhenguang; Zhou, Sheng
2013-11-15
Estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling are implicated in lung cancer progression. Based on their previous findings, the authors sought to investigate whether estrogen and IGF-1 act synergistically to promote lung adenocarcinoma (LADE) development in mice. LADE was induced with urethane in ovariectomized Kunming mice. Tumor-bearing mice were divided into seven groups: 17β-estradiol (E2), E2+fulvestrant (Ful; estrogen inhibitor), IGF-1, IGF-1+AG1024 (IGF-1 inhibitor), E2+IGF-1, E2+IGF-1+Ful+AG1024 and control groups. After 14 weeks, the mice were sacrificed, and then the tumor growth was determined. The expression of ERα/ERβ, IGF-1, IGF-1R and Ki67 was examined using tissue-microarray-immunohistochemistry, and IGF-1, p-ERβ, p-IGF-1R, p-MAPK and p-AKT levels were determined based on Western blot analysis. Fluorescence-quantitative polymerase chain reaction was used to detect the mRNA expression of ERβ, ERβ2 and IGF-1R. Tumors were found in 93.88% (46/49) of urethane-treated mice, and pathologically proven LADE was noted in 75.51% (37/49). In the E2+IGF-1 group, tumor growth was significantly higher than in the E2 group (p < 0.05), the IGF-1 group (p < 0.05) and control group (p < 0.05). Similarly, the expression of ERβ, p-ERβ, ERβ2, IGF-1, IGF-1R, p-IGF-1R, p-MAPK, p-AKT and Ki67 at the protein and/or mRNA levels was markedly higher in the ligand group than in the ligand + inhibitor groups (all p < 0.05). This study demonstrated for the first time that estrogen and IGF-1 act to synergistically promote the development of LADE in mice, and this may be related to the activation of the MAPK and AKT signaling pathways in which ERβ1, ERβ2 and IGF-1R play important roles. Copyright © 2013 UICC.
Fischer, T W; Herczeg-Lisztes, E; Funk, W; Zillikens, D; Bíró, T; Paus, R
2014-11-01
Caffeine reportedly counteracts the suppression of hair shaft production by testosterone in organ-cultured male human hair follicles (HFs). We aimed to investigate the impact of caffeine (i) on additional key hair growth parameters, (ii) on major hair growth regulatory factors and (iii) on male vs. female HFs in the presence of testosterone. Microdissected male and female human scalp HFs were treated in serum-free organ culture for 120 h with testosterone alone (0·5 μg mL(-1)) or in combination with caffeine (0·005-0·0005%). The following effects on hair shaft elongation were evaluated by quantitative (immuno)histomorphometry: HF cycling (anagen-catagen transition); hair matrix keratinocyte proliferation; expression of a key catagen inducer, transforming growth factor (TGF)-β2; and expression of the anagen-prolonging insulin-like growth factor (IGF)-1. Caffeine effects were further investigated in human outer root sheath keratinocytes (ORSKs). Caffeine enhanced hair shaft elongation, prolonged anagen duration and stimulated hair matrix keratinocyte proliferation. Female HFs showed higher sensitivity to caffeine than male HFs. Caffeine counteracted testosterone-enhanced TGF-β2 protein expression in male HFs. In female HFs, testosterone failed to induce TGF-β2 expression, while caffeine reduced it. In male and female HFs, caffeine enhanced IGF-1 protein expression. In ORSKs, caffeine stimulated cell proliferation, inhibited apoptosis/necrosis, and upregulated IGF-1 gene expression and protein secretion, while TGF-β2 protein secretion was downregulated. This study reveals new growth-promoting effects of caffeine on human hair follicles in subjects of both sexes at different levels (molecular, cellular and organ). © 2014 British Association of Dermatologists.
Zheng, T P; Yang, F; Gao, Y; Baskota, A; Chen, T; Tian, H M; Ran, X W
2014-08-01
DPP4, a novel proinflammatory cytokine, is involved in the inflammatory process through its interaction with IGF-II/M6P receptor. We aimed to investigate whether it could predict new-onset atherosclerosis in Chinese. A prospective study was conducted of 590 adults (213 men and 377 women) aged 18-70 years without atherosclerosis examined in 2007(baseline) and 2011(follow-up). Circulating DPP4 activity, inflammatory markers, IGF-II/M6P receptor and common carotid artery Intima-Media Thickness (C-IMT) were measured at baseline and four years later. At baseline, individuals in the highest quartile of DPP4 activity had higher age, WHR, BMI, SBP, fasting insulin, 2h-PG, TG, LDL-C, IL-6, hs-CRP, IGF-II/M6P-R, C-IMT and lower HDL-C compared with individuals in the lowest quartile. After a 4-year follow-up, 71 individuals developed atherosclerosis. In multiple linear regression analysis, baseline DPP4 activity was an independent predictor of an increase in inflammatory markers, IGF-II/M6P receptor, and C-IMT over a 4-year period (all P < 0.01). In multivariable-adjusted models, the odds ratio (OR) for incident atherosclerosis comparing the highest with the lowest quartiles of DPP4 activity was 3.17 (95%CI 1.33-7.58) after adjustment for confounding risk factors (P = 0.009). The incidence of atherosclerosis owing to DPP4 activity increased by 12.41%. DPP4 activity is an important predictor of the onset of inflammation and atherosclerosis in apparently healthy Chinese. This finding may have important implications for understanding the proinflammatory role of DPP-4 in the pathogenesis of atherosclerosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Regulation of Cell Survival and Motility in Human Breast Cancer Cells by Sphingosine Kinase
2002-01-01
mononoclonal anti-IGF-II and anti-IGFR1 antibodies strongly suppressed proliferation induced by S IP. However, in the presence of serum where overexpression...of SPHK1 significantly enhanced cell growth, addition of anti-IGF-IR antibody which blocks the effects of both IGF-I and IGF-II, did not have a marked... antibody specific for phosphotyrosine 418, an autophosphorylation site located in the Src catalytic domain required for full activity. In contrast
2011-01-01
Background Insulin-like growth factor-I (IGF-I) exerts neuroprotective actions in the central nervous system that are mediated at least in part by control of activation of astrocytes. In this study we have assessed the efficacy of exogenous IGF-I and IGF-I gene therapy in reducing the inflammatory response of astrocytes from cerebral cortex. Methods An adenoviral vector harboring the rat IGF-I gene and a control adenoviral vector harboring a hybrid gene encoding the herpes simplex virus type 1 thymidine kinase fused to Aequorea victoria enhanced green fluorescent protein were used in this study. Primary astrocytes from mice cerebral cortex were incubated for 24 h or 72 h with vehicle, IGF-I, the IGF-I adenoviral vector, or control vector; and exposed to bacterial lipopolysaccharide to induce an inflammatory response. IGF-I levels were measured by radioimmunoassay. Levels of interleukin 6, tumor necrosis factor-α, interleukin-1β and toll-like receptor 4 mRNA were assessed by quantitative real-time polymerase chain reaction. Levels of IGF-I receptor and IGF binding proteins 2 and 3 were assessed by western blotting. The subcellular distribution of nuclear factor κB (p65) was assessed by immunocytochemistry. Statistical significance was assessed by one way analysis of variance followed by the Bonferroni pot hoc test. Results IGF-I gene therapy increased IGF-I levels without affecting IGF-I receptors or IGF binding proteins. Exogenous IGF-I, and IGF-I gene therapy, decreased expression of toll-like receptor 4 and counteracted the lipopolysaccharide-induced inflammatory response of astrocytes. In addition, IGF-I gene therapy decreased lipopolysaccharide-induced translocation of nuclear factor κB (p65) to the cell nucleus. Conclusion These findings demonstrate efficacy of exogenous IGF-I and of IGF-I gene therapy in reducing the inflammatory response of astrocytes. IGF-I gene therapy may represent a new approach to reduce inflammatory reactions in glial cells. PMID:21371294
Wiley, Andrea S; Joshi, Suyog M; Lubree, Himangi G; Bhat, Dattatray S; Memane, Neelam S; Raut, Deepa A; Yajnik, Chittaranjan S
2018-04-01
To ascertain associations between plasma insulin-like growth factor I (IGF-I), insulin-like growth factor-binding protein 3 (IGFBP-3) and their molar ratio at 2 y with neonatal size, infant growth, body composition at 2 y, and feeding practices in an Indian cohort. A cohort of 209 newborns, with 122 followed at 2 y. Anthropometry was conducted at birth and 2 y. IGF-I and IGFBP-3 concentrations were measured in cord blood and at 2 y. Maternal and child diet was assessed by food frequency questionnaires and maternal interviews. Multivariate regression was used to test for associations adjusting for confounding factors. Mean 2 y plasma IGF-I and IGFBP-3 concentrations and IGF-I/IGFBP-3 were 49.4 ng/ml (95% CI: 44.1, 54.8), 1953.8 ng/ml (CI: 1870.6, 2036.9) ng/ml, and 0.088 (CI: 0.081, 0.095), respectively. IGF-I and IGF-I/IGFBP-3 were positively associated with current length, but not body mass index or adiposity. IGF-I was higher among those with greater change in length since birth. IGF-I concentrations were higher in children who drank the most milk (>500 vs. <250 ml per day: 65.6 vs. 42.8 ng/ml, p < 0.04), received other milk <6 months compared to ≥6 months (56.3 vs. 44.8 ng/ml, p < 0.05), and in those whose mothers consumed milk daily vs. less frequently in late pregnancy (56.4 vs. 42.7 ng/ml, p < 0.01). In multivariate regression, 2 y IGF-I concentration and IGF-I/IGFBP-3 were each positively associated with current length and milk intake. IGFBP-3 was not related to anthropometry or milk intake. Plasma IGF-I concentrations and IGF-I/IGFBP-3 at 2 y are positively associated with length at 2 y and current milk intake.
Chaudhari, Amol; Gupta, Richa; Patel, Sonal; Velingkaar, Nikkhil; Kondratov, Roman
2017-01-01
Insulin-like growth factor (IGF) signaling plays an important role in cell growth and proliferation and is implicated in regulation of cancer, metabolism, and aging. Here we report that IGF-1 level in blood and IGF-1 signaling demonstrates circadian rhythms. Circadian control occurs through cryptochromes (CRYs)—transcriptional repressors and components of the circadian clock. IGF-1 rhythms are disrupted in Cry-deficient mice, and IGF-1 level is reduced by 80% in these mice, which leads to reduced IGF signaling. In agreement, Cry-deficient mice have reduced body (∼30% reduction) and organ size. Down-regulation of IGF-1 upon Cry deficiency correlates with reduced Igf-1 mRNA expression in the liver and skeletal muscles. Igf-1 transcription is regulated through growth hormone–induced, JAK2 kinase–mediated phosphorylation of transcriptional factor STAT5B. The phosphorylation of STAT5B on the JAK2-dependent Y699 site is significantly reduced in the liver and skeletal muscles of Cry-deficient mice. At the same time, phosphorylation of JAK2 kinase was not reduced upon Cry deficiency, which places CRY activity downstream from JAK2. Thus CRYs link the circadian clock and JAK-STAT signaling through control of STAT5B phosphorylation, which provides the mechanism for circadian rhythms in IGF signaling in vivo. PMID:28100634
NASA Astrophysics Data System (ADS)
Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong
2014-04-01
Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P < 0.05). An over-expression assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.
Kibbey, Megan M; Jameson, Mark J; Eaton, Erin M; Rosenzweig, Steven A
2006-03-01
Signaling by the insulin-like growth factor (IGF)-1 receptor (IGF-1R) has been implicated in the promotion and aggressiveness of breast, prostate, colorectal, and lung cancers. The IGF binding proteins (IGFBPs) represent a class of natural IGF antagonists that bind to and sequester IGF-1/2 from the IGF-1R, making them attractive candidates as therapeutics for cancer prevention and control. Recombinant human IGFBP-2 significantly attenuated IGF-1-stimulated MCF-7 cell proliferation with coaddition of 20 or 100 nM IGFBP-2 (50 or 80% inhibition, respectively). We previously identified IGF-1 contact sites both upstream and downstream of the CWCV motif (residues 247-250) in human IGFBP-2 (J Biol Chem 276:2880-2889, 2001). To further test their contributions to IGFBP-2 function, the single tryptophan in human IGFBP-2, Trp-248, was selectively cleaved with 2-(2'nitrophenylsulfenyl)-3-methyl-3 bromoindolenine (BNPS-skatole) and the BNPS-skatole products IGFBP-2(1-248) and IGFBP-2(249-289) as well as IGFBP-2(1-190) were expressed as glutathione S-transferase-fusion proteins and purified. Based on competition binding analysis, deletion of residues 249 to 289 caused an approximately 20-fold decrease in IGF-1 binding affinity (IGFBP-2 EC50 = 0.35 nM and IGFBP-2(1-248) = 7 nM). Removal of the remainder of the C-terminal domain had no further effect on affinity (IGFBP-2(1-190) EC50 = 9.2 nM). In kinetic assays, IGFBP-2(1-248) and IGFBP-2(1-190) exhibited more rapid association and dissociation rates than full-length IGFBP-2. These results confirm that regions upstream and downstream of the CWCV motif participate in IGF-1 binding. They further support the development of full-length IGFBP-2 as a cancer therapeutic.
Rice, Megan S; Tamimi, Rulla M; Connolly, James L; Collins, Laura C; Shen, Dejun; Pollak, Michael N; Rosner, Bernard; Hankinson, Susan E; Tworoger, Shelley S
2012-03-13
Previous research in the Nurses' Health Study (NHS) and the NHSII observed that, among women diagnosed with benign breast disease (BBD), those with predominant type 1/no type 3 lobules (a marker of complete involution) versus other lobule types were at lower risk of subsequent breast cancer. Studies in animal models suggest that insulin-like growth factor-1 (IGF-1) may inhibit involution of lobules in the breast; however, this has not been studied in humans. We conducted a cross-sectional study among 472 women in the NHSII who were diagnosed with biopsy-confirmed proliferative BBD between 1991 and 2002 and provided blood samples between 1996 and 1999. A pathologist, blinded to exposure status, classified lobule type in normal adjacent tissue on available biopsy slides according to the number of acini per lobule. For each participant, the pathologist determined the predominant lobule type (that is, type 1, type 2, or type 3) and whether any type 1 or any type 3 lobules were present. Lobule type was then classified as: predominant type 1/no type 3 lobules, which is suggestive of complete involution; or other lobule types. Multivariate logistic models were used to assess the associations between plasma IGF-1, insulin-like growth factor binding protein-3 (IGFBP-3), and the ratio of IGF-1:IGFBP-3 levels with lobule type. In univariate analyses, greater age, higher body mass index, postmenopausal status, nulliparity, and lower IGF-1 levels were associated with predominant type 1/no type 3 lobules (P < 0.05). In multivariate models adjusting for age and assay batch, higher IGF-1 levels were associated with decreased odds of predominant type 1/no type 3 lobules (odds ratio quartile 4 vs. quartile 1 = 0.37, 95% confidence interval = 0.15 to 0.89). Greater ratios of IGF-1:IGFBP-3 levels were also associated with decreased odds of predominant type 1/no type 3 lobules (odds ratio quartile 4 vs. quartile 1 = 0.26, 95% confidence interval = 0.11 to 0.64). These results were slightly attenuated after adjustment for other potential predictors of lobule type. Higher IGF-1 levels and a greater IGF-1:IGFBP-3 ratio were associated with decreased odds of having predominant type 1 lobules/no type 3 lobules among women with proliferative BBD in the NHSII. This study provides further evidence for the role of insulin-like growth factors in the structure of breast lobules and lobular involution.
Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur
2011-01-01
Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640
Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu
2016-01-01
Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.
Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu
2016-01-01
Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation. PMID:26584640
ERIC Educational Resources Information Center
Stern, Sarah A.; Chen, Dillon Y.; Alberini, Cristina M.
2014-01-01
Recent work has reported that the insulin-like growth factor 2 (IGF2) promotes memory enhancement. Furthermore, impaired insulin or IGF1 functions have been suggested to play a role in the pathogenesis of neurodegeneration and cognitive impairments, hence implicating the insulin/IGF system as an important target for cognitive enhancement and/or…
A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories
Agis-Balboa, Roberto Carlos; Arcos-Diaz, Dario; Wittnam, Jessica; Govindarajan, Nambirajan; Blom, Kim; Burkhardt, Susanne; Haladyniak, Ulla; Agbemenyah, Hope Yao; Zovoilis, Athanasios; Salinas-Riester, Gabriella; Opitz, Lennart; Sananbenesi, Farahnaz; Fischer, Andre
2011-01-01
Extinction learning refers to the phenomenon that a previously learned response to an environmental stimulus, for example, the expression of an aversive behaviour upon exposure to a specific context, is reduced when the stimulus is repeatedly presented in the absence of a previously paired aversive event. Extinction of fear memories has been implicated with the treatment of anxiety disease but the molecular processes that underlie fear extinction are only beginning to emerge. Here, we show that fear extinction initiates upregulation of hippocampal insulin-growth factor 2 (Igf2) and downregulation of insulin-growth factor binding protein 7 (Igfbp7). In line with this observation, we demonstrate that IGF2 facilitates fear extinction, while IGFBP7 impairs fear extinction in an IGF2-dependent manner. Furthermore, we identify one cellular substrate of altered IGF2 signalling during fear extinction. To this end, we show that fear extinction-induced IGF2/IGFBP7 signalling promotes the survival of 17–19-day-old newborn hippocampal neurons. In conclusion, our data suggest that therapeutic strategies that enhance IGF2 signalling and adult neurogenesis might be suitable to treat disease linked to excessive fear memory. PMID:21873981
Pantsulaia, Ia; Pantsulaia, I; Trofimov, Svetlana; Kobyliansky, Eugene; Livshits, Gregory
2005-07-01
Recent literature has shown that circulating levels of insulin-like growth factor I (IGF-I) and/or IGF binding proteins (IGF-BPs) may be of importance in the risk assessment of several chronic diseases including cancer, cardiovascular disease, diabetes mellitus and so on. The present study examined the extent of genetic and environmental influences on the populational variation of circulating IGF-I and IGF-BP-1 in apparently healthy and ethnically homogeneous white families. The plasma levels of each of the studied biochemical indices were determined by enzyme-linked immunoassay in 563 individuals aged 18 to 80 years. Quantitative genetic analysis showed that the IGF-I variation was appreciably attributable to genetic effects (47.1% +/- 9.0%), whereas for IGF-BP-1, only 23.3% +/- 7.8% of the interindividual variation was explained by genetic determinants. Common familial environment factors contributed significantly only to IGF-BP-1 variation (23.3% +/- 7.8%). In addition, we examined the covariations between these molecules and between them and IGF-BP-3 and leptin that were previously studied in the same sample. The analysis revealed that the pleiotropic genetic effects were significant for 2 pairs of traits, namely for IGF-I and IGF-BP-3, and for IGF-BP-1 and leptin. The bivariate heritability estimates were 0.21 +/- 0.04 and 0.15 +/- 0.05. The common environmental factors were consistently a significant source of correlation between all pairs (barring IGF-I and leptin) of the studied molecules; they were the sole predictors of correlation between IGF-I and IGF-BP-1, and between IGF-BP-1 and IGF-BP-3. Our results affirm the existence of specific and common genetic pathways that in combination determine a substantial proportion of the circulating variation of these molecules.
Huo, Xiaodong; Liu, Shu; Shao, Ting; Hua, Hui; Kong, Qingbin; Wang, Jiao; Luo, Ting; Jiang, Yangfu
2014-01-01
Glycogen synthase kinase-3 (GSK3) has either tumor-suppressive roles or pro-tumor roles in different types of human tumors. A number of GSK3 targets in diverse signaling pathways have been uncovered, such as tuberous sclerosis complex subunit 2 and β-catenin. The O subfamily of forkhead/winged helix transcription factors (FOXO) is known as tumor suppressors that induce apoptosis. In this study, we find that FOXO binds to type I insulin-like growth factor receptor (IGF-IR) promoter and stimulates its transcription. GSK3 positively regulates the transactivation activity of FOXO and stimulates IGF-IR expression. Although kinase-dead GSK3β cannot up-regulate IGF-IR, the constitutively active GSK3β induces IGF-IR expression in a FOXO-dependent manner. Serum starvation or Akt inhibition leads to an increase in IGF-IR expression, which could be blunted by GSK3 inhibition. GSK3β knockdown or GSK3 inhibitor suppresses IGF-I-induced IGF-IR, Akt, and ERK1/2 phosphorylation. Moreover, knockdown of GSK3β or FOXO1/3/4 leads to a decrease in cellular proliferation and abrogates IGF-I-induced hepatoma cell proliferation. These results suggest that GSK3 and FOXO may positively regulate IGF-I signaling and hepatoma cell proliferation. PMID:25053419
Akyuva, Yener; Kaplan, Necati; Yilmaz, Ibrahim; Ozbek, Hanefi; Sirin, Duygu Yasar; Karaaslan, Numan; Guler, Olcay; Ateş, Özkan
2018-04-09
The aim of this in vitro experimental study was to design a novel, polyvinyl alcohol(PVA)-basedpolymericscaffold that permits the controlled release of insulin-likegrowthfactor1(IGF-1)/bonemorphogenetic protein-2(BMP-2) following intervertebral disc administration. The drug delivery system was composed of two different solutions that formed a scaffold within seconds after coming into contact with each other. We performed swelling,pH,temperature tests and analysis of the controlled release of growth factors from this system.The release kinetics of the growth factors was determined through enzyme linked immunosorbent assay(ELISA). Cell proliferation and viability was monitored with microscopy and analyzed using an MTT assay and acridine orange/propidium iodide(AO/PI) staining. Chondroadherin(CHAD), hypoxiainduciblefactor-1alpha(HIF-1α),collagentypeII(COL2A1) gene expressions were determined with quantitative real-timepolymerasechainreaction(qRT-PCR) analysis to show the effects of IGF-1/BMP-2 administration on annulus fibrosus cell(AFC)/nucleus pulposus cell(NPC) cultures. The scaffold allowed for the controlled release of IGF-1 and BMP-2 in different time intervals. It was observed that as the application time increased, the number of cells and the degree of extracellular matrix development increased in AFC/NPC cultures. AO/PI staining and an MTT analysis showed that cells retained their specific morphology and continued to proliferate. It was observed that HIF-1α and CHAD expression increased in a time-dependent manner, and there wasn't any COL2A1 expression in the AFC/NPC cultures. The designed scaffold may be used as an alternative method for intervertebral disc administration of growth factors after further in vivo studies. We believe that such prototype scaffolds may be an innovative technology in targeted drug therapies after reconstructive neurosurgeries.
Piringer, Gudrun; Fridrik, Michael; Fridrik, Alfred; Leiherer, Andreas; Zabernigg, August; Greil, Richard; Eisterer, Wolfgang; Tschmelitsch, Jörg; Lang, Alois; Frantal, Sophie; Burgstaller, Sonja; Gnant, Michael; Thaler, Josef
2018-04-01
Despite advances in adjuvant chemotherapy, 20-30% of patients in stages II-III colorectal cancer will eventually relapse. Observational studies showed a reduction in relapse rate, colon cancer-specific mortality, and overall mortality by physical activity. Results from prospective randomized interventional studies to confirm these observational data are lacking. The aims of this prospective single-arm multicenter pilot study are to evaluate feasibility and safety of exercise training after adjuvant chemotherapy in colorectal cancer patients. The training was performed three times per week for 1 year and was increased gradually in three phases until reaching 18 metabolic equivalent task hours per week. Overall, 30 patients were included. The planned training intensity could be achieved in all three phases. Patients experienced a performance increase of median 35.5 watt, a weight-loss of a median of 3.0 kg, and a reduction in body fat content of median 1.0% during this exercise training. The analysis showed early study termination due to non-compliance in 10/30 patients (33.3%), disease progression in 4 patients (13.3%), and serious adverse events in 2 patients (6.7%). About half of patients (46.7%) completed the pilot study as planned. Biomarker analysis from 20 patients showed a non-significant reduction in insulin-like growth factor 1 (IGF-1), insulin-like growth factor 2 (IGF-2) and insulin-like growth factor binding protein 3 (IGF-BP3) levels, significant increases in adiponectin and leptin levels, and a non-significant increase in C-peptide levels. Exercise training is feasible in patients with colorectal cancer after completion of adjuvant chemotherapy. The main problem encountered during the study was compliance. To improve compliance of exercise training, several measures were adapted for the upcoming prospective randomized ABCSG C08 Exercise II study.
Wubetu, Gizachew Yismaw; Utsunomiya, Tohru; Ishikawa, Daichi; Ikemoto, Tetsuya; Yamada, Shinichiro; Morine, Yuji; Iwahashi, Shuichi; Saito, Yu; Arakawa, Yusuke; Imura, Satoru; Arimochi, Hideki; Shimada, Mitsuo
2014-09-01
Branched chain amino acid (BCAA) dietary supplementation inhibits activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis in diabetic animal models. However, the in vitro effect of BCAA on human cancer cell lines under hyper-insulinemic conditions remains unclear. Colon (HCT-116) and hepatic (HepG2) tumor cells were treated with varying concentrations of BCAA with or without fluorouracil (5-FU). The effect of BCAA on insulin-initiated proliferation was determined. Gene and protein expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. BCAA supplementation had no significant effect on cell proliferation and did not show significant synergistic or antagonistic effects with 5-FU. However, BCAA significantly decreased insulin-initiated proliferation of human colon and hepatic cancer cell lines in vitro. BCAA supplementation caused a marked decrease in activated IGF-IR expression and significantly enhanced both mRNA and protein expression of LC3-II and BECN1 (BECLIN-1). BCAA could be a useful chemopreventive modality for cancer in hyperinsulinemic conditions. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Doern, Adam; Cao, Xianjun; Sereno, Arlene; Reyes, Christopher L; Altshuler, Angelina; Huang, Flora; Hession, Cathy; Flavier, Albert; Favis, Michael; Tran, Hon; Ailor, Eric; Levesque, Melissa; Murphy, Tracey; Berquist, Lisa; Tamraz, Susan; Snipas, Tracey; Garber, Ellen; Shestowsky, William S; Rennard, Rachel; Graff, Christilyn P; Wu, Xiufeng; Snyder, William; Cole, Lindsay; Gregson, David; Shields, Michael; Ho, Steffan N; Reff, Mitchell E; Glaser, Scott M; Dong, Jianying; Demarest, Stephen J; Hariharan, Kandasamy
2009-04-10
Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism leads to optimal clinical efficacy.
Mobasheri, Ali; Buhrmann, Constanze; Aldinger, Constance; Rad, Jafar Soleimani; Shakibaei, Mehdi
2011-01-01
Objective Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Methods Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Results Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. Conclusion The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects. PMID:22194879
IGF2BP3 modulates the interaction of invasion-associated transcripts with RISC
Ennajdaoui, Hanane; Howard, Jonathan M.; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J.; Uren, Philip J.; Dargyte, Marija; Katzman, Sol; Draper, Jolene M.; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C.; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D.; Toloue, Masoud M.; Blencowe, Benjamin J.; Penalva, Luiz O.F.; Sanford, Jeremy R.
2016-01-01
Summary Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy. But its role(s) in pathogenesis remain enigmatic. Here, we interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches we identify 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and miRNA binding sites. IGF2BP3 promotes association of the RNA induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. PMID:27210763
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.
2000-01-01
Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.
Lyons, Amy; Coleman, Michael; Riis, Sarah; Favre, Cedric; O'Flanagan, Ciara H; Zhdanov, Alexander V; Papkovsky, Dmitri B; Hursting, Stephen D; O'Connor, Rosemary
2017-10-13
Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) and PGC-1α-related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Grieco, Steven F; Cheng, Yuyan; Eldar-Finkelman, Hagit; Jope, Richard S; Beurel, Eléonore
2017-01-04
An antidepressant dose of the rapidly-acting ketamine inhibits glycogen synthase kinase-3 (GSK3) in mouse hippocampus, and this inhibition is required for the antidepressant effect of ketamine in learned helplessness depression-like behavior. Here we report that treatment with an antidepressant dose of ketamine (10mg/kg) increased expression of insulin-like growth factor 2 (IGF2) in mouse hippocampus, an effect that required ketamine-induced inhibition of GSK3. Ketamine also inhibited hippocampal GSK3 and increased expression of hippocampal IGF2 in mice when administered after the induction of learned helplessness. Treatment with the specific GSK3 inhibitor L803-mts was sufficient to up-regulate hippocampal IGF2 expression. Administration of IGF2 siRNA reduced ketamine's antidepressant effect in the learned helplessness paradigm. Mice subjected to the learned helplessness paradigm were separated into two groups, those that were resilient (non-depressed) and those that were susceptible (depressed). Non-depressed resilient mice displayed higher expression of IGF2 than susceptible mice. These results indicate that IGF2 contributes to ketamine's antidepressant effect and that IGF2 may confer resilience to depression-like behavior. Copyright © 2016 Elsevier Inc. All rights reserved.
Grieco, Steven F.; Cheng, Yuyan; Eldar-Finkelman, Hagit; Jope, Richard S.; Beurel, Eléonore
2016-01-01
An antidepressant dose of the rapidly-acting ketamine inhibits glycogen synthase kinase-3 (GSK3) in mouse hippocampus, and this inhibition is required for the antidepressant effect of ketamine in learned helplessness depression-like behavior. Here we report that treatment with an antidepressant dose of ketamine (10 mg/kg) increased expression of insulin-like growth factor 2 (IGF2) in mouse hippocampus, an effect that required ketamine-induced inhibition of GSK3. Ketamine also inhibited hippocampal GSK3 and increased expression of hippocampal IGF2 in mice when administered after the induction of learned helplessness. Treatment with the specific GSK3 inhibitor L803-mts was sufficient to up-regulate hippocampal IGF2 expression. Administration of IGF2 siRNA reduced ketamine's antidepressant effect in the learned helplessness paradigm. Mice subjected to the learned helplessness paradigm were separated into two groups, those that were resilient (non-depressed) and those that were susceptible (depressed). Non-depressed resilient mice displayed higher expression of IGF2 than susceptible mice. These results indicate that IGF2 contributes to ketamine's antidepressant effect and that IGF2 may confer resilience to depression-like behavior. PMID:27542584
Marwaha, Raman K; Garg, M K; Gupta, Sushil; Khurana, A K; Narang, Archna; Shukla, Manoj; Arora, Preeti; Chadha, Aditi; Nayak, Deb Datta; Manchanda, R K
2017-07-26
Population specific data and influence of sub-clinical hypothyroidism on insulin like growth factor-1 (IGF-1) and its binding protein-3 (IGFBP-3) in Indian children is lacking. This study was undertaken to evaluate serum IGF-1 and IGFBP-3 and their correlation with age, gender, pubertal status and thyroid functions. A total of 840 apparently healthy school girls aged 6-18 years, were recruited for the study and underwent assessment of height, weight, body mass index, pubertal status and serum T3, T4, TSH, IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio. The mean serum levels of IGF-1, IGFBP-3 levels and IGF-1/IGFBP-3 molar ratio were 381.8±240.5 ng/mL, 4.19±2.08 μg/mL and 40.5±37.2%, respectively. The serum IGF-1 and IGF-1/IGFBP-3 molar ratio increased significantly (p<0.0001) at 11 years followed by a steady yet non-significant rise till 16 years of age. A similar pattern was observed for IGFBP-3 showing a steep rise at 12 years and peaking at 16 years. Likewise, serum levels of IGF-1 and molar ratio of IGF-1/IGFBP-3 increased significantly with pubertal maturation from stage 1 to 3 and were higher in overweight girls compared to normal weight and obese girls. The growth factors were no different in girls with or without subclinical hypothyroidism. There was no significant impact of age on IGF-1 and IGFBP-3 in pre-pubertal girls. A sudden marked increase at 11 years followed by a gradual rise in growth factors till 16 years is indicative of pubertal initiation and maturation. Subclinical hypothyroidism did not influence growth factors in girls.
Identification and expression analysis of cDNA encoding insulin-like growth factor 2 in horses
KIKUCHI, Kohta; SASAKI, Keisuke; AKIZAWA, Hiroki; TSUKAHARA, Hayato; BAI, Hanako; TAKAHASHI, Masashi; NAMBO, Yasuo; HATA, Hiroshi; KAWAHARA, Manabu
2017-01-01
Insulin-like growth factor 2 (IGF2) is responsible for a broad range of physiological processes during fetal development and adulthood, but genomic analyses of IGF2 containing the 5ʹ- and 3ʹ-untranslated regions (UTRs) in equines have been limited. In this study, we characterized the IGF2 mRNA containing the UTRs, and determined its expression pattern in the fetal tissues of horses. The complete equine IGF2 mRNA sequence harboring another exon approximately 2.8 kb upstream from the canonical transcription start site was identified as a new transcript variant. As this upstream exon did not contain the start codon, the amino acid sequence was identical to the canonical variant. Analysis of the deduced amino acid sequence revealed that the protein possessed two major domains, IlGF and IGF2_C, and analysis of IGF2 sequence polymorphism in fetal tissues of Hokkaido native horse and Thoroughbreds revealed a single nucleotide polymorphism (T to C transition) at position 398 in Thoroughbreds, which caused an amino acid substitution at position 133 in the IGF2 sequence. Furthermore, the expression pattern of the IGF2 mRNA in the fetal tissues of horses was determined for the first time, and was found to be consistent with those of other species. Taken together, these results suggested that the transcriptional and translational products of the IGF2 gene have conserved functions in the fetal development of mammals, including horses. PMID:29151450
USDA-ARS?s Scientific Manuscript database
Histone modification has emerged as a very important mechanism regulating the transcriptional status of the genome. Insulin-like growth factor 2 (IGF2) is a peptide hormone controlling various cellular processes such as proliferation and apoptosis. IGF2 and H19 are reciprocally regulated imprinted ...
Feng, Xingmei; Huang, Dan; Lu, Xiaohui; Feng, Guijuan; Xing, Jing; Lu, Jun; Xu, Ke; Xia, Weiwei; Meng, Yan; Tao, Tao; Li, Liren; Gu, Zhifeng
2014-12-01
Insulin-like growth factor 1 (IGF-1) is a multifunctional peptide that can enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). However, it remains unclear whether IGF-1 can promote osteogenic differentiation of human dental pulp stem cells (DPSCs). In our study, DPSCs were isolated from the impacted third molars, and treated with IGF-1. Osteogenic differentiation abilities were investigated. We found that IGF-1 activated the mTOR signaling pathway during osteogenic differentiation of DPSCs. IGF-1 also increased the expression of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osterix (OSX) and collagen type I (COL I) during this process. Rapamycin, an mTOR inhibitor, blocked osteogenic differentiation induced by IGF-1. Meanwhile, CCK-8 assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 could enhance proliferation ability of DPSCs and 100 ng/mL was the optimal concentration. In summary, IGF-1 could promote proliferation and osteogenic differentiation of DPSCs via mTOR pathways, which might have clinical implications for osteoporosis. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.
NASA Technical Reports Server (NTRS)
Thomas, M. J.; Umayahara, Y.; Shu, H.; Centrella, M.; Rotwein, P.; McCarthy, T. L.
1996-01-01
Insulin-like growth factor-I (IGF-I), a multifunctional growth factor, plays a key role in skeletal growth and can enhance bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other agents that increase cAMP activated IGF-I gene transcription in primary rat osteoblast cultures through promoter 1 (P1), the major IGF-I promoter, and found that transcriptional induction was mediated by protein kinase A. We now have identified a short segment of P1 that is essential for full hormonal regulation and have characterized inducible DNA-protein interactions involving this site. Transient transfections of IGF-I P1 reporter genes into primary rat osteoblasts showed that the 328-base pair untranslated region of exon 1 was required for a full 5.3-fold response to PGE2; mutation in a previously footprinted site, HS3D (base pairs +193 to +215), reduced induction by 65%. PGE2 stimulated nuclear protein binding to HS3D. Binding, as determined by gel mobility shift assay, was not seen in nuclear extracts from untreated osteoblast cultures, was detected within 2 h of PGE2 treatment, and was maximal by 4 h. This DNA-protein interaction was not observed in cytoplasmic extracts from PGE2-treated cultures, indicating nuclear localization of the protein kinase A-activated factor(s). Activation of this factor was not blocked by cycloheximide (Chx), and Chx did not impair stimulation of IGF-I gene expression by PGE2. In contrast, binding to a consensus cAMP response element (CRE; 5'-TGACGTCA-3') from the rat somatostatin gene was not modulated by PGE2 or Chx. Competition gel mobility shift analysis using mutated DNA probes identified 5'-CGCAATCG-3' as the minimal sequence needed for inducible binding. All modified IGF-I P1 promoterreporter genes with mutations within this CRE sequence also showed a diminished functional response to PGE2. These results identify the CRE within the 5'-untranslated region of IGF-I exon 1 that is required for hormonal activation of IGF-I gene transcription by cAMP in osteoblasts.
Conover, Cheryl A; Bale, Laurie K; Overgaard, Michael T; Johnstone, Edward W; Laursen, Ulla H; Füchtbauer, Ernst-Martin; Oxvig, Claus; van Deursen, Jan
2004-03-01
Pregnancy-associated plasma protein A (PAPPA) is a metzincin superfamily metalloproteinase in the insulin-like growth factor (IGF) system. PAPPA increases IGF bioavailability and mitogenic effectiveness in vitro through regulated cleavage of IGF-binding protein 4 (IGFBP4). To determine its function in vivo, we generated PAPPA-null mice by gene targeting. Mice homozygous for targeted disruption of the PAPPA gene were viable but 60% the size of wild-type littermates at birth. The impact of the mutation was exerted during the early embryonic period prior to organogenesis, resulting in proportional dwarfism. PAPPA, IGF2 and IGFBP4 transcripts co-localized in wild-type embryos, and expression of IGF2 and IGFBP4 mRNA was not altered in PAPPA-deficient embryos. However, IGFBP4 proteolytic activity was completely lacking in fibroblasts derived from PAPPA-deficient embryos, and IGFBP4 effectively inhibited IGF-stimulated mitogenesis in these cells. These results provide the first direct evidence that PAPPA is an essential growth regulatory factor in vivo, and suggest a novel mechanism for regulated IGF bioavailability during early fetal development.
Nakayama, Youhei; Nakajima, Yu; Kato, Naoko; Takai, Hideki; Kim, Dong-Soon; Arai, Masato; Mezawa, Masaru; Araki, Shouta; Sodek, Jaro; Ogata, Yorimasa
2006-08-01
Insulin-like growth factor-I (IGF-I) promotes bone formation by stimulating proliferation and differentiation of osteoblasts. Bone sialoprotein (BSP), is thought to function in the initial mineralization of bone, is selectively expressed by differentiated osteoblast. To determine the molecular mechanism of IGF-I regulation of osteogenesis, we analyzed the effects of IGF-I on the expression of BSP in osteoblast-like Saos2 and in rat stromal bone marrow (RBMC-D8) cells. IGF-I (50 ng/ml) increased BSP mRNA levels at 12 h in Saos2 cells. In RBMC-D8 cells, IGF-I increased BSP mRNA levels at 3 h. From transient transfection assays, a twofold increase in transcription by IGF-I was observed at 12 h in pLUC3 construct that included the promoter sequence from -116 to +60. Effect of IGF-I was abrogated by 2-bp mutations in either the FGF2 response element (FRE) or homeodomain protein-binding site (HOX). Gel shift analyses showed that IGF-I increased binding of nuclear proteins to the FRE and HOX elements. Notably, the HOX-protein complex was supershifted by Smad1 antibody, while the FRE-protein complex was shifted by Smad1 and Cbfa1 antibodies. Dlx2 and Dlx5 antibodies disrupted the formation of the FRE- and HOX-protein complexes. The IGF-I effects on the formation of FRE-protein complexes were abolished by tyrosine kinase inhibitor herbimycin A (HA), PI3-kinase/Akt inhibitor LY249002, and MAP kinase kinase inhibitor U0126, while IGF-I effects on HOX-protein complexes were abolished by HA and LY249002. These studies demonstrate that IGF-I stimulates BSP transcription by targeting the FRE and HOX elements in the proximal promoter of BSP gene.
Li, Chao; Vu, Kent; Hazelgrove, Krystina
2015-01-01
The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. PMID:26428636
Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F
2015-12-01
The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.
Cutsem, Eric Van; Eng, Cathy; Nowara, Elzbieta; Świeboda-Sadlej, Anna; Tebbutt, Niall C.; Mitchell, Edith; Davidenko, Irina; Stephenson, Joe; Elez, Elena; Prenen, Hans; Deng, Hongjie; Tang, Rui; McCaffery, Ian; Oliner, Kelly S.; Chen, Lisa; Gansert, Jennifer; Loh, Elwyn; Smethurst, Dominic; Tabernero, Josep
2015-01-01
Purpose Panitumumab, a fully human anti-epidermal growth factor receptor monoclonal antibody (mAb), has demonstrated efficacy in patients with wild-type KRAS metastatic colorectal cancer (mCRC). Rilotumumab and ganitumab are investigational, fully human mAbs against hepatocyte growth factor (HGF)/scatter factor and IGF1R, respectively. Here we evaluate combining rilotumumab or ganitumab with panitumumab in previously treated patients with wild-type KRAS mCRC. Experimental Design Part 1 was a phase Ib dose-finding study of panitumumab plus rilotumumab. The primary endpoint was the incidence of dose-limiting toxicities (DLT). Part 2 was a randomized phase II trial of panitumumab in combination with rilotumumab, ganitumab, or placebo. The primary endpoint was objective response rate (ORR); safety, progression-free survival (PFS), and overall survival (OS) were secondary endpoints. Archival tissue specimens were collected for exploratory correlative work. Results In part 1, no DLTs were reported. A recommended phase II dose of 10 mg/kg rilotumumab was selected. In part 2, for the panitumumab plus rilotumumab (n = 48), panitumumab plus ganitumab (n = 46), and panitumumab plus placebo arms (n = 48), the ORRs were 31%, 22%, and 21%, respectively. The median PFS was 5.2, 5.3, and 3.7 months and median OS 13.8,10.6, and 11.6 months, respectively. Adverse events were tolerable. Exploratory biomarker analyses, including MET and IGF-related protein expression, failed to indicate conclusive predictive evidence on efficacy endpoints. Conclusions Panitumumab plus rilotumumab met the prespecified criterion for improvement in ORR whereas ganitumab did not. This is the first study to suggest a benefit for combining an HGF inhibitor (rilotumumab) with panitumumab in previously treated patients with wild-type KRAS mCRC. PMID:24919569
Laeger, T; Wirthgen, E; Piechotta, M; Metzger, F; Metges, C C; Kuhla, B; Hoeflich, A
2014-05-01
Hormones and metabolites act as satiety signals in the brain and play an important role in the control of feed intake (FI). These signals can reach the hypothalamus and brainstem, 2 major centers of FI regulation, via the blood stream or the cerebrospinal fluid (CSF). During the early lactation period of high-yielding dairy cows, the increase of FI is often insufficient. Recently, it has been demonstrated that insulin-like growth factors (IGF) may control FI. Thus, we asked in the present study if IGF-binding proteins (IGFBP) are regulated during the periparturient period and in response to feed restriction and therefore might affect FI as well. In addition, we specifically addressed conditional distribution of IGFBP in plasma and CSF. In one experiment, 10 multiparous German Holstein dairy cows were fed ad libitum and samples of CSF and plasma were obtained before morning feeding on d -20, -10, +1, +10, +20, and +40 relative to calving. In a second experiment, 7 cows in second mid-lactation were sampled for CSF and plasma after ad libitum feeding and again after feeding 50% of the previous ad libitum intake for 4 d. Intact IGFBP-2, IGFBP-3, and IGFBP-4 were detected in plasma by quantitative Western ligand blot analysis. In CSF, we were able to predominantly identify intact IGFBP-2 and a specific IGFBP-2 fragment containing detectable binding affinities for biotinylated IGF-II. Whereas plasma concentrations of IGFBP-2 and IGFBP-4 increased during the periparturient period, IGFBP-3 was unaffected over time. In CSF, concentrations of IGFBP-2, both intact and fragmented, were not affected during the periparturient period. Plasma IGF-I continuously decreased until calving but remained at a lower concentration in early lactation than in late pregnancy. Food restriction did not affect concentrations of IGF components present in plasma or CSF. We could show that the IGFBP profiles in plasma and CSF are clearly distinct and that changes in IGFBP in plasma do not simply correspond in the brain. We thus assume independent control of IGFBP distribution between plasma and CSF. Due to the known anorexic effect of IGF-I, elevated plasma concentrations of IGFBP-2 and IGFBP-4 during the postpartum period in conjunction with reduced plasma IGF-I concentrations may be interpreted as an endocrine response against negative energy balance in early lactation in dairy cows. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Busch, Bianca; Bley, Nadine; Müller, Simon; Glaß, Markus; Misiak, Danny; Lederer, Marcell; Vetter, Martina; Strauß, Hans-Georg; Thomssen, Christoph; Hüttelmaier, Stefan
2016-05-05
The tumor-suppressive let-7 microRNA family targets various oncogene-encoding mRNAs. We identify the let-7 targets HMGA2, LIN28B and IGF2BP1 to form a let-7 antagonizing self-promoting oncogenic triangle. Surprisingly, 3'-end processing of IGF2BP1 mRNAs is unaltered in aggressive cancers and tumor-derived cells although IGF2BP1 synthesis was proposed to escape let-7 attack by APA-dependent (alternative polyadenylation) 3' UTR shortening. However, the expression of the triangle factors is inversely correlated with let-7 levels and promoted by LIN28B impairing let-7 biogenesis. Moreover, IGF2BP1 enhances the expression of all triangle factors by recruiting the respective mRNAs in mRNPs lacking AGO proteins and let-7 miRNAs. This indicates that the downregulation of let-7, largely facilitated by LIN28B upregulation, and the protection of let-7 target mRNAs by IGF2BP1-directed shielding in mRNPs synergize in enhancing the expression of triangle factors. The oncogenic potential of this triangle was confirmed in ovarian cancer (OC)-derived ES-2 cells transduced with let-7 targeting decoys. In these, the depletion of HMGA2 only diminishes tumor cell growth under permissive conditions. The depletion of LIN28B and more prominently IGF2BP1 severely impairs tumor cell viability, self-renewal and 2D as well as 3D migration. In conclusion, this suggests the targeting of the HMGA2-LIN28B-IGF2BP1 triangle as a promising strategy in cancer treatment. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Busch, Bianca; Bley, Nadine; Müller, Simon; Glaß, Markus; Misiak, Danny; Lederer, Marcell; Vetter, Martina; Strauß, Hans-Georg; Thomssen, Christoph; Hüttelmaier, Stefan
2016-01-01
The tumor-suppressive let-7 microRNA family targets various oncogene-encoding mRNAs. We identify the let-7 targets HMGA2, LIN28B and IGF2BP1 to form a let-7 antagonizing self-promoting oncogenic triangle. Surprisingly, 3′-end processing of IGF2BP1 mRNAs is unaltered in aggressive cancers and tumor-derived cells although IGF2BP1 synthesis was proposed to escape let-7 attack by APA-dependent (alternative polyadenylation) 3′ UTR shortening. However, the expression of the triangle factors is inversely correlated with let-7 levels and promoted by LIN28B impairing let-7 biogenesis. Moreover, IGF2BP1 enhances the expression of all triangle factors by recruiting the respective mRNAs in mRNPs lacking AGO proteins and let-7 miRNAs. This indicates that the downregulation of let-7, largely facilitated by LIN28B upregulation, and the protection of let-7 target mRNAs by IGF2BP1-directed shielding in mRNPs synergize in enhancing the expression of triangle factors. The oncogenic potential of this triangle was confirmed in ovarian cancer (OC)-derived ES-2 cells transduced with let-7 targeting decoys. In these, the depletion of HMGA2 only diminishes tumor cell growth under permissive conditions. The depletion of LIN28B and more prominently IGF2BP1 severely impairs tumor cell viability, self-renewal and 2D as well as 3D migration. In conclusion, this suggests the targeting of the HMGA2-LIN28B-IGF2BP1 triangle as a promising strategy in cancer treatment. PMID:26917013
Bos, P K; van Osch, G J; Frenz, D A; Verhaar, J A; Verwoerd-Verhoef, H L
2001-05-01
The ability of cartilage to regenerate following injury is limited, potentially leading to osteoarthritis. Integrative cartilage repair, necessary for durable restoration of cartilage lesions, can be regarded as a wound healing process. Little is known about the effects of growth factors regulating acute cartilage wound healing in vivo. In this study the temporal expression patterns of growth factors and proteoglycan content in cartilage wound edges in vivo were studied. Cartilage wounds were created in rabbit ear cartilage using a 6 mm biopsy punch. Specimens were subsequently harvested 1, 3, 7, 14 and 28 days after surgery. Paraffin sections were thionin stained to visualize proteoglycan loss and replacement. Immunohistochemical staining of TGFbeta1, TGFbeta3, IGF-1, IGF-II and FGF-2 was used to define growth factor expression at the cartilage wound sites. Almost no effect of cartilage wounding was observed one day after surgery. A decrease of proteoglycan content, with a maximal loss at day 7, and a subsequent restoration was observed at the wound edges. Growth factor expression increased simultaneously. Maximal immunostaining for IGF1, IGFII, FGF2 and TGF-beta3 was observed at day 7, followed by a gradual decrease. Increased expression of TGFbeta1 lasted from day 3 until day 14. We have demonstrated the ability of chondrocytes to increase growth factor expression and to restore the rapid decrease in proteoglycan content in the initial phase following acute wounding. A temporal increase in intracellular growth factor expression suggests an autocrine and/or paracrine metabolic stimulation, which can be regarded a sign of chondrocytes repair capacity. Copyright 2001 OsteoArthritis Research Society International.
Stabnov, L; Kasukawa, Y; Guo, R; Amaar, Y; Wergedal, J E; Baylink, D J; Mohan, S
2002-06-01
Insulin-like growth factor-1 (IGF-1) increases both bone formation and bone resorption processes. To test the hypothesis that treatment with an antiresorber along with IGF-1, during the pubertal growth phase, would be more effective than IGF-1 alone to increase peak bone mass, we used an IGF-1 MIDI mouse model, which exhibits a >60% reduction in circulating IGF-1 levels. We first determined an optimal IGF-1 delivery by evaluating IGF-1 administration (2 mg/kg body weight/day) by either a single daily injection, three daily injections, or by continuous delivery via a minipump during puberty. Of the three regimens, the three daily IGF-1 injections and IGF-1 through a minipump produced a significant increase in total body bone mineral density (BMD) (6.0% and 4.4%, respectively) and in femoral BMD (4.3% and 6.2%, respectively) compared with the control group. Single subcutaneous (s.c.) administration did not increase BMD. We chose IGF-1 administration three times daily for testing the combined effects of IGF-1 and alendronate (100 microg/kg per day). The treatment of IGF-1 + alendronate for a period of 2 weeks increased total body BMD at 1 week and 3 weeks after treatment (21.1% and 20.5%, respectively) and femoral BMD by 29% at 3 weeks after treatment. These increases were significantly greater than those produced by IGF-1 alone. IGF-1, but not alendronate, increased bone length. IGF-1 and/or alendronate increased both periosteal and endosteal circumference. Combined treatment caused a greater increase in the total body bone mineral content (BMC) and periosteal circumference compared with individual treatment with IGF-1 or alendronate. Our data demonstrate that: (1) inhibition of bone turnover during puberty increases net bone density; and (2) combined treatment with IGF-1 and alendronate is more effective than IGF-1 or alendronate alone in increasing peak bone mass in an IGF-1-deficient MIDI mouse model.
Hoyo, Cathrine; Murphy, Susan K.; Schildkraut, Joellen M.; Vidal, Adriana C.; Skaar, David; Millikan, Robert C.; Galanko, Joseph; Sandler, Robert S.; Jirtle, Randy; Keku, Temitope
2012-01-01
The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9–5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2. PMID:22377707
Hoyo, Cathrine; Murphy, Susan K; Schildkraut, Joellen M; Vidal, Adriana C; Skaar, David; Millikan, Robert C; Galanko, Joseph; Sandler, Robert S; Jirtle, Randy; Keku, Temitope
2012-01-01
The Mannose 6 Phosphate/Insulin-like Growth Factor Receptor-2 (IGF2R) encodes a type-1 membrane protein that modulates availability of the potent mitogen, IGF2. We evaluated the associations between IGF2R non-synonymous genetic variants (c.5002G>A, Gly1619Arg(rs629849), and c.901C>G, Leu252Val(rs8191754)), circulating IGF2 levels, and colon cancer (CC) risk among African American and White participants enrolled in the North Carolina Colon Cancer Study (NCCCS). Generalized linear models were used to compare circulating levels of IGF2 among 298 African American and 518 White controls. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of IGF2R genetic variants and CC risk. Women homozygous for the IGF2R c.5002 G>A allele, had higher mean levels of circulating IGF2, 828 (SD=321) ng/ml compared to non-carriers, 595 (SD=217) ng/ml (p-value=0.01). This pattern was not apparent in individuals homozygous for the IGF2R c.901 C>G variant. Whites homozygous for the IGF2R c.901 C>G variant trended towards a higher risk of CC, OR=2.2 [95% CI(0.9-5.4)], whereas carrying the IGF2R c.5002 G>A variant was not associated with CC risk. Our findings support the hypothesis that being homozygous for the IGF2R c.5002 G>A modulates IGF2 circulating levels in a sex-specific manner, and while carrying the IGF2R c.901 C>G may increase cancer risk, the mechanism may not involve modulation of circulating IGF2.
Amichay, Keren; Kidron, Debora; Attias-Geva, Zohar; Schayek, Hagit; Sarfstein, Rive; Fishman, Ami; Werner, Haim; Bruchim, Ilan
2012-06-01
The insulin-like growth factor I receptor (IGF-IR) and BRCA1 affect cell growth and apoptosis. Little information is available about BRCA1 activity on the IGF signaling pathway. This study evaluated the effect of BRCA1 on IGF-IR expression. BRCA1 and IGF-IR immunohistochemistry on archival tissues (35 uterine serous carcinomas [USCs] and 17 metastases) were performed. USPC1 and USPC2 cell lines were transiently cotransfected with an IGF-IR promoter construct driving a luciferase reporter gene and a BRCA1 expression plasmid. Endogenous IGF-IR levels were evaluated by Western immunoblotting. We found high BRCA1 and IGF-IR protein expression in primary and metastatic USC tumors. All samples were immunostained for BRCA1-71% strongly stained; and 33/35 (94%) were stained positive for IGF-IR-2 (6%) strongly stained. No difference in BRCA1 and IGF-IR staining intensity was noted between BRCA1/2 mutation carriers and noncarriers. Metastatic tumors stained more intensely for BRCA1 than did the primary tumor site (P = 0.041) and with borderline significance for IGF-IR (P = 0.069). BRCA1 and IGF-IR staining did not correlate to survival. BRCA1 expression led to 35% and 54% reduction in IGF-IR promoter activity in the USPC1 and USCP2 cell lines, respectively. Western immunoblotting showed a decline in phosphorylated IGF-IR and phosphorylated AKT in both transiently and stably transfected cells. BRCA1 and IGF-IR are highly expressed in USC tumors. BRCA1 suppresses IGF-IR gene expression and activity. These findings suggest a possible biological link between the BRCA1 and the IGF-I signaling pathways in USC. The clinical implications of this association need to be explored.
Park, Sookyoung; Nozaki, Kenkichi; Smith, Joshua A.; Krause, James S.; Banik, Naren L.
2014-01-01
Insulin-like growth factor-1 (IGF-1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. In order to examine whether IGF-1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon-gamma (IFN-γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl-2 ratios, and expression of apoptosis related proteases (caspase-3 and −12) in motoneurons rendered by IFN-γ in a dose-dependent manner. Post-treatment with IGF-1 attenuated these changes. In addition, IGF-1 treatment of motoneurons exposed to IFN-γ decreased expression of inflammatory markers (cyclooxygenase-2 and nuclear factor-kappa B:inhibitor of kappa B ratio). Furthermore, IGF-1 attenuated the loss of expression of IGF-1 receptors (IGF-1Rα and IGF-1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN-γ. To determine whether the protective effects of IGF-1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ-silenced VSC4.1 motoneurons following IFN-γ and IGF-1 exposure. These results suggest that IGF-1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ. PMID:24188094
Park, Sookyoung; Nozaki, Kenkichi; Smith, Joshua A; Krause, James S; Banik, Naren L
2014-03-01
Insulin-like growth factor-1 (IGF-1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. To examine whether IGF-1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon-gamma (IFN-γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl-2 ratios, and expression of apoptosis-related proteases (caspase-3 and -12) in motoneurons rendered by IFN-γ in a dose-dependent manner. Post-treatment with IGF-1 attenuated these changes. In addition, IGF-1 treatment of motoneurons exposed to IFN-γ decreased expression of inflammatory markers (cyclooxygenase-2 and nuclear factor-kappa B:inhibitor of kappa B ratio). Furthermore, IGF-1 attenuated the loss of expression of IGF-1 receptors (IGF-1Rα and IGF-1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN-γ. To determine whether the protective effects of IGF-1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ-silenced VSC4.1 motoneurons following IFN-γ and IGF-1 exposure. These results suggest that IGF-1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ. © 2013 International Society for Neurochemistry.
IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.
Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian; Hakuno, Fumihiko; Takahashi, Shin-Ichiro
2018-04-11
Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. © 2018, Yoneyama et al.
IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling
Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian
2018-01-01
Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)−1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. PMID:29661273
Assefa, Biruhalem; Mahmoud, Ayman M.; Pfeiffer, Andreas F. H.; Birkenfeld, Andreas L.; Spranger, Joachim
2017-01-01
Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU) in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKCζ/λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism. PMID:29422987
Assefa, Biruhalem; Mahmoud, Ayman M; Pfeiffer, Andreas F H; Birkenfeld, Andreas L; Spranger, Joachim; Arafat, Ayman M
2017-01-01
Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU) in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKC ζ / λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKC ζ / λ /GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism.
Castilla-Cortázar, Inma; Gago, Alberto; Muñoz, Úrsula; Ávila-Gallego, Elena; Guerra-Menéndez, Lucía; Sádaba, María Cruz; García-Magariño, Mariano; Olleros Santos-Ruiz, María; Aguirre, G A; Puche, Juan Enrique
2015-12-01
To determine whether insulin-like growth factor (IGF-1) deficiency can cause testicular damage and to examine changes of the testicular morphology and testicular function-related gene expression caused by IGF-1 deficiency. Therefore, this study aims to determine the benefits of low doses of IGF-1 and to explore the mechanisms underlying the IGF-1 replacement therapy. A murine model of IGF-1 deficiency was used to avoid any factor that could contribute to testicular damage. Testicular weight, score of histopathological damage, and gene expressions were studied in 3 experimental groups of mice: controls (wild-type Igf1(+/+)), heterozygous Igf1(+/-) with partial IGF-1 deficiency, and heterozygous Igf1(+/-) treated with IGF-1. Results show that the partial IGF-1 deficiency induced testicular damage and altered expression of genes involved in IGF-1 and growth hormone signaling and regulation, testicular hormonal function, extracellular matrix establishment and its regulation, angiogenesis, fibrogenesis, inflammation, and cytoprotection. In addition, proteins involved in tight junction expression were found to be reduced. However, low doses of IGF-1 restored the testicular damage and most of these parameters. IGF-1 deficiency caused the damage of the blood-testis barrier and testicular structure and induced the abnormal testicular function-related gene expressions. However, low doses of IGF-1 constitute an effective replacement therapy that restores the described testicular damage. Data herein show that (1) cytoprotective activities of IGF-1 seem to be mediated by heat shock proteins and that (2) connective tissue growth factor could play a relevant role together with IGF-1 in the extracellular matrix establishment. Copyright © 2015 Elsevier Inc. All rights reserved.
Characterization of insulin-like growth factor I receptor on human erythrocytes.
Hizuka, N; Takano, K; Tanaka, I; Honda, N; Tsushima, T; Shizume, K
1985-12-01
[125I]Insulin-like growth factor I (IGF-I) specifically bound to erythrocytes; the binding was saturable, and time and temperature dependent. Steady state binding was reached at 16 h at 4 C, and specific binding averaged 14.3 +/- 0.7% (+/- SEM) at a concentration of 3.6 X 10(9) cells/ml in seven normal subjects. [125I]IGF-I binding to the cells was displaced by unlabeled IGF-I in a dose-dependent manner. Scatchard analysis indicated a linear plot, and Ka and number of binding sites/cell were 1.43 +/- 0.07 X 10(9) M-1 and 20.7 +/- 2.2, respectively. Compared to IGF-I, the relative potencies of multiplication-stimulating activity and insulin for displacing [125I]IGF-I binding were 20% and 1%, respectively. [125I]IGF-I binding to erythrocytes from patients with acromegaly was lower than binding to cells from pituitary dwarfs. An inverse correlation between plasma IGF-I level and the number of IGF-I-binding sites per cell was found (r = -0.75; P less than 0.005). These results demonstrate that [125I]IGF-I binding to erythrocytes can be used for clinical measurement of the IGF-I receptor.
Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex.
Guan, Shou P; Lam, Alan T L; Newman, Jennifer P; Chua, Kevin L M; Kok, Catherine Y L; Chong, Siao T; Chua, Melvin L K; Lam, Paula Y P
2018-01-01
The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)-1. Furthermore, highly tumor-tropic MSCs expressed higher levels of MMP-1 and insulin-like growth factor (IGF)-2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF-2 and MMP-1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF-2 or MMP-1 could stimulate MSC migration. The correlation between IGF-2, MMP-1 expression, and MSC migration suggests that MMP-1 may play a role in regulating MSC migration via the IGF-2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF-stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP-1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF-2/IGFBP2 complex and extracellular release of free IGF-2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP-1, cleaved the IGF-2/IGFBP2 complex. Taken together, these results showed that the MMP-1 secreted by highly tumor-tropic MSCs cleaved IGF-2/IGFBP2 complex. Free IGF-2 released from the complex may facilitate MSC migration toward tumor.
Breves, Jason P.; Phipps-Costin, Silas K.; Fujimoto, Chelsea K.; Einarsdottir, Ingibjörg E.; Regish, Amy M.; Björnsson, Björn Thrandur; McCormick, Stephen
2016-01-01
The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon ( Salmo salar ). Fish were fasted for 3 or 10 days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3 days and condition factor by 10 days. Plasma Gh, cortisol, and thyroxine (T 4 ) were not altered in response to fasting, whereas Igf1 and 3,5,3′-triiodo- l -thyronine (T 3 ) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1 , - 1b2 , - 2a , - 2b1 and - 2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10 days of fasting. Fasting did not alter hepatic igf1or igf2 ; however, muscle igf1 was diminished by 10 days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na + /K + -ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism.
Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista
2013-05-01
Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded skeletal muscles from damage and accelerating muscle repair and regeneration.
Fukushima, Toshiaki; Nakamura, Yusaku; Yamanaka, Daisuke; Shibano, Takashi; Chida, Kazuhiro; Minami, Shiro; Asano, Tomoichiro; Hakuno, Fumihiko; Takahashi, Shin-Ichiro
2012-01-01
Continuous stimulation of cells with insulin-like growth factors (IGFs) in G1 phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G1 to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G1 phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr1316-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR−/− fibroblasts expressing exogenous mutant IGF-IR in which Tyr1316 was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation. PMID:22767591
Zhu, Zongjian; Jiang, Weiqin; Zacher, Jarrod H; Neil, Elizabeth S; McGinley, John N; Thompson, Henry J
2012-03-01
Limiting energy availability via diet or physical activity has health benefits; however, it is not known whether these interventions have similar effects on the development of cancer. Two questions were addressed as follows: (i) Does limiting energy availability by increasing physical activity have the same effect on mammary carcinogenesis as limiting caloric intake? and (ii) Are host systemic factors, implicated as risk biomarkers for breast cancer, similarly affected by these interventions? Female Sprague Dawley rats were injected with 50-mg 1-methyl-1-nitrosourea per kg body weight at 21 days of age and randomized to one of five groups (30 rats per group) as follows: (i) sham running wheel control; (ii) restricted fed to 85% of the sham control; (iii and iv) voluntary running in a motorized activity wheel (37 m/min) to a maximum of 3,500 m/d or 1,750 m/d; and (v) sedentary ad libitum fed control with no access to a running wheel. The three energetics interventions inhibited the carcinogenic response, reducing cancer incidence (P = 0.01), cancer multiplicity (P < 0.001), and cancer burden (P < 0.001) whereas prolonging cancer latency (P = 0.004) although differences among energetics interventions were not significant. Of the plasma biomarkers associated with the development of cancer, the energetics interventions reduced bioavailable insulin-like growth factor-1 (IGF-1), insulin, interleukin-6, serum amyloid protein, TNF-α, and leptin and increased IGF-binding protein 3 (IGFBP-3) and adiponectin. Plasma-fasting glucose, C-reactive protein, estradiol, and progesterone were unaffected. The plasma biomarkers of greatest value in predicting the carcinogenic response were adiponectin > IGF-1/IGFBP-3 > IGFBP-3 > leptin > IGF-1.
The complex genetics of human insulin-like growth factor 2 are not reflected in public databases.
Rotwein, Peter
2018-03-23
Recent advances in genetics present unique opportunities for enhancing knowledge about human physiology and disease susceptibility. Understanding this information at the individual gene level is challenging and requires extracting, collating, and interpreting data from a variety of public gene repositories. Here, I illustrate this challenge by analyzing the gene for human insulin-like growth factor 2 ( IGF2 ) through the lens of several databases. IGF2, a 67-amino acid secreted peptide, is essential for normal prenatal growth and is involved in other physiological and pathophysiological processes in humans. Surprisingly, none of the genetic databases accurately described or completely delineated human IGF2 gene structure or transcript expression, even though all relevant information could be found in the published literature. Although IGF2 shares multiple features with the mouse Igf2 gene, it has several unique properties, including transcription from five promoters. Both genes undergo parental imprinting, with IGF2 / Igf2 being expressed primarily from the paternal chromosome and the adjacent H19 gene from the maternal chromosome. Unlike mouse Igf2 , whose expression declines after birth, human IGF2 remains active throughout life. This characteristic has been attributed to a unique human gene promoter that escapes imprinting, but as shown here, it involves several different promoters with distinct tissue-specific expression patterns. Because new testable hypotheses could lead to critical insights into IGF2 actions in human physiology and disease, it is incumbent that our fundamental understanding is accurate. Similar challenges affecting knowledge of other human genes should promote attempts to critically evaluate, interpret, and correct human genetic data in publicly available databases. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Blum, J W; Elsasser, T H; Greger, D L; Wittenberg, S; de Vries, F; Distl, O
2007-10-01
Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; P<0.05). Plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin concentrations in the three groups during an 8-h period were similar, but integrated GH concentrations (areas under concentration curves) were different (dwarfs>controls, P<0.02; half-siblings>controls, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfs
Morales, Teresa I
2008-04-01
A previous hypothesis stated that during osteoarthritis (OA) increased insulin-like growth factor (IGF) binding proteins (IGFBPs) sequester IGFs and limit their access to the cell. The objective of this article was to test this by: (1) quantifying IGF and IGFBP-3 as well as their ratios in human OA cartilages, and (2) measuring the metabolic responses of diseased cartilage to IGF-I and its IGFBP-insensitive analogs. Knee or hip OA cartilages were staged for OA by histology. Cartilage slices were either extracted for assays of IGF proteins, or maintained intact as organ cultures. Proteoglycan (PG) metabolism +/- IGFs was measured by use of the (35)S-sulfate precursor. IGFBP-3 (ng/mg protein) was weakly correlated with OA score by regression analysis (R(2) = 0.122; p = 0.040; n = 35). IGF-I (ng/mg protein) was constant across all OA groups (ANOVA; p = .428, n = 18) and the IGF-I/IGFBP-3 ratios were > 1 in most samples. All OA cartilages responded to hrIGF-I by increasing PG synthesis [average 2.29-fold +/- 0.55 (+/-SD) at saturation, n = 12] irrespective of OA score. The des (1-3) IGF-I analog (which lacks the three N-terminal amino acids) had similar maximal effects (average 2.23-fold stimulation +/- 0.71, n = 10), but it was more effective in two out of three samples at suboptimal doses. The effect of hrIGF-I, des (1-3) IGF-I, or the B-chain analog on degradation was minimal. In summary, catabolism was insensitive to IGF-I, and this was probably not due to IGFBPs. By contrast, IGF-I exerted a robust stimulation of anabolism at sufficiently high doses, even though IGFBPs could tone down the ligand effect at low doses. (c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Vaughn, Caila B.; Nie, Jing; Chen, Zhengyi; Thompson, Cheryl L.; Parekh, Niyati; Tracy, Russell
2013-01-01
Purpose Insulin resistance is believed to play an important role in the link between energy imbalance and colon carcinogenesis. Emerging evidence suggests that there are substantial racial differences in genetic and anthropometric influences on insulin-like growth factors (IGFs); however, few studies have examined racial differences in the associations of IGFs and colorectal adenoma, precursor lesions of colon cancer. Methods We examined the association of circulating levels of IGF-1, IGFBP-3 and IGFBP-1, and SNPs in the IGF-1 receptor (IGF1R), IGF-2 receptor (IGF2R), and insulin receptor genes with risk of adenomas in a sample of 410 incident adenoma cases and 1,070 controls from the Case Transdisciplinary Research on Energetics and Cancer (TREC) Colon Adenomas Study. Results Caucasians have higher IGF-1 levels compared to African Americans; mean IGF-1 levels are 119.0 ng/ml (SD = 40.7) and 109.8 ng/ml (SD = 40.8), respectively, among cases (p = 0.02). Mean IGF-1 levels are also higher in Caucasian controls (122.9 ng/ml, SD = 41.2) versus African American controls (106.9, SD = 41.2), p = 0.001. We observed similar differences in IGFBP3 levels by race. Logistic regression models revealed a statistically signifi-cant association of IGF-1 with colorectal adenoma in African Americans only, with adjusted odds ratios (ORs) of 1.68 (95 % CI 1.06–2.68) and 1.68 (95 % CI 1.05–2.71), respectively, for the second and third tertiles as compared to the first tertile. One SNP (rs496601) in IGF1R was associated with adenomas in Caucasians only; the per allele adjusted OR is 0.73 (95 % CI 0.57–0.93). Similarly, one IGF2R SNP (rs3777404) was statistically significant in Caucasians; adjusted per allele OR is 1.53 (95 % CI 1.10–2.14). Conclusion Our results suggest racial differences in the associations of IGF pathway biomarkers and inherited genetic variance in the IGF pathway with risk of adenomas that warrant further study. PMID:24194259
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Ji, C.; Shu, H.; Casinghino, S.; Crothers, K.; Rotwein, P.; Centrella, M.
1997-01-01
Insulin-like growth factor-I (IGF-I) is a key factor in bone remodeling. In osteoblasts, IGF-I synthesis is enhanced by parathyroid hormone and prostaglandin E2 (PGE2) through cAMP-activated protein kinase. In rats, estrogen loss after ovariectomy leads to a rise in serum IGF-I and an increase in bone remodeling, both of which are reversed by estrogen treatment. To examine estrogen-dependent regulation of IGF-I expression at the molecular level, primary fetal rat osteoblasts were co-transfected with the estrogen receptor (hER, to ensure active ER expression), and luciferase reporter plasmids controlled by promoter 1 of the rat IGF-I gene (IGF-I P1), used exclusively in these cells. As reported, 1 microM PGE2 increased IGF-I P1 activity by 5-fold. 17beta-Estradiol alone had no effect, but dose-dependently suppressed the stimulatory effect of PGE2 by up to 90% (ED50 approximately 0.1 nM). This occurred within 3 h, persisted for at least 16 h, required ER, and appeared specific, since 17alpha-estradiol was 100-300-fold less effective. By contrast, 17beta-estradiol stimulated estrogen response element (ERE)-dependent reporter expression by up to 10-fold. 17beta-Estradiol also suppressed an IGF-I P1 construct retaining only minimal promoter sequence required for cAMP-dependent gene activation, but did not affect the 60-fold increase in cAMP induced by PGE2. There is no consensus ERE in rat IGF-I P1, suggesting novel downstream interactions in the cAMP pathway that normally enhances IGF-I expression in skeletal cells. To explore this, nuclear extract from osteoblasts expressing hER were examined by electrophoretic mobility shift assay using the atypical cAMP response element in IGF-I P1. Estrogen alone did not cause DNA-protein binding, while PGE2 induced a characteristic gel shift complex. Co-treatment with both hormones caused a gel shift greatly diminished in intensity, consistent with their combined effects on IGF-I promoter activity. Nonetheless, hER did not bind IGF-I cAMP response element or any adjacent sequences. These results provide new molecular evidence that estrogen may temper the biological effects of hormones acting through cAMP to regulate skeletal IGF-I expression and activity.
Skeletal unloading induces resistance to insulin-like growth factor I
NASA Technical Reports Server (NTRS)
Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E. R.
1994-01-01
In previous studies with a hindlimb elevation model, we demonstrated that skeletal unloading transiently inhibits bone formation. This effect is limited to the unloaded bones (the normally loaded humerus does not cease growing), suggesting that local factors are of prime importance. IGF-I is one such factor; it is produced in bone and stimulates bone formation. To determine the impact of skeletal unloading on IGF-I production and function, we assessed the mRNA levels of IGF-I and its receptor (IGF-IR) in the proximal tibia and distal femur of growing rats during 2 weeks of hindlimb elevation. The mRNA levels for IGF-I and IGF-IR rose during hindlimb elevation, returning toward control values during recovery. This was accompanied by a 77% increase in IGF-I levels in the bone, peaking at day 10 of unloading. Changes in IGF binding protein levels were not observed. Infusion of IGF-I (200 micrograms/day) during 1 week of hindlimb elevation doubled the increase in bone mass of the control animals but failed to reverse the cessation of bone growth in the hindlimb-elevated animals. We conclude that skeletal unloading induces resistance to IGF-I, which may result secondarily in increased local production of IGF-I.
PPAR-γ Agonists As Antineoplastic Agents in Cancers with Dysregulated IGF Axis
Vella, Veronica; Nicolosi, Maria Luisa; Giuliano, Stefania; Bellomo, Maria; Belfiore, Antonino; Malaguarnera, Roberta
2017-01-01
It is now widely accepted that insulin resistance and compensatory hyperinsulinemia are associated to increased cancer incidence and mortality. Moreover, cancer development and progression as well as cancer resistance to traditional anticancer therapies are often linked to a deregulation/overactivation of the insulin-like growth factor (IGF) axis, which involves the autocrine/paracrine production of IGFs (IGF-I and IGF-II) and overexpression of their cognate receptors [IGF-I receptor, IGF-insulin receptor (IR), and IR]. Recently, new drugs targeting various IGF axis components have been developed. However, these drugs have several limitations including the occurrence of insulin resistance and compensatory hyperinsulinemia, which, in turn, may affect cancer cell growth and survival. Therefore, new therapeutic approaches are needed. In this regard, the pleiotropic effects of peroxisome proliferator activated receptor (PPAR)-γ agonists may have promising applications in cancer prevention and therapy. Indeed, activation of PPAR-γ by thiazolidinediones (TZDs) or other agonists may inhibit cell growth and proliferation by lowering circulating insulin and affecting key pathways of the Insulin/IGF axis, such as PI3K/mTOR, MAPK, and GSK3-β/Wnt/β-catenin cascades, which regulate cancer cell survival, cell reprogramming, and differentiation. In light of these evidences, TZDs and other PPAR-γ agonists may be exploited as potential preventive and therapeutic agents in tumors addicted to the activation of IGF axis or occurring in hyperinsulinemic patients. Unfortunately, clinical trials using PPAR-γ agonists as antineoplastic agents have reached conflicting results, possibly because they have not selected tumors with overactivated insulin/IGF-I axis or occurring in hyperinsulinemic patients. In conclusion, the use of PPAR-γ agonists in combined therapies of IGF-driven malignancies looks promising but requires future developments. PMID:28275367
Paradis, Francois; Wood, Katie M; Swanson, Kendall C; Miller, Stephen P; McBride, Brian W; Fitzsimmons, Carolyn
2017-08-18
Manipulating maternal nutrition during specific periods of gestation can result in re-programming of fetal and post-natal development. In this experiment we investigated how a feed restriction of 85% compared with 140% of total metabolizable energy requirements, fed to cows during mid-to-late gestation, influences phenotypic development of fetuses and mRNA expression of growth (Insulin-Like Growth Factor family and Insulin Receptor (INSR)), myogenic (Myogenic Differentiation 1 (MYOD1), Myogenin (MYOG), Myocyte Enhancer Factor 2A (MEF2A), Serum Response Factor (SRF)) and adipogenic (Peroxisome Proliferator Activated Receptor Gamma (PPARG)) genes in fetal longissimus dorsi (LD) and semitendinosus (ST) muscle. DNA methylation of imprinted genes, Insulin Like Growth Factor 2 (IGF2) and Insulin Like Growth Factor 2 Receptor (IGF2R), and micro RNA (miRNA) expression, were also examined as potential consequences of poor maternal nutrition, but also potential regulators of altered gene expression patterns. While the nutrient restriction impacted dam body weight, no differences were observed in phenotypic fetal measurements (weight, crown-rump length, or thorax circumference). Interestingly, LD and ST muscles responded differently to the differential pre-natal nutrient levels. While LD muscle of restricted fetal calves had greater mRNA abundances for Insulin Like Growth Factor 1 and its receptor (IGF1 and IGF1R), IGF2R, INSR, MYOD1, MYOG, and PPARG, no significant differences were observed for gene expression in ST muscle. Similarly, feed restriction had a greater impact on the methylation level of IGF2 Differentially Methylated Region 2 (DMR2) in LD muscle as compared to ST muscle between treatment groups. A negative correlation existed between IGF2 mRNA expression and IGF2 DMR2 methylation level in both LD and ST muscles. Differential expression of miRNAs 1 and 133a were also detected in LD muscle. Our data suggests that a nutrient restriction of 85% as compared to 140% of total metabolizable energy requirements during the 2nd half of gestation can alter the expression of growth, myogenic and adipogenic genes in fetal muscle without apparent differences in fetal phenotype. It also appears that the impact of feed restriction varies between muscles suggesting a priority for nutrient partitioning depending on muscle function and/or fiber composition. Differences in the methylation level in IGF2, a well-known imprinted gene, as well as differences in miRNA expression, may be functional mechanisms that precede the differences in gene expression observed, and could lead to trans-generational epigenetic programming.
UG311, An Oncofetal Marker Lost with Prostate Cancer Progression
2001-04-01
CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT Unclassified Unclassified...that the IGF2R facilitates the degradation of IGF-2 by transporting IGF-2 to lysozomes, thereby limiting the signal potentiated by the growth factor...integrin mediated migration. IGF-1 had no effect on this activity. IGFBP-1 is expressed in the placenta [105] where it may limit trophoblast invasion
Minchenko, Dmytro O; Kharkova, A P; Halkin, O V; Karbovskyi, L L; Minchenko, O H
2016-04-01
The aim of the present study was to investigate the effect of hypoxia on the expression of genes encoding insulin-like growth factors (IGF1 and IGF2), their receptor (IGF1R), binding protein-4 (IGFBP4), and stanniocalcin 2 (STC2) in U87 glioma cells in relation to inhibition of endoplasmic reticulum stress signaling mediated by IRE1 (inositol requiring enzyme 1) for evaluation of their possible significance in the control of tumor growth. The expression of IGF1, IGF2, IGF1R, IGFBP4, and STC2 genes in U87 glioma cells transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia was studied by qPCR. The expression of IGF1 and IGF2 genes is down-regulated in glioma cells without IRE1 signaling enzyme function in comparison with the control cells. At the same time, the expression of IGF1R, IGFBP4, and STC2 genes was up-regulated in glioma cells upon inhibition of IRE1, with more significant changes for IGFBP4 and STC2 genes. We also showed that hypoxia does not change significantly the expression of IGF1, IGF2, and IGF1R genes but up-regulated IGFBP4 and STC2 genes expression in control glioma cells. Moreover, the inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in glioma cells does not change significantly the effect of hypoxia on the expression of IGF1, IGF1R, and IGFBP4 genes but introduces sensitivity of IGF2 gene to hypoxic condition. Thus, the expression of IGF2 gene is resistant to hypoxia only in control glioma cells and significantly down-regulated in cells without functional activity of IRE1 signaling enzyme, which is central mediator of the unfolded protein response and an important component of the tumor growth as well as metabolic diseases. Results of this study demonstrate that the expression of IGF1 and IGF1R genes is resistant to hypoxic condition both in control U87 glioma cells and cells without IRE1 signaling enzyme function. However, hypoxia significantly up-regulates the expression of IGFBP4 gene independently on the inhibition of IRE1 enzyme. These data show that proteins encoded by these genes are resistant to hypoxia except IGFBP4 and participate in the regulation of metabolic and proliferative processes through IRE1 signaling.
Zhang, Guang-Wei; Gu, Tian-Xiang; Guan, Xiao-Yu; Sun, Xue-Jun; Qi, Xun; Li, Xue-Yuan; Wang, Xiao-Bing; Lv, Feng; Yu, Lei; Jiang, Da-Qing; Tang, Rui
2015-12-01
To explore effects of hepatocyte growth factor (HGF) combined with insulin-like growth factor 1 (IGF-1) on transplanted bone marrow mesenchymal stem cells (BMSCs), for treatment of acute myocardial ischaemia. After ligation of the left anterior descending artery, rabbits were divided into a Control group, a Factors group (HGF+IGF-1), a BMSC group and a Factors+BMSCs group. Allogenous BMSCs (1 × 10(7)) and/or control-released microspheres of 2 μg HGF+2 μg IGF-1 were intramyocardially injected into infarcted regions. Apoptosis and differentiation of implanted BMSCs, histological and morphological results, and cardiac remodelling and function were evaluated at different time points. In vitro, BMSCs were exposed to HGF, IGF-1 and both (50 ng/ml) and subsequently proliferation, migration, myocardial differentiation and apoptosis induced by hypoxia, were analysed. Four weeks post-operatively, the above indices were significantly improved in Factors+BMSCs group compared to the others (P < 0.01), although Factors and BMSCs group also showed better results than Control group (P < 0.05). In vitro, HGF promoted BMSC migration and differentiation into cardiomyocytes, but inhibited proliferation (P < 0.05), while IGF-1 increased proliferation and migration, and inhibited apoptosis induced by hypoxia (P < 0.05), but did not induce myocardial differentiation. Combination of HGF and IGF-1 significantly promoted BMSCs capacity for migration, differentiation and lack of apoptosis (P < 0.05). Combination of HGF and IGF-1 activated BMSCs complementarily, and controlled release of the two factors promoted protective potential of transplanted BMSCs to repair infarcted myocardium. This suggests a new strategy for cell therapies to overcome acute ischemic myocardial injury. © 2015 John Wiley & Sons Ltd.
IGF2BP3 Modulates the Interaction of Invasion-Associated Transcripts with RISC.
Ennajdaoui, Hanane; Howard, Jonathan M; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J; Uren, Philip J; Dargyte, Marija; Katzman, Sol; Draper, Jolene M; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D; Toloue, Masoud M; Blencowe, Benjamin J; Penalva, Luiz O F; Sanford, Jeremy R
2016-05-31
Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy, but its role(s) in pathogenesis remains enigmatic. We interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches, we have identified 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation, and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and microRNA (miRNA) binding sites. IGF2BP3 promotes association of the RNA-induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E
2007-04-01
Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.
Grant, M B; Wargovich, T J; Ellis, E A; Tarnuzzer, R; Caballero, S; Estes, K; Rossing, M; Spoerri, P E; Pepine, C
1996-12-17
The molecular and cellular processes that induce rapid atherosclerotic plaque progression in patients with unstable angina and initiate restenosis following coronary interventional procedures are uncertain. We examined primary (de novo) and restenotic lesions retrieved at the time of directional coronary atherectomy for expression of insulin-like-growth factor-I (IGF-I). IGF-I receptor, and five IGF binding proteins (IGFBPs), IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 in smooth muscle cells (SMCs) using colloidal gold immunocytochemistry. IGF-1, its receptor and binding proteins were not detected in SMCs of normal coronary arteries. IGF-I localized primarily in synthetic smooth muscle cells (sSMCs) in both de novo and restenotic plaques. IGF-I receptor localized on sSMCs and their processes and colocalized with IGF-I. Although morphometric analysis of IGF-I and IGF-I receptor immunoreactivity in sSMCs of de novo and restenotic lesions showed comparable levels of IGF-I (3.2 +/- 1.0 and 2.9 +/- 0.9, respectively). IGF-I receptor was significantly higher in de novo lesions as compared to restenotic lesions (10.7 +/- 2.5 and 4.2 +/- 1.3, P < 0.05, respectively). IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4 and IGFBP-5 localized in the cytoplasm of sSMCs and in the extracellular matrix. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) performed on de novo atherectomy specimens identified mRNA for IGF-I, IGF-I receptor, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5 levels and detected mRNA for IGFBP-3. The expression of IGF-I, IGF-I receptor, and IGFBPs in atherectomy plaques suggests that the development of coronary obstructive lesions may be a result of changes in the IGF system.
Maruyama, Koutatsu; Iso, Hiroyasu; Ito, Yoshinori; Watanabe, Yoshiyuki; Inaba, Yutaka; Tajima, Kazuo; Nakachi, Kei; Tamakoshi, Akiko
2009-12-01
No observational study has examined whether cancer-related biomarkers are associated with diet in Japanese. We therefore assessed sex-specific food and nutrient intakes according to serum IGF-I, IGF-II, IGFBP-3, TGF-b1, total SOD activity and sFas levels, under a cross-sectional study of 10,350 control subjects who answered the food frequency questionnaire in the first-wave nested case-control study within the Japan Collaborative Cohort Study. For both men and women, IGF-I levels were associated with higher intakes of milk, fruits, green tea, calcium and vitamin C. IGF-II levels were associated with higher intakes of milk, yogurt, fruits and miso soup, and lower intakes of rice, coffee and carbohydrate. IGFBP-3 levels were associated with higher intakes of milk, yogurt, fruits and vitamin C, and lower intakes of rice, energy, protein, carbohydrate, sodium and polyunsaturated fatty acids. TGF-b1 levels were associated with lower intakes of coffee intakes, and higher intakes of miso soup and sodium. Total SOD activity levels were associated with lower intakes of most nutrients other than energy, carbohydrate, iron, copper, manganese, retinol equivalents, vitamin A, B2, B12, niacin, folic acid, vitamin C and fish fat. sFas levels were associated with higher intakes of manganese and folic acids. The results of the present study should help to account for findings on those biomarkers regarding risks of cancer and other lifestyle-related diseases in terms of dietary confounding as causality.
Growth hormone regulation of follicular growth.
Lucy, Matthew C
2011-01-01
The somatotropic axis-consisting of growth hormone (GH), the insulin-like growth factors 1 and 2 (IGF1 and IGF2), GH binding protein (GHBP), IGF binding proteins (IGFBPs) 1 to 6, and the cell-surface receptors for GH and the IGFs-has major effects on growth, lactation and reproduction. The primary target tissues for GH are involved in growth and metabolism. The functionality of the somatotropic axis depends in part on the expression of liver GH receptor (GHR), which determines the amount of IGF1 released from the liver in response to GH. The IGF1 acts as a pleiotropic growth factor and also serves as the endocrine negative feedback signal controlling pituitary GH secretion. Growth hormone and IGF1 undergo dynamic changes throughout the life cycle, particularly when animals are either growing, early post partum or lactating. Cells within the reproductive tract can respond directly to GH but to a lesser degree than the primary target tissues. The major impact that GH has on reproduction, therefore, may be secondary to its systemic effects on metabolism (including insulin sensitivity) or secondary to the capacity for GH to control IGF1 secretion. Insulin-like growth factor 1 and IGFBP are also synthesised within the ovary and this local synthesis is a component of the collective IGF1 action on the follicle. Future studies of GH should focus on its direct effects on the follicle as well as its indirect effects mediated by shifts in nutrient metabolism, insulin sensitivity, IGF1 and IGFBP.
Mahmoudabady, Maryam; Mathieu, Myrielle; Touihri, Karim; Hadad, Ielham; Da Costa, Agnes Mendes; Naeije, Robert; Mc Entee, Kathleen
2009-10-09
Insulin-like growth factor-1 (IGF-1), transforming growth factor beta (TGFbeta) and cyclins are thought to play a role in myocardial hypertrophic response to insults. We investigated these signaling pathways in canine models of ischemic or overpacing-induced cardiomyopathy. Echocardiographic recordings and myocardial sampling for measurements of gene expressions of IGF-1, its receptor (IGF-1R), TGFbeta and of cyclins A, B, D1, D2, D3 and E, were obtained in 8 dogs with a healed myocardial infarction, 8 dogs after 7 weeks of overpacing and in 7 healthy control dogs. Ischemic cardiomyopathy was characterized by moderate left ventricular systolic dysfunction and eccentric hypertrophy, with increased expressions of IGF-1, IGF-1R and cyclins B, D1, D3 and E. Tachycardiomyopathy was characterized by severe left ventricular systolic dysfunction and dilation with no identifiable hypertrophic response. In the latter model, only IGF-1 was overexpressed while IGF-1R, cyclins B, D1, D3 and E stayed unchanged as compared to controls. The expressions of TGFbeta, cyclins A and D2 were comparable in the 3 groups. The expression of IGF-1R was correlated with the thickness of the interventricular septum, in systole and diastole, and to cyclins B, D1, D3 and E expression. These results agree with the notion that IGF-1/IGF-1R and cyclins are involved in the hypertrophic response observed in cardiomyopathies.
Mahmoudabady, Maryam; Mathieu, Myrielle; Touihri, Karim; Hadad, Ielham; Da Costa, Agnes Mendes; Naeije, Robert; Mc Entee, Kathleen
2009-01-01
Background Insulin-like growth factor-1 (IGF-1), transforming growth factor β (TGFβ) and cyclins are thought to play a role in myocardial hypertrophic response to insults. We investigated these signaling pathways in canine models of ischemic or overpacing-induced cardiomyopathy. Methods Echocardiographic recordings and myocardial sampling for measurements of gene expressions of IGF-1, its receptor (IGF-1R), TGFβ and of cyclins A, B, D1, D2, D3 and E, were obtained in 8 dogs with a healed myocardial infarction, 8 dogs after 7 weeks of overpacing and in 7 healthy control dogs. Results Ischemic cardiomyopathy was characterized by moderate left ventricular systolic dysfunction and eccentric hypertrophy, with increased expressions of IGF-1, IGF-1R and cyclins B, D1, D3 and E. Tachycardiomyopathy was characterized by severe left ventricular systolic dysfunction and dilation with no identifiable hypertrophic response. In the latter model, only IGF-1 was overexpressed while IGF-1R, cyclins B, D1, D3 and E stayed unchanged as compared to controls. The expressions of TGFβ, cyclins A and D2 were comparable in the 3 groups. The expression of IGF-1R was correlated with the thickness of the interventricular septum, in systole and diastole, and to cyclins B, D1, D3 and E expression. Conclusion These results agree with the notion that IGF-1/IGF-1R and cyclins are involved in the hypertrophic response observed in cardiomyopathies. PMID:19818143
Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García
2013-01-01
Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung development in mice. Results revealed novel target genes and gene networks mediators of IGF1 action on pulmonary cellular proliferation, differentiation, adhesion and immunity, and on vascular and distal epithelium maturation during prenatal lung development. PMID:24391734
Suman, Vera J.; Goetz, Matthew; Haluska, Paul; Moynihan, Timothy; Nanda, Rita; Olopade, Olufunmilayo; Pluard, Timothy; Guo, Zhanfang; Chen, Helen X.; Erlichman, Charles; Ellis, Matthew J.; Fleming, Gini F.
2015-01-01
The mammalian target of rapamycin (mTOR) plays a critical role in promoting tumor cell growth and is frequently activated in breast cancer. In preclinical studies, the antitumor activity of mTOR inhibitors is attenuated by feedback up-regulation of AKT mediated in part by Insulin-like growth factor type 1 receptor (IGF-1R). We designed a phase I trial to determine the maximum-tolerated dose (MTD) and pharmacodynamic effects of the IGF-1R antibody Cixutumumab in combination with temsirolimus in patients with metastatic breast cancer refractory to standard therapies. A 3 + 3 Phase I design was chosen. Temsirolimus and Cixutumumab were administered intravenously on days 1, 8, 15, and 22 of a 4-week cycle. Of the 26 patients enrolled, four did not complete cycle 1 because of disease progression (n = 3) or comorbid condition (n = 1) and were replaced. The MTD was determined from the remaining 22 patients, aged 34–72 (median 48) years. Most patients (86 %) had estrogen receptor positive cancer. The median number of prior chemotherapy regimens for metastatic disease was 3. The MTD was determined to be Cixutumumab 4 mg/kg and temsirolimus 15 mg weekly. Dose-limiting toxicities (DLTs) included mucositis, neutropenia, and thrombocytopenia. Other adverse events included grade 1/2 fatigue, anemia, and hyperglycemia. No objective responses were observed, but four patients experienced stable disease that lasted for at least 4 months. Compared with baseline, there was a significant increase in the serum levels of IGF-1 (p < 0.001) and IGFBP-3 (p = 0.019) on day 2. Compared with day 2, there were significant increases in the serum levels of IGF-1 (p < 0.001), IGF-2 (p = 0.001), and IGFBP-3 (p = 0.019) on day 8. A phase II study in women with metastatic breast cancer is ongoing. PMID:23605083
Yang, Shu; Zhao, Nannan; Yang, Yang; Hu, Yun; Dong, Haibo; Zhao, Ruqian
2018-03-21
The growth-promoting action of betaine involves activation of GH/IGF-1 signaling, yet it remains unclear whether insulin-like growth factor 2 (IGF2), an imprinting gene, is affected by maternal dietary betaine supplementation. In this study, F1 offspring rats derived from dams fed basal or betaine-supplemented diet were examined at D21 and D63. Maternal betaine significantly upregulated the hepatic expression of IGF2 mRNA and protein in offspring rats at both D21 and D63, which was accompanied by enhanced hepatic IGF2 immunoreactivity and elevated serum IGF-2 level. Higher protein expression of betaine-homocysteine methyltransferase and DNA methyltransferase 1 was detected in the betaine group at D21, but not D63. However, hypermethylation of the imprinting control region of the IGF2/H19 locus at D21 was maintained at D63. These results indicate that maternal betaine modifies DNA methylation of IGF2/H19 imprinting control region in a mitotically stable fasion, which was associated with the activation hepatic IGF2 expression in offspring rats.
[Insulin-like growth factor-1 (IGF-1) - structure and the role in the human body].
Filus, Alicja; Zdrojewicz, Zygmunt
2015-01-01
In the recent years, managed to broadly explore the structure and role of insulin-like growth factors type 1 and 2 (IGF1 I 2). They belong to the structure of polypeptide hormones homologous to proinsulin. They are characterized by a wide range of activities. IGF-1 is a key mediator of most tissue effects of growth hormone (GH). In addition to effects on growth processes of the body, is also an important factor for cell homeostasis, is subject to both endocrine and tissue-specific auto- and paracrine regulation. In this paper, the current, general knowledge on the structure, function and mechanism of biological effects of IGF-1 in the human body was presented. Attention was also drawn to the directions of use of IGf-1 in the treatment of other diseases than the diseases of the hypothalamic-pituitary and growth disorders in children. © Polish Society for Pediatric Endocrinology and Diabetology.
Insulin-like growth factor-I (lGF-l): safety and efficacy.
Laron, Zvi
2004-11-01
Insulin-like growth factor I (IGF-I) is a peptide synthesized mainly in the liver by stimulation by pituitary growth hormone (GH). It circulates almost entirely bound to its binding proteins. It is the anabolic effector hormone of GH. It is the only treatment in states of GH resistance such as Laron syndrome and blocking antibodies to human GH. As it suppresses insulin and GH secretion it has been used in states of insulin resistance including Type II diabetes mellitus. IGF-I is administered by once or twice daily injections. Adverse effects are mostly caused by overdosage. The usual daily dose in children ranges from 100-200 microg/kg.
Hayashi, Yujiro; Asuzu, David T.; Gibbons, Simon J.; Aarsvold, Kirsten H.; Bardsley, Michael R.; Lomberk, Gwen A.; Mathison, Angela J.; Kendrick, Michael L.; Shen, K. Robert; Taguchi, Takahiro; Gupta, Anu; Rubin, Brian P.; Fletcher, Jonathan A.; Farrugia, Gianrico; Urrutia, Raul A.; Ordog, Tamas
2013-01-01
Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes. PMID:24116170
Elbaz, Mohamad; Ahirwar, Dinesh; Ravi, Janani; Nasser, Mohd W; Ganju, Ramesh K
2017-05-02
Breast cancer is the second leading cause of cancer deaths among women. Cannabinoid receptor 2 (CNR2 or CB2) is an integral part of the endocannabinoid system. Although CNR2 is highly expressed in the breast cancer tissues as well as breast cancer cell lines, its functional role in breast tumorigenesis is not well understood. We observed that estrogen receptor-α negative (ERα-) breast cancer cells highly express epidermal growth factor receptor (EGFR) as well as insulin-like growth factor-I receptor (IGF-IR). We also observed IGF-IR upregulation in ERα+ breast cancer cells. In addition, we found that higher CNR2 expression correlates with better recurrence free survival in ERα- and ERα+ breast cancer patients. Therefore, we analyzed the role of CNR2 specific agonist (JWH-015) on EGF and/or IGF-I-induced tumorigenic events in ERα- and ERα+ breast cancers. Our studies showed that CNR2 activation inhibited EGF and IGF-I-induced migration and invasion of ERα+ and ERα- breast cancer cells. At the molecular level, JWH-015 inhibited EGFR and IGF-IR activation and their downstream targets STAT3, AKT, ERK, NF-kB and matrix metalloproteinases (MMPs). In vivo studies showed that JWH-015 significantly reduced breast cancer growth in ERα+ and ERα- breast cancer mouse models. Furthermore, we found that the tumors derived from JWH-015-treated mice showed reduced activation of EGFR and IGF-IR and their downstream targets. In conclusion, we show that CNR2 activation suppresses breast cancer through novel mechanisms by inhibiting EGF/EGFR and IGF-I/IGF-IR signaling axes.
Understanding the Key to Targeting the IGF Axis in Cancer: A Biomarker Assessment
Lodhia, Kunal Amratlal; Tienchaiananda, Piyawan; Haluska, Paul
2015-01-01
Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling pre-clinical evidence; however, to date, this has failed to translate into patient benefit in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity, including hyperglycemia, which largely results from the overlap between IGF and insulin signaling systems and associated feedback mechanisms. This has halted the clinical development of inhibitors targeting IGF signaling, which has limited the availability of biopsy samples for correlative studies to understand biomarkers of response. Indeed, a major factor contributing to lack of clinical benefit of IGF targeting agents has been difficulty in identifying patients with tumors driven by IGF signaling due to the lack of predictive biomarkers. In this review, we will describe the IGF system, rationale for targeting IGF signaling, the potential liabilities of targeting strategies, and potential biomarkers that may improve success. PMID:26217584
Jiang, Guohui; Wang, Wei; Cao, Qingqing; Gu, Juan; Mi, Xiujuan; Wang, Kewei; Chen, Guojun; Wang, Xuefeng
2015-12-01
Insulin-like growth factor-1 (IGF-1) is known to promote neurogenesis and survival. However, recent studies have suggested that IGF-1 regulates neuronal firing and excitatory neurotransmission. In the present study, focusing on temporal lobe epilepsy, we found that IGF-1 levels and IGF-1 receptor activation are increased in human epileptogenic tissues, and pilocarpine- and pentylenetetrazole-treated rat models. Using an acute model of seizures, we showed that lateral cerebroventricular infusion of IGF-1 elevates IGF-1 receptor (IGF-1R) signalling before pilocarpine application had proconvulsant effects. In vivo electroencephalogram recordings and power spectrogram analysis of local field potential revealed that IGF-1 promotes epileptiform activities. This effect is diminished by co-application of an IGF-1R inhibitor. In an in vitro electrophysiological study, we demonstrated that IGF-1 enhancement of excitatory neurotransmission and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor- and N-methyl-D-aspartate receptor-mediated currents is inhibited by IGF-1R inhibitor. Finally, activation of extracellular signal-related kinase (ERK)-1/2 and protein kinase B (Akt) in seizures in rats is increased by exogenous IGF-1 and diminished by picropodophyllin. A behavioural study reveals that the ERK1/2 or Akt inhibitor attenuates seizure activity. These results indicate that increased IGF-1 levels after recurrent hippocampal neuronal firings might, in turn, promote seizure activity via IGF-1R-dependent mechanisms. The present study presents a previously unappreciated role of IGF-1R in the development of seizure activity. © 2015 Authors; published by Portland Press Limited.
Wang, Xiaohong; Li, Qinglu; Hu, Qingsong; Suntharalingam, Piradeep; From, Arthur H L; Zhang, Jianyi
2014-01-01
Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are two potent cell survival and regenerative factors in response to myocardial injury (MI). We hypothesized that simultaneous delivery of IGF+HGF combined with Sca-1+/CD31- cells would improve the outcome of transplantation therapy in response to the altered hostile microenvironment post MI. One million adenovirus nuclear LacZ-labeled Sca-1+/CD31- cells were injected into the peri-infarction area after left anterior descending coronary artery (LAD) ligation in mice. Recombinant mouse IGF-1+HGF was added to the cell suspension prior to the injection. The left ventricular (LV) function was assessed by echocardiography 4 weeks after the transplantation. The cell engraftment, differentiation and cardiomyocyte regeneration were evaluated by histological analysis. Sca-1+/CD31- cells formed viable grafts and improved LV ejection fraction (EF) (Control, 54.5+/-2.4; MI, 17.6+/-3.1; Cell, 28.2+/-4.2, n = 9, P<0.01). IGF+HGF significantly enhanced the benefits of cell transplantation as evidenced by increased EF (38.8+/-2.2; n = 9, P<0.01) and attenuated adverse structural remodeling. Furthermore, IGF+HGF supplementation increased the cell engraftment rate, promoted the transplanted cell survival, enhanced angiogenesis, and minimally stimulated endogenous cardiomyocyte regeneration in vivo. The in vitro experiments showed that IGF+HGF treatment stimulated Sca-1+/CD31- cell proliferation and inhibited serum free medium induced apoptosis. Supperarray profiling of Sca-1+/CD31- cells revealed that Sca-1+/CD31- cells highly expressed various trophic factor mRNAs and IGF+HGF treatment altered the mRNAs expression patterns of these cells. These data indicate that IGF-1+HGF could serve as an adjuvant to cell transplantation for myocardial repair by stimulating donor cell and endogenous cardiac stem cell survival, regeneration and promoting angiogenesis.
Kutasy, Balazs; Friedmacher, Florian; Duess, Johannes W; Puri, Prem
2014-02-01
The high mortality rate in congenital diaphragmatic hernia (CDH) is attributed to pulmonary hypoplasia (PH). Insulin-like growth factor 2 (IGF2) is an important regulator of fetal growth. The highest levels of IGF2 expression are found in the placenta, which are negatively regulated by decidual retinoid acid receptor alpha (RARα). It has been demonstrated that prenatal administration of retinoic acid (RA) suppresses decidual RARα expression. Previous studies have further shown that prenatal administration of RA can reverse PH in nitrofen-induced CDH model. In IGF2 knockout animals, low levels of IGF2 are associated with decreased placental growth and PH. We therefore hypothesized that nitrofen decreases trophoblastic IGF2 expression and prenatal administration of RA increases it through decidual RARα in the nitrofen-induced CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). RA was given intraperitoneally on D18, D19 and D20. Fetuses were harvested on D21 and divided into three groups: control, CDH and nitrofen+RA. Immunohistochemistry was performed to evaluate decidual RARα and trophoblastic IGF2 expression. Protein levels of IGF2 in serum, intra-amniotic fluid and left lungs were measured by enzyme-linked immunosorbent assay. Significant growth retardation of placenta and left lungs was observed in the CDH group compared to control and nitrofen+RA group. Markedly increased decidual RARα and decreased IGF2 immunoreactivity were found in the CDH group compared to control and nitrofen+RA group. Significantly decreased IGF2 protein levels were detected in serum, intra-amniotic fluid and left lungs in the CDH group compared to control and nitrofen+RA group. Our findings suggest that nitrofen may disturb trophoblastic IGF2 expression through decidual RARα resulting in retarded placental growth and PH in the nitrofen-induced CDH. Prenatal administration of RA may promote lung and placental growth by increasing trophoblastic IGF2 expression.
Growth hormone insensitivity: Mexican case report
De Ita, J R; Aguirre, G A; García–Magariño, M; Martín-Estal, I; Lara-Diaz, V J; Elizondo, M I
2017-01-01
Herein, we present a 14-year-old patient with short stature (134 cm) referred from Paediatrics to our department for complementary evaluation since growth hormone (GH) treatment failed to show any improvement. He was born premature and small for gestational age. Genital examination classified the patient as Tanner I–II with small penis and testicular size for his age. Biochemical analyses revealed normal GH levels with low serum insulin-like growth factor-1 (IGF-1). Molecular diagnosis confirmed several mutations in IGF1R and IGFALS, and so he was diagnosed with Laron Syndrome or GH insensibility and treated with IGF-1 substitutive therapy. Learning points: Evaluation of the GH/IGF-1 axis when short stature does not respond to conservative treatment must be included in the ordinary practice. Laron Syndrome real incidence should be calculated once undiagnosed cases arise, as treatment, due to lack of market, is unaffordable. Even when adulthood is reached, and no longitudinal growth can be achieved, still IGF-1 treatment in Laron Syndrome patients should be pursued as metabolic and protective derangements could arise. PMID:29147569
Rodon, Jordi; Sun, Michael; Kuenkele, Klaus-Peter; Parsons, Henrique A.; Trent, Jonathan C.; Kurzrock, Razelle
2011-01-01
A subset of patients with Ewing's sarcoma responds to anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies. Mechanisms of sensitivity and resistance are unknown. We investigated whether an anti-IGF-1R antibody acts via a pathway that could also be suppressed by small interfering (si) RNA against the EWS/FLI-1 fusion protein, the hallmark of Ewing's sarcoma. The growth of two Ewing's sarcoma cell lines (TC-32 and TC-71) was inhibited by the fully human anti-IGF-1R antibody, R1507 (clonogenic and MTT assays). TC-32 and TC-71 cells express high levels of IGF-2, while RD-ES and A4573 Ewing's cell lines, which were less responsive to R1507 in our assays, express low or undetectable IGF-2, respectively. TC-71 cells also expressed high levels of IGF-1R, and R1507 decreased steady-state levels of this receptor by internalization/degradation, an effect which was associated with a decrease in p-IGF-1R, p-IRS-1, and p-Akt. EWS/FLI-1 siRNA also decreased p-Akt, due to its ability to increase IGF-BP3 levels and subsequently decrease IGF-1 and IGF-2 levels, thus inhibiting signaling through p-IGF-1R. This inhibition correlated with growth suppression and apoptosis. The attenuation of Akt activation was confirmed in TC-71 and HEK-293 (human embryonic kidney) cells by transfecting them with IGF-1R siRNA. We conclude that antibodies and siRNA to IGF-1R, as well as siRNA to EWS/FLI-1, act via intersecting IGF/IGF-1R signals that suppress a common point in this pathway, namely the phosphorylation of Akt. PMID:22022506
Buck, Elizabeth; Gokhale, Prafulla C; Koujak, Susan; Brown, Eric; Eyzaguirre, Alexandra; Tao, Nianjun; Rosenfeld-Franklin, Maryland; Lerner, Lorena; Chiu, M Isabel; Wild, Robert; Epstein, David; Pachter, Jonathan A; Miglarese, Mark R
2010-10-01
Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase-AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti-IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti-IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randazzo, P.A.; Jarett, L.
1990-09-01
The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetalmore » calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.« less
Sitar, Tomasz; Popowicz, Grzegorz M.; Siwanowicz, Igor; Huber, Robert; Holak, Tad A.
2006-01-01
Insulin-like growth factor-binding proteins (IGFBPs) control bioavailability, activity, and distribution of insulin-like growth factor (IGF)1 and -2 through high-affinity IGFBP/IGF complexes. IGF-binding sites are found on N- and C-terminal fragments of IGFBPs, the two conserved domains of IGFBPs. The relative contributions of these domains to IGFBP/IGF complexation has been difficult to analyze, in part, because of the lack of appropriate three-dimensional structures. To analyze the effects of N- and C-terminal domain interactions, we determined several x-ray structures: first, of a ternary complex of N- and C-terminal domain fragments of IGFBP4 and IGF1 and second, of a “hybrid” ternary complex using the C-terminal domain fragment of IGFBP1 instead of IGFBP4. We also solved the binary complex of the N-terminal domains of IGFBP4 and IGF1, again to analyze C- and N-terminal domain interactions by comparison with the ternary complexes. The structures reveal the mechanisms of IGF signaling regulation via IGFBP binding. This finding supports research into the design of IGFBP variants as therapeutic IGF inhibitors for diseases of IGF disregulation. In IGFBP4, residues 1–38 form a rigid disulphide bond ladder-like structure, and the first five N-terminal residues bind to IGF and partially mask IGF residues responsible for the type 1 IGF receptor binding. A high-affinity IGF1-binding site is located in a globular structure between residues 39 and 82. Although the C-terminal domains do not form stable binary complexes with either IGF1 or the N-terminal domain of IGFBP4, in the ternary complex, the C-terminal domain contacts both and contributes to blocking of the IGF1 receptor-binding region of IGF1. PMID:16924115
Azizi, Sheida; Nematollahi, Mohammad Ali; Mojazi Amiri, Bagher; Vélez, Emilio J.; Lutfi, Esmail; Navarro, Isabel; Capilla, Encarnación; Gutiérrez, Joaquim
2016-01-01
Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA) to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs). This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs), MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates the importance of an adequate level of Lysine in fishmeal diet formulation for optimum growth. PMID:26808650
Wimmer, Robert J; Russell, Sarah J; Schneider, Martin F
2015-12-01
Prevention and slowing of skeletal muscle atrophy with nutritional approaches offers the potential to provide far-reaching improvements in the quality of life for our increasingly aging population. Here we show that polyphenol flavonoid epigallocatechin 3-gallate (EGCG), found in the popular beverage green tea (Camellia sinensis), demonstrates similar effects to the endogenous hormones insulin-like growth factor 1 (IGF-1) and insulin in the ability to suppress action of the atrophy-promoting transcription factor Foxo1 through a net translocation of Foxo1 out of the nucleus as monitored by nucleo-cytoplasmic movement of Foxo1-green fluorescent protein (GFP) in live skeletal muscle fibers. Foxo1-GFP nuclear efflux is rapid in IGF-1 or insulin, but delayed by an additional 30 min for EGCG. Once activated, kinetic analysis with a simple mathematical model shows EGCG, IGF-1 and insulin all produce similar apparent rate constants for Foxo1-GFP unidirectional nuclear influx and efflux. Interestingly, EGCG appears to have its effect at least partially via parallel signaling pathways that are independent of IGF-1's (and insulin's) downstream PI3K/Akt/Foxo1 signaling axis. Using the live fiber model system, we also determine the dose-response curve for both IGF-1 and insulin on Foxo1 nucleo-cytoplasmic distribution. The continued understanding of the activation mechanisms of EGCG could allow for nutritional promotion of green tea's antiatrophy skeletal muscle benefits and have implications in the development of a clinically significant parallel pathway for new drugs to target muscle wasting and the reduced insulin receptor sensitivity which causes type II diabetes mellitus. Copyright © 2015 Elsevier Inc. All rights reserved.
Lorenc, Valeria E; Subirada Caldarone, Paula V; Paz, María C; Ferrer, Darío G; Luna, José D; Chiabrando, Gustavo A; Sánchez, María C
2018-02-01
In ischemic proliferative diseases such as retinopathies, persistent hypoxia leads to the release of numerous neovascular factors that participate in the formation of abnormal vessels and eventually cause blindness. The upregulation and activation of metalloproteinases (MMP-2 and MMP-9) represent a final common pathway in this process. Although many regulators of the neovascular process have been identified, the complete role of the insulin-like growth factor 1 (IGF-1) and its receptor (IGF-1R) appears to be significantly more complex. In this study, we used an oxygen-induced retinopathy (OIR) mouse model as well as an in vitro model of hypoxia to study the role of MMP-2 derived from Müller glial cells (MGCs) and its relation with the IGF-1/IGF-1R system. We demonstrated that MMP-2 protein expression increased in P17 OIR mice, which coincided with the active phase of the neovascular process. Also, glutamine synthetase (GS)-positive cells were also positive for MMP-2, whereas IGF-1R was expressed by GFAP-positive cells, indicating that both proteins were expressed in MGCs. In addition, in the OIR model a single intravitreal injection of the IGF-1R blocking antibody (αIR3) administered at P12 effectively prevented pathologic neovascularization, accelerated physiological revascularization, and improved retinal functionality at P17. Finally, in MGC supernatants, the blocking antibody abolished the IGF-1 effect on active MMP-2 under normoxic and hypoxic conditions without affecting the extracellular levels of pro-MMP-2. These results demonstrate, for the first time, that the IGF-1/IGF-1R system regulates active MMP-2 levels in MGCs, thus contributing to MEC remodeling during the retinal neovascular process.
Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis.
Huang, Mian-Bo; Xu, Hui; Xie, Shu-Juan; Zhou, Hui; Qu, Liang-Hu
2011-01-01
The insulin-like growth factor (IGF) signaling pathway has long been established as playing critical roles in skeletal muscle development. However, the underlying regulatory mechanism is poorly understood. Recently, a large family of small RNAs, named microRNAs (miRNAs), has been identified as key regulators for many developmental processes. Because miRNAs participate in the regulation of various signaling pathways, we hypothesized that miRNAs may be involved in the regulation of IGF signaling in skeletal myogenesis. In the present study, we determined that the cell-surface receptor IGF-1R is directly regulated by a muscle-specific miRNA, microRNA-133 (miR-133). A conserved and functional binding site for miR-133 was identified in the 3'untranslated region (3'UTR) of IGF-1R. During differentiation of C2C12 myoblasts, IGF-1R protein, but not messenger RNA (mRNA) expression, was gradually reduced, concurrent with the upregulation of miR-133. Overexpression of miR-133 in C2C12 cells significantly suppressed IGF-1R expression at the posttranscriptional level. We also demonstrated that both overexpression of miR-133 and knockdown of IGF-1R downregulated the phosphorylation of Akt, the central mediator of the PI3K/Akt signaling pathway. Furthermore, upregulation of miR-133 during C2C12 differentiation was significantly accelerated by the addition of IGF-1. Mechanistically, we found that the expression of myogenin, a myogenic transcription factor reported to transactivate miR-133, was increased by IGF-1 stimulation. Our results elucidate a negative feedback circuit in which IGF-1-stimulated miR-133 in turn represses IGF-1R expression to modulate the IGF-1R signaling pathway during skeletal myogenesis. These findings also suggest that miR-133 may be a potential therapeutic target in muscle diseases.
Insulin-Like Growth Factor-1 Receptor Is Regulated by microRNA-133 during Skeletal Myogenesis
Huang, Mian-Bo; Xu, Hui; Xie, Shu-Juan; Zhou, Hui; Qu, Liang-Hu
2011-01-01
Background The insulin-like growth factor (IGF) signaling pathway has long been established as playing critical roles in skeletal muscle development. However, the underlying regulatory mechanism is poorly understood. Recently, a large family of small RNAs, named microRNAs (miRNAs), has been identified as key regulators for many developmental processes. Because miRNAs participate in the regulation of various signaling pathways, we hypothesized that miRNAs may be involved in the regulation of IGF signaling in skeletal myogenesis. Methodology/Principal Findings In the present study, we determined that the cell-surface receptor IGF-1R is directly regulated by a muscle-specific miRNA, microRNA-133 (miR-133). A conserved and functional binding site for miR-133 was identified in the 3′untranslated region (3′UTR) of IGF-1R. During differentiation of C2C12 myoblasts, IGF-1R protein, but not messenger RNA (mRNA) expression, was gradually reduced, concurrent with the upregulation of miR-133. Overexpression of miR-133 in C2C12 cells significantly suppressed IGF-1R expression at the posttranscriptional level. We also demonstrated that both overexpression of miR-133 and knockdown of IGF-1R downregulated the phosphorylation of Akt, the central mediator of the PI3K/Akt signaling pathway. Furthermore, upregulation of miR-133 during C2C12 differentiation was significantly accelerated by the addition of IGF-1. Mechanistically, we found that the expression of myogenin, a myogenic transcription factor reported to transactivate miR-133, was increased by IGF-1 stimulation. Conclusion/Significance Our results elucidate a negative feedback circuit in which IGF-1-stimulated miR-133 in turn represses IGF-1R expression to modulate the IGF-1R signaling pathway during skeletal myogenesis. These findings also suggest that miR-133 may be a potential therapeutic target in muscle diseases. PMID:22195016
Longo, N; Singh, R; Griffin, L D; Langley, S D; Parks, J S; Elsas, L J
1994-09-01
Mutations in the insulin receptor gene cause the severe insulin-resistant syndromes leprechaunism and Rabson-Mendenhall syndrome. There is no accepted therapy for these inherited conditions. Here we report the results of recombinant human GH (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I) treatment of a male patient, Atl-2, with Rabson-Mendenhall syndrome. The patient was small for gestational age, had premature dentition, absence of sc fat, acanthosis nigricans, fasting hypoglycemia and postprandial hyperglycemia, and extremely high concentrations of circulating insulin (up to 8500 microU/mL). Fibroblasts and lymphoblasts established from this patient had reduced insulin binding, which was 20-30% of the control value. Binding of epidermal growth factor, IGF-I, and GH to the patient's fibroblasts was normal. The growth of fibroblasts cultured from patient Atl-2 in vitro was intermediate between that of fibroblasts from patients with leprechaunism and control values. The patient's growth curve in vivo was far below the fifth percentile despite adequate nutrition. To stimulate growth, therapy with rhGH was initiated, the rationale being to stimulate hepatic IGF-I production and IGF-I receptor signaling, and bypass the inherited block in insulin receptor signaling. Therapy with rhGH (up to 0.5 mg/kg.week) did not improve growth and failed to increase the levels of circulating IGF-I and IGF-binding protein-3 over a 14-month period. As rhGH could not stimulate growth, rhIGF-I (up to 100 micrograms/kg.day) was given by daily sc injection. No increase in growth velocity was observed over a 14-month period. These results indicate that both GH and IGF-I fail to correct growth in a patient with severe inherited insulin resistance. The lack of efficacy of IGF-I treatment may be related to multiple factors, such as the poor metabolic state of the patient, the deficiency of serum carrier protein for IGF-I, an increased clearance of the growth factor, IGF-I resistance in target cells at a receptor or postreceptor level, or an inhibitory action of the mutant insulin receptors on IGF-I receptor signaling.
Liu, Zhen; Cai, Heng; Zhang, Ping; Li, Hao; Liu, Huaxiang; Li, Zhenzhong
2012-03-01
Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Whether IGF-1 influences growth-associated protein 43 (GAP-43) expression and activates the extracellular signal-regulated protein kinase (ERK1/2) and the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in DRG neurons with excitotoxicity induced by glutamate (Glu) remains unknown. In this study, embryonic 15-day-old rat DRG explants were cultured for 48 h and then exposed to IGF-1, Glu, Glu + IGF-1, Glu + IGF-1 + PD98059, Glu + IGF-1 + LY294002, Glu + IGF-1 + PD98059 + LY294002 for additional 12 h. The DRG explants were continuously exposed to growth media as control. The levels of GAP-43 mRNA were detected by real time-PCR analysis. The protein levels of GAP-43, phosphorylated ERK1/2, phosphorylated Akt, total ERK1/2, and total Akt were detected by Western blot assay. GAP-43 expression in situ was determined by immunofluorescent labeling. Apoptotic cell death was monitored by Hoechst 33342 staining. IGF-1 alone increased GAP-43 and its mRNA levels in the absence of Glu. The decreased GAP-43 and its mRNA levels caused by Glu could be partially reversed by the presence of IGF-1. IGF-1 rescued neuronal cell death caused by Glu. Neither the ERK1/2 inhibitor PD98059 nor the PI3K inhibitor LY294002 blocked the effect of IGF-1, but both inhibitors together were effective. To validate the impact of GAP-43 expression by IGF-1, GAP-43 induction was blocked by administration of dexamethasone (DEX). IGF-1 partially rescued the decrease of GAP-43 and its mRNA levels induced by DEX. DEX induced an increase of cell apoptosis. IGF-1 may play an important role in neuroprotective effects on DRG neurons through regulating GAP-43 expression with excitotoxicity induced by Glu and the process was involved in both ERK1/2 and PI3K/Akt signaling pathways.
Liu, Cai-Zhi; Luo, Yuan; Limbu, Samwel Mchele; Chen, Li-Qiao; Du, Zhen-Yu
2018-05-20
Insulin-like growth factor-1 (IGF-1) plays a crucial role in regulating growth in vertebrates whereas suppressors of cytokine signaling (SOCS) act as feedback inhibitors of the GH/IGF-1 axis. Although SOCS-2 binds the IGF-1 receptor and inhibits IGF-1-induced STAT3 activation, presently there is no clear evidence as to whether IGF-1 could induce SOCS gene expression. The current study aimed to determine whether IGF-1 could induce the transcription of SOCS in juvenile Nile tilapia ( Oreochromis niloticus ). We show that there is a common positive relationship between the mRNA expression of IGF-I and SOCS-2 under different nutritional statuses and stimulants, but not the mRNA expression of SOCS-1 and SOCS-3 Furthermore, rhIGF-1 treatment and transcriptional activity assay confirmed the hypothesis that IGF-1 could induce SOCS-2 expression, whereas it had no effect or even decreased the expression of SOCS-1 and SOCS-3 Overall, we obtained evidence that the transcription of SOCS-2, but not SOCS-1 or SOCS-3, could be induced by IGF signaling, suggesting that SOCS-2 serves as a feedback suppressor of the IGF-1 axis in juvenile Nile tilapia. © 2018. Published by The Company of Biologists Ltd.
[Experimental study on dog's bone marrow stem cells transfected by pIRES2-EGFP-IGF-1 gene].
Zhu, Guo-qiang; Wu, Zhi-fen; Li, Yuan-fei; Hu, De-hua; Wang, Qin-tao
2006-12-01
To establish the bone marrow stem cells (MSC) model which could highly express the insulin-like growth factor 1 (IGF-1) transfected by dog's IGF-1 gene. pIRES2-EGFP-IGF-1 was transfected into MSC by lipofectamine. Positive clones were selected with G418. The expression of IGF-1 protein in the MSC was determined by immunohistochemistry and Western blot analysis. The IGF-1 in the supernatant of the transfected MSC was detected by sandwich-in ELISA. The periodontal ligament cells (PDLC) were cultured in the supernatant of the transfected MSC. The changes of PDLC' proliferation were observed by MTT. IGF-1-transfected MSC could apparently express IGF-1. The IGF-1 protein in the supernatant of the transfected MSC was confirmed by sandwich-in ELISA. IGF-1 could promote the PDLC' proliferation. The MSC transfected by dog's IGF-1 gene can highly express IGF-1, which may lay the foundation for further study on periodontal regeneration.
IGF-1 facilitates thrombopoiesis primarily through Akt activation.
Chen, Shilei; Hu, Mengjia; Shen, Mingqiang; Wang, Song; Wang, Cheng; Chen, Fang; Tang, Yong; Wang, Xinmiao; Zeng, Hao; Chen, Mo; Gao, Jining; Wang, Fengchao; Su, Yongping; Xu, Yang; Wang, Junping
2018-05-25
It is known that insulin-like growth factor-1 (IGF-1) also functions as a hematopoietic factor, while its direct effect on thrombopoiesis remains unclear. In this study, we show that IGF-1 is able to promote CD34+ cell differentiation toward megakaryocytes (MKs), as well as the facilitation of proplatelet formation (PPF) and platelet production from cultured MKs. The in vivo study demonstrates that IGF-1 administration accelerates platelet recovery in mice after 6.0Gy of irradiation and in mice that received bone marrow transplantation (BMT) following 10.0Gy of lethal irradiation. Subsequent investigations reveal that ERK1/2 and Akt activation mediate the effect of IGF-1 on thrombopoiesis. Notably, Akt activation induced by IGF-1 is more apparent than that of ERK1/2, compared with that of thrombopoietin (TPO) treatment. Moreover, the effect of IGF-1 on thrombopoiesis is independent of TPO signaling, because IGF-1 treatment can also lead to a significant increase of platelet counts in homozygous TPO receptor mutant mice. Further analysis indicates that the activation of Akt triggered by IGF-1 requires the assistance of steroid receptor coactivator-3 (SRC-3). Therefore, our data reveal a distinct role of IGF-1 in regulating thrombopoiesis, providing new insights into TPO-independent regulation of platelet generation. Copyright © 2018 American Society of Hematology.
Persechini, Marie-Laure; Gennero, Isabelle; Grunenwald, Solange; Vezzosi, Delphine; Bennet, Antoine; Caron, Philippe
2015-08-01
A decrease of insulin-like growth factor-I levels (IGF-I) has been reported during the first trimester of pregnancy in women with acromegaly before the secretion of placental growth hormone (GH) progressively increases IGF-1 concentration. To evaluate variations of concentrations of IGF-1, insulin-like growth factor (IGF)-binding protein-3 (IGF-BP3) and GH during the first trimester of pregnancy in women with normal somatotroph function. Sixteen women (median age 31 years) with as who were followed for benign thyroid disorders (n = 15) or prolactin-secreting microadenoma (n = 1) were evaluated before and in the first trimester of pregnancy. Serum concentrations of GH, IGF-1, IGF-BP3, TSH and estradiol (E2) were measured before and in the first trimester (5.4 ± 2.2 weeks of gestation). Before pregnancy, somatotroph and thyroid functions (median TSH 1.2 mU/L) were normal in all women. At the first trimester IGF-1 levels decreased significantly (before = 210 ng/mL, first trimester = 145 ng/mL, p < 0.001) with no significant change in GH (before = 1.5 ng/mL, first trimester = 0.84 ng/mL) or IGF-BP3 levels (before = 2.3 ng/mL, first trimester = 2.2 ng/mL), while estradiol levels increased significantly (before = 46.5 pg/100 mL, first trimester = 448.5 pg/100 mL, p < 0.001). In women with normal somatotroph function, IGF-1 levels decrease in the first trimester of pregnancy without changes in GH or IGF-BP3 levels. These results confirm liver resistance to GH as a consequence of the physiological increase of estrogens during the first trimester.
Insulin-like growth factor 2 rescues aging-related memory loss in rats.
Steinmetz, Adam B; Johnson, Sarah A; Iannitelli, Dylan E; Pollonini, Gabriella; Alberini, Cristina M
2016-08-01
Aging is accompanied by declines in memory performance, and particularly affects memories that rely on hippocampal-cortical systems, such as episodic and explicit. With aged populations significantly increasing, the need for preventing or rescuing memory deficits is pressing. However, effective treatments are lacking. Here, we show that the level of the mature form of insulin-like growth factor 2 (IGF-2), a peptide regulated in the hippocampus by learning, required for memory consolidation and a promoter of memory enhancement in young adult rodents, is significantly reduced in hippocampal synapses of aged rats. By contrast, the hippocampal level of the immature form proIGF-2 is increased, suggesting an aging-related deficit in IGF-2 processing. In agreement, aged compared to young adult rats are deficient in the activity of proprotein convertase 2, an enzyme that likely mediates IGF-2 posttranslational processing. Hippocampal administration of the recombinant, mature form of IGF-2 rescues hippocampal-dependent memory deficits and working memory impairment in aged rats. Thus, IGF-2 may represent a novel therapeutic avenue for preventing or reversing aging-related cognitive impairments. Copyright © 2016 Elsevier Inc. All rights reserved.
Kjellberg, Emma; Roswall, Josefine; Bergman, Stefan; Strandvik, Birgitta; Dahlgren, Jovanna
2018-01-01
The aim of this study was to study the relationship between insulin-like growth factor-1 (IGF-1), serum phospholipid fatty acids, and growth in healthy full-term newborns during infancy. Prospective observational study of a population-based Swedish cohort comprising 126 healthy, term infants investigating cord blood and serum at 2 days and 4 months of age for IGF-1 and phospholipid fatty acid profile and breast milk for fatty acids at 2 days and 4 months, compared with anthropometric measurements (standard deviation scores). At all time-points arachidonic acid (AA) was negatively associated with IGF-1. IGF-1 had positive associations with linoleic acid (LA) at 2 days and 4 months and mead acid (MA) showed positive associations in cord blood. Multiple regression analyses adjusted for maternal factors (body mass index, weight gain, smoking, education), sex, birth weight and feeding modality confirmed a negative association for the ratio AA/LA to IGF-1. MA in cord blood correlated to birth size. Changes in the ratios of n-6/n-3 and AA/docosahexaenoic acid from day 2 to 4 months together with infants' weight and feeding modality determined 55% of the variability of delta-IGF-1. Breast-fed infants at 4 months had lower IGF-1 correlating with lower LA and higher AA concentrations, which in girls correlated with lower weight gain from birth to 4 months of age. Our data showed interaction of n-6 fatty acids with IGF-1 during the first 4 months of life, and an association between MA and birth size when adjusted for confounding factors. Further follow-up may indicate whether these correlations are associated with later body composition.
Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E.; Walter, Glenn A.; Sweeney, H. Lee; Vandenborne, Krista
2014-01-01
Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Since insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of viral mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for two weeks to induce muscle atrophy in the soleus and ankle plantar flexor muscle group. Subsequently, the mice were allowed to reambulate and muscle damage and recovery was monitored over a period of 2 to 21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by MRI, a nonspecific marker of muscle damage, was significantly lower in IGF-1 injected, compared to contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1 injected soleus muscles was confirmed on histology, with a lower fraction area of abnormal muscle tissue in IGF-I injected muscles at 2 days reambulation (33.2±3.3%vs 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days), and elevated MyoD mRNA (7-fold at 2 days) in IGF-1 injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded skeletal muscles from damage and accelerating muscle repair and regeneration. PMID:23291913
Yan, Xiao-Di; Yao, Min; Wang, Li; Zhang, Hai-Jian; Yan, Mei-Juan; Gu, Xing; Shi, Yun; Chen, Jie; Dong, Zhi-Zhen; Yao, Deng-Fu
2013-01-01
AIM: To investigate the dynamic features of insulin-like growth factor-I receptor (IGF-IR) expression in rat hepatocarcinogenesis, and the relationship between IGF-IR and hepatocytes malignant transformation at mRNA or protein level. METHODS: Hepatoma models were made by inducing with 2-fluorenylacetamide (2-FAA) on male Sprague-Dawley rats. Morphological changes of hepatocytes were observed by pathological Hematoxylin and eosin staining, the dynamic expressions of liver and serum IGF-IR were quantitatively analyzed by an enzyme-linked immunosorbent assay. The distribution of hepatic IGF-IR was located by immunohistochemistry. The fragments of IGF-IR gene were amplified by reverse transcription-polymerase chain reaction, and confirmed by sequencing. RESULTS: Rat hepatocytes after induced by 2-FAA were changed dynamically from granule-like degeneration, precancerous to hepatoma formation with the progressing increasing of hepatic mRNA or IGF-IR expression. The incidences of liver IGF-IR, IGF-IR mRNA, specific IGF-IR concentration (ng/mg wet liver), and serum IGF-IR level (ng/mL) were 0.0%, 0.0%, 0.63 ± 0.17, and 1.33 ± 0.47 in the control; 50.0%, 61.1%, 0.65 ± 0.2, and 1.51 ± 0.46 in the degeneration; 88.9%, 100%, 0.66 ± 0.14, and 1.92 ± 0.29 in the precancerosis; and 100%, 100%, 0.96 ± 0.09, and 2.43 ± 0.57 in the cancerous group, respectively. IGF-IR expression in the cancerous group was significantly higher (P < 0.01) than that in any of other groups at mRNA or protein level. The closely positive IGF-IR relationship was found between livers and sera (r = 0.91, t = 14.222, P < 0.01), respectively. CONCLUSION: IGF-IR expression may participate in rat hepatocarcinogenesis and its abnormality should be an early marker for hepatocytes malignant transformation. PMID:24106410
Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity.
Ewald, Collin Y; Landis, Jess N; Porter Abate, Jess; Murphy, Coleen T; Blackwell, T Keith
2015-03-05
Interventions that delay ageing mobilize mechanisms that protect and repair cellular components, but it is unknown how these interventions might slow the functional decline of extracellular matrices, which are also damaged during ageing. Reduced insulin/IGF-1 signalling (rIIS) extends lifespan across the evolutionary spectrum, and in juvenile Caenorhabditis elegans also allows the transcription factor DAF-16/FOXO to induce development into dauer, a diapause that withstands harsh conditions. It has been suggested that rIIS delays C. elegans ageing through activation of dauer-related processes during adulthood, but some rIIS conditions confer robust lifespan extension unaccompanied by any dauer-like traits. Here we show that rIIS can promote C. elegans longevity through a program that is genetically distinct from the dauer pathway, and requires the Nrf (NF-E2-related factor) orthologue SKN-1 acting in parallel to DAF-16. SKN-1 is inhibited by IIS and has been broadly implicated in longevity, but is rendered dispensable for rIIS lifespan extension by even mild activity of dauer-related processes. When IIS is decreased under conditions that do not induce dauer traits, SKN-1 most prominently increases expression of collagens and other extracellular matrix genes. Diverse genetic, nutritional, and pharmacological pro-longevity interventions delay an age-related decline in collagen expression. These collagens mediate adulthood extracellular matrix remodelling, and are needed for ageing to be delayed by interventions that do not involve dauer traits. By genetically delineating a dauer-independent rIIS ageing pathway, our results show that IIS controls a broad set of protective mechanisms during C. elegans adulthood, and may facilitate elucidation of processes of general importance for longevity. The importance of collagen production in diverse anti-ageing interventions implies that extracellular matrix remodelling is a generally essential signature of longevity assurance, and that agents promoting extracellular matrix youthfulness may have systemic benefit.
Bailey-Downs, Lora C.; Mitschelen, Matthew; Sosnowska, Danuta; Toth, Peter; Pinto, John T.; Ballabh, Praveen; Valcarcel-Ares, M.Noa; Farley, Julie; Koller, Akos; Henthorn, Jim C.; Bass, Caroline; Sonntag, William E.; Csiszar, Anna
2012-01-01
Recent studies demonstrate that age-related dysfunction of NF-E2–related factor-2 (Nrf2)–driven pathways impairs cellular redox homeostasis, exacerbating age-related cellular oxidative stress and increasing sensitivity of aged vessels to oxidative stress–induced cellular damage. Circulating levels of insulin-like growth factor (IGF)-1 decline during aging, which significantly increases the risk for cardiovascular diseases in humans. To test the hypothesis that adult-onset IGF-1 deficiency impairs Nrf2-driven pathways in the vasculature, we utilized a novel mouse model with a liver-specific adeno-associated viral knockdown of the Igf1 gene using Cre-lox technology (Igf1f/f + MUP-iCre-AAV8), which exhibits a significant decrease in circulating IGF-1 levels (∼50%). In the aortas of IGF-1–deficient mice, there was a trend for decreased expression of Nrf2 and the Nrf2 target genes GCLC, NQO1 and HMOX1. In cultured aorta segments of IGF-1–deficient mice treated with oxidative stressors (high glucose, oxidized low-density lipoprotein, and H2O2), induction of Nrf2-driven genes was significantly attenuated as compared with control vessels, which was associated with an exacerbation of endothelial dysfunction, increased oxidative stress, and apoptosis, mimicking the aging phenotype. In conclusion, endocrine IGF-1 deficiency is associated with dysregulation of Nrf2-dependent antioxidant responses in the vasculature, which likely promotes an adverse vascular phenotype under pathophysiological conditions associated with oxidative stress (eg, diabetes mellitus, hypertension) and results in accelerated vascular impairments in aging. PMID:22021391
Müller, Simon; Bley, Nadine; Glaß, Markus; Busch, Bianca; Rousseau, Vanessa; Misiak, Danny; Fuchs, Tommy; Lederer, Marcell; Hüttelmaier, Stefan
2018-04-12
The oncofetal IGF2 mRNA binding proteins (IGF2BPs) are upregulated in most cancers but their paralogue-specific roles in tumor cells remain poorly understood. In a panel of five cancer-derived cell lines, IGF2BP1 shows highly conserved oncogenic potential. Consistently, the deletion of IGF2BP1 impairs the growth and metastasis of ovarian cancer-derived cells in nude mice. Gene expression analyses in ovarian cancer-derived cells reveal that the knockdown of IGF2BPs is associated with the downregulation of mRNAs that are prone to miRNA regulation. All three IGF2BPs preferentially associate upstream of miRNA binding sites (MBSs) in the 3'UTR of mRNAs. The downregulation of mRNAs co-regulated by miRNAs and IGF2BP1 is abrogated at low miRNA abundance or when miRNAs are depleted. IGF2BP1 associates with these target mRNAs in RISC-free complexes and its deletion enhances their association with AGO2. The knockdown of most miRNA-regulated target mRNAs of IGF2BP1 impairs tumor cell properties. In four primary cancers, elevated synthesis of these target mRNAs is largely associated with upregulated IGF2BP1 mRNA levels. In ovarian cancer, the enhanced expression of IGF2BP1 and most of its miRNA-controlled target mRNAs is associated with poor prognosis. In conclusion, these findings indicate that IGF2BP1 enhances an aggressive tumor cell phenotype by antagonizing miRNA-impaired gene expression.
Burgdorf, Jeffrey; Colechio, Elizabeth M; Ghoreishi-Haack, Nayereh; Gross, Amanda L; Rex, Christopher S; Zhang, Xiao-Lei; Stanton, Patric K; Kroes, Roger A; Moskal, Joseph R
2017-06-01
Posttraumatic stress disorder is an anxiety disorder characterized by deficits in the extinction of aversive memories. Insulin-like growth factor 1 (IGF1) is the only growth factor that has shown anxiolytic and antidepressant properties in human clinical trials. In animal studies, insulin-like growth factor binding protein 2 (IGFBP2) shows both IGF1-dependent and IGF1-independent pharmacological effects, and IGFBP2 expression is upregulated by rough-and-tumble play that induces resilience to stress. IGFBP2 was evaluated in Porsolt, contextual fear conditioning, and chronic unpredictable stress models of posttraumatic stress disorder. The dependence of IGFBP2 effects on IGF1- and AMPA-receptor activation was tested using selective receptor antagonists. Dendritic spine morphology was measured in the dentate gyrus and the medial prefrontal cortex 24 hours after in vivo dosing. IGFBP2 was 100 times more potent than IGF1 in the Porsolt test. Unlike IGF1, effects of IGFBP2 were not blocked by the IGF1-receptor antagonist JB1, or by the AMPA-receptor antagonist 2,3-Dioxo-6-nitro-1,2,3,4 tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) in the Porsolt test. IGFBP2 (1 µg/kg) and IGF1 (100 µg/kg i.v.) each facilitated contextual fear extinction and consolidation. Using a chronic unpredictable stress paradigm, IGFBP2 reversed stress-induced effects in the Porsolt, novelty-induced hypophagia, sucrose preference, and ultrasonic vocalization assays. IGFBP2 also increased mature dendritic spine densities in the medial prefrontal cortex and hippocampus 24 hours postdosing. These data suggest that IGFBP2 has therapeutic-like effects in multiple rat models of posttraumatic stress disorder via a novel IGF1 receptor-independent mechanism. These data also suggest that the long-lasting effects of IGFBP2 may be due to facilitation of structural plasticity at the dendritic spine level. IGFBP2 and mimetics may have therapeutic potential for the treatment of posttraumatic stress disorder. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Marwaha, Ramank K; Garg, M K; Gupta, Sushil; Ganie, Mohd Ashraf; Gupta, Nandita; Narang, Archna; Shukla, Manoj; Arora, Preeti; Singh, Annie; Chadha, Aditi; Mithal, Ambrish
2018-03-28
There is a high prevalence of vitamin D deficiency (VDD) in India. Molecular mechanisms suggest a strong relationship between vitamin D and growth factors. However, there is a paucity of literature with regard to a relationship between insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) and vitamin D particularly in subjects with VDD. The objective of the study was to assess the relationship between growth factors and serum vitamin D-parathormone (PTH) status in school girls and study the impact of vitamin D supplementation on growth factors in pre-pubertal girls with VDD. Our study subjects were apparently healthy school girls aged 6-18 years. The baseline height, weight, body mass index (BMI), pubertal status, serum 25-hydroxy vitamin D (25OHD), PTH, IGF-1 and IGFBP-3 were assessed in 847 girls aged 6-18 years and in 190 pre-pubertal girls with VDD following supplementation. The mean age, BMI and serum 25OHD of girls were 11.5±3.2 years, 18.7±4.8 kg/m2 and 9.9±5.6 ng/mL, respectively. VDD was observed in 94.6% of girls. Unadjusted serum IGF-1 levels and IGF-1/IGFBP-3 molar ratio were significantly higher in girls with severe VDD as compared to girls with mild-to-moderate VDD. However, these differences disappeared when adjusted for age, height or sexual maturation. The serum IGF-1 and IGFBP-3 levels increased significantly post supplementation with vitamin D. There were no differences in serum IGF-1 levels and the IGF-1/IGFBP-3 molar ratio among VDD categories when adjusted for age, height and sexual maturation in girls. Vitamin D supplementation resulted in a significant increase in serum IGF-1 levels in VDD pre-pubertal girls.
GH indirectly enhances the regeneration of transgenic zebrafish fins through IGF2a and IGF2b.
Nornberg, Bruna Félix; Almeida, Daniela Volcan; Figueiredo, Márcio Azevedo; Marins, Luis Fernando
2016-10-01
The somatotropic axis, composed essentially of the growth hormone (GH) and insulin-like growth factors (IGFs), is the main regulator of somatic growth in vertebrates. However, these protein hormones are also involved in various other major physiological processes. Although the importance of IGFs in mechanisms involving tissue regeneration has already been established, little is known regarding the direct effects of GH in these processes. In this study, we used a transgenic zebrafish (Danio rerio) model, which overexpresses GH from the beta-actin constitutive promoter. The regenerative ability of the caudal fin was assessed after repeated amputations, as well as the expression of genes related to the GH/IGF axis. The results revealed that GH overexpression increased the regenerated area of the caudal fin in transgenic fish after the second amputation. Transgenic fish also presented a decrease in gene expression of the GH receptor (ghrb), in opposition to the increased expression of the IGF1 receptors (igf1ra and igf1rb). These results suggest that transgenic fish have a higher sensitivity to IGFs than to GH during fin regeneration. With respect to the different IGFs produced locally, a decrease in igf1a expression and a significant increase in both igf2a and igf2b expression was observed, suggesting that igf1a is not directly involved in fin regeneration. Overall, the results revealed that excess GH enhances fin regeneration in zebrafish through igf2a and igf2b expression, acting indirectly on this major physiological process.
Gelse, K; Mühle, C; Knaup, K; Swoboda, B; Wiesener, M; Hennig, F; Olk, A; Schneider, H
2008-12-01
To investigate the chondrogenic potential of growth factor-stimulated periosteal cells with respect to the activity of Hypoxia-inducible Factor 1alpha (HIF-1alpha). Scaffold-bound autologous periosteal cells, which had been activated by Insulin-like Growth Factor 1 (IGF-1) or Bone Morphogenetic Protein 2 (BMP-2) gene transfer using both adeno-associated virus (AAV) and adenoviral (Ad) vectors, were applied to chondral lesions in the knee joints of miniature pigs. Six weeks after transplantation, the repair tissues were investigated for collagen type I and type II content as well as for HIF-1alpha expression. The functional role of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling on BMP-2/IGF-1-induced HIF-1alpha expression was assessed in vitro by employing specific inhibitors. Unstimulated periosteal cells formed a fibrous extracellular matrix in the superficial zone and a fibrocartilaginous matrix in deep zones of the repair tissue. This zonal difference was reflected by the absence of HIF-1alpha staining in superficial areas, but moderate HIF-1alpha expression in deep zones. In contrast, Ad/AAVBMP-2-stimulated periosteal cells, and to a lesser degree Ad/AAVIGF-1-infected cells, adopted a chondrocyte-like phenotype with strong intracellular HIF-1alpha staining throughout all zones of the repair tissue and formed a hyaline-like matrix. In vitro, BMP-2 and IGF-1 supplementation increased HIF-1alpha protein levels in periosteal cells, which was based on posttranscriptional mechanisms rather than de novo mRNA synthesis, involving predominantly the MEK/ERK pathway. This pilot experimental study on a relatively small number of animals indicated that chondrogenesis by precursor cells is facilitated in deeper hypoxic zones of cartilage repair tissue and is stimulated by growth factors which enhance HIF-1alpha activity.
Hirohata, Toshio; Saito, Nobuhito; Takano, Koji; Yamada, So; Son, Jae-Hyun; Yamada, Shoko M; Nakaguchi, Hiroshi; Hoya, Katsumi; Murakami, Mineko; Mizutani, Akiko; Okinaga, Hiroko; Matsuno, Akira
2013-01-01
Adult growth hormone (GH) deficiency (AGHD) in Japan is diagnosed based on peak GH concentrations during GH provocative tests such as GHRP-2 stimulation test. In this study, we aimed to evaluate the ability of serum insulin-like growth factor-1 (sIGF-1) and urinary GH (uGH) at the time of awakening to diagnose AGHD. Fifty-nine patients with pituitary disease (32 men and 27 women; age 20-85 y (57.5 ± 15.5, mean ± SD) underwent GHRP-2 stimulation and sIGF-1 testing. Thirty-six and 23 patients were diagnosed with and without severe AGHD, respectively based on a peak GH response of <9 ng/mL to GHRP-2 stimulation. Serum IGF-1 was evaluated as a standard deviation score (IGF-1 SDS) based on age and sex. We determined whether uGH levels in urine samples from 42 of the 59 patients at awakening were above or below the sensitivity limit. We evaluated IGF-1 SDS and uGH levels in a control group of 15 healthy volunteers. Values for IGF-1 SDS were significantly lower in patients with, than without (-2.07 ± 1.77 vs.-0.03 ± 0.92, mean ± SD; p < 0.001) AGHD whereas the range of IGF-1 SDS substantially overlapped at > -1.4. IGF-1 SDS discriminated AGHD more effectively in patients aged ≤60 years. The χ2 test revealed a statistical relationship between uGH and AGHD (test statistic: 7.0104 ≥ χ2 (1; 0.01) = 6.6349). When IGF-1 SDS is < -1.4 or uGH is below the sensitivity limit, AGHD can be detected with high sensitivity.
Mode localization in the cooperative dynamics of protein recognition
NASA Astrophysics Data System (ADS)
Copperman, J.; Guenza, M. G.
2016-07-01
The biological function of proteins is encoded in their structure and expressed through the mediation of their dynamics. This paper presents a study on the correlation between local fluctuations, binding, and biological function for two sample proteins, starting from the Langevin Equation for Protein Dynamics (LE4PD). The LE4PD is a microscopic and residue-specific coarse-grained approach to protein dynamics, which starts from the static structural ensemble of a protein and predicts the dynamics analytically. It has been shown to be accurate in its prediction of NMR relaxation experiments and Debye-Waller factors. The LE4PD is solved in a set of diffusive modes which span a vast range of time scales of the protein dynamics, and provides a detailed picture of the mode-dependent localization of the fluctuation as a function of the primary structure of the protein. To investigate the dynamics of protein complexes, the theory is implemented here to treat the coarse-grained dynamics of interacting macromolecules. As an example, calculations of the dynamics of monomeric and dimerized HIV protease and the free Insulin Growth Factor II Receptor (IGF2R) domain 11 and its IGF2R:IGF2 complex are presented. Either simulation-derived or experimentally measured NMR conformers are used as input structural ensembles to the theory. The picture that emerges suggests a dynamical heterogeneous protein where biologically active regions provide energetically comparable conformational states that are trapped by a reacting partner in agreement with the conformation-selection mechanism of binding.
Kwack, M H; Shin, S H; Kim, S R; Im, S U; Han, I S; Kim, M K; Kim, J C; Sung, Y K
2009-06-01
l-Ascorbic acid 2-phosphate (Asc 2-P), a derivative of l-ascorbic acid, promotes elongation of hair shafts in cultured human hair follicles and induces hair growth in mice. To investigate whether the promotion of hair growth by Asc 2-P is mediated by insulin-like growth factor-1 (IGF-1) and, if so, to investigate the mechanism of the Asc 2-P-induced IGF-1 expression. Dermal papilla (DP) cells were cultured and IGF-1 level was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay after Asc 2-P treatment in the absence or presence of LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Also, hair shaft elongation in cultured human scalp hair follicles and proliferation of cocultured keratinocytes were examined after Asc 2-P treatment in the absence or presence of neutralizing antibody against IGF-1. In addition, keratinocyte proliferation in cultured hair follicles after Asc 2-P treatment in the absence or presence of LY294002 was examined by Ki-67 immunostaining. IGF-1 mRNA in DP cells was upregulated and IGF-1 protein in the conditioned medium of DP cells was significantly increased after treatment with Asc 2-P. Immunohistochemical staining showed that IGF-1 staining is increased in the DP of cultured human hair follicles by Asc 2-P. The neutralizing antibody against IGF-1 significantly suppressed the Asc 2-P-mediated elongation of hair shafts in hair follicle organ culture and significantly attenuated Asc 2-P-induced growth of cocultured keratinocytes. LY294002 significantly attenuated Asc 2-P-inducible IGF-1 expression and proliferation of follicular keratinocytes in cultured hair follicles. These data show that Asc 2-P-inducible IGF-1 from DP cells promotes proliferation of follicular keratinocytes and stimulates hair follicle growth in vitro via PI3K.
Nakamura, Masatsugu; Chikama, Tai-ichiro; Nishida, Teruo
1999-01-01
We previously reported that substance P and insulin-like growth factor-1 (IGF-1) synergistically stimulate corneal epithelial wound healing in vitro and in vivo. We wished to identify which portion of the amino acid sequence of substance P might be responsible for this synergism.Corneal epithelial migration was not affected by the addition of any one of the following factors: substance P; Phe-Gly-Leu-Met-NH2 (C-terminal of substance P); Val-Gly-Leu-Met-NH2 (C-terminal of neurokinin A, neurokinin B, and kassinin); Tyr-Gly-Leu-Met-NH2 (C-terminal of physalaemin); Ile-Gly-Leu-Met-NH2 (C-terminal of eledoisin); or Gly-Leu-Met-NH2 (common C-terminal of tachykinins).In the presence of IGF-1, only substance P and Phe-Gly-Leu-Met-NH2 were synergistic in stimulating corneal epithelial migration in a dose-dependent fashion.The combination of Phe-Gly-Leu-Met-NH2 and IGF-1 did not affect the incorporation of [3H]-thymidine into corneal epithelial cells.Treatment with Phe-Gly-Leu-Met-NH2 and IGF-1, but not with Phe-Gly-Leu-Met-NH2 or IGF-1 alone, increased attachment of corneal epithelial cells to a fibronectin matrix.The levels of α5 and β1 integrin were not affected by Phe-Gly-Leu-Met-NH2 or IGF-1 alone, but they were significantly increased by the combination of Phe-Gly-Leu-Met-NH2 and IGF-1.Topical application of the same combination facilitated corneal epithelial wound closure in vivo.These results demonstrated that Phe-Gly-Leu-Met-NH2, a sequence of 4 amino-acids of the C-terminal of substance P, is the minimum sequence necessary to produce the synergistic effects of substance P and IGF-1 on corneal epithelial wound healing. PMID:10385250
Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M.; Berrios, Erika; Shao, Huanjie; Fang, Xianjun
2015-01-01
Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells. PMID:26476080
Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Dall'Aglio, Elisabetta; Guralnik, Jack M.; Paolisso, Giuseppe; Semba, Richard D.; Nouvenne, Antonio; Borghi, Loris; Ceresini, Graziano; Ablondi, Fabrizio; Benatti, Mario; Ferrucci, Luigi
2011-01-01
Background and Aims Insulin-like growth factor (IGF-1) stimulates cell proliferation and inhibits cell apoptosis. Recent studies underline its importance as anabolic hormone and nutritional marker in older individuals. IGF-1 synthesis and bioactivity are modulated by nutritional factors including selenium intake. However, whether circulating IGF-1 levels are positively influenced by plasma selenium, one of the most important human antioxidants, is still unknown. Methods Selenium and total IGF-1 were measured in 951 men and women ≥65 years from the InCHIANTI study, Tuscany, Italy. Results Means (SD) of plasma selenium and total IGF-1 were 0.95 (0.15) µmol/L and 113.4 (31.2) ng/mL, respectively. After adjustment for age and sex, selenium levels were positively associated with total IGF-1 (ß ± SE: 43.76±11.2, p=0.0001).After further adjustment for total energy and alcohol intake, serum alanine amino transferase (ALT), congestive heart failure, selenium remained significantly associated with IGF-1 (β ± SE: 36.7 ± 12.2, p=0.003). The association was still significant when IL-6 was introduced in the model (β ± SE: 40.1 ± 12.0, p=0.0008). Conclusions We found an independent, positive and significant association between selenium and IGF-1 serum levels in community dwelling older adults. PMID:20416996
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Thomas, M. J.; Centrella, M.; Rotwein, P.
1995-01-01
Insulin-like growth factor I (IGF-I) is a locally synthesized anabolic growth factor for bone. IGF-I synthesis by primary fetal rat osteoblasts (Ob) is stimulated by agents that increase the intracellular cAMP concentration, including prostaglandin E2 (PGE2). Previous studies with Ob cultures demonstrated that PGE2 enhanced IGF-I transcription through selective use of IGF-I promoter 1, with little effect on IGF-I messenger RNA half-life. Transient transfection of Ob cultures with an array of promoter 1-luciferase reporter fusion constructs has now allowed localization of a potential cis-acting promoter element(s) responsible for cAMP-stimulated gene expression to the 5'-untranslated region (5'-UTR) of IGF-I exon 1, within a segment lacking a consensus cAMP response element. Our evidence derives from three principal observations: 1) a transfection construct containing only 122 nucleotides (nt) of promoter 1 and 328 nt of the 5'-UTR retained full PGE2-stimulated reporter expression; 2) maximal PGE2-driven reporter expression required the presence of nt 196 to 328 of exon 1 when tested within the context of IGF-I promoter 1; 3) cotransfection of IGF-I promoter-luciferase-reporter constructs with a plasmid encoding the alpha-isoform of the catalytic subunit of murine cAMP-dependent protein kinase (PKA) produced results comparable to those seen with PGE2 treatment, whereas cotransfection with a plasmid encoding a mutant regulatory subunit of PKA that cannot bind cAMP blocked PGE2-induced reporter expression. Deoxyribonuclease I footprinting of the 5'-UTR of exon 1 demonstrated protected sequences at HS3A, HS3B, and HS3D, three of six DNA-protein binding sites previously characterized with rat liver nuclear extracts. Of these three regions, only the HS3D binding site is located within the functionally identified hormonally responsive segment of IGF-I exon 1. These results directly implicate PKA in the control of IGF-I gene transcription by PGE2 and identify a segment of IGF-I exon 1 as being essential for this hormonal regulation.
Insulin-like growth factor I in inclusion-body myositis and human muscle cultures.
Broccolini, Aldobrando; Ricci, Enzo; Pescatori, Mario; Papacci, Manuela; Gliubizzi, Carla; D'Amico, Adele; Servidei, Serenella; Tonali, Pietro; Mirabella, Massimiliano
2004-06-01
Possible pathogenic mechanisms of sporadic inclusion-body myositis (sIBM) include abnormal production and accumulation of amyloid beta (A beta), muscle aging, and increased oxidative stress. Insulin-like growth factor I (IGF-I), an endocrine and autocrine/paracrine trophic factor, provides resistance against A beta toxicity and oxidative stress in vitro and promotes cell survival. In this study we analyzed the IGF-I signaling pathway in sIBM muscle and found that 16.2% +/- 2.5% of nonregenerating fibers showed increased expression of IGF-I, phosphatidylinositide 3'OH-kinase, and Akt. In the majority of sIBM abnormal muscle fibers, increased IGF-I mRNA and protein correlated with the presence of A beta cytoplasmic inclusions. To investigate a possible relationship between A beta toxicity and IGF-I upregulation, normal primary muscle cultures were stimulated for 24 hours with the A beta(25-35) peptide corresponding to the biologically active domain of A beta. This induced an increase of IGF-I mRNA and protein in myotubes at 6 hours, followed by a gradual reduction thereafter. The level of phosphorylated Akt showed similar changes. We suggest that in sIBM. IGF-I overexpression represents a reactive response to A beta toxicity, possibly providing trophic support to vulnerable fibers. Understanding the signaling pathways activated by IGF-I in sIBM may lead to novel therapeutic strategies for the disease.
Llanos, Adana A; Brasky, Theodore M; Dumitrescu, Ramona G; Marian, Catalin; Makambi, Kepher H; Kallakury, Bhaskar V S; Spear, Scott L; Perry, David J; Convit, Rafael J; Platek, Mary E; Adams-Campbell, Lucile L; Freudenheim, Jo L; Shields, Peter G
2013-04-01
We investigated insulin-like growth factor (IGF)-1 and IGF binding protein (IGFBP)-3 concentrations in histologically normal breast tissues and assessed their association with plasma concentrations, and breast cancer risk factors. IGF-1 and IGFBP-3 were assessed in plasma and breast tissues of 90 women with no history of any cancer and undergoing reduction mammoplasty. Pearson correlations and ANOVAs were used to describe plasma-breast associations and biomarker differences by breast cancer risk factors, respectively. Multivariable regression models were used to determine associations between risk factors, and breast IGF-1 and IGFBP-3. The mean age of the study sample was 37.3 years, 58 % were white, and generally these women were obese (mean BMI = 30.8 kg/m(2)). We observed no plasma-breast correlation for IGF-1, IGFBP-3, or IGF-1/IGFBP-3 (r = -0.08, r = 0.14, and r = 0.03, respectively; p-values >0.05). Through age- and BMI-adjusted analysis, BMI and years of oral contraceptive (OC) use were inversely associated with breast IGF-1 (p-values = 0.02 and 0.003, respectively) and age was associated with breast IGFBP-3 (p = 0.01), while breast IGF-1/IGFBP-3 was higher in blacks than whites (1.08 vs. 0.68, p = 0.04) and associated with age and BMI (p-values = 0.03 and 0.002, respectively). In multivariable-adjusted models, some breast cancer risk factors studied herein explained 24, 10, and 15 % of the variation in breast IGF-1, IGFBP-3, and IGF-1/IGFBP-3, respectively. While reasons for the lack of plasma-breast hormone correlations in these cancer-free women are unknown, several factors were shown to be associated with breast concentrations. The lack of correlation between blood and tissue IGF-1 and IGFBP-3 suggests that studies of breast cancer risk assessing blood IGF-1 and IGFBP-3 may have important limitations in understanding their role in breast carcinogenesis.
Llanos, Adana A.; Brasky, Theodore M.; Dumitrescu, Ramona G.; Marian, Catalin; Makambi, Kepher H.; Kallakury, Bhaskar V. S.; Spear, Scott L.; Perry, David J.; Convit, Rafael J.; Platek, Mary E.; Adams-Campbell, Lucile L.; Freudenheim, Jo L.; Shields, Peter G.
2013-01-01
We investigated insulin-like growth factor (IGF)-1 and IGF binding protein (IGFBP)-3 concentrations in histologically normal breast tissues and assessed their association with plasma concentrations, and breast cancer risk factors. IGF-1 and IGFBP-3 were assessed in plasma and breast tissues of 90 women with no history of any cancer and undergoing reduction mammoplasty. Pearson correlations and ANOVAs were used to describe plasma-breast associations and biomarker differences by breast cancer risk factors, respectively. Multivariable regression models were used to determine associations between risk factors, and breast IGF-1 and IGFBP-3. The mean age of the study sample was 37.3 years, 58 % were white, and generally these women were obese (mean BMI = 30.8 kg/m2). We observed no plasma-breast correlation for IGF-1, IGFBP-3, or IGF-1/IGFBP-3 (r = −0.08, r = 0.14, and r = 0.03, respectively; p-values >0.05). Through age- and BMI-adjusted analysis, BMI and years of oral contraceptive (OC) use were inversely associated with breast IGF-1 (p-values = 0.02 and 0.003, respectively) and age was associated with breast IGFBP-3 (p = 0.01), while breast IGF-1/IGFBP-3 was higher in blacks than whites (1.08 vs. 0.68, p = 0.04) and associated with age and BMI (p-values = 0.03 and 0.002, respectively). In multivariable-adjusted models, some breast cancer risk factors studied herein explained 24, 10, and 15 % of the variation in breast IGF-1, IGFBP-3, and IGF-1/IGFBP-3, respectively. While reasons for the lack of plasma-breast hormone correlations in these cancer-free women are unknown, several factors were shown to be associated with breast concentrations. The lack of correlation between blood and tissue IGF-1 and IGFBP-3 suggests that studies of breast cancer risk assessing blood IGF-1 and IGFBP-3 may have important limitations in understanding their role in breast carcinogenesis. PMID:23456194
2011-01-01
Background Human insulin-like growth factor-I (hIGF-I) is a growth factor which is highly resemble to insulin. It is essential for cell proliferation and has been proposed for treatment of various endocrine-associated diseases including growth hormone insensitivity syndrome and diabetes mellitus. In the present study, an efficient plant expression system was developed to produce biologically active recombinant hIGF-I (rhIGF-I) in transgenic rice grains. Results The plant-codon-optimized hIGF-I was introduced into rice via Agrobacterium-mediated transformation. To enhance the stability and yield of rhIGF-I, the endoplasmic reticulum-retention signal and glutelin signal peptide were used to deliver rhIGF-I to endoplasmic reticulum for stable accumulation. We found that only glutelin signal peptide could lead to successful expression of hIGF-I and one gram of hIGF-I rice grain possessed the maximum activity level equivalent to 3.2 micro molar of commercial rhIGF-I. In vitro functional analysis showed that the rice-derived rhIGF-I was effective in inducing membrane ruffling and glucose uptake on rat skeletal muscle cells. Oral meal test with rice-containing rhIGF-I acutely reduced blood glucose levels in streptozotocin-induced and Zucker diabetic rats, whereas it had no effect in normal rats. Conclusion Our findings provided an alternative expression system to produce large quantities of biologically active rhIGF-I. The provision of large quantity of recombinant proteins will promote further research on the therapeutic potential of rhIGF-I. PMID:21486461
Dávila, David; Fernández, Silvia; Torres-Alemán, Ignacio
2016-01-01
Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury. PMID:26631726
Beitner-Johnson, D; Blakesley, V A; Shen-Orr, Z; Jimenez, M; Stannard, B; Wang, L M; Pierce, J; LeRoith, D
1996-04-19
The Crk proto-oncogene product is an SH2 and SH3 domain-containing adaptor protein which we have previously shown to become rapidly tyrosine phosphorylated in response to stimulation with insulin-like growth factor I (IGF-I) in NIH-3T3 cells. In order to further characterize the role of Crk in the IGF-I signaling pathway, NIH-3T3 and 293 cells were stably transfected with an expression vector containing the Crk cDNA. The various resultant 3T3-Crk clones expressed Crk at approximately 2-15-fold higher levels than parental 3T3 cells. In 3T3-Crk cells, Crk immunoreactivity was detected in insulin receptor substrate-1 (IRS-1) immunoprecipitates. Stimulation with IGF-I resulted in a dissociation of Crk protein from IRS-1. In contrast, the association of the related adaptor protein Grb2 with IRS-1 was enhanced by IGF-I stimulation. Similar results were obtained in stably transfected 293-Crk cells, which express both IRS-1 and the IRS-1-related signaling protein 4PS. In these cells, IRS-1 and 4PS both associated with Crk, and this association was also decreased by IGF-I treatment, whereas the association of Grb2 with IRS-1 and 4PS was enhanced by IGF-I. Overexpression of Crk also enhanced IGF-I-induced mitogenesis of NIH-3T3 cells, as measured by [3H]thymidine incorporation. The levels of IGF-I-induced mitogenesis were proportional to the level of Crk expression. These results suggest that Crk is a positive effector of IGF-I signaling, and may mediate its effects via interaction with IRS-1 and/or 4PS.
Ikeda, Naho; Shoji, Hiromichi; Suganuma, Hiroki; Ohkawa, Natsuki; Kantake, Masato; Murano, Yayoi; Sakuraya, Koji; Shimizu, Toshiaki
2016-05-01
Insulin-like growth factor-I (IGF-I) is essential for perinatal growth and development; low serum IGF-I has been observed during intrauterine growth restriction (IUGR). We investigated the effects of recombinant human (rh) IGF-I in IUGR rats during the early postnatal period. Intrauterine growth restriction was induced by bilateral uterine artery ligation in pregnant rats. IUGR pups were divided into two groups injected daily with rhIGF-I (2 mg/kg; IUGR/IGF-I, n = 16) or saline (IUGR/physiologic saline solution (PSS), n = 16) from postnatal day (PND) 7 to 13. Maternal sham-operated pups injected with saline were used as controls (control, n = 16). Serum IGF-I and IGF binding proteins (IGFBP) 3 and 5 were measured on PND25. The expression of Igf-i, IGF-I receptor (Igf-ir), Igfbp3, and 5 mRNA in the liver and brain was measured using real-time polymerase chain reaction on PND25. Immunohistochemical staining of the liver for IGF expression was performed. Mean bodyweight on PND3 and PND25 in the IUGR pups (IUGR/IGF-I and IUGR/PSS) was significantly lower than that of the control pups. Serum IGF-I and hepatic Igf-ir mRNA in the IUGR pups were significantly lower than those in the control pups. In the IUGR/IGF-I group, hepatic Igfbp3 mRNA and liver immunohistochemical staining were increased. In the IUGR/PSS and control pups, there were no significant differences between these two groups in serum IGFBP3 and IGFBP5, hepatic Igf-i and Igfbp-5 mRNA, or brain Igf mRNA. No benefits on body and brain weight gain but an effective increase in hepatic IGFBP-3 was observed after treatment with 2 mg/kg rhIGF-I during the early postnatal period. © 2015 Japan Pediatric Society.
Shuang, Tian; Fu, Ming; Yang, Guangdong; Wu, Lingyun; Wang, Rui
2018-03-01
Hydrogen sulfide (H 2 S) is mostly produced by cystathionine-gamma-lyase (CSE) in vascular system and it inhibits the proliferation of vascular smooth muscle cells (SMCs). Insulin-like growth factor-1 (IGF-1), via its receptor (IGF-1R), exerts multiple physiological and pathophysiological effects on the vasculature, including stimulating SMC proliferation and migration, and inhibiting SMC apoptosis. Since H 2 S and IGF-1/IGF-1R have opposite effects on SMC proliferation, it becomes imperative to better understand the interaction of these two signaling mechanisms on SMC proliferation. SMCs isolated from small mesenteric arteries of CSE knockout (KO) and wild-type (WT) mice were used in the present study. The effects of IGF-1 and H 2 S on SMC proliferation were evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) assays. Protein expression was determined by western blot, and H 2 S-induced protein S-sulfhydration was assessed with a modified biotin switch assay. We found that IGF-1 dose-dependently increased the proliferation of both WT-SMCs and KO-SMCs, and this effect was more significant in KO-SMCs. Supplement of sodium hydrosulfide (NaHS) inhibited IGF-1-induced cell proliferation, while this effect was abolished by blocking IGF-1/IGF-1R signaling with picropodophyllin (PPP) or knocking out of the expression of IGF-1R. H 2 S significantly down-regulates the expression of IGF-1R, stimulates IGF-1R S-sulfhydration, and attenuates the binding of IGF-1 with IGF-1R. This study provides novel insight on the involvement of IGF-1/IGF-1R in H 2 S-inhibited SMC proliferation and suggests H 2 S-based innovative treatment strategies for proliferative cardiovascular diseases such as atherosclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Jung, Su Yon; Hursting, Stephen D.; Guindani, Michele; Vitolins, Mara Z.; Paskett, Electra; Chang, Shine
2014-01-01
Background Weight gain, insulin-like growth factor-I (IGF-I) levels, and excess exogenous steroid hormone use are putative cancer risk factors, yet their interconnected pathways have not been fully characterized. This cross-sectional study investigated the relationship between plasma IGF-I levels and weight gain according to body mass index (BMI), leptin levels, and exogenous estrogen use among postmenopausal women. Methods This study included 794 postmenopausal women who enrolled in an ancillary study of the Women's Health Initiative Observational Study between February 1995 and July 1998. The relationship between IGF-I levels and weight gain was analyzed using ordinal logistic regression. We used the molar ratio of IGF-I to IGF binding protein-3 (IGF-I/IGFBP-3) or circulating IGF-I levels adjusting for IGFBP-3 as a proxy of bioavailable IGF-I. The plasma concentrations were expressed as quartiles. Results Among the obese group, women in the third quartile (Q3) of IGF-I and highest quartile of IGF-I/IGFBP-3 were less likely to gain weight (>3% from baseline) than were women in the first quartiles (Q1). Among the normal weight group, women in Q2 and Q3 of IGF-I/IGFBP-3 were 70% less likely than those in Q1 to gain weight. Among current estrogen users, Q3 of IGF-I/IGFBP-3 had 0.5 times the odds of gaining weight than Q1. Conclusions Bioavailable IGF-I levels were inversely related to weight gain overall. Impact Although weight gain was not consistent with increases in IGF-I levels among postmenopausal women in this report, avoidance of weight gain as a strategy to reduce cancer risk may be recommend. PMID:24363252
Impact of IGF-I release kinetics on bone healing: a preliminary study in sheep.
Luginbuehl, Vera; Zoidis, Evangelos; Meinel, Lorenz; von Rechenberg, Brigitte; Gander, Bruno; Merkle, Hans P
2013-09-01
Spatiotemporal release of growth factors from a delivery device can profoundly affect the efficacy of bone growth induction. Here, we report on a delivery platform based on the encapsulation of insulin-like growth factor I (IGF-I) in different poly(D,L-lactide) (PLA) and poly(D,L-lactide-co-glycolide) (PLGA) microsphere (MS) formulations to control IGF-I release kinetics. In vitro IGF-I release profiles generally exhibited an initial burst (14-36% of total IGF-I content), which was followed by a more or less pronounced dormant phase with little release (2 to 34 days), and finally, a third phase of re-increased IGF-I release. The osteoinductive potential of these different IGF-I PL(G)A MS formulations was tested in studies using 8-mm metaphyseal drill hole bone defects in sheep. Histomorphometric analysis at 3 and 6 weeks after surgery showed that new bone formation was improved in the defects locally treated with IGF-I PL(G)A MS (n=5) as compared to defects filled with IGF-I-free PL(G)A MS (n=4). The extent of new bone formation was affected by the particular release kinetics, although a definitive relationship was not evident. Local administration of IGF-I resulted in down-regulation of inflammatory marker genes in all IGF-I treated defects. The over-expression of growth factor genes in response to IGF-I delivery was restricted to formulations that produced osteogenic responses. These experiments demonstrate the osteoinductive potential of sustained IGF-I delivery and show the importance of delivery kinetics for successful IGF-I-based therapies. Copyright © 2013 Elsevier B.V. All rights reserved.
Cardona-Gómez, G P; Chowen, J A; Garcia-Segura, L M
2000-06-05
Gonadal hormones interact with insulin-like growthfactor-I (IGF-I) to regulate synaptic plasticity during the estrous cycle in the rat mediobasal hypothalamus. It has been proposed that tanycytes, specialized glial cells lining the ventral region of the third ventricle, may regulate the availability of IGF-I to hypothalamic neurons. IGF-I levels in tanycytes fluctuate during the estrous cycle. Furthermore, estrogen administration to ovariectomized rats increases IGF-I levels in tanycytes, while progesterone, injected simultaneously with estrogen, blocks the estrogen-induced increase of IGF-I levels in tanycytes. To test whether hormonal regulation of IGF-I receptor (IGF-IR) and IGF binding protein-2 (IGFBP-2) may be involved in the accumulation of IGF-I in tanycytes, we assessed the effect of ovarian hormones on the levels of these molecules in the mediobasal hypothalamus of adult female rats. Ovariectomized animals were treated with either oil, estrogen, progesterone, or estrogen and progesterone simultaneously and then killed 6 or 24 h later. Some neurons, some astrocytes, and many tanycytes in the mediobasal hypothalamus were found by confocal microscopy to be immunoreactive for IGF-IR. IGFBP-2 immunoreactivity was restricted almost exclusively to tanycytes and ependymal cells and was colocalized with IGF-IR immunoreactivity in tanycytes. By electron microscope immunocytochemistry using colloidal gold labeling, IGF-IR and IGFBP-2 immunoreactivities were observed in the microvilli of tanycytes in the lumen of the third ventricle. IGF-IR and IGFBP-2 immunoreactive levels on the apical surface of tanycytes were significantly decreased by the administration of progesterone, either alone or in the presence of estradiol. IGF-IR levels in the mediobasal hypothalamus, measured by Western blotting, were not significantly affected by the separate administration of estradiol or progesterone to ovariectomized rats. However, the simultaneous administration of both hormones resulted in a marked decrease in IGF-IR protein levels. Estradiol administration to ovariectomized rats increased IGFBP-2 immunoreactive levels in the hypothalamus. While progesterone did not significantly affect IGFBP-2 expression, the simultaneous injection of estradiol and progesterone resulted in a marked decrease in IGFBP-2 protein levels. The effect of estradiol on IGFBP-2 was observed both in protein and mRNA levels, suggesting a transcriptional regulation. However, the simultaneous administration of progesterone and estradiol had different effects on IGF-IR protein and IGF-IR mRNA levels, as well as on IGFBP-2 protein and IGFBP-2 mRNA levels, suggesting a postranscriptional action. These findings indicate that estradiol and progesterone regulate the expression of IGF-IR and IGFBP-2 in the mediobasal hypothalamus of adult female rats. Regulation of the hypothalamic IGF-I system by ovarian hormones may be physiologically relevant for neuroendocrine regulation and for synaptic plasticity during the estrous cycle. These results do not support the hypothesis that estrogen-induced accumulation of IGF-I by tanycytes is mediated by the hormonal regulation of IGF-IR. However, estrogen-induced up-regulation of IGFBP-2 and progesterone-induced down-regulation of IGF-IR and IGFBP-2 levels in the apical plasma membrane of tanycytes may be involved in the fluctuation of IGF-I levels in the mediobasal hypothalamus during the estrous cycle. Copyright 2000 John Wiley & Sons, Inc.
Retinopathy of Prematurity: Therapeutic Strategies Based on Pathophysiology.
Cayabyab, Rowena; Ramanathan, Rangasamy
2016-01-01
Retinopathy of prematurity (ROP) continues to be a major preventable cause of blindness and visual handicaps globally. With improved perinatal care, improved survival of moderately preterm infants, and limited resources for oxygen delivery and monitoring, more mature preterm infants are developing severe ROP in developing countries. The pathophysiology of ROP is characterized by two phases. Phase I ROP is due to vaso-obliteration beginning immediately after birth secondary to a marked decrease in vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1). Phase II begins around 33 weeks' postmenstrual age (PMA). During this phase, VEGF levels increase, especially if there is retinal hypoxia with increasing retinal metabolism and demand for oxygen leading to abnormal vasoproliferation. Since the original description of ROP in 1942 by Terry et al. [Am J Ophthalmol 1942;25:203-204], four epidemics of ROP have been observed. Prevention or early treatment of ROP involves careful titration of oxygen saturation by pulse oximeter (SpO2). Optimal SpO2 target remains elusive. Most of the large trials have focused on either a low SpO2 (85-89%) or a high SpO2 (91-95%) from the first day of birth to 36 weeks' PMA. Although the incidence of severe ROP and bronchopulmonary dysplasia decreased significantly, predischarge mortality was higher in these studies. Use of graded SpO2 during the 2 different phases of ROP (early, low SpO2 during phase I vs. late, high SpO2 during phase II) may be the best approach to prevent this disabling condition. Further trials should focus on this strategy. Other biological agents that are currently being studied include IGF-1 with IGF-binding protein-3 (rhIGF-1 + rhIGFBP-3) and propranolol. For advanced stages of ROP, laser ablation of avascular retina, early treatment of ROP (ETROP) protocol, intravitreal injection of anti-VEGF antibodies (e.g. bevacizumab) and vitrectomy are used to protect central vision and prevent retinal detachment. Long-term complications such as refractory errors, recurrence of ROP and risk of retinal detachment require continued follow-up with an ophthalmologist through adolescence and beyond. Optimal nutrition including adequate intake of omega-3 polyunsaturated fatty acids and decreasing infection/inflammation to promote normal vascularization are important strategies. Screening guidelines for ROP based on local incidence of ROP in different regions of the world are very important. Oxygen therapy is clearly a modifiable risk factor to decrease ROP that needs further study. Understanding the two phases of ROP will help to identify appropriate therapeutic strategies and improve visual outcomes in many preterm infants globally. © 2016 S. Karger AG, Basel.
Gu, M; Pritlove, D C; Boyd, C A R; Vatish, M
2009-10-01
Bisphosphoglycerate mutase (BPGM) catalyses the formation of 2,3 bisphosphoglycerate (BPG) a ligand of haemoglobin. BPG facilitates liberation of oxygen from haemoglobin at low oxygen tension enabling efficient delivery of oxygen to tissues. We describe expression of BPGM in mouse labyrinthine trophoblasts, located at the maternal-placental interface. Expression is lower in placentae of igf2(+/-) knockout mice, a widely used model of growth restriction, compared to wild type placentae. Circulating maternal BPG increased throughout gestation but this increase was less in wt mothers carrying igf2(+/-) pups than in those carrying exclusively wt pups. This reduction was observed well before term and may contribute to the low birth weight of igf2(+/-) pups. Strikingly, we also measured reductions of fetal and placental weight in wt littermates of igf2(+/-) pups compared to pups developing in an exclusively wt environment. These data suggest that placental expression of BPGM can influence maternal BPG concentrations and supports a hypothesis under which BPG synthesized in the placenta may act on maternal haemoglobin to enhance delivery of oxygen to the developing fetus.
de Blaquière, Gail E; May, Felicity E B; Westley, Bruce R
2009-06-01
Insulin-like growth factors (IGFs) are thought to promote tumour progression and metastasis in part by stimulating cell migration. Insulin receptor substrate-1 (IRS-1) and IRS-2 are multisite docking proteins positioned immediately downstream from the type I IGF and insulin receptors. IRS-2 but not IRS-1 has been reported to be involved in the migratory response of breast cancer cells to IGFs. The purpose of this investigation was to determine if IRS-1 is involved in, and to assess the contributions of IRS-1 and IRS-2 to, the migratory response of breast cancer cells to IGFs. The expression of IRS-1 and IRS-2 varied considerably between ten breast cancer cell lines. Oestrogen increases expression of the type I IGF receptor, IRS-1 and IRS-2 in MCF-7 and ZR-75 cells. Oestrogens may control the sensitivity of breast cancer cells to IGFs by regulating the expression of components of the IGF signal transduction pathway. The migratory response to a range of IGF-1 concentrations was measured in MCF-7 and MDA-MB-231 breast cancer cells in which IRS-1 and IRS-2 levels were modulated using a doxycycline-inducible expression system. Induction of both IRS-1 and IRS-2 expression increased the sensitivity of the migratory response to IGF-1 but did not increase the magnitude of the response stimulated at higher concentrations of IGF-1. Knockdown of IRS-1, IRS-2 and the type I IGF receptor in MCF-7 and MDA-MB-2231 cells decreased sensitivity to IGF-1. We conclude that both IRS-1 and IRS-2 control the migratory response of breast cancer cells to IGF-1 and may, therefore, be key molecules in determining breast cancer spread.
IGF-1 induces the epithelial-mesenchymal transition via Stat5 in hepatocellular carcinoma.
Zhao, Chuanzong; Wang, Qian; Wang, Ben; Sun, Qi; He, Zhaobin; Hong, Jianguo; Kuehn, Florian; Liu, Enyu; Zhang, Zongli
2017-12-19
It has been reported that the epithelial-mesenchymal transition (EMT) plays an important role in hepatocellular carcinoma (HCC). However, the relationship between the insulin-like growth factor-1 (IGF-1) and EMT of HCC was not fully elucidated. In the present work, we found that the expression of N-cadherin, Vimentin, Snail1, Snail2, and Twist1 was positively associated with IGF-1R expression, while E-cadherin expression was negatively associated with IGF-1 expression in human HCC samples. Furthermore, we observed that IGF-1 up-regulated the expression of N-cadherin, Vimentin, Snail1, Snail2 and Twist1, and down-regulated the expression of E-cadherin. In addition, Stat5 was induced in IGF-1-treated HepG2 and Hep3B cells, and Stat5 inhibition or siRNA significantly affected IGF-1-induced EMT in HepG2 and Hep3B cells. In conclusion, IGF-1 induces EMT of HCC via Stat5 signaling pathway. Thus, IGF-1/Stat5 can be recommended as a potential and novel therapeutic strategy for HCC patients.
Tsai, Chuan-Te; Chang, Yung-Ming; Lin, Shu-Luan; Chen, Yueh-Sheng; Yeh, Yu-Lan; Padma, Viswanadha Vijaya; Tsai, Chin-Chuan; Chen, Ray-Jade; Ho, Tsung-Jung; Huang, Chih-Yang
2016-03-01
Angiotensin II (Ang II) is a very important cardiovascular disease inducer and may cause cardiac pathological hypertrophy and remodeling. We evaluated a Chinese traditional medicine, alpinate oxyphyllae fructus (AOF), for therapeutic efficacy for treating Ang II-induced cardiac hypertrophy. AOF has been used to treat patients with various symptoms accompanying hypertension and cerebrovascular disorders in Korea. We investigated its protective effect against Ang II-induced cytoskeletal change and hypertrophy in H9c2 cells. The results showed that treating cells with Ang II resulted in pathological hypertrophy, such as increased expression of transcription factors NFAT-3/p-NFAT-3, hypertrophic response genes (atrial natriuretic peptide [ANP] and b-type natriuretic peptide [BNP]), and Gαq down-stream effectors (PLCβ3 and calcineurin). Pretreatment with AOF (60-100 μg/mL) led to significantly reduced hypertrophy. We also found that AOF pretreatment significantly suppressed the cardiac remodeling proteins, metalloproteinase (MMP9 and MMP2), and tissue plasminogen activator (tPA), induced by Ang II challenge. In conclusion, we provide evidence that AOF protects against Ang II-induced pathological hypertrophy by specifically inhibiting the insulin-like growth factor (IGF) II/IIR-related signaling pathway in H9c2 cells. AOF might be a candidate for cardiac hypertrophy and ventricular remodeling prevention in chronic cardiovascular diseases.
Massicotte, Frédéric; Fernandes, Julio Cesar; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Lajeunesse, Daniel
2006-03-01
Human osteoarthritis (OA) is characterized by cartilage loss, bone sclerosis, osteophyte formation and inflammation of the synovial membrane. We previously reported that OA osteoblasts (Ob) show abnormal phenotypic characteristics possibly responsible for bone sclerosis and that two subgroups of OA patients can be identified by low or high endogenous production of prostaglandin E2 (PGE2) by OA Ob. Here, we determined that the elevated PGE2 levels in the high OA subgroup were linked with enhanced cyclooxygenase-2 (COX-2) protein levels compared to normal and low OA Ob. A linear relationship was observed between endogenous PGE2 levels and insulin-like growth factor 1 (IGF-1) levels in OA Ob. As parathyroid hormone (PTH) and PGE2 are known stimulators of IGF-1 production in Ob, we next evaluated their effect in OA Ob. Both subgroups increased their IGF-1 production similarly in response to PGE2, while the high OA subgroup showed a blunted response to PTH compared to the low OA group. Conversely, only the high OA group showed a significant inhibition of IGF-1 production when PGE2 synthesis was reduced with Naproxen, a non-steroidal antiinflammatory drug (NSAID) that inhibits cyclooxygenases (COX). The PGE2-dependent stimulation of IGF-1 synthesis was due in part to the cAMP/protein kinase A pathway since both the direct inhibition of this pathway with H-89 and the inhibition of EP2 or EP4 receptors, linked to cAMP production, reduced IGF-1 synthesis. The production of the most abundant IGF-1 binding proteins (IGFBPs) in bone tissue, IGFBP-3, -4, and -5, was lower in OA compared to normal Ob independently of the OA group. Under basal condition, OA Ob expressed similar IGF-1 mRNA to normal Ob; however, PGE2 stimulated IGF-1 mRNA expression more in OA than normal Ob. These data suggest that increased IGF-1 levels correlate with elevated endogenous PGE2 levels in OA Ob and that higher IGF-1 levels in OA Ob could be important for bone sclerosis in OA.
Rico-Llanos, Gustavo A; Becerra, Jose; Visser, Rick
2017-07-01
Bone morphogenetic protein-2 (BMP-2) is widely used in orthopedic surgery and bone tissue engineering because of its strong osteogenic activity. However, BMP-2 treatments have several drawbacks and many groups are actively exploring alternatives. Since BMP-6 has been demonstrated to be more osteoinductive, its use, either alone or together with other growth factors, might be an interesting option. In this work, we have compared the effect of BMP-2, BMP-6, or insulin-like growth factor-1 (IGF-1), either alone or in combination. Murine preosteoblasts were treated with 15 nM IGF-1 and/or 6 nM BMP-2 or -6 and the expression of osteogenic marker genes, proliferation, and alkaline phosphatase (ALP) activity in vitro were analyzed. The results showed that IGF-1 greatly enhanced the BMP-induced osteogenic differentiation of these cells in general and that the ALP activity in the cultures was higher when the combination was made with BMP-6 than with BMP-2. Furthermore, we tested the osteogenic potential of these treatments in vivo by loading 25 pmoles of IGF-1 and/or 10 pmoles of BMP-2 or -6 onto absorbable collagen sponges and implanting them into an ectopic bone formation model in rats. This study revealed that only BMP-6 was able to induce bone formation at the used dose and that the addition of IGF-1 contributed to an increase of the mineralization in the implants. Hence, the combination of BMP-6 with IGF-1 might be a better alternative than BMP-2 for orthopedic surgery or bone tissue engineering approaches. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1867-1875, 2017. © 2017 Wiley Periodicals, Inc.
Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro
2014-01-01
Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961
Pan, Yangyang; Cui, Yan; Baloch, Abdul Rasheed; Fan, Jiangfeng; He, Junfeng; Li, Guyue; Zheng, Hongfei; Zhang, Yifu; Lv, Peng; Yu, Sijiu
2015-09-15
The aim of our present study was to examine the effects of insulinlike growth factor 1 (IGF-1) on yak sperm motility during in vitro capacitation and the relationship between the effects of IGF-1 on yak sperm motility and apoptosis was evaluated. Frozen-thawed yak spermatozoa were incubated at 38 °C for 1 hour in Tyrode's bicarbonate-buffered medium for sperm culture (Sp-TALP) with different concentrations (0, 50, 100, and 200 ng/mL) of IGF-1. In every treatment, the sperm motility was measured by a computer-assisted sperm analyzer system. The fertilizing ability of spermatozoa was evaluated on the basis of oocyte cleavage rate after insemination. The expression of Bax and Bcl-2 was examined by real-time polymerase chain reaction and Western blot for the messenger RNA and protein levels. It is interesting to note that IGF-1 improved yak spermatozoa motility and the cleavage rate of oocytes; these improvements were highest in the 100 ng/mL IGF-1 group, followed by the 200 ng/mL and 50 ng/mL groups, with the lowest improvements in motility and cleavage rates in groups without IGF-1. The expression level of Bax was downregulated by IGF-1, whereas Bcl-2 was upregulated. Both messenger RNA and Bax proteins were lowest in groups with 100 ng/mL IGF-1, where the Bcl-2 was the highest. Bax expression in the groups with IGF-1 was lower than that in the group without IGF-1, and Bcl-2 expression was higher in groups with IGF-1 than that in the group without IGF-1. In conclusion, this research reports that improvements in yak spermatozoa motility and the oocyte cleavage rate after the addition of IGF-I may be a result of the reduction of spermatozoa apoptosis rates by modulating the expression of Bax and Bcl-2. Copyright © 2015 Elsevier Inc. All rights reserved.
Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina
2015-02-01
Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.
Müller, Eva; Dunstheimer, Desiree; Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H
2012-01-01
Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.
Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H.
2012-01-01
Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration. PMID:22693602
Faraj, Sheila F; Gonzalez-Roibon, Nilda; Munari, Enrico; Sharma, Rajni; Burnett, Arthur L; Cubilla, Antonio L; Netto, George J; Chaux, Alcides
2017-06-01
Insulin-like growth factor-1 receptor (IGF1R) plays a key role in cell growth and transformation. It is overexpressed in several solid tumors. This study evaluates IGF1R immunoexpression in penile squamous cell carcinoma (SCC). Four tissue microarrays were built from formalin-fixed, paraffin-embedded blocks of 112 penile SCC from Paraguay. Membranous IGF1R expression was evaluated by immunohistochemistry using two different approaches. An H-score was calculated in each spot (stain intensity by extent), and a median score per tumor was obtained. The second approach consisted of a score similar to the scoring system that was used for evaluating HER2 immunoexpression. For each case, the highest category obtained at any spot was used for statistical analyses. IGF1R expression was compared by histologic subtype, grade, and human papillomavirus (HPV) status. Median H-score was 22.5. The distribution of IGF1R expression by HER2 approach was as follows: 0 in 33.0% cases, 1+ in 46.4%, 2+ in 14.3%, and 3+ in 6.2%. IGF1R H-scores were associated with basaloid and warty/basaloid subtypes (p = 0.0026) and higher grade (p = 0.00052). Although weaker when using the HER2 approach, the association of IGF1R expression with subtype (p = 0.015) and grade (p = 0.015) remained significant. Furthermore, there was an association between IGF1R expression by HER2 approach and HPV status (p = 0.012). IGF1R was expressed in about two thirds of penile SCC cases, showing a strong positive association with histologic grade, subtype, and HPV status. Considering that grade is a predictor of outcome IGF1R expression may have prognostic relevance and could point to a potential role for IGF1R inhibitors in treating penile SCC.
Zhao, Xuan; Lu, Lulu; Qi, Yonghao; Li, Miao; Zhou, Lijun
2017-10-01
The naturally occurring anthraquinone emodin has been serving primarily as an anti-bacterial and anti-inflammatory agent. However, little is known about its potential on anti-aging. This investigation examined the effect of emodin on lifespan and focused on its physiological molecular mechanisms in vivo. Using Caenorhabditis elegans (C. elegans) as an animal model, we found emodin could extend lifespan of worms and improve their antioxidant capacity. Our mechanistic studies revealed that emodin might function via insulin/IGF-1 signaling (IIS) pathway involving, specifically the core transcription factor DAF-16. Quantitative RT-PCR results illustrated that emodin up-regulated transcription of DAF-16 target genes which express antioxidants to promote antioxidant capacity and lifespan of worms. In addition, attenuated effect in sir-2.1 mutants suggests that emodin likely functioned in a SIR-2.1-dependent manner. Our study uncovers a novel role of emodin in prolonging lifespan and supports the understanding of emodin being a beneficial dietary supplement.
Dedja, Arben; Giacometti, Cinzia; Francia, Simona; Fabris, Federico; Zaramella, Alice; Gallagher, Emily J.; Cassaro, Mauro; Rugge, Massimo; LeRoith, Derek; Alberti, Alfredo; Realdon, Stefano
2018-01-01
Hyperinsulinemia could have a role in the growing incidence of esophageal adenocarcinoma (EAC) and its pre-cancerous lesion, Barrett’s Esophagus, a possible consequence of Gastro-Esophageal Reflux Disease. Obesity is known to mediate esophageal carcinogenesis through different mechanisms including insulin-resistance leading to hyperinsulinemia, which may mediate cancer progression via the insulin/insulin-like growth factor axis. We used the hyperinsulinemic non-obese FVB/N (Friend leukemia virus B strain) MKR (muscle (M)-IGF1R-lysine (K)-arginine (R) mouse model to evaluate the exclusive role of hyperinsulinemia in the pathogenesis of EAC related to duodeno-esophageal reflux. FVB/N wild-type (WT) and MKR mice underwent jejunum-esophageal anastomosis side—to end with the exclusion of the stomach. Thirty weeks after surgery, the esophagus was processed for histological, immunological and insulin/Insulin-like growth factor 1 (IGF1) signal transduction analyses. Most of the WT mice (63.1%) developed dysplasia, whereas most of the MKR mice (74.3%) developed squamous cell and adenosquamous carcinomas, both expressing Human Epidermal growth factor receptor 2 (HER2). Hyperinsulinemia significantly increased esophageal cancer incidence in the presence of duodenal-reflux. Insulin receptor (IR) and IGF1 receptor (IGF1R) were overexpressed in the hyperinsulinemic condition. IGF1R, through ERK1/2 mitogenic pattern activation, seems to be involved in cancer onset. Hyperinsulinemia-induced IGF1R and HER2 up-regulation could also increase the possibility of forming of IGF1R/HER2 heterodimers to support cell growth/proliferation/progression in esophageal carcinogenesis. PMID:29662006
Arcidiacono, Diletta; Dedja, Arben; Giacometti, Cinzia; Fassan, Matteo; Nucci, Daniele; Francia, Simona; Fabris, Federico; Zaramella, Alice; Gallagher, Emily J; Cassaro, Mauro; Rugge, Massimo; LeRoith, Derek; Alberti, Alfredo; Realdon, Stefano
2018-04-14
Hyperinsulinemia could have a role in the growing incidence of esophageal adenocarcinoma (EAC) and its pre-cancerous lesion, Barrett's Esophagus, a possible consequence of Gastro-Esophageal Reflux Disease. Obesity is known to mediate esophageal carcinogenesis through different mechanisms including insulin-resistance leading to hyperinsulinemia, which may mediate cancer progression via the insulin/insulin-like growth factor axis. We used the hyperinsulinemic non-obese FVB/N (Friend leukemia virus B strain) MKR (muscle (M)-IGF1R-lysine (K)-arginine (R) mouse model to evaluate the exclusive role of hyperinsulinemia in the pathogenesis of EAC related to duodeno-esophageal reflux. FVB/N wild-type (WT) and MKR mice underwent jejunum-esophageal anastomosis side-to end with the exclusion of the stomach. Thirty weeks after surgery, the esophagus was processed for histological, immunological and insulin/Insulin-like growth factor 1 (IGF1) signal transduction analyses. Most of the WT mice (63.1%) developed dysplasia, whereas most of the MKR mice (74.3%) developed squamous cell and adenosquamous carcinomas, both expressing Human Epidermal growth factor receptor 2 (HER2). Hyperinsulinemia significantly increased esophageal cancer incidence in the presence of duodenal-reflux. Insulin receptor (IR) and IGF1 receptor (IGF1R) were overexpressed in the hyperinsulinemic condition. IGF1R, through ERK1/2 mitogenic pattern activation, seems to be involved in cancer onset. Hyperinsulinemia-induced IGF1R and HER2 up-regulation could also increase the possibility of forming of IGF1R/HER2 heterodimers to support cell growth/proliferation/progression in esophageal carcinogenesis.
Benabbou, Nadia; Mirshahi, Pezhman; Cadillon, Mélodie; Soria, Jeannette; Therwath, Amu; Mirshahi, Massoud
2013-09-01
Interaction between tumor cells and their micro-environment has a crucial role in the development, progression and drug resistance of cancer. Our objective was to confirm the role of Hospicells, which are stromal cells from the cancer microenvironment, in drug resistance and tumor cell growth. We demonstrated that soluble factors secreted by Hospicells activate several genes and upregulate the JAK/STAT signaling pathway in ovarian cancer cell lines. Hospicells express all insulin-like growth factor (IGF) family as detected by gene array, RT-PCR, protein array and immunocytochemistry. While focusing attention on the microenvironment, we considered the role of IGF-I in proliferation and survival of ovarian cancer cells. Indeed, IGF-I is a major regulator of different stages of cancer development. We studied the effect of exogenously added IGF-I on the regulation of ATP-binding cassette (ABC) genes (MDR1, MRP1, MRP2, MRP3, MRP5 and BCRP) in the ovarian cancer cell line OVCAR3 and validated the results obtained using the IGF-IR antagonist picropodophyllin. IGF-I regulates the expression of ABC genes in OVCAR3 cells via the PI3-kinase, MEK and JAK2/STAT3 signaling pathways. The OVCAR3 cell line when co-cultured with Hospicells showed a marked degree of drug resistance. The drug resistance observed could be amplified with exogenous IGF-I. Addition of IGF-IR inhibitor, however, reduced the degree of resistance in these exposed cells. Cells that were treated with anticancer drugs and then exposed to IGF-I showed an increase in drug resistance and, thereby, an increase in cell survival. This observation indicates that drug resistance of OVCAR3 cells increases when there is synergy between OVCAR3 cells and Hospicells and it is amplified when IGF-I was exogenously added. In conclusion, inhibition of IGF-IR and targeting of the JAK2/STAT3 signaling pathway can be a target for ovarian cancer therapy.
BENABBOU, NADIA; MIRSHAHI, PEZHMAN; CADILLON, MÉLODIE; SORIA, JEANNETTE; THERWATH, AMU; MIRSHAHI, MASSOUD
2013-01-01
Interaction between tumor cells and their microenvironment has a crucial role in the development, progression and drug resistance of cancer. Our objective was to confirm the role of Hospicells, which are stromal cells from the cancer microenvironment, in drug resistance and tumor cell growth. We demonstrated that soluble factors secreted by Hospicells activate several genes and upregulate the JAK/STAT signaling pathway in ovarian cancer cell lines. Hospicells express all insulin-like growth factor (IGF) family as detected by gene array, RT-PCR, protein array and immunocytochemistry. While focusing attention on the microenvironment, we considered the role of IGF-I in proliferation and survival of ovarian cancer cells. Indeed, IGF-I is a major regulator of different stages of cancer development. We studied the effect of exogenously added IGF-I on the regulation of ATP-binding cassette (ABC) genes (MDR1, MRP1, MRP2, MRP3, MRP5 and BCRP) in the ovarian cancer cell line OVCAR3 and validated the results obtained using the IGF-IR antagonist picropodophyllin. IGF-I regulates the expression of ABC genes in OVCAR3 cells via the PI3-kinase, MEK and JAK2/STAT3 signaling pathways. The OVCAR3 cell line when co-cultured with Hospicells showed a marked degree of drug resistance. The drug resistance observed could be amplified with exogenous IGF-I. Addition of IGF-IR inhibitor, however, reduced the degree of resistance in these exposed cells. Cells that were treated with anticancer drugs and then exposed to IGF-I showed an increase in drug resistance and, thereby, an increase in cell survival. This observation indicates that drug resistance of OVCAR3 cells increases when there is synergy between OVCAR3 cells and Hospicells and it is amplified when IGF-I was exogenously added. In conclusion, inhibition of IGF-IR and targeting of the JAK2/STAT3 signaling pathway can be a target for ovarian cancer therapy. PMID:23857432
Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Martinez, Ana; Faghihi, Mohammad A.; Jope, Richard S.; Beurel, Eleonore
2017-01-01
Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA– or HDAC4 siRNA–induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1–/– mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets. PMID:28352664
Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Martinez, Ana; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore
2017-03-23
Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA- or HDAC4 siRNA-induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1 -/- mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets.
Williams-Wyss, Olivia; Zhang, Song; MacLaughlin, Severence M.; Kleemann, David; Walker, Simon K.; Suter, Catherine M.; Cropley, Jennifer E.; Morrison, Janna L.; Roberts, Claire T.
2014-01-01
Exposure to poor maternal nutrition around the time of conception results in an early prepartum activation of the fetal pituitary-adrenal axis and in increased adrenal growth and stress response after birth associated with epigenetic changes in a differentially methylated region (DMR) of adrenal IGF2/H19. We have determined the effects of maternal undernutrition during the periconceptional period (PCUN: 70% of control intake from 60 days before until 6 days after conception) and early preimplantation period (PIUN: 70% of control intake for 6 days after conception) on fetal plasma ACTH and cortisol concentrations and fetal adrenal ACTHR, StAR, 3βHSD, CYP11B, CYP17, TGFβ1, IGF1, IGF1R, IGF2, and IGF2R mRNA expression and the methylation level of sites within the DMRs of IGF2/H19 and IGF2R in the adrenal of twin and singleton fetuses at 136–138 days gestation. Being a twin resulted in a delayed prepartum increase in fetal ACTH and in a lower cortisol response to CRH in the control but not PCUN and PIUN groups. PCUN, but not PIUN, resulted in an increase in adrenal weight and CYP17 expression in singletons, a decrease in adrenal IGF2 expression in singletons, and an increase in adrenal IGF2R expression in both twins and singletons. IGF2/H19 and IGF2R DMR methylation levels and ACTHR expression were lower in the twin adrenal. Thus, exposure of the oocyte and embryo to maternal undernutrition or to the environment of a twin pregnancy have differential effects on epigenetic and other factors that regulate fetal adrenal growth and IGF2 and IGF2R expression. PMID:24844259
Ren, Jun; Anversa, Piero
2015-02-15
Metabolic syndrome is a cluster of risk factors including obesity, dyslipidemia, hypertension, and insulin resistance. A number of theories have been speculated for the pathogenesis of metabolic syndrome including impaired glucose and lipid metabolism, lipotoxicity, oxidative stress, interrupted neurohormonal regulation and compromised intracellular Ca(2+) handling. Recent evidence has revealed that adults with severe growth hormone (GH) and insulin-like growth factor I (IGF-1) deficiency such as Laron syndrome display increased risk of stroke and cardiovascular diseases. IGF-1 signaling may regulate contractility, metabolism, hypertrophy, apoptosis, autophagy, stem cell regeneration and senescence in the heart to maintain cardiac homeostasis. An inverse relationship between plasma IGF-1 levels and prevalence of metabolic syndrome as well as associated cardiovascular complications has been identified, suggesting the clinical promises of IGF-1 analogues or IGF-1 receptor activation in the management of metabolic and cardiovascular diseases. However, the underlying pathophysiological mechanisms between IGF-1 and metabolic syndrome are still poorly understood. This mini-review will discuss the role of IGF-1 signaling cascade in the prevalence of metabolic syndrome in particular the susceptibility to overnutrition and sedentary life style-induced obesity, dyslipidemia, insulin resistance and other features of metabolic syndrome. Special attention will be dedicated in IGF-1-associated changes in cardiac responses in various metabolic syndrome components such as insulin resistance, obesity, hypertension and dyslipidemia. The potential risk of IGF-1 and IGF-1R stimulation such as tumorigenesis is discussed. Therapeutic promises of IGF-1 and IGF-1 analogues including mecasermin, mecasermin rinfabate and PEGylated IGF-1 will be discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Shiga, Hideaki; Nagaoka, Mikiya; Washiyama, Kohshin; Yamamoto, Junpei; Yamada, Kentaro; Noda, Takuya; Harita, Masayuki; Amano, Ryohei; Miwa, Takaki
2014-09-01
Although the olfactory nerve is involved in nasal transport of insulin-like growth factor-1 (IGF-1) to the brain, to our knowledge there have been no direct assessments of the effects of olfactory nerve damage on this transport. To determine whether olfactory bulb resection resulted in reduced transport of nasally administered human recombinant IGF-1 (hIGF-1) to the cerebrum, we measured the uptake of nasally administered iodine-125 hIGF-1 ((125)I-hIGF-1) in the cerebrum as a percentage of that in the blood in male ICR mice subjected to left olfactory bulb resection (model mice) and in sham-operated male ICR mice (control mice). Phosphorylated extracellular signal-regulated kinase (ERK) 1/2 (Thr202/Tyr204)/(Thr185/Tyr187) as a percentage of total ERK 1/2 in the left cerebrum was also assessed by using enzyme-linked immunosorbent assay after nasal administration of hIGF-1. Uptake of nasally administered (125)I-hIGF-1 in the cerebrum as a percentage of that in the blood was significantly lower in the model group than in the control group 30min after nasal administration of hIGF-1. Unilateral olfactory bulb resection prevented nasally administered hIGF-1 from increasing the phosphorylation of ERK 1/2 in the mouse cerebrum in vivo. These findings suggest that olfactory bulb damage reduces nasal transport of hIGF-1 to the brain in vivo. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Levada, Oleg A; Troyan, Alexandra S
2017-01-01
Depression and cognitive dysfunction share a common neuropathological platform. Abnormal neural plasticity in the frontolimbic circuits has been linked to changes in the expression of neurotrophic factors, including IGF-1. These changes may result in clinical abnormalities observed over the course of major depressive disorder (MDD), including cognitive dysfunction. The present review aimed to summarize evidence regarding abnormalities of peripheral IGF-1 in MDD patients and assess a marker and predictive role of the neurotrophin for emotional and cognitive disturbances, and treatment effectiveness. A literature search of the PubMed database was conducted for studies, in which peripheral IGF-1 levels were evaluated. Our analysis revealed four main findings: (1) IGF-1 levels in MDD patients mismatch across the studies, which may arise from various factors, e.g., age, gender, the course of the disease, presence of cognitive impairment, ongoing therapy, or general health conditions; (2) the initial peripheral IGF-1 levels may predict the occurrence of depression in future; (3) peripheral IGF-1 levels may reflect cognitive dysfunction, although the data is limited; (4) it is difficult to evaluate the influence of treatment on IGF-1 levels as there is discrepancy of this growth factor among the studies at baseline, although most of them showed a decrease in IGF-1 levels after treatment.
Little effects of Insulin-like Growth Factor-I on testicular atrophy induced by hypoxia
Diez-Caballero, Fernando; Castilla-Cortázar, Inma; Garcia-Fernandez, Maria; Puche, Juan Enrique; Diaz-Sanchez, Matias; Casares, Amelia Diaz; Aliaga-Montilla, M Aurelia; Rodriguez-Borrajo, Coronación; Gonzalez-Barón, Salvador
2006-01-01
Background Insulin-like Growth Factor-I (IGF-I) supplementation restores testicular atrophy associated with advanced liver cirrhosis that is a condition of IGF-I deficiency. The aim of this work was to evaluate the effect of IGF-I in rats with ischemia-induced testicular atrophy (AT) without liver disease and consequently with normal serum level of IGF-I. Methods Testicular atrophy was induced by epinephrine (1, 2 mg/Kg intra-scrotal injection five times per week) during 11 weeks. Then, rats with testicular atrophy (AT) were divided into two groups (n = 10 each): untreated rats (AT) receiving saline sc, and AT+IGF, which were treated with IGF-I (2 μg.100 g b.w.-1.day-1, sc.) for 28d. Healthy controls (CO, n = 10) were studied in parallel. Animals were sacrificed on day 29th. Hypophyso-gonadal axis, IGF-I and IGFBPs levels, testicular morphometry and histopathology, immuno-histochemical studies and antioxidant enzyme activity phospholipid hydroperoxide glutathione peroxidase (PHGPx) were assessed. Results Compared to controls, AT rats displayed a reduction in testicular size and weight, with histological testicular atrophy, decreased cellular proliferation and transferrin expression, and all of these alterations were slightly improved by IGF-I at low doses. IGF-I therapy increased signifincantly steroidogenesis and PHGPx activity (p < 0.05). Interestingly, plasma IGF-I did not augment in rats with testicular atrophy treated with IGF-I, while IGFBP3 levels, that reduces IGF-I availability, was increased in this group (p < 0.05). Conclusion In testicular atrophy by hypoxia, condition without IGF-I deficiency, IGF-treatment induces only partial effects. These findings suggest that IGF-I therapy appears as an appropriate treatment in hypogonadism only when this is associated to conditions of IGF-I deficiency (such as Laron Syndrom or liver cirrhosis). PMID:16504030
Higuchi, Kentaro; Gen, Koichiro; Izumida, Daisuke; Kazeto, Yukinori; Hotta, Takuro; Takashi, Toshinori; Aono, Hideaki; Soyano, Kiyoshi
2016-06-01
A method of controlling the somatic growth and reproduction of yellowtail fish (Seriola quinqueradiata) is needed in order to establish methods for the efficient aquaculture production of the species. However, little information about the hormonal interactions between somatic growth and reproduction is available for marine teleosts. There is accumulating evidence that insulin-like growth factor (IGF), a major hormone related somatic growth, plays an important role in fish reproduction. As the first step toward understanding the physiological role of IGF in the development of yellowtail ovaries, we characterized the expression and cellular localization of IGF-1 and IGF-2 in the ovary during development. We histologically classified the maturity of two-year-old females with ovaries at various developmental stages into the perinucleolar (Pn), yolk vesicle (Yv), primary yolk (Py), secondary yolk and tertiary yolk (Ty) stages, according to the most advanced type of oocyte present. The IGF-1 gene expression showed constitutively high levels at the different developmental stages, although IGF-1 mRNA levels tended to increase from the Py to the Ty stage with vitellogenesis, reaching maximum levels during the Ty stage. The IGF-2 mRNA levels increased as ovarian development advanced. Using immunohistochemistry methods, immunoreactive IGF-1 was mainly detected in the theca cells of ovarian follicles during late secondary oocyte growth, and in part of the granulosa cells of Ty stage oocytes. IGF-2 immunoreactivity was observed in all granulosa cells in layer in Ty stage oocytes. These results indicate that follicular IGFs may be involved in yellowtail reproduction via autocrine/paracrine mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Dall'Aglio, Elisabetta; Guralnik, Jack M; Paolisso, Giuseppe; Semba, Richard D; Nouvenne, Antonio; Borghi, Loris; Ceresini, Graziano; Ablondi, Fabrizio; Benatti, Mario; Ferrucci, Luigi
2010-10-01
Insulin-like growth factor (IGF-1) stimulates cell proliferation and inhibits cell apoptosis. Recent studies underline its importance as anabolic hormone and nutritional marker in older individuals. IGF-1 synthesis and bioactivity are modulated by nutritional factors including selenium intake. However, whether circulating IGF-1 levels are positively influenced by plasma selenium, one of the most important human antioxidants, is still unknown. Selenium and total IGF-1 were measured in 951 men and women ≥ 65 years from the InCHIANTI study, Tuscany, Italy. Means (SD) of plasma selenium and total IGF-1 were 0.95 (0.15) μmol/L and 113.4 (31.2)ng/mL, respectively. After adjustment for age and sex, selenium levels were positively associated with total IGF-1 (β±SE: 43.76±11.2, p=0.0001). After further adjustment for total energy and alcohol intake, serum alanine aminotransferase (ALT), congestive heart failure, selenium remained significantly associated with IGF-1 (β±SE: 36.7±12.2, p=0.003). The association was still significant when IL-6 was introduced in the model (β±SE: 40.1±12.0, p=0.0008). We found an independent, positive and significant association between selenium and IGF-1 serum levels in community dwelling older adults. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Combating resistance to anti-IGFR antibody by targeting the integrin β3-Src pathway.
Shin, Dong Hoon; Lee, Hyo-Jong; Min, Hye-Young; Choi, Sun Phil; Lee, Mi-Sook; Lee, Jung Weon; Johnson, Faye M; Mehta, Kapil; Lippman, Scott M; Glisson, Bonnie S; Lee, Ho-Young
2013-10-16
Several phase II/III trials of anti-insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies (mAbs) have shown limited efficacy. The mechanisms of resistance to IGF-1R mAb-based therapies and clinically applicable strategies for overcoming drug resistance are still undefined. IGF-1R mAb cixutumumab efficacy, alone or in combination with Src inhibitors, was evaluated in 10 human head and neck squamous cell carcinoma (HNSCC) and six non-small cell lung cancer (NSCLC) cell lines in vitro in two- or three-dimensional culture systems and in vivo in cell line- or patient-derived xenograft tumors in athymic nude mice (n = 6-9 per group). Cixutumumab-induced changes in cell signaling and IGF-1 binding to integrin β3 were determined by Western or ligand blotting, immunoprecipitation, immunofluorescence, and cell adhesion analyses and enzyme-linked immunosorbent assay. Data were analyzed by the two-sided Student t test or one-way analysis of variance. Integrin β3-Src signaling cascade was activated by IGF-1 in HNSCC and NSCLC cells, when IGF-1 binding to IGF-1R was hampered by cixutumumab, resulting in Akt activation and cixutumumab resistance. Targeting integrin β3 or Src enhanced antitumor activity of cixutumumab in multiple cixutumumab-resistant cell lines and patient-derived tumors in vitro and in vivo. Mean tumor volume of mice cotreated with cixutumumab and integrin β3 siRNA was 133.7 mm(3) (95% confidence interval [CI] = 57.6 to 209.8 mm(3)) compared with those treated with cixutumumab (1472.5 mm(3); 95% CI = 1150.7 to 1794.3 mm(3); P < .001) or integrin β3 siRNA (903.2 mm(3); 95% CI = 636.1 to 1170.3 mm(3); P < .001) alone. Increased Src activation through integrin ανβ3 confers considerable resistance against anti-IGF-1R mAb-based therapies in HNSCC and NSCLC cells. Dual targeting of the IGF-1R pathway and collateral integrin β3-Src signaling module may override this resistance.
Combating Resistance to Anti-IGFR Antibody by Targeting the Integrin β3-Src Pathway
2013-01-01
Background Several phase II/III trials of anti–insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies (mAbs) have shown limited efficacy. The mechanisms of resistance to IGF-1R mAb-based therapies and clinically applicable strategies for overcoming drug resistance are still undefined. Methods IGF-1R mAb cixutumumab efficacy, alone or in combination with Src inhibitors, was evaluated in 10 human head and neck squamous cell carcinoma (HNSCC) and six non–small cell lung cancer (NSCLC) cell lines in vitro in two- or three-dimensional culture systems and in vivo in cell line– or patient-derived xenograft tumors in athymic nude mice (n = 6–9 per group). Cixutumumab-induced changes in cell signaling and IGF-1 binding to integrin β3 were determined by Western or ligand blotting, immunoprecipitation, immunofluorescence, and cell adhesion analyses and enzyme-linked immunosorbent assay. Data were analyzed by the two-sided Student t test or one-way analysis of variance. Results Integrin β3–Src signaling cascade was activated by IGF-1 in HNSCC and NSCLC cells, when IGF-1 binding to IGF-1R was hampered by cixutumumab, resulting in Akt activation and cixutumumab resistance. Targeting integrin β3 or Src enhanced antitumor activity of cixutumumab in multiple cixutumumab-resistant cell lines and patient-derived tumors in vitro and in vivo. Mean tumor volume of mice cotreated with cixutumumab and integrin β3 siRNA was 133.7mm3 (95% confidence interval [CI] = 57.6 to 209.8mm3) compared with those treated with cixutumumab (1472.5mm3; 95% CI = 1150.7 to 1794.3mm3; P < .001) or integrin β3 siRNA (903.2mm3; 95% CI = 636.1 to 1170.3mm3; P < .001) alone. Conclusions Increased Src activation through integrin ανβ3 confers considerable resistance against anti–IGF-1R mAb-based therapies in HNSCC and NSCLC cells. Dual targeting of the IGF-1R pathway and collateral integrin β3–Src signaling module may override this resistance. PMID:24092920
Ribeiro, Márcio; Rosenstock, Tatiana R; Oliveira, Ana M; Oliveira, Catarina R; Rego, A Cristina
2014-09-01
Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit. Copyright © 2014 Elsevier Inc. All rights reserved.
2015-01-01
The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC–MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediary metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity. PMID:24555535
Lee, Su Hwan; Shin, Ju Hye; Song, Joo Han; Leem, Ah Young; Park, Moo Suk; Kim, Young Sam; Chang, Joon; Chung, Kyung Soo
2018-04-15
Insulin-like growth factor-1 (IGF-1) levels are known to increase in the bronchoalveolar lavage fluid (BALF) of patients with acute respiratory distress syndrome. Herein, we investigated the role of IGF-1 in lipopolysaccharide (LPS)-induced lung injury. In LPS-treated cells, expressions of receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like protein (MLKL) were decreased in IGF-1 receptor small interfering RNA (siRNA)-treated cells compared to control cells. The levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, and macrophage inflammatory protein 2/C-X-C motif chemokine ligand 2 in the supernatant were significantly reduced in IGF-1 receptor siRNA-treated cells compared to control cells. In LPS-induced murine lung injury model, total cell counts, polymorphonuclear leukocytes counts, and pro-inflammatory cytokine levels in the BALF were significantly lower and histologically detected lung injury was less common in the group treated with IGF-1 receptor monoclonal antibody compared to the non-treated group. On western blotting, RIP3 and phosphorylated MLKL expressions were relatively decreased in the IGF-1 receptor monoclonal antibody group compared to the non-treated group. IGF-1 may be associated with RIP3-mediated necroptosis in vitro, while blocking of the IGF-1 pathway may reduce LPS-induced lung injuries in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
Hu, Shao-Yang; Tai, Chen-Chen; Li, Yen-Hsing; Wu, Jen-Leih
2012-09-21
It is well known that growth hormone (GH)-induced IGF-1 signaling plays a dominant role in postnatal muscle growth. Our previous studies have identified a growth factor, progranulin (PGRN), that is co-induced with IGF-1 upon GH administration. This result prompted us to explore the function of PGRN and its association with IGF-1. In the present study, we demonstrated that, similar to IGF-1, PGRN can promote C2C12 myotube hypertrophy via the PI(3)K/Akt/mTOR pathway. Moreover, PGRN can rescue the muscle atrophy phenotypes in C2C12 myotube when IGF-1 signaling is blocked. This result shows that PGRN can substitute for IGF-1 signaling in the regulation of muscle growth. Our findings provide new insights into IGF-1-modulated complicated networks that regulate muscle growth. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Kim, Sungwoo; Kang, Yunqing; Krueger, Chad A.; Sen, Milan; Holcomb, John B.; Chen, Di; Wenke, Joseph C.; Yang, Yunzhi
2012-01-01
The purpose of this study was to develop and characterize a chitosan gel/gelatin microspheres (MSs) dual delivery system for sequential release of bone morphogenetic protein-2 (BMP-2) and insulin-like growth factor-1 (IGF-1) to enhance osteoblast differentiation in vitro. We made and characterized the delivery system based on its degree of cross-linking, degradation, and release kinetics. We also evaluated the cytotoxicity of the delivery system and the effect of growth factors on cell response using pre-osteoblast W-20-17 mouse bone marrow stromal cells. IGF-1 was first loaded into MSs, and then the IGF-1 containing MSs were encapsulated into the chitosan gel which contained BMP-2. Cross-linking of gelatin with glyoxal via Schiff bases significantly increased thermal stability and decreased the solubility of the MSs, leading to a significant decrease in the initial release of IGF-1. Encapsulation of the MSs into the chitosan gel generated polyelectrolyte complexes by intermolecular interactions, which further affected the release kinetics of IGF-1. This combinational delivery system provided an initial release of BMP-2 followed by a slow and sustained release of IGF-1. Significantly greater alkaline phosphatase activity was found in W-20-17 cells treated with the sequential delivery system than other treatments (p<0.05) after a week of culture. PMID:22293583
Small, Theodore W; Pickering, J Geoffrey
2009-09-11
WTAP (Wilms tumor 1-associating protein) is a recently identified nuclear protein that is essential for mouse embryo development. The Drosophila homolog of WTAP, Fl(2)d, regulates pre-mRNA splicing; however, the role of WTAP in mammalian cells is uncertain. To elucidate a context for WTAP action, we screened growth and survival factors for their effects on WTAP expression in vascular smooth muscle cells (SMCs), a cell type previously found to express WTAP dynamically. This revealed that insulin-like growth factor-1 (IGF-1) uniquely reduced WTAP abundance. This decline in WTAP proved to be necessary for IGF-1 to confer its antiapoptotic properties, which were blocked by transducing the WTAP gene into SMCs. WTAP down-regulation by IGF-1 was mediated by an IGF-1 receptor-phosphatidylinositol 3-kinase-Akt signaling axis that directed WTAP degradation via a nuclear 26 S proteasome. Moreover, by promoting the degradation of WTAP, IGF-1 shifted the pre-mRNA splicing program for the survival factor, survivin, to reduce expression of survivin-2B, which is proapoptotic, and increase expression of survivin, which is antiapoptotic. Knockdown of survivin-2B rescued the ability of IGF-1 to promote survival when WTAP was overexpressed. These data uncover a novel regulatory cascade for human SMC survival based on adjusting the nuclear abundance of WTAP to define the splice variant balance among survivin isoforms.
Activation of IGF-2R stimulates cardiomyocyte hypertrophy in the late gestation sheep fetus
Wang, Kimberley C W; Brooks, Doug A; Thornburg, Kent L; Morrison, Janna L
2012-01-01
In vitro studies using rat and fetal sheep cardiomyocytes indicate that, in addition to its role as a clearance receptor, the insulin-like growth factor 2 receptor (IGF-2R) can induce cardiomyocyte hypertrophy. In the present study, we have determined the effect of specific activation of the IGF-2R in the heart of the late gestation fetus on cardiomyocyte development. Leu27IGF-2, an IGF-2R agonist, was infused into the fetal left circumflex coronary artery for 4 days beginning at 128.1 ± 0.4 days gestation. Ewes were humanely killed at 132.2 ± 1.2 days gestation (term, 150 days). Fetuses were delivered and hearts dissected to isolate the cardiomyocytes and to collect and snap-freeze tissue. Leu27IGF-2 infusion into the left circumflex coronary artery of fetal sheep increased the area of binucleated cardiomyocytes in the left, but not the right, ventricle. However, this infusion of Leu27IGF-2 did not change fetal weight, heart weight, blood pressure, blood gases or cardiomyocyte proliferation/binucleation. The increase in cardiomyocyte size in the Leu27IGF-2-infused group was associated with increased expression of proteins in the Gαs, but not the Gαq, signalling pathway. We concluded that infusion of Leu27IGF-2 into the left circumflex coronary artery causes cardiac IGF-2R activation in the left ventricle of the heart, and this stimulates cardiomyocyte hypertrophy in a Gαs-dependent manner. PMID:22930271
Rong, Shu-Ling; Wang, Yong-Jin; Wang, Xiao-Lin; Lu, Yong-Xin; Wu, Yin; Liu, Qi-Yun; Mi, Shao-Hua; Xu, Yu-Lan
2010-12-01
Tissue-engineered bioartificial muscle-based gene therapy represents a promising approach for the treatment of heart diseases. Experimental and clinical studies suggest that systemic administration of insulin-like growth factor-1 (IGF-1) protein or overexpression of IGF-1 in the heart exerts a favorable effect on cardiovascular function. This study aimed to investigate a chronic stage after myocardial infarction (MI) and the potential therapeutic effects of delivering a human IGF-1 gene by tissue-engineered bioartificial muscles (BAMs) following coronary artery ligation in Sprague-Dawley rats. Ligation of the left coronary artery or sham operation was performed. Primary skeletal myoblasts were retrovirally transduced to synthesize and secrete recombinant human insulin-like growth factor-1 (rhIGF-1), and green fluorescent protein (GFP), and tissue-engineered into implantable BAMs. The rats that underwent ligation were randomly assigned to 2 groups: MI-IGF group (n = 6) and MI-GFP group (n = 6). The MI-IGF group received rhIGF-secreting BAM (IGF-BAMs) transplantation, and the MI-GFP group received GFP-secreting BAM (GFP-BAMs) transplantation. Another group of rats served as the sham operation group, which was also randomly assigned to 2 subgroups: S-IGF group (n = 6) and S-GFP group (n = 6). The S-IGF group underwent IGF-1-BAM transplantation, and S-GFP group underwent GFP-BAM transplantation. IGF-1-BAMs and GFP-BAMs were implanted subcutaneously into syngeneic rats after two weeks of operation was performed. Four weeks after the treatment, hemodynamics was performed. IGF-1 was measured by radioimmunoassay, and then the rats were sacrificed and ventricular samples were subjected to immunohistochemistry. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine the mRNA expression of bax and Bcl-2. TNF-α and caspase 3 expression in myocardium was examined by Western blotting. Primary rat myoblasts were retrovirally transduced to secrete rhIGF-1 and tissue-engineered into implantable BAMs containing parallel arrays of postmitotic myofibers. In vitro, they secreted consistent levels of hIGF (0.4 - 1.2 µg×BAM(-1)×d(-1)). When implanted into syngeneic rat, IGF-BAMs secreted and delivered rhIGF. Four weeks after therapy, the hemodynamics was improved significantly in MI rats treated with IGF-BAMs compared with those treated with GFP-BAMs. The levels of serum IGF-1 were increased significantly in both MI and sham rats treated with IGF-BAM. The mRNA expression of bax was lower and Bcl-2 expression was higher in MI-IGF group than MI-GFP group (P < 0.05). Western blotting assay showed TNF-α and caspase 3 expression was lower in MI-IGF group than MI-GFP group after therapy. rhIGF-1 significantly improves left ventricular function and suppresses cardiomyocyte apoptosis in rats with chronic heart failure. Genetically modified tissue-engineered BAMs provide a method delivering recombinant protein for the treatment of heart failure.
Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne.
Ben-Amitai, D; Laron, Z
2011-08-01
The role of growth hormone, insulin, and insulin-like growth factor-1 (IGF-1) in the development of acne is incompletely understood. To study the effect of the absence of IGF-1 and its pharmacologic replacement on the occurrence of acne vulgaris. Laron syndrome (LS) is characterized by congenital IGF-1 deficiency. The study group consisted of 21 patients with classical LS, who underwent puberty: 13 (8 male, 5 female) untreated and under regular follow-up until age 20?48 years; and 8 (2 male, 6 female) treated with IGF-1 (70-200 μg/kg/day), including 6 adults (2 male, treated at age 14.5-29 years and 4 female, treated at age 30-37 years) and 2 adolescents (2 female, treated at age 3.5-16 years). The medical files were reviewed for occurrence of acne and the corresponding sex hormone levels, and the findings were compared between the treated and untreated patients. Puberty was delayed in all untreated patients. Only one patient had slight acne at age 22 years, when he reached full puberty. Among the 2 IGF-1 treated male patients, none acquired acne. Among the 6 treated female patients, 3 had signs of hyperandrogenism (oligo-amenorrhea) and acne during IGF-1 over-dosage. On reduction of the IGF-1 dose (to 50 μg/kg/day) or cessation of treatment, the acne disappeared in all 3 patients. This study demonstrates for the first time that serum IGF-1 deficiency prevents the occurrence of acne. The findings suggest that an interaction between IGF-1 and androgens is necessary for the development of acne. © 2010 The Authors. Journal of the European Academy of Dermatology and Venereology © 2010 European Academy of Dermatology and Venereology.
Quinlan, Patrick; Horvath, Alexandra; Nordlund, Arto; Wallin, Anders; Svensson, Johan
2017-12-01
Insulin-like growth factor-I (IGF-I) is important for the adult brain, but little is known of the role of IGF-I in Alzheimeŕs disease (AD) or vascular dementia (VaD). A prospective study of 342 patients with subjective or objective mild cognitive impairment recruited at a single memory clinic. We determined whether serum IGF-I concentrations at baseline were associated with the risk of all-cause dementia, AD, or VaD. Patients developing mixed forms of AD and VaD were defined as suffering from VaD. The statistical analyses included Cox proportional hazards regression analysis. During the follow-up (mean 3.6 years), 95 (28%) of the patients developed all-cause dementia [AD, n=37 (11%) and VaD, n=42 (12%)]. Low as well as high serum IGF-I (quartile 1 or 4 vs. quartiles 2-3) did not associate with all-cause dementia [crude hazard ratio (HR) 1.30, 95% confidence interval (CI): 0.81-2.08 and crude HR 1.05, 95% CI: 0.63-1.75, respectively] or AD (crude HR 0.79, 95% CI: 0.35-1.79 and crude HR 0.94, 95% CI: 0.43-2.06, respectively]. In contrast, low serum IGF-I concentrations were associated with increased risk of VaD (quartile 1 vs. quartiles 2-3, crude HR 2.22, 95% CI: 1.13-4.36). The latter association remained significant also after adjustment for multiple covariates. In a memory clinic population, low serum IGF-I was a risk marker for subsequent VaD whereas low IGF-I did not associate with the risk of AD. High serum IGF-I was not related to the risk of conversion to dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Sainan; Mu, Jinquan; Fan, Zhipeng; Yu, Yan; Yan, Ming; Lei, Gang; Tang, Chunbo; Wang, Zilu; Zheng, Yangyu; Yu, Jinhua; Zhang, Guangdong
2012-05-01
Insulin-like growth factor 1 (IGF-1) plays an important role in the regulation of tooth root development, and stem cells from apical papilla (SCAPs) are responsible for the formation of root pulp and dentin. To date, it remains unclear whether IGF-1 can regulate the function of SCAPs. In this study, SCAPs were isolated and purified from human immature root apex, and stimulated by 100 ng/mL exogenous IGF-1. The effects of IGF-1 on the proliferation and differentiation of SCAPs were subsequently investigated. IGF-1 treated SCAPs presented the morphological and ultrastructural changes. Cell proliferation, alkaline phosphatase (ALP) activity and mineralization capacity of SCAPs were increased by IGF-1. Western blot and quantitative RT-PCR analyses further demonstrated that the expression of osteogenic-related proteins and genes (e.g., alkaline phosphatase, runt-related transcription factor 2, osterix, and osteocalcin) was significantly up-regulated in IGF-1 treated SCAPs, whereas the expression of odontoblast-specific markers (e.g., dentin sialoprotein and dentin sialophosphoprotein) was down-regulated by IGF-1. In vivo results revealed that IGF-1 treated SCAPs mostly gave birth to bone-like tissues while untreated SCAPs mainly generated dentin-pulp complex-like structures after transplantation. The present study revealed that IGF-1 can promote the osteogenic differentiation and osteogenesis capacity of SCAPs, but weaken their odontogenic differentiation and dentinogenesis capability, indicating that IGF-1 treated SCAPs can be used as a potential candidate for bone tissue engineering. Copyright © 2011 Elsevier B.V. All rights reserved.
Meiyu, Qi; Liu, Di; Roth, Zvi
2015-08-01
An in vitro model of embryo production was used to examine the effects of insulin-like growth factor (IGF)-I on maturation and developmental competence of oocytes exposed to heat shock. Cumulus-oocyte complexes were matured at 38.5°C or exposed to acute heat shock (HS; 41.5°C), with or without 100 ng/ml IGF-I, for 22 h through in vitro maturation. The experimental groups were control (C), C + IGF-I, HS, and HS + IGF-I. Oocytes were fertilized at the end of maturation, and the proportion of cleaved embryos was recorded 44 h later. HS during maturation increased the proportion of TUNEL-positive oocytes (P < 0.05). HS did not have any effect on cortical granule translocation but impaired resumption of meiosis, expressed as a decreased proportion of oocytes with nuclei in metaphase I (P < 0.05) and metaphase II (MII; P < 0.05). HS decreased the proportion of oocytes that cleaved (P < 0.05), in particular those oocytes that further developed to 4-cell-stage embryos (P < 0.05). IGF-I alleviated, to some extent, the deleterious effects of HS on the oocytes as reflected by a reduced proportion of TUNEL-positive oocytes (P < 0.03). While not significant, IGF-I tended to increase the proportion of MII-stage oocytes (P < 0.08) and 4-cell-stage cleaved embryos (P < 0.06). Further examination is required to explore whether IGF-I also affects the developmental competence of oocytes exposed to HS.
Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMorris, F.A.; Smith, T.M.; DeSalvo, S.
1986-02-01
Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetalmore » bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition.« less
Zhang, Yuan; Qin, Wenjuan; Qian, Zhiyuan; Liu, Xingjun; Wang, Hua; Gong, Shan; Sun, Yan-Gang; Snutch, Terrance P; Jiang, Xinghong; Tao, Jin
2014-10-07
Insulin-like growth factor 1 (IGF-1) is implicated in the nociceptive (pain) sensitivity of primary afferent neurons. We found that the IGF-1 receptor (IGF-1R) functionally stimulated voltage-gated T-type Ca(2+) (CaV3) channels in mouse dorsal root ganglia (DRG) neurons through a mechanism dependent on heterotrimeric G protein (heterotrimeric guanine nucleotide-binding protein) signaling. IGF-1 increased T-type channel currents in small-diameter DRG neurons in a manner dependent on IGF-1 concentration and IGF-1R but independent of phosphatidylinositol 3-kinase (PI3K). The intracellular subunit of IGF-1R coimmunoprecipitated with Gαo. Blocking G protein signaling by the intracellular application of guanosine diphosphate (GDP)-β-S or with pertussis toxin abolished the stimulatory effects of IGF-1. Antagonists of protein kinase Cα (PKCα), but not of PKCβ, abolished the IGF-1-induced T-type channel current increase. Application of IGF-1 increased membrane abundance of PKCα, and PKCα inhibition (either pharmacologically or genetically) abolished the increase in T-type channel currents stimulated by IGF-1. IGF-1 increased action potential firing in DRG neurons and increased the sensitivity of mice to both thermal and mechanical stimuli applied to the hindpaw, both of which were attenuated by intraplantar injection of a T-type channel inhibitor. Furthermore, inhibiting IGF-1R signaling or knocking down CaV3.2 or PKCα in DRG neurons abolished the increased mechanical and thermal sensitivity that mice exhibited under conditions modeling chronic hindpaw inflammation. Together, our results showed that IGF-1 enhances T-type channel currents through the activation of IGF-1R that is coupled to a G protein-dependent PKCα pathway, thereby increasing the excitability of DRG neurons and the sensitivity to pain. Copyright © 2014, American Association for the Advancement of Science.
Reddy, M Ashwin; Patel, Himanshu I; Karim, Shah M; Lock, Helen; Perry, Leslie; Bunce, Catey; Kempley, Steve; Sinha, Ajay K
2016-04-01
To validate known risk factors and identify a threshold level for serum insulin-like growth factor 1 (IGF-1) in the development of severe retinopathy of prematurity (ROP) in an ethnically diverse population at a tertiary neonatal unit, 2011-2013. A prospective cohort masked study was conducted. Serum IGF-1 levels at 31, 32 and 33 weeks were measured and risk factor data collected including gestational age (GA), birth weight (BW), absolute weight gain (AWG) and maternal ethnicity. The eventual ROP outcome was divided into two groups: minimal ROP (Stages 0 and 1) and severe ROP (Stage 2 or worse including Type 1 ROP). 36 patients were recruited: 14 had minimal ROP and 22 severe ROP. Significant differences between the groups were found in GA, BW, AWG and IGF-1 at 32 and 33 weeks. There was minimal rise in IGF-1 in Stage 2 patients and/or black patients (p=0.0013) between 32 and 33 weeks but no pragmatic threshold level of IGF-1 that could distinguish between minimal or severe ROP. There were significant differences in GA, BW, AWG and IGF-1 at 32 and 33 weeks between those babies with severe ROP and those with minimal ROP. However, there was no threshold level of IGF-1 at a time point between 31 and 33 weeks that can be used to exclude a large proportion of babies from screening. We also found ethnic differences in IGF-1 levels with infants born to black mothers having significantly lower IGF-1 levels at 32 and 33 weeks gestation. The determination of ROP risk using IGF-1 is a race-specific phenomenon. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Szymkowicz, Dana B; Sims, Kaleigh C; Castro, Noemi M; Bridges, William C; Bain, Lisa J
2017-05-01
Arsenic is a contaminant of drinking water and crops in many parts of the world. Epidemiological studies have shown that arsenic exposure is linked to decreased birth weight, weight gain, and proper skeletal muscle function. The goal of this study was to use killifish (Fundulus heteroclitus) as a model to determine the long-term effects of embryonic-only arsenic exposure on muscle growth and the insulin-like growth factor (IGF) pathway. Killifish embryos were exposed to 0, 50, 200 or 800ppb As III from fertilization until hatching. Juvenile fish were reared in clean water and muscle samples were collected at 16, 28, 40 and 52 weeks of age. There were significant reductions in condition factors, ranging from 12 to 17%, in the fish exposed to arsenic at 16, 28 and 40 weeks of age. However, by 52 weeks, no significant changes in condition factors were seen. Alterations in IGF-1R and IGF-1 levels were assessed as a potential mechanism by which growth was reduced. While there no changes in hepatic IGF-1 transcripts, skeletal muscle cells can also produce their own IGF-1 and/or alter IGF-1 receptor levels to help enhance growth. After a 200 and 800ppb embryonic exposure, fish grown in clean water for 16 weeks had IGF-1R transcripts that were 2.8-fold and 2-fold greater, respectively, than unexposed fish. Through 40 weeks of age, IGF1-R remained elevated in the 200ppb and 800ppb embryonic exposure groups by 1.8-3.9-fold, while at 52 weeks of age, IGF-1R levels were still significantly increased in the 800ppb exposure group. Skeletal muscle IGF-1 transcripts were also significantly increased by 1.9-5.1 fold through the 52 weeks of grow-out in clean by water in the 800ppb embryonic exposure group. Based on these results, embryonic arsenic exposure has long-term effects in that it reduces growth and increases both IGF-1 and IGF-1R levels in skeletal muscle even 1year after the exposure has ended. Copyright © 2017 Elsevier B.V. All rights reserved.
Temporal requirements of insulin/IGF-1 signaling for proteotoxicity protection.
Cohen, Ehud; Du, Deguo; Joyce, Derek; Kapernick, Erik A; Volovik, Yuli; Kelly, Jeffery W; Dillin, Andrew
2010-04-01
Toxic protein aggregation (proteotoxicity) is a unifying feature in the development of late-onset human neurodegenerative disorders. Reduction of insulin/IGF-1 signaling (IIS), a prominent lifespan, developmental and reproductive regulatory pathway, protects worms from proteotoxicity associated with the aggregation of the Alzheimer's disease-linked Abeta peptide. We utilized transgenic nematodes that express human Abeta and found that late life IIS reduction efficiently protects from Abeta toxicity without affecting development, reproduction or lifespan. To alleviate proteotoxic stress in the animal, the IIS requires heat shock factor (HSF)-1 to modulate a protein disaggregase, while DAF-16 regulates a presumptive active aggregase, raising the question of how these opposing activities could be co-regulated. One possibility is that HSF-1 and DAF-16 have distinct temporal requirements for protection from proteotoxicity. Using a conditional RNAi approach, we found an early requirement for HSF-1 that is distinct from the adult functions of DAF-16 for protection from proteotoxicity. Our data also indicate that late life IIS reduction can protect from proteotoxicity when it can no longer promote longevity, strengthening the prospect that IIS reduction might be a promising strategy for the treatment of neurodegenerative disorders caused by proteotoxicity.
Yuldasheva, Nadira Y; Rashid, Sheikh Tawqeer; Haywood, Natalie J; Cordell, Paul; Mughal, Romana; Viswambharan, Hema; Imrie, Helen; Sukumar, Piruthivi; Cubbon, Richard M; Aziz, Amir; Gage, Matthew; Mbonye, Kamatamu Amanda; Smith, Jessica; Galloway, Stacey; Skromna, Anna; Scott, D Julian A; Kearney, Mark T; Wheatcroft, Stephen B
2014-09-01
Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury. © 2014 American Heart Association, Inc.
Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu
2011-08-01
Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder. Copyright © 2011 Elsevier Inc. All rights reserved.
IGF-1 prevents simvastatin-induced myotoxicity in C2C12 myotubes.
Bonifacio, Annalisa; Sanvee, Gerda M; Brecht, Karin; Kratschmar, Denise V; Odermatt, Alex; Bouitbir, Jamal; Krähenbühl, Stephan
2017-05-01
Statins are generally well tolerated, but treatment with these drugs may be associated with myopathy. The mechanisms of statin-associated myopathy are not completely understood. Statins inhibit AKT phosphorylation by an unclear mechanism, whereas insulin-like growth factor (IGF-1) activates the IGF-1/AKT signaling pathway and promotes muscle growth. The aims of the study were to investigate mechanisms of impaired AKT phosphorylation by simvastatin and to assess effects of IGF-1 on simvastatin-induced myotoxicity in C2C12 myotubes. C2C12 mouse myotubes were exposed to 10 μM simvastatin and/or 10 ng/mL IGF-1 for 18 h. Simvastatin inhibited the IGF-1/AKT signaling pathway, resulting in increased breakdown of myofibrillar proteins, impaired protein synthesis and increased apoptosis. Simvastatin inhibited AKT S473 phosphorylation, indicating reduced activity of mTORC2. In addition, simvastatin impaired stimulation of AKT T308 phosphorylation by IGF-1, indicating reduced activation of the IGF-1R/PI3K pathway by IGF-1. Nevertheless, simvastatin-induced myotoxicity could be at least partially prevented by IGF-1. The protective effects of IGF-1 were mediated by activation of the IGF-1R/AKT signaling cascade. Treatment with IGF-1 also suppressed muscle atrophy markers, restored protein synthesis and inhibited apoptosis. These results were confirmed by normalization of myotube morphology and protein content of C2C12 cells exposed to simvastatin and treated with IGF-1. In conclusion, impaired activity of AKT can be explained by reduced function of mTORC2 and of the IGF-1R/PI3K pathway. IGF-1 can prevent simvastatin-associated cytotoxicity and metabolic effects on C2C12 cells. The study gives insight into mechanisms of simvastatin-associated myotoxicity and provides potential targets for therapeutic intervention.
Spichiger, A C; Allenspach, K; Ontsouka, E; Gaschen, F; Morel, C; Blum, J W; Sauter, S N
2005-12-01
Repair processes of the inflamed intestine are very important for dissolution of chronic enteropathies (CE). Therefore, we examined the mRNA abundance of growth hormone receptor (GHR), insulin-like growth factors (IGF)-1 and -2 in duodenal and colonic biopsies of dogs with CE such as food-responsive diarrhoea (FRD) and inflammatory bowel disease (IBD) before and after treatment as compared with each other and healthy dogs. A clinical score (Canine IBD Activity Index = CIBDAI) was applied to judge the severity of CE. Biopsies of duodenum and colon from client-owned dogs with CE were sampled before (FRD(bef), n = 5; IBD(bef), n = 5) and after treatment (FRD(aft), n = 5; IBD(aft), n = 5). Intestinal control samples were available from a homogenous control population (n = 15; C). Intestinal samples were homogenized, total RNA was extracted, reverse transcribed and analysed by real-time polymerase chain reaction to measure mRNA levels of GHR, IGF-1 and IGF-2. Results were normalized with glyceraldehyde phosphate dehydrogenase as housekeeping gene. The CIBDAI decreased during the treatment period in FRD and IBD (P < 0.01). In duodenum, GHR mRNA levels were higher in all groups than in C (P < 0.001). Duodenal IGF-1 mRNA levels in FRD(aft) and IBD(aft) tended to be higher than in C (P < 0.1). The IGF-2 mRNA abundance in FRD(aft) was higher than in C (P < 0.05) in duodenum. In colon, mRNA levels of IGF-1 in IBD(aft) were higher than in FRD(aft) (P < 0.05) and levels differed between IBD(aft) and C (P < 0.05). In conclusion, mRNA levels of GHR, IGF-1 and IGF-2 in the gastrointestinal tract were increased during CE when compared with gastrointestinally healthy dogs. The data suggest that GHR, IGF-1 and IGF-2 are involved in gastrointestinal repair processes.
Nindl, Bradley C; Scofield, Dennis E; Strohbach, Cassandra A; Centi, Amanda J; Evans, Rachel K; Yanovich, Ran; Moran, Daniel S
2012-07-01
Insulin-like growth factor 1 (IGF-I) is a robust metabolic and anabolic biomarker that has been demonstrated to be reflective of military training-induced body composition changes and influenced by initial aerobic fitness level. Greater mechanistic insight into the IGF-I response to physical training can potentially be gleaned by also examining other regulatory factors that influence IGF-I biological activity (i.e., insulin-like growth factor-binding proteins [IGFBPs] and inflammatory cytokine responses). The purpose of this study was to assess the influence of sex and initial fitness level on the IGF-I and inflammatory cytokine response to gender-integrated Israeli Defense Forces (IDF) basic combat training (BCT). Recruits (29 men, 19.1 ± 1.3 years; 93 women, 18.8 ± 0.6 years) were recruited from a 4-month gender-integrated BCT of the IDF. Blood was drawn and assayed for total IGF-I, free IGF-I, IGFBPs 1-6, tumor necrosis factor alpha (TNF-α), interleukin 6, and interleukin 1 beta. Body composition was determined via a 4-site skinfold (biceps, triceps, suprailiac, and subscapular) equation. Physical performance was assessed via a maximum volume of oxygen consumption (V[Combining Dot Above]O₂max) test using a treadmill protocol. All measures were obtained pre- and posttraining. A 2-way (sex × time) analysis of variance was used to test for statistical differences (p ≤ 0.05). Additionally, subjects were further partitioned (men and women separately) by tertiles of initial V[Combining Dot Above]O₂max to assess the influence of initial fitness level on the IGF-I system and inflammatory cytokine responses to physical training. Pearson product moment correlational analysis was also used to examine relationships between percent changes in blood measures and physical performance and body composition changes. All data are presented as mean ± SE. Time effects were observed only for total IGF-I, IGFBP-2, TNF-α, V[Combining Dot Above]O₂max, fat-free mass, and fat mass. The only significant (p ≤ 0.05) correlations observed for percent changes were in men between total IGF-I and V[Combining Dot Above]O₂max (r = 0.49) and body mass (r = -0.42) During gender-integrated Israeli Army BCT, men and women generally respond in a similar fashion with regard to blood measures (IGF-I system and inflammatory cytokines) and V[Combining Dot Above]O₂max. Initial fitness level only influenced the IGF-I response to training in women. Although the training-induced changes in total IGF-I (increase), IGFBP-2 (decrease), and TNF-α (decrease) are all indicative of an enhanced circulating anabolic milieu, only total IGF-I for the men was correlated with body composition and fitness improvements.
Luo, T David; Alton, Timothy B; Apel, Peter J; Cai, Jiaozhong; Barnwell, Jonathan C; Sonntag, William E; Smith, Thomas L; Li, Zhongyu
2016-10-01
Neurotrophin receptors, such as p75(NTR) , direct neuronal response to injury. Insulin-like growth factor-1 receptor (IGF-1R) mediates the increase in p75(NTR) during aging. The aim of this study was to examine the effect of aging and insulin-like growth factor-1 (IGF-1) treatment on recovery after peripheral nerve injury. Young and aged rats underwent tibial nerve transection with either local saline or IGF-1 treatment. Neurotrophin receptor mRNA and protein expression were quantified. Aged rats expressed elevated baseline IGF-1R (34% higher, P = 0.01) and p75(NTR) (68% higher, P < 0.01) compared with young rats. Post-injury, aged animals expressed significantly higher p75(NTR) levels (68.5% above baseline at 4 weeks). IGF-1 treatment suppressed p75(NTR) gene expression at 4 weeks (17.2% above baseline, P = 0.002) post-injury. Local IGF-1 treatment reverses age-related declines in recovery after peripheral nerve injuries by suppressing p75(NTR) upregulation and pro-apoptotic complexes. IGF-1 may be considered a viable adjuvant therapy to current treatment modalities. Muscle Nerve 54: 769-775, 2016. © 2016 Wiley Periodicals, Inc.
Yang, Bing; Wagner, Jennifer; Damaschke, Nathan; Yao, Tianyu; Wuerzberger-Davis, Shelly M.; Lee, Moon-Hee; Svaren, John; Miyamoto, Shigeki; Jarrard, David F.
2014-01-01
Genomic imprinting is the allele-specific expression of a gene based on parental origin. Loss of imprinting(LOI) of Insulin-like Growth Factor 2 (IGF2) during aging is important in tumorigenesis, yet the regulatory mechanisms driving this event are largely unknown. In this study oxidative stress, measured by increased NF-κB activity, induces LOI in both cancerous and noncancerous human prostate cells. Decreased expression of the enhancer-blocking element CCCTC-binding factor(CTCF) results in reduced binding of CTCF to the H19-ICR (imprint control region), a major factor in the allelic silencing of IGF2. This ICR then develops increased DNA methylation. Assays identify a recruitment of the canonical pathway proteins NF-κB p65 and p50 to the CTCF promoter associated with the co-repressor HDAC1 explaining gene repression. An IκBα super-repressor blocks oxidative stress-induced activation of NF-κB and IGF2 imprinting is maintained. In vivo experiments using IκBα mutant mice with continuous NF-κB activation demonstrate increased IGF2 LOI further confirming a central role for canonical NF-κB signaling. We conclude CTCF plays a central role in mediating the effects of NF-κB activation that result in altered imprinting both in vitro and in vivo. This novel finding connects inflammation found in aging prostate tissues with the altered epigenetic landscape. PMID:24558376
Directional control of WAVE2 membrane targeting by EB1 and phosphatidylinositol 3,4,5-triphosphate.
Takahashi, Kazuhide; Tanaka, Tacu; Suzuki, Katsuo
2010-03-01
Membrane targeting of WAVE2 along microtubules is mediated by a motor protein kinesin and requires Pak1, a downstream effector of Rac1. However, the mechanism by which WAVE2 targeting to the leading edge is directionally controlled remains largely unknown. Here we demonstrate that EB1, a microtubule plus-end-binding protein, constitutively associates with stathmin, a microtubule-destabilizing protein, in human breast cancer cells. Stimulation of the cells with insulin-like growth factor I (IGF-I) induced Pak1-dependent binding of the EB1-stathmin complex to microtubules that bear WAVE2 and colocalization of the complex with WAVE2 at the leading edge. Depletion of EB1 by small interfering RNA (siRNA) abrogated the IGF-I-induced WAVE2 targeting and stathmin binding to microtubules. On the other hand, chemotaxis chamber assays indicated that the IGF-I receptor (IGF-IR) was locally activated in the region facing toward IGF-I. In addition, IGF-I caused phosphatidylinositol 3-kinase (PI 3-kinase)-dependent production of phosphatidylinositol 3,4,5-triphosphate (PIP3) near activated IGF-IR and WAVE2 colocalization with it. Collectively, WAVE2-membrane targeting is directionally controlled by binding of the EB1-stathmin complex to WAVE2-bearing microtubules and by the interaction between WAVE2 and PIP3 produced near IGF-IR that is locally activated by IGF-I.
2011-01-01
Background Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. Methods We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm3. For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. Results TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Conclusion Using the first transgenic animal model to elevate circulating levels of IGF-I to those comparable to women at increased risk of breast cancer, we showed that moderately high levels of systemic IGF-I have no effect on pubertal mammary gland development, initiating mammary tumorigenesis or promoting ErbB2 driven mammary carcinogenesis. Our work suggests that ErbB2-induced mammary tumorigenesis is independent of the normal variation in circulating levels of IGF-I. PMID:21867536
Kim, Tae Ho; Chang, Jae Hyuck; Lee, Hee Jin; Kim, Jean A; Lim, Yeon Soo; Kim, Chang Whan; Han, Sok Won
2016-01-01
Abstract Although advances have been made in diagnostic tools, the distinction between malignant and benign biliary strictures still remains challenging. Intraductal brush cytology is a convenient and safe method that is used for the diagnosis of biliary stricture, but, low sensitivity limits its usefulness. This study aimed to demonstrate the usefulness of mRNA expression levels of target genes in brush cytology specimens combined with cytology for the diagnosis of malignant biliary stricture. Immunohistochemistry for cadherin 3 (CDH3), p53, insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3), homeobox B7 (HOXB7), and baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) was performed in 4 benign and 4 malignant bile duct tissues. Through endoscopic or interventional radiologic procedures, brush cytology specimens were prospectively obtained in 21 and 35 paitents with biliary strictures. In the brush cytology specimens, the mRNA expressions levels of 5 genes were determined by real-time polymerase chain reaction. Immunohistochemistry for CDH3, p53, IGF2BP3, HOXB7, and BIRC5 all showed positive staining in malignant tissues in contrast to benign tissues, which were negative. In the brush cytology specimens, the mRNA expression levels of CDH3, IGF2BP3, HOXB7, and BIRC5 were significantly higher in cases of malignant biliary stricture compared with cases of benign stricture (P = 0.006, P < 0.001, P < 0.001, and P = 0.001). The receiver-operating characteristic curves of these 4 mRNAs demonstrated that mRNA expression levels are useful for the prediction of malignant biliary stricture (P = 0.006, P < 0.001, P < 0.001, and P = 0.002). The sensitivity and specificity, respectively, for malignant biliary stricture were 57.1% and 100% for cytology, 57.1% and 64.3% for CDH3, 76.2% and 100% for IGF2BP3, 71.4% and 57.1% for HOXB7, and 76.2% and 64.3% for BIRC5. When cytology was combined with the mRNA levels of CDH3, IGF2BP3, or BIRC5, the sensitivity for malignant biliary stricture improved to 90.5%. The measurement of the mRNA expression levels of CDH3, IGF2BP3, and BIRC5 by real-time polymerase chain reaction combined with cytology was useful for the differentiation of malignant and benign biliary strictures in brush cytology specimens. PMID:27399126
Effects of prior exercise on the action of insulin-like growth factor I in skeletal muscle
NASA Technical Reports Server (NTRS)
Henriksen, E. J.; Louters, L. L.; Stump, C. S.; Tipton, C. M.
1992-01-01
Prior exercise increases insulin sensitivity for glucose and system A neutral amino acid transport activities in skeletal muscle. Insulin-like growth factor I (IGF-I) also activates these transport processes in resting muscle. It is not known, however, whether prior exercise increases IGF-I action in muscle. Therefore we determined the effect of a single exhausting bout of swim exercise on IGF-I-stimulated glucose transport activity [assessed by 2-deoxy-D-glucose (2-DG) uptake] and system A activity [assessed by alpha-(methylamino)isobutyric acid (MeAIB) uptake] in the isolated rat epitrochlearis muscle. When measured 3.5 h after exercise, the responses to a submaximal concentration (0.2 nM), but not a maximal concentration (13.3 nM), of insulin for activation of 2-DG uptake and MeAIB uptake were enhanced. In contrast, prior exercise increased markedly both the submaximal (5 nM) and maximal (20 nM) responses to IGF-I for activation of 2-DG uptake, whereas only the submaximal response to IGF-I (3 nM) for MeAIB uptake was enhanced after exercise. We conclude that 1) prior exercise significantly enhances the response to a submaximal concentration of IGF-I for activation of the glucose transport and system A neutral amino acid transport systems in skeletal muscle and 2) the enhanced maximal response for IGF-I action after exercise is restricted to the signaling pathway for activation of the glucose transport system.
Baroncelli, Laura; Cenni, Maria Cristina; Melani, Riccardo; Deidda, Gabriele; Landi, Silvia; Narducci, Roberta; Cancedda, Laura; Maffei, Lamberto; Berardi, Nicoletta
2017-02-01
Environmental enrichment (EE) has a remarkable impact on brain development. Continuous exposure to EE from birth determines a significant acceleration of visual system maturation both at retinal and cortical levels. A pre-weaning enriched experience is sufficient to trigger the accelerated maturation of the visual system, suggesting that factors affected by EE during the first days of life might prime visual circuits towards a faster development. The search for such factors is crucial not only to gain a better understanding of the molecular hierarchy of brain development but also to identify molecular pathways amenable to be targeted to correct atypical brain developmental trajectories. Here, we showed that IGF-1 levels are increased in the visual cortex of EE rats as early as P6 and this is a crucial event for setting in motion the developmental program induced by EE. Early intracerebroventricular (i.c.v.) infusion of IGF-1 in standard rats was sufficient to mimic the action of EE on visual acuity development, whereas blocking IGF-1 signaling by i.c.v. injections of the IGF-1 receptor antagonist JB1 prevented the deployment of EE effects. Early IGF-1 decreased the ratio between the expression of NKCC1 and KCC2 cation/chloride transporters, and the reversal potential for GABA A R-driven Cl - currents (E Cl ) was shifted toward more negative potentials, indicating that IGF-1 is a crucial factor in accelerating the maturation of GABAergic neurotransmission and promoting the developmental switch of GABA polarity from excitation to inhibition. In addition, early IGF-1 promoted a later occurring increase in its own expression, suggesting a priming effect of early IGF-1 in driving post-weaning cortical maturation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Pahor, Marco; Bandinelli, Stefania; Najjar, Samer S.; Ling, Shari M.; Basaria, Shehzad; Ruggiero, Carmelinda; Valenti, Giorgio; Ferrucci, Luigi
2009-01-01
Observational studies have shown that the use of angiotensin-converting enzyme (ACE) inhibitors is associated with the maintenance of greater muscle strength and physical performance in older subjects. However, the mechanism that underlies these beneficial effects remains poorly understood. Because ACE inhibitors block the production of angiotensin II, which is a potent inhibitor of insulin-like growth factor-1 (IGF-1) production, it was hypothesized that treatment with ACE inhibitors is associated with higher levels of IGF-1. This hypothesis was tested in 745 subjects (417 women, 328 men) enrolled in the Invecchiare in Chianti study. Of these, 160 were receiving ACE inhibitors. The association between ACE inhibitor use and serum IGF-1 was tested by linear regression models. After adjusting for multiple potential confounders, serum levels of total IGF-1 were significantly higher in participants receiving ACE inhibitors (mean ± SD 129.0 ± 56.1 ng/ml) compared with the rest of the study population (mean ± SD 116.5 ± 54.8 ng/ml) (p <0.001). Participants with short (<3 years) and long (3 to 9 years) treatment durations had higher serum IGF-1 levels than participants who were not receiving ACE inhibitor treatment, but the difference was statistically significant only for the short-duration group (p <0.05). In conclusion, in older subjects, treatment with ACE inhibitors for <3 years is associated with significantly higher levels of IGF-1. This may be 1 of the mechanisms by which ACE inhibitors might slow the decreases in muscle strength and physical function that are often observed in older subjects. PMID:16679098
Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Pahor, Marco; Bandinelli, Stefania; Najjar, Samer S; Ling, Shari M; Basaria, Shehzad; Ruggiero, Carmelinda; Valenti, Giorgio; Ferrucci, Luigi
2006-05-15
Observational studies have shown that the use of angiotensin-converting enzyme (ACE) inhibitors is associated with the maintenance of greater muscle strength and physical performance in older subjects. However, the mechanism that underlies these beneficial effects remains poorly understood. Because ACE inhibitors block the production of angiotensin II, which is a potent inhibitor of insulin-like growth factor-1 (IGF-1) production, it was hypothesized that treatment with ACE inhibitors is associated with higher levels of IGF-1. This hypothesis was tested in 745 subjects (417 women, 328 men) enrolled in the Invecchiare in Chianti study. Of these, 160 were receiving ACE inhibitors. The association between ACE inhibitor use and serum IGF-1 was tested by linear regression models. After adjusting for multiple potential confounders, serum levels of total IGF-1 were significantly higher in participants receiving ACE inhibitors (mean +/- SD 129.0 +/- 56.1 ng/ml) compared with the rest of the study population (mean +/- SD 116.5 +/- 54.8 ng/ml) (p <0.001). Participants with short (<3 years) and long (3 to 9 years) treatment durations had higher serum IGF-1 levels than participants who were not receiving ACE inhibitor treatment, but the difference was statistically significant only for the short-duration group (p <0.05). In conclusion, in older subjects, treatment with ACE inhibitors for <3 years is associated with significantly higher levels of IGF-1. This may be 1 of the mechanisms by which ACE inhibitors might slow the decreases in muscle strength and physical function that are often observed in older subjects.
Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1.
Dobie, Ross; Ahmed, Syed F; Staines, Katherine A; Pass, Chloe; Jasim, Seema; MacRae, Vicky E; Farquharson, Colin
2015-11-01
Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like-growth factor-1 (IGF-1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling-2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF-1 levels. Wild-type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P < 0.01). In the absence of SOCS2, GH treatment enhanced metatarsal linear growth over a 12 day period. Despite this increase, IGF-1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF-1 levels were unchanged in GH-challenged postnatal Socs2(-/-) conditioned medium despite metatarsals showing enhanced linear growth. Growth-plate Igf1 mRNA levels were not elevated in juvenile Socs2(-/-) mice. GH did however elevate IGF-binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2(-/-) metatarsals. GH did not enhance the growth of Socs2(-/-) metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF-2 may be responsible as IGF-2 promoted metatarsal growth and Igf2 expression was elevated in Socs2(-/-) (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2(-/-) mice, promoting growth via a mechanism that is independent of IGF-1. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
El-Magd, Mohammed Abu; Abo-Al-Ela, Haitham G; El-Nahas, Abeer; Saleh, Ayman A; Mansour, Ali A
2014-05-01
Insulin-like growth factor 2 receptor (IGF2R) is responsible for degradation of the muscle development initiator, IGF2, and thus it can be used as a marker for selection strategies in the farm animals. The aim of this study was to search for polymorphisms in three coding loci of IGF2R, and to analyze their effect on the growth traits and on the expression levels of IGF2R and IGF2 genes in the gluteus medius muscle of Egyptian buffaloes. A novel A266C SNP was detected in the coding sequences of the third IGF2R locus (at nucleotide number 51 of exon 23) among Egyptian water buffaloes. This SNP was non-synonymous mutation and led to replacement of Y (tyrosine) amino acid (aa) by D (aspartic acid) aa. Three different single-strand conformation polymorphism patterns were observed in the third IGF2R locus: AA, AC, and CC with frequencies of 0.555, 0.195, and 0.250, respectively. Statistical analysis showed that the homozygous AA genotype significantly associated with the average daily gain than AC and CC genotypes from birth to 9 mo of age. Expression analysis showed that the A266C SNP was correlated with IGF2, but not with IGF2R, mRNA levels in the gluteus medius muscle of Egyptian buffaloes. The highest IGF2 mRNA level was estimated in the muscle of animals with the AA homozygous genotype as compared to the AC heterozygotes and CC homozygotes. We conclude that A266C SNP at nucleotide number 51 of exon 23 of the IGF2R gene is associated with the ADG during the early stages of life (from birth to 9 mo of age) and this effect is accompanied by, and may be caused by, increased expression levels of the IGF2 gene. Copyright © 2014 Elsevier B.V. All rights reserved.
Fujita, Masaaki; Takada, Yoko K.; Takada, Yoshikazu
2013-01-01
Integrin αvβ3 plays a role in insulin-like growth factor 1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk) in non-transformed cells in anchorage-dependent conditions. We reported previously that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation in these conditions. The integrin-binding defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, whereas it still binds to IGF1R. We studied if IGF1 can induce signaling in anchorage-independent conditions in transformed Chinese hamster ovary cells that express αvβ3 (β3-CHO) cells. Here we describe that IGF1 signals were more clearly detectable in anchorage-independent conditions (polyHEMA-coated plates) than in anchorage-dependent conditions. This suggests that IGF signaling is masked by signals from cell-matrix interaction in anchorage-dependent conditions. IGF signaling required αvβ3 expression, and R36E/R37E was defective in inducing signals in polyHEMA-coated plates. These results suggest that αvβ3-IGF1 interaction, not αvβ3-extracellular matrix interaction, is essential for IGF signaling. Inhibitors of IGF1R, Src, AKT, and ERK1/2 did not suppress αvβ3-IGF-IGF1R ternary complex formation, suggesting that activation of these kinases are not required for ternary complex formation. Also, mutations of the β3 cytoplasmic tail (Y747F and Y759F) that block β3 tyrosine phosphorylation did not affect IGF1R phosphorylation or AKT activation. We propose a model in which IGF1 binding to IGF1R induces recruitment of integrin αvβ3 to the IGF-IGF1R complex and then β3 and IGF1R are phosphorylated. It is likely that αvβ3 should be together with the IGF1-IGF1R complex for triggering IGF signaling. PMID:23243309
Grosheva, Maria; Nohroudi, Klaus; Schwarz, Alisa; Rink, Svenja; Bendella, Habib; Sarikcioglu, Levent; Klimaschewski, Lars; Gordon, Tessa; Angelov, Doychin N
2016-05-01
After peripheral nerve injury, recovery of motor performance negatively correlates with the poly-innervation of neuromuscular junctions (NMJ) due to excessive sprouting of the terminal Schwann cells. Denervated muscles produce short-range diffusible sprouting stimuli, of which some are neurotrophic factors. Based on recent data that vibrissal whisking is restored perfectly during facial nerve regeneration in blind rats from the Sprague Dawley (SD)/RCS strain, we compared the expression of brain derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF2), insulin growth factors 1 and 2 (IGF1, IGF2) and nerve growth factor (NGF) between SD/RCS and SD-rats with normal vision but poor recovery of whisking function after facial nerve injury. To establish which trophic factors might be responsible for proper NMJ-reinnervation, the transected facial nerve was surgically repaired (facial-facial anastomosis, FFA) for subsequent analysis of mRNA and proteins expressed in the levator labii superioris muscle. A complicated time course of expression included (1) a late rise in BDNF protein that followed earlier elevated gene expression, (2) an early increase in FGF2 and IGF2 protein after 2 days with sustained gene expression, (3) reduced IGF1 protein at 28 days coincident with decline of raised mRNA levels to baseline, and (4) reduced NGF protein between 2 and 14 days with maintained gene expression found in blind rats but not the rats with normal vision. These findings suggest that recovery of motor function after peripheral nerve injury is due, at least in part, to a complex regulation of lesion-associated neurotrophic factors and cytokines in denervated muscles. The increase of FGF-2 protein and concomittant decrease of NGF (with no significant changes in BDNF or IGF levels) during the first week following FFA in SD/RCS blind rats possibly prevents the distal branching of regenerating axons resulting in reduced poly-innervation of motor endplates. Copyright © 2016 Elsevier Inc. All rights reserved.
Obermann-Borst, S A; Heijmans, B T; Eilers, P H C; Tobi, E W; Steegers, E A P; Slagboom, P E; Steegers-Theunissen, R P M
2012-10-01
Maternal smoking during pregnancy and a low socioeconomic status (SES) lead to increased risks of adverse pregnancy outcome. Maternal education is often used as proxy for SES. We explored the programming of the insulin pathway genes IGF2 DMR (insulin growth factor 2 differentially methylated region), IGF2R (insulin growth factor 2 receptor) and INSIGF [the overlapping region of IGF2 and insulin (INS)] in the child through any periconception maternal smoking and education level. In 120 children at 17 months of age, methylation of DNA derived from white blood cells was measured. Periconception smoking and low education were independently associated with INSIGF methylation and showed a relative increase in methylation of +1.3%; P = 0.043 and +1.6%; P = 0.021. Smoking and low education showed an additive effect on INSIGF methylation (+2.8%; P = 0.011). There were no associations with IGF2 DMR and IGF2R methylation. Our data suggest that periconception maternal smoking and low education are associated with epigenetic marks on INSIGF in the very young child, this warrants further study in additional populations.
Westley, Rosalyne L.; May, Felicity E. B.
2013-01-01
Obesity has reached epidemic proportions in the developed world. The progression from obesity to diabetes mellitus type 2, via metabolic syndrome, is recognised, and the significant associated increase in the risk of major human cancers acknowledged. We review the molecular basis of the involvement of morbidly high concentrations of endogenous or therapeutic insulin and of insulin-like growth factors in the progression from obesity to diabetes and finally to cancer. Epidemiological and biochemical studies establish the role of insulin and hyperinsulinaemia in cancer risk and progression. Insulin-like growth factors, IGF-1 and IGF-2, secreted by visceral or mammary adipose tissue have significant paracrine and endocrine effects. These effects can be exacerbated by increased steroid hormone production. Structural studies elucidate how each of the three ligands, insulin, IGF-1, and IGF-2, interacts differently with isoforms A and B of the insulin receptor and with type I IGF receptor and explain how these protagonists contribute to diabetes-associated cancer. The above should inform appropriate treatment of cancers that arise in obese individuals and in those with diabetes mellitus type 2. Novel drugs that target the insulin and insulin-like growth factor signal transduction pathways are in clinical trial and should be effective if appropriate biomarker-informed patient stratification is implemented. PMID:23983688
Wei, Min; Zheng, Sheng Z; Lu, Ye; Liu, Daniel; Ma, Hong; Mahady, Gail B
2015-10-01
Menoprogen (MPG), a traditional Chinese medicine formula for menopause, improves menopausal symptoms; however, its mechanism remains unknown. Previous studies have shown that MPG is not directly estrogenic; thus, the goal of this study was to investigate the effects of MPG on insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-1 (IGFBP-1) levels in an aged female rat model of menopause. In a six-arm study, 14-month-old female Sprague-Dawley rats (n = 8 per arm) were randomly divided into the following groups: untreated aged, 17β-estradiol-treated aged (estradiol [E2]), and three arms with increasing doses of MPG (162, 324, or 648 mg/kg/d). The sixth arm contained 4-month-old female Sprague-Dawley rats as a normal comparison group. Four weeks after MPG or E2 administration, animals were killed after blood draws, and ovarian tissues were excised. Levels of E2 and progesterone (P4) were determined by radioimmunoassay. Serum and ovarian tissue levels of IGF-1, IGFBP-1, and IGF-1 receptor were determined by enzyme-linked immunosorbent assay. Compared with the normal group, aged rats had significantly reduced serum levels of E2, P4, and IGF-1, and increased serum and ovarian tissue levels of IGFBP-1. MPG restored serum IGF-1 and IGFBP-1 levels and down-regulated ovarian levels of IGFBP-1, which were closely related to increases in E2 and P4 levels in aged rats. No significant differences in either IGF-1 or IGFBP-1 were observed between the three doses of MPG. MPG exerts a direct in vivo effect on aged female rats by positively regulating serum and ovarian IGF-1 and IGFBP-1 levels.
Gonzalez-Roibon, Nilda; Kim, Jenny J; Faraj, Sheila F; Chaux, Alcides; Bezerra, Stephania M; Munari, Enrico; Ellis, Carla; Sharma, Rajni; Keizman, Daniel; Bivalacqua, Trinity J; Schoenberg, Mark; Eisenberger, Mario; Carducci, Michael; Netto, George J
2014-06-01
To assess the insulin-like growth factor-1 receptor (IGF1R) expression in urothelial carcinoma (UC) and its prognostic role in relation to clinicopathologic parameters. A total of 100 cases of invasive UC were evaluated using tissue microarrays. Membranous IGF1R staining was evaluated using immunohistochemistry. A scoring method analogous to that of HER2 expression in breast carcinoma was used, and the highest score was assigned in each tumor. IGF1R was considered overexpressed in cases with score≥1. We found IGF1R overexpression in 62% of invasive UC. IGF1R overexpression was associated with race (P=.04) and pT category (P=.03). Median follow-up was 29 months (range, 0.5-212). Progression rate was 60%, and overall mortality and cancer-specific mortality rates were 69% and 51%, respectively. In invasive UC, IGF1R overexpression was significantly associated with overall mortality and cancer-specific mortality (Mantel Cox P=.0002 and P=.006, respectively). IGF1R overexpression was associated with increased hazard ratios (HRs) for overall mortality (HR=2.63, P=.001) and cancer-specific mortality (HR=2.45, P=.01), independently and after adjusting for clinicopathologic features and treatment modalities. We found IGF1R overexpression in 62% of bladder UC. More importantly, IGF1R overexpression was a significant predictor of overall mortality and cancer-specific mortality, suggesting its potential role as a prognosticator in UC of bladder. Copyright © 2014 Elsevier Inc. All rights reserved.
Hirakawa, Toshiki; Yashiro, Masakazu; Doi, Yosuke; Kinoshita, Haruhito; Morisaki, Tamami; Fukuoka, Tatsunari; Hasegawa, Tsuyoshi; Kimura, Kenjiro; Amano, Ryosuke; Hirakawa, Kosei
2016-01-01
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs), the expression of insulin-like growth factor-1 (IGF1) and IGF1 receptor (IGF1R) was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9) was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2) and hypoxia (1% O2). IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC.
Hemphill, D D; McIlwraith, C W; Slayden, R A; Samulski, R J; Goodrich, L R
2016-05-01
IGF-I is one of several anabolic factors being investigated for the treatment of osteoarthritis (OA). Due to the short biological half-life, extended administration is required for more robust cartilage healing. Here we create a self-complimentary adeno-associated virus (AAV) gene therapy vector utilizing the transgene for IGF-I. Various biochemical assays were performed to investigate the cellular response to scAAVIGF-I treatment vs an scAAVGFP positive transduction control and a negative for transduction control culture. RNA-sequencing analysis was also performed to establish a differential regulation profile of scAAVIGF-I transduced chondrocytes. Biochemical analyses indicated an average media IGF-I concentration of 608 ng/ml in the scAAVIGF-I transduced chondrocytes. This increase in IGF-I led to increased expression of collagen type II and aggrecan and increased protein concentrations of cellular collagen type II and media glycosaminoglycan vs both controls. RNA-seq revealed a global regulatory pattern consisting of 113 differentially regulated GO categories including those for chondrocyte and cartilage development and regulation of apoptosis. This research substantiates that scAAVIGF-I gene therapy vector increased production of IGF-I to clinically relevant levels with a biological response by chondrocytes conducive to increased cartilage healing. The RNA-seq further established a set of differentially expressed genes and gene ontologies induced by the scAAVIGF-I vector while controlling for AAV infection. This dataset provides a static representation of the cellular transcriptome that, while only consisting of one time point, will allow for further gene expression analyses to compare additional cartilage healing therapeutics or a transient cellular response. Copyright © 2015. Published by Elsevier Ltd.
Skottner, A; Clark, R G; Fryklund, L; Robinson, I C
1989-05-01
A new mutant GH-deficient dwarf rat has been used to study the effects of iv infusions of human GH (hGH) and recombinant human insulin-like growth factor I (hIGF-I). This animal has only about 5% of normal pituitary GH content, low circulating GH levels, and no regular GH surges. The defect seems to be specific for GH. Infusions of hIGF-I at 180 micrograms/day for 9 days elevated serum IGF-I concentrations significantly over those in the saline-infused controls (713 +/- 20 ng/ml vs. 395 +/- 31 ng/ml); hGH infusions did not raise IGF-I levels significantly (435 +/- 20 ng/ml). Gel filtration of serum samples showed that the high-dose hIGF-I infusions increased free IGF concentrations, without apparently altering the pattern of IGF-I binding whereas hGH infusions increased the amount of high mol wt IGF-I binding protein. Neither IGF-I nor hGH infusions affected the small amounts of rat GH present in the dwarf rat pituitary glands. Continuous iv infusions of hGH (200 mU/day for 9 days) stimulated body wt gain (2.1 +/- 0.2 g/day) and bone growth (96 +/- 9 microns/day) significantly compared to saline-infused dwarf rats (1.2 +/- 0.3 g/day and 43 +/- 3 microns/day). Infusions of hIGF-I at 180 micrograms/day produced a body wt gain (2.1 +/- 0.5 g/day) similar to that seen in the hGH-infused group but a significantly smaller stimulation of bone growth (63 +/- 3 microns/day). Infusion of a 5-fold lower dose of hIGF-I (36 micrograms/day for 9 days) had no effect on body wt or bone growth. Food intake was unaffected by either hGH or hIGF-I infusions. The pattern of tissue growth was affected differentially by hGH and IGF-I infusions that produced the same overall body wt gain. hGH induced a relatively proportional growth in most of the organs studied, whereas hIGF-I infusion at 180 micrograms/day stimulated a disproportionately greater growth of the kidney, adrenals, and spleen. In some of the animals, tissues were extracted for RIA of IGF-I; the amounts of IGF-I in the liver were similar in control, hGH, or IGF-I-infused animals, whereas kidney and adrenals from IGF-I infused animals contained larger amounts of immunoreactive IGF-I than did those tissues from hGH-treated rats. Thus, both hGH and hIGF-I can promote growth in the mutant dwarf rat, but they differ both quantitatively and qualitatively in their pattern of actions.
Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina
2017-04-01
Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O 2 , 6 h; postnatal day 7 , P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.
Gualberto, Antonio; Dolled-Filhart, Marisa; Gustavson, Mark; Christiansen, Jason; Wang, Yu-Fen; Hixon, Mary L.; Reynolds, Jennifer; McDonald, Sandra; Ang, Agnes; Rimm, David L.; Langer, Corey J.; Blakely, Johnetta; Garland, Linda; Paz-Ares, Luis G.; Karp, Daniel D.; Lee, Adrian V.
2010-01-01
Purpose Identify molecular determinants of sensitivity of NSCLC to anti-insulin like growth factor receptor (IGF-IR) therapy. Experimental Design 216 tumor samples were investigated. 165 consisted of retrospective analyses of banked tissue and an additional 51 were from patients enrolled in a phase 2 study of figitumumab (F), a monoclonal antibody against the IGF-IR, in stage IIIb/IV NSCLC. Biomarkers assessed included IGF-IR, EGFR, IGF-2, IGF-2R, IRS-1, IRS-2, vimentin and E-cadherin. Sub-cellular localization of IRS-1 and phosphorylation levels of MAPK and Akt1 were also analyzed. Results IGF-IR was differentially expressed across histological subtypes (P=0.04), with highest levels observed in squamous cell tumors. Elevated IGF-IR expression was also observed in a small number of squamous cell tumors responding to chemotherapy combined with F (p=0.008). Since no other biomarker/response interaction was observed using classical histological sub-typing, a molecular approach was undertaken to segment NSCLC into mechanism-based subpopulations. Principal component analysis and unsupervised Bayesian clustering identified 3 NSCLC subsets that resembled the steps of the epithelial-to-mesenchymal transition: E-cadherin high/IRS-1 low (Epithelial-like), E-cadherin intermediate/IRS-1 high (Transitional) and E-cadherin low/IRS-1 low (Mesenchymal-like). Several markers of the IGF-IR pathway were over-expressed in the Transitional subset. Furthermore, a higher response rate to the combination of chemotherapy and F was observed in Transitional tumors (71%) compared to those in the Mesenchymal-like subset (32%, p=0.03). Only one Epithelial-like tumor was identified in the phase 2 study, suggesting that advanced NSCLC has undergone significant de-differentiation at diagnosis. Conclusion NSCLC comprises molecular subsets with differential sensitivity to IGF-IR inhibition. PMID:20670944
Sarem, Zeinab; Bumke-Vogt, Christiane; Mahmoud, Ayman M; Assefa, Biruhalem; Weickert, Martin O; Adamidou, Aikatarini; Bähr, Volker; Frystyk, Jan; Möhlig, Matthias; Spranger, Joachim; Lieske, Stefanie; Birkenfeld, Andreas L; Pfeiffer, Andreas F H; Arafat, Ayman M
2017-09-01
Depending on its lipolytic activity, glucagon plays a promising role in obesity treatment. Glucagon-induced growth hormone (GH) release can promote its effect on lipid metabolism, although the underlying mechanisms have not been well-defined. The present study highlights the glucagon effect on the GH/insulinlike growth factor 1 (IGF-1)/IGF-binding protein (IGFBP) axis in vivo and in vitro, taking into consideration insulin as a confounding factor. In a double-blind, placebo-controlled study, we investigated changes in GH, IGFBP, and IGF-1 bioactivity after intramuscular glucagon administration in 13 lean controls, 11 obese participants, and 13 patients with type 1 diabetes mellitus (T1DM). The effect of glucagon on the transcription factor forkhead box protein O1 (FOXO1) translocation, the transcription of GH/IGF-1 system members, and phosphorylation of protein kinase B (Akt) was further investigated in vitro. Despite unchanged total IGF-1 and IGFBP-3 levels, glucagon decreased IGF-1 bioactivity in all study groups by increasing IGFBP-1 and IGFBP-2. The reduction in IGF-1 bioactivity occurred before the glucagon-induced surge in GH. In contrast to the transient increase in circulating insulin in obese and lean participants, no change was observed in those with T1DM. In vitro, glucagon dose dependently induced a substantial nuclear translocation of FOXO1 in human osteosarcoma cells and tended to increase IGFBP-1 and IGFBP-2 gene expression in mouse primary hepatocytes, despite absent Akt phosphorylation. Our data point to the glucagon-induced decrease in bioactive IGF-1 levels as a mechanism through which glucagon induces GH secretion. This insulin-independent reduction is related to increased IGFBP-1 and IGFBP-2 levels, which are most likely mediated via activation of the FOXO/mTOR (mechanistic target of rapamycin) pathway. Copyright © 2017 Endocrine Society
Bradbury, Kathryn E; Balkwill, Angela; Tipper, Sarah J; Crowe, Francesca L; Reeves, Gillian K; Green, Jane; Beral, Valerie; Key, Timothy J
2015-04-01
Higher circulating concentrations of insulin like growth factor (IGF-I) are associated with an increased risk of breast cancer. The objective of this study was to investigate associations between circulating IGF-I concentrations and dietary factors (intakes of protein, dairy protein, and alcohol), lifestyle factors (smoking and HT use), anthropometric indices (height and adiposity) and factors in early life (birth weight, having been breastfed, body size at age 10, and at age 20) in postmenopausal women in the UK. An analysis of plasma IGF-I concentrations (measured by immunoassay) in 1883 postmenopausal women. Multivariate analysis was used to examine correlates of plasma IGF-I concentrations. Women in the highest quintile of total protein and dairy protein intakes had, respectively, 7.6% and 5.5% higher plasma IGF-I concentrations than women in the lowest quintile (p trend <0.05 for both). Other factors significantly (p<0.05) associated with reduced IGF-I concentrations were: consuming 14 or more vs 3-7 alcoholic drinks per week (8.8% lower IGF-I); current vs non-current HT users (9.9% lower IGF-I); current use of oestrogen alone vs oestrogen+progestagen (16.9% lower IGF-I); obese vs overweight (6.8% lower IGF-I); and women who reported wearing larger vs smaller clothes sizes at age 20 (4.9% lower IGF-I). This study in post-menopausal women identified several potentially modifiable determinants of circulating IGF-I concentrations. There is now strong evidence from this and other studies that IGF-I concentrations are associated with dietary protein intakes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Retinopathy of prematurity and serum level of insulin-like growth factor-1.
Banjac, Lidija; Bokan, Vesna
2012-06-01
The aim of our study was to measure and compare serum insulin-like growth factor-1 (IGF-1) levels at postmenstrual age of 33 weeks between preterm infants with and without retinopathy of prematurity (ROP). ROP occurs in two phases. Low serum levels of IGF-1 during ROP phase 1 have been found to correlate with the severity of ROP. ROP phase 2 begins around postmenstrual week 33. We conducted a prospective cohort study to measure serum IGF-1 levels in premature infants at postmenstrual age of 33 weeks. The study included all premature infants (N = 74), gestational age < or = 33 weeks, hospitalized at Department of Neonatology, Clinical Center of Montenegro, from April 2008 to July 2009. The incidence of ROP in the study cohort was 50.7%. Infants with ROP had a significantly lower birth weight and significantly shorter gestational age. The mean level of IGF-1 at postmenstrual age of 33 weeks was 23.7 mcg/L. Study results showed that there was no significant difference in serum IGF-1 level between newborns with and without ROP at postmenstrual age of 33 weeks (in newborns with ROP, it was the beginning of ROP phase 2). A large controlled study with repeated measurement of IGF-1 level in the neonatal period is needed to confirm that restoration of IGF-I level occurs in ROP phase 2, i.e. that the low level of IGF-1 is only a feature of ROP phase 1.
Regulation of surface expression of TRPV2 channels in the retinal pigment epithelium.
Reichhart, Nadine; Keckeis, Susanne; Fried, Frederik; Fels, Gabriele; Strauss, Olaf
2015-06-01
The retinal pigment epithelium (RPE) interacts closely with the photoreceptors in fulfilling tasks of visual function. Since an understanding of the RPE function is essential for understanding the patho-mechanisms involved in vision loss, we explored the regulation of the vanilloid receptor subtype transient receptor potential TRPV2 channels that trigger insulin-like growth factor-1 (IGF-1)-induced vascular endothelial growth factor A (VEGF-A) secretion. Immunohistochemistry was used to assess TRPV2 expression in retinal cross-sections or ARPE-19 cells, and surface expression of TRPV2 was quantified using confocal microscopy. Membrane currents of ARPE-19 cells were recorded using a whole-cell configuration of the patch-clamp technique. TRPV2 expression was detected in the RPE of the mouse retina as well as in ARPE-19 cells. Increasing the temperature to 45 °C activated membrane conductance sensitive to SKF-96365 and ruthenium red in 60 % of cells. Preincubation with either cannabidiol (CBD) or IGF-1 led to a three- or fourfold increase in current density, respectively, in all cells, which was blocked by SKF-96365. In contrast to IGF-1, CBD stimulation of membrane conductance was further increased by heat. TRPV2 surface expression was increased by both IGF-1 and CBD, with the increase by CBD twice as large as that by IGF-1. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 abolished the effects on membrane conductance and surface expression. Both CBD and IGF-1 enhance TRPV2 channel activity by specific proportions of both channel activation and PI 3-kinase-dependent surface expression: IGF-1 predominantly increases ion channel activity, whereas CBD is more active in increasing TRPV2 surface expression. Thus, differential regulation of TRPV2 surface expression is an important mechanism for modulating the responsiveness of the RPE to growth factors.
Wu, Tzu-En; Lin, Hong-Da; Lu, Ron-A; Wang, Mei-Li; Chen, Ru-Lin; Chen, Harn-Shen
2010-12-01
Acromegaly is associated with a significant increase in mortality. With the development of new modalities of treatment, it has become important to identify prognostic factors relating to mortality. This study aimed to determine the all-cause mortality of patients with acromegaly after trans-sphenoidal surgery, and assess the impact of biochemical markers on survival. Two hundred thirty-four patients were admitted to the Taipei Veterans General Hospital for acromegaly between 1979 and 2007. Of the 163 patients who underwent trans-sphenoidal surgery, 142 had data available for insulin-like growth factor-1 (IGF-1), and their survival status was analyzed. Serial data for fasting growth hormone (GH) and IGF-1 were collected. This study also used the last follow-up data for mortality analysis. The patients with acromegaly were grouped according to the last follow-up GH level (≤2 or >2 μg/L) and IGF-1 SD score (≤2 or >2). All-cause mortality was followed to the end of 2007 and compared to the general Taiwanese population by standardized mortality ratios. Serial GH and IGF-1 data revealed that the GH levels in the first 3 years after surgery were important predictors of mortality in acromegaly. However, there are insufficient IGF-1 data for deceased patients to determine the significance of a raised IGF-1 immediately following treatment. Comparison of crude death rates suggests that a fasting GH level of 2 μg/L and normalization of the IGF-1 level are appropriate targets. After subgroup analysis to assess the impact of discordant GH and IGF-1 levels on survival, the data showed that the elevated GH group had a trend toward a higher mortality than the elevated IGF-1 group. An elevated GH value in the first 3 years after surgery may be the best predictor of mortality. Thus, the follow-up of patients with acromegaly at relatively frequent intervals after trans-sphenoidal surgery should be routine. Copyright © 2010 Growth Hormone Research Society. Published by Elsevier Ltd. All rights reserved.
O'Callaghan, D; Yaakub, H; Hyttel, P; Spicer, L J; Boland, M P
2000-03-01
The objective was to determine the effect of dietary intake on follicle and oocyte morphology in unstimulated and superovulated ewes. Fifty-four ewes were fed grass meal at 0.5, 1.0 or 2.0 times maintenance energy requirements (M) for 32 days. Oestrous cycles were synchronized using progestagen pessaries and either unstimulated or superovulated with 200 mg pig FSH. The ewes were killed and ovaries were collected either 36 or 12 h before the anticipated LH surge. Serum progesterone concentrations in ewes on day 10 after withdrawal of the pessary were lower in ewes fed 2.0M than in ewes fed 0.5M or 1.0M (P < 0.05). LH pulse frequency tended to be higher in ewes fed 2M than 1M (1.0 +/- 0.3 versus 0.3 +/- 0.2 pulses per 8 h) on day 6 after removal of the pessary but the effect was not significant. In unstimulated ewes, more follicles (>/= 3 mm) were observed when the animals were killed in ewes fed 2.0M (3.5 +/- 0.3) than in ewes fed 0.5M (2.4 +/- 0.3) or 1.0M (2.4 +/- 0.5; P < 0. 05). Fewer follicles were observed in superovulated ewes on 0.5M (7. 5 +/- 1.2) than in ewes on 1.0M (12.0 +/- 0.5) or 2.0M (12.3 +/- 1. 4; P < 0.05). Follicular fluid progesterone concentrations were higher in ewes fed 0.5M compared with those fed 1M or 2M (P < 0.05). Insulin-like growth factor (IGF)-I concentrations were higher in follicular fluid from ewes on 1M compared with either those on 0.5M or 2M (P < 0.05), whereas IGF-II concentrations were lower in follicular fluid from ewes on 2M compared with those on 1M or 0.5M (P < 0.05). Superovulation increased follicular fluid progesterone, oestradiol, IGF-I and IGF-II concentrations (P < 0.01). Concentrations of the 34, 22 and 20 kDa IGF binding proteins were lower in follicles from superovulated ewes compared with unstimulated ewes (P < 0.05). Oocytes from superovulated ewes showed abnormalities such as premature activation of cumulus expansion and vacuolation of the nucleolus and increased frequency of detachment of interchromatin-like granules from the nucleolar remnant. Collectively, these results indicate that both high and low dietary intakes can alter systemic and follicular fluid hormone concentrations. Relative to dietary effects, the effects of superovulation were greater and involved substantial increases in follicular fluid hormone concentrations and abnormal oocyte morphology.
Haider, Husnain Kh; Jiang, Shujia; Idris, Niagara M; Ashraf, Muhammad
2008-11-21
We hypothesized that mesenchymal stem cells (MSCs) overexpressing insulin-like growth factor (IGF)-1 showed improved survival and engraftment in the infarcted heart and promoted stem cell recruitment through paracrine release of stromal cell-derived factor (SDF)-1alpha. Rat bone marrow-derived MSCs were used as nontransduced ((Norm)MSCs) or transduced with adenoviral-null vector ((Null)MSCs) or vector encoding for IGF-1 ((IGF-1)MSCs). (IGF-1)MSCs secreted higher IGF-1 until 12 days of observation (P<0.001 versus (Null)MSCs). Molecular studies revealed activation of phosphoinositide 3-kinase, Akt, and Bcl.xL and inhibition of glycogen synthase kinase 3beta besides release of SDF-1alpha in parallel with IGF-1 expression in (IGF-1)MSCs. For in vivo studies, 70 muL of DMEM without cells (group 1) or containing 1.5x10(6) (Null)MSCs (group 2) or (IGF-1)MSCs (group 3) were implanted intramyocardially in a female rat model of permanent coronary artery occlusion. One week later, immunoblot on rat heart tissue (n=4 per group) showed elevated myocardial IGF-1 and phospho-Akt in group 3 and higher survival of (IGF-1)MSCs (P<0.06 versus (Null)MSCs) (n=6 per group). SDF-1alpha was increased in group 3 animal hearts (20-fold versus group 2), with massive mobilization and homing of ckit(+), MDR1(+), CD31(+), and CD34(+) cells into the infarcted heart. Infarction size was significantly reduced in cell transplanted groups compared with the control. Confocal imaging after immunostaining for myosin heavy chain, actinin, connexin-43, and von Willebrand factor VIII showed extensive angiomyogenesis in the infarcted heart. Indices of left ventricular function, including ejection fraction and fractional shortening, were improved in group 3 as compared with group 1 (P<0.05). In conclusion, the strategy of IGF-1 transgene expression induced massive stem cell mobilization via SDF-1alpha signaling and culminated in extensive angiomyogenesis in the infarcted heart.
Musarò, A; Rosenthal, N
1999-04-01
The molecular mechanisms underlying myogenic induction by insulin-like growth factor I (IGF-I) are distinct from its proliferative effects on myoblasts. To determine the postmitotic role of IGF-I on muscle cell differentiation, we derived L6E9 muscle cell lines carrying a stably transfected rat IGF-I gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC-IGF-I exclusively in differentiated L6E9 myotubes, which express the embryonic form of myosin heavy chain (MyHC) and no endogenous IGF-I, resulted in pronounced myotube hypertrophy, accompanied by activation of the neonatal MyHC isoform. The hypertrophic myotubes dramatically increased expression of myogenin, muscle creatine kinase, beta-enolase, and IGF binding protein 5 and activated the myocyte enhancer factor 2C gene which is normally silent in this cell line. MLC-IGF-I induction in differentiated L6E9 cells also increased the expression of a transiently transfected LacZ reporter driven by the myogenin promoter, demonstrating activation of the differentiation program at the transcriptional level. Nuclear reorganization, accumulation of skeletal actin protein, and an increased expression of beta1D integrin were also observed. Inhibition of the phosphatidyl inositol (PI) 3-kinase intermediate in IGF-I-mediated signal transduction confirmed that the PI 3-kinase pathway is required only at early stages for IGF-I-mediated hypertrophy and neonatal MyHC induction in these cells. Expression of IGF-I in postmitotic muscle may therefore play an important role in the maturation of the myogenic program.
Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle
2017-11-03
We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases ( e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G 1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Hou, Jian-ming; Wu, Man; Lin, Qing-ming; Lin, Fan; Xue, Ying; Lan, Xu-hua; Chen, En-yu; Wang, Mei-li; Yang, Hai-yan; Wang, Feng-xiong
2014-08-01
The aim of this study was to explore the effect of lactoferrin (LF) in primary fetal rat osteoblasts proliferation and differentiation and investigate the underlying molecular mechanisms. Primary rat osteoblasts were obtained from the calvarias of neonatal rats. Osteoblasts were treated with LF (0.1-1000 μg/mL), or OSI-906 [a selective inhibitor of insulin-like growth factor 1 (IGF-1) receptor and insulin receptor]. The IGF-1 was then knocked down by small hairpin RNA (shRNA) technology and then was treated with recombinant human IGF-1 or LF. Cell proliferation and differentiation were measured by MTT assay and alkaline phosphatase (ALP) assay, respectively. The expression of IGF-1 and IGF binding protein 2 (IGFBP2) mRNA were analyzed using real-time PCR. LF promotes the proliferation and differentiation of osteoblasts in a certain range (1-100 μg/mL) in time- and dose-dependent manner. The mRNA level of IGF-1 was significantly increased, while the expression of IGFBP2 was suppressed by LF treatment. Knockdown of IGF-1 by shRNA in primary rat osteoblast dramatically decreased the abilities of proliferation and differentiation of osteoblasts and blocked the proliferation and differentiation effect of LF in osteoblasts. OSI906 (5 μM) blocked the mitogenic and differentiation of LF in osteoblasts. Proliferation and differentiation of primary rat osteoblasts in response to LF are mediated in part by stimulating of IGF-1 gene expression and alterations in the gene expression of IGFBP2.
Klein, N A; Battaglia, D E; Miller, P B; Branigan, E F; Giudice, L C; Soules, M R
1996-05-01
Reproductive aging in women (a physiological decline in the function of the hypothalamic-pituitary-ovarian axis) is an infrequently investigated and poorly understood biological phenomenon. Although menstrual irregularity and anovulation are known to precede the menopause, normal women in their fifth decade experience a profound decrease in fertility while still experiencing regular menstrual cycles. To further our understanding of the physiological changes associated with reproductive aging, this study examined the spontaneous development and function of ovarian follicles in normal women, aged 40-45 yr. The subjects were women (n = 21), aged 40-45 yr, who had regular 25- to 35-day ovulatory menstrual cycles, were not infertile, had no medical problems, and met specific criteria for weight, diet, and exercise. The controls were normal women (n = 20), age 20-25 yr, who met the same criteria. The subjects were monitored with daily hormone measurements [LH, FSH, estradiol (E), progesterone (P), and inhibin] and pelvic sonograms from day 1 of their study cycle until the dominant ovarian follicle reached a mean diameter of 15 mm and/or a serum E level of 550 pmol/L or higher was attained. At that time, 10,000 U hCG were given, and a transvaginal sonographic follicle aspiration was performed 32 h later. The follicular fluid (FF) was collected, stored frozen at -70 C, and later analyzed for E, P, testosterone (T), androstenedione, inhibin, insulin-like growth factor I (IGF-I), and IGF-II. The number of cycle days to aspiration was lower (11.6 vs. 15.6 days; P < 0.001) and the early follicular phase mean FSH and mean E levels were higher (9.3 vs. 6.6 mIU/mL and 305 vs. 160 pmol/L; P < 0.01) in the older (O) group compared to the younger group. There was a strong trend toward higher FF mean E (2280 vs. 1931 nmol/L) and lower FF mean T (978 vs. 2361 pmol/L) levels in group O. The E/T ratio was significantly higher (5253 vs. 2408; P < 0.03) in group O. In group O, the mean FF P levels were increased as well (25.1 vs. 18.8 micromol/L; P < 0.01). The serum mean IGF-I (153 vs. 226 ng/mL; P < 0.001) and FF mean IGF-I (113 vs. 158 ng/mL; P < 0.02) levels were significantly decreased in group O. There were no differences between groups in serum or FF IGF-II or inhibin levels. Whether reproductive aging is an intrinsic ovarian process or the ovary is simply responding to exogenous influences, the ovary in general and its follicles in particular are the primary site of the effects of aging. Ovarian follicles in older ovulatory women have some unique features: 1) the follicles are the same size as those in younger women, but form more rapidly; 2) secretion of E and inhibin is not compromised; 3) the concentrations of steroids in the FF are indicative of a healthier follicle, i.e. increased P levels and higher estrogen to androgen ratio; and 4) serum and FF levels of IGF-I are decreased, but there are no differences in IGF-II levels.
Worrall, C; Suleymanova, N; Crudden, C; Trocoli Drakensjö, I; Candrea, E; Nedelcu, D; Takahashi, S-I; Girnita, L; Girnita, A
2017-01-01
Melanoma tumors usually retain wild-type p53; however, its tumor-suppressor activity is functionally disabled, most commonly through an inactivating interaction with mouse double-minute 2 homolog (Mdm2), indicating p53 release from this complex as a potential therapeutic approach. P53 and the tumor-promoter insulin-like growth factor type 1 receptor (IGF-1R) compete as substrates for the E3 ubiquitin ligase Mdm2, making their relative abundance intricately linked. Hence we investigated the effects of pharmacological Mdm2 release from the Mdm2/p53 complex on the expression and function of the IGF-1R. Nutlin-3 treatment increased IGF-1R/Mdm2 association with enhanced IGF-1R ubiquitination and a dual functional outcome: receptor downregulation and selective downstream signaling activation confined to the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. This Nutlin-3 functional selectivity translated into IGF-1-mediated bioactivities with biphasic effects on the proliferative and metastatic phenotype: an early increase and late decrease in the number of proliferative and migratory cells, while the invasiveness was completely inhibited following Nutlin-3 treatment through an impaired IGF-1-mediated matrix metalloproteinases type 2 activation mechanism. Taken together, these experiments reveal the biased agonistic properties of Nutlin-3 for the mitogen-activated protein kinase pathway, mediated by Mdm2 through IGF-1R ubiquitination and provide fundamental insights into destabilizing p53/Mdm2/IGF-1R circuitry that could be developed for therapeutic gain. PMID:28092675
Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer.
Mutgan, Ayse Ceren; Besikcioglu, H Erdinc; Wang, Shenghan; Friess, Helmut; Ceyhan, Güralp O; Demir, Ihsan Ekin
2018-02-23
Pancreatic ductal adenocarcinoma (PDAC) is unrivalled the deadliest gastrointestinal cancer in the western world. There is substantial evidence implying that insulin and insulin-like growth factor (IGF) signaling axis prompt PDAC into an advanced stage by enhancing tumor growth, metastasis and by driving therapy resistance. Numerous efforts have been made to block Insulin/IGF signaling pathway in cancer therapy. However, therapies that target the IGF1 receptor (IGF-1R) and IGF subtypes (IGF-1 and IGF-2) have been repeatedly unsuccessful. This failure may not only be due to the complexity and homology that is shared by Insulin and IGF receptors, but also due to the complex stroma-cancer interactions in the pancreas. Shedding light on the interactions between the endocrine/exocrine pancreas and the stroma in PDAC is likely to steer us toward the development of novel treatments. In this review, we highlight the stroma-derived IGF signaling and IGF-binding proteins as potential novel therapeutic targets in PDAC.
Wine, Robert N; McPherson, Christopher A; Harry, G Jean
2009-10-01
Insulin-like growth factor-1 (IGF-1) protects neurons from apoptosis and in vivo offers neuroprotective support to hippocampal CA1 pyramidal neurons following ischemia or seizure. IGF-1 signals through IGF-1 receptors activating phosphytidylinositol 3-kinase (PI3K)/Akt or pMAPK pathways. IGF-1 can be induced with injury and microglia and astrocytes may serve as a source of this neurotrophic factor to promote neuronal survival. An acute systemic injection of trimethyltin (TMT; 2 mg/kg, ip) to mice induces apoptosis of dentate granule neurons within 24 h and a differential response of microglia with ramified microglia present in the CA-1 region. Using this model, we studied the role of IGF-1 in the survival of CA-1 pyramidal neurons under conditions of altered synaptic input due to changes in the dentate gyrus. Within 24 h of injection, IGF-1 mRNA levels were elevated in the hippocampus and IGF-1 protein detected in both astrocytes and microglia. IGF-1 was redistributed within the CA-1 neurons corresponding with an increase in cytoplasmic pAkt, elevated PKBalpha/Akt protein levels, and a decrease in the antagonist, Rho. pMAPK was not detected in CA-1 neurons and ERK2 showed a transient decrease followed by a significant increase, suggesting a lack of recruitment of the pMAPK signaling pathway for neuronal survival. In mice deficient for IGF-1, a similar level of apoptosis was observed in dentate granule neurons as compared to wildtype; however, TMT induced a significant level CA-1 neuronal death, further supporting a role for IGF-1 in the survival of CA-1 neurons.
Schneider, Harald Jörn; Saller, Bernhard; Klotsche, Jens; März, Winfried; Erwa, Wolfgang; Wittchen, Hans-Ullrich; Stalla, Günter Karl
2006-05-01
Insulin-like growth factor-I (IGF-I) has been suggested to be a prognostic marker for the development of cancer and, more recently, cardiovascular disease. These diseases are closely linked to obesity, but reports of the association of IGF-I with measures of obesity are divergent. In this study, we assessed the association of age-dependent IGF-I standard deviation scores with body mass index (BMI) and intra-abdominal fat accumulation in a large population. A cross-sectional, epidemiological study. IGF-I levels were measured with an automated chemiluminescence assay system in 6282 patients from the DETECT study. Weight, height, and waist and hip circumference were measured according to the written instructions. Standard deviation scores (SDS), correcting IGF-I levels for age, were calculated and were used for further analyses. An inverse U-shaped association of IGF-I SDS with BMI, waist circumference, and the ratio of waist circumference to height was found. BMI was positively associated with IGF-I SDS in normal weight subjects, and negatively associated in obese subjects. The highest mean IGF-I SDS were seen at a BMI of 22.5-25 kg/m2 in men (+0.08), and at a BMI of 27.5-30 kg/m2 in women (+0.21). Multiple linear regression models, controlling for different diseases, medications and risk conditions, revealed a significant negative association of BMI with IGF-I SDS. BMI contributed most to the additional explained variance to the other health conditions. IGF-I standard deviation scores are decreased in obesity and underweight subjects. These interactions should be taken into account when analyzing the association of IGF-I with diseases and risk conditions.
Hami, Javad; Kheradmand, Hamed; Haghir, Hossein
2014-03-01
Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left-right and male-female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left-right asymmetry in the hippocampus.
Chen, Cheng; Bai, Xue; Bi, Yanwen; Liu, Guixiang; Li, Hao; Liu, Zhen; Liu, Huaxiang
2017-02-01
Paclitaxel (PT)-induced neurotoxicity is a significant problem associated with successful treatment of cancers. Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Whether IGF-1 has protective effects on neurite growth, cell viability, neuronal apoptosis and neuronal phenotypes in DRG neurons with PT-induced neurotoxicity is still unclear. In this study, primary cultured rat DRG neurons were used to assess the effects of IGF-1 on DRG neurons with PT-induced neurotoxicity. The results showed that PT exposure caused neurite retraction in a dose-dependent manner. PT exposure caused a decrease of cell viability and an increase in the ratio of apoptotic cells which could be reversed by IGF-1. The percentage of calcitonin gene-related peptide immunoreactive (CGRP-IR) neurons and neurofilament (NF)-200-IR neurons, mRNA, and protein levels of CGRP and NF-200 decreased significantly after treatment with PT. IGF-1 administration had protective effects on CGRP-IR neurons, but not on NF-200-IR neurons. Either extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 or phosphatidylinositol 3-kinase (PI3 K) inhibitor LY294002 blocked the effect of IGF-1. The results imply that IGF-1 may attenuate apoptosis to improve neuronal cell viability and promote neurite growth of DRG neurons with PT-induced neurotoxicity. Moreover, these results support an important neuroprotective role of exogenous IGF-1 on distinct subpopulations of DRG neurons which is responsible for skin sensation. The effects of IGF-1 might be through ERK1/2 or PI3 K/Akt signaling pathways. These findings provide experimental evidence for IGF-1 administration to alleviate neurotoxicity of distinct subpopulations of DRG neurons induced by PT.
IGF-1 intranasal administration rescues Huntington's disease phenotypes in YAC128 mice.
Lopes, Carla; Ribeiro, Márcio; Duarte, Ana I; Humbert, Sandrine; Saudou, Frederic; Pereira de Almeida, Luís; Hayden, Michael; Rego, A Cristina
2014-06-01
Huntington's disease (HD) is an autosomal dominant disease caused by an expansion of CAG repeats in the gene encoding for huntingtin. Brain metabolic dysfunction and altered Akt signaling pathways have been associated with disease progression. Nevertheless, conflicting results persist regarding the role of insulin-like growth factor-1 (IGF-1)/Akt pathway in HD. While high plasma levels of IGF-1 correlated with cognitive decline in HD patients, other data showed protective effects of IGF-1 in HD striatal neurons and R6/2 mice. Thus, in the present study, we investigated motor phenotype, peripheral and central metabolic profile, and striatal and cortical signaling pathways in YAC128 mice subjected to intranasal administration of recombinant human IGF-1 (rhIGF-1) for 2 weeks, in order to promote IGF-1 delivery to the brain. We show that IGF-1 supplementation enhances IGF-1 cortical levels and improves motor activity and both peripheral and central metabolic abnormalities in YAC128 mice. Moreover, decreased Akt activation in HD mice brain was ameliorated following IGF-1 administration. Upregulation of Akt following rhIGF-1 treatment occurred concomitantly with increased phosphorylation of mutant huntingtin on Ser421. These data suggest that intranasal administration of rhIGF-1 ameliorates HD-associated glucose metabolic brain abnormalities and mice phenotype.
Picropodophyllin (PPP) is a potent rhabdomyosarcoma growth inhibitor both in vitro and in vivo.
Tarnowski, Maciej; Tkacz, Marta; Zgutka, Katarzyna; Bujak, Joanna; Kopytko, Patrycja; Pawlik, Andrzej
2017-08-09
Insulin-like growth factors and insulin are important factors promoting cancer growth and metastasis. The molecules act through IGF1 (IGF1R) and insulin (InsR) receptors. Rhambodmyosarcomas (RMS) overproduce IGF2 - a potent ligand for IGF1R and, at the same time, highly express IGF1 receptor. The purpose of the study was to evaluate possible application of picropodophyllin (PPP) - a potent IGF1R inhibitor. In our study we used a number of in vitro assays showing influence of IGF1R blockage on RMS cell lines (both ARMS and ERMS) proliferation, migration, adhesion, cell cycling and signal transduction pathways. Additionally, we tested possible concomitant application of PPP with commonly used chemotherapeutics (vincristine, actinomycin-D and cisplatin). Moreover, we performed an in vivo study where PPP was injected intraperitoneally into RMS tumor bearing SCID mice. We observed that PPP strongly inhibits RMS proliferation, chemotaxis and adhesion. What is more, application of the IGF1R inhibitor attenuates MAPK phosphorylation and cause cell cycle arrest in G2/M phase. PPP increases sensitivity of RMS cell lines to chemotherapy, specifically to vincristine and cisplatin. In our in vivo studies we noted that mice treated with PPP grew smaller tumors and displayed significantly decreased seeding into bone marrow. The cyclolignan PPP effectively inhibits RMS tumor proliferation and metastasis in vitro and in an animal model.
Yeh, Chun-Chang; Sun, Hsiao-Lun; Huang, Chi-Jung; Wong, Chih-Shung; Cherng, Chen-Hwan; Huh, Billy Keon; Wang, Jinn-Shyan; Chien, Chih-Cheng
2015-11-13
Pulsed radiofrequency (PRF) is effective in the treatment of neuropathic pain in clinical practice. Its application to sites proximal to nerve injury can inhibit the activity of extra-cellular signal-regulated kinase (ERK) for up to 28 days. The spared nerve injury (SNI)+ immPRF group (immediate exposure to PRF for 6 min after SNI) exhibited a greater anti-allodynic effect compared with the control group (SNI alone) or the SNI + postPRF group (application of PRF for 6 min on the 14th day after SNI). Insulin-like growth factor 2 (IGF2) was selected using microarray assays and according to web-based gene ontology annotations in the SNI + immPRF group. An increase in IGF2 and activation of ERK1/2 were attenuated by the immPRF treatment compared with an SNI control group. Using immunofluorescent staining, we detected co-localized phosphorylated ERK1/2 and IGF2 in the dorsal horn regions of rats from the SNI group, where the IGF2 protein predominantly arose in CD11b- or NeuN-positive cells, whereas IGF2 immunoreactivity was not detected in the SNI + immPRF group. Taken together, these results suggest that PRF treatment immediately after nerve injury significantly inhibited the development of neuropathic pain with a lasting effect, most likely through IGF2 down-regulation and the inhibition of ERK1/2 activity primarily in microglial cells.
Detection of exogenous gene doping of IGF-I by a real-time quantitative PCR assay.
Zhang, Jin-Ju; Xu, Jing-Feng; Shen, Yong-Wei; Ma, Shi-Jiao; Zhang, Ting-Ting; Meng, Qing-Lin; Lan, Wen-Jun; Zhang, Chun; Liu, Xiao-Mei
2017-07-01
Gene doping can be easily concealed since its product is similar to endogenous protein, making its effective detection very challenging. In this study, we selected insulin-like growth factor I (IGF-I) exogenous gene for gene doping detection. First, the synthetic IGF-I gene was subcloned to recombinant adeno-associated virus (rAAV) plasmid to produce recombinant rAAV2/IGF-I-GFP vectors. Second, in an animal model, rAAV2/IGF-I-GFP vectors were injected into the thigh muscle tissue of mice, and then muscle and blood specimens were sampled at different time points for total DNA isolation. Finally, real-time quantitative PCR was employed to detect the exogenous gene doping of IGF-I. In view of the characteristics of endogenous IGF-I gene sequences, a TaqMan probe was designed at the junction of exons 2 and 3 of IGF-I gene to distinguish it from the exogenous IGF-I gene. In addition, an internal reference control plasmid and its probe were used in PCR to rule out false-positive results through comparison of their threshold cycle (Ct) values. Thus, an accurate exogenous IGF-I gene detection approach was developed in this study. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
Trojan, Ewa; Głombik, Katarzyna; Ślusarczyk, Joanna; Budziszewska, Bogusława; Kubera, Marta; Roman, Adam; Lasoń, Władysław; Basta-Kaim, Agnieszka
2016-02-01
Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation, and survival of both neurons and glial cells, and it is believed to exert antidepressant-like activity. Thus, disturbances in the IGF-1 system could be responsible for the course of depression. To date, there have been no papers showing the impact of chronic antidepressant treatment on the IGF-1 network in the olfactory bulb (OB) in an animal model of depression. Prenatal stress was used as model of depression. Twenty-four 3-month-old male offspring of control and stressed mothers were subjected to behavioral testing (forced swim test). The mRNA expression of IGF-1 and IGF-1 receptor (IGF-1R) and the protein level of IGF-1 and its phosphorylation, as well as the concentrations of IGF-binding proteins (IGFBP-2, -4, -3, and -6), were measured in OBs before and after chronic imipramine, fluoxetine, or tianeptine administration. Adult rats exposed prenatally to stressful stimuli displayed not only depression-like behavior but also decreased IGF-1 expression, dysregulation in the IGFBP network, and diminished mRNA expression, as well as IGF-1R phosphorylation, in the OB. The administration of antidepressants normalized most of the changes in the IGF-1 system of the OB evoked by prenatal stress. These results suggested a beneficial effect of chronic antidepressant drug treatment in the alleviation of IGF-1 family malfunction in OBs in an animal model of depression.
Nielsen, R H; Clausen, N M; Schjerling, P; Larsen, J O; Martinussen, T; List, E O; Kopchick, J J; Kjaer, M; Heinemeier, K M
2014-02-01
The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and mRNA expression (targets: GAPDH, RPLP0, IGF-IEa, IGF-IR, COL1A1, COL3A1, TGF-β1, TGF-β2, TGF-β3, versican, scleraxis, tenascin C, fibronectin, fibromodulin, decorin) in the Achilles tendon, and the mRNA expression was also measured in calf muscle (same targets as tendon plus IGF-IEb, IGF-IEc). We found that GHR-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon and muscle compared to CTRL. Mean collagen fibril diameter was significantly decreased with both high and low GH/IGF-I signaling, but the GHR-/- mouse tendons were most severely affected with a total loss of the normal bimodal diameter distribution. In conclusion, chronic manipulation of the GH/IGF-I axis influenced both morphology and mRNA levels of selected genes in the muscle-tendon unit of mice. Whereas only moderate structural changes were observed with up-regulation of GH/IGF-I axis, disruption of the GH receptor had pronounced effects upon tendon ultra-structure. © 2013.
1991-01-01
Mouse L cells that possess the cation-independent mannose 6-phosphate (Man 6-P)/insulin-like growth factor (IGF) II receptor change the extent to which they dephosphorylate endocytosed acid hydrolases in response to serum (Einstein, R., and C. A. Gabel. 1989. J. Cell Biol. 109:1037-1046). To investigate the mechanism by which dephosphorylation competence is regulated, the dephosphorylation of individual acid hydrolases was studied in Man 6-P/IGF II receptor-positive and - deficient cell lines. 125I-labeled Man 6-P-containing acid hydrolases were proteolytically processed but remained phosphorylated when endocytosed by receptor-positive L cells maintained in the absence of serum; after the addition of serum, however, the cell-associated hydrolases were dephosphorylated. Individual hydrolases were dephosphorylated at distinct rates and to different extents. In contrast, the same hydrolases were dephosphorylated equally and completely after entry into Man 6-P/IGF II receptor-positive Chinese hamster ovary (CHO) cells. The dephosphorylation competence of Man 6- P/IGF II receptor-deficient mouse J774 cells was more limited. beta- Glucuronidase produced by these cells underwent a limited dephosphorylation in transit to lysosomes such that diphosphorylated oligosaccharides were converted to monophosphorylated species. The overall quantity of phosphorylated oligosaccharides associated with the enzyme, however, did not decrease within the lysosomal compartment. Likewise, beta-glucuronidase was not dephosphorylated when introduced into J774 cells via Fc receptor-mediated endocytosis. The CHO and J774 cell lysosomes, therefore, display opposite extremes with respect to their capacity to dephosphorylate acid hydrolases; within CHO cell lysosomes acid hydrolases are rapidly and efficiently dephosphorylated, but within J774 cell lysosomes the same acid hydrolases remain phosphorylated. This difference in processing indicates that lysosomes themselves exist in a dephosphorylation-competent and -incompetent state. Man 6-P-bearing acid hydrolases endocytosed by the L+ cells in the absence of serum were not distributed uniformly throughout the lysosomal compartment. The change in the dephosphorylation competence of L cells in response to serum suggests, therefore, that these cells contain multiple populations of lysosomes that differ with respect to their content of a mannose 6-phosphatase, and that serum factors affect the distribution of hydrolases between the different compartments. PMID:1846001
Teumer, Alexander; Qi, Qibin; Nethander, Maria; Aschard, Hugues; Bandinelli, Stefania; Beekman, Marian; Berndt, Sonja I; Bidlingmaier, Martin; Broer, Linda; Cappola, Anne; Ceda, Gian Paolo; Chanock, Stephen; Chen, Ming-Huei; Chen, Tai C; Chen, Yii-Der Ida; Chung, Jonathan; Del Greco Miglianico, Fabiola; Eriksson, Joel; Ferrucci, Luigi; Friedrich, Nele; Gnewuch, Carsten; Goodarzi, Mark O; Grarup, Niels; Guo, Tingwei; Hammer, Elke; Hayes, Richard B; Hicks, Andrew A; Hofman, Albert; Houwing-Duistermaat, Jeanine J; Hu, Frank; Hunter, David J; Husemoen, Lise L; Isaacs, Aaron; Jacobs, Kevin B; Janssen, Joop A M J L; Jansson, John-Olov; Jehmlich, Nico; Johnson, Simon; Juul, Anders; Karlsson, Magnus; Kilpelainen, Tuomas O; Kovacs, Peter; Kraft, Peter; Li, Chao; Linneberg, Allan; Liu, Yongmei; Loos, Ruth J F; Lorentzon, Mattias; Lu, Yingchang; Maggio, Marcello; Magi, Reedik; Meigs, James; Mellström, Dan; Nauck, Matthias; Newman, Anne B; Pollak, Michael N; Pramstaller, Peter P; Prokopenko, Inga; Psaty, Bruce M; Reincke, Martin; Rimm, Eric B; Rotter, Jerome I; Saint Pierre, Aude; Schurmann, Claudia; Seshadri, Sudha; Sjögren, Klara; Slagboom, P Eline; Strickler, Howard D; Stumvoll, Michael; Suh, Yousin; Sun, Qi; Zhang, Cuilin; Svensson, Johan; Tanaka, Toshiko; Tare, Archana; Tönjes, Anke; Uh, Hae-Won; van Duijn, Cornelia M; van Heemst, Diana; Vandenput, Liesbeth; Vasan, Ramachandran S; Völker, Uwe; Willems, Sara M; Ohlsson, Claes; Wallaschofski, Henri; Kaplan, Robert C
2016-10-01
The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide association study of up to 30 884 adults of European ancestry from 21 studies, we confirmed and extended the list of previously identified loci associated with circulating IGF-I and IGFBP-3 concentrations (IGF1, IGFBP3, GCKR, TNS3, GHSR, FOXO3, ASXL2, NUBP2/IGFALS, SORCS2, and CELSR2). Significant sex interactions, which were characterized by different genotype-phenotype associations between men and women, were found only for associations of IGFBP-3 concentrations with SNPs at the loci IGFBP3 and SORCS2. Analyses of SNPs, gene expression, and protein levels suggested that interplay between IGFBP3 and genes within the NUBP2 locus (IGFALS and HAGH) may affect circulating IGF-I and IGFBP-3 concentrations. The IGF-I-decreasing allele of SNP rs934073, which is an eQTL of ASXL2, was associated with lower adiposity and higher likelihood of survival beyond 90 years. The known longevity-associated variant rs2153960 (FOXO3) was observed to be a genomewide significant SNP for IGF-I concentrations. Bioinformatics analysis suggested enrichment of putative regulatory elements among these IGF-I- and IGFBP-3-associated loci, particularly of rs646776 at CELSR2. In conclusion, this study identified several loci associated with circulating IGF-I and IGFBP-3 concentrations and provides clues to the potential role of the IGF axis in mediating effects of known (FOXO3) and novel (ASXL2) longevity-associated loci. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.
Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan
2017-01-01
Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.
Pedersen, Henrik D; Falk, Torkel; Häggström, Jens; Tarnow, Inge; Olsen, Lisbeth H; Kvart, Clarence; Nielsen, Mette O
2005-01-01
Insulin-like growth factor-1 (IGF-1), which mediates most effects of growth hormone, has effects on cardiac mass and function, and plays an important role in the regulation of vascular tone. In humans, an inverse relationship between degree of heart failure (HF) and circulating IGF-1 concentrations has been found in several studies. In dogs with HF, few studies have focused on IGF-1. We examined circulating IGF-1 concentrations in dogs with mitral regurgitation (MR) caused by myxomatous mitral valve disease. Study 1 included 88 Cavalier King Charles Spaniels (CKCSs) with a broad range of asymptomatic MR (median serum IGF-1: 76.7 microg/L; 25-75 percentile, 59.8-104.9 microg/L). As expected, standard body weight and percentage under- or overweight correlated directly with IGF-1. MR (assessed in 4 different ways) did not correlate with IGF-1. In study 2, 28 dogs with severe MR and stable, treated congestive HF had similar serum IGF-1 concentrations (median, 100.8 g/L; 25-75 percentile, 74.9-156.5 microg/L) as 11 control dogs (79.6 microg/L; 25-75 percentile, 64.1-187.4 microg/L; P = .84). In study 3, the plasma IGF-1 concentration of 15 untreated CKCSs with severe MR was 16.4 +/- 24.2 microg/L lower (P = .02) at the examination when decompensated HF had developed (80.8 +/- 30.9 microg/L) than at a visit 1-12 months earlier (97.2 +/- 39.8 microg/L), possibly in part due to an altered state of nutrition. The studies document that circulating IGF-1 concentrations are not altered before development of congestive HF in dogs with naturally occurring MR, but decrease by approximately 20% with the development of untreated HE In treated HF, circulating IGF-1 concentrations apparently return to within the reference range.
Chicharro, J; Lopez-Calderon, A; Hoyos, J; Martin-Velasco, A; Villa, G; Villanua, M; Lucia, A
2001-01-01
Objectives—To determine whether consecutive bouts of intense endurance exercise over a three week period alters serum concentrations of insulin-like growth factor I (IGF-I) and/or its binding proteins. Methods—Seventeen professional cyclists (mean (SEM) VO2MAX, 74.7 (2.1) ml/kg/min; age, 27 (1) years) competing in a three week tour race were selected as subjects. Blood samples were collected at each of the following time points: t0 (control, before the start of competition), t1 (end of first week), and t3 (end of third week). Serum levels of both total and free IGF-I and IGF binding proteins 1 and 3 (IGFBP-1 and IGFBP-3) were measured in each of the samples. Cortisol levels were measured in nine subjects. Results—A significant (p<0.01) increase was found in total IGF-I and IGFBP-1 at both t1 and t3 compared with to (IGF-I: 110.9 (17.7), 186.8 (12.0), 196.9 (14.7) ng/ml at t0, t1, and t3 respectively; IGFBP-1: 54.6 (6.6), 80.6 (8.0), and 89.2 (7.9) ng/ml at t0, t1, and t3 respectively). A significant (p<0.01) decrease was noted in free IGF-I at t3 compared with both to and t1 (t0: 0.9 (0.1) ng/ml; t1: 0.9 (0.1) ng/ml; t3: 0.7 (0.1) ng/ml); in contrast, IGFBP-3 levels remained stable throughout the race. Conclusions—It would appear that the increase in circulating levels of both IGF-I and its binding protein IGFBP-1 is a short term (one week) endocrine adaptation to endurance exercise. After three weeks of training, total IGF-I and IGFBP-1 remained stable, whereas free IGF-I fell below starting levels. Key Words: cycling; insulin-like growth factor; exercise; endurance; binding proteins PMID:11579061
Piechotta, M; Mysegades, W; Ligges, U; Lilienthal, J; Hoeflich, A; Miyamoto, A; Bollwein, H
2015-05-01
A study involving a small number of cows found that the concentrations of insulin-like growth hormone 1 (IGF1) may be a useful predictor of metabolic disease. Further, IGF1 may provide also a pathophysiological link to metabolic diseases such as ketosis. The objective of the current study was to test whether the low antepartal total IGF1 or IGF1 binding protein (IGFBP) concentrations might predict ketosis under field conditions. Clinical examinations and blood sampling were performed antepartum (262-270 d after artificial insemination) on 377 pluriparous pregnant Holstein Friesian cows. The presence of postpartum diseases were recorded (ketosis, fatty liver, displacement of the abomasum, hypocalcemia, mastitis, retention of fetal membranes, and clinical metritis or endometritis), and the concentrations of IGF1, IGFBP2, IGFBP3, and nonesterified fatty acids were measured. Cows with postpartum clinical ketosis had lower IGF1 concentrations antepartum than healthy cows. The sensitivity of antepartal IGF1 as a marker for postpartum ketosis was 0.87, and the specificity was 0.43; a positive predictive value of 0.91 and a negative predictive value of 0.35 were calculated. The cows with ketosis and retained fetal membranes had lower IGFBP2 concentrations compared with the healthy cows. It can be speculated that lower IGF1 production in the liver during late pregnancy may increase growth hormone secretions and lipolysis, thereby increasing the risk of ketosis. Lower IGFBP2 concentrations may reflect the suppression of IGFBP2 levels through higher growth hormone secretion. In conclusion, compared with nonesterified fatty acids as a predictive parameter, IGF1 and IGFBP2 may represent earlier biomarkers of inadequate metabolic adaptation to the high energy demand required postpartum. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sustained IGF-1 Secretion by Adipose-Derived Stem Cells Improves Infarcted Heart Function.
Bagno, Luiza L; Carvalho, Deivid; Mesquita, Fernanda; Louzada, Ruy A; Andrade, Bruno; Kasai-Brunswick, Taís H; Lago, Vivian M; Suhet, Grazielle; Cipitelli, Debora; Werneck-de-Castro, João Pedro; Campos-de-Carvalho, Antonio C
2016-01-01
The mechanism by which stem cell-based therapy improves heart function is still unknown, but paracrine mechanisms seem to be involved. Adipose-derived stem cells (ADSCs) secrete several factors, including insulin-like growth factor-1 (IGF-1), which may contribute to myocardial regeneration. Our aim was to investigate whether the overexpression of IGF-1 in ADSCs (IGF-1-ADSCs) improves treatment of chronically infarcted rat hearts. ADSCs were transduced with a lentiviral vector to induce IGF-1 overexpression. IGF-1-ADSCs transcribe100- to 200-fold more IGF-1 mRNA levels compared to nontransduced ADSCs. IGF-1 transduction did not alter ADSC immunophenotypic characteristics even under hypoxic conditions. However, IGF-1-ADSCs proliferate at higher rates and release greater amounts of growth factors such as IGF-1, vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) under normoxic and hypoxic conditions. Importantly, IGF-1 secreted by IGF-1-ADSCs is functional given that Akt-1 phosphorylation was remarkably induced in neonatal cardiomyocytes cocultured with IGF-1-ADSCs, and this increase was prevented with phosphatidylinositol 3-kinase (PI3K) inhibitor treatment. Next, we tested IGF-1-ADSCs in a rat myocardial infarction (MI) model. MI was performed by coronary ligation, and 4 weeks after MI, animals received intramyocardial injections of either ADSCs (n = 7), IGF-1-ADSCs (n = 7), or vehicle (n = 7) into the infarcted border zone. Left ventricular function was evaluated by echocardiography before and after 6 weeks of treatment, and left ventricular hemodynamics were assessed 7 weeks after cell injection. Notably, IGF-1-ADSCs improved left ventricular ejection fraction and cardiac contractility index, but did not reduce scar size when compared to the ADSC-treated group. In summary, transplantation of ADSCs transduced with IGF-1 is a superior therapeutic approach to treat MI compared to nontransduced ADSCs, suggesting that gene and cell therapy may bring additional benefits to the treatment of MI.
Boo, Hye-Jin; Min, Hye-Young; Jang, Hyun-Ji; Yun, Hye Jeong; Smith, John Kendal; Jin, Quanri; Lee, Hyo-Jong; Liu, Diane; Kweon, Hee-Seok; Behrens, Carmen; Lee, J. Jack; Wistuba, Ignacio I.; Lee, Euni; Hong, Waun Ki; Lee, Ho-Young
2016-01-01
Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, α1 subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis. PMID:27666821
Boo, Hye-Jin; Min, Hye-Young; Jang, Hyun-Ji; Yun, Hye Jeong; Smith, John Kendal; Jin, Quanri; Lee, Hyo-Jong; Liu, Diane; Kweon, Hee-Seok; Behrens, Carmen; Lee, J Jack; Wistuba, Ignacio I; Lee, Euni; Hong, Waun Ki; Lee, Ho-Young
2016-09-26
Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca 2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca 2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, α1 subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca 2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis.
Lidocaine Impairs Proliferative and Biosynthetic Functions of Aged Human Dermal Fibroblasts.
Bentov, Itay; Damodarasamy, Mamatha; Spiekerman, Charles; Reed, May J
2016-09-01
The aged are at increased risk of postoperative wound healing complications. Because local anesthetics are infiltrated commonly into the dermis of surgical wounds, we sought to determine whether local anesthetics adversely affect proliferative and biosynthetic functions of dermal fibroblasts. We also evaluated the effect of local anesthetics on insulin-like growth factor-1 (IGF-1) and transforming growth factor-β1 (TGF-β1), growth factors that are important regulators of wound healing. Human dermal fibroblasts (HFB) from aged and young donors were exposed to local anesthetic agents at clinically relevant concentrations. We screened the effects of lidocaine, bupivacaine, mepivacaine, and ropivacaine on proliferation of HFB. Lidocaine was most detrimental to proliferation in HFB. We then evaluated the effect of lidocaine on expression and function of the growth factors, IGF-1 and TGF-β1. Lastly, concurrent exposure to lidocaine and IGF-1 or TGF-β1 was evaluated for their effects on proliferation and expression of dermal collagens, respectively. Lidocaine and mepivacaine inhibited proliferation in aged HFB (for lidocaine 88% of control, 95% confidence interval [CI], 80%-98%, P = .009 and for mepivacaine 90% of control, 95% CI, 81%-99%, P = .032) but not in young HFB. Ropivacaine and bupivacaine did not inhibit proliferation. Because of the clinical utility of lidocaine relative to mepivacaine, we focused on lidocaine. Lidocaine decreased proliferation in aged HFB, which was abrogated by IGF-1. Lidocaine inhibited transcripts for IGF-1 and insulin-like growth factor-1 receptor (IGF1R) in fibroblasts from aged donors (IGF-1, log2 fold-change -1.25 [42% of control, 95% CI, 19%-92%, P = .035] and IGF1R, log2 fold-change -1.00 [50% of control, 95% CI, 31%-81%, P = .014]). In contrast, lidocaine did not affect the expression of IGF-1 or IGF1R transcripts in the young HFB. Transcripts for collagen III were decreased after lidocaine exposure in aged and young HFB (log2 fold-change -1.28 [41% of control, 95% CI, 20%-83%, P = .022] in aged HFB and log2 fold-change -1.60 [33% of control, 95% CI, 15%-73%, P = .019] in young HFB). Transcripts for collagen I were decreased in aged HFB (log2 fold-change -1.82 [28% of control, 95% CI, 14%-58%, P = .006]) but not in the young HFB. Similar to the transcripts, lidocaine also inhibited the protein expression of collagen III in young and aged HFB (log2 fold-change -1.79 [29% of control, 95% CI, 18%-47%, P = .003] in young HFB and log2 fold-change -1.76 [30% of control, 95% CI, 9%-93%, P = .043] in aged HFB). The effect of lidocaine on the expression of collagen III protein was obviated by TGF-β1 in both young and aged HFB. Our results show that lidocaine inhibits processes relevant to dermal repair in aged HFB. The detrimental responses to lidocaine are due, in part, to interactions with IGF-1 and TGF-β1.
Jung, Su Yon; Ho, Gloria; Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Papp, Jeanette; Sobel, Eric; Zhang, Zuo-Feng; Crandall, Carolyn
2017-07-01
Genetic variants and traits in metabolic signaling pathways may interact with obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal breast cancer risk, but these inter-related pathways are incompletely understood. We used 75 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/insulin resistance (IR) traits and signaling pathways, and data from 1003 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying via obesity and lifestyle modifiers, we assessed the role of IGF-I/IR traits (fasting IGF-I, IGF-binding protein 3, insulin, glucose, and homeostatic model assessment-insulin resistance) in breast cancer risk as a mediator or influencing factor. Seven SNPs in IGF-I and INS genes were associated with breast cancer risk. These associations differed between non-obese/active and obese/inactive women and between exogenous E non-users and users. The mediation effects of IGF-I/IR traits on the relationship between these SNPs and cancer differed between strata, but only roughly 35% of the cancer risk due to the SNPs was mediated by traits. Similarly, carriers of 20 SNPs in PIK3R1, AKT1/2, and MAPK1 genes (signaling pathways-genetic variants) had different associations with breast cancer between strata, and the proportion of the SNP-cancer relationship explained by traits varied 45-50% between the strata. Our findings suggest that IGF-I/IR genetic variants interact with obesity and lifestyle factors, altering cancer risk partially through pathways other than IGF-I/IR traits. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce breast cancer risk.
Poppinga, J.; Kittilson, J.; McCormick, S.D.; Sheridan, M.A.
2007-01-01
Growth hormone (GH) has been shown to contribute to the seawater (SW) adaptability of euryhaline fish both directly and indirectly through insulin-like growth factor-1 (IGF-1). This study examined the role of somatostatin-14 (SS-14), a potent inhibitor of GH, on the GH-IGF-1 axis and seawater adaptation. Juvenile rainbow trout (Oncorhynchus mykiss) were injected intraperitoneally with SS-14 or saline and transferred to 20??ppt seawater. A slight elevation in plasma chloride levels was accompanied by significantly reduced gill Na+, K+-ATPase activity in SS-14-treated fish compared to control fish 12??h after SW transfer. Seawater increased hepatic mRNA levels of GH receptor 1 (GHR 1; 239%), GHR 2 (48%), and IGF-1 (103%) in control fish 12??h after transfer. Levels of GHR 1 (155%), GHR 2 (121%), IGF-1 (200%), IGF-1 receptor A (IGFR1A; 62%), and IGFR1B (157%) increased in the gills of control fish 12??h after transfer. SS-14 abolished or attenuated SW-induced changes in the expression of GHR, IGF-1, and IGFR mRNAs in liver and gill. These results indicate that SS-14 reduces seawater adaptability by inhibiting the GH-IGF-1 axis. ?? 2007 Elsevier B.V. All rights reserved.
Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors
Ahmed, Muhammad S.; Rainer, Carolyn; Nielsen, Sebastian R.; Quaranta, Valeria; Weyer-Czernilofsky, Ulrike; Engle, Danielle D.; Perez-Mancera, Pedro A.; Coupland, Sarah E.; Taktak, Azzam; Bogenrieder, Thomas; Tuveson, David A.; Campbell, Fiona; Schmid, Michael C.; Mielgo, Ainhoa
2017-01-01
Tumor-associated macrophages (TAM) and myofibroblasts are key drivers in cancer that are associated with drug resistance in many cancers, including pancreatic ductal adenocarcinoma (PDAC). However, our understanding of the molecular mechanisms by which TAM and fibroblasts contribute to chemoresistance is unclear. In this study, we found that TAM and myofibroblasts directly support chemoresistance of pancreatic cancer cells by secreting insulin-like growth factors (IGF) 1 and 2, which activate insulin/IGF receptors on pancreatic cancer cells. Immunohistochemical analysis of biopsies from patients with pancreatic cancer revealed that 72% of the patients expressed activated insulin/IGF receptors on tumor cells, and this positively correlates with increased CD163+ TAM infiltration. In vivo, we found that TAM and myofibroblasts were the main sources of IGF production, and pharmacologic blockade of IGF sensitized pancreatic tumors to gemcitabine. These findings suggest that inhibition of IGF in combination with chemotherapy could benefit patients with PDAC, and that insulin/IGF1R activation may be used as a biomarker to identify patients for such therapeutic intervention. PMID:27742686
Socha, Piotr; Grote, Veit; Gruszfeld, Dariusz; Janas, Roman; Demmelmair, Hans; Closa-Monasterolo, Ricardo; Subías, Joaquín Escribano; Scaglioni, Silvia; Verduci, Elvira; Dain, Elena; Langhendries, Jean-Paul; Perrin, Emmanuel; Koletzko, Berthold
2011-12-01
Protein intake in early infancy has been suggested to be an important risk factor for later obesity, but information on potential mechanisms is very limited. This study examined the influence of protein intake in infancy on serum amino acids, insulin, and the insulin-like growth factor I (IGF-I) axis and its possible relation to growth in the first 2 y of life. In a multicenter European study, 1138 healthy, formula-fed infants were randomly assigned to receive cow-milk-based infant and follow-on formulas with lower protein (LP; 1.77 and 2.2 g protein/100 kcal) or higher protein (HP; 2.9 and 4.4 g protein/100 kcal) contents for the first year. Biochemical variables were measured at age 6 mo in 339 infants receiving LP formula and 333 infants receiving HP formula and in 237 breastfed infants. Essential amino acids, especially branched-chain amino acids, IGF-I, and urinary C-peptide:creatinine ratio, were significantly (P < 0.001) higher in the HP group than in the LP group, whereas IGF-binding protein (IGF-BP) 2 was lower and IGF-BP3 did not differ significantly. The median IGF-I total serum concentration was 48.4 ng/mL (25th, 75th percentile: 27.2, 81.8 ng/mL) in the HP group and 34.7 ng/mL (17.7, 57.5 ng/mL) in the LP group; the urine C-peptide:creatinine ratios were 140.6 ng/mg (80.0, 203.8 ng/mg) and 107.3 ng/mg (65.2, 194.7 ng/mg), respectively. Most essential amino acids, IGF-I, C-peptide, and urea increased significantly in both the LP and HP groups compared with the breastfed group. Total IGF-I was significantly associated with growth until 6 mo but not thereafter. HP intake stimulates the IGF-I axis and insulin release in infancy. IGF-I enhances growth during the first 6 mo of life. This trial was registered at clinicaltrials.gov as NCT00338689.
NASA Technical Reports Server (NTRS)
Adams, G. R.
1998-01-01
Adaptations in muscle mass stimulated by changes in muscle loading state entail alternations in the synthesis and degradation of myofiber proteins and the modulation of myonuclear number such that the ratio between the number of myonuclei and the size of the myofibers remains relatively constant. As depicted schematically in Figure 2.6, the literature regarding the role of IGF-in mediating muscle adaptation to alterations in loading state suggests the following conclusions: During periods of increased loading, myofibers upregulate the expression and secretion of IGF-I. Acting as an autocrine and/or paracrine growth factor, IGF-I stimulates myofiber anabolic processes. Acting as a paracrine growth factor, IGF-I also stimulates adjacent satellite cells to enter the cell cycle and proliferate. Continued myofiber production of IGF-I stimulates some satellite cells to differentiate and then fuse with myofibers, thus providing additional myonuclei in order to maintain or reestablish the myonucleus to myofiber size ratios of the enlarged myofibers.
Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.
Huang, Yao; Chang, Yongchang
2014-01-01
Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling. © 2014 Elsevier Inc. All rights reserved.
de Groot, Stefanie; Gelderblom, Hans; Fiocco, Marta; Bovée, Judith Vmg; van der Hoeven, Jacobus Jm; Pijl, Hanno; Kroep, Judith R
2017-01-01
Activation of the insulin-like growth factor 1 (IGF-1) pathway is involved in cell growth and proliferation and is associated with tumorigenesis, tumor progression, and therapy resistance in solid tumors. We examined whether variability in serum levels of IGF-1, IGF-2, and IGF-binding protein 3 (IGF-BP3) can predict event-free survival (EFS) and overall survival (OS) in Ewing sarcoma patients treated with chemotherapy. Serum levels of IGF-1, IGF-2, and IGF-BP3 of 22 patients with localized or metastasized Ewing sarcoma treated with six cycles of vincristine/ifosfamide/doxorubicin/etoposide (VIDE) chemotherapy were recorded. Baseline levels were compared with presixth cycle levels using paired t -tests and were tested for associations with EFS and OS. Continuous variables were dichotomized according to the Contal and O'Quigley procedure. Survival analyses were performed using Cox regression analysis. High baseline IGF-1 and IGF-BP3 serum levels were associated with EFS (hazard ratio [HR] 0.075, 95% confidence interval [CI] 0.009-0.602 and HR 0.090, 95% CI 0.011-0.712, respectively) in univariate and multivariate analyses (HR 0.063, 95% CI 0.007-0.590 and HR 0.057, 95% CI 0.005-0.585, respectively). OS was improved, but this was not statistically significant. IGF-BP3 and IGF-2 serum levels increased during treatment with VIDE chemotherapy ( P =0.055 and P =0.023, respectively). High circulating serum levels of IGF-1 and IGF-BP3 and the molar ratio of IGF-1:IGF-BP3 serum levels were associated with improved EFS and a trend for improved OS in Ewing sarcoma patients treated with VIDE chemotherapy. These findings suggest the need for further investigation of the IGF-1 pathway as a biomarker of disease progression in patients with Ewing sarcoma.
Recombinant IGF-I: Past, present and future.
Bright, George M
2016-06-01
Normal linear growth in humans requires GH and IGF-I. Diminished GH action resulting in reduced availability of IGF-I and IGF-binding proteins is the hallmarks of GH Insensitivity Syndromes (GHIS). The deficiencies are the perceived mechanisms for the growth failure of affected patients and the therapeutic targets for the restoration of normal growth. Early treatment attempts with pituitary-derived GH had limited effects in GHIS patients. Recombinant human insulin-like growth factor-I (rhIGF-I) treatment initially provides accelerated growth to GHIS children and provides substantial benefit. But, in general, catch up growth is less substantial with rhIGF-I treatment of GHIS than with rhGH treatment of GH Deficiency. Few classic GHIS patients have reached heights in the normal range (height SD score between -2.0 SD and +2.0 SD) with rhIGF-I monotherapy. A potential explanation is that while rhIGF-I treatment increases circulating concentrations of IGF-1 and IGFBP-3, such treatment reduces endogenous GH levels by negative feedback inhibition of pituitary GH release. In as much as both GH and IGF-I are required for good catch up growth, the loss of any residual GH signaling during IGF-I monotherapy in GHIS patients may attenuate possible catch up growth. Consistent with this explanation is the finding that, as predicted by the preclinical studies by Ross Clark, combination of rhGH & rhIGF-1 provides better growth responses than rhIGF-1 monotherapy in prepubertal children with short stature and low IGF-I levels despite normal stimulated GH responses. In the future, rhGH and rhIGF-I combination therapy can potentially improve growth outcomes over that seen with rhIGF-I monotherapy in all GHIS patients except in those with a total lack of functional GH signaling. Future alternative treatments for GHIS subjects may also include the use of post-growth hormone receptor signaling agonists which restore both GH signaling and IGF-I exposures or the addition of long-acting rhGH species to rhIGF-I. Additional etiologic factors for the growth failure in GHIS should be considered if the growth deficits of GHIS do not resolve with treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Basta-Kaim, Agnieszka; Szczesny, Ewa; Glombik, Katarzyna; Stachowicz, Katarzyna; Slusarczyk, Joanna; Nalepa, Irena; Zelek-Molik, Agnieszka; Rafa-Zablocka, Katarzyna; Budziszewska, Boguslawa; Kubera, Marta; Leskiewicz, Monika; Lason, Wladyslaw
2014-09-01
It has been shown that stressful events occurring in early life have a powerful influence on the development of the central nervous system. Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation and survival of both neurons and glial cells and is thought to exert antidepressant-like activity. Thus, it is possible that disturbances in the function of the IGF-1 system may be responsible for disturbances observed over the course of depression. Prenatal stress was used as a valid model of depression. Adult male offspring of control and stressed rat dams were subjected to behavioural testing (forced swim test). The level of IGF-1 in the blood and the expression of IGF-1, IGF-1R, and IRS-1/2 in the hippocampus and frontal cortex using RT-PCR, ELISA and western blotting were measured. In addition the effect of intracerebroventricularly administered IGF-1 and/or the IGF-1R receptor antagonist JB1 in the forced swim test was studied. Prenatally stressed rats showed depressive like behaviour, including increased immobility time as well as decreased mobility and climbing. Intracerebroventricular administration of IGF-1 reversed these effects in stressed animals, whereas concomitant administration of the IGF-1R antagonist JB1 completely blocked the effects. Biochemical analysis of homogenates from the hippocampus and frontal cortex revealed decreases in IGF-1 level and IGF-1R phosphorylation along with disturbances in IRS-1 phosphorylation. These findings reveal that prenatal stress alters IGF-1 signalling, which may contribute to the behavioural changes observed in depression. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
Fansa, Hisham; Schneider, Wolfgang; Wolf, Gerald; Keilhoff, Gerburg
2002-07-01
To overcome the problems of limited donor nerves for nerve reconstruction, we established nerve grafts made from cultured Schwann cells and basal lamina from acellular muscle and used them to bridge a 2-cm defect of the rat sciatic nerve. Due to their basal lamina and to viable Schwann cells, these grafts allow regeneration that is comparable to autologous nerve grafts. In order to enhance regeneration, insulin-like growth factor (IGF-I) was locally applied via osmotic pumps. Autologous nerve grafts with and without IGF-I served as controls. Muscle weight ratio was significantly increased in the autograft group treated with IGF-I compared to the group with no treatment; no effect was evident in the tissue-engineered grafts. Autografts with IGF-I application revealed a significantly increased axon count and an improved g-ratio as indicator for "maturity" of axons compared to autografts without IGF-I. IGF-I application to the engineered grafts resulted in a decreased axon count compared to grafts without IGF-I. The g-ratio, however, revealed no significant difference between the groups. Local administration of IGF-I improves axonal regeneration in regular nerve grafts, but not in tissue-engineered grafts. Seemingly, in these grafts the interactive feedback mechanisms of neuron, glial cell, and extracellular matrix are not established, and IGF-I cannot exert its action as a pleiotrophic signal. Copyright 2002 Wiley Periodicals, Inc.
Estimated Prestroke Peak VO2 Is Related to Circulating IGF-1 Levels During Acute Stroke.
Mattlage, Anna E; Rippee, Michael A; Abraham, Michael G; Sandt, Janice; Billinger, Sandra A
2017-01-01
Background Insulin-like growth factor-1 (IGF-1) is neuroprotective after stroke and is regulated by insulin-like binding protein-3 (IGFBP-3). In healthy individuals, exercise and improved aerobic fitness (peak oxygen uptake; peak VO 2 ) increases IGF-1 in circulation. Understanding the relationship between estimated prestroke aerobic fitness and IGF-1 and IGFBP-3 after stroke may provide insight into the benefits of exercise and aerobic fitness on stroke recovery. Objective The purpose of this study was to determine the relationship of IGF-1 and IGFBP-3 to estimated prestroke peak VO 2 in individuals with acute stroke. We hypothesized that (1) estimated prestroke peak VO 2 would be related to IGF-1 and IGFBP-3 and (2) individuals with higher than median IGF-1 levels will have higher estimated prestroke peak VO 2 compared to those with lower than median levels. Methods Fifteen individuals with acute stroke had blood sampled within 72 hours of hospital admission. Prestroke peak VO 2 was estimated using a nonexercise prediction equation. IGF-1 and IGFBP-3 levels were quantified using enzyme-linked immunoassay. Results Estimated prestroke peak VO 2 was significantly related to circulating IGF-1 levels (r = .60; P = .02) but not IGFBP-3. Individuals with higher than median IGF-1 (117.9 ng/mL) had significantly better estimated aerobic fitness (32.4 ± 6.9 mL kg -1 min -1 ) than those with lower than median IGF-1 (20.7 ± 7.8 mL kg -1 min -1 ; P = .03). Conclusions Improving aerobic fitness prior to stroke may be beneficial by increasing baseline IGF-1 levels. These results set the groundwork for future clinical trials to determine whether high IGF-1 and aerobic fitness are beneficial to stroke recovery by providing neuroprotection and improving function. © The Author(s) 2016.
Li, Zhizhong; Zhang, Yunyu; Ramanujan, Krishnan; Ma, Yan; Kirsch, David G.; Glass, David J.
2013-01-01
Embryonic rhabdomyosarcoma (ERMS) is the most common soft-tissue tumor in children. Here, we report the identification of the minor groove DNA-binding factor high mobility group AT-hook 2 (HMGA2) as a driver of ERMS development. HMGA2 was highly expressed in normal myoblasts and ERMS cells, where its expression was essential to maintain cell proliferation, survival in vitro, and tumor outgrowth in vivo. Mechanistic investigations revealed that upregulation of the insulin–like growth factor (IGF) mRNA-binding protein IGF2BP2 was critical for HMGA2 action. In particular, IGF2BP2 was essential for mRNA and protein stability of NRAS, a frequently mutated gene in ERMS. shRNA-mediated attenuation of NRAS or pharmacologic inhibition of the MAP-ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) effector pathway showed that NRAS and NRAS-mediated signaling was required for tumor maintenance. Taken together, these findings implicate the HMGA2–IGFBP2–NRAS signaling pathway as a critical oncogenic driver in ERMS. PMID:23536553
Messina, M F; Arrigo, T; Valenzise, M; Ghizzoni, L; Caruso-Nicoletti, M; Zucchini, S; Chiabotto, P; Crisafulli, G; Zirilli, G; De Luca, F
2011-04-01
GH-IGF-I axis is mainly involved in the complex process of somatic growth but emerging evidence suggests that it also influences hypothalamic-pituitary-gonadal (HPG) function. We report some data regarding long-term auxological and pubertal outcome of five female patients with hereditary forms of GH-IGF-I deficiency (Laron and GH-gene deletion syndrome) and a mean age of 23.4±5.3 yr (range 19-32). All the patients received recombinant human IGF-I (rhIGF-I, Pharmacia and Upjohn, Stockholm, Sweden, and rhIGF-I, Genentech, San Francisco, CA, USA) from a mean age of 8.6 yr (range 3.2-14.2) up to the final height. Final height was very disappointing (≤ -5.0 SD scores) and lower than target height in all the patients. Pubertal onset was delayed in most of them but menarche occurred spontaneously in all the patients. Median age at menarche was 15.1 yr. Menstrual cycles were regular for several years. Median duration of gynecological follow- up was 8.3 yr with the longest span of 17.2 yr. We can assert that GH-IGF-I axis has an essential role in promoting linear growth in humans and its physiological action cannot be replaced by pharmacological treatment in most patients with hereditary forms of IGF-I insufficiency as demonstrated by their subnormal final height. Our clinical observations can also support an essential role of IGF-I in genitalia growth but not in the function of HPG axis as demonstrated by the maintenance of regular menstrual cycles in the presence of subnormal levels of IGF-I after treatment discontinuation.
Dux, Marta; Muranowicz, Magdalena; Siadkowska, Eulalia; Robakowska-Hyżorek, Dagmara; Flisikowski, Krzysztof; Bagnicka, Emilia; Zwierzchowski, Lech
2018-05-01
The objective of the study reported in this Research Communication was to investigate the association of polymorphisms in the insulin-like growth factor receptor 2 (IGF2R) gene with milk traits in 283 Polish Holstein-Friesian (PHF) cows from the IGAB PAS farm in Jastrzębiec. IGF2R regulates the availability of biologically active IGF2 which is considered as a genetic marker for milk or meat production in farm animals. Two novel genetic polymorphisms were identified in the bovine IGF2R gene: a polymorphic TG-repeat in intron 23 (g.72389 (TG)15-67), and a g.72479 G > A SNP RFLP-StyI in exon 24. The following milk traits were investigated: milk yield, protein and fat yield, SCC and lactose content. To determine the influence of the IGF2R STR and SNP genotypes on the milk traits, we used the AI-REML (average information restricted maximum likelihood) method with repeatability, multi-trait animal model based on test-day information using DMU package. Statistical analysis revealed that the G/A genotype (P ≤ 0·01) was associated with milk and protein yield, lactose content and somatic cell count (SCC) in Polish HF cows. TGn (29/22, 28/29, 28/22, 28/28) genotypes were associated with high values for milk, (28/22, 28/23) with protein and fat yield, (25/20) with lactose content, and (29/33, 28/28) with low SCC. We suggest that the IGF2R gene polymorphisms could be useful genetic markers for dairy production traits in cattle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Depuydt, Geert G.; Xie, Fang; Petyuk, Vladislav A.
2014-02-20
The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity and metabolism in C. elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass-spectrometry (LC-MS) based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2); daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the up-regulation of many core intermediarymore » metabolic pathways. These include, glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complex I, II, III and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative for spatio-temporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves, possibly also shunting metabolites through alternative energy-generating pathways, in order to sustain longevity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Depuydt, Geert; Xie, Fang; Petyuk, Vladislav A.
2014-04-04
The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC–MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediarymore » metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. Finally, this restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity.« less
Huang, Rong; Wang, Pin; Han, Jing; Xia, Wenqing; Cai, Rongrong; Sun, Haixia; Sun, Jie; Wang, Shaohua
2015-01-01
Insulin-like growth factor (IGF)-1, through insulin/IGF-1 signaling pathway, is involved in the pathogenesis of type 2 diabetes mellitus (T2DM) and Alzheimer's disease. This study aimed to assess the association of serum IGF-1 and IGF binding protein (IGFBP)-3 levels with cognition status and to determine whether IGF-1 rs972936 polymorphism is associated with T2DM with mild cognitive impairment (MCI). A total of 150 T2DM patients, 75 satisfying the MCI diagnostic criteria and 75 exhibiting healthy cognition, were enrolled in this study. The cognitive function of the subjects was extensively assessed. Serum IGF-1 and IGFBP-3 levels were measured through enzyme-linked immunosorbent assay; IGF-1/IGFBP-3 molar ratio was calculated. Single nucleotide polymorphisms of the IGF-1-(rs972936) gene were analyzed. Serum IGF-1/IGFBP-3 molar ratio in MCI patients was significantly lower than that in the control group (p = 0.003). Significant negative correlations were found between IGF-1/IGFBP-3 molar ratio and Trail Making Test A and B (TMT-A and TMT-B) scores (p = 0.003; p < 0.001, respectively), which indicated executive function. Further multiple step-wise regression analysis revealed that the TMT-A or TMT-B score was significantly associated only with serum IGF-1/IGFBP-3 molar ratio (p = 0.016; p < 0.001, respectively). No significant difference was found in the genotype or allele distribution of IGF-1 rs972936 polymorphism between MCI and control groups. A low serum IGF-1/IGFBP-3 molar ratio is associated with the pathogenesis of MCI, particularly executive function in T2DM populations. Further investigation with a large population size should be conducted to confirm this observed association.
Cleveland, Beth M; Weber, Gregory M
2015-05-15
Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids. Published by Elsevier Inc.
Normal growth and development in the absence of hepatic insulin-like growth factor I
Yakar, Shoshana; Liu, Jun-Li; Stannard, Bethel; Butler, Andrew; Accili, Domenici; Sauer, Brian; LeRoith, Derek
1999-01-01
The somatomedin hypothesis proposed that insulin-like growth factor I (IGF-I) was a hepatically derived circulating mediator of growth hormone and is a crucial factor for postnatal growth and development. To reassess this hypothesis, we have used the Cre/loxP recombination system to delete the igf1 gene exclusively in the liver. igf1 gene deletion in the liver abrogated expression of igf1 mRNA and caused a dramatic reduction in circulating IGF-I levels. However, growth as determined by body weight, body length, and femoral length did not differ from wild-type littermates. Although our model proves that hepatic IGF-I is indeed the major contributor to circulating IGF-I levels in mice it challenges the concept that circulating IGF-I is crucial for normal postnatal growth. Rather, our model provides direct evidence for the importance of the autocrine/paracrine role of IGF-I. PMID:10377413
Meneses-Echávez, José Francisco; Jiménez, Emilio González; Río-Valle, Jacqueline Schmidt; Correa-Bautista, Jorge Enrique; Izquierdo, Mikel; Ramírez-Vélez, Robinson
2016-08-25
Insulin-like growth factors (IGF´s) play a crucial role in controlling cancer cell proliferation, differentiation and apoptosis. Exercise has been postulated as an effective intervention in improving cancer-related outcomes and survival, although its effects on IGF´s are not well understood. This meta-analysis aimed to determine the effects of exercise in modulating IGF´s system in breast cancer survivors. Databases of PuMed, EMBASE, Cochrane Central Register of Controlled Trials, EMBASE, ClinicalTrials.gov, SPORTDiscus, LILACS and Scopus were systematically searched up to November 2014. Effect estimates were calculated through a random-effects model of meta-analysis according to the DerSimonian and Laird method. Heterogeneity was evaluated with the I (2) test. Risk of bias and methodological quality were evaluated using the PEDro score. Five randomized controlled trials (n = 235) were included. Most women were post-menopausal. High-quality and low risk of bias were found (mean PEDro score = 6.2 ± 1). Exercise resulted in significant improvements on IGF-I, IGF-II, IGFBP-I, IGFBP-3, Insulin and Insulin resistance (P < 0.05). Non-significant differences were found for Glucose. Aerobic exercise improved IGF-I, IGFBP-3 and Insulin. No evidence of publication bias was detected by Egger´s test (p = 0.12). Exercise improved IGF´s in breast cancer survivors. These findings provide novel insight regarding the molecular effects of exercise on tumoral microenvironment, apoptosis and survival in breast cancer survivors.
Positive correlation between serum IGF-1 and HDL-C in type 2 diabetes mellitus.
Song, Xiaofei; Teng, Jiali; Wang, Aihong; Li, Xiang; Wang, Jing; Liu, Yanjun
2016-08-01
Dyslipidemia and low levels of high density lipoprotein cholesterol (HDL-C) can increase the risk of atherosclerosis development in people with type 2 diabetes mellitus (T2DM). This study aimed to investigate the correlation between serum HDL-C and insulin-like growth factor-1 (IGF-1), which are crucially involved inT2DM. Serum concentrations of IGF-1, total cholesterol, triglyceride, low density lipoprotein cholesterol, and HDL-C were measured in 498 participants with T2DM without any lipid-modifying medicine prior to study. Participants were divided into three groups according to the 25th and 75th percentile of IGF-1 levels: low IGF-1 group (G1), middle IGF-1 group (G2), and high IGF-1 group (G3), respectively. Serum levels of HDL-C were compared among the three groups. G1 presented a higher body mass index and higher fasting plasma insulin (FINS) than G2 (P<0.05), yet a lower HDL-C than G2 (P<0.05). Moreover, HDL-C, postprandial blood glucose, FINS, postprandial plasma insulin (PINS), hip circumference ratio, glycated hemoglobin A1c were significantly lower in G3 than in G2 (P<0.05). After adjusting for age and gender, serum levels of IGF-1 were negatively correlated with age, duration of disease, waist circumference, FINS, PINS, and insulin resistance, but positively correlated with HDL-C. Each increase of 2.71ng/dl in IGF-I concentration was associated with an increase of 1.34mg/dl in HDL level. IGF-1 serum level in people with T2DM is correlated positively with HDL-C. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fuentes, Eduardo N; Zuloaga, Rodrigo; Valdes, Juan Antonio; Molina, Alfredo; Alvarez, Marco
2014-10-01
One of the most fundamental biological processes in living organisms that are affected by environmental fluctuations is growth. In fish, skeletal muscle accounts for the largest proportion of body mass, and the growth of this tissue is mainly controlled by the insulin-like growth factor (IGF) system. By using the carp (Cyprinus carpio), a fish that inhabits extreme conditions during winter and summer, we assessed the skeletal muscle plasticity induced by seasonal acclimatization and the relation of IGF signaling with protein synthesis and ribosomal biogenesis. The expression of igf1 in muscle decreased during winter in comparison with summer, whereas the expression for both paralogues of igf2 did not change significantly between seasons. The expression of igf1 receptor a (igf1ra), but not of igf1rb, was down-regulated in muscle during the winter as compared to the summer. A decrease in protein contents and protein phosphorylation for IGF signaling molecules in muscle was observed in winter-acclimatized carp. This was related with a decreased expression in muscle for markers of myogenesis (myoblast determination factor (myod), myogenic factor 5 (myf5), and myogenin (myog)); protein synthesis (myosin heavy chain (mhc) and myosin light chain (mlc3 and mlc1b)); and ribosomal biogenesis (pre-rRNA and ribosomal proteins). IGF signaling, and key markers of ribosomal biogenesis, protein synthesis, and myogenesis were affected by seasonal acclimatization, with differential regulation in gene expression and signaling pathway activation observed in muscle between both seasons. This suggests that these molecules are responsible for the muscle plasticity induced by seasonal acclimatization in carp. Copyright © 2014 Elsevier Inc. All rights reserved.
Laron, Z; Klinger, B; Silbergeld, A
1999-01-01
Serum IGF-I levels were measured in 14 patients (9 children and 5 adults) with Laron syndrome (LS) during long-term treatment by IGF-I. Recombinant IGF-I (FK-780, Fujisawa Pharmaceutical Co. Ltd., Japan) was administered once daily subcutaneously before breakfast for 3-5 years to the children and for 9 months to the adults. The initial daily dose was 150 micrograms/kg for children and 120 micrograms/kg for adults. Before initiation of treatment the mean overnight fasting levels of serum IGF-I in the children was 3.2 +/- 0.8 nmol/l (mean +/- SEM), rising to 10 +/- 1.7 nmol/l during long-term treatment even on a dose of 120 micrograms/kg/day. The serum IGF-I levels 4 hours after injection rose from 31.2 +/- 3.5 to 48 +/- 2 nmol/l. In the adult patients, the initial basal IGF-I was 4.1 +/- 0.7 nmol/l, rising to 16.1 +/- 3.84 nmol/l after 8-9 months treatment. Serum IGF-I levels at 4 hours after injection rose in the adult patients from 24.1 +/- 5.8 up to 66.8 +/- 15.4 nmol/l. A progressively increasing half-life during long term exogenous administration of IGF-I to patients with Laron syndrome was demonstrated by following serum IGF-I dynamics after injection. Based on the fact that no antibodies to IGF-I were detected and on findings in previous studies, it is speculated that the increasing serum IGF-I levels during long-term IGF-I treatment are caused by an increase in serum IGFBP-3 induced by chronic IGF-I administration. It is concluded that treatment with IGF-I necessitates regular monitoring of serum IGF-I levels; in patients in whom the age adjusted maximal levels are exceeded, a reduction of the daily IGF-I dose is indicated to avoid undesirable effects.
Zhou, Yan; Zeng, Cheng; Li, Xin; Wu, Pei-Li; Yin, Ling; Yu, Xiao-Lan; Zhou, Ying-Fang; Xue, Qing
2016-08-01
Estrogen receptor beta (ERβ, encoded by ESR2 gene) and cytochrome P450 aromatase (encoded by CYP19A1 gene) play critical roles in endometriosis, and the levels of insulin-like growth factor-I (IGF-I) in the peritoneal fluid are significantly higher in patients with endometriosis compared with those in normal women. However, the effects and mechanisms of IGF-I on ERβ and aromatase expression remain to be fully elucidated. In this study, human endometriotic stromal cells (ESCs) and endometrial cells (EMs) derived from ovarian endometriomas and eutopic endometrial tissues. ESCs were cultured with IGF-I, signal pathway inhibitors, and siRNAs. ERβ and aromatase expression were measured by real-time PCR and Western, respectively. The binding of c-Jun and CREB to the ESR2 and CYP19A1 promoters was assessed by chromatin immunoprecipitation assay. Animal experiments were performed in a xenograft mouse model. Levels of IGF-I mRNA in ESCs were markedly higher than those in EMs. IGF-I upregulated ERβ and aromatase expression in ESCs after stimulation of the IGF1R/PI3K/AKT pathway. Following IGF-I treatment, a marked increase in c-Jun and CREB phosphorylation occurred, enhancing binding to the ESR2 and CYP19A1 promoters. An IGF1R inhibitor in vivo reduced IGF-I-induced endometriosis graft growth and ERβ and aromatase expression. In conclusion, this is the first report to describe a mechanistic analysis of ERβ and aromatase expression regulated by IGF-I in ESCs. Moreover, an IGF1R inhibitor impeded ectopic lesion growth in nude mice. These findings suggest that an inhibitor of IGF1R might have therapeutic potential as an antiendometriotic drug. Level of IGF-I mRNA in ESCs is markedly higher than that in EMs. IGF-I up-regulates ERβ and aromatase expression via IGF1R/PI3K/AKT pathway. C-Jun and CREB are recruited to ESR2 or CYP19A1 promoter by IGF-I stimulation. IGF-1R inhibitors in vivo impede the growth of ectopic lesions in nude mice.
Zhang, Quanwei; Gong, Jishang; Wang, Xueying; Wu, Xiaohu; Li, Yalan; Ma, Youji; Zhang, Yong; Zhao, Xingxu
2014-01-01
The IGF family is essential for normal embryonic and postnatal development and plays important roles in the immune system, myogenesis, bone metabolism and other physiological functions, which makes the study of its structure and biological characteristics important. Tianzhu white yak (Bos grunniens) domesticated under alpine hypoxia environments, is well adapted to survive and grow against severe hypoxia and cold temperatures for extended periods. In this study, a full coding sequence of the IGF2 gene of Tianzhu white yak was amplified by reverse transcription PCR and rapid-amplification of cDNA ends (RACE) for the first time. The cDNA sequence revealed an open reading frame of 450 nucleotides, encoding a protein with 179 amino acids. Its expression in different tissues was also studied by Real time PCR. Phylogenetic tree analysis indicated that yak IGF2 was similar to Bos taurus, and 3D structure showed high similarity with the human IGF2. The putative full CDS of yak IGF2 was amplified by PCR in five tissues, and cDNA sequence analysis showed high homology to bovine IGF2. Moreover the super secondary structure prediction showed a similar 3D structure with human IGF2. Its conservation in sequence and structure has facilitated research on IGF2 and its physiological function in yak. PMID:24394317
Cord blood level of insulin-like growth factor-1 and IGF binding protein-3 in monochorionic twins.
Teng, Ru-Jeng; Wu, Tzong-Jin; Hsieh, Fon-Jou
2015-04-01
Insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) are known to modulate fetal growth but their role in intrauterine growth of monochorionic twins (MCT) has not been studied. Cord venous blood was collected directly after birth. IGF-1 and IGFBP-3 in the cord venous blood were quantified by radioimmunoassay. Birth weights (BWs) were obtained electronically. Placentas were examined for chorionicity. Cord blood was collected in 37 pairs of MCT (15 pairs were males). BWs ranged from 564 to 3240 g, and gestational ages (GAs) were between 24 weeks and 39 weeks. There was a correlation between BW and cord venous blood IGFBP-3 concentration (r = 0.28, p = 0.015), but not between BW and cord venous blood IGF-1 level. There was no difference in IGF-1 between the heavier twins (30.8 ± 61.8 ng/mL) and lighter twins (33.2 ± 63.7 ng/mL), but a trend (p = 0.096) of higher IGFBP-3 level was demonstrated in heavier twins (3.14 ± 1.23 μg/mL) than in lighter twins (2.71 ± 1.19 μg/mL). The IGFBP-3 levels were higher (p = 0.042) in female twins (3.20 ± 1.33 μg/mL) than in male twins (2.64 ± 1.04 μg/mL). The IGF-1 level of the heavier twins correlated significantly to their lighter co-twin (r = 0.73, p < 0.001). Our data showed that cord venous blood IGF-1 level might be controlled mainly by genetic factors. IGFBP-3 might play an important role in fetal growth. Copyright © 2013. Published by Elsevier B.V.
Min, Hye-Young; Boo, Hye-Jin; Lee, Ho Jin; Jang, Hyun-Ji; Yun, Hye Jeong; Hwang, Su Jung; Smith, John Kendal; Lee, Hyo-Jong; Lee, Ho-Young
2016-10-25
Activation of receptor tyrosine kinases (RTKs) is associated with carcinogenesis, but its contribution to smoking-associated lung carcinogenesis is poorly understood. Here we show that a tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced insulin-like growth factor 1 receptor (IGF-1R) activation via β-adrenergic receptor (β-AR) is crucial for smoking-associated lung carcinogenesis. Treatment with NNK stimulated the IGF-1R signaling pathway in a time- and dose-dependent manner, which was suppressed by pharmacological or genomic blockade of β-AR and the downstream signaling including a Gβγ subunit of β-AR and phospholipase C (PLC). Consistently, β-AR agonists led to increased IGF-1R phosphorylation. The increase in IGF2 transcription via β-AR, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-kappa B (NF-κB) was associated with NNK-induced IGF-1R activation. Finally, treatment with β-AR antagonists suppressed the acquisition of transformed phenotypes in lung epithelial cells and lung tumor formation in mice. These results suggest that blocking β-AR-mediated IGF-1R activation can be an effective strategy for lung cancer prevention in smokers.
NASA Technical Reports Server (NTRS)
Allen, D. L.; Linderman, J. K.; Roy, R. R.; Grindeland, R. E.; Mukku, V.; Edgerton, V. R.
1997-01-01
In the present study of rats, we examined the role, during 2 wk of hindlimb suspension, of growth hormone/insulin-like growth factor I (GH/IGF-I) administration and/or brief bouts of resistance exercise in ameliorating the loss of myonuclei in fibers of the soleus muscle that express type I myosin heavy chain. Hindlimb suspension resulted in a significant decrease in mean soleus wet weight that was attenuated either by exercise alone or by exercise plus GH/IGF-I treatment but was not attenuated by hormonal treatment alone. Both mean myonuclear number and mean fiber cross-sectional area (CSA) of fibers expressing type I myosin heavy chain decreased after 2 wk of suspension compared with control (134 vs. 162 myonuclei/mm and 917 vs. 2,076 micron2, respectively). Neither GH/IGF-I treatment nor exercise alone affected myonuclear number or fiber CSA, but the combination of exercise and growth-factor treatment attenuated the decrease in both variables. A significant correlation was found between mean myonuclear number and mean CSA across all groups. Thus GH/IGF-I administration and brief bouts of muscle loading had an interactive effect in attenuating the loss of myonuclei induced by chronic unloading.
USDA-ARS?s Scientific Manuscript database
The insulin-like growth factor-1 (IGF-1) signaling axis is important for cell growth, differentiation, and survival, and increased serum IGF is a risk factor for prostate and other cancers. To study IGF-1 action on the prostate, we created transgenic (PB-Des) mice that specifically express human IGF...
Hiney, Jill K; Srivastava, Vinod K; Dees, William Les
2011-06-01
Precocious puberty is a significant child health problem, especially in girls, because 95% of cases are idiopathic. Our earlier studies demonstrated that low-dose levels of manganese (Mn) caused precocious puberty via stimulating the secretion of luteinizing hormone-releasing hormone (LHRH). Because glial-neuronal communications are important for the activation of LHRH secretion at puberty, we investigated the effects of prepubertal Mn exposure on specific glial-derived puberty-related genes known to affect neuronal LHRH release. Animals were supplemented with MnCl(2) (10 mg/kg) or saline by gastric gavage from day 12 until day 22 or day 29, then decapitated, and brains removed. The site of LHRH release is the medial basal hypothalamus (MBH), and tissues from this area were analyzed by real-time PCR for transforming growth factor α (TGFα), insulin-like growth factor-1 (IGF-1), and cyclooxygenase-2 (COX-2) messenger RNA levels. Protein levels for IGF-1 receptor (IGF-1R) were measured by Western blot analysis. LHRH gene expression was measured in the preoptic area/anteroventral periventricular (POA/AVPV) region. In the MBH, at 22 days, IGF-1 gene expression was increased (p < 0.05) with a concomitant increase (p < 0.05) in IGF-1R protein expression. Mn also increased (p < 0.01) COX-2 gene expression. At 29 days, the upregulation of IGF-1 (p < 0.05) and COX-2 (p < 0.05) continued in the MBH. At this time, we observed increased (p < 0.05) LHRH gene expression in the POA/AVPV. Additionally, Mn stimulated prostaglandin E(2) and LHRH release from 29-day-old median eminences incubated in vitro. These results demonstrate that Mn, through the upregulation of IGF-1 and COX-2, may promote maturational events and glial-neuronal communications facilitating the increased neurosecretory activity, including that of LHRH, resulting in precocious pubertal development.
Ceylan-Isik, Asli F.; Li, Qun; Ren, Jun
2011-01-01
Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (± dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR90), fura-fluorescence intensity (FFI) and intracellular Ca2+ clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ± dL/dt, longer TPS, TR90 and intracellular Ca2+ clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na+-Ca2+ exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca2+ regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca2+ regulation. PMID:21763763
Ceylan-Isik, Asli F; Li, Qun; Ren, Jun
2011-10-10
Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retamales, A.; Zuloaga, R.; Valenzuela, C.A.
Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletalmore » myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.« less
The trajectory of IGF-1 across age and duration of type 1 diabetes
Palta, Mari; LeCaire, Tamara; Sadek-Badawi, Mona; Herrera, Victor; Danielson, Kirstie K.
2014-01-01
Background Individuals with type 1 diabetes may have low IGF-1, related to insulinopenia and insulin resistance. There are few longitudinal studies of IGF-1 levels to establish its pattern in type 1 diabetes with duration and age, and to examine whether IGF-1 tracks within individuals over time. We examine age and duration trends, and the relationship of IGF-1 to gender, glycemic control, insulin level and other factors. Methods Participants in the Wisconsin Diabetes Registry Study, an incident cohort study of type 1 diabetes diagnosed May 1987-April 1992, were followed for up to 18 years with IGF-1 samples up to age 45 for women and age 37 for men.. Results IGF-1 is lower with type 1 diabetes than in normative samples. Although, the pattern across age resembles that in normative samples with a peak in adolescence and slow decline after age 20, the adolescent peak is delayed for women with type 1 diabetes. There was low to moderate tracking of IGF-1 within individual. Higher insulin dose was associated with higher IGF-1 as was puberty, and female gender. Adjusted for these factors, IGF-1 declined rapidly across early diabetes duration. Lower HbA1c was most strongly related to higher IGF-1 at Tanner stages 1 and 2. Conclusions IGF-1 is low in type 1 diabetes, with a delayed adolescent peak in women and is especially influenced by glycemic control in early and pre- adolescence. High variability within individual is likely a challenge in investigating associations between IGF-1 and long term outcomes, and may explain contradictory findings. PMID:24845759