Science.gov

Sample records for factor ii receptors

  1. Transforming growth factor receptor type II (ec-TβR II) behaves as a halophile.

    PubMed

    Saini, Komal; Khan, M Ashhar I; Chakrapani, Sumit; Deep, Shashank

    2015-01-01

    The members of transforming growth factor β family (TGF-β) are multifunctional proteins but their main role is to control cell proliferation and differentiation. Polypeptides of TGF-β family function by binding to two related, functionally distinct transmembrane receptor kinases, first to the type II (TβR II) followed by type I receptor (TβR I). The paper describes, in details, the stability of wt-ec-TβR II under different conditions. The stability of wt-ec-TβR II was observed at different pH and salt concentration using fluorescence spectroscopy. Stability of ec-TβR II decreases with decrease in pH. Interestingly, the addition of salt increases the stability of the TβRII at pH 5.0 as observed for halophiles. Computational analysis using DELPHI suggests that this is probably due to the decrease in repulsion between negatively charged residues at surface on the addition of salt. This is further confirmed by the change in the stability of receptor on mutation of some of the residues (D32A) at surface.

  2. The types II and III transforming growth factor-beta receptors form homo-oligomers

    PubMed Central

    1994-01-01

    Affinity-labeling experiments have detected hetero-oligomers of the types I, II, and III transforming growth factor beta (TGF-beta) receptors which mediate intracellular signaling by TGF-beta, but the oligomeric state of the individual receptor types remains unknown. Here we use two types of experiments to show that a major portion of the receptor types II and III forms homo-oligomers both in the absence and presence of TGF-beta. Both experiments used COS-7 cells co-transfected with combinations of these receptors carrying different epitope tags at their extracellular termini. In immunoprecipitation experiments, radiolabeled TGF-beta was bound and cross-linked to cells co-expressing two differently tagged type II receptors. Sequential immunoprecipitations using anti-epitope monoclonal antibodies showed that type II TGF-beta receptors form homo-oligomers. In cells co- expressing epitope-tagged types II and III receptors, a low level of co- precipitation of the ligand-labeled receptors was observed, indicating that some hetero-oligomers of the types II and III receptors exist in the presence of ligand. Antibody-mediated cross-linking studies based on double-labeling immunofluorescence explored co-patching of the receptors at the cell surface on live cells. In cells co-expressing two differently tagged type II receptors or two differently tagged type III receptors, forcing one receptor into micropatches by IgG induced co- patching of the receptor carrying the other tag, labeled by noncross- linking monovalent Fab'. These studies showed that homo-oligomers of the types II and III receptors exist on the cell surface in the absence or presence of TGF-beta 1 or -beta 2. In cells co-expressing types II and III receptors, the amount of heterocomplexes at the cell surface was too low to be detected in the immunofluorescence co-patching experiments, confirming that hetero-oligomers of the types II and III receptors are minor and probably transient species. PMID:8027173

  3. Insulin and insulin like growth factor II endocytosis and signaling via insulin receptor B

    PubMed Central

    2013-01-01

    Background Insulin and insulin-like growth factors (IGFs) act on tetrameric tyrosine kinase receptors controlling essential functions including growth, metabolism, reproduction and longevity. The insulin receptor (IR) binds insulin and IGFs with different affinities triggering different cell responses. Results We showed that IGF-II induces cell proliferation and gene transcription when IR-B is over-expressed. We combined biotinylated ligands with streptavidin conjugated quantum dots and visible fluorescent proteins to visualize the binding of IGF-II and insulin to IR-B and their ensuing internalization. By confocal microscopy and flow cytometry in living cells, we studied the internalization kinetic through the IR-B of both IGF-II, known to elicit proliferative responses, and insulin, a regulator of metabolism. Conclusions IGF-II promotes a faster internalization of IR-B than insulin. We propose that IGF-II differentially activates mitogenic responses through endosomes, while insulin-activated IR-B remains at the plasma membrane. This fact could facilitate the interaction with key effector molecules involved in metabolism regulation. PMID:23497114

  4. Vertebral Artery Aneurysm Mimicking as Left Subclavian Artery Aneurysm in a Patient with Transforming Growth Factor Beta Receptor II Mutation.

    PubMed

    Afifi, Rana O; Dhillon, Baltej Singh; Sandhu, Harleen K; Charlton-Ouw, Kristofer M; Estrera, Anthony L; Azizzadeh, Ali

    2015-10-01

    We report successful endovascular repair of a left vertebral artery aneurysm in a patient with transforming growth factor beta receptor II mutation. The patient was initially diagnosed with a left subclavian artery aneurysm on computed tomography angiography. The patient consented to publication of this report.

  5. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    SciTech Connect

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-03-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human /sup 125/-I-IGF-II (10 pM) was incubated for 16 hrs at 4/sup 0/C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA/sub 1/-CA/sub 2/ and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of /sup 125/I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning.

  6. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain*

    PubMed Central

    Hexnerová, Rozálie; Křížková, Květoslava; Fábry, Milan; Sieglová, Irena; Kedrová, Kateřina; Collinsová, Michaela; Ullrichová, Pavlína; Srb, Pavel; Williams, Christopher; Crump, Matthew P.; Tošner, Zdeněk; Jiráček, Jiří; Veverka, Václav; Žáková, Lenka

    2016-01-01

    Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains. PMID:27510031

  7. Angiotensin II receptor signalling.

    PubMed

    Daniels, Derek; Yee, Daniel K; Fluharty, Steven J

    2007-05-01

    Angiotensin II plays a key role in the regulation of body fluid homeostasis. To correct body fluid deficits that occur during hypovolaemia, an animal needs to ingest both water and electrolytes. Thus, it is not surprising that angiotensin II, which is synthesized in response to hypovolaemia, acts centrally to increase both water and NaCl intake. Here, we review findings relating to the properties of angiotensin II receptors that give rise to changes in behaviour. Data are described to suggest that divergent signal transduction pathways are responsible for separable behavioural responses to angiotensin II, and a hypothesis is proposed to explain how this divergence may map onto neural circuits in the brain.

  8. Expression of transforming growth factor β receptor II in mesenchymal stem cells from systemic sclerosis patients

    PubMed Central

    Vanneaux, Valérie; Farge-Bancel, Dominique; Lecourt, Séverine; Baraut, Julie; Cras, Audrey; Jean-Louis, Francette; Brun, Cécilia; Verrecchia, Franck; Larghero, Jérôme; Michel, Laurence

    2013-01-01

    Objectives The present work aimed to evaluate the expression of transforming growth factor-β (TGF-β) receptors on bone marrow-derived multipotent mesenchymal stromal cells (MSCs) in patients with systemic sclerosis (SSc) and the consequences of TGF-β activation in these cells, since MSC have potential therapeutic interest for SSc patients and knowing that TGF-β plays a critical role during the development of fibrosis in SSc. Design This is a prospective research study using MSC samples obtained from SSc patients and compared with MSC from healthy donors. Setting One medical hospital involving collaboration between an internal medicine department for initial patient recruitment, a clinical biotherapeutic unit for MSC preparation and an academic laboratory for research. Participants 9 patients with diffuse SSc for which bone marrow (BM) aspiration was prescribed by sternum aspiration before haematopoietic stem cell transplantation, versus nine healthy donors for normal BM. Primary and secondary outcome measures TGF-β, TGF-β receptor types I (TBRI) and II (TBRII) mRNA and protein expression were assessed by quantitative PCR and flow cytometry, respectively, in MSC from both SSc patients and healthy donors. MSC were exposed to TGF-β and assessed for collagen 1α2 synthesis and Smad expression. As positive controls, primary cultures of dermal fibroblasts were also analysed. Results Compared with nine controls, MSC from nine SSc patients showed significant increase in mRNA levels (p<0.002) and in membrane expression (p<0.0001) of TBRII. In response to TGF-β activation, a significant increase in collagen 1α synthesis (p<0.05) and Smad-3 phosphorylation was upregulated in SSc MSC. Similar results were obtained on eight SSc-derived dermal fibroblasts compared to six healthy controls. Conclusions TBRII gene and protein expression defect in MSC derived from SSc patients may have pathological significance. These findings should be taken into account when considering

  9. A Novel Approach to Identify Two Distinct Receptor Binding Surfaces of Insulin-like Growth Factor II*S⃞

    PubMed Central

    Alvino, Clair L.; McNeil, Kerrie A.; Ong, Shee Chee; Delaine, Carlie; Booker, Grant W.; Wallace, John C.; Whittaker, Jonathan; Forbes, Briony E.

    2009-01-01

    Very little is known about the residues important for the interaction of insulin-like growth factor II (IGF-II) with the type 1 IGF receptor (IGF-1R) and the insulin receptor (IR). Insulin, to which IGF-II is homologous, is proposed to cross-link opposite halves of the IR dimer through two receptor binding surfaces, site 1 and site 2. In the present study we have analyzed the contribution of IGF-II residues equivalent to insulin's two binding surfaces toward the interaction of IGF-II with the IGF-1R and IR. Four “site 1” and six “site 2” analogues were produced and analyzed in terms of IGF-1R and IR binding and activation. The results show that Val43, Phe28, and Val14 (equivalent to site 1) are critical to IGF-1R and IR binding, whereas mutation to alanine of Gln18 affects only IGF-1R and not IR binding. Alanine substitutions at Glu12, Asp15, Phe19, Leu53, and Glu57 analogues resulted in significant (>2-fold) decreases in affinity for both the IGF-1R and IR. Furthermore, taking a novel approach using a monomeric, single-chain minimized IGF-1R we have defined a distinct second binding surface formed by Glu12, Phe19, Leu53, and Glu57 that potentially engages the IGF-1R at one or more of the FnIII domains. PMID:19139090

  10. Insulin-like Growth Factor-II (IGF-II) and IGF-II Analogs with Enhanced Insulin Receptor-a Binding Affinity Promote Neural Stem Cell Expansion*

    PubMed Central

    Ziegler, Amber N.; Chidambaram, Shravanthi; Forbes, Briony E.; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    The objective of this study was to employ genetically engineered IGF-II analogs to establish which receptor(s) mediate the stemness promoting actions of IGF-II on mouse subventricular zone neural precursors. Neural precursors from the subventricular zone were propagated in vitro in culture medium supplemented with IGF-II analogs. Cell growth and identity were analyzed using sphere generation and further analyzed by flow cytometry. F19A, an analog of IGF-II that does not bind the IGF-2R, stimulated an increase in the proportion of neural stem cells (NSCs) while decreasing the proportion of the later stage progenitors at a lower concentration than IGF-II. V43M, which binds to the IGF-2R with high affinity but which has low binding affinity to the IGF-1R and to the A isoform of the insulin receptor (IR-A) failed to promote NSC growth. The positive effects of F19A on NSC growth were unaltered by the addition of a functional blocking antibody to the IGF-1R. Altogether, these data lead to the conclusion that IGF-II promotes stemness of NSCs via the IR-A and not through activation of either the IGF-1R or the IGF-2R. PMID:24398690

  11. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II.

    PubMed

    Takayanagi, Takehiko; Kawai, Tatsuo; Forrester, Steven J; Obama, Takashi; Tsuji, Toshiyuki; Fukuda, Yamato; Elliott, Katherine J; Tilley, Douglas G; Davisson, Robin L; Park, Joon-Young; Eguchi, Satoru

    2015-06-01

    The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension.

  12. Insulin-like growth factors (IGFs) stimulate the release of alpha 1-antichymotrypsin and soluble IGF-II/mannose 6-phosphate receptor from MCF7 breast cancer cells.

    PubMed

    Confort, C; Rochefort, H; Vignon, F

    1995-09-01

    The growth of hormone-responsive MCF7 human breast cancer cells is controlled by steroid hormones and growth factors. By metabolic labeling of cells grown in steroid- and growth factor-stripped serum conditions, we show that insulin-like growth factors (IGF-I and IGF-II) increase by approximately 5-fold the release of several proteins including cathepsin D, alpha 1-antichymotrypsin, and soluble forms of the multifunctional IGF-II/mannose 6-phosphate (M6P) receptor. Two soluble forms of IGF-II/M6P receptors were detected, one major (approximately 260 kilodaltons) and one minor (approximately 85 kilodaltons) that probably represents a proteolytic fragment of the larger soluble molecule. IGFs increased receptor release in a dose-dependent fashion with 50-60% of newly synthesized receptor released at 5-10 nM IGFs. The release of IGF-II/M6P receptors correlated with the levels of secreted cathepsin D in different human breast cancer cells or in rats stable transfectants that are constitutively expressing variable levels of human cathepsin D. IGFs had a stronger effect on IGF-II/M6P receptor release, whereas estradiol treatment preferentially enhanced the release of protease and antiprotease. We thus demonstrate that in human breast cancer cells, IGFs not only act as strong mitogens but also regulate release of alpha 1-antichymotrypsin, IGF-II/M6P-soluble receptor, and cathepsin D; three proteins that potentially regulate cell proliferation and/or invasion.

  13. Stimulation of glucose uptake by insulin-like growth factor II in human muscle is not mediated by the insulin-like growth factor II/mannose 6-phosphate receptor.

    PubMed Central

    Burguera, B; Elton, C W; Caro, J F; Tapscott, E B; Pories, W J; Dimarchi, R; Sakano, K; Dohm, G L

    1994-01-01

    Although the growth-promoting effects of insulin-like growth factor II (IGF-II) have been intensively studied, the acute actions of this hormone on glucose metabolism have been less well evaluated, especially in skeletal muscle of humans. We and other groups have shown that IGFs reduce glycaemic levels in humans and stimulate glucose uptake in rat muscle. The purpose of the present study was to evaluate the effect of IGF-II on glucose transport in muscle of normal and obese patients with and without non-insulin-dependent diabetes mellitus (NIDDM), as well as to identify the receptor responsible for this action. 2-Deoxyglucose transport was determined in vitro using a muscle-fibre strip preparation. IGF-II were investigated in biopsy material of rectus abdominus muscle taken from lean and obese patients and obese patients with NIDDM at the time of surgery. In the lean group, IGF-II (100 nM) stimulated glucose transport 2.1-fold, which was slightly less than stimulation by insulin (2.8-fold) at the same concentration. Binding of IGF-II was approx. 25% of that of insulin at 1 nM concentrations of both hormones. Obesity with or without NIDDM significantly reduced IGF-II-stimulated glucose uptake compared with the lean group. In order to explore which receptor mediated the IGF-II effect, we compared glucose uptake induced by IGF-II and two IGF-II analogues: [Leu27]IGF-II, with high affinity for the IGF-II/Man 6-P receptor but markedly reduced affinity for the IGF-I and insulin receptors, and [Arg54,Arg55]IGF-II was similar to that of IGF-II, whereas [Leu27]IGF-II had a very diminished effect. Results show that IGF-II is capable of stimulating muscle glucose uptake in lean but not in obese subjects and this effect seems not to be mediated via an IGF-II/Man 6-P receptor. Images Figure 2 PMID:8010960

  14. The Epidermal Growth Factor Receptor Is Involved in Angiotensin II But Not Aldosterone/Salt-Induced Cardiac Remodelling

    PubMed Central

    Griol-Charhbili, Violaine; Escoubet, Brigitte; Sadoshima, Junichi; Farman, Nicolette; Jaisser, Frederic

    2012-01-01

    Experimental and clinical studies have shown that aldosterone/mineralocorticoid receptor (MR) activation has deleterious effects in the cardiovascular system; however, the signalling pathways involved in the pathophysiological effects of aldosterone/MR in vivo are not fully understood. Several in vitro studies suggest that Epidermal Growth Factor Receptor (EGFR) plays a role in the cardiovascular effects of aldosterone. This hypothesis remains to be demonstrated in vivo. To investigate this question, we analyzed the molecular and functional consequences of aldosterone exposure in a transgenic mouse model with constitutive cardiomyocyte-specific overexpression of a mutant EGFR acting as a dominant negative protein (DN-EGFR). As previously reported, Angiotensin II-mediated cardiac remodelling was prevented in DN-EGFR mice. However, when chronic MR activation was induced by aldosterone-salt-uninephrectomy, cardiac hypertrophy was similar between control littermates and DN-EGFR. In the same way, mRNA expression of markers of cardiac remodelling such as ANF, BNF or β-Myosin Heavy Chain as well as Collagen 1a and 3a was similarly induced in DN-EGFR mice and their CT littermates. Our findings confirm the role of EGFR in AngII mediated cardiac hypertrophy, and highlight that EGFR is not involved in vivo in the damaging effects of aldosterone on cardiac function and remodelling. PMID:22291909

  15. Angiotensin II receptor heterogeneity

    SciTech Connect

    Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )

    1991-04-01

    The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.

  16. Insulin-like growth factors (IGFs) stimulate the release of alpha 1-antichymotrypsin and soluble IGF-II/mannose 6-phosphate receptor from MCF7 breast cancer cells.

    PubMed

    Confort, C; Rochefort, H; Vignon, F

    1995-09-01

    The growth of hormone-responsive MCF7 human breast cancer cells is controlled by steroid hormones and growth factors. By metabolic labeling of cells grown in steroid- and growth factor-stripped serum conditions, we show that insulin-like growth factors (IGF-I and IGF-II) increase by approximately 5-fold the release of several proteins including cathepsin D, alpha 1-antichymotrypsin, and soluble forms of the multifunctional IGF-II/mannose 6-phosphate (M6P) receptor. Two soluble forms of IGF-II/M6P receptors were detected, one major (approximately 260 kilodaltons) and one minor (approximately 85 kilodaltons) that probably represents a proteolytic fragment of the larger soluble molecule. IGFs increased receptor release in a dose-dependent fashion with 50-60% of newly synthesized receptor released at 5-10 nM IGFs. The release of IGF-II/M6P receptors correlated with the levels of secreted cathepsin D in different human breast cancer cells or in rats stable transfectants that are constitutively expressing variable levels of human cathepsin D. IGFs had a stronger effect on IGF-II/M6P receptor release, whereas estradiol treatment preferentially enhanced the release of protease and antiprotease. We thus demonstrate that in human breast cancer cells, IGFs not only act as strong mitogens but also regulate release of alpha 1-antichymotrypsin, IGF-II/M6P-soluble receptor, and cathepsin D; three proteins that potentially regulate cell proliferation and/or invasion. PMID:7649082

  17. Tumor necrosis factor receptor-associated factor-6 and ribosomal S6 kinase intracellular pathways link the angiotensin II AT1 receptor to the phosphorylation and activation of the IkappaB kinase complex in vascular smooth muscle cells.

    PubMed

    Doyon, Priscilla; Servant, Marc J

    2010-10-01

    Activation of NF-κB transcription factors by locally produced angiotensin II (Ang II) is proposed to be involved in chronic inflammatory reactions leading to atherosclerosis development. However, a clear understanding of the signaling cascades coupling the Ang II AT1 receptors to the activation of NF-κB transcription factors is still lacking. Using primary cultured aortic vascular smooth muscle cells, we show that activation of the IKK complex and NF-κB transcription factors by Ang II is regulated by phosphorylation of the catalytic subunit IKKβ on serine residues 177 and 181 in the activation T-loop. The use of pharmacological inhibitors against conventional protein kinases C (PKCs), mitogen-activated/extracellular signal-regulated kinase (MEK) 1/2, ribosomal S6 kinase (RSK), and silencing RNA technology targeting PKCα, IKKβ subunit, tumor growth factor β-activating kinase-1 (TAK1), the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor-6 (TRAF6), and RSK isoforms, demonstrates the requirement of two distinct signaling pathway for the phosphorylation of IKKβ and the activation of the IKK complex by Ang II. Rapid phosphorylation of IKKβ requires a second messenger-dependent pathway composed of PKCα-TRAF6-TAK1, whereas sustained phosphorylation and activation of IKKβ requires the MEK1/2-ERK1/2-RSK pathway. Importantly, simultaneously targeting components of these two pathways completely blunts the phosphorylation of IKKβ and the proinflammatory effect of the octapeptide. This is the first report demonstrating activation of TAK1 by the AT1R. We propose a model whereby TRAF6-TAK1 and ERK-RSK intracellular pathways independently and sequentially converge to the T-loop phosphorylation for full activation of IKKβ, which is an essential step in the proinflammatory activity of Ang II.

  18. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis.

    PubMed

    Huang, Yan; Di Lorenzo, Annarita; Jiang, Weidong; Cantalupo, Anna; Sessa, William C; Giordano, Frank J

    2013-09-01

    Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings. PMID:23918749

  19. G protein coupling and second messenger generation are indispensable for metalloprotease-dependent, heparin-binding epidermal growth factor shedding through angiotensin II type-1 receptor.

    PubMed

    Mifune, Mizuo; Ohtsu, Haruhiko; Suzuki, Hiroyuki; Nakashima, Hidekatsu; Brailoiu, Eugen; Dun, Nae J; Frank, Gerald D; Inagami, Tadashi; Higashiyama, Shigeki; Thomas, Walter G; Eckhart, Andrea D; Dempsey, Peter J; Eguchi, Satoru

    2005-07-15

    A G protein-coupled receptor agonist, angiotensin II (AngII), induces epidermal growth factor (EGF) receptor (EGFR) transactivation possibly through metalloprotease-dependent, heparin-binding EGF (HB-EGF) shedding. Here, we have investigated signal transduction of this process by using COS7 cells expressing an AngII receptor, AT1. In these cells AngII-induced EGFR transactivation was completely inhibited by pretreatment with a selective HB-EGF inhibitor, or with a metalloprotease inhibitor. We also developed a COS7 cell line permanently expressing a HB-EGF construct tagged with alkaline phosphatase, which enabled us to measure HB-EGF shedding quantitatively. In the COS7 cell line AngII stimulated release of HB-EGF. This effect was mimicked by treatment either with a phospholipase C activator, a Ca2+ ionophore, a metalloprotease activator, or H2O2. Conversely, pretreatment with an intracellular Ca2+ antagonist or an antioxidant blocked AngII-induced HB-EGF shedding. Moreover, infection of an adenovirus encoding an inhibitor of G(q) markedly reduced EGFR transactivation and HB-EGF shedding through AT1. In this regard, AngII-stimulated HB-EGF shedding was abolished in an AT1 mutant that lacks G(q) protein coupling. However, in cells expressing AT1 mutants that retain G(q) protein coupling, AngII is still able to induce HB-EGF shedding. Finally, the AngII-induced EGFR transactivation was attenuated in COS7 cells overexpressing a catalytically inactive mutant of ADAM17. From these data we conclude that AngII stimulates a metalloprotease ADAM17-dependent HB-EGF shedding through AT1/G(q)/phospholipase C-mediated elevation of intracellular Ca2+ and reactive oxygen species production, representing a key mechanism indispensable for EGFR transactivation.

  20. Silencing of the transforming growth factor-beta (TGFbeta) receptor II by Kruppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling.

    PubMed

    Truty, Mark J; Lomberk, Gwen; Fernandez-Zapico, Martin E; Urrutia, Raul

    2009-03-01

    The role of non-Smad proteins in the regulation of transforming growth factor-beta (TGFbeta) signaling is an emerging line of active investigation. Here, we characterize the role of KLF14, as a TGFbeta-inducible, non-Smad protein that silences the TGFbeta receptor II (TGFbetaRII) promoter. Together with endocytosis, transcriptional silencing is a critical mechanism for down-regulating TGFbeta receptors at the cell surface. However, the mechanisms underlying transcriptional repression of these receptors remain poorly understood. KLF14 has been chosen from a comprehensive screen of 24 members of the Sp/KLF family due to its TGFbeta inducibility, its ability to regulate the TGFbetaRII promoter, and the fact that this protein had yet to be functionally characterized. We find that KLF14 represses the TGFbetaRII, a function that is augmented by TGFbeta treatment. Mapping of the TGFbetaRII promoter, in combination with site-directed mutagenesis, electromobility shift, and chromatin immunoprecipitation assays, have identified distinct GC-rich sequences used by KLF14 to regulate this promoter. Mechanistically, KLF14 represses the TGFbetaRII promoter via a co-repressor complex containing mSin3A and HDAC2. Furthermore, the TGFbeta pathway activation leads to recruitment of a KLF14-mSin3A-HDAC2 repressor complex to the TGFbetaRII promoter, as well as the remodeling of chromatin to increase histone marks that associate with transcriptional silencing. Thus, these results describe a novel negative-feedback mechanism by which TGFbetaRII activation at the cell surface induces the expression of KLF14 to ultimately silence the TGFbetaRII and further expand the network of non-Smad transcription factors that participate in the TGFbeta pathway. PMID:19088080

  1. Angiotensin II receptors in testes

    SciTech Connect

    Millan, M.A.; Aguilera, G.

    1988-05-01

    Receptors for angiotensin II (AII) were identified and characterized in testes of rats and several primate species. Autoradiographic analysis of the binding of 125I-labeled (Sar1,Ile8)AII to rat, rhesus monkey, cebus monkey, and human testicular slide-mounted frozen sections indicated specific binding to Leydig cells in the interstitium. In rat collagenase-dispersed interstitial cells fractionated by Percoll gradient, AII receptor content was parallel to that of hCG receptors, confirming that the AII receptors are in the Leydig cells. In rat dispersed Leydig cells, binding was specific for AII and its analogs and of high affinity (Kd, 4.8 nM), with a receptor concentration of 15 fmol/10(6) cells. Studies of AII receptors in rat testes during development reveals the presence of high receptor density in newborn rats which decreases toward the adult age (4934 +/- 309, 1460 +/- 228, 772 +/- 169, and 82 +/- 12 fmol/mg protein at 5, 15, 20, and 30 days of age, respectively) with no change in affinity. At all ages receptors were located in the interstitium, and the decrease in binding was parallel to the decrease in the interstitial to tubular ratio observed with age. AII receptor properties in membrane-rich fractions from prepuberal testes were similar in the rat and rhesus monkey. Binding was time and temperature dependent, reaching a plateau at 60 min at 37 C, and was increased by divalent cations, EGTA, and dithiothreitol up to 0.5 mM. In membranes from prepuberal monkey testes, AII receptors were specific for AII analogs and of high affinity (Kd, 4.2 nM) with a receptor concentration of 7599 +/- 1342 fmol/mg protein. The presence of AII receptors in Leydig cells in rat and primate testes in conjunction with reports of the presence of other components of the renin-angiotensin system in the testes suggests that the peptide has a physiological role in testicular function.

  2. Factor II deficiency

    MedlinePlus

    ... blood. It leads to problems with blood clotting (coagulation). Factor II is also known as prothrombin. ... blood clots form. This process is called the coagulation cascade. It involves special proteins called coagulation, or ...

  3. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    PubMed

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt. PMID:15525798

  4. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    PubMed

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt.

  5. Different expression of mu-opiate receptor in chronic and acute wounds and the effect of beta-endorphin on transforming growth factor beta type II receptor and cytokeratin 16 expression.

    PubMed

    Bigliardi, P L; Sumanovski, L T; Büchner, S; Rufli, T; Bigliardi-Qi, M

    2003-01-01

    There is evidence that neuropeptides, especially the opiate receptor agonists, are involved in wound healing. We have previously observed that beta-endorphin, the endogenous ligand for the mu-opiate receptor, stimulates the expression of cytokeratin 16 in a dose-dependent manner in human skin organ cultures. Cytokeratin 16 is expressed in hyperproliferative epidermis such as psoriasis and wound healing. Therefore we were interested to study whether epidermal mu-opiate receptor expression is changed at the wound margins in acute and chronic wounds. Using classical and confocal microscopy, we were able to compare the expression level of mu-opiate receptors and the influence of beta-endorphin on transforming growth factor beta type II receptor in organ culture. Our results show indeed a significantly decreased expression of mu-opiate receptors on keratinocytes close to the wound margin of chronic wounds compared to acute wounds. Additionally beta-endorphin upregulates the expression of transforming growth factor beta type II receptor in human skin organ cultures. These results suggest a crucial role of opioid peptides not only in pain control but also in wound healing. Opioid peptides have already been used in animal models in treatment of wounds; they induce fibroblast proliferation and growth of capillaries, and accelerate the maturation of granulation tissue and the epithelization of the defect. Furthermore opioid peptides may fine-tune pain and the inflammatory response while healing takes place. This new knowledge could potentially be used to design new locally applied drugs to improve the healing of painful chronic wounds.

  6. Krüppel-like factor KLF10 regulates transforming growth factor receptor II expression and TGF-β signaling in CD8+ T lymphocytes

    PubMed Central

    Papadakis, Konstantinos A.; Krempski, James; Reiter, Jesse; Svingen, Phyllis; Xiong, Yuning; Sarmento, Olga F.; Huseby, April; Johnson, Aaron J.; Lomberk, Gwen A.; Urrutia, Raul A.

    2014-01-01

    KLF10 has recently elicited significant attention as a transcriptional regulator of transforming growth factor-β1 (TGF-β1) signaling in CD4+ T cells. In the current study, we demonstrate a novel role for KLF10 in the regulation of TGF-β receptor II (TGF-βRII) expression with functional relevance in antiviral immune response. Specifically, we show that KLF10-deficient mice have an increased number of effector/memory CD8+ T cells, display higher levels of the T helper type 1 cell-associated transcription factor T-bet, and produce more IFN-γ following in vitro stimulation. In addition, KLF10−/− CD8+ T cells show enhanced proliferation in vitro and homeostatic proliferation in vivo. Freshly isolated CD8+ T cells from the spleen of adult mice express lower levels of surface TGF-βRII (TβRII). Congruently, in vitro activation of KLF10-deficient CD8+ T cells upregulate TGF-βRII to a lesser extent compared with wild-type (WT) CD8+ T cells, which results in attenuated Smad2 phosphorylation following TGF-β1 stimulation compared with WT CD8+ T cells. Moreover, we demonstrate that KLF10 directly binds to the TGF-βRII promoter in T cells, leading to enhanced gene expression. In vivo viral infection with Daniel's strain Theiler's murine encephalomyelitis virus (TMEV) also led to lower expression of TGF-βRII among viral-specific KLF10−/− CD8+ T cells and a higher percentage of IFN-γ-producing CD8+ T cells in the spleen. Collectively, our data reveal a critical role for KLF10 in the transcriptional activation of TGF-βRII in CD8+ T cells. Thus, KLF10 regulation of TGF-βRII in this cell subset may likely play a critical role in viral and tumor immune responses for which the integrity of the TGF-β1/TGF-βRII signaling pathway is crucial. PMID:25472963

  7. LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis

    PubMed Central

    Melisi, Davide; Ishiyama, Satoshi; Sclabas, Guido M.; Fleming, Jason B.; Xia, Qianghua; Tortora, Giampaolo; Abbruzzese, James L.; Chiao, Paul J.

    2011-01-01

    Most pancreatic cancer patients present with inoperable disease or develop metastases after surgery. Conventional therapies are usually ineffective in treating metastatic disease. It is evident that novel therapies remain to be developed. Transforming growth factor β (TGF-β) plays a key role in cancer metastasis, signaling through the TGF-β type I/II receptors (TβRI/II). We hypothesized that targeting TβRI/II kinase activity with the novel inhibitor LY2109761 would suppress pancreatic cancer metastatic processes. The effect of LY2109761 has been evaluated on soft agar growth, migration, invasion using a fibroblast coculture model, and detachment-induced apoptosis (anoikis) by Annexin V flow cytometric analysis. The efficacy of LY2109761 on tumor growth, survival, and reduction of spontaneous metastasis have been evaluated in an orthotopic murine model of metastatic pancreatic cancer expressing both luciferase and green fluorescence proteins (L3.6pl/GLT). To determine whether pancreatic cancer cells or the cells in the liver microenvironment were involved in LY2109761-mediated reduction of liver metastasis, we used a model of experimental liver metastasis. LY2109761 significantly inhibited the L3.6pl/GLT soft agar growth, suppressed both basal and TGF-β1–induced cell migration and invasion, and induced anoikis. In vivo, LY2109761, in combination with gemcitabine, significantly reduced the tumor burden, prolonged survival, and reduced spontaneous abdominal metastases. Results from the experimental liver metastasis models indicate an important role for targeting TβRI/II kinase activity on tumor and liver microenvironment cells in suppressing liver metastasis. Targeting TβRI/II kinase activity on pancreatic cancer cells or the cells of the liver microenvironment represents a novel therapeutic approach to prevent pancreatic cancer metastasis. PMID:18413796

  8. Concurrent and distinct transcription and translation of transforming growth factor-beta type I and type II receptors in rodent embryogenesis.

    PubMed

    Mariano, J M; Montuenga, L M; Prentice, M A; Cuttitta, F; Jakowlew, S B

    1998-11-01

    The transforming growth factor-betas (TGF-betas) are multifunctional regulatory polypeptides that play a crucial role in many cell processes and function through a set of cell surface protein receptors that includes TGF-beta type I (RI) and type II (RII). The present study reports a comprehensive comparison of the patterns of expression of TGF-beta RI and RII proteins and mRNAs in the developing mouse embryo using immunohistochemical and in situ hybridization analyses. Although widespread expression of both TGF-beta receptors was detected throughout the embryonic development period so that many similarities occur in localization of the TGF-beta receptors, TGF-beta RI was expressed in a well-defined, non-uniform pattern that was different in many respects from that of TGF-beta RII. Whereas higher levels of TGF-beta RI compared to TGF-beta RII were detected in some tissues of the embryo at the beginning of organogenesis, the level of TGF-beta RII increased more dramatically than that of TGF-beta RI during late organogenesis; this was especially true in many neural structures where TGF-beta RI and RII were comparable by day 16. The lung, kidney and intestine, in which epithelial-mesenchymal interactions occur, showed a complex pattern of TGF-beta RI and Rll expression. Additionally, northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) amplification showed non-uniform expression of the transcripts for TGF-beta RI and RII in embryonic and adult mouse and rat tissues. These data show that regulation of TGF-beta1 RI and RII occurs concurrently, but distinctly, in a spatial and temporal manner in rodent embryogenesis which may allow control of signal transduction of TGF-beta during development. PMID:9879710

  9. Polymorphisms in the Tumor Necrosis Factor Receptor Genes Affect the Expression Levels of Membrane-Bound Type I and Type II Receptors

    PubMed Central

    Sennikov, Sergey V.; Vasilyev, Filipp F.; Lopatnikova, Julia A.; Shkaruba, Nadezhda S.; Silkov, Alexander N.

    2014-01-01

    The level of TNF receptors on various cells of immune system and its association with the gene polymorphism were investigated. Determining the levels of membrane-bound TNFα receptors on peripheral blood mononuclear cells (PBMCs) was performed by flow cytometry using BD QuantiBRITE calibration particles. Soluble TNFα receptor (sTNFRs) levels were determined by ELISA and genotyping was determined by PCR-RFLP. Homozygous TT individuals at SNP −609G/T TNFRI (rs4149570) showed lower levels of sTNFRI compared to GG genotype carriers. Homozygous carriers of CC genotype at SNP −1207G/C TNFRI (rs4149569) had lower expression densities of membrane-bound TNFRI on intact CD14+ monocytes compared to individuals with the GC genotype. The frequency differences in the CD3+ and CD19+ cells expressing TNFRII in relation to SNP −1709A/T TNFRII (rs652625) in healthy individuals were also determined. The genotype CC in SNP −3609C/T TNFRII (rs590368) was associated with a lower percentage of CD14+ cells expressing TNFRII compared to individuals with the CT genotype. Patients with rheumatoid arthritis had no significant changes in the frequencies of genotypes. Reduced frequency was identified for the combination TNFRI −609GT + TNFRII −3609CC only. The polymorphisms in genes represent one of cell type-specific mechanisms affecting the expression levels of membrane-bound TNFα receptors and TNFα-mediated signaling. PMID:24782596

  10. Effect of some peroxisome proliferators on transforming growth factor-beta 1 gene expression and insulin-like growth factor II/mannose-6-phosphate receptor gene expression in rat liver.

    PubMed

    Rumsby, P C; Davies, M J; Price, R J; Lake, B G

    1994-02-01

    Male Sprague-Dawley rats were given daily oral doses of either corn oil (control), 80 mg/kg nafenopin (NAF), 50 mg/kg methylclofenapate (MCP), 50 mg/kg Wy-14,643 (WY) or 250 mg/kg clofibric acid (CA) for 7 days. All four compounds increased relative liver weight and produced hepatic peroxisome proliferation as assessed by induction of both peroxisomal (palmitoyl-CoA oxidation) and microsomal (lauric acid 12-hydroxylase) fatty acid oxidising enzyme activities. RNA was extracted from liver samples and analysed for expression of transforming growth factor-beta 1 (TGF-beta 1) and the insulin-like growth factor II/mannose-6-phosphate (IGFII/Man6P) receptor (which may be involved in transporting latent TGF-beta 1 into hepatocytes). TGF-beta 1 mRNA levels were increased to 151-178% of control by all four compounds, whereas NAF, MCP and WY, but not CA, increased IGFII/Man6P receptor mRNA levels to 195-209% of control. The induction of TGF-beta 1 and IGFII/Man6P receptor expression by short term treatment with peroxisome proliferators may represent an adaptive response to limit the initial hyperplastic effects of such compounds.

  11. Angiotensin II receptors in the gonads

    SciTech Connect

    Aguilera, G.; Millan, M.A.; Harwood, J.P.

    1989-05-01

    The presence of components of the renin-angiotensin system in ovaries and testes suggests that angiotensin II (AII) is involved in gonadal function, and thus we sought to characterize receptors for AII in rat and primate gonads. In the testes, autoradiographic studies showed receptors in the interstitium in all species. In rat interstitial cells fractionated by Percoll gradient, AII receptors coincided with hCG receptors indicating that AII receptors are located on the Leydig cells. In Leydig cells and membranes from rat and rhesus monkey prepuberal testes, AII receptors were specific for AII analogues and of high affinity (Kd=nM). During development, AII receptor content in rat testes decreases with age parallel to a fall in the ratio of interstitial to tubular tissue. In the ovary, the distribution of AII receptors was dependent on the stage of development, being high in the germinal epithelium and stromal tissue between five and 15 days, and becoming localized in secondary follicles in 20-and 40-day-old rats. No binding was found in primordial or primary follicles. In rhesus monkey ovary, AII receptors were higher in stromal tissue and lower in granulosa and luteal cells of the follicles. Characterization of the binding in rat and monkey ovarian membranes showed a single class of sites with a Kd in the nmol/L range and specificity similar to that of the adrenal glomerulosa and testicular AII receptors. Receptors for AII were also present in membrane fractions from PMSG/hCG primed rat ovaries. Infusion of AII (25 ng/min) or captopril (1.4 micrograms/min) during the PMSG/hCG induction period had no effect on ovarian weight or AII receptor concentration in the ovaries.

  12. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling.

    PubMed

    Quan, Taihao; He, Tianyuan; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2004-09-01

    Ultraviolet (UV) irradiation from the sun reduces production of type I procollagen (COLI), the major structural protein in human skin. This reduction is a key feature of the pathophysiology of premature skin aging (photoaging). Photoaging is the most common form of skin damage and is associated with skin carcinoma. TGF-beta/Smad pathway is the major regulator of type I procollagen synthesis in human skin. We have previously reported that UV irradiation impairs transforming growth factor-beta (TGF-beta)/Smad signaling in mink lung epithelial cells. We have investigated the mechanism of UV irradiation impairment of the TGF-beta/Smad pathway and the impact of this impairment on type I procollagen production in human skin fibroblasts, the major collagen-producing cells in skin. We report here that UV irradiation impairs TGF-beta/Smad pathway in human skin by down-regulation of TGF-beta type II receptor (TbetaRII). This loss of TbetaRII occurs within 8 hours after UV irradiation and precedes down-regulation of type I procollagen expression in human skin in vivo. In human skin fibroblasts, UV-induced TbetaRII down-regulation is mediated by transcriptional repression and results in 90% reduction of specific, cell-surface binding of TGF-beta. This loss of TbetaRII prevents downstream activation of Smad2/3 by TGF-beta, thereby reducing expression of type I procollagen. Preventing loss of TbetaRII by overexpression protects against UV inhibition of type I procollagen gene expression in human skin fibroblasts. UV-induced down-regulation of TbetaRII, with attendant reduction of type I procollagen production, is a critical molecular mechanism in the pathophysiology of photoaging.

  13. Expression and significance of transforming growth factorreceptor type II and DPC4/Smad4 in non-small cell lung cancer

    PubMed Central

    CHEN, HONG; WANG, JING-WEI; LIU, LI-XIN; YAN, JI-DONG; REN, SHU-HUA; LI, YAN; LU, ZHENG

    2015-01-01

    The aim of the present study was to investigate the expression levels of transforming growth factor-β (TGF-β) receptor type II (TβRII) and DPC4/Smad4 in the TGF-β signaling pathway and the importance of these expression levels in non-small cell lung cancer (NSCLC). The mRNA and protein expression levels of TβRII and DPC4/Smad4 were detected by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively, in NSCLC and control nonlesional lung tissues of 60 patients. The protein expression levels of DPC4/Smad4 were detected by immunohistochemistry in paraffin-embedded samples of NSCLC. In addition, the correlations among the expression levels of TβRII and DPC4/Smad4 and their association with the clinical and pathological features of NSCLC were analyzed. The expression levels of TβRII and DPC4/Smad4 in NSCLC tissues were significantly lower when compared with the control nonlesional lung tissues (P<0.05). In addition, the expression of TβRII and DPC4/Smad4 in poorly-differentiated NSCLC tissues was significantly lower compared with moderately- or well-differentiated NSCLC tissues (P<0.05). The expression levels of TβRII and DPC4/Smad4 were significantly lower in NSCLC tissues with metastatic lymph nodes compared with tissue without metastatic lymph nodes (P<0.05). Thus, the expression levels were demonstrated to significantly correlate with the clinical and pathological stages, and subsequently were shown to be associated with the occurrence and progression of NSCLC. In conclusion, TβRII and DPC4/Smad4 may play an important role in the tumorigenesis, differentiation and progression of NSCLC via the TGF-β signaling pathway. PMID:25452807

  14. Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension.

    PubMed

    Van Kempen, T A; Dodos, M; Woods, C; Marques-Lopes, J; Justice, N J; Iadecola, C; Pickel, V M; Glass, M J; Milner, T A

    2015-10-29

    There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate plasticity in corticotropin-releasing factor (CRF)-receptive neurons in brain cardiovascular regulatory areas, including the rostral ventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), is not understood. In the present study, we used dual-label immuno-electron microscopy to analyze sex differences in slow-pressor angiotensin II (AngII) hypertension with respect to the subcellular distribution of the obligatory NMDA glutamate receptor subunit 1 (GluN1) subunit of the N-methyl-D-aspartate receptor (NMDAR) in the RVLM and PVN. Studies were conducted in mice expressing the enhanced green fluorescence protein (EGFP) under the control of the CRF type 1 receptor (CRF1) promoter (i.e., CRF1-EGFP reporter mice). By light microscopy, GluN1-immunoreactivity (ir) was found in CRF1-EGFP neurons of the RVLM and PVN. Moreover, in both regions tyrosine hydroxylase (TH) was found in CRF1-EGFP neurons. In response to AngII, male mice showed an elevation in blood pressure that was associated with an increase in the proportion of GluN1 on presumably functional areas of the plasma membrane (PM) in CRF1-EGFP dendritic profiles in the RVLM. In female mice, AngII was neither associated with an increase in blood pressure nor an increase in PM GluN1 in the RVLM. Unlike the RVLM, AngII-mediated hypertension had no effect on GluN1 localization in CRF1-EGFP dendrites in the PVN of either male or female mice. These studies provide an anatomical mechanism for sex-differences in the convergent modulation of RVLM catecholaminergic neurons by CRF and glutamate. Moreover, these results suggest that sexual dimorphism in

  15. Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension.

    PubMed

    Van Kempen, T A; Dodos, M; Woods, C; Marques-Lopes, J; Justice, N J; Iadecola, C; Pickel, V M; Glass, M J; Milner, T A

    2015-10-29

    There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate plasticity in corticotropin-releasing factor (CRF)-receptive neurons in brain cardiovascular regulatory areas, including the rostral ventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), is not understood. In the present study, we used dual-label immuno-electron microscopy to analyze sex differences in slow-pressor angiotensin II (AngII) hypertension with respect to the subcellular distribution of the obligatory NMDA glutamate receptor subunit 1 (GluN1) subunit of the N-methyl-D-aspartate receptor (NMDAR) in the RVLM and PVN. Studies were conducted in mice expressing the enhanced green fluorescence protein (EGFP) under the control of the CRF type 1 receptor (CRF1) promoter (i.e., CRF1-EGFP reporter mice). By light microscopy, GluN1-immunoreactivity (ir) was found in CRF1-EGFP neurons of the RVLM and PVN. Moreover, in both regions tyrosine hydroxylase (TH) was found in CRF1-EGFP neurons. In response to AngII, male mice showed an elevation in blood pressure that was associated with an increase in the proportion of GluN1 on presumably functional areas of the plasma membrane (PM) in CRF1-EGFP dendritic profiles in the RVLM. In female mice, AngII was neither associated with an increase in blood pressure nor an increase in PM GluN1 in the RVLM. Unlike the RVLM, AngII-mediated hypertension had no effect on GluN1 localization in CRF1-EGFP dendrites in the PVN of either male or female mice. These studies provide an anatomical mechanism for sex-differences in the convergent modulation of RVLM catecholaminergic neurons by CRF and glutamate. Moreover, these results suggest that sexual dimorphism in

  16. Responsiveness to transforming growth factor-beta (TGF-beta)-mediated growth inhibition is a function of membrane-bound TGF-beta type II receptor in human breast cancer cells.

    PubMed

    Lynch, M A; Petrel, T A; Song, H; Knobloch, T J; Casto, B C; Ramljak, D; Anderson, L M; DeGroff, V; Stoner, G D; Brueggemeier, R W; Weghorst, C M

    2001-01-01

    Transforming growth factor-beta (TGF-beta) is a potent inhibitor of growth and proliferation of breast epithelial cells, and loss of sensitivity to its effects has been associated with malignant transformation and tumorigenesis. The biological effects of TGF-beta are mediated by the TGF-beta receptor complex, a multimer composed of TGF-beta receptor type I (TbetaR-I) and TGF-beta receptor type II (TbetaR-II) subunits. Evidence suggests that loss of expression of Tbeta3R-II is implicated in the loss of sensitivity of tumorigenic breast cell lines to TGF-beta-mediated growth inhibition. A panel of human breast cell lines, including the immortalized MCF-10F and tumorigenic MCF-7, ZR75-1, BT474, T47-D, MDA-MB231, BT20, and SKBR-3 cell lines, was characterized for responsiveness to TGF-beta-induced G1 growth arrest. Only the nontumorigenic MCF-10F and the tumorigenic MDA-MB231 cell lines demonstrated a significant inhibitory response to TGF-beta1 and a significant binding of 125I-labeled TGF-beta ligand. While expression of TbetaR-I mRNA was similar across the panel of cell lines, TbetaR-II mRNA expression was decreased significantly in all seven tumorigenic cell lines in comparison with the nontumorigenic MCF- 10F cell line. When total cellular protein was fractionated by centrifugation, TbetaR-I protein was observed in both the cytosolic and membrane fractions at similar levels in all cell lines; however, TbetaR-II protein was present in the cytosolic fraction in all cell lines, but was observed in the membrane fraction of only the TGF-beta-responsive MCF-10F and MDA-MB231 cells. Thus, lack of membrane-bound TbetaR-II protein appears to be an important determinant of resistance to TGF-beta-mediated growth inhibition in this group of breast cell lines. PMID:11444526

  17. Identification of angiotensin II receptor subtypes

    SciTech Connect

    Chiu, A.T.; Herblin, W.F.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L.; )

    1989-11-30

    We have demonstrated the existence of two distinct subtypes of the angiotensin II receptor in the rat adrenal gland using radioligand binding and tissue section autoradiography. The identification of the subtypes was made possible by the discovery of two structurally dissimilar, nonpeptide compounds, DuP 753 and EXP655, that show reciprocal selectivity for the two subtypes. In the rat adrenal cortex, DuP 753 inhibited 80% of the total AII binding with an IC50 value on the sensitive sites of 2 x 10(-8) M, while EXP655 displaced only 20%. In the rat adrenal medulla, EXP655 gave 90% inhibition of AII binding with an IC50 value of 3.0 x 10(-8) M, while DuP 753 was essentially inactive. The combination of the two compounds completely inhibited AII binding in both tissues.

  18. Canadian Cancer Trials Group IND197: a phase II study of foretinib in patients with estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2-negative recurrent or metastatic breast cancer.

    PubMed

    Rayson, Daniel; Lupichuk, Sasha; Potvin, Kylea; Dent, Susan; Shenkier, Tamara; Dhesy-Thind, Sukhbinder; Ellard, Susan L; Prady, Catherine; Salim, Muhammad; Farmer, Patricia; Allo, Ghasson; Tsao, Ming-Sound; Allan, Alison; Ludkovski, Olga; Bonomi, Maria; Tu, Dongsheng; Hagerman, Linda; Goodwin, Rachel; Eisenhauer, Elizabeth; Bradbury, Penelope

    2016-05-01

    In murine models, overexpression of the MET receptor transgene induces tumors with human basal gene expression characteristics supporting MET inhibition as a treatment strategy for triple-negative breast cancer (TNBC). Foretinib is an oral multi-kinase inhibitor of MET, RON, AXL, TIE-2, and VEGF receptors with anti-tumor activity in advanced HCC and papillary renal cell cancer. Patients with centrally reviewed primary TNBC and 0-1 prior regimens for metastatic disease received daily foretinib 60 mg po in a 2-stage single-arm trial. Primary endpoints were objective response and early progression rates per RECIST 1.1. In stage 2, correlative studies of MET, PTEN, EGFR, and p53 on archival and fresh tumor specimens were performed along with enumeration of CTCs. 45 patients were enrolled with 37 patients having response evaluable and centrally confirmed primary TNBC (cTNBC). There were 2 partial responses (ITT 4.7 % response evaluable cTNBC 5.4 %) with a median duration of 4.4 months (range 3.7-5 m) and 15 patients had stable disease (ITT 33 %, response evaluable cTNBC 40.5 %) with a median duration of 5.4 months (range 2.3-9.7 m). The most common toxicities (all grades/grade 3) were nausea (64/4 %), fatigue (60/4 %), hypertension (58/49 %), and diarrhea (40/7 %). Six serious adverse events were considered possibly related to foretinib and 4 patients went off study due to adverse events. There was no correlation between MET positivity and response nor between response and PTEN, EGFR, p53, or MET expression in CTCs. Although CCTG IND 197 did not meet its primary endpoint, the observation of a clinical benefit rate of 46 % in this cTNBC population suggests that foretinib may have clinical activity as a single, non-cytotoxic agent in TNBC (ClinicalTrials.gov number, NCT01147484). PMID:27116183

  19. Short Hairpin RNA Causes the Methylation of Transforming Growth FactorReceptor II Promoter and Silencing of the Target Gene in Rat Hepatic Stellate Cells

    PubMed Central

    Kim, Jin-Wook; Zhang, Yan-Hong; Zern, Mark A; Rossi, John J.; Wu, Jian

    2008-01-01

    Small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in plant and animal cells. RNA dependent DNA methylation (RdDM) accounts for TGS in plants, but it is unclear whether siRNA induces RdDM in mammalian cells. To determine whether stable expression of short hairpin siRNA (shRNA) induces DNA methylation in mammalian cells, we transduced rat hepatic stellate SBC10 cells with lentiviral vectors which encode an U6 promoter-driven shRNA expression cassette homologous to the transforming growth factorreceptor (TGFβRII) promoter region. Sequencing analysis of bisulfite-modified genomic DNA showed the methylation of cytosine residues both in CpG dinucleotides and non-CpG sites around the target region of the TGFβRII promoter in SBC10 cells transduced with the promoter-targeting lentiviral vector. In these cells, real-time RT-PCR showed a decrease in TGFβRII mRNA levels which were reversed by treatment with 5-aza-2-deoxycytidine. Our results demonstrate that recombinant lentivirus-mediated shRNA delivery resulted in the methylation of the homologous promoter area in mammalian cells, and this approach may be used as a tool for transcriptional gene silencing by epigenetic modification of mammalian cell promoters. PMID:17533113

  20. Experimental pain ratings and reactivity of cortisol and soluble tumor necrosis factorreceptor II following a trial of hypnosis: Results of a randomized controlled pilot study

    PubMed Central

    Goodin, Burel R.; Quinn, Noel B.; Kronfli, Tarek; King, Christopher D.; Page, Gayle G.; Haythornthwaite, Jennifer A.; Edwards, Robert R.; Stapleton, Laura M.; McGuire, Lynanne

    2011-01-01

    Objective Current evidence supports the efficacy of hypnosis for reducing the pain associated with experimental stimulation and various acute and chronic conditions; however, the mechanisms explaining how hypnosis exerts its effects remain less clear. The hypothalamic-pituitary-adrenal (HPA) axis and pro-inflammatory cytokines represent potential targets for investigation given their purported roles in the perpetuation of painful conditions; yet, no clinical trials have thus far examined the influence of hypnosis on these mechanisms. Design Healthy participants, highly susceptible to the effects of hypnosis, were randomized to either a hypnosis intervention or a no-intervention control. Using a cold pressor task, assessments of pain intensity and pain unpleasantness were collected prior to the intervention (Pre) and following the intervention (Post) along with pain-provoked changes in salivary cortisol and the soluble receptor of tumor necrosis factor-α (sTNFαRII). Results Compared to the no-intervention control, data analyses revealed that hypnosis significantly reduced pain intensity and pain unpleasantness. Hypnosis was not significantly associated with suppression of cortisol or sTNFαRII reactivity to acute pain from Pre to Post; however, the effect sizes for these associations were medium-sized. Conclusions Overall, the findings from this randomized controlled pilot study support the importance of a future large-scale study on the effects of hypnosis for modulating pain-related changes of the HPA axis and pro-inflammatory cytokines. PMID:22233394

  1. Decorin inhibits the proliferation of HepG2 cells by elevating the expression of transforming growth factorreceptor II

    PubMed Central

    Liu, Yanfeng; Wang, Xuesong; Wang, Zhaohui; Ju, Wenbo; Wang, Dawei

    2016-01-01

    The aim of the present study was to investigate the effects of decorin (DCN) on the proliferation of human hepatoma HepG2 cells and the involvement of transforming growth factor-β (TGF-β) signaling pathway. A vector containing DCN was transfected into HepG2 cells with the use of Lipofectamine 2000. Cell proliferation was assessed with an MTT assay, and western blot analysis was used to detect the protein expression of TGF-β receptor I (TGF-βRI), phosphorylated TGF-βRI, p15 and TGF-βRII. In addition, small interfering RNA (siRNA) silencing was performed to knock down the target gene. The results indicated that, compared with the control group, cell proliferation was significantly decreased in HepG2 cells transfected with DCN. In addition, DCN transfection significantly increased the phosphorylation level of TGF-βRI in HepG2 cells. The expression of the downstream factor p15 was also significantly elevated in the DCN-transfected HepG2 cells. Furthermore, DCN transfection significantly elevated the expression level of TGF-βRII in HepG2 cells. By contrast, the silencing of TGF-βRII significantly decreased the phosphorylation of TGF-βRI in DCN-transfected HepG2 cells. In addition, TGF-βRII silencing abolished the effects of DCN on the proliferation of HepG2 cells. In conclusion, DCN elevated the expression level of TGF-βRII, increased the phosphorylation level of TGF-βRI, enhanced the expression of p15, and finally inhibited the proliferation of HepG2 cells. These findings may contribute to the understanding of the role of DCN in the pathogenesis of hepatic carcinoma and assist in the disease treatment.

  2. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  3. RNA Interference of Interferon Regulatory Factor-1 Gene Expression in THP-1 Cell Line Leads to Toll-Like Receptor-4 Overexpression/Activation As Well As Up-modulation of Annexin-II1

    PubMed Central

    Maratheftis, Christos I; Giannouli, Stavroula; Spachidou, Maria P; Panayotou, George; Voulgarelis, Michael

    2007-01-01

    Interferon regulatory factor-1 (IRF-1) is a candidate transcription factor for the regulation of the Toll-like receptor-4 (TLR-4) gene. Using a small interfering RNA-based (siRNA) process to silence IRF-1 gene expression in the leukemic monocytic cell line THP-1, we investigated whether such a modulation would alter TLR-4 expression and activation status in these cells. The siIRF-1 cells expressed elevated levels of TLR-4 mRNA and protein compared to controls by 90% and 77%, respectively. ICAM.1 protein expression and apoptosis levels were increased by 8.35- and 4.25-fold, respectively. The siIRF-1 cells overexpressed Bax mRNA compared to controls. Proteomic analysis revealed upmodulation of the Annexin-II protein in siIRF-1 THP-1 cells. Myelodysplastic syndrome (MDS) patients with an absence of full-length IRF-1 mRNA also overexpressed Annexin-II. It is plausible that this overexpression may lead to the activation of TLR-4 contributing to the increased apoptosis characterizing MDS. PMID:18084608

  4. Molecular characterization of a dual endothelin-1/Angiotensin II receptor.

    PubMed Central

    Ruiz-Opazo, N.; Hirayama, K.; Akimoto, K.; Herrera, V. L.

    1998-01-01

    BACKGROUND: The molecular recognition theory (MRT) provides a conceptual framework that could explain the evolution of intermolecular and intramolecular interaction of peptides and proteins. As such, it predicts that binding sites of peptide hormones, and its receptor binding sites were originally encoded by and evolved from complementary strands of genomic DNA. MATERIALS AND METHODS: On the basis of principles underlying the MRT, we screened a rat brain complementary DNA library using an AngII followed by an endothelin-1 (ET-1) antisense oligonucleotide probe, expecting to isolate potential cognate receptors. RESULTS: An identical cDNA clone was isolated independently from both the AngII and ET-1 oligonucleotide screenings. Structural analysis revealed a receptor polypeptide containing a single predicted transmembrane region with distinct ET-1 and AngII putative binding domains. Functional analysis demonstrated ET-1- and AngII-specific binding as well as ET-1- and AngII-induced coupling to a Ca2+ mobilizing transduction system. Amino acid substitutions within the predicted ET-1 binding domain obliterate ET-1 binding while preserving AngII binding, thus defining the structural determinants of ET-1 binding within the dual ET-1/AngII receptor, as well as corroborating the dual nature of the receptor. CONCLUSIONS: Elucidation of the dual ET-1/AngII receptor provides further molecular genetic evidence in support of the molecular recognition theory and identifies for the first time a molecular link between the ET-1 and AngII hormonal systems that could underlie observed similar physiological responses elicited by ET-1 and AngII in different organ systems. The prominent expression of the ET-1/AngII receptor mRNA in brain and heart tissues suggests an important role in cardiovascular function in normal and pathophysiological states. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:9508787

  5. Size at birth and cord blood levels of insulin, insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-1 (IGFBP-1), IGFBP-3, and the soluble IGF-II/mannose-6-phosphate receptor in term human infants. The ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood.

    PubMed

    Ong, K; Kratzsch, J; Kiess, W; Costello, M; Scott, C; Dunger, D

    2000-11-01

    Experimental rodent studies demonstrate that insulin-like growth factor II (IGF-II) promotes fetal growth, whereas the nonsignaling IGF-II receptor (IGF2R) is inhibitory; in humans their influence is as yet unclear. A soluble, circulating form of IGF2R inhibits IGF-II mediated DNA synthesis and may therefore restrain fetal growth. We measured cord blood levels of IGF-II, soluble IGF2R, insulin, IGF-I, IGF-binding protein-1 (IGFBP-1), and IGFBP-3 and examined their relationships to weight, length, head circumference, ponderal index, and placental weight at birth in 199 normal term singletons. IGF-II levels correlated with levels of IGF-I (r = 0.29; P < 0.0005), IGFBP-3 (r = 0.45; P < 0.0005), and soluble IGF2R (r = 0.20; P < 0.005). Insulin and IGF-I were positively related to all parameters of size at birth. IGF-II was weakly related to ponderal index (r = 0.18; P < 0.05) and placental weight (r = 0.18; P < 0.05), and the molar ratio of IGF-II to IGF2R was also related to birth weight (r = 0.15; P < 0.05). Correlations between the IGFs and size at birth were stronger in nonprimiparous pregnancies; in these, IGF-I (r = 0.52; P < 0.0005), IGFBP-3 (r = 0.41; P < 0.0005), and the IGF-II to IGF2R ratio (r = 0.40; P < 0.0005) were most closely related to placental weight, together accounting for 39% of its variance. We demonstrate for the first time relationships between circulating IGF-II and soluble IGF2R levels and size at birth, supporting their putative opposing roles in human fetal growth. PMID:11095465

  6. The Relevance of Group II Glutamate Receptors Expression to Anxiety.

    PubMed

    Ravid, Jonathan D; Mostofsky, David I

    2016-01-01

    The interface of receptor-mediated regulation of cellular signaling and neurological outputs remains an active field of investigation. The metabotropic G protein-coupled glutamate receptors, and in particular, the group II cyclic adenosine mono-phosphate (cAMP)-lowering metabotropic glutamate receptors 2 and 3 (mGlu2/3 glutamate receptors), have gained interest as therapeutic targets in different forms of neurological disorders. This review explores mGlu2/3 glutamate receptors expression, pharmacological activation, and signaling links to anxiety, as assessed in animal models and in clinical trials. PMID:27650988

  7. Angiotensin II Receptor Blockers and Cancer Risk

    PubMed Central

    Zhao, Yun-Tao; Li, Peng-Yang; Zhang, Jian-Qiang; Wang, Lei; Yi, Zhong

    2016-01-01

    Abstract Angiotensin II receptor blockers (ARB) are widely used drugs that are proven to reduce cardiovascular disease events; however, several recent meta-analyses yielded conflicting conclusions regarding the relationship between ARB and cancer incidence, especially when ARB are combined with angiotensin-converting enzyme inhibitors (ACEI). We investigated the risk of cancer associated with ARB at different background ACEI levels. Search of PubMed and EMBASE (1966 to December 17, 2015) without language restriction. Randomized, controlled trials (RCTs) had at least 12 months of follow-up data and reported cancer incidence was included. Study characteristics, quality, and risk of bias were assessed by 2 reviewers independently. Nineteen RCTs including 148,334 patients were included in this study. Random-effects model meta-analyses were used to estimate the risk ratio (RR) of cancer risk. No excessive cancer risk was observed in our analyses of ARB alone versus placebo alone without background ACEI use (risk ratio [RR] 1.08, 95% confidence interval [CI] 1.00–1.18, P = 0.05); ARB alone versus ACEI alone (RR 1.03, 95%CI 0.94–1.14, P = 0.50); ARB plus partial use of ACEI versus placebo plus partial use of ACEI (RR 0.97, 95%CI 0.90–1.04, P = 0.33); and ARB plus ACEI versus ACEI (RR 0.99, 95%CI 0.79–1.24, P = 0.95). Lack of long-term data, inadequate reporting of safety data, significant heterogeneity in underlying study populations, and treatment regimens. ARB have a neutral effect on cancer incidence in randomized trials. We observed no significant differences in cancer incidence when we compared ARB alone with placebo alone, ARB alone with ACEI alone, ARB plus partial use of ACEI with placebo plus partial use of ACEI, or ARB plus ACEI combination with ACEI. PMID:27149494

  8. Angiotensin II receptor alterations during pregnancy in rabbits

    SciTech Connect

    Brown, G.P.; Venuto, R.C.

    1986-07-01

    Despite activation of the renin-angiotensin system during pregnancy, renal and peripheral vascular blood flows increase, and the systemic blood pressure and the pressor response to exogenous angiotensin II (Ang II) fall. Gestational alterations in Ang II receptors could contribute to these changes. Ang II binding parameters were determining utilizing SVI-Ang II in vascular (glomeruli and mesenteric arteries) and nonvascular (adrenal glomerulosa) tissues from 24- to 28-day pregnant rabbits. Comparisons were made utilizing tissues from nonpregnant rabbits. Binding site concentrations (N) and dissociation constants (K/sub d/) were obtained by Scatchard analyses of binding inhibition data. Meclofenamate (M) inhibits prostaglandin synthesis, reduces plasma renin activity, and enhances the pressor response to infused Ang II in pregnant rabbits. Administration of M to pregnant rabbits increased N in glomerular and in mesenteric artery membranes. These data demonstrate that Ang II receptors in glomeruli and mesenteric arteries are down regulated during gestation in rabbits. Elevated endogenous Ang II during pregnancy in rabbits may contribute to the down regulation of vascular Ang II receptors.

  9. Angiotensin II receptors in rabbit renal preglomerular vessels

    SciTech Connect

    Brown, G.P.; Venuto, R.C. )

    1988-07-01

    Controversy exists regarding the specific sites within the renal microcirculation affected by angiotensin II (ANG II). Under some conditions, ANG II can elicit direct vasoconstrictor responses in the preglomerular vessels and efferent arterioles. These experiments were designed to evaluate the binding of {sup 125}I-ANG II in preglomerular vessels. Arcuate and interlobular arteries, with attached proximal segments of afferent arterioles, were microdissected from rabbit renal cortexes. A membrane preparation was obtained from the pooled freshly dissected vessels and utilized in an ANG II radioreceptor assay on the same day. The dissociation of bound ANG II was enhanced in the presence of a nonhydrolyzable analogue of GTP. Linear Scatchard plots were obtained, indicating the presence of a single class of high-affinity binding sites. In conclusion, there is a single class of specific ANG II receptors in preglomerular vessels. The K{sub D} and N are similar, but the binding inhibition potencies of selected ANG analogues differ in renal and extrarenal vascular tissues. Intrarenal vascular receptors also appear to differ from glomerular receptors. Furthermore, these data support the concept that ANG II may affect renal vascular resistance at sites proximal to the distal afferent arterioles.

  10. TAF4, a subunit of transcription factor II D, directs promoter occupancy of nuclear receptor HNF4A during post-natal hepatocyte differentiation

    PubMed Central

    Alpern, Daniil; Langer, Diana; Ballester, Benoit; Le Gras, Stephanie; Romier, Christophe; Mengus, Gabrielle; Davidson, Irwin

    2014-01-01

    The functions of the TAF subunits of mammalian TFIID in physiological processes remain poorly characterised. In this study, we describe a novel function of TAFs in directing genomic occupancy of a transcriptional activator. Using liver-specific inactivation in mice, we show that the TAF4 subunit of TFIID is required for post-natal hepatocyte maturation. TAF4 promotes pre-initiation complex (PIC) formation at post-natal expressed liver function genes and down-regulates a subset of embryonic expressed genes by increased RNA polymerase II pausing. The TAF4–TAF12 heterodimer interacts directly with HNF4A and in vivo TAF4 is necessary to maintain HNF4A-directed embryonic gene expression at post-natal stages and promotes HNF4A occupancy of functional cis-regulatory elements adjacent to the transcription start sites of post-natal expressed genes. Stable HNF4A occupancy of these regulatory elements requires TAF4-dependent PIC formation highlighting that these are mutually dependent events. Local promoter-proximal HNF4A–TFIID interactions therefore act as instructive signals for post-natal hepatocyte differentiation. DOI: http://dx.doi.org/10.7554/eLife.03613.001 PMID:25209997

  11. [Dynamics of local expression of connexin-43 and basic fibroblast growth factor receptors in patients with skin and soft-tissue infections against the background of diabetes mellitus type II].

    PubMed

    Vinnik, Iu S; Salmina, A B; Tepliakova, O V; Drobushevskaia, A I; Malinovskaia, N A; Pozhilenkova, E A; Morgun, A V; Gitlina, A G

    2014-01-01

    Clinical results of wound healing dynamics were studied in 60 patients with soft-tissue infection against the background of diabetes mellitus type II. At the same time the study considered indices of intercellular contacts protein tissue expression such as connexin 43 (Cx43) and basic fibroblast growth factor receptors (bFGFR). The basic therapy of biopsy material of wound borders was applied. The reduction of bFGFR expression and the minor growth of Cx43 expression were observed. The pain syndrome proceeded for a long time and there were signs of perifocal inflammation, retard wound healing with granulation tissue. The application of combined method of ozone therapy which included autohemotherapy with ozone and an external management of wound by ozone-oxygen mixture facilitated to considerable shortening of inflammatory phase and regeneration. It was associated with increased Cx43 expression (in 1.9 times) in comparison with initial level and bFGFR was enlarged in 1.7 times to eighth day of postoperative period.

  12. Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the West Japan Thoracic Oncology Group trial (WJTOG0403)

    PubMed Central

    Tamura, K; Okamoto, I; Kashii, T; Negoro, S; Hirashima, T; Kudoh, S; Ichinose, Y; Ebi, N; Shibata, K; Nishimura, T; Katakami, N; Sawa, T; Shimizu, E; Fukuoka, J; Satoh, T; Fukuoka, M

    2008-01-01

    The purpose of this study was to evaluate the efficacy of gefitinib and the feasibility of screening for epidermal growth factor receptor (EGFR) mutations among select patients with advanced non-small cell lung cancer (NSCLC). Stage IIIB/IV NSCLC, chemotherapy-naive patients or patients with recurrences after up to two prior chemotherapy regimens were eligible. Direct sequencing using DNA from tumour specimens was performed by a central laboratory to detect EGFR mutations. Patients harbouring EGFR mutations received gefitinib. The primary study objective was response; the secondary objectives were toxicity, overall survival (OS), progression-free survival (PFS), 1-year survival (1Y-S) and the disease control rate (DCR). Between March 2005 and January 2006, 118 patients were recruited from 15 institutions and were screened for EGFR mutations, which were detected in 32 patients – 28 of whom were enrolled in the present study. The overall response rate was 75%, the DCR was 96% and the median PFS was 11.5 months. The median OS has not yet been reached, and the 1Y-S was 79%. Thus, gefitinib chemotherapy in patients with advanced NSCLC harbouring EGFR mutations was highly effective. This trial documents the feasibility of performing a multicentre phase II study using a central typing laboratory, demonstrating the benefit to patients of selecting gefitinib treatment based on their EGFR mutation status. PMID:18283321

  13. Phase II open label study of the oral vascular endothelial growth factor-receptor inhibitor PTK787/ZK222584 (vatalanib) in adult patients with refractory or relapsed diffuse large B-cell lymphoma.

    PubMed

    Brander, Danielle; Rizzieri, David; Gockerman, Jon; Diehl, Louis; Shea, Thomas Charles; Decastro, Carlos; Moore, Joseph O; Beaven, Anne

    2013-12-01

    PTK787/ZK222584 (vatalanib), an orally active inhibitor of vascular endothelial growth factor receptors (VEGFRs), was evaluated in this phase II study of 20 patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Patients received once-daily PTK787/ZK222584 at a target dose of 1250 mg. Eighteen patients were evaluable for response: one patient had a complete response (CR), six patients had stable disease but subsequently progressed, 10 patients had progressive disease by three cycles and one subject withdrew before response evaluation. The patient who attained a CR underwent autologous stem cell transplant and remains disease-free 76 months after study completion. There were no grade 4 toxicities. Grade 3 thrombocytopenia occurred in 20% and grade 3 hypertension occurred in 10%. There were no episodes of grade 3 proteinuria. In conclusion, PTK787/ZK222584 was well tolerated in a heavily pretreated population of patients with DLBCL, although its therapeutic potential as a single agent in DLBCL appears limited. PMID:23488610

  14. Constitutive negative regulation in the processing of the anti-Müllerian hormone receptor II.

    PubMed

    Hirschhorn, Tal; di Clemente, Nathalie; Amsalem, Ayelet R; Pepinsky, R Blake; Picard, Jean-Yves; Smorodinsky, Nechama I; Cate, Richard L; Ehrlich, Marcelo

    2015-04-01

    The levels and intracellular localization of wild-type transforming growth factor β superfamily (TGFβ-SF) receptors are tightly regulated by endocytic trafficking, shedding and degradation. In contrast, a main regulatory mechanism of mutation-bearing receptors involves their intracellular retention. Anti-Müllerian hormone receptor II (AMHRII, also known as AMHR2) is the type-II receptor for anti-Müllerian hormone (AMH), a TGFβ-SF ligand that mediates Müllerian duct regression in males. Here, we studied AMHRII processing and identified novel mechanisms of its constitutive negative regulation. Immunoblot analysis revealed that a significant portion of AMHRII was missing most of its extracellular domain (ECD) and, although glycosylated, was unfolded and retained in the endoplasmic reticulum. Exogenous expression of AMHRII, but not of type-II TGF-β receptor (TβRII, also known as TGFR2), resulted in its disulfide-bond-mediated homo-oligomerization and intracellular retention, and in a decrease in its AMH-binding capacity. At the plasma membrane, AMHRII differed from TβRII, forming high levels of non-covalent homomeric complexes, which exhibited a clustered distribution and restricted lateral mobility. This study identifies novel mechanisms of negative regulation of a type-II TGFβ-SF receptor through cleavage, intracellular retention and/or promiscuous disulfide-bond mediated homo-oligomerization.

  15. Desensitisation of native and recombinant human urotensin-II receptors.

    PubMed

    Batuwangala, Madura S; Calo, Girolamo; Guerrini, Remo; Ng, Leong L; McDonald, John; Lambert, David G

    2009-11-01

    Human urotensin-II (U-II) is an 11-amino-acid cyclic peptide that activates a G(q)-coupled receptor named UT. Little is known about the desensitisation profile of this receptor as peptide binding is essentially irreversible. In the present study, we have examined the effects of U-II and carbachol on Ca(2+) signalling in SJCRH30 rhabdomyosarcoma (receptor density, B(max) approximately 0.1 pmol/mg protein) and human embroynic kidney (HEK)(hUT) (B(max) approximately 1.4 pmol/mg protein) cells expressing native and recombinant UT, respectively. In SJCRH30, HEK(hUT) and human peripheral blood mononuclear cells induced to express native UT by treatment with 2 microg/ml lipopolysaccharide (LPS), we have measured the effects of U-II treatment on UT mRNA. In SJCRH30 cells, primary stimulation with carbachol (250 microM) did not affect a secondary challenge with U-II (1 microM) and primary challenge with U-II did not affect a secondary challenge with carbachol. In contrast, in HEK(hUT) cells, primary stimulation with carbachol (250 microM) reduced a secondary challenge to U-II (1 microM) by 84% and primary challenge with U-II reduced a secondary challenge to carbachol by 76%. Pre-treatment of SJCRH30 cells with U-II reduced UT mRNA after 6 h and this returned to basal after 24 h. In recombinant HEK(hUT) cells, UT mRNA expression increased following a 6 h treatment with 1 microM U-II. U-II treatment of naïve un-stimulated peripheral blood mononuclear cells was without effect. However, when UT expression is up-regulated following 15 h of LPS treatment, a 6 h U-II challenge reduced UT mRNA by 66%. In summary, we report differences in the desensitisation profiles of native and recombinant U-II receptors. Design and interpretation of functional experiments are hampered by irreversibility of U-II binding.

  16. Source-receptor study of volatile organic compounds and particulate matter in the Kanawha Valley, WV—II. Analysis of factors contributing to VOC and particle exposures

    NASA Astrophysics Data System (ADS)

    Cohen, Martin A.; Ryan, P. Barry; Spengler, John D.; Özkaynak, Halûk; Hayes, Carl

    The Kanawha Valley region of West Virginia includes a deep river valley with a large population living in close proximity to many potential sources of ambient volatile organic compounds (VOCs). The valley runs approximately 100 km from Alloy to Nitro and is between 100 and 200 m deep. Nearly 250,000 people live in this section of the valley, which includes the state capital of Charleston. Many large chemical manufacturing, transportation, and storage facilities are also located within the valley's walls. The topography, population density, and locations of sources dictate the possibility of high population exposures. To investigate exposures to VOCs emitted by the local industry, simultaneous measurements of 19 VOCs, particle pH, particle elemental composition, inorganic gases, and meteorological parameters were collected over an entire year. With the use of a mobile van, sampling was performed in the valley at three sites. Samples were collected for 15 days per month for 4 months at each site. Both unvariate and multivariate analyses were performed in an effort to resolve source contributions. Results of factor analyses suggest auto-related, transported aerosol, chlorinated organic sources as well as site-specific sources and a single incident source—a forest fire. The techniques employed suggest that inclusion of VOC measurements increase the ability of such studies to identify pollutant sources.

  17. Autoradiographic localization of angiotensin II receptors in rat brain

    SciTech Connect

    Mendelsohn, F.A.O.; Quirion, R.; Saavedra, J.M.; Aguilera, G.; Catt, K.J.

    1984-03-01

    The /sup 125/I-labeled agonist analog (1-sarcosine)-angiotensin II ((Sar/sup 1/)AII) bound with high specificity and affinity (K/sub a/ = 2 x 10/sup 9/ M/sup -1/) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. 75 references, 2 figures.

  18. TNF Receptor 1 Signaling is Critically Involved in Mediating Angiotensin-II-induced Cardiac Fibrosis

    PubMed Central

    Duerrschmid, Clemens; Crawford, Jeffrey R.; Reineke, Erin; Taffet, George E.; Trial, JoAnn; Entman, Mark L.; Haudek, Sandra B.

    2013-01-01

    Angiotensin-II (Ang-II) is associated with many conditions involving heart failure and pathologic hypertrophy. Ang-II induces the synthesis of monocyte chemoattractant protein-1 that mediates the uptake of CD34+CD45+ monocytic cells into the heart. These precursor cells differentiate into collagen-producing fibroblasts and are responsible for the Ang-II-induced development of non-adaptive cardiac fibrosis. In this study, we demonstrate that in vitro, using a human monocyte-to-fibroblast differentiation model, Ang-II required the presence of tumor necrosis factor-alpha (TNF) to induce fibroblast maturation from monocytes. In vivo, mice deficient in both TNF receptors did not develop cardiac fibrosis in response to 1 week Ang-II infusion. We then subjected mice deficient in either TNF receptor 1 (TNFR1-KO) or TNF receptor 2 (TNFR2-KO) to continuous Ang-II infusion. Compared to wild-type, in TNFR1-KO, but not in TNFR2-KO hearts, collagen deposition was greatly attenuated, and markedly fewer CD34+CD45+ cells were present. Quantitative RT-PCR demonstrated a striking reduction of key fibrosis-related, as well as inflammation-related mRNA expression in Ang-II-treated TNFR1-KO hearts. TNFR1-KO animals also developed less cardiac remodeling, cardiac hypertrophy, and hypertension compared to wild-type and TNFR2-KO in response to Ang-II. Our data suggest that TNF induced Ang-II-dependent cardiac fibrosis by signaling through TNFR1, which enhances the generation of monocytic fibroblast precursors in the heart. PMID:23337087

  19. Epidermal growth factor receptor signaling in tissue

    SciTech Connect

    Shvartsman, Stanislav; Wiley, H. S.; Lauffenburger, Douglas A.

    2004-08-01

    Abstract: A peptide purified from the salivary gland of a mouse was shown few years ago to accelerate incisor eruption and eyelid opening in newborn mice, and was named epidermal growth factor (EGF). The members of this family of peptide growth factors had been identified in numerous physiological and pathological contexts. EGF binds to a cell surface EGF receptor, which induces a biochemical modification (phosphorylation) of the receptor's cytoplasmic tail. There is a growing consensus in the research community that, in addition to cellular and molecular studies, the dynamics of the EGFR network and its operation must be examined in tissues. A key challenge is to integrate the existing molecular and cellular information into a system-level description of the EGFR network at the tissue and organism level. In this paper, the two examples of EGFR signaling in tissues are described, and the recent efforts to model EGFR autocrine loops, which is a predominant mode of EGFR activation in vivo, are summarized.

  20. Angiotensin II receptor subtypes in rat renal preglomerular vessels.

    PubMed

    De León, H; Garcia, R

    1992-01-01

    A simple technique to isolate rat renal preglomerular vessels is described. Kidneys were pressed against a 0.3 mm stainless steel grid. The whole vascular tree, including the interlobar, arcuate, and interlobular arteries, as well as the afferent arterioles, remained on the grid surface from where they were recovered. Extensive washing yielded a highly pure preparation of renal microvessels. Radioligand binding experiments were performed to characterize 125I-[Sar1,Ile8]-ANG II binding sites in preglomerular microvessel membranes. Equilibrium saturation binding experiments revealed the presence of one group of high affinity receptors (Kd = 1.22 +/- 0.171 nM; Bmax = 209 +/- 14 fmol/mg protein). Competitive inhibition experiments with two highly specific nonpeptide ANG II antagonists, losartan (DuP 753), which is specific for the AT1 receptor subtype, and PD123319, which is specific for the AT2 subtype, demonstrated that the large majority of, if not all, ANG II receptors in rat renal preglomerular vessels correspond to the AT1 subtype. PMID:1299411

  1. Expression of Angiotensin II Receptor-1 in Human Articular Chondrocytes

    PubMed Central

    Kawakami, Yuki; Matsuo, Kosuke; Murata, Minako; Yudoh, Kazuo; Nakamura, Hiroshi; Shimizu, Hiroyuki; Beppu, Moroe; Inaba, Yutaka; Saito, Tomoyuki; Kato, Tomohiro; Masuko, Kayo

    2012-01-01

    Background. Besides its involvement in the cardiovascular system, the renin-angiotensin-aldosterone (RAS) system has also been suggested to play an important role in inflammation. To explore the role of this system in cartilage damage in arthritis, we investigated the expression of angiotensin II receptors in chondrocytes. Methods. Articular cartilage was obtained from patients with osteoarthritis, rheumatoid arthritis, and traumatic fractures who were undergoing arthroplasty. Chondrocytes were isolated and cultured in vitro with or without interleukin (IL-1). The expression of angiotensin II receptor types 1 (AT1R) and 2 (AT2R) mRNA by the chondrocytes was analyzed using reverse transcription-polymerase chain reaction (RT-PCR). AT1R expression in cartilage tissue was analyzed using immunohistochemistry. The effect of IL-1 on AT1R/AT2R expression in the chondrocytes was analyzed by quantitative PCR and flow cytometry. Results. Chondrocytes from all patient types expressed AT1R/AT2R mRNA, though considerable variation was found between samples. Immunohistochemical analysis confirmed AT1R expression at the protein level. Stimulation with IL-1 enhanced the expression of AT1R/AT2R mRNA in OA and RA chondrocytes. Conclusions. Human articular chondrocytes, at least partially, express angiotensin II receptors, and IL-1 stimulation induced AT1R/AT2R mRNA expression significantly. PMID:23346400

  2. Angiotensin II binding to cultured bovine adrenal chromaffin cells: identification of angiotensin II receptors

    SciTech Connect

    Boyd, V.L.; Printz, M.P.

    1986-03-05

    Physiological experiments have provided evidence that angiotensin II stimulates catecholamine secretion from the adrenal gland. Their laboratory and others have now shown by receptor autoradiography the presence of angiotensin II receptors (AIIR) in bovine and rat adrenal medulla. In order to extend these studies they have undertaken to define AIIR on cultured bovine adrenal chromaffin cells. Cells were isolated using the method of Levitt including cell enrichment with Percoll gradient centrifugation. Primary cultures of bovine adrenal medullary cells were maintained in DME/F12 medium containing 10% FCS. Cells were characterized by immunocytochemistry for Met- and Leu-enkephalin, PNMT, DBH and Chromagranin A. Cultured cells bind with high affinity and specificity (/sup 125/I)-ANG II yielding a K/sub D/ of 0.74 nM and B/sub max/ of 24,350 sites/cell. After Percoll treatment values of .77 nm and 34,500 sites/cell are obtained. K/sub D/ values are in close agreement with that obtained in adrenal slices by Healy. Competition studies identify a rank order of binding by this receptor similar to that of other tissues. They conclude that cultured chromaffin cells provide a suitable model system for the investigation and characterization of the ANG II receptor and for cellular studies of its functional significance.

  3. Generation of three different fragments of bound C3 with purified factor I or serum. II. Location of binding sites in the C3 Fragments for Factors B and H, complement receptors , and bovine conglutinin

    PubMed Central

    Ross, GD; Newman, SL; Lambris, JD; Devery-Pocius, JE; Cain, JA; Lackmann, PJ

    1983-01-01

    The many different recognized functions of C3 are dependent upon the ability of the activated C3 molecule both to bind covalently to protein and carbohydrate surfaces and to provide binding sites for as many as eleven different proteins. The location of the binding sites for six of these different proteins (factors B and H, complement receptors CR(1), CR(2) and CR(3) and conglutinin) was examined in the naturally occurring C3-fragments generated by C3 activation (C3b) and degradation by Factor I (iC3b, C3c, C3d,g) and trypsin (C3d). Evidence was obtained for at least four distinct binding sites in C3 for these six different C3 ligands. One binding site for B was detectable only in C3b, whereas a second binding site for H and CR(1) was detectable in both C3b and iC3b. The affinity of the binding site for H and CR(1) was charge dependent and considerably reduced in iC3b as compared to C3b. H binding to iC3b-coated sheep erythrocytes (EC3bi) was measurable only in low ionic strength buffer (4 mS). The finding that C3c-coated microspheres bound to CR(1), indicated that this second binding site was still intact in the C3c fragment. However, H binding to C3c was not examined. A third binding site in C3 for CR(2) was exposed in the d region by factor I cleavage of C3b into iC3b, and the activity of this site was unaffected by the further I cleavage of iC3b into C3d,g. Removal of the 8,000-dalton C3g fragment from C3d,g with trypsin forming C3d, resulted in reduced CR2 activity. However, because saturating amounts of monoclonal anti-C3g did not block the CR(2)-binding activity of EC3d,g, it appears unlikely that the g region of C3d,g or iC3b forms a part of the CR(2)-binding site. In addition, detergent-solubilized EC3d (C3d-OR) inhibited the CR(2)-binding activity of EC3d,g. Monocytes and neutrophils, that had been previously thought to lack CR(2) because of their inability to form EC3d rosettes, did bind EC3d,g containing greater than 5 × 10(4) C3d,g molecules per E

  4. Translational Breast Cancer Research Consortium (TBCRC) 022: A Phase II Trial of Neratinib for Patients With Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer and Brain Metastases

    PubMed Central

    Gelman, Rebecca S.; Wefel, Jeffrey S.; Melisko, Michelle E.; Hess, Kenneth R.; Connolly, Roisin M.; Van Poznak, Catherine H.; Niravath, Polly A.; Puhalla, Shannon L.; Ibrahim, Nuhad; Blackwell, Kimberly L.; Moy, Beverly; Herold, Christina; Liu, Minetta C.; Lowe, Alarice; Agar, Nathalie Y.R.; Ryabin, Nicole; Farooq, Sarah; Lawler, Elizabeth; Rimawi, Mothaffar F.; Krop, Ian E.; Wolff, Antonio C.; Winer, Eric P.; Lin, Nancy U.

    2016-01-01

    Purpose Evidence-based treatments for metastatic, human epidermal growth factor receptor 2 (HER2)–positive breast cancer in the CNS are limited. Neratinib is an irreversible inhibitor of erbB1, HER2, and erbB4, with promising activity in HER2-positive breast cancer; however, its activity in the CNS is unknown. We evaluated the efficacy of treatment with neratinib in patients with HER2-positive breast cancer brain metastases in a multicenter, phase II open-label trial. Patients and Methods Eligible patients were those with HER2-positive brain metastases (≥ 1 cm in longest dimension) who experienced progression in the CNS after one or more line of CNS-directed therapy, such as whole-brain radiotherapy, stereotactic radiosurgery, and/or surgical resection. Patients received neratinib 240 mg orally once per day, and tumors were assessed every two cycles. The primary endpoint was composite CNS objective response rate (ORR), requiring all of the following: ≥50% reduction in volumetric sum of target CNS lesions and no progression of non-target lesions, new lesions, escalating corticosteroids, progressive neurologic signs/symptoms, or non-CNS progression—the threshold for success was five of 40 responders. Results Forty patients were enrolled between February 2012 and June 2013; 78% of patients had previous whole-brain radiotherapy. Three women achieved a partial response (CNS objective response rate, 8%; 95% CI, 2% to 22%). The median number of cycles received was two (range, one to seven cycles), with a median progression-free survival of 1.9 months. Five women received six or more cycles. The most common grade ≥ 3 event was diarrhea (occurring in 21% of patients taking prespecified loperamide prophylaxis and 28% of those without prophylaxis). Patients in the study experienced a decreased quality of life over time. Conclusion Although neratinib had low activity and did not meet our threshold for success, 12.5% of patients received six or more cycles. Studies

  5. Development of a Quantitative PCR Assay for Detection of Human Insulin-Like Growth Factor Receptor and Insulin Receptor Isoforms.

    PubMed

    Flannery, Clare A; Rowzee, Anne M; Choe, Gina H; Saleh, Farrah L; Radford, Caitlin C; Taylor, Hugh S; Wood, Teresa L

    2016-04-01

    The biological activity of insulin and the insulin-like growth factor (IGF) ligands, IGF-I and IGF-II, is based in part on the relative abundance and distribution of their target receptors: the insulin receptor (IR) splice variants A (IR-A) and B (IR-B) and IGF 1 receptor (IGF-1R). However, the relative quantity of all three receptors in human tissues has never been measured together on the same scale. Due to the high homology between insulin receptor (IR)-A and IR-B proteins and lack of antibodies that discern the two IR splice variants, their mRNA sequence is the most reliable means of distinguishing between the receptors. Hence, highly specific primers for IR-A, IR-B, and IGF-1R mRNA were designed to accurately detect all three receptors by quantitative RT-PCR and enable direct quantification of relative receptor expression levels. A standard concentration curve of cDNA from each receptor was performed. Assay specificity was tested using competition assays and postamplification analysis by gel electrophoresis and cloning. Forward and reverse primer concentrations were optimized to ensure equal efficiencies across primer pairs. This assay enables a specific molecular signature of IGF/insulin signaling receptors to be assayed in different tissues, cell types, or cancers. PMID:26862994

  6. Insulin-like growth factor II mediates epidermal growth factor-induced mitogenesis in cervical cancer cells.

    PubMed Central

    Steller, M A; Delgado, C H; Zou, Z

    1995-01-01

    There is increasing evidence that activation of the insulin-like growth factor I (IGF-I) receptor plays a major role in the control of cellular proliferation of many cell types. We studied the mitogenic effects of IGF-I, IGF-II, and epidermal growth factor (EGF) on growth-arrested HT-3 cells, a human cervical cancer cell line. All three growth factors promoted dose-dependent increases in cell proliferation. In untransformed cells, EGF usually requires stimulation by a "progression" factor such as IGF-I, IGF-II, or insulin (in supraphysiologic concentrations) in order to exert a mitogenic effect. Accordingly, we investigated whether an autocrine pathway involving IGF-I or IGF-II participated in the EGF-induced mitogenesis of HT-3 cells. With the RNase protection assay, IGF-I mRNA was not detected. However, IGF-II mRNA increased in a time-dependent manner following EGF stimulation. The EGF-induced mitogenesis was abrogated in a dose-dependent manner by IGF-binding protein 5 (IGFBP-5), which binds to IGF-II and neutralizes it. An antisense oligonucleotide to IGF-II also inhibited the proliferative response to EGF. In addition, prolonged, but not short-term, stimulation with EGF resulted in autophosphorylation of the IGF-I receptor, and coincubations with both EGF and IGFBP-5 attenuated this effect. These data demonstrate that autocrine secretion of IGF-II in HT-3 cervical cancer cells can participate in EGF-induced mitogenesis and suggest that autocrine signals involving the IGF-I receptor occur "downstream" of competence growth factor receptors such as the EGF receptor. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8618825

  7. [Personal contextual factors (short version), part II].

    PubMed

    Viol, M; Grotkamp, S; Seger, W

    2007-01-01

    In this journal a group of medical experts recently compiled a proposal for a systemic classification of personal contextual factors into domains, categories and items with respect to the ethical guidelines of the ICF (part I). In a second step the main issues have been transferred into the preliminary draft for a short version which is presented in this paper to give support for practical daily use in health insurance matters (part II). PMID:17347930

  8. Testicular gonadotropin-releasing hormone II receptor (GnRHR-II) knockdown constitutively impairs diurnal testosterone secretion in the boar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The second mammalian GnRH isoform (GnRH-II) and its specific receptor (GnRHR-II) are highly expressed in the testis, suggesting an important role in testis biology. Gene coding errors prevent the production of GnRH-II and GnRHR-II in many species, but both genes are functional in swine. We have demo...

  9. Circulating angiotensin II deteriorates left ventricular function with sympathoexcitation via brain angiotensin II receptor

    PubMed Central

    Shinohara, Keisuke; Kishi, Takuya; Hirooka, Yoshitaka; Sunagawa, Kenji

    2015-01-01

    Sympathoexcitation contributes to the progression of heart failure. Activation of brain angiotensin II type 1 receptors (AT1R) causes central sympathoexcitation. Thus, we assessed the hypothesis that the increase in circulating angiotensin II comparable to that reported in heart failure model affects cardiac function through the central sympathoexcitation via activating AT1R in the brain. In Sprague-Dawley rats, the subcutaneous infusion of angiotensin II for 14 days increased the circulating angiotensin II level comparable to that reported in heart failure model rats after myocardial infarction. In comparison with the control, angiotensin II infusion increased 24 hours urinary norepinephrine excretion, and systolic blood pressure. Angiotensin II infusion hypertrophied left ventricular (LV) without changing chamber dimensions while increased end-diastolic pressure. The LV pressure–volume relationship indicated that angiotensin II did not impact on the end-systolic elastance, whereas significantly increased end-diastolic elastance. Chronic intracerebroventricular infusion of AT1R blocker, losartan, attenuated these angiotensin II-induced changes. In conclusion, circulating angiotensin II in heart failure is capable of inducing sympathoexcitation via in part AT1R in the brain, subsequently leading to LV diastolic dysfunction. PMID:26290529

  10. Designing bifunctional NOP receptor-mu opioid receptor ligands from NOP-receptor selective scaffolds. Part II

    PubMed Central

    Journigan, V. Blair; Polgar, Willma; Khroyan, Taline V.; Zaveri, Nurulain T.

    2014-01-01

    The nociceptin opioid receptor (NOP) and its endogenous peptide ligand nociceptin/orphanin FQ have been shown to modulate the pharmacological effects of the classical opioid receptor system. Suppression of opioid-induced reward associated with mu-opioid receptor (MOP)-mediated analgesia, without decreasing anti-nociceptive efficacy, can potentially be achieved with NOP agonists having bifunctional agonist activity at MOP, to afford ‘non-addicting’ analgesics. In Part II of this series, we describe a continuing structure-activity relationship (SAR) study of the NOP-selective piperidin-4-yl-1,3-dihydroindol-2-one scaffold, to obtain bifunctional activity at MOP, and a suitable ratio of NOP/MOP agonist activity that produces a non-addicting analgesic profile. The SAR reported here is focused on the influence of various piperidine nitrogen aromatic substituents on the ratio of binding affinity and intrinsic activity at both the NOP and MOP receptors. PMID:24657054

  11. The apelin receptor inhibits the angiotensin II type 1 receptor via allosteric trans-inhibition

    PubMed Central

    Siddiquee, K; Hampton, J; McAnally, D; May, LT; Smith, LH

    2013-01-01

    Background and Purpose The apelin receptor (APJ) is often co-expressed with the angiotensin II type-1 receptor (AT1) and acts as an endogenous counter-regulator. Apelin antagonizes Ang II signalling, but the precise molecular mechanism has not been elucidated. Understanding this interaction may lead to new therapies for the treatment of cardiovascular disease. Experimental Approach The physical interaction of APJ and AT1 receptors was detected by co-immunoprecipitation and bioluminescence resonance energy transfer (BRET). Functional and pharmacological interactions were measured by G-protein-dependent signalling and recruitment of β-arrestin. Allosterism and cooperativity between APJ and AT1 were measured by radioligand binding assays. Key Results Apelin, but not Ang II, induced APJ : AT1 heterodimerization forced AT1 into a low-affinity state, reducing Ang II binding. Likewise, apelin mediated a concentration-dependent depression in the maximal production of inositol phosphate (IP1) and β-arrestin recruitment to AT1 in response to Ang II. The signal depression approached a limit, the magnitude of which was governed by the cooperativity indicative of a negative allosteric interaction. Fitting the data to an operational model of allosterism revealed that apelin-mediated heterodimerization significantly reduces Ang II signalling efficacy. These effects were not observed in the absence of apelin. Conclusions and Implications Apelin-dependent heterodimerization between APJ and AT1 causes negative allosteric regulation of AT1 function. As AT1 is significant in the pathogenesis of cardiovascular disease, these findings suggest that impaired apelin and APJ function may be a common underlying aetiology. Linked Article This article is commented on by Goupil et al., pp. 1101–1103 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12040 PMID:22935142

  12. Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib ('Iressa') response and resistance.

    PubMed

    Knowlden, Janice M; Jones, Helen E; Barrow, Denise; Gee, Julia M W; Nicholson, Robert I; Hutcheson, Iain R

    2008-09-01

    Classically the insulin receptor substrate-1 (IRS-1) is an essential component of insulin-like growth factor type 1 receptor (IGF-IR) signalling, providing an interface between the receptor and key downstream signalling cascades. Here, however, we show that in tamoxifen-resistant MCF-7 (Tam-R) breast cancer cells, that are highly dependent on epidermal growth factor receptor (EGFR) for growth, IRS-1 can interact with EGFR and be preferentially phosphorylated on tyrosine (Y) 896, a Grb2 binding site. Indeed, phosphorylation of this site is greatly enhanced by exposure of these cells, and other EGFR-positive cell lines, to EGF. Importantly, while IGF-II promotes phosphorylation of IRS-1 on Y612, a PI3-K recruitment site, it has limited effect on Y896 phosphorylation in Tam-R cells. Furthermore, EGF and IGF-II co-treatment, reduces the ability of IGF-II to phosphorylate Y612, whilst maintaining Y896 phosphorylation, suggesting that the EGFR is the dominant recruiter of IRS-1 in this cell line. Significantly, challenge of Tam-R cells with the EGFR-selective tyrosine kinase inhibitor gefitinib, for 7 days, reduces IRS-1/EGFR association and IRS-1 Y896 phosphorylation, while promoting IRS-1/IGF-IR association and IRS-1 Y612 phosphorylation. Furthermore, gefitinib significantly enhances IGF-II-mediated phosphorylation of IRS-1 Y612 and AKT in Tam-R cells. Importantly, induction of this pathway by gefitinib can be abrogated by inhibition/downregulation of the IGF-IR. Our data would therefore suggest a novel association exists between the EGFR and IRS-1 in several EGFR-positive cancer cell lines. This association acts to promote phosphorylation of IRS-1 at Y896 and drive MAPK signalling whilst preventing recruitment of IRS-1 by the IGF-IR and inhibiting signalling via this receptor. Treatment with gefitinib alters the dynamics of this system, promoting IGF-IR signalling, the dominant gefitinib-resistant growth regulatory pathway in Tam-R cells, thus, potentially limiting

  13. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders

    PubMed Central

    SAAVEDRA, Juan M.

    2012-01-01

    The effects of brain AngII (angiotensin II) depend on AT1 receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT1 receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood–brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT1 receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT1 receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer’s disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer’s disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic

  14. Histamine 3 receptor activation reduces the expression of neuronal angiotensin II type 1 receptors in the heart.

    PubMed

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki; Levi, Roberto

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H₃) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na⁺/H⁺ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT₁) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H₃ receptors and AT₁ receptors. The purpose of this investigation was therefore to elucidate the H₃/AT₁ receptor interaction in myocardial ischemia/reperfusion. We found that H₃ receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT₁ receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT₁ receptor expression. Moreover, norepinephrine release and AT₁ receptor expression were increased by the nitric oxide (NO) synthase inhibitor N(G)-methyl-L-arginine and the protein kinase C activator phorbol myristate acetate. H₃ receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H₃ receptor cDNA caused a decrease in protein kinase C activity and AT₁ receptor protein abundance. Collectively, our findings suggest that neuronal H₃ receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT₁ receptor expression. Thus, H₃ receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT₁ receptor expression. Cardioprotection ultimately results from the combined

  15. Histamine 3 Receptor Activation Reduces the Expression of Neuronal Angiotensin II Type 1 Receptors in the Heart

    PubMed Central

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H3) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na+/H+ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT1) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H3 receptors and AT1 receptors. The purpose of this investigation was therefore to elucidate the H3/AT1 receptor interaction in myocardial ischemia/reperfusion. We found that H3 receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT1 receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT1 receptor expression. Moreover, norepinephrine release and AT1 receptor expression were increased by the nitric oxide (NO) synthase inhibitor NG-methyl-l-arginine and the protein kinase C activator phorbol myristate acetate. H3 receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H3 receptor cDNA caused a decrease in protein kinase C activity and AT1 receptor protein abundance. Collectively, our findings suggest that neuronal H3 receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT1 receptor expression. Thus, H3 receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT1 receptor expression. Cardioprotection ultimately results from the combined attenuation of angiotensin II and

  16. Effects of Urotensin II Receptor Antagonist, GSK1440115, in Asthma

    PubMed Central

    Portnoy, Alison; Kumar, Sanjay; Behm, David J.; Mahar, Kelly M.; Noble, Robert B.; Throup, John P.; Russ, Steven F.

    2013-01-01

    Background: Urotensin II (U-II) is highly expressed in the human lung and has been implicated in regulating respiratory physiology in preclinical studies. Our objective was to test antagonism of the urotensin (UT) receptor by GSK1440115, a novel, competitive, and selective inhibitor of the UT receptor, as a therapeutic strategy for the treatment of asthma. Methods: Safety, tolerability, and pharmacokinetics (PK) of single doses of GSK1440115 (1–750 mg) were assessed in a Phase I, placebo controlled study in 70 healthy subjects. In a Phase Ib study, 12 asthmatic patients were randomized into a two-period, single-blind crossover study and treated with single doses of 750 mg GSK1440115 or placebo and given a methacholine challenge. Results: Administration of GSK1440115 was safe and well-tolerated in healthy subjects and asthmatic patients. In both studies, there was a high degree of variability in the observed PK following oral dosing with GSK1440115 at all doses. There was a marked food effect in healthy subjects at the 50 mg dose. In the presence of food at the 750 mg dose, the time to maximal concentration was between 2 and 6 h and the terminal half-life was short at approximately 2 h. All asthmatic patients maintained greater than the predicted concentration levels necessary to achieve predicted 96% receptor occupancy for ≥3 h (between 4 and 7 h post-dose). There were no apparent trends or relationships between the systemic plasma exposure of GSK1440115 and pharmacodynamic endpoints, PC20 after methacholine challenge and FEV1, in asthmatics. Conclusion: While GSK1440115 was safe and well-tolerated, it did not induce bronchodilation in asthmatics, or protect against methacholine-induced bronchospasm, suggesting that acute UT antagonism is not likely to provide benefit as an acute bronchodilator in this patient population. PMID:23641215

  17. Progesterone receptor induces bcl-x expression through intragenic binding sites favoring RNA polymerase II elongation

    PubMed Central

    Bertucci, Paola Y.; Nacht, A. Silvina; Alló, Mariano; Rocha-Viegas, Luciana; Ballaré, Cecilia; Soronellas, Daniel; Castellano, Giancarlo; Zaurin, Roser; Kornblihtt, Alberto R.; Beato, Miguel; Vicent, Guillermo P.; Pecci, Adali

    2013-01-01

    Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of progestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions surrounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-distribution of the active Pol II toward the 3′-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene expression by facilitating the proper passage of the polymerase along hormone-dependent genes. PMID:23640331

  18. Differential brain angiotensin-II type I receptor expression in hypertensive rats.

    PubMed

    Braga, Valdir A

    2011-09-01

    Blood-borne angiotensin-II (Ang-II) has profound effects in the brain. We tested the hypothesis that Ang-II-dependent hypertension involves differential Ang-II type I (AT(1)) receptors expression in the subfornical organ (SFO) and the rostral ventrolateral medulla (RVLM). Male Wistar rats were implanted with 14-day osmotic minipump filled with Ang-II (150 ng/kg/min) or saline. AT(1) receptor mRNA levels were detected in the SFO and RVLM by reverse transcription-polymerase chain reaction (RT-PCR). Ang-II caused hypertension (134 ± 10 mmHg vs. 98 ± 9 mmHg, n = 9, p < 0.05). RT-PCR revealed that Ang-II infusion induced increased AT(1) receptor mRNA levels in RVLM and decreased in SFO. Our data suggest that Ang-II-induced hypertension involves differential expression of brain AT(1) receptors. PMID:21897104

  19. 40 CFR Table II-1 to Subpart II of... - Emission Factors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Emission Factors II Table II-1 to Subpart II of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98, Subpt. II, Table...

  20. 40 CFR Table II-1 to Subpart II of... - Emission Factors

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Emission Factors II Table II-1 to Subpart II of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98, Subpt. II, Table...

  1. The effect of angiotensin II receptor blockers on hyperuricemia

    PubMed Central

    Wolff, Marissa L.; Cruz, Jennifer L.; Vanderman, Adam J.; Brown, Jamie N.

    2015-01-01

    The objective of this review was to explore the efficacy of angiotensin II receptor blockers (ARBs) for the treatment of hyperuricemia in individuals diagnosed with gout or hyperuricemia defined as ⩾7 mg/dl at baseline. A literature search of MEDLINE (1946 to June 2015) and EMBASE (1947 to June 2015) was conducted. The following search terms were used: ‘uric acid’, ‘urate transporter’, ‘gout’, ‘angiotensin II receptor blockers’, ‘hyperuricemia’ and the names for individual ARBs, as well as any combinations of these terms. Studies were excluded that did not explore fractional excretion or serum uric acid as an endpoint, if patients did not have a diagnosis of gout or hyperuricemia at baseline, or if they were non-English language. A total of eight studies met the inclusion criteria. Of the eight studies identified, six explored ARB monotherapy and two studies investigated ARBs as adjunct therapy. Losartan demonstrated statistically significant reductions in serum uric acid levels or increases in fractional excretion of uric acid in all studies, whereas no other ARB reached statistical benefit. The effect of ARBs on the occurrence of gout attacks or other clinical outcomes were not represented. Four studies evaluated safety effects of these agents indicating abnormalities such as minor changes in lab values. In conclusion, losartan is the only ARB that has consistently demonstrated a significant reduction in serum uric acid levels, although the significance of impacting clinical outcomes remains unknown. Losartan appears to be a safe and efficacious agent to lower serum uric acid levels in patients with hyperuricemia. PMID:26568810

  2. Epidermal growth factor receptors in the oesophagus.

    PubMed Central

    Jankowski, J; Murphy, S; Coghill, G; Grant, A; Wormsley, K G; Sanders, D S; Kerr, M; Hopwood, D

    1992-01-01

    The quantity and distribution of epidermal growth factor receptors (EGF-R) in oesophageal mucosa was studied in the oesophagus in order to determine its role in oesophageal disease. Fifty five biopsies were taken from different levels of the oesophagus in 25 consecutive patients undergoing endoscopy. Another group of eight patients with histologically proven Barrett's oesophagitis had a biopsy taken from the area of columnar lined oesophagus. A peripheral, membranous pattern was seen predominantly confined to the basal and immediately suprabasal cells in all of the first group of patients. In the superficial cells a few granular cytoplasmic structures were positive. All patients with Barrett's oesophagitis showed EGF-R staining of the surface epithelium. A computerised planimeter was used to determine the proportion of stained areas of squamous cells which were expressed as a percentage of the total area of squamous cells. The difference in the area of cells stained for EGF-R between normal and inflamed oesophageal mucosa (29.5% and 43.1% respectively) was significant (p less than 0.001). Images Figure 1 PMID:1582583

  3. Simvastatin enhances bone morphogenetic protein receptor type II expression

    SciTech Connect

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N. . E-mail: peterkao@stanford.edu

    2006-01-06

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function.

  4. Angiotensin II receptor blockers for the treatment of hypertension.

    PubMed

    See, S

    2001-11-01

    The rising incidence of stroke, congestive heart failure (CHF) and end stage renal disease (ESRD) has signalled a need to increase awareness, treatment and control of hypertension. There continues to be a need for effective antihypertensive medications since hypertension is a major precursor to various forms of cardiovascular disease. The renin-angiotensin (AT) aldosterone system (RAAS) is a key component to the development of hypertension and can be one target of drug therapy. Angotensin II (ATII) receptor blockers (ARBs) are the most recent class of agents available to treat hypertension, which work by by inhibiting ATII at the receptor level. Currently, national consensus guidelines recommend that ARBs should be reserved for hypertensive patients who cannot tolerate angiotensin converting enzyme (ACE) inhibitors (ACEIs). ARBs, however, are moving to the forefront of therapy with a promising role in the area of renoprotection and CHF. Recent trials such as the The Renoprotective Effect of the Angiotensin-Receptor Antagonist Irbesartan in Patients with Nephropathy Due to Type 2 Diabetes Trial (IDNT), the Effect of Irbesartan on the Development of Diabetic Nephropathy in Patients with Type 2 Diabetes (IRMA2), and The Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy (RENAAL) study have demonstrated the renoprotective effects of ARBs in patients with Type 2 diabetes. The Valsartan Heart Failure Trial (Val-HeFT) adds to the growing body of evidence that ARBs may improve morbidity and mortality in CHF patients. As a class, ARBs are well tolerated and have a lower incidence of cough and angioedema compared to ACEIs. This article reviews the differences among the ARBs, existing efficacy data in hypertension, and explores the role of ARBs in CHF and renal disease.

  5. Analysis of murine cellular receptors for tumor-killing factor

    SciTech Connect

    Ohsawa, F.; Natori, S.

    1987-01-01

    Receptors for tumor-killing factor (TKF) on the surface of murine cells were analyzed using radioiodinated TKF. Not only sensitive cells but also insensitive cells were found to have specific receptors. Among the sensitive cells, no clear relation was observed between the number of receptors on the cell surface and sensitivity to TKF. Compounds affecting microfilaments (cytochalasin B and D) and microtubules (colchicine and Colcemid) significantly inhibited cytolysis of sensitive cells induced by receptor-bound TKF. It is concluded that internalization of receptor-bound TKF is a prerequisite for triggering cytolysis.

  6. A small difference in the molecular structure of angiotensin II receptor blockers induces AT1 receptor-dependent and -independent beneficial effects

    PubMed Central

    Fujino, Masahiro; Miura, Shin-ichiro; Kiya, Yoshihiro; Tominaga, Yukio; Matsuo, Yoshino; Karnik, Sadashiva S; Saku, Keijiro

    2013-01-01

    Angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) induce multiple pharmacological beneficial effects, but not all ARBs have the same effects and the molecular mechanisms underlying their actions are not certain. In this study, irbesartan and losartan were examined because of their different molecular structures (irbesartan has a cyclopentyl group whereas losartan has a chloride group). We analyzed the binding affinity and production of inositol phosphate (IP), monocyte chemoattractant protein-1 (MCP-1) and adiponectin. Compared with losartan, irbesartan showed a significantly higher binding affinity and slower dissociation rate from the AT1 receptor and a significantly higher degree of inverse agonism and insurmountability toward IP production. These effects of irbesartan were not seen with the AT1-Y113A mutant receptor. On the basis of the molecular modeling of the ARBs–AT1 receptor complex and a mutagenesis study, the phenyl group at Tyr113 in the AT1 receptor and the cyclopentyl group of irbesartan may form a hydrophobic interaction that is stronger than the losartan–AT1 receptor interaction. Interestingly, irbesartan inhibited MCP-1 production more strongly than losartan. This effect was mediated by the inhibition of nuclear factor-kappa B activation that was independent of the AT1 receptor in the human coronary endothelial cells. In addition, irbesartan, but not losartan, induced significant adiponectin production that was mediated by peroxisome proliferator-activated receptor-γ activation in 3T3-L1 adipocytes, and this effect was not mediated by the AT1 receptor. In conclusion, irbesartan induced greater beneficial effects than losartan due to small differences between their molecular structures, and these differential effects were both dependent on and independent of the AT1 receptor. PMID:20668453

  7. Acute Systemic Infection with Dengue Virus Leads to Vascular Leakage and Death through Tumor Necrosis Factor-α and Tie2/Angiopoietin Signaling in Mice Lacking Type I and II Interferon Receptors.

    PubMed

    Phanthanawiboon, Supranee; Limkittikul, Kriengsak; Sakai, Yusuke; Takakura, Nobuyuki; Saijo, Masayuki; Kurosu, Takeshi

    2016-01-01

    Severe dengue is caused by host responses to viral infection, but the pathogenesis remains unknown. This is, in part, due to the lack of suitable animal models. Here, we report a non-mouse-adapted low-passage DENV-3 clinical isolate, DV3P12/08, derived from recently infected patients. DV3P12/08 caused a lethal systemic infection in type I and II IFN receptor KO mice (IFN-α/β/γR KO mice), which have the C57/BL6 background. Infection with DV3P12/08 induced a cytokine storm, resulting in severe vascular leakage (mainly in the liver, kidney and intestine) and organ damage, leading to extensive hemorrhage and rapid death. DV3P12/08 infection triggered the release of large amounts of TNF-α, IL-6, and MCP-1. Treatment with a neutralizing anti-TNF-α antibody (Ab) extended survival and reduced liver damage without affecting virus production. Anti-IL-6 neutralizing Ab partly prolonged mouse survival. The anti-TNF-α Ab suppressed IL-6, MCP-1, and IFN-γ levels, suggesting that the severe response to infection was triggered by TNF-α. High levels of TNF-α mRNA were expressed in the liver and kidneys, but not in the small intestine, of infected mice. Conversely, high levels of IL-6 mRNA were expressed in the intestine. Importantly, treatment with Angiopoietin-1, which is known to stabilize blood vessels, prolonged the survival of DV3P12/08-infected mice. Taken together, the results suggest that an increased level of TNF-α together with concomitant upregulation of Tie2/Angiopoietin signaling have critical roles in severe dengue infection. PMID:26844767

  8. Acute Systemic Infection with Dengue Virus Leads to Vascular Leakage and Death through Tumor Necrosis Factor-α and Tie2/Angiopoietin Signaling in Mice Lacking Type I and II Interferon Receptors

    PubMed Central

    Limkittikul, Kriengsak; Sakai, Yusuke; Takakura, Nobuyuki; Saijo, Masayuki

    2016-01-01

    Severe dengue is caused by host responses to viral infection, but the pathogenesis remains unknown. This is, in part, due to the lack of suitable animal models. Here, we report a non-mouse-adapted low-passage DENV-3 clinical isolate, DV3P12/08, derived from recently infected patients. DV3P12/08 caused a lethal systemic infection in type I and II IFN receptor KO mice (IFN-α/β/γR KO mice), which have the C57/BL6 background. Infection with DV3P12/08 induced a cytokine storm, resulting in severe vascular leakage (mainly in the liver, kidney and intestine) and organ damage, leading to extensive hemorrhage and rapid death. DV3P12/08 infection triggered the release of large amounts of TNF-α, IL-6, and MCP-1. Treatment with a neutralizing anti-TNF-α antibody (Ab) extended survival and reduced liver damage without affecting virus production. Anti-IL-6 neutralizing Ab partly prolonged mouse survival. The anti-TNF-α Ab suppressed IL-6, MCP-1, and IFN-γ levels, suggesting that the severe response to infection was triggered by TNF-α. High levels of TNF-α mRNA were expressed in the liver and kidneys, but not in the small intestine, of infected mice. Conversely, high levels of IL-6 mRNA were expressed in the intestine. Importantly, treatment with Angiopoietin-1, which is known to stabilize blood vessels, prolonged the survival of DV3P12/08-infected mice. Taken together, the results suggest that an increased level of TNF-α together with concomitant upregulation of Tie2/Angiopoietin signaling have critical roles in severe dengue infection. PMID:26844767

  9. Acute Systemic Infection with Dengue Virus Leads to Vascular Leakage and Death through Tumor Necrosis Factor-α and Tie2/Angiopoietin Signaling in Mice Lacking Type I and II Interferon Receptors.

    PubMed

    Phanthanawiboon, Supranee; Limkittikul, Kriengsak; Sakai, Yusuke; Takakura, Nobuyuki; Saijo, Masayuki; Kurosu, Takeshi

    2016-01-01

    Severe dengue is caused by host responses to viral infection, but the pathogenesis remains unknown. This is, in part, due to the lack of suitable animal models. Here, we report a non-mouse-adapted low-passage DENV-3 clinical isolate, DV3P12/08, derived from recently infected patients. DV3P12/08 caused a lethal systemic infection in type I and II IFN receptor KO mice (IFN-α/β/γR KO mice), which have the C57/BL6 background. Infection with DV3P12/08 induced a cytokine storm, resulting in severe vascular leakage (mainly in the liver, kidney and intestine) and organ damage, leading to extensive hemorrhage and rapid death. DV3P12/08 infection triggered the release of large amounts of TNF-α, IL-6, and MCP-1. Treatment with a neutralizing anti-TNF-α antibody (Ab) extended survival and reduced liver damage without affecting virus production. Anti-IL-6 neutralizing Ab partly prolonged mouse survival. The anti-TNF-α Ab suppressed IL-6, MCP-1, and IFN-γ levels, suggesting that the severe response to infection was triggered by TNF-α. High levels of TNF-α mRNA were expressed in the liver and kidneys, but not in the small intestine, of infected mice. Conversely, high levels of IL-6 mRNA were expressed in the intestine. Importantly, treatment with Angiopoietin-1, which is known to stabilize blood vessels, prolonged the survival of DV3P12/08-infected mice. Taken together, the results suggest that an increased level of TNF-α together with concomitant upregulation of Tie2/Angiopoietin signaling have critical roles in severe dengue infection.

  10. Effect of gonadotropin-releasing hormone II receptor (GnRHR-II) knockdown on testosterone secretion in the boar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unlike the classical gonadotropin-releasing hormone (GnRH-I), the second mammalian GnRH isoform (GnRH-II; His5, Trp7, Tyr8) is a poor stimulator of gonadotropin secretion. In addition, GnRH-II is ubiquitously expressed, with transcript levels highest in tissues outside of the brain. A receptor speci...

  11. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor

    PubMed Central

    Versteyhe, Soetkin; Klaproth, Birgit; Borup, Rehannah; Palsgaard, Jane; Jensen, Maja; Gray, Steven G.; De Meyts, Pierre

    2013-01-01

    Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts that was not regulated by the other two ligands. Many of the functions and pathways these regulated genes were involved in, were consistent with the known biological effects of these ligands. The differences in gene expression might therefore account for some of the different biological effects of insulin, IGF-I, and IGF-II. This work adds to the evidence that not only the affinity of a ligand determines its biological response, but also its nature, even through the same receptor. PMID:23950756

  12. The neuromedin B receptor antagonist, BIM-23127, is a potent antagonist at human and rat urotensin-II receptors.

    PubMed

    Herold, Christopher L; Behm, David J; Buckley, Peter T; Foley, James J; Wixted, William E; Sarau, Henry M; Douglas, Stephen A

    2003-05-01

    The functional activity of the peptidic neuromedin B receptor antagonist BIM-23127 was investigated at recombinant and native urotensin-II receptors (UT receptors). Human urotensin-II (hU-II) promoted intracellular calcium mobilization in HEK293 cells expressing the human UT (hUT) or rat UT (rUT) receptors with pEC(50) values of 9.80+/-0.34 (n=6) and 9.06+/-0.32 (n=4), respectively. While BIM-23127 alone had no effect on calcium responses in either cell line, it was a potent and competitive antagonist at both hUT (pA(2)=7.54+/-0.14; n=3) and rUT (pA(2)=7.70+/-0.05; n=3) receptors. Furthermore, BIM-23127 reversed hU-II-induced contractile tone in the rat-isolated aorta with a pIC(50) of 6.66+/-0.04 (n=4). In conclusion, BIM- 23127 is the first hUT receptor antagonist identified to date and should not be considered as a selective neuromedin B receptor antagonist. PMID:12770925

  13. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  14. Inclusion of Strep-Tag II in design of antigen receptors for T cell immunotherapy

    PubMed Central

    Liu, Lingfeng; Sommermeyer, Daniel; Cabanov, Alexandra; Kosasih, Paula; Hill, Tyler; Riddell, Stanley R

    2016-01-01

    The tactical introduction of Strep-tag II into synthetic antigen receptors provides engineered T cells with a marker for identification and rapid purification, and a functional element for selective antibody coated microbead-driven large-scale expansion. Such receptor designs can be applied to chimeric antigen receptors of different ligand specificities and costimulatory domains, and to T cell receptors to facilitate cGMP manufacturing of adoptive T cell therapies to treat cancer and other diseases. PMID:26900664

  15. Assaying binding of nerve growth factor to cell surface receptors

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1985-01-01

    The paper describes methods both for the radioiodination of nerve growth factor (NGF) and for assaying NFG receptors by reversible binding techniques. Preparation of (/sup 125/I)NGF along with a rapid method for determining the amount of cell-bound ligand have allowed the detection of NGF receptors on a number of cell types.

  16. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors.

    PubMed Central

    Hatva, E.; Kaipainen, A.; Mentula, P.; Jääskeläinen, J.; Paetau, A.; Haltia, M.; Alitalo, K.

    1995-01-01

    Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7856749

  17. Blockade of Urotensin II Receptor Prevents Vascular Dysfunction

    PubMed Central

    Kim, Young-Ae; Lee, Dong Gil; Yi, Kyu Yang; Lee, Byung Ho; Jung, Yi-Sook

    2016-01-01

    Urotensin II (UII) is a potent vasoactive peptide and mitogenic agent to induce proliferation of various cells including vascular smooth muscle cells (VSMCs). In this study, we examined the effects of a novel UII receptor (UT) antagonist, KR-36676, on vasoconstriction of aorta and proliferation of aortic SMCs. In rat aorta, UII-induced vasoconstriction was significantly inhibited by KR-36676 in a concentration-dependent manner. In primary human aortic SMCs (hAoSMCs), UII-induced cell proliferation was significantly inhibited by KR-36676 in a concentration-dependent manner. In addition, KR-36676 decreased UII-induced phosphorylation of ERK, and UII-induced cell proliferation was also significantly inhibited by a known ERK inhibitor U0126. In mouse carotid ligation model, intimal thickening of carotid artery was dramatically suppressed by oral treatment with KR-36676 (30 mg/ kg/day) for 4 weeks compared to vehicle-treated group. From these results, it is indicated that KR-36676 suppress UII-induced proliferation of VSMCs at least partially through inhibition of ERK activation, and that it also attenuates UII-induced vasoconstriction and vascular neointima formation. Our study suggest that KR-36676 may be an attractive candidate for the pharmacological management of vascular dysfunction. PMID:27582556

  18. Blockade of Urotensin II Receptor Prevents Vascular Dysfunction.

    PubMed

    Kim, Young-Ae; Lee, Dong Gil; Yi, Kyu Yang; Lee, Byung Ho; Jung, Yi-Sook

    2016-09-01

    Urotensin II (UII) is a potent vasoactive peptide and mitogenic agent to induce proliferation of various cells including vascular smooth muscle cells (VSMCs). In this study, we examined the effects of a novel UII receptor (UT) antagonist, KR-36676, on vasoconstriction of aorta and proliferation of aortic SMCs. In rat aorta, UII-induced vasoconstriction was significantly inhibited by KR-36676 in a concentration-dependent manner. In primary human aortic SMCs (hAoSMCs), UII-induced cell proliferation was significantly inhibited by KR-36676 in a concentration-dependent manner. In addition, KR-36676 decreased UII-induced phosphorylation of ERK, and UII-induced cell proliferation was also significantly inhibited by a known ERK inhibitor U0126. In mouse carotid ligation model, intimal thickening of carotid artery was dramatically suppressed by oral treatment with KR-36676 (30 mg/ kg/day) for 4 weeks compared to vehicle-treated group. From these results, it is indicated that KR-36676 suppress UII-induced proliferation of VSMCs at least partially through inhibition of ERK activation, and that it also attenuates UII-induced vasoconstriction and vascular neointima formation. Our study suggest that KR-36676 may be an attractive candidate for the pharmacological management of vascular dysfunction. PMID:27582556

  19. Comparing Angiotensin II Receptor Blockers on Benefits Beyond Blood Pressure

    PubMed Central

    2016-01-01

    The renin-angiotensin-aldosterone system (RAAS) is one of the main regulators of blood pressure, renal hemodynamics, and volume homeostasis in normal physiology, and contributes to the development of renal and cardiovascular (CV) diseases. Therefore, pharmacologic blockade of RAAS constitutes an attractive strategy in preventing the progression of renal and CV diseases. This concept has been supported by clinical trials involving patients with hypertension, diabetic nephropathy, and heart failure, and those after myocardial infarction. The use of angiotensin II receptor blockers (ARBs) in clinical practice has increased over the last decade. Since their introduction in 1995, seven ARBs have been made available, with approved indications for hypertension and some with additional indications beyond blood pressure reduction. Considering that ARBs share a similar mechanism of action and exhibit similar tolerability profiles, it is assumed that a class effect exists and that they can be used interchangeably. However, pharmacologic and dosing differences exist among the various ARBs, and these differences can potentially influence their individual effectiveness. Understanding these differences has important implications when choosing an ARB for any particular condition in an individual patient, such as heart failure, stroke, and CV risk reduction (prevention of myocardial infarction). A review of the literature for existing randomized controlled trials across various ARBs clearly indicates differences within this class of agents. Ongoing clinical trials are evaluating the role of ARBs in the prevention and reduction of CV rates of morbidity and mortality in high-risk patients. PMID:20524096

  20. Progesterone receptor subunits are high-affinity substrates for phosphorylation by epidermal growth factor receptor.

    PubMed Central

    Ghosh-Dastidar, P; Coty, W A; Griest, R E; Woo, D D; Fox, C F

    1984-01-01

    Purified preparations of epidermal growth factor (EGF) receptor were used to test hen oviduct progesterone receptor subunits as substrates for phosphorylation catalyzed by EGF receptor. Both the 80-kilodalton (kDa) (A) and the 105-kDa (B) progesterone receptor subunits were phosphorylated in a reaction that required EGF and EGF receptor. No phosphorylation of progesterone receptor subunits was observed in the absence of EGF receptor, even when Ca2+ was substituted for Mg2+ and Mn2+. Phospho amino acid analysis revealed phosphorylation at tyrosine residues, with no phosphorylation detectable at serine or threonine residues. Two-dimensional maps of phosphopeptides generated from phosphorylated 80- or 105-kDa subunits by tryptic digestion revealed similar patterns, with resolution of two major, several minor, and a number of very minor phosphopeptides. The Km of progesterone receptor for phosphorylation by EGF-activated EGF receptor was 100 nM and the Vmax was 2.5 nmol/min per mg of EGF receptor protein at 0 degrees C. The stoichiometry of phosphorylation/hormone binding for progesterone receptor subunits was 0.31 at ice-bath temperature and approximately 1.0 at 22 degrees C. Images PMID:6200881

  1. Clumping factors of H II, He II and He III

    NASA Astrophysics Data System (ADS)

    Jeeson-Daniel, Akila; Ciardi, Benedetta; Graziani, Luca

    2014-09-01

    Estimating the intergalactic medium ionization level of a region needs proper treatment of the reionization process for a large representative volume of the universe. The clumping factor, a parameter which accounts for the effect of recombinations in unresolved, small-scale structures, aids in achieving the required accuracy for the reionization history even in simulations with low spatial resolution. In this paper, we study for the first time the redshift evolution of clumping factors of different ionized species of H and He in a small but very high resolution simulation of the reionization process. We investigate the dependence of the value and redshift evolution of clumping factors on their definition, the ionization level of the gas, the grid resolution, box size and mean dimensionless density of the simulations.

  2. Interleukin-1 receptor accessory protein interacts with the type II interleukin-1 receptor.

    PubMed

    Malinowsky, D; Lundkvist, J; Layé, S; Bartfai, T

    1998-06-16

    Stably transfected HEK-293 cells express on their surface the murine type II IL-1 receptor (mIL-1RII) as demonstrated by FACS analysis using the mAb 4E2, however binding of [125I]-hrIL-1beta to these cells is nearly absent. Saturable high affinity binding of [125I]-hrIL-1beta is observed when the murine IL-1 receptor accessory protein (mIL-1RAcP) is coexpressed with mIL-1RII. Binding of [125I]-hrIL-1beta to mIL-1RII-mIL-1RAcP complex can be inhibited either with antibodies to mIL-1RII (mAb 4E2), or by antibodies to mIL-1RAcP (mAb 4C5). The number of high affinity binding sites in cells stably transfected with the cDNA for mIL-1RII is dependent on the dose of cDNA for mIL-1RAcP used to transfect the cells. The high affinity complex between mIL-1RII and mIL-1RAcP is not preformed by interaction between the intracellular domains of these two transmembrane proteins, rather it appears to require the extracellular portions of mIL-1RII and mIL-1RAcP and the presence of a ligand. We suggest that in addition to its earlier described decoy receptor role, IL-1RII may modulate the responsiveness of cells to IL-1 by binding the IL-1RAcP in unproductive/non-signalling complexes and thus reducing the number of signalling IL-1RI-IL-1RAcP-agonist complexes when IL-1 is bound.

  3. Angiotensin II induces membrane trafficking of natively expressed transient receptor potential vanilloid type 4 channels in hypothalamic 4B cells.

    PubMed

    Saxena, Ashwini; Bachelor, Martha; Park, Yong H; Carreno, Flavia R; Nedungadi, T Prashant; Cunningham, J Thomas

    2014-10-15

    Transient receptor potential vanilloid family type 4 (TRPV4) channels are expressed in central neuroendocrine neurons and have been shown to be polymodal in other systems. We previously reported that in the rodent, a model of dilutional hyponatremia associated with hepatic cirrhosis, TRPV4 expression is increased in lipid rafts from the hypothalamus and that this effect may be angiotensin dependent. In this study, we utilized the immortalized neuroendocrine rat hypothalamic 4B cell line to more directly test the effects of angiotensin II (ANG II) on TRPV4 expression and function. Our results demonstrate the expression of corticotropin-releasing factor (CRF) transcripts, for sex-determining region Y (SRY) (male genotype), arginine vasopressin (AVP), TRPV4, and ANG II type 1a and 1b receptor in 4B cells. After a 1-h incubation in ANG II (100 nM), 4B cells showed increased TRPV4 abundance in the plasma membrane fraction, and this effect was prevented by the ANG II type 1 receptor antagonist losartan (1 μM) and by a Src kinase inhibitor PP2 (10 μM). Ratiometric calcium imaging experiments demonstrated that ANG II incubation potentiated TRPV4 agonist (GSK 1016790A, 20 nM)-induced calcium influx (control 18.4 ± 2.8% n = 5 and ANG II 80.5 ± 2.4% n = 5). This ANG II-induced increase in calcium influx was also blocked by 1 μM losartan and 10 μM PP2 (losartan 26.4 ± 3.8% n = 5 and PP2 19.7 ± 3.9% n = 5). Our data suggests that ANG II can increase TRPV4 channel membrane expression in 4B cells through its action on AT1R involving a Src kinase pathway. PMID:25080500

  4. Hippocampal type I and type II corticosteroid receptors are differentially regulated by chronic prazosin treatment.

    PubMed

    Kabbaj, M; Le Moal, M; Maccari, S

    1996-08-01

    Two types of hippocampal corticosteroid receptors play an important role in regulating the secretion of corticosterone: type I receptors are thought to regulate both the basal and stress induced release of corticosterone whereas type II receptors seem to be involved only in the stress response. Although these receptors are known to be regulated by circulating levels of corticosterone, there is also evidence for a direct neural control independent of hormonal influences. Furthermore, several studies suggest differential regulation of type I and type II corticosteroid receptors, with greater hormonal control of type II and greater neural control of type I. In order to investigate this theory of differential regulation of type I and type II corticosteroid receptors, we studied the effect of chronic treatment with either vehicle or the alpha 1 noradrenergic antagonist prazosin (0.5 mg/kg, i.p), on hippocampal corticosteroid receptors. Rats in one group had intact adrenal glands, whereas rats in a second group were adrenalectomized, their plasma corticosterone levels being maintained in the physiological range by implantation of corticosterone pellets. Thus, in the first group, the effects of drug-induced changes in both noradrenergic transmission and corticosterone secretion on corticosteroid receptors were investigated, whereas in the second group, the influence of altered noradrenergic transmission was effectively isolated. The results of this experiment show that, in comparison to the vehicle treatment, chronic treatment with the alpha 1 receptor antagonist prazosin decreased the number of type I corticosteroid receptors in adrenalectomized animals with corticosterone substitutive therapy. This effect on type I was not evident in adrenal-intact animals. In contrast, the prazosin treatment reduced the number of type II corticosteroid receptors in adrenal-intact animals, but not in adrenalectomized animals with corticosterone substitutive therapy. It has also been

  5. Pancreatitis with vascular endothelial growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Ghatalia, Pooja; Morgan, Charity J; Choueiri, Toni K; Rocha, Pedro; Naik, Gurudatta; Sonpavde, Guru

    2015-04-01

    A trial-level meta-analysis was conducted to determine the relative risk (RR) of pancreatitis associated with multi-targeted vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKI). Eligible studies included randomized phase 2 and 3 trials comparing arms with and without an FDA-approved VEGFR TKI (sunitinib, sorafenib, pazopanib, axitinib, vandetanib, cabozantinib, ponatinib, regorafenib). Statistical analyses calculated the RR and 95% confidence intervals (CI). A total of 10,578 patients from 16 phase III trials and 6 phase II trials were selected. The RR for all grade and high-grade pancreatitis for the TKI vs. no TKI- arms was 1.95 (p=0.042, 95% CI: 1.02 to 3.70) and 1.89 (p=0.069, 95% CI: 0.95 to 373), respectively. No differential impact of malignancy type or specific TKI agent was seen on RR of all grade of high grade pancreatitis. Better patient selection and monitoring may mitigate the risk of severe pancreatitis.

  6. Recent progress in the synthesis and characterization of group II metabotropic glutamate receptor allosteric modulators.

    PubMed

    Sheffler, Douglas J; Pinkerton, Anthony B; Dahl, Russell; Markou, Athina; Cosford, Nicholas D P

    2011-08-17

    Group II metabotropic glutamate (mGlu) receptors consist of the metabotropic glutamate 2 (mGlu(2)) and metabotropic glutamate 3 (mGlu(3)) receptor subtypes which modulate glutamate transmission by second messenger activation to negatively regulate the activity of adenylyl cyclase. Excessive accumulation of glutamate in the perisynaptic extracellular region triggers mGlu(2) and mGlu(3) receptors to inhibit further release of glutamate. There is growing evidence that the modulation of glutamatergic neurotransmission by small molecule modulators of Group II mGlu receptors has significant potential for the treatment of several neuropsychiatric and neurodegenerative diseases. This review provides an overview of recent progress on the synthesis and pharmacological characterization of positive and negative allosteric modulators of the Group II mGlu receptors. PMID:22860167

  7. Recent Progress in the Synthesis and Characterization of Group II Metabotropic Glutamate Receptor Allosteric Modulators

    PubMed Central

    2011-01-01

    Group II metabotropic glutamate (mGlu) receptors consist of the metabotropic glutamate 2 (mGlu2) and metabotropic glutamate 3 (mGlu3) receptor subtypes which modulate glutamate transmission by second messenger activation to negatively regulate the activity of adenylyl cyclase. Excessive accumulation of glutamate in the perisynaptic extracellular region triggers mGlu2 and mGlu3 receptors to inhibit further release of glutamate. There is growing evidence that the modulation of glutamatergic neurotransmission by small molecule modulators of Group II mGlu receptors has significant potential for the treatment of several neuropsychiatric and neurodegenerative diseases. This review provides an overview of recent progress on the synthesis and pharmacological characterization of positive and negative allosteric modulators of the Group II mGlu receptors. PMID:22860167

  8. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  9. [Ca{sup 2+}]{sub i} and PKC-{alpha} are involved in the inhibitory effects of Ib, a novel nonpeptide AngiotensinII subtype AT{sub 1} receptor antagonist, on AngiotensinII-induced vascular contraction in vitro

    SciTech Connect

    Wang Yu; Wang Wei; Wang Qiujuan Wu Jinhui; Xu Jinyi; Wu Xiaoming

    2007-12-07

    The vasoactive peptide AngiotensinII (AngII) is an important factor in the cardiovascular system, exerting most of its effects through AngII receptor type 1 (AT{sub 1}). Ib, a new nonpeptide AT{sub 1} receptor antagonist, has been observed to play a positive role in the treatment of hypertension in preclinical tests. In this study, the inhibitory effects of Ib on AngII-induced vascular contraction in vitro were investigated, and its molecular mechanisms were further explored. In endothelium-denuded aortic rings from rabbits, Ib produced a rightward shift in the concentration-response curve for AngII with a decrease in the maximal contractile response and the pD{sub 2}{sup '} was 7.29. In vascular smooth muscle cells (VSMCs), the specific binding of [{sup 125}I]AngII to AT{sub 1} receptors was inhibited by Ib in a concentration-dependent manner with IC{sub 50} value of 0.96 nM. Ib could inhibit both AngII-induced Ca{sup 2+} mobilization from internal stores and Ca{sup 2+} influx. Moreover, the translocation of PKC-{alpha} stimulated by AngII was inhibited by Ib. Thus, the inhibitory effects of Ib might be related with the depression on AngII-induced increase in [Ca{sup 2+}]{sub i} and translocation of PKC-{alpha} through blocking AT{sub 1} receptors.

  10. Heterogeneity of angiotensin II receptors in membranes of developing rat metanephros.

    PubMed

    Uva, B; Vallarino, M; Ghiani, P

    1985-10-01

    Specific and high affinity binding sites for angiotensin II were demonstrated in the membranes of the developing rat metanephros during the second half of pregnancy and in the newborn by binding studies with 125I angiotensin II. Only one type of angiotensin receptor was found during intrauterine life while after birth two classes of angiotensin receptors were present in the membranes of the cortical renal tissue.

  11. Topical administration of adrenergic receptor pharmaceutics and nerve growth factor

    PubMed Central

    Steinle, Jena J

    2010-01-01

    Topical application of nerve growth factor (NGF) and adrenergic receptor pharmaceutics are currently in use for corneal ulcers and glaucoma. A recent interest in the neuroprotective abilities of NGF has led to a renewed interest in NGF as a therapeutic for retinal and choroidal diseases. NGF can promote cell proliferation through actions of the TrkA receptor or promote apoptosis through receptor p75NTR. This understanding has led to novel interest in the role of NGF for diseases of the posterior eye. The role of β-adrenergic receptor agonists and antagonists for treatments of glaucoma, diabetic retinopathy, and their potential mechanisms of action, are still under investigation. This review discusses the current knowledge and applications of topical NGF and adrenergic receptor drugs for ocular disease. PMID:20668722

  12. Quantitative autoradiography of angiotensin II receptors in brain and kidney: focus on cardiovascular implications

    SciTech Connect

    Gehlert, D.R.; Speth, R.C.; Wamsley, J.K.

    1985-01-01

    Quantitative techniques of receptor autoradiography have been applied to localize (/sup 125/I)-angiotensin II binding sites in brain and kidney. High densities of autoradiographic grains, indicating the presence of angiotensin II receptors, have been localized to several rat brain nuclei including the dorsal motor nucleus of the vagus, nucleus of the solitary tract, anterior pituitary, locus coeruleus and several hypothalamic nuclei. Cat thoracic spinal cord exhibited a high density of sites over the intermedio-lateral cell column. In sections of rat kidney, angiotensin II receptors were detected in the glomerulus, vasa recta and ureter. The cardiovascular implications of these results are apparent and relate angiotensin II to hypertensive mechanisms. Thus, angiotensin II represents an endocoid which is involved in control of blood pressure through its effects on peripheral organs as well as the central nervous system.

  13. Cutaneous adverse reactions specific to epidermal growth factor receptor inhibitors

    PubMed Central

    Lupu, I; Voiculescu, VM; Bacalbasa, N; Prie, BE; Cojocaru, I; Giurcaneanu, C

    2015-01-01

    Classical antineoplastic therapy is encumbered by extensively studied adverse reactions, most often of systemic nature. The emergence of new generations of anticancer treatments, including epidermal growth factor receptor inhibitors, besides improving the response to treatment and the survival rate, is accompanied by the occurrence of new specific side effects, incompletely studied. These side effects are most often cutaneous (hand foot syndrome, acneiform reactions), and in some cases are extremely severe, requiring dose reduction or drug discontinuation. The prevention of the cutaneous adverse effects and their treatment require a close collaboration between the oncologist and the dermatologist. The occurrence of some of these skin adverse effects may be a favorable prognostic factor for the response to the cancer treatment and the overall survival. Abbreviations: EGFR = epidermal growth factor receptors; EGFRI = epidermal growth factor receptors inhibitors PMID:26361513

  14. Angiotensin II receptor binding in the rat hypothalamus and circumventricular organs during dietary sodium deprivation.

    PubMed

    Yamada, H; Mendelsohn, F A

    1989-10-01

    The effect of dietary sodium intake on angiotensin II (Ang II) receptor binding in the rat brain was studied using quantitative in vitro autoradiography. After 2 weeks of sodium deprivation, the peripheral angiotensin system was activated as shown by increased plasma renin activity (4-fold) and plasma aldosterone concentration (approximately 40-fold). At the same time, Ang II receptor binding in the adrenal glomerulosa zone increased by 40%. Frozen brain sections prepared from 12 male Sprague-Dawley rats (6 control, 6 sodium-deprived) were incubated with 125I[Sar1, Ile8] Ang II, exposed to X-ray film, and Ang II receptor binding in individual brain nuclei was quantitated by computerized densitometry. Ang II binding in the area postrema was significantly suppressed in the sodium-deprived rats (60% of control; p less than 0.05). No change was observed in the other circumventricular organs studied, the subfornical organ or organum vasculosum of the lamina terminalis. Ang II binding in the solitary tract nucleus was not affected by the dietary salt treatment. In the hypothalamic paraventricular nucleus, there was a small (9%) but significant (p less than 0.001) increase in Ang II receptor binding in the sodium-deprived group. However, no change was observed in the hypothalamic median preoptic or suprachiasmatic nuclei, areas with similarly high Ang II receptor binding. These results suggest that only a limited subset of brain Ang II receptors respond to sodium deprivation and do so in a region-specific manner. These results support evidence that the central angiotensin system may contribute to the regulation of fluid and electrolyte homeostasis.

  15. The Angiotensin II Type 2 Receptor in Brain Functions: An Update

    PubMed Central

    Guimond, Marie-Odile; Gallo-Payet, Nicole

    2012-01-01

    Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor. PMID:23320146

  16. Hippocampal type I and type II corticosteroid receptors are modulated by central noradrenergic systems.

    PubMed

    Maccari, S; Mormède, P; Piazza, P V; Simon, H; Angelucci, L; Le Moal, M

    1992-01-01

    The effects of corticosteroids on various brain functions, including the negative feedback control of hypothalamo-pituitary-adrenal (HPA) axis activity, are mediated by two types of receptors (type I, or mineralocorticoid, and type II, or glucocorticoid) in the central nervous system. Although receptor numbers are thought to be regulated by circulating levels of corticosterone, there may be a direct neural control of corticosteroid receptors. In the present experiments, we demonstrate that 6-OHDA lesioning of noradrenergic (NA) ascending pathways in the pedunculus cerebellaris superior (PCS) reduces corticosterone secretion in response to novelty and increases the number of hippocampal type I corticosteroid receptors in rats 24 hr after adrenalectomy. The same lesion in adrenalectomized animals in which corticosterone levels were maintained within normal limits by corticosterone replacement implants also led to an increase in the number of type I corticosterone receptors and a decrease in the apparent affinity (Kd) of type II receptors in the hippocampus. These results suggest that the NA system may regulate HPA axis activity via a direct control of the number of type I receptors and the apparent affinity of type II receptors in the hippocampus. The possibility that there is a neural control of corticosteroid receptors may throw light on mechanisms controlling HPA axis activity and may suggest other approaches to the treatment of dysregulation of the HPA axis observed during stress and in certain psychopathological conditions. PMID:1332096

  17. Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue.

    PubMed

    Sciore, P; Boykiw, R; Hart, D A

    1998-07-01

    Growth factors and their receptors play an essential role in the development, maturation, and response to injury of all tissues. A number of studies have explored the possibility of improving ligament healing with exogenous growth factors. However, limited data is available regarding the endogenous growth factor network in ligaments on which any exogenous growth factors must impact. The purpose of this study was to assess the endogenous growth factor network with molecular techniques. By the sensitive reverse transcription-polymerase chain reaction technique, transcripts for a number of growth factors and receptors were detected with RNA isolated from normal and healing rabbit medial collateral ligament tissues. These include transforming growth factor-beta1, insulin-like growth factors I and II, basic fibroblast growth factor, endothelin-1, and the receptors for insulin and insulin-like growth factor II. Semiquantitative reverse transcription-polymerase chain reaction analysis of RNA from normal and scar tissues from the medial collateral ligament revealed that the levels of several transcripts were elevated in the scar tissue. It was not possible to confirm biological activity because of the hypocellularity of the tissues; however, the results obtained indicate that the reverse transcription-polymerase chain reaction approach to defining the endogenous growth factor-receptor phenotype is feasible, and further definition should contribute to the development of rational approaches to exogenous therapy to improve healing.

  18. LY354740 is a potent and highly selective group II metabotropic glutamate receptor agonist in cells expressing human glutamate receptors.

    PubMed

    Schoepp, D D; Johnson, B G; Wright, R A; Salhoff, C R; Mayne, N G; Wu, S; Cockerman, S L; Burnett, J P; Belegaje, R; Bleakman, D; Monn, J A

    1997-01-01

    The novel compound LY354740 is a conformationally constrained analog of glutamate, which was designed for interaction at metabotropic glutamate (mGlu) receptors. In this paper the selectivity of LY354740 for recombinant human mGlu receptor subtypes expressed in non-neuronal (RGT) cells is described. At human mGlu2 receptors, LY354740 produced > 90% suppression of forskolin-stimulated cAMP formation with an EC50 of 5.1 +/- 0.3 nM. LY354740 was six-fold less potent in activating human mGlu3 receptors (EC50 = 24.3 +/- 0.5 nM). LY354740 inhibition of forskolin-stimulated cAMP formation in human mGlu2 receptor-expressing cells was blocked by competitive mGlu receptor antagonists, including (+)-alpha-methyl-4-carboxyphenylglycine (MCPG) and LY307452 ((2S,4S)-2-amino-4-(4,4-diphenylbut-1-yl)-pentane-1,5-dioic acid). LY354740 had no agonist or antagonist activities at cells expressing human mGlu4 or mGlu7 (group III mGlu receptors) (EC50 > 100,000 nM). When tested at group I phosphoinositide-coupled human mGlu receptors (mGlu1a and mGlu5a), LY354740 did not activate or inhibit mGlu receptor agonist-evoked phosphoinositide hydrolysis at up to 100,000 nM. Electrophysiological experiments also demonstrated that LY354740 also had no appreciable activity in cells expressing human recombinant AMPA (GluR4) and kainate (GluR6) receptors. Thus, LY354740 is a highly potent, efficacious and selective group II (mGlu2/3) receptor agonist, useful to explore the functions of these receptors in situ. PMID:9144636

  19. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats.

    PubMed

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Garner, Ron E; McKallip, Robert J; Zhao, Zhi-Qing

    2015-01-01

    Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II) receptors and angiotensin-converting enzyme 2 (ACE2). Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min) using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day) was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1) receptor was reduced, and the Ang II type 2 (AT2) receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02%) vs in the Ang II group (0.7±0.03%, P<0.05). These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was inhibited, and tissue fibrosis was attenuated, as demonstrated by less extensive collagen-rich fibrosis. Furthermore, curcumin increased protein level of ACE2 and enhanced its expression in the intermyocardium relative to the Ang II group. These results suggest that curcumin could be considered as an add-on therapeutic agent in the treatment of fibrosis-derived heart failure patient who is intolerant of ACE inhibitor therapy.

  20. Production of angiotensin II receptors type one (AT1) and type two (AT2) during the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Mallow, H; Trindl, A; Löffler, G

    2000-01-01

    During their development from progenitor cells, adipocytes not only express enzymatic activities necessary for the storage of triglycerides, but also achieve the capability to produce a number of endocrine factors such as leptin, tumor necrosis factor alpha (TNFalpha), complement factors, adiponectin/adipoQ, plasminogen activator inhibitor-1 (PAI-1), angiotensin II and others. Angiotensin II is produced from angiotensinogen by the proteolytic action of renin and angiotensin-converting enzyme; and several data point to the existence of a complete local renin-angiotensin system in adipose tissue, including angiotensin II receptors. In this study, we directly monitored the production of angiotensin II type one receptor (AT1) and angiotensin II type two receptor (AT2) proteins during the adipose conversion of murine 3T3-L1 preadipocytes by immunodetection with specific antibodies. AT1 receptors could be detected throughout the whole differentiation period. The strong AT2 signal in preadipocytes however was completely lost during the course of differentiation, which suggests that expression of AT2 receptors is inversely correlated to the adipose conversion program.

  1. T cells induce extended class II MHC compartments in dendritic cells in a Toll-like receptor-dependent manner.

    PubMed

    Boes, Marianne; Bertho, Nicolas; Cerny, Jan; Op den Brouw, Marjolein; Kirchhausen, Tomas; Ploegh, Hidde

    2003-10-15

    Interaction of Ag-loaded dendritic cells with Ag-specific CD4 T cells induces the formation of long tubular class II MHC-positive compartments that polarize toward the T cell. We show involvement of a Toll-like receptor-mediated signal in this unusual form of intracellular class II MHC trafficking. First, wild-type dendritic cells loaded with LPS-free Ag failed to show formation of class II-positive tubules upon Ag-specific T cell engagement, but did so upon supplementation of the Ag with low concentrations of LPS. Second, Ag-loaded myeloid differentiation factor 88 -deficient dendritic cells failed to form these tubules upon interaction with T cells, regardless of the presence of LPS. Finally, inclusion of a cell-permeable peptide that blocks TNFR-associated factor 6 function, downstream of myeloid differentiation factor 88, blocked T cell-dependent tubulation. A Toll-like receptor-dependent signal is thus required to allow Ag-loaded dendritic cells to respond to T cell contact by formation of extended endosomal compartments. This activation does not result in massive translocation of class II MHC molecules to the cell surface.

  2. Modulation of the NMDA Receptor Through Secreted Soluble Factors.

    PubMed

    Cerpa, Waldo; Ramos-Fernández, Eva; Inestrosa, Nibaldo C

    2016-01-01

    Synaptic activity is a critical determinant in the formation and development of excitatory synapses in the central nervous system (CNS). The excitatory current is produced and regulated by several ionotropic receptors, including those that respond to glutamate. These channels are in turn regulated through several secreted factors that function as synaptic organizers. Specifically, Wnt, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF), and transforming growth factor (TGF) particularly regulate the N-methyl-D-aspartate receptor (NMDAR) glutamatergic channel. These factors likely regulate early embryonic development and directly control key proteins in the function of important glutamatergic channels. Here, we review the secreted molecules that participate in synaptic organization and discuss the cell signaling behind of this fine regulation. Additionally, we discuss how these factors are dysregulated in some neuropathologies associated with glutamatergic synaptic transmission in the CNS. PMID:25429903

  3. Glucocorticoid receptor co-factors as therapeutic targets

    PubMed Central

    Simons, S. Stoney

    2010-01-01

    Summary Numerous transcriptional cofactors (e.g., coactivators, corepressors, and comodulators) are known to alter the maximal transcriptional activity (Amax) in gene induction and repression by steroid receptors in general and glucocorticoids in particular. However, recent data advance the earlier reports that these same factors also modify other parameters of glucocorticoid receptor transcriptional activity: the potency of agonists (or EC50) and the partial agonist activity of antisteroids (or PAA). In several instances, factors modulate the EC50 and/or PAA without changing Amax. Thus, studies of all three parameters reveal new factors acting at various stages of receptor action, thereby increasing the potential therapeutic targets for adjusting GR actions in pathological situations. PMID:20801081

  4. Neuroprotective effect of angiotensin II type 2 receptor during cerebral ischemia/reperfusion.

    PubMed

    Ma, Chun-Ye; Yin, Lin

    2016-07-01

    Angiotensin II type 2 receptor (AT2R) activation has been shown to protect against stroke, but its precise mechanism remains poorly understood. We investigated whether the protective effect of AT2R against ischemia/reperfusion injury is mediated by the suppression of immune and inflammatory responses. Rat models of middle cerebral artery occlusion were intraperitoneally injected with physiological saline, the AT2R agonist CGP42112 (1 mg/kg per day) or antagonist PD123319 (1 mg/kg per day). In the CGP42112 group, AT2R expression increased, the infarct area decreased, interleukin-1β and tumor necrosis factor-α expression decreased, and interleukin-10 expression increased compared with the saline group. Antagonisin AT2R using PD123319 produced the opposite effects. These results indicate that AT2R activation suppresses immune and inflammatory responses, and protects against cerebral ischemia/reperfusion injury. PMID:27630693

  5. Neuroprotective effect of angiotensin II type 2 receptor during cerebral ischemia/reperfusion

    PubMed Central

    Ma, Chun-ye; Yin, Lin

    2016-01-01

    Angiotensin II type 2 receptor (AT2R) activation has been shown to protect against stroke, but its precise mechanism remains poorly understood. We investigated whether the protective effect of AT2R against ischemia/reperfusion injury is mediated by the suppression of immune and inflammatory responses. Rat models of middle cerebral artery occlusion were intraperitoneally injected with physiological saline, the AT2R agonist CGP42112 (1 mg/kg per day) or antagonist PD123319 (1 mg/kg per day). In the CGP42112 group, AT2R expression increased, the infarct area decreased, interleukin-1β and tumor necrosis factor-α expression decreased, and interleukin-10 expression increased compared with the saline group. Antagonisin AT2R using PD123319 produced the opposite effects. These results indicate that AT2R activation suppresses immune and inflammatory responses, and protects against cerebral ischemia/reperfusion injury.

  6. Neuroprotective effect of angiotensin II type 2 receptor during cerebral ischemia/reperfusion

    PubMed Central

    Ma, Chun-ye; Yin, Lin

    2016-01-01

    Angiotensin II type 2 receptor (AT2R) activation has been shown to protect against stroke, but its precise mechanism remains poorly understood. We investigated whether the protective effect of AT2R against ischemia/reperfusion injury is mediated by the suppression of immune and inflammatory responses. Rat models of middle cerebral artery occlusion were intraperitoneally injected with physiological saline, the AT2R agonist CGP42112 (1 mg/kg per day) or antagonist PD123319 (1 mg/kg per day). In the CGP42112 group, AT2R expression increased, the infarct area decreased, interleukin-1β and tumor necrosis factor-α expression decreased, and interleukin-10 expression increased compared with the saline group. Antagonisin AT2R using PD123319 produced the opposite effects. These results indicate that AT2R activation suppresses immune and inflammatory responses, and protects against cerebral ischemia/reperfusion injury. PMID:27630693

  7. Localization of the ANG II type 2 receptor in the microcirculation of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Nora, E. H.; Munzenmaier, D. H.; Hansen-Smith, F. M.; Lombard, J. H.; Greene, A. S.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Only functional studies have suggested the presence of the ANG II type 2 (AT2) receptor in the microcirculation. To determine the distribution of this receptor in the rat skeletal muscle microcirculation, a polyclonal rabbit anti-rat antiserum was developed and used for immunohistochemistry and Western blot analysis. The antiserum was prepared against a highly specific and antigenic AT2-receptor synthetic peptide and was validated by competition and sensitivity assays. Western blot analysis demonstrated a prominent, single band at approximately 40 kDa in cremaster and soleus muscle. Immunohistochemical analysis revealed a wide distribution of AT2 receptors throughout the skeletal muscle microcirculation in large and small microvessels. Microanatomic studies displayed an endothelial localization of the AT2 receptor, whereas dual labeling with smooth muscle alpha-actin also showed colocalization of the AT2 receptor with vascular smooth muscle cells. Other cells associated with the microvessels also stained positive for AT2 receptors. Briefly, this study confirms previous functional data and localizes the AT2 receptor to the microcirculation. These studies demonstrate that the AT2 receptor is present on a variety of vascular cell types and that it is situated in a fashion that would allow it to directly oppose ANG II type 1 receptor actions.

  8. Epidermal growth factor receptor not equal to nerve growth factor.

    PubMed

    Williams, L R

    1989-01-01

    I am perplexed by the authors' complete lack of definition of neurotrophic factors. The agents Butcher and Woolf want to blame are neurite promoting factors, not neurotrophic factors. Treatment of Alzheimer's disease with NGF antagonists might instead exacerbate the death of both basal forebrain neurons and their cortical target neurons, accelerating the progress of dementia.

  9. Cell Surface Epidermal Growth Factor Receptors Increase Src and c-Cbl Activity and Receptor Ubiquitylation*

    PubMed Central

    Parks, Eileen E.; Ceresa, Brian P.

    2014-01-01

    There is an established role for the endocytic pathway in regulation of epidermal growth factor receptor (EGFR) signaling to downstream effectors. However, because ligand-mediated EGFR endocytosis utilizes multiple “moving parts,” dissecting the spatial versus temporal contributions has been challenging. Blocking all endocytic trafficking can have unintended effects on other receptors as well as give rise to compensatory mechanisms, both of which impact interpretation of EGFR signaling. To overcome these limitations, we used epidermal growth factor (EGF) conjugated to polystyrene beads (EGF beads). EGF beads simultaneously activate the EGFR while blocking its endocytosis and allow analysis of EGFR signaling from the plasma membrane. Human telomerase immortalized corneal epithelial (hTCEpi) cells were used to model normal epithelial cell biology. In hTCEpi cells, both cell surface and intracellular EGFRs exhibited dose-dependent increases in effector activity after 15 min of ligand stimulation, but only the serine phosphorylation of signal transducer and activator of transcription 3 (STAT3) was statistically significant when accounting for receptor phosphorylation. However, over time with physiological levels of receptor phosphorylation, cell surface receptors produced either enhanced or sustained mitogen-activated protein kinase kinase (MEK), Casitas B-lineage lymphoma (c-Cbl), and the pro-oncogene Src activity. These increases in effector communication by cell surface receptors resulted in an increase in EGFR ubiquitylation with sustained ligand incubation. Together, these data indicate that spatial regulation of EGFR signaling may be an important regulatory mechanism in receptor down-regulation. PMID:25074934

  10. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  11. Differential phosphorylation of the progesterone receptor by insulin, epidermal growth factor, and platelet-derived growth factor receptor tyrosine protein kinases.

    PubMed

    Woo, D D; Fay, S P; Griest, R; Coty, W; Goldfine, I; Fox, C F

    1986-01-01

    Purified preparations of insulin, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF) receptors were compared for their abilities to phosphorylate purified hen oviduct progesterone receptors. The specific activities of all three peptide hormone-induced receptor kinases were first defined using a synthetic tridecapeptide tyrosine protein kinase substrate. Next, equivalent ligand-activated activities of the three receptor kinases were tested for their abilities to phosphorylate hen oviduct progesterone receptor. Both the insulin and EGF receptors phosphorylated progesterone receptor at high affinity, exclusively at tyrosine residues and with maximal stoichiometries that were near unity. In contrast, the PDGF receptor did not recognize progesterone receptor as a substrate. Insulin decreased the Km of the insulin receptor for progesterone receptor subunits as substrates, but had no significant effect on Vmax values. On the other hand, EGF increased the Vmax of the EGF receptor for progesterone receptor subunits as substrates. Phosphorylation of progesterone receptor by the insulin and EGF receptor kinases differed in two additional ways. 1) EGF-activated receptor phosphorylated the 80- and 105-kDa progesterone receptor subunits to an equal extent, whereas insulin-activated receptor preferentially phosphorylated the 80-kDa subunit. 2) Phosphopeptide fingerprinting analyses revealed that while insulin and EGF receptors phosphorylated one identical major site on both progesterone receptor subunits, they differed in their specificities for other sites. PMID:3001059

  12. Development of neural crest cells expressing nerve growth factor receptors

    SciTech Connect

    Greiner, C.A.

    1987-01-01

    The present study examines the ontogeny of the nerve growth factor receptor of neural crest cells in vitro and the phenotypic nature of the neural crest cells expressing this receptor. /sup 125/I-NGF binding assays and autoradiographic and immunofluorescence techniques have demonstrated the presence of a subpopulation of quail neural crest cells that express specific NGF receptors after 3-4 days in vitro. This subpopulations represents approximately 28% of the cells in 5-day primary cultures and 30-35% of the cells in secondary cultures; these cells generally exhibited a flattened, phase-dark morphology. Approximately one-third of these cells also labeled with a 2 hr pulse of /sup 3/H thymidine. Catecholamine-containing neural crest cells generally lacked NGF receptors. NGF receptor-positive cells also failed to demonstrate somatostatin-, neuron-specific enolase-, or S-100-like immunoreactivity. Melanocytes do not appear to express NGF receptors. Exogenous nerve growth factor did not influence the morphology or mitotic status of the cells in culture.

  13. Receptor Specificity of the Fibroblast Growth Factor Family

    PubMed Central

    Zhang, Xiuqin; Ibrahimi, Omar A.; Olsen, Shaun K.; Umemori, Hisashi; Mohammadi, Moosa; Ornitz, David M.

    2007-01-01

    In mammals, fibroblast growth factors (FGFs) are encoded by 22 genes. FGFs bind and activate alternatively spliced forms of four tyrosine kinase FGF receptors (FGFRs 1–4). The spatial and temporal expression patterns of FGFs and FGFRs and the ability of specific ligand-receptor pairs to actively signal are important factors regulating FGF activity in a variety of biological processes. FGF signaling activity is regulated by the binding specificity of ligands and receptors and is modulated by extrinsic cofactors such as heparan sulfate proteoglycans. In previous studies, we have engineered BaF3 cell lines to express the seven principal FGFRs and used these cell lines to determine the receptor binding specificity of FGFs 1–9 by using relative mitogenic activity as the readout. Here we have extended these semiquantitative studies to assess the receptor binding specificity of the remaining FGFs 10–23. This study completes the mitogenesis-based comparison of receptor specificity of the entire FGF family under standard conditions and should help in interpreting and predicting in vivo biological activity. PMID:16597617

  14. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    PubMed

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis. PMID:26873969

  15. Properly timed exposure to central ANG II prevents behavioral sensitization and changes in angiotensin receptor expression.

    PubMed

    Santollo, Jessica; Whalen, Philip E; Speth, Robert C; Clark, Stewart D; Daniels, Derek

    2014-12-15

    Previous studies show that the angiotensin type 1 receptor (AT1R) is susceptible to rapid desensitization, but that more chronic treatments that stimulate ANG II lead to sensitization of several responses. It is unclear, however, if the processes of desensitization and sensitization interact. To test for differences in AT1R expression associated with single or repeated injections of ANG II, we measured AT1R mRNA in nuclei that control fluid intake of rats given ANG II either in a single injection or divided into three injections spaced 20 min apart. Rats given a single injection of ANG II had more AT1R mRNA in the subfornical organ (SFO) and the periventricular tissue surrounding the anteroventral third ventricle (AV3V) than did controls. The effect was not observed, however, when the same cumulative dose of ANG II was divided into multiple injections. Behavioral tests found that single daily injections of ANG II sensitized the dipsogenic response to ANG II, but a daily regimen of four injections did not cause sensitization. Analysis of (125)I-Sar(1)-ANG II binding revealed a paradoxical decrease in binding in the caudal AV3V and dorsal median preoptic nucleus after 5 days of single daily injections of ANG II; however, this effect was absent in rats treated for 5 days with four daily ANG II injections. Taken together, these data suggest that a desensitizing treatment regimen prevents behavior- and receptor-level effects of repeated daily ANG II.

  16. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas.

    PubMed Central

    Hatva, E.; Böhling, T.; Jääskeläinen, J.; Persico, M. G.; Haltia, M.; Alitalo, K.

    1996-01-01

    Capillary hemangioblastomas and hemangiopericytomas are highly vascular central nervous system tumors of controversial origin. Of interest in their pathogenesis are mechanisms regulating endothelial cell growth. The endothelial cell mitogen vascular endothelial growth factor (VEGF) stimulates angiogenesis, and together with its two receptor tyrosine kinases VEGFR-1(FLT1) and VEGFR-2(KDR), is up-regulated during the malignant progression of gliomas. We have analyzed the expression of VEGF and its receptors, the related placental growth factor (PlGF) and the endothelial receptors FLT4 and Tie by in situ hybridization in capillary hemangioblastomas and hemangiopericytomas. VEGF mRNA was up-regulated in all of the hemangiopericytomas studied and highly expressed in the stromal cells of hemangioblastomas. In addition, some hemangioblastoma tumor cells expressed high levels of PlGF. Significantly elevated levels of Tie mRNA, Tie protein, VEGFR-1, and VEGFR-2 but not FLT4 mRNAs were observed in the endothelia of both tumor types. In hemangioblastomas, however, the receptors were also highly expressed by a subpopulation of stromal cells. Consistent results were obtained for a human hemangioblastoma cell line in culture. Up-regulation of the endothelial growth factors and receptors may result in autocrine or paracrine stimulation of endothelial cells and their precursors involved in the genesis of these two vascular tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8774132

  17. Chronic imipramine treatment reduces inhibitory properties of group II mGlu receptors without affecting their density or affinity.

    PubMed

    Pałucha, Agnieszka; Brański, Piotr; Kĺak, Kinga; Sowa, Magdalena

    2007-01-01

    An increasing body of evidence indicates an important role of the glutamatergic system in the pathophysiology of depression. Not only ionotropic but also metabotropic glutamate receptors (mGlu receptors) have been suggested to be involved in the mechanism of action of antidepressant drugs. Moreover, several mGlu receptor ligands possess a great antidepressant potential. Group II mGlu receptor antagonists have been shown to induce antidepressant-like effects in rodents. An influence of chronic antidepressant treatment on group II mGlu receptors has also been suggested. In our studies, we examined an influence of repeated (21-day) imipramine treatment on the density of group II mGlu receptors and affinity of mGlu2 and mGlu3 receptor radioligand [3H]-LY341495 for group II mGlu receptors in the rat brain hippocampus and frontal cortex. Moreover, we analyzed an influence of chronic imipramine administration on the ability of group II mGlu receptor agonist, 2R,4R-APDC, to inhibit forskolin-stimulated cAMP accumulation in the rat brain cortical slices. We found that inhibitory properties of group II mGlu receptors were diminished after chronic, but not acute imipramine administration. However, no changes in the density or affinity of the mGlu2 and mGlu3 receptor ligand for group II mGlu receptors were observed. PMID:18048952

  18. Nerve growth factor receptor molecules in rat brain

    SciTech Connect

    Taniuchi, M.; Schweitzer, J.B.; Johnson, E.M. Jr.

    1986-03-01

    The authors have developed a method to immunoprecipitate rat nerve growth factor (NGF) receptor proteins and have applied the method to detect NGF receptor molecules in the rat brain. Crosslinking /sup 125/I-labeled NGF to either PC12 cells or cultured rat sympathetic neurons yielded two radiolabeled molecules (90 kDa and 220 kDa) that were immunoprecipitated by monoclonal antibody 192-IgG. Further, 192-IgG precipitated two radiolabeled proteins, with the expected sizes (80 kDa and 210 kDa) of noncrosslinked NGF receptor components, from among numerous surface-iodinated PC12 cell proteins. These results demonstrate the specific immunoprecipitation of NGF receptor molecules by 192-IgG. They applied the /sup 125/I-NGF crosslinking and 192-IgG-mediated immunoprecipitation procedures to plasma membrane preparations of rat brain: NGF receptor molecules of the same molecular masses as the peripheral receptor components were consistently detected in all regions and in preparations from whole brains. Removal of the peripheral sympathetic innervation of the brain did not eliminate these NGF receptor proteins, indicating that the receptor is endogenous to central nervous system tissues. They also observed retrograde transport of /sup 125/I-labeled 192-IgG from the parietal cortex to the nucleus basalis and from the hippocampus to the nucleus of the diagonal band of Broca and the medial septal nucleus. These findings demonstrate the presence in brain of NGF receptor molecules indistinguishable from those of the peripheral nervous system.

  19. Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375.

    PubMed

    Douglas, Stephen A; Behm, David J; Aiyar, Nambi V; Naselsky, Diane; Disa, Jyoti; Brooks, David P; Ohlstein, Eliot H; Gleason, John G; Sarau, Henry M; Foley, James J; Buckley, Peter T; Schmidt, Dulcie B; Wixted, William E; Widdowson, Katherine; Riley, Graham; Jin, Jian; Gallagher, Timothy F; Schmidt, Stanley J; Ridgers, Lance; Christmann, Lisa T; Keenan, Richard M; Knight, Steven D; Dhanak, Dashyant

    2005-07-01

    1. SB-706375 potently inhibited [(125)I]hU-II binding to both mammalian recombinant and 'native' UT receptors (K(i) 4.7+/-1.5 to 20.7+/-3.6 nM at rodent, feline and primate recombinant UT receptors and K(i) 5.4+/-0.4 nM at the endogenous UT receptor in SJRH30 cells). 2. Prior exposure to SB-706375 (1 microM, 30 min) did not alter [(125)I]hU-II binding affinity or density in recombinant cells (K(D) 3.1+/-0.4 vs 5.8+/-0.9 nM and B(max) 3.1+/-1.0 vs 2.8+/-0.8 pmol mg(-1)) consistent with a reversible mode of action. 3. The novel, nonpeptidic radioligand [(3)H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (K(D) 2.6+/-0.4 nM, B(max) 0.86+/-0.12 pmol mg(-1)) in a manner that was inhibited by both U-II isopeptides and SB-706375 (K(i) 4.6+/-1.4 to 17.6+/-5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. 4. SB-706375 was a potent, competitive hU-II antagonist across species with pK(b) 7.29-8.00 in HEK293-UT receptor cells (inhibition of [Ca(2+)](i)-mobilization) and pK(b) 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (K(app) approximately 20 nM). 5. SB-706375 was a selective U-II antagonist with >/=100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (K(i)/IC(50)>1 microM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 microM). 6. In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals.

  20. EFFECT OF GROWTH FACTOR-FIBRONECTIN MATRIX INTERACTION ON RAT TYPE II CELL ADHESION AND DNA SYTHESIS

    EPA Science Inventory

    ABSTRACT

    Type II cells attach, migrate and proliferate on a provisional fibronectin-rich matrix during alveolar wall repair after lung injury. The combination of cell-substratum interactions via integrin receptors and exposure to local growth factors are likely to initiat...

  1. Expression of groups I and II metabotropic glutamate receptors in the rat brain during aging.

    PubMed

    Simonyi, Agnes; Ngomba, Richard T; Storto, Marianna; Catania, Maria V; Miller, Laura A; Youngs, Brian; DiGiorgi-Gerevini, Valeria; Nicoletti, Ferdinando; Sun, Grace Y

    2005-05-10

    Age-dependent changes in the expression of group I and II metabotropic glutamate (mGlu) receptors were studied by in situ hybridization, Western blot analysis and immunohistochemistry. Male Fisher 344 rats of three ages (3, 12 and 25 months) were tested. Age-related increases in mGlu1 receptor mRNA levels were found in several areas (thalamic nuclei, hippocampal CA3) with parallel increases in mGlu1a receptor protein expression. However, a slight decrease in mGlu1a receptor mRNA expression in individual Purkinje neurons and a decline in cerebellar mGlu1a receptor protein levels were detected in aged animals. In contrast, mGlu1b receptor mRNA levels increased in the cerebellar granule cell layer. Although mGlu5 receptor mRNA expression decreased in many regions, its protein expression remained unchanged during aging. Compared to the small changes in mGlu2 receptor mRNA levels, mGlu3 receptor mRNA levels showed substantial age differences. An increased mGlu2/3 receptor protein expression was found in the frontal cortex, thalamus, hippocampus and corpus callosum in aged animals. These results demonstrate region- and subtype-specific, including splice variant specific changes in the expression of mGlu receptors in the brain with increasing age. PMID:15862522

  2. [Advance in Research of Angiotensin II and Its Receptor and Malignant Tumor].

    PubMed

    Sun, Lulu; Shi, Jian

    2016-09-20

    Angiotensin AngII, a linear small peptide,which is composed of eight amino acids, is the main effectors of renin-angiotensin systen (Renin-angiotensin system, RAS). AngII, a main biopolypeptide of the RAS, has important pathophysiologic in effects participating in cardiac hypertrophy, vascular cell proproliferation, inflammation and tissue remodeling through G-protein-coupled receptors. In recent years, Ang II can promote tumor cell proliferation, tumor vessel formation and inhibit the differentiation of the tumor cells. This suggests that inhibit the production of AngII or block its effect is expected to become a new measure for the treatment of malignant tumors. This article reviews the advances in research on the relationship between AngII and its receptor and malignant tumor in recent years. PMID:27666553

  3. Identification and characterization of an angiotensin II receptor on cultured bovine adrenal chromaffin cells

    SciTech Connect

    Boyd, V.L.

    1987-01-01

    The presence of an angiotensin II receptor on cultured bovine adrenal chromaffin cells was demonstrated by radioligand binding. A single class of finding sites with a K/sub D/ of 0.7 nM was characterized. The use of radioligands also allows the localization of receptors by autoradiography. Autoradiography demonstrated that approximately 50% of the isolated cells bound angiotensin II. It was of interest to see if angiotensin II bound to a cell that possessed a certain phenotype. In order to evaluate this possibility a technique was developed that combined autoradiography and immunocytochemistry. Results indicated that angiotensin II binding sites were not localized preferentially to either norepinephrine or epinephrine cells. Binding of angiotensin II was associated with the release of intracellular catecholamine stores. Cells were pre-loaded with /sup 3/H-norepinephrine and secretion was monitored by following radioactivity released into the supernatant. Alternatively, release of endogenous catecholamines was determined by fluorometric assay.

  4. N-glycans of growth factor receptors: their role in receptor function and disease implications.

    PubMed

    Takahashi, Motoko; Hasegawa, Yoshihiro; Gao, Congxiao; Kuroki, Yoshio; Taniguchi, Naoyuki

    2016-10-01

    Numerous signal-transduction-related molecules are secreted proteins or membrane proteins, and the mechanism by which these molecules are regulated by glycan chains is a very important issue for developing an understanding of the cellular events that transpire. This review covers the functional regulation of epidermal growth factor receptor (EGFR), ErbB3 and the transforming growth factor β (TGF-β) receptor by N-glycans. This review shows that the N-glycans play important roles in regulating protein conformation and interactions with carbohydrate recognition molecules. These results point to the possibility of a novel strategy for controlling cell signalling and developing novel glycan-based therapeutics. PMID:27612953

  5. Angiotensin II Type 1 Receptor-Dependent GLP-1 and PYY Secretion in Mice and Humans

    PubMed Central

    Pais, Ramona; Rievaj, Juraj; Larraufie, Pierre

    2016-01-01

    Angiotensin II (Ang II) is the key hormone mediator of the renin angiotensin system, which regulates blood pressure and fluid and electrolyte balance in the body. Here we report that in the colonic epithelium, the Ang II type 1 receptor is highly and exclusively expressed in enteroendocrine L cells, which produce the gut hormones glucagon-like peptide-1 and peptide YY (PYY). Ang II stimulated glucagon-like peptide-1 and PYY release from primary cultures of mouse and human colon, which was antagonized by the specific Ang II type 1 receptor blocker candesartan. Ang II raised intracellular calcium levels in L cells in primary cultures, recorded by live-cell imaging of L cells specifically expressing the fluorescent calcium sensor GCaMP3. In Ussing chamber recordings, Ang II reduced short circuit currents in mouse distal colon preparations, which was antagonized by candesartan or a specific neuropeptide Y1 receptor inhibitor but insensitive to amiloride. We conclude that Ang II stimulates PYY secretion, in turn inhibiting epithelial anion fluxes, thereby reducing net fluid secretion into the colonic lumen. Our findings highlight an important role of colonic L cells in whole-body fluid homeostasis by controlling water loss through the intestine. PMID:27447725

  6. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach

    PubMed Central

    Samkoe, Kimberley S.; Tichauer, Kenneth M.; Gunn, Jason R.; Wells, Wendy A.; Hasan, Tayyaba; Pogue, Brian W.

    2014-01-01

    As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant, therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry. Using multiple xenograft tumor models with varying epidermal growth factor receptor (EGFR) expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored immunohistochemistry and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot or in vitro flow cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immuno-staining, with implications for use in non-invasive monitoring of therapy or therapeutic guidance during surgery. PMID:25344226

  7. Characterization of Angiotensin II Molecular Determinants Involved in AT1 Receptor Functional Selectivity.

    PubMed

    Domazet, Ivana; Holleran, Brian J; Richard, Alexandra; Vandenberghe, Camille; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2015-06-01

    The octapeptide angiotensin II (AngII) exerts a variety of cardiovascular effects through the activation of the AngII type 1 receptor (AT1), a G protein-coupled receptor. The AT1 receptor engages and activates several signaling pathways, including heterotrimeric G proteins Gq and G12, as well as the extracellular signal-regulated kinases (ERK) 1/2 pathway. Additionally, following stimulation, βarrestin is recruited to the AT1 receptor, leading to receptor desensitization. It is increasingly recognized that specific ligands selectively bind and favor the activation of some signaling pathways over others, a concept termed ligand bias or functional selectivity. A better understanding of the molecular basis of functional selectivity may lead to the development of better therapeutics with fewer adverse effects. In the present study, we developed assays allowing the measurement of six different signaling modalities of the AT1 receptor. Using a series of AngII peptide analogs that were modified in positions 1, 4, and 8, we sought to better characterize the molecular determinants of AngII that underlie functional selectivity of the AT1 receptor in human embryonic kidney 293 cells. The results reveal that position 1 of AngII does not confer functional selectivity, whereas position 4 confers a bias toward ERK signaling over Gq signaling, and position 8 confers a bias toward βarrestin recruitment over ERK activation and Gq signaling. Interestingly, the analogs modified in position 8 were also partial agonists of the protein kinase C (PKC)-dependent ERK pathway via atypical PKC isoforms PKCζ and PKCι.

  8. Modulation of stress-induced and stimulated hyperprolactinemia with the group II metabotropic glutamate receptor selective agonist, LY379268.

    PubMed

    Johnson, M P; Chamberlain, M

    2002-10-01

    It is well recognized that glutamate is an integral excitatory neurotransmitter in the neuroendocrine control of several hormonal factors. While the ability of pharmacological agents acting at ionotropic glutamate receptors to modulate the levels of serum prolactin levels has been investigated, there have been few reports of the effects mediated by the G-protein coupled, metabotropic glutamate (mGlu) receptors. The present work was undertaken to investigate the role of the Group II mGlu receptors, mGlu2 and mGlu3 in the regulation of serum polactin levels. LY379268, a Group II selective agonist, did not alter basal levels of circulating prolactin in young (36-40 day old) male rats. However, when an immobilization stress-induced hyperprolactinemia was examined, 10 mg/kg s.c. of LY379268 significantly lowered serum prolactin levels. Similarly, pretreatment with LY379268 was able to reverse the hyperprolactinemia induced with the catecholamine synthesis inhibitor, alpha-methyl-p-tyrosine (aMPT). This inhibition of hyperprolactinemia could be prevented by pretreatment with LY341495, a Group II mGlu receptor antagonist. The Group II antagonist alone had no effect on either basal nor stimulated prolactin levels. The agonist LY379268 was able to prevent the transient hyperprolactinemia associated with stimulation of serotonin 5-HT2A receptors by 2,5-dimethoxy-4-iodoamphetamine (DOI), but did not alter the high levels of circulating prolactin induced with the D2 antagonist, haloperidol. When treatment with LY379268 was delayed until 1 h after aMPT, a time demonstrated to show a full effect of aMPT on serum prolactin levels, the Group II agonist was similarly able to reverse hyperprolactinemia, suggesting LY379268 did not act by preventing the partial catecholamine depletion by aMPT. Similarly, high doses of amphetamine, a dopamine (DA) releaser, were able to reverse the aMPT-induced hyperprolactinemia, consistent with sufficient levels of dopamine remaining after a

  9. Visualization of growth factor receptor sites in rat forebrain

    SciTech Connect

    Quirion, R.; Araujo, D.; Nair, N.P.; Chabot, J.G.

    1988-01-01

    It is now known that various growth factors may also act in the central nervous system. Among them, it has recently been shown that epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) may possess trophic effects in the mammalian brain. We report here on the respective autoradiographic distribution of (/sup 125/I)EGF and (/sup 125/I)IGF-I receptor binding sites in the rat brain, both during ontogeny and in adulthood. It appears that (/sup 125/I)EGF sites are mostly found in the rat forebrain during brain development. On the other hand, (/sup 125/I)IGF-I sites are more widely distributed both during ontogeny and in adulthood. These results reveal the plasticity of the expression of EGF and IGF-I receptor sites in the mammalian brain. This could be relevant for the respective role of these two growth factors in the development and maintenance of neuronal function.

  10. Angiotensin II AT1 receptor constitutive activation: from molecular mechanisms to pathophysiology.

    PubMed

    Petrel, Christophe; Clauser, Eric

    2009-04-29

    Mutations activating the angiotensin II AT(1) receptor are important to identify and characterize because they give access to the activation mechanisms of this G protein coupled receptor and help to characterize the signaling pathways and the potential pathophysiology of this receptor. The different constitutively activated mutations of the AT(1) receptor are mostly localized in transmembrane domains (TM) and their characterization demonstrated that release of intramolecular constraints and movements among these TM are a necessary step for receptor activation. These mutations constitutively activate Gq linked signaling pathways, receptor internalization and maybe the G protein-independent signaling pathways. Expression of such mutations in mice is linked to hypertension and cardiovascular diseases, but such natural mutations have not been identified in human pathology. PMID:19061936

  11. Biochemical and biological properties of the nerve growth factor receptor

    SciTech Connect

    Taniuchi, M.

    1988-01-01

    We have utilized a monoclonal antibody (192-IgG) to study the rat nerve growth factor receptor. After intraocular injection, {sup 125}I-192-IgG was retrogradely transported in sympathetic neuronal axons to the superior cervical ganglion. When the sciatic nerve was ligated to induce the accumulation of axonally transported materials, 192-IgG immunostaining was observed on both sides of the ligature, indicating that NGF receptors are transported in both orthograde and retrograde directions. By using {sup 125}I-NGF crosslinking and 192-IgG immunoprecipitation, we detected receptor molecules throughout the rat brain, thereby supporting the hypothesis that NGF is active in the central nervous system. We also discovered that sciatic nerve transection leads to a dramatic increase in the amount of NGF receptor found in the distal portion of the nerve. Immunostaining revealed that all Schwann cells in the distal axotomized nerve were expressing NGF receptors. We examined phosphorylation of NGF receptor in cultured sympathetic neurons and PC12 cells. We also examined pharmacological effects of 192-IgG. Systemic injection of 192-IgG into neonatal rats caused a permanent partial sympathectomy in a dose-dependent manner; a maximum of 50% of the cells were killed.

  12. A role for interferon regulatory factor 4 in receptor editing.

    PubMed

    Pathak, Simanta; Ma, Shibin; Trinh, Long; Lu, Runqing

    2008-04-01

    Receptor editing is the primary means through which B cells revise antigen receptors and maintain central tolerance. Previous studies have demonstrated that interferon regulatory factor 4 (IRF-4) and IRF-8 promote immunoglobulin light-chain rearrangement and transcription at the pre-B stage. Here, the roles of IRF-4 and -8 in receptor editing were analyzed. Our results show that secondary rearrangement was impaired in IRF-4 but not IRF-8 mutant mice, suggesting that receptor editing is defective in the absence of IRF-4. The role of IRF-4 in receptor editing was further examined in B-cell-receptor (BCR) transgenic mice. Our results show that secondary rearrangement triggered by membrane-bound antigen was defective in the IRF-4-deficient mice. Our results further reveal that the defect in secondary rearrangement is more severe at the immunoglobulin lambda locus than at the kappa locus, indicating that IRF-4 is more critical for the lambda rearrangement. We provide evidence demonstrating that the expression of IRF-4 in immature B cells is rapidly induced by self-antigen and that the reconstitution of IRF-4 expression in the IRF-4 mutant immature B cells promotes secondary rearrangement. Thus, our studies identify IRF-4 as a nuclear effector of a BCR signaling pathway that promotes secondary rearrangement at the immature B-cell stage.

  13. The ontogeny of epidermal growth factor receptors during mouse development

    SciTech Connect

    Adamson, E.D.; Meek, J.

    1984-05-01

    In an attempt to understand the role(s) of epidermal growth factor (EGF) in vivo during murine development, we have examined the /sup 125/I-EGF binding characteristics of EGF-receptors in membrane preparations of tissues from the 12th day of gestation to parturition. Using autoradiography, the earliest time that we could detect EGF-receptors was on trophoblast cells cultured for 3 days as blastocyst outgrowths. Trophoblast eventually forms a large portion of the placenta, where EGF-receptors have long been recognized. We measured the number and affinity of EGF-receptors on tissues dissected from conceptuses from the 12th day of gestation in order to identify a stage when tissues may be most sensitive to EGF. Whereas the number of EGF receptors increases during gestation for all tissues examined, the affinity of the receptors declines for carcass and placenta and remains relatively unchanged for brain and liver. This suggests that EGF may function differently throughout development. Our hypothesis is that EGF (or its embryonic equivalent) initially stimulates proliferation in embryonic cells and then stimulates differentiation as the tissues mature. In the adult, its main role could be to stimulate tissue repair after damage.

  14. Fibroblast growth factor receptors, developmental corruption and malignant disease.

    PubMed

    Kelleher, Fergal C; O'Sullivan, Hazel; Smyth, Elizabeth; McDermott, Ray; Viterbo, Antonella

    2013-10-01

    Fibroblast growth factors (FGF) are a family of ligands that bind to four different types of cell surface receptor entitled, FGFR1, FGFR2, FGFR3 and FGFR4. These receptors differ in their ligand binding affinity and tissue distribution. The prototypical receptor structure is that of an extracellular region comprising three immunoglobulin (Ig)-like domains, a hydrophobic transmembrane segment and a split intracellular tyrosine kinase domain. Alternative gene splicing affecting the extracellular third Ig loop also creates different receptor isoforms entitled FGFRIIIb and FGFRIIIc. Somatic fibroblast growth factor receptor (FGFR) mutations are implicated in different types of cancer and germline FGFR mutations occur in developmental syndromes particularly those in which craniosynostosis is a feature. The mutations found in both conditions are often identical. Many somatic FGFR mutations in cancer are gain-of-function mutations of established preclinical oncogenic potential. Gene amplification can also occur with 19-22% of squamous cell lung cancers for example having amplification of FGFR1. Ontologic comparators can be informative such as aberrant spermatogenesis being implicated in both spermatocytic seminomas and Apert syndrome. The former arises from somatic FGFR3 mutations and Apert syndrome arises from germline FGFR2 mutations. Finally, therapeutics directed at inhibiting the FGF/FGFR interaction are a promising subject for clinical trials.

  15. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  16. P2y receptor-mediated angiogenesis via vascular endothelial growth factor receptor 2 signaling.

    PubMed

    Rumjahn, Sharif M; Baldwin, Karla A; Buxton, Iain L O

    2007-01-01

    Pathological as well as physiological angiogenesis is known to be regulated by such factors as nucleotides and Vascular Endothelial Growth Factor (VEGF). Activated P2Y nucleotide receptors have been observed to associate and transactivate VEGF Receptor 2 (VEGFR2), suggesting a cooperation between nucleotide and VEGF signaling in angiogenesis. P2YR mediated VEGFR2 signaling therefore may be important in describing the angiogenic signaling of nucleotides such as ATP. Here, we provide evidence that supports the notion of P2YR-VEGFR2 signaling. The significant angiogenic effect of P2Y1/2 receptor agonists (100 microM ATP and 10 microM 2MS-ATP) on endothelial cell tubulogenesis was suppressed back to near control levels upon addition of 1 microM SU1498 (specific VEGFR2 tyrosine kinase inhibitor). We believe that this P2YR-VEFGR2 signaling is an important component of pathological, as well as physiological angiogenesis.

  17. Loss of renal medullary endothelin B receptor function during salt deprivation is regulated by angiotensin II.

    PubMed

    Kittikulsuth, Wararat; Pollock, Jennifer S; Pollock, David M

    2012-09-01

    We have recently demonstrated that chronic infusion of exogenous ANG II, which induces blood pressure elevation, attenuates renal medullary endothelin B (ET(B)) receptor function in rats. Moreover, this was associated with a reduction of ET(B) receptor expression in the renal inner medulla. The aim of this present work was to investigate the effect of a physiological increase in endogenous ANG II (low-salt diet) on the renal ET system, including ET(B) receptor function. We hypothesized that endogenous ANG II reduces renal medullary ET(B) receptor function during low-salt intake. Rats were placed on a low-salt diet (0.01-0.02% NaCl) for 2 wk to allow an increase in endogenous ANG II. In rats on normal-salt chow, the stimulation of renal medullary ET(B) receptor by ET(B) receptor agonist sarafotoxin 6c (S6c) causes an increase in water (3.6 ± 0.4 from baseline vs. 10.5 ± 1.3 μl/min following S6c infusion; P < 0.05) and sodium excretion (0.38 ± 0.06 vs. 1.23 ± 0.17 μmol/min; P < 0.05). The low-salt diet reduced the ET(B)-dependent diuresis (4.5 ± 0.5 vs. 6.1 ± 0.9 μl/min) and natriuresis (0.40 ± 0.11 vs. 0.46 ± 0.12 μmol/min) in response to acute intramedullary infusion of S6c. Chronic treatment with candesartan restored renal medullary ET(B) receptor function; urine flow was 7.1 ± 0.9 vs. 15.9 ± 1.7 μl/min (P < 0.05), and sodium excretion was 0.4 ± 0.1 vs. 1.1 ± 0.1 μmol/min (P < 0.05) before and after intramedullary S6c infusion, respectively. Receptor binding assays determined that the sodium-depleted diet resulted in a similar level of ET(B) receptor binding in renal inner medulla compared with rats on a normal-salt diet. Candesartan reduced renal inner medullary ET(B) receptor binding (1,414 ± 95 vs. 862 ± 50 fmol/mg; P < 0.05). We conclude that endogenous ANG II attenuates renal medullary ET(B) receptor function to conserve sodium during salt deprivation independently of receptor expression.

  18. Sex Affects Bone Morphogenetic Protein Type II Receptor Signaling in Pulmonary Artery Smooth Muscle Cells

    PubMed Central

    Mair, Kirsty M.; Yang, Xu Dong; Long, Lu; White, Kevin; Wallace, Emma; Ewart, Marie-Ann; Docherty, Craig K.; Morrell, Nicholas W.

    2015-01-01

    Rationale: Major pulmonary arterial hypertension (PAH) registries report a greater incidence of PAH in women; mutations in the bone morphogenic protein type II receptor (BMPR-II) occur in approximately 80% of patients with heritable PAH (hPAH). Objectives: We addressed the hypothesis that women may be predisposed to PAH due to normally reduced basal BMPR-II signaling in human pulmonary artery smooth muscle cells (hPASMCs). Methods: We examined the BMPR-II signaling pathway in hPASMCs derived from men and women with no underlying cardiovascular disease (non-PAH hPASMCs). We also determined the development of pulmonary hypertension in male and female mice deficient in Smad1. Measurements and Main Results: Platelet-derived growth factor, estrogen, and serotonin induced proliferation only in non-PAH female hPASMCs. Female non-PAH hPASMCs exhibited reduced messenger RNA and protein expression of BMPR-II, the signaling intermediary Smad1, and the downstream genes, inhibitors of DNA binding proteins, Id1 and Id3. Induction of phospho-Smad1/5/8 and Id protein by BMP4 was also reduced in female hPASMCs. BMP4 induced proliferation in female, but not male, hPASMCs. However, small interfering RNA silencing of Smad1 invoked proliferative responses to BMP4 in male hPASMCs. In male hPASMCs, estrogen decreased messenger RNA and protein expression of Id genes. The estrogen metabolite 4-hydroxyestradiol decreased phospho-Smad1/5/8 and Id expression in female hPASMCs while increasing these in males commensurate with a decreased proliferative effect in male hPASMCs. Female Smad1+/− mice developed pulmonary hypertension (reversed by ovariectomy). Conclusions: We conclude that estrogen-driven suppression of BMPR-II signaling in non-PAH hPASMCs derived from women contributes to a pro-proliferative phenotype in hPASMCs that may predispose women to PAH. PMID:25608111

  19. Glycyl-histidyl-lysine interacts with the angiotensin II AT1 receptor.

    PubMed

    García-Sáinz, J A; Olivares-Reyes, J A

    1995-01-01

    Gly-His-Lys, a tripeptide isolated from human plasma that increases the growth rate of many cells, stimulated in dose-dependent fashion the activity of phosphorylase a in isolated rat hepatocytes. Such effect was associated to increases in both IP3 production and [Ca++]i. Interestingly, these effects of Gly-His-Lys were antagonized by losartan, a nonpeptide angiotensin II receptor antagonist (AT1 selective), which suggested that these receptors were involved in its effect. Binding competition experiments using the radioligand [125I][Sar1-Ile8]angiotensin II clearly indicated that Gly-His-Lys interacts with AT1 receptors. It was also observed that other histidine-containing tripeptides were also capable of interacting with these receptors. PMID:8545239

  20. Angiotensin II-induced angiotensin II type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Li, Hewang; Yu, Peiying; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2009-02-01

    Upon activation, the angiotensin (Ang) II type 1 receptor (AT1Rs) rapidly undergoes endocytosis. After a series of intracellular processes, the internalized AT1Rs recycle back to the plasma membrane or are trafficked to proteasomes or lysosomes for degradation. We recently reported that AT1Rs degrades in proteasomes upon stimulation of the D5 dopamine receptor (D5R) in human renal proximal tubule and HEK-293 cells. This is in contrast to the degradation of AT1R in lysosomes upon binding Ang II. However, the dynamic regulation of the AT1Rs in lysosomes is not well understood. Here we investigated the AT1Rs lysosomal degradation using FRET-FLIM in HEK 293 cells heterologously expressing the human AT1R tagged with EGFP as the donor fluorophore. Compared to its basal state, the lifetime of AT1Rs decreased after a 5-minute treatment with Ang II treatment and colocalized with Rab5 but not Rab7 and LAMP1. With longer Ang II treatment (30 min), the AT1Rs lifetime decreased and co-localized with Rab5, as well as Rab7 and LAMP1. The FLIM data are corroborated with morphological and biochemical co-immunoprecipitation studies. These data demonstrate that Ang II induces the internalization of AT1Rs into early sorting endosomes prior to trafficking to late endosomes and subsequent degradation in lysosomes.

  1. Therapeutic Targeting of Fibroblast Growth Factor Receptors in Gastric Cancer

    PubMed Central

    Fujimori, Yoshitaka; Otsuki, Sho; Sato, Yuya; Nakagawa, Masatoshi

    2015-01-01

    Chemotherapy has become the global standard treatment for patients with metastatic or unresectable gastric cancer (GC), although outcomes remain unfavorable. Many molecular-targeted therapies inhibiting signaling pathways of various tyrosine kinase receptors have been developed, and monoclonal antibodies targeting human epidermal growth factor receptor 2 (HER2) have become standard therapy for HER2-positive GC. An inhibitor of vascular endothelial growth factor receptor 2 or MET has also produced promising results in patients with GC. Fibroblast growth factor receptors (FGFR) play key roles in tumor growth via activated signaling pathways in GC. Genomic amplification of FGFR2 leads to the aberrant activation found in GC tumors and is related to survival in patients with GC. This review discusses the clinical relevance of FGFR in GC and examines FGFR as a potential therapeutic target in patients with GC. Preclinical studies in animal models suggest that multitargeted tyrosine kinase inhibitors (TKIs), including FGFR inhibitor, suppress tumor cell proliferation and delay tumor progression. Several TKIs are now being evaluated in clinical trials as treatment for metastatic or unresectable GC harboring FGFR2 amplification. PMID:26000013

  2. High Cell Surface Death Receptor Expression Determines Type I Versus Type II Signaling*

    PubMed Central

    Meng, Xue Wei; Peterson, Kevin L.; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D.; Gores, Gregory J.; Kaufmann, Scott H.

    2011-01-01

    Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression. PMID:21865165

  3. Angiotensin II receptor antagonists (AT1-blockers, ARBs, sartans): similarities and differences

    PubMed Central

    van Zwieten, P.A.

    2006-01-01

    A survey is presented of the registered non-peptidergic angiotensin II receptor antagonists (AT1 blockers, ARBs, sartans) and their general properties and similarities. Accordingly, their receptor profile, pharmacokinetic and therapeutic applications are discussed. In addition, attention is paid to the individual characteristics of the AT1 blockers now available. A few components of this category offer additional potentially beneficial properties, owing to their pharmacological or metabolic characteristics. Such additional properties are critically discussed for eprosartan, losartan, telmisartan and valsartan. PMID:25696573

  4. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy

    PubMed Central

    Yang, Yong; Zhou, Yong; Cao, Zheng; Tong, Xin Zhu; Xie, Hua Qiang; Luo, Tao; Hua, Xian Ping; Wang, Han Qin

    2016-01-01

    Cardiac hypertrophy is characterized by maladaptive tissue remodeling that may lead to heart failure or sudden death. MicroRNAs (miRs) are negative regulators of angiotensin II and the angiotensin II receptor subtype 1 (AGTR1), which are two components involved in cardiac hypertrophy. In the present study, the interaction between angiotensin II receptor subtype 1 (AGTR1) signaling and miR-155 was investigated. Rat H9C2 (2–1) cardiomyocytes were transfected with miR-155 analogues or inhibitors, then stimulated with angiotensin II to induce cardiac hypertrophy. miR-155 expression was revealed to be altered following transfection with chemically-modified miR-155 analogues and inhibitors in rat cardiomyocytes. In cell cardiac hypertrophy models, the cell surface area, AGTR1, atrial natriuretic peptide and myosin heavy chain-β mRNA expression levels were revealed to be lower in cells stimulated with miR-155 analogue-transfected cells treated with angiotensin II compared with cells stimulated with angiotensin alone (P<0.05), as determined using reverse transcription-polymerase chain reaction (PCR), quantitative PCR and western blot analyses. Furthermore, calcineurin mRNA and protein, intracellular free calcium and nuclear factor of activated T-cells-4 proteins were downregulated in miR-155 analogue-transfected cells treated with angiotensin II, as compared with cells stimulated with angiotensin II alone (P<0.05). In conclusion, the current study indicates that miR-155 may improve cardiac hypertrophy by downregulating AGTR1 and suppressing the calcium signaling pathways activated by AGTR1. PMID:27588076

  5. Overexpression and activation of epidermal growth factor receptor in hemangioblastomas

    PubMed Central

    Chen, Gregory J.; Karajannis, Matthias A.; Newcomb, Elizabeth W.

    2010-01-01

    Hemangioblastomas frequently develop in patients with von Hippel-Lindau (VHL) disease, an autosomal dominant genetic disorder. The tumors are characterized by a dense network of blood capillaries, often in association with cysts. Although activation of receptor tyrosine kinase (RTK) signaling, including epidermal growth factor receptor (EGFR) has been implicated in the development of malignant brain tumors such as high-grade gliomas, little is known about the role of RTK signaling in hemangioblastomas. To address this issue, we examined hemangioblastoma tumor specimens using receptor tyrosine kinase (RTK) activation profiling and immunohistochemistry. Six human hemangioblastomas were analyzed with a phospho-RTK antibody array, revealing EGFR phosphorylation in all tumors. EGFR expression was confirmed by immunohistochemistry in all tumors analyzed and downstream effector pathway activation was demonstrated by positive staining for phospho-AKT. Our findings suggest that, in primary hemangioblastomas, RTK upregulation and signaling predominantly involves EGFR, providing an attractive molecular target for therapeutic intervention. PMID:20730556

  6. Intracrine prostaglandin E(2) signalling regulates hypoxia-inducible factor-1α expression through retinoic acid receptor-β.

    PubMed

    Fernández-Martínez, Ana B; Jiménez, María I Arenas; Manzano, Victoria Moreno; Lucio-Cazaña, Francisco J

    2012-12-01

    We have previously found in human renal proximal tubular HK-2 cells that hypoxia- and all-trans retinoic acid-induced hypoxia-inducible factor-1α up-regulation is accompanied by retinoic acid receptor-β up-regulation. Here we first investigated whether hypoxia-inducible factor-1α expression is dependent on retinoic acid receptor-β and our results confirmed it since (i) hypoxia-inducible factor-1α-inducing agents hypoxia, hypoxia-mimetic agent desferrioxamine, all-trans retinoic acid and interleukin-1β increased retinoic acid receptor-β expression, (ii) hypoxia-inducible factor-1α up-regulation was prevented by retinoic acid receptor-β antagonist LE-135 or siRNA retinoic acid receptor-β and (iii) there was direct binding of retinoic acid receptor-β to the retinoic acid response element in hypoxia-inducible factor-1α promoter upon treatment with all-trans retinoic acid and 16,16-dimethyl-prostaglandin E(2). Since intracellular prostaglandin E(2) mediates hypoxia-inducible factor-1α up-regulation in normoxia in HK-2 cells, we next investigated and confirmed, its role in the up-regulation of retinoic acid receptor-β in normoxia by hypoxia-inducible factor-1α-inducing agents all-trans retinoic acid, interleukin-1β and 16,16-dimethyl-prostaglandin E(2) by inhibiting cyclooxygenases, prostaglandin influx transporter or EP receptors. Interestingly, the hypoxia-induced increase in retinoic acid receptor-β expression and accumulation of hypoxia-inducible factor-1α was also blocked by the inhibitors tested. This is the first time, to our knowledge, that retinoic acid receptor-β signalling is involved in the control of the expression of transcription factor hypoxia-inducible factor-1α in both normoxia and hypoxia and that retinoic acid receptor-β expression is found to be strictly regulated by intracellular prostaglandin E(2). Given the relevance of hypoxia-inducible factor-1α in the kidney in terms of tumorigenesis, progressive renal failure, production

  7. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation.

    PubMed

    Subramanian, S V; Fitzgerald, M L; Bernfield, M

    1997-06-01

    The syndecan family of transmembrane heparan sulfate proteoglycans is abundant on the surface of all adherent mammalian cells. Syndecans bind and modify the action of various growth factors/cytokines, proteases/antiproteases, cell adhesion molecules, and extracellular matrix components. Syndecan expression is highly regulated during wound repair, a process orchestrated by many of these effectors. Each syndecan ectodomain is shed constitutively by cultured cells, but the mechanism and significance of this shedding are not understood. Therefore, we examined (i) whether physiological agents active during wound repair influence syndecan shedding, and (ii) whether wound fluids contain shed syndecan ectodomains. Using SVEC4-10 endothelial cells we find that certain proteases and growth factors accelerate shedding of the syndecan-1 and -4 ectodomains. Protease-accelerated shedding is completely inhibited by serum-containing media. Thrombin activity is duplicated by the 14-amino acid thrombin receptor agonist peptide that directly activates the thrombin receptor and is not inhibited by serum. Epidermal growth factor family members accelerate shedding but FGF-2, platelet-derived growth factor-AB, transforming growth factor-beta, tumor necrosis factor-alpha, and vascular endothelial cell growth factor 165 do not. Shed ectodomains are soluble, stable in the conditioned medium, have the same size core proteins regardless whether shed at a basal rate, or accelerated by thrombin or epidermal growth factor-family members and are found in acute human dermal wound fluids. Thus, shedding is accelerated by activation of at least two distinct receptor classes, G protein-coupled (thrombin) and protein tyrosine kinase (epidermal growth factor). Proteases and growth factors active during wound repair can accelerate syndecan shedding from cell surfaces. Regulated shedding of syndecans suggests physiological roles for the soluble proteoglycan ectodomains.

  8. Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model.

    PubMed

    Obama, Takashi; Tsuji, Toshiyuki; Kobayashi, Tomonori; Fukuda, Yamato; Takayanagi, Takehiko; Taro, Yoshinori; Kawai, Tatsuo; Forrester, Steven J; Elliott, Katherine J; Choi, Eric; Daugherty, Alan; Rizzo, Victor; Eguchi, Satoru

    2015-05-01

    Angiotensin II (Ang II) has been implicated in the development of abdominal aortic aneurysm (AAA). In vascular smooth muscle cells (VSMC), Ang II activates epidermal growth factor receptor (EGFR) mediating growth promotion. We hypothesized that inhibition of EGFR prevents Ang II-dependent AAA. C57BL/6 mice were co-treated with Ang II and β-aminopropionitrile (BAPN) to induce AAA with or without treatment with EGFR inhibitor, erlotinib. Without erlotinib, 64.3% of mice were dead due to aortic rupture. All surviving mice had AAA associated with EGFR activation. Erlotinib-treated mice did not die and developed far fewer AAA. The maximum diameters of abdominal aortas were significantly shorter with erlotinib treatment. In contrast, both erlotinib-treated and non-treated mice developed hypertension. The erlotinib treatment of abdominal aorta was associated with lack of EGFR activation, endoplasmic reticulum (ER) stress, oxidative stress, interleukin-6 induction and matrix deposition. EGFR activation in AAA was also observed in humans. In conclusion, EGFR inhibition appears to protect mice from AAA formation induced by Ang II plus BAPN. The mechanism seems to involve suppression of vascular EGFR and ER stress. PMID:25531554

  9. Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model.

    PubMed

    Obama, Takashi; Tsuji, Toshiyuki; Kobayashi, Tomonori; Fukuda, Yamato; Takayanagi, Takehiko; Taro, Yoshinori; Kawai, Tatsuo; Forrester, Steven J; Elliott, Katherine J; Choi, Eric; Daugherty, Alan; Rizzo, Victor; Eguchi, Satoru

    2015-05-01

    Angiotensin II (Ang II) has been implicated in the development of abdominal aortic aneurysm (AAA). In vascular smooth muscle cells (VSMC), Ang II activates epidermal growth factor receptor (EGFR) mediating growth promotion. We hypothesized that inhibition of EGFR prevents Ang II-dependent AAA. C57BL/6 mice were co-treated with Ang II and β-aminopropionitrile (BAPN) to induce AAA with or without treatment with EGFR inhibitor, erlotinib. Without erlotinib, 64.3% of mice were dead due to aortic rupture. All surviving mice had AAA associated with EGFR activation. Erlotinib-treated mice did not die and developed far fewer AAA. The maximum diameters of abdominal aortas were significantly shorter with erlotinib treatment. In contrast, both erlotinib-treated and non-treated mice developed hypertension. The erlotinib treatment of abdominal aorta was associated with lack of EGFR activation, endoplasmic reticulum (ER) stress, oxidative stress, interleukin-6 induction and matrix deposition. EGFR activation in AAA was also observed in humans. In conclusion, EGFR inhibition appears to protect mice from AAA formation induced by Ang II plus BAPN. The mechanism seems to involve suppression of vascular EGFR and ER stress.

  10. Exploring new scaffolds for angiotensin II receptor antagonism.

    PubMed

    Kritsi, Eftichia; Matsoukas, Minos-Timotheos; Potamitis, Constantinos; Karageorgos, Vlasios; Detsi, Anastasia; Magafa, Vasilliki; Liapakis, George; Mavromoustakos, Thomas; Zoumpoulakis, Panagiotis

    2016-09-15

    Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities. PMID:27480029

  11. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions.

    PubMed

    Morabito, Alessandro; Piccirillo, Maria Carmela; Falasconi, Fabiano; De Feo, Gianfranco; Del Giudice, Antonia; Bryce, Jane; Di Maio, Massimo; De Maio, Ermelinda; Normanno, Nicola; Perrone, Francesco

    2009-04-01

    Vandetanib is a novel, orally available inhibitor of different intracellular signaling pathways involved in tumor growth, progression, and angiogenesis: vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and REarranged during Transfection tyrosine kinase activity. Phase I clinical trials have shown that vandetanib is well tolerated as a single agent at daily doses < or =300 mg. In the phase II setting, negative results were observed with vandetanib in small cell lung cancer, metastatic breast cancer, and multiple myeloma. In contrast, three randomized phase II studies showed that vandetanib prolonged the progression-free survival (PFS) time of patients with non-small cell lung cancer (NSCLC) as a single agent when compared with gefitinib or when added to chemotherapy. Rash, diarrhea, hypertension, fatigue, and asymptomatic QTc prolongation were the most common adverse events. Antitumor activity was also observed in medullary thyroid cancer. Four randomized phase III clinical trials in NSCLC are exploring the efficacy of vandetanib in combination with docetaxel, the Zactima in cOmbination with Docetaxel In non-small cell lung Cancer (ZODIAC) trial, or with pemetrexed, the Zactima Efficacy with Alimta in Lung cancer (ZEAL) trial, or as a single agent, the Zactima Efficacy when Studied versus Tarceva (ZEST) and the Zactima Efficacy trial for NSCLC Patients with History of EGFR-TKI chemo-Resistance (ZEPHYR) trials. Based on a press release by the sponsor of these trials, the PFS time was longer with vandetanib in the ZODIAC and ZEAL trials; the ZEST trial was negative for its primary superiority analysis, but was successful according to a preplanned noninferiority analysis of PFS. Ongoing phase II and III clinical trials will better define the appropriate schedule, the optimal setting of evaluation, and the safety of long-term use of vandetanib.

  12. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions.

    PubMed

    Morabito, Alessandro; Piccirillo, Maria Carmela; Falasconi, Fabiano; De Feo, Gianfranco; Del Giudice, Antonia; Bryce, Jane; Di Maio, Massimo; De Maio, Ermelinda; Normanno, Nicola; Perrone, Francesco

    2009-04-01

    Vandetanib is a novel, orally available inhibitor of different intracellular signaling pathways involved in tumor growth, progression, and angiogenesis: vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and REarranged during Transfection tyrosine kinase activity. Phase I clinical trials have shown that vandetanib is well tolerated as a single agent at daily doses < or =300 mg. In the phase II setting, negative results were observed with vandetanib in small cell lung cancer, metastatic breast cancer, and multiple myeloma. In contrast, three randomized phase II studies showed that vandetanib prolonged the progression-free survival (PFS) time of patients with non-small cell lung cancer (NSCLC) as a single agent when compared with gefitinib or when added to chemotherapy. Rash, diarrhea, hypertension, fatigue, and asymptomatic QTc prolongation were the most common adverse events. Antitumor activity was also observed in medullary thyroid cancer. Four randomized phase III clinical trials in NSCLC are exploring the efficacy of vandetanib in combination with docetaxel, the Zactima in cOmbination with Docetaxel In non-small cell lung Cancer (ZODIAC) trial, or with pemetrexed, the Zactima Efficacy with Alimta in Lung cancer (ZEAL) trial, or as a single agent, the Zactima Efficacy when Studied versus Tarceva (ZEST) and the Zactima Efficacy trial for NSCLC Patients with History of EGFR-TKI chemo-Resistance (ZEPHYR) trials. Based on a press release by the sponsor of these trials, the PFS time was longer with vandetanib in the ZODIAC and ZEAL trials; the ZEST trial was negative for its primary superiority analysis, but was successful according to a preplanned noninferiority analysis of PFS. Ongoing phase II and III clinical trials will better define the appropriate schedule, the optimal setting of evaluation, and the safety of long-term use of vandetanib. PMID:19349511

  13. Growth factor receptor interplay and resistance in cancer.

    PubMed

    Jones, Helen E; Gee, Julia M W; Hutcheson, Iain R; Knowlden, Janice M; Barrow, Denise; Nicholson, Robert I

    2006-12-01

    Aberrant signalling through the epidermal growth factor receptor (EGFR) plays a major role in the progression and maintenance of the malignant phenotype and the receptor is therefore a rational anti-cancer target. A variety of approaches have been developed to specifically target the EGFR which include monoclonal antibodies and small molecule tyrosine kinase inhibitors, such as gefitinib (Iressa). However, the recent clinical experience across a range of cancer types is revealing that despite the anti-EGFR agents demonstrating some anti-tumour activity, there is a high level of de novo and acquired resistance to such treatments and moreover, overexpression of the EGFR is clearly not the sole determinant of response to such therapies. Such adverse phenomena, which serve to limit the overall therapeutic impact of these new agents, implies the existence of a greater complexity involved in the regulation of EGFR signalling than was previously assumed. Indeed, evidence is accumulating which demonstrates that signalling interplay occurs between the EGFR, and the IGF-1 receptor (IGF-1R) and the review will focus on the emerging concept of growth factor pathway switching between these two receptors as a means of influencing the effectiveness of anti-EGFR agents such as gefitinib.

  14. [3H]LY341495 binding to group II metabotropic glutamate receptors in rat brain.

    PubMed

    Wright, R A; Arnold, M B; Wheeler, W J; Ornstein, P L; Schoepp, D D

    2001-08-01

    [3H]LY341495 is a highly potent and selective antagonist for group II metabotropic glutamate (mGlu) receptors (mGlu2 and mGlu3), which has been used to label these receptors in cells expressing recombinant receptor subtypes. In this study, we characterized the kinetics, pharmacology, and distribution of [3H]LY341495 binding to mGlu receptors in rat brain tissue. Equilibrium experiments in the rat forebrain demonstrated binding to a single site that was saturable, reversible, and of high affinity (Bmax, 3.9 +/- 0.65 pmol/mg of protein, Kd, 0.84 +/- 0.11 nM). The relative order of potencies for displacement of [3H]LY341495 by mGlu receptor ligands was LY341495 > L-glutamic acid > LY354740 > (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine > 4-(2R,4R)-aminopyrrolidine-2,4-dicarboxylate > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (R,S)-alpha-methyl-4-phosphonophenylglycine > (R,S)3,5-dihydroxyphenylglycine > L-(+)-2-amino-4-phosphonobutyric acid. [3H]LY341495 was not displaced by the selective ionotropic glutamate receptor agonists N-methyl-D-aspartic acid, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, or kainate at concentrations up to 1 mM. Comparison of [3H]LY341495 binding in rat brain with recombinant mGlu receptor subtypes demonstrated a very high correlation with mGlu3 receptor binding (r2 = 0.957), a significant, but lower, correlation with mGlu2 receptor binding (r2 = 0.869), but no significant correlation to mGlu8 receptor binding (r2 = 0.284). Regional studies using autoradiography showed a similar distribution of [3H]LY341495 binding to that for group II mGlu receptors previously reported by others using immunocytochemical techniques. These studies indicate that [3H]LY341495 selectively labels group II (mGlu2/3) receptors, but under the conditions used, [3H]LY341495 may bind predominately to mGlu3 receptor populations in the rat forebrain. PMID:11454905

  15. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-beta family of receptor serine-threonine kinases.

    PubMed

    Parks, W T; Frank, D B; Huff, C; Renfrew Haft, C; Martin, J; Meng, X; de Caestecker, M P; McNally, J G; Reddi, A; Taylor, S I; Roberts, A B; Wang, T; Lechleider, R J

    2001-06-01

    Sorting nexins (SNX) comprise a family of proteins with homology to several yeast proteins, including Vps5p and Mvp1p, that are required for the sorting of proteins to the yeast vacuole. Human SNX1, -2, and -4 have been proposed to play a role in receptor trafficking and have been shown to bind to several receptor tyrosine kinases, including receptors for epidermal growth factor, platelet-derived growth factor, and insulin as well as the long form of the leptin receptor, a glycoprotein 130-associated receptor. We now describe a novel member of this family, SNX6, which interacts with members of the transforming growth factor-beta family of receptor serine-threonine kinases. These receptors belong to two classes: type II receptors that bind ligand, and type I receptors that are subsequently recruited to transduce the signal. Of the type II receptors, SNX6 was found to interact strongly with ActRIIB and more moderately with wild type and kinase-defective mutants of TbetaRII. Of the type I receptors, SNX6 was found to interact only with inactivated TbetaRI. SNXs 1-4 also interacted with the transforming growth factor-beta receptor family, showing different receptor preferences. Conversely, SNX6 behaved similarly to the other SNX proteins in its interactions with receptor tyrosine kinases. Strong heteromeric interactions were also seen among SNX1, -2, -4, and -6, suggesting the formation in vivo of oligomeric complexes. These findings are the first evidence for the association of the SNX family of molecules with receptor serine-threonine kinases.

  16. Expression of mutant bone morphogenetic protein receptor II worsens pulmonary hypertension secondary to pulmonary fibrosis.

    PubMed

    Bryant, Andrew J; Robinson, Linda J; Moore, Christy S; Blackwell, Thomas R; Gladson, Santhi; Penner, Niki L; Burman, Ankita; McClellan, Lucas J; Polosukhin, Vasiliy V; Tanjore, Harikrishna; McConaha, Melinda E; Gleaves, Linda A; Talati, Megha A; Hemnes, Anna R; Fessel, Joshua P; Lawson, William E; Blackwell, Timothy S; West, James D

    2015-12-01

    Pulmonary fibrosis is often complicated by pulmonary hypertension (PH), and previous studies have shown a potential link between bone morphogenetic protein receptor II (BMPR2) and PH secondary to pulmonary fibrosis. We exposed transgenic mice expressing mutant BMPR2 and control mice to repetitive intraperitoneal injections of bleomycin for 4 weeks. The duration of transgene activation was too short for mutant BMPR2 mice to develop spontaneous PH. Mutant BMPR2 mice had increased right ventricular systolic pressure compared to control mice, without differences in pulmonary fibrosis. We found increased hypoxia-inducible factor (HIF)1-α stabilization in lungs of mutant-BMPR2-expressing mice compared to controls following bleomycin treatment. In addition, expression of the hypoxia response element protein connective tissue growth factor was increased in transgenic mice as well as in a human pulmonary microvascular endothelial cell line expressing mutant BMPR2. In mouse pulmonary vascular endothelial cells, mutant BMPR2 expression resulted in increased HIF1-α and reactive oxygen species production following exposure to hypoxia, both of which were attenuated with the antioxidant TEMPOL. These data suggest that expression of mutant BMPR2 worsens secondary PH through increased HIF activity in vascular endothelium. This pathway could be therapeutically targeted in patients with PH secondary to pulmonary fibrosis.

  17. Expression of mutant bone morphogenetic protein receptor II worsens pulmonary hypertension secondary to pulmonary fibrosis

    PubMed Central

    Robinson, Linda J.; Moore, Christy S.; Blackwell, Thomas R.; Gladson, Santhi; Penner, Niki L.; Burman, Ankita; McClellan, Lucas J.; Polosukhin, Vasiliy V.; Tanjore, Harikrishna; McConaha, Melinda E.; Gleaves, Linda A.; Talati, Megha A.; Hemnes, Anna R.; Fessel, Joshua P.; Lawson, William E.; Blackwell, Timothy S.; West, James D.

    2015-01-01

    Abstract Pulmonary fibrosis is often complicated by pulmonary hypertension (PH), and previous studies have shown a potential link between bone morphogenetic protein receptor II (BMPR2) and PH secondary to pulmonary fibrosis. We exposed transgenic mice expressing mutant BMPR2 and control mice to repetitive intraperitoneal injections of bleomycin for 4 weeks. The duration of transgene activation was too short for mutant BMPR2 mice to develop spontaneous PH. Mutant BMPR2 mice had increased right ventricular systolic pressure compared to control mice, without differences in pulmonary fibrosis. We found increased hypoxia-inducible factor (HIF)1-α stabilization in lungs of mutant-BMPR2-expressing mice compared to controls following bleomycin treatment. In addition, expression of the hypoxia response element protein connective tissue growth factor was increased in transgenic mice as well as in a human pulmonary microvascular endothelial cell line expressing mutant BMPR2. In mouse pulmonary vascular endothelial cells, mutant BMPR2 expression resulted in increased HIF1-α and reactive oxygen species production following exposure to hypoxia, both of which were attenuated with the antioxidant TEMPOL. These data suggest that expression of mutant BMPR2 worsens secondary PH through increased HIF activity in vascular endothelium. This pathway could be therapeutically targeted in patients with PH secondary to pulmonary fibrosis. PMID:26697175

  18. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors.

    PubMed Central

    Liu, Y H; Yang, X P; Sharov, V G; Nass, O; Sabbah, H N; Peterson, E; Carretero, O A

    1997-01-01

    Angiotensin-converting enzyme inhibitors (ACEi) improve cardiac function and remodeling and prolong survival in patients with heart failure (HF). Blockade of the renin-angiotensin system (RAS) with an angiotensin II type 1 receptor antagonist (AT1-ant) may have a similar beneficial effect. In addition to inhibition of the RAS, ACEi may also act by inhibiting kinin destruction, whereas AT1-ant may block the RAS at the level of the AT1 receptor and activate the angiotensin II type 2 (AT2) receptor. Using a model of HF induced by myocardial infarction (MI) in rats, we studied the role of kinins in the cardioprotective effect of ACEi. We also investigated whether an AT1-ant has a similar effect and whether these effects are partly due to activation of the AT2 receptor. Two months after MI, rats were treated for 2 mo with: (a) vehicle; (b) the ACEi ramipril, with and without the B2 receptor antagonist icatibant (B2-ant); or (c) an AT1-ant with and without an AT2-antagonist (AT2-ant) or B2-ant. Vehicle-treated rats had a significant increase in left ventricular end-diastolic (LVEDV) and end-systolic volume (LVESV) as well as interstitial collagen deposition and cardiomyocyte size, whereas ejection fraction was decreased. Left ventricular remodeling and cardiac function were improved by the ACEi and AT1-ant. The B2-ant blocked most of the cardioprotective effect of the ACEi, whereas the effect of the AT1-ant was blocked by the AT2-ant. The decreases in LVEDV and LVESV caused by the AT1-ant were also partially blocked by the B2-ant. We concluded that (a) in HF both ACEi and AT1-ant have a cardioprotective effect, which could be due to either a direct action on the heart or secondary to altered hemodynamics, or both; and (b) the effect of the ACEi is mediated in part by kinins, whereas that of the AT1-ant is triggered by activation of the AT2 receptor and is also mediated in part by kinins. We speculate that in HF, blockade of AT1 receptors increases both renin and

  19. Alpha-adrenergic regulation of angiotensin II receptors in neuronal cultures from rat brain

    SciTech Connect

    Sumners, C.; Watkins, L.L.; Raizada, M.K.

    1986-03-05

    Our previous studies have suggested that endogenous catecholamine (CA) levels are important regulators of angiotensin II receptors (AngII-R) in neuronal cultures. The present study was undertaken to determine the possible mechanisms by which CA exert their effects on AngII-R. Incubation of neuronal cultures with norepinephrine (NE) resulted in time and dose dependent decreases in (/sup 125/I)-AngII specific binding. A maximal effect of 60-70% was observed between 4-8 hours at 1..mu..M NE, which was the result of a decrease in Bmax (104 +/- 16.3 fmol/mg protein in controls vs 41.4 +/- 9.3 fmol/mg protein in NE treated) and little change in Kd. Similar effects were observed when neuronal cultures were incubated with dopamine (DA) or phenylephrine, but serotonin, epinephrine and isoproterenol had no effect. The NE and DA stimulated decrease in AngII-R appears to be an ..cap alpha../sub 1/=adrenergic receptor mediated phenomenon because it is abolished by coincubation with prazosin (..cap alpha../sub 1/-antagonist) and not by ..cap alpha../sub 2/- or ..beta..-antagonists. Similar incubations of neuronal cultures with NE also caused a time and dose dependent downregulation of ..cap alpha../sub 1/-adrenergic receptors. Taken together these observations indicate that the NE induced downregulation of AngII-R is mediated by ..cap alpha../sub 1/-receptors, and suggest that one possible mechanism may be the cointernalization of both ..cap alpha../sub 1/- and AngII-R stimulated by ..cap alpha../sub 1/-adrenergic agonists.

  20. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa.

    PubMed

    de Chial, Magaly; Ghysels, Bart; Beatson, Scott A; Geoffroy, Valérie; Meyer, Jean Marie; Pattery, Theresa; Baysse, Christine; Chablain, Patrice; Parsons, Yasmin N; Winstanley, Craig; Cordwell, Stuart J; Cornelis, Pierre

    2003-04-01

    Pseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I-III), but only the FpvA receptor for type I is known. Two PVD-producing P. aeruginosa strains, one type II and one type III, were mutagenized by a mini-TnphoA3 transposon. In each case, one mutant unable to grow in the presence of the strong iron chelator ethylenediaminedihydroxyphenylacetic acid (EDDHA) and the cognate PVD was selected. The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor. The second mutant was unable to take up type III PVD and had the transposon insertion in fpvA. Cosmid libraries of the respective type II and type III PVD wild-type strains were constructed and screened for clones restoring the capacity to grow in the presence of PVD. From the respective complementing genomic fragments, type II and type III fpvA sequences were determined. When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity. Complementation of fpvA mutants obtained by allelic exchange was achieved by the presence of cognate fpvA in trans. All three receptors posses an N-terminal extension of about 70 amino acids, similar to FecA of Escherichia coli, but only FpvAI has a TAT export sequence at its N-terminal end. PMID:12686625

  1. Control of gravitropic orientation. II. Dual receptor model for gravitropism.

    PubMed

    LaMotte, Clifford E; Pickard, Barbara G

    2004-01-01

    Gravitropism of vascular plants has been assumed to require a single gravity receptor mechanism. However, based on the evidence in Part I of this study, we propose that maize roots require two. The first mechanism is without a directional effect and, by itself, cannot give rise to tropism. Its role is quantitative facilitation of the second mechanism, which is directional like the gravitational force itself and provides the impetus for tropic curvature. How closely coupled the two mechanisms may be is, as yet, unclear. The evidence for dual receptors supports a general model for roots. When readiness for gravifacilitation, or gravifacilitation itself, is constitutive, orthogravitropic curvature can go to completion. If not constitutively enabled, gravifacilitation can be weak in the absence of light and water deficit or strong in the presence of light and water deficit. In either case, it can decay and permit roots to assume reproducible non-vertical orientations (plagiogravitropic or plagiotropic orientations) without using non-vertical setpoints. In this way roots are deployed in a large volume of soil. Gravitropic behaviours in shoots are more diverse than in roots, utilising oblique and horizontal as well as vertical setpoints. As a guide to future experiments, we assess how constitutive v. non-constitutive modes of gravifacilitation might contribute to behaviours based on each kind of setpoint. PMID:15895503

  2. Control of gravitropic orientation. II. Dual receptor model for gravitropism

    NASA Technical Reports Server (NTRS)

    LaMotte, Clifford E.; Pickard, Barbara G.

    2004-01-01

    Gravitropism of vascular plants has been assumed to require a single gravity receptor mechanism. However, based on the evidence in Part I of this study, we propose that maize roots require two. The first mechanism is without a directional effect and, by itself, cannot give rise to tropism. Its role is quantitative facilitation of the second mechanism, which is directional like the gravitational force itself and provides the impetus for tropic curvature. How closely coupled the two mechanisms may be is, as yet, unclear. The evidence for dual receptors supports a general model for roots. When readiness for gravifacilitation, or gravifacilitation itself, is constitutive, orthogravitropic curvature can go to completion. If not constitutively enabled, gravifacilitation can be weak in the absence of light and water deficit or strong in the presence of light and water deficit. In either case, it can decay and permit roots to assume reproducible non-vertical orientations (plagiogravitropic or plagiotropic orientations) without using non-vertical setpoints. In this way roots are deployed in a large volume of soil. Gravitropic behaviours in shoots are more diverse than in roots, utilising oblique and horizontal as well as vertical setpoints. As a guide to future experiments, we assess how constitutive v. non-constitutive modes of gravifacilitation might contribute to behaviours based on each kind of setpoint.

  3. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  4. Pentosan polysulfate treatment preserves renal autoregulation in ANG II-infused hypertensive rats via normalization of P2X1 receptor activation.

    PubMed

    Guan, Zhengrong; Fuller, Barry S; Yamamoto, Tatsuo; Cook, Anthony K; Pollock, Jennifer S; Inscho, Edward W

    2010-05-01

    Inflammatory factors are elevated in animal and human subjects with hypertension and renal injury. We hypothesized that inflammation contributes to hypertension-induced renal injury by impairing autoregulation and microvascular reactivity to P2X(1) receptor activation. Studies were conducted in vitro using the blood-perfused juxtamedullary nephron preparation. Rats receiving ANG II (60 ng/min) infusion were treated with the anti-inflammatory agent pentosan polysulfate (PPS) for 14 days. The magnitude and progression of hypertension were similar in ANG II and ANG II+PPS-treated rats (169 ± 5 vs. 172 ± 2 mmHg). Afferent arterioles from control rats exhibited normal autoregulatory behavior with diameter decreasing from 18.4 ± 1.6 to 11.4 ± 1.7 μm when perfusion pressure was increased from 70 to 160 mmHg. In contrast, pressure-mediated vasoconstriction was markedly attenuated in ANG II-treated rats, and diameter remained essentially unchanged over the range of perfusion pressures. However, ANG II-treated rats receiving PPS exhibited normal autoregulatory behavior compared with ANG II alone rats. Arteriolar reactivity to ATP and β,γ-methylene ATP was significantly reduced in ANG II hypertensive rats compared with controls. Interestingly, PPS treatment preserved normal reactivity to P2 and P2X(1) receptor agonists despite the persistent hypertension. The maximal vasoconstriction was 79 ± 3 and 81 ± 2% of the control diameter for ATP and β,γ-methylene ATP, respectively, similar to responses in control rats. PPS treatment significantly reduced α-smooth muscle actin staining in afferent arterioles and plasma transforming growth factor-β1 concentration in ANG II-treated rats. In conclusion, PPS normalizes autoregulation without altering ANG II-induced hypertension, suggesting that inflammatory processes reduce P2X(1) receptor reactivity and thereby impair autoregulatory behavior in ANG II hypertensive rats.

  5. Schistosoma mansoni TGF-β Receptor II: Role in Host Ligand-Induced Regulation of a Schistosome Target Gene

    PubMed Central

    Osman, Ahmed; Niles, Edward G; Verjovski-Almeida, Sergio; LoVerde, Philip T

    2006-01-01

    Members of transforming growth factor-beta (TGF-β) superfamily play pivotal roles in development in multicellular organisms. We report the functional characterization of the Schistosoma mansoni type II receptor (SmTβRII). Mining of the S. mansoni expressed sequence tag (EST) database identified an EST clone that shows homology to the kinase domain of type II receptors from different species. The amplified EST sequence was used as a probe to isolate a cDNA clone spanning the entire coding region of a type II serine/threonine kinase receptor. The interaction of SmTβRII with SmTβRI was elucidated and shown to be dependent on TGF-β ligand binding. Furthermore, in the presence of human TGF-β1, SmTβRII was able to activate SmTβRI, which in turn activated SmSmad2 and promoted its interaction with SmSmad4, proving the transfer of the signal from the receptor complex to the Smad proteins. Gynaecophoral canal protein (GCP), whose expression in male worms is limited to the gynaecophoric canal, was identified as a potential TGF-β target gene in schistosomes. Knocking down the expression of SmTβRII using short interfering RNA molecules (siRNA) resulted in a concomitant reduction in the expression of GCP. These data provide evidence for the direct involvement of SmTβRII in mediating TGF-β–induced activation of the TGF-β target gene, SmGCP, within schistosome parasites. The results also provide additional evidence for a role for the TGF-β signaling pathway in male-induced female reproductive development. PMID:16789838

  6. Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer's Disease.

    PubMed

    Saavedra, Juan M

    2016-03-01

    Alzheimer's disease is the most frequent type of dementia and diagnosed late in the progression of the illness when irreversible brain tissue loss has already occurred. For this reason, treatments have been ineffective. It is imperative to find novel therapies ameliorating modifiable risk factors (hypertension, stroke, diabetes, chronic kidney disease, and traumatic brain injury) and effective against early pathogenic mechanisms including alterations in cerebral blood flow leading to poor oxygenation and decreased access to nutrients, impaired glucose metabolism, chronic inflammation, and glutamate excitotoxicity. Angiotensin II receptor blockers (ARBs) fulfill these requirements. ARBs are directly neuroprotective against early injury factors in neuronal, astrocyte, microglia, and cerebrovascular endothelial cell cultures. ARBs protect cerebral blood flow and reduce injury to the blood brain barrier and neurological and cognitive loss in animal models of brain ischemia, traumatic brain injury, and Alzheimer's disease. These compounds are clinically effective against major risk factors for Alzheimer's disease: hypertension, stroke, chronic kidney disease, diabetes and metabolic syndrome, and ameliorate age-dependent cognitive loss. Controlled studies on hypertensive patients, open trials, case reports, and database meta-analysis indicate significant therapeutic effects of ARBs in Alzheimer's disease. ARBs are safe compounds, widely used to treat cardiovascular and metabolic disorders in humans, and although they reduce hypertension, they do not affect blood pressure in normotensive individuals. Overall, there is sufficient evidence to consider long-term controlled clinical studies with ARBs in patients suffering from established risk factors, in patients with early cognitive loss, or in normal individuals when reliable biomarkers of Alzheimer's disease risk are identified. PMID:26993513

  7. Anti-inflammatory and anti-atherogenic role of BMP receptor II in atherosclerosis.

    PubMed

    Simic, Tatjana

    2013-09-01

    Evaluation of: Kim CW, Song H, Kumar S et al. Anti-inflammatory and anti-atherogenic role of BMP receptor II in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33, 1350-1359 (2013). Increased expression of BMPs in atherosclerosis suggested that the knockdown of the receptor mediating BMP action would prevent endothelial inflammation and atherosclerosis. Based on this hypothesis, Kim et al. performed a series of experiments in which the effect of BMP receptor type II (BMPRII) knockout was tested in in vitro and in vivo models of atherogenesis. Unexpectedly, they found that the loss of BMPRII induces endothelial inflammation and atherosclerosis. Knockdown of BMPRII in endothelial cells induced monocyte adhesion through the expression of ICAM-1 and VCAM-1. The loss of BMPRII induced endothelial inflammation and atherosclerosis in apoE-deficient mice. Besides, BMPRII expression was gradually lost over the course of atherosclerosis progression in human coronary arteries. PMID:24020661

  8. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    PubMed

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  9. pH sensitivity of epidermal growth factor receptor complexes.

    PubMed

    Nunez, M; Mayo, K H; Starbuck, C; Lauffenburger, D

    1993-03-01

    The association/dissociation binding kinetics of 125I-labeled mouse epidermal growth factor (EGF) to receptors on human fibroblast cells in monolayer culture have been measured at 4 degrees C as a function of extracellular pH from pH 5-9. At pH 8, steady-state total binding is maximal. As pH is lowered to 6.5, total binding monotonically decreases dramatically. It changes further only slightly between pH 6.5 and 5 to about 20% of the maximum binding value. Scatchard binding plots at pH 7.5 and above show the commonly observed concave-upward, non-linear curve; as pH is lowered, this plot becomes much more linear, indicating that the "high affinity" bound receptor population is greatly diminished. Application of our ternary complex binding model [Mayo et al., J Biol Chem 264:17838-17844, 1989], which hypothesizes complexation of the EGF-bound receptor with a cell surface interaction molecule, indicates that pH may have some direct effects on ternary complex formation, but the major effect is on EGF-receptor dissociation. PMID:8501133

  10. Conformational thermostabilisation of corticotropin releasing factor receptor 1.

    PubMed

    Kean, James; Bortolato, Andrea; Hollenstein, Kaspar; Marshall, Fiona H; Jazayeri, Ali

    2015-01-01

    Recent technical advances have greatly facilitated G-protein coupled receptors crystallography as evidenced by the number of successful x-ray structures that have been reported recently. These technical advances include novel detergents, specialised crystallography techniques as well as protein engineering solutions such as fusions and conformational thermostabilisation. Using conformational thermostabilisation, it is possible to generate variants of GPCRs that exhibit significantly increased stability in detergent micelles whilst preferentially occupying a single conformation. In this paper we describe for the first time the application of this technique to a member of a class B GPCR, the corticotropin releasing factor receptor 1 (CRF1R). Mutational screening in the presence of the inverse agonist, CP-376395, resulted in the identification of a construct with twelve point mutations that exhibited significantly increased thermal stability in a range of detergents. We further describe the subsequent construct engineering steps that eventually yielded a crystallisation-ready construct which recently led to the solution of the first x-ray structure of a class B receptor. Finally, we have used molecular dynamic simulation to provide structural insight into CRF1R instability as well as the stabilising effects of the mutants, which may be extended to other class B receptors considering the high degree of structural conservation. PMID:26159865

  11. Nanoscale Imaging of Epidermal Growth Factor Receptor Clustering

    PubMed Central

    Abulrob, Abedelnasser; Lu, Zhengfang; Baumann, Ewa; Vobornik, Dusan; Taylor, Rod; Stanimirovic, Danica; Johnston, Linda J.

    2010-01-01

    The development of some solid tumors is associated with overexpression of the epidermal growth factor receptor (EGFR) and often correlates with poor prognosis. Near field scanning optical microscopy, a technique with subdiffraction-limited optical resolution, was used to examine the influence of two inhibitors (the chimeric 225 antibody and tyrosine phosphorylation inhibitor AG1478) on the nanoscale clustering of EGFR in HeLa cells. The EGFR is organized in small clusters, average diameter of 150 nm, on the plasma membrane for both control and EGF-treated cells. The numbers of receptors in individual clusters vary from as few as one or two proteins to greater than 100. Both inhibitors yield an increased cluster density and an increase in the fraction of clusters with smaller diameters and fewer receptors. Exposure to AG1478 also decreases the fraction of EGFR that colocalizes with both rafts and caveolae. EGF stimulation results in a significant loss of the full-length EGFR from the plasma membrane with the concomitant appearance of low molecular mass proteolytic products. By contrast, AG1478 reduces the level of EGFR degradation. Changes in receptor clustering provide one mechanism for regulating EGFR signaling and are relevant to the design of strategies for therapeutic interventions based on modulating EGFR signaling. PMID:19959837

  12. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata.

    PubMed

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-01

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone. PMID:26729427

  13. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata

    PubMed Central

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-01

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone. PMID:26729427

  14. Chemical modification of Class II G-protein coupled receptor ligands

    PubMed Central

    Chapter, Megan C.; White, Caitlin M.; De Ridder, Angela; Chadwick, Wayne; Martin, Bronwen; Maudsley, Stuart

    2009-01-01

    Recent research and clinical data have begun to demonstrate the huge potential therapeutic importance of ligands that modulate the activity of the secretin-like, Class II, G-protein coupled receptors (GPCRs). Ligands that can modulate the activity of these Class II GPCRs may have important clinical roles in the treatment of a wide variety of conditions such as osteoporosis, diabetes, amyotrophic lateral sclerosis and autism spectrum disorders. While these receptors present important new therapeutic targets, the large glycoprotein nature of their cognate ligands poses many problems with respect to therapeutic peptidergic drug design. These native peptides often exhibit poor bioavailability, metabolic instability, poor receptor selectivity and resultant low potencies in vivo. Recently, increased attention has been paid to the structural modification of these peptides to enhance their therapeutic efficacy. Successful modification strategies have included D-amino acid substitutions, selective truncation, and fatty acid acylation of the peptide. Through these and other processes, these novel peptide ligand analogs can demonstrate enhanced receptor subtype selectivity, directed signal transduction pathway activation, resistance to proteolytic degradation, and improved systemic bioavailability. In the future, it is likely, through additional modification strategies such as addition of circulation-stabilizing transferrin moieties, that the therapeutic pharmacopeia of drugs targeted towards Class II secretin-like receptors may rival that of the Class I rhodopsin-like receptors that currently provide the majority of clinically used GPCR-based therapeutics. Currently, Class II-based drugs include synthesized analogues of vasoactive intestinal peptide for type 2 diabetes or parathyroid hormone for osteoporosis. PMID:19686775

  15. Mutant activin-like kinase 2 in fibrodysplasia ossificans progressiva are activated via T203 by BMP type II receptors.

    PubMed

    Fujimoto, Mai; Ohte, Satoshi; Osawa, Kenji; Miyamoto, Arei; Tsukamoto, Sho; Mizuta, Takato; Kokabu, Shoichiro; Suda, Naoto; Katagiri, Takenobu

    2015-01-01

    Fibrodysplasia ossificans progressiva (FOP) is a genetic disorder characterized by progressive heterotopic ossification in soft tissues, such as the skeletal muscles. FOP has been shown to be caused by gain-of-function mutations in activin receptor-like kinase (ALK)-2, which is a type I receptor for bone morphogenetic proteins (BMPs). In the present study, we examined the molecular mechanisms that underlie the activation of intracellular signaling by mutant ALK2. Mutant ALK2 from FOP patients enhanced the activation of intracellular signaling by type II BMP receptors, such as BMPR-II and activin receptor, type II B, whereas that from heart disease patients did not. This enhancement was dependent on the kinase activity of the type II receptors. Substitution mutations at all nine serine and threonine residues in the ALK2 glycine- and serine-rich domain simultaneously inhibited this enhancement by the type II receptors. Of the nine serine and threonine residues in ALK2, T203 was found to be critical for the enhancement by type II receptors. The T203 residue was conserved in all of the BMP type I receptors, and these residues were essential for intracellular signal transduction in response to ligand stimulation. The phosphorylation levels of the mutant ALK2 related to FOP were higher than those of wild-type ALK2 and were further increased by the presence of type II receptors. The phosphorylation levels of ALK2 were greatly reduced in mutants carrying a mutation at T203, even in the presence of type II receptors. These findings suggest that the mutant ALK2 related to FOP is enhanced by BMP type II receptors via the T203-regulated phosphorylation of ALK2.

  16. Angiotensin II type 1 receptor antagonists in the treatment of hypertension in elderly patients: focus on patient outcomes

    PubMed Central

    Tadevosyan, Artavazd; MacLaughlin, Eric J; Karamyan, Vardan T

    2011-01-01

    Hypertension in the elderly is one of the main risk factors of cardiovascular and cerebrovascular diseases. Knowledge regarding the mechanisms of hypertension and specific considerations in managing hypertensive elderly through pharmacological intervention(s) is fundamental to improving clinical outcomes. Recent clinical studies in the elderly have provided evidence that angiotensin II type 1 (AT1) receptor antagonists can improve clinical outcomes to a similar or, in certain populations, an even greater extent than other classical arterial blood pressure-lowering agents. This newer class of antihypertensive agents presents several benefits, including potential for improved adherence, excellent tolerability profile with minimal first-dose hypotension, and a low incidence of adverse effects. Thus, AT1 receptor antagonists represent an appropriate option for many elderly patients with hypertension, type 2 diabetes, heart failure, and/or left ventricular dysfunction. PMID:22915967

  17. Computational evaluation of unsaturated carbonitriles as neutral receptor model for beryllium(II) recognition.

    PubMed

    Rosli, Ahmad Nazmi; Ahmad, Mohd Rais; Alias, Yatimah; Zain, Sharifuddin Md; Lee, Vannajan Sanghiran; Woi, Pei Meng

    2014-12-01

    Design of neutral receptor molecules (ionophores) for beryllium(II) using unsaturated carbonitrile models has been carried out via density functional theory, G3, and G4 calculations. The first part of this work focuses on gas phase binding energies between beryllium(II) and 2-cyano butadiene (2-CN BD), 3-cyano propene (3-CN P), and simpler models with two separate fragments; acrylonitrile and ethylene. Interactions between beryllium(II) and cyano nitrogen and terminal olefin in the models have been examined in terms of geometrical changes, distribution of charge over the entire π-system, and rehybridization of vinyl carbon orbitals. NMR shieldings and vibrational frequencies probed charge centers and strength of interactions. The six-membered cyclic complexes have planar structures with the rehybridized carbon slightly out of plane (16° in 2-CN BD). G3 results show that in 2-CN BD complex participation of vinyl carbon further stabilizes the cyclic adduct by 16.3 kcal mol(-1), whereas, in simpler models, interaction between beryllium(II) and acetonitrile is favorable by 46.4 kcal mol(-1) compared with that of ethylene. The terminal vinyl carbon in 2-CN BD rehybridizes to sp (3) with an increase of 7 % of s character to allow interaction with beryllium(II). G4 calculations show that the Be(II) and 2-CN BD complex is more strongly bound than those with Mg(II) and Ca(II) by 98.5 and 139.2 kcal mol(-1) (-1), respectively. QST2 method shows that the cyclic and acyclic forms of Be(II)-2-CN BD complexes are separated by 12.3 kcal mol(-1) barrier height. Overlap population analysis reveals that Ca(II) can be discriminated based on its tendency to form ionic interaction with the receptor models.

  18. Agonistic antibody to angiotensin II type 1 receptor accelerates atherosclerosis in ApoE-/- mice

    PubMed Central

    Li, Weijuan; Chen, Yaoqi; Li, Songhai; Guo, Xiaopeng; Zhou, Wenping; Zeng, Qiutang; Liao, Yuhua; Wei, Yumiao

    2014-01-01

    This study aimed to investigate the effects of agonistic antibody to angiotensin II type 1 receptor (AT1-AA) on atherosclerosis in male ApoE-/- mice which were employed to establish the animal models of AT1-AA in two ways. In the first group, mice were injected subcutaneously with conjugated AT1 peptide at multiple sites; in the second group, mice were infused with AT1-AA prepared from rabbits that were treated with AT1 peptide intraperitoneally. Mice in each group were further randomly divided into five subgroups and treated with AT1 peptide/AT1-AA, AT1 peptide/AT1-AA plus valsartan, AT1 peptide/AT1-AA plus fenofibrate, AT1 peptide/ AT1-AA plus pyrrolidine dithiocarbamate (PDTC) and control vehicle, respectively. Antibodies were detected in mice (except for mice in control group). Aortic atherosclerotic lesions were assessed by oil red O staining, while plasma CRP, TNF-α, nuclear factor-kappa B (NF-κB) and H2O2 were determined by ELISA. CCR2 (the receptor of MCP-1), macrophages, and smooth muscle cells were detected by immunohistochemistry. P47phox, MCP-1 and eNOS were detected by RT-PCR, while P47phox, NF-κB and MCP-1 were detected by Western blot assay. The aortic atherosclerotic lesions were significantly increased in AT1 peptide/AT1-AA treated mice, along with simultaneous increases in inflammatory parameters. However, mice treated with valsartan, fenofibrate or PDTC showed alleviated progression of atherosclerosis and reductions in inflammatory parameters. Thus, AT1-AA may accelerate aortic atherosclerosis in ApoE-/- mice, which is mediated, at least in part, by the inflammatory reaction involving nicotinamide-adenine dinucleotide phosphate oxidase, reactive oxygen species, and NF-κB. In addition, valsartan, fenofibrate and PDTC may inhibit the AT1-AA induced atherosclerosis. PMID:25628779

  19. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-10-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells.

  20. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  1. Upregulation of epidermal growth factor receptor 4 in oral leukoplakia

    PubMed Central

    Kobayashi, Hiroshi; Kumagai, Kenichi; Gotoh, Akito; Eguchi, Takanori; Yamada, Hiroyuki; Hamada, Yoshiki; Suzuki, Satsuki; Suzuki, Ryuji

    2013-01-01

    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP). The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP. PMID:23492901

  2. Early signaling dynamics of the epidermal growth factor receptor

    PubMed Central

    Gajadhar, Aaron S.; Swenson, Eric J.; Rothenberg, Daniel A.; Curran, Timothy G.; White, Forest M.

    2016-01-01

    Despite extensive study of the EGF receptor (EGFR) signaling network, the immediate posttranslational changes that occur in response to growth factor stimulation remain poorly characterized; as a result, the biological mechanisms underlying signaling initiation remain obscured. To address this deficiency, we have used a mass spectrometry-based approach to measure system-wide phosphorylation changes throughout the network with 10-s resolution in the 80 s after stimulation in response to a range of eight growth factor concentrations. Significant changes were observed on proteins far downstream in the network as early as 10 s after stimulation, indicating a system capable of transmitting information quickly. Meanwhile, canonical members of the EGFR signaling network fall into clusters with distinct activation patterns. Src homology 2 domain containing transforming protein (Shc) and phosphoinositol 3-kinase (PI3K) phosphorylation levels increase rapidly, but equilibrate within 20 s, whereas proteins such as Grb2-associated binder-1 (Gab1) and SH2-containing tyrosine phosphatase (SHP2) show slower, sustained increases. Proximity ligation assays reveal that Shc and Gab1 phosphorylation patterns are representative of separate timescales for physical association with the receptor. Inhibition of phosphatases with vanadate reveals site-specific regulatory mechanisms and also uncovers primed activating components in the network, including Src family kinases, whose inhibition affects only a subset of proteins within the network. The results presented highlight the complexity of signaling initiation and provide a window into exploring mechanistic hypotheses about receptor tyrosine kinase (RTK) biology. PMID:26929352

  3. Early signaling dynamics of the epidermal growth factor receptor.

    PubMed

    Reddy, Raven J; Gajadhar, Aaron S; Swenson, Eric J; Rothenberg, Daniel A; Curran, Timothy G; White, Forest M

    2016-03-15

    Despite extensive study of the EGF receptor (EGFR) signaling network, the immediate posttranslational changes that occur in response to growth factor stimulation remain poorly characterized; as a result, the biological mechanisms underlying signaling initiation remain obscured. To address this deficiency, we have used a mass spectrometry-based approach to measure system-wide phosphorylation changes throughout the network with 10-s resolution in the 80 s after stimulation in response to a range of eight growth factor concentrations. Significant changes were observed on proteins far downstream in the network as early as 10 s after stimulation, indicating a system capable of transmitting information quickly. Meanwhile, canonical members of the EGFR signaling network fall into clusters with distinct activation patterns. Src homology 2 domain containing transforming protein (Shc) and phosphoinositol 3-kinase (PI3K) phosphorylation levels increase rapidly, but equilibrate within 20 s, whereas proteins such as Grb2-associated binder-1 (Gab1) and SH2-containing tyrosine phosphatase (SHP2) show slower, sustained increases. Proximity ligation assays reveal that Shc and Gab1 phosphorylation patterns are representative of separate timescales for physical association with the receptor. Inhibition of phosphatases with vanadate reveals site-specific regulatory mechanisms and also uncovers primed activating components in the network, including Src family kinases, whose inhibition affects only a subset of proteins within the network. The results presented highlight the complexity of signaling initiation and provide a window into exploring mechanistic hypotheses about receptor tyrosine kinase (RTK) biology. PMID:26929352

  4. Early signaling dynamics of the epidermal growth factor receptor.

    PubMed

    Reddy, Raven J; Gajadhar, Aaron S; Swenson, Eric J; Rothenberg, Daniel A; Curran, Timothy G; White, Forest M

    2016-03-15

    Despite extensive study of the EGF receptor (EGFR) signaling network, the immediate posttranslational changes that occur in response to growth factor stimulation remain poorly characterized; as a result, the biological mechanisms underlying signaling initiation remain obscured. To address this deficiency, we have used a mass spectrometry-based approach to measure system-wide phosphorylation changes throughout the network with 10-s resolution in the 80 s after stimulation in response to a range of eight growth factor concentrations. Significant changes were observed on proteins far downstream in the network as early as 10 s after stimulation, indicating a system capable of transmitting information quickly. Meanwhile, canonical members of the EGFR signaling network fall into clusters with distinct activation patterns. Src homology 2 domain containing transforming protein (Shc) and phosphoinositol 3-kinase (PI3K) phosphorylation levels increase rapidly, but equilibrate within 20 s, whereas proteins such as Grb2-associated binder-1 (Gab1) and SH2-containing tyrosine phosphatase (SHP2) show slower, sustained increases. Proximity ligation assays reveal that Shc and Gab1 phosphorylation patterns are representative of separate timescales for physical association with the receptor. Inhibition of phosphatases with vanadate reveals site-specific regulatory mechanisms and also uncovers primed activating components in the network, including Src family kinases, whose inhibition affects only a subset of proteins within the network. The results presented highlight the complexity of signaling initiation and provide a window into exploring mechanistic hypotheses about receptor tyrosine kinase (RTK) biology.

  5. Induction of Transforming Growth Factor Beta Receptors following Focal Ischemia in the Rat Brain

    PubMed Central

    Pál, Gabriella; Lovas, Gábor; Dobolyi, Arpád

    2014-01-01

    Transforming growth factor-βs (TGF-βs) regulate cellular proliferation, differentiation, and survival. TGF-βs bind to type I (TGF-βRI) and II receptors (TGF-βRII), which are transmembrane kinase receptors, and an accessory type III receptor (TGF-βRIII). TGF-β may utilize another type I receptor, activin-like kinase receptor (Alk1). TGF-β is neuroprotective in the middle cerebral artery occlusion (MCAO) model of stroke. Recently, we reported the expression pattern of TGF-β1-3 after MCAO. To establish how TGF-βs exert their actions following MCAO, the present study describes the induction of TGF-βRI, RII, RIII and Alk1 at 24 h, 72 h and 1 mo after transient 1 h MCAO as well as following 24 h permanent MCAO using in situ hybridization histochemistry. In intact brain, only TGF-βRI had significant expression: neurons in cortical layer IV contained TGF-βRI. At 24 h after the occlusion, no TGF-β receptors showed induction. At 72 h following MCAO, all four types of TGF-β receptors were induced in the infarct area, while TGF-βRI and RII also appeared in the penumbra. Most cells with elevated TGF-βRI mRNA levels were microglia. TGF-βRII co-localized with both microglial and endothelial markers while TGF-βRIII and Alk1 were present predominantly in endothels. All four TGF-β receptors were induced within the lesion 1 mo after the occlusion. In particular, TGF-βRIII was further induced as compared to 72 h after MCAO. At this time point, TGF-βRIII signal was predominantly not associated with blood vessels suggesting its microglial location. These data suggest that TGF-β receptors are induced after MCAO in a timely and spatially regulated fashion. TGF-β receptor expression is preceded by increased TGF-β expression. TGF-βRI and RII are likely to be co-expressed in microglial cells while Alk1, TGF-βRII, and RIII in endothels within the infarct where TGF-β1 may be their ligand. At later time points, TGF-βRIII may also appear in glial cells to potentially

  6. The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes.

    PubMed Central

    Sadoshima, J; Izumo, S

    1996-01-01

    p21 ras plays as important role in cell proliferation, transformation and differentiation. Recently, the requirement of p21 ras has been suggested for cellular responses induced by stimulation of heterotrimeric G protein-coupled receptors. However, it remains to be determined how agonists for G protein-coupled receptors activate p21 ras in metazoans. We show here that stimulation of the G q protein-coupled angiotensin II (Ang II) receptor causes activation of p21 ras in cardiac myocytes. The p21 ras activation by Ang II is mediated by an increase in the guanine nucleotide exchange activity, but not by an inhibition of the GTPase-activating protein. Ang II causes rapid tyrosine phosphorylation of Shc and its association with Grb2 and mSos-1, a guanine nucleotide exchange factor of p21 ras. This leads to translocation of mSos-1 to the membrane fraction. Shc associates with the SH3 domain of Fyn whose tyrosine kinase activity is activated by Ang II with a similar time course as that of tyrosine phosphorylation of Shc. Ang II-induced increase in the guanine nucleotide exchange activity was inhibited by a peptide ligand specific to the SH3 domain of the Src family tyrosine kinases. These results suggest that an agonist for a pertussis toxin-insensitive G protein-coupled receptor may initiate the cross-talk with non-receptor-type tyrosine kinases, thereby activating p21 ras using a similar mechanism as receptor tyrosine kinase-induced p21 ras activation. Images PMID:8631299

  7. Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy.

    PubMed

    Liu, Lingfeng; Sommermeyer, Daniel; Cabanov, Alexandra; Kosasih, Paula; Hill, Tyler; Riddell, Stanley R

    2016-04-01

    Adoptive immunotherapy with genetically engineered T cells has the potential to treat cancer and other diseases. The introduction of Strep-tag II sequences into specific sites in synthetic chimeric antigen receptors or natural T-cell receptors of diverse specificities provides engineered T cells with a marker for identification and rapid purification, a method for tailoring spacer length of chimeric receptors for optimal function, and a functional element for selective antibody-coated, microbead-driven, large-scale expansion. These receptor designs facilitate cGMP manufacturing of pure populations of engineered T cells for adoptive T-cell therapies and enable in vivo tracking and retrieval of transferred cells for downstream research applications.

  8. Reciprocal roles of angiotensin II and Angiotensin II Receptors Blockade (ARB) in regulating Cbfa1/RANKL via cAMP signaling pathway: possible mechanism for hypertension-related osteoporosis and antagonistic effect of ARB on hypertension-related osteoporosis.

    PubMed

    Guan, Xiao-Xu; Zhou, Yi; Li, Ji-Yao

    2011-01-01

    Hypertension is a risk factor for osteoporosis. Animal and epidemiological studies demonstrate that high blood pressure is associated with increased calcium loss, elevated parathyroid hormone, and increased calcium movement from bone. However, the mechanism responsible for hypertension-related osteoporosis remains elusive. Recent epidemiological studies indicate the benefits of Angiotensin II Receptors Blockade (ARB) on decreasing fracture risks. Since receptors for angiotensin II, the targets of ARB, are expressed in both osteoblasts and osteoclasts, we postulated that angiotensin II plays an important role in hypertension-related osteoporosis. Cbfa1 and RANKL, the important factors for maintaining bone homeostasis and key mediators in controlling osteoblast and osteoclast differentiation, are both regulated by cAMP-dependent signaling. Angiotensin II along with factors such as LDL, HDL, NO and homocysteine that are commonly altered both in hypertension and osteoporosis, can down-regulate the expression of Cbfa1 but up-regulate RANKL expression via the cAMP signaling pathway. We thus hypothesized that, by altering the ratio of Cbfa1/RANKL expression via the cAMP-dependent pathway, angiotensin II differently regulates osteoblast and osteoclast differentiation leading to enhanced bone resorption and reduced bone formation. Since ARB can antagonize the adverse effect of angiotensin II on bone by lowering cAMP levels and modifying other downstream targets, including LDL, HDL, NO and Cbfa1/RANKL, we propose the hypothesis that the antagonistic effects of ARB may also be exerted via cAMP signaling pathway. PMID:21845073

  9. 5-HT(1A) receptors transactivate the platelet-derived growth factor receptor type beta in neuronal cells.

    PubMed

    Kruk, Jeff S; Vasefi, Maryam S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2013-01-01

    In the absence of ligand, certain growth factor receptors can be activated via G-protein coupled receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can transactivate platelet-derived growth factor (PDGF) β receptors in smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here we show that 5-HT can transiently increase the phosphorylation of PDGFβ receptors through 5-HT(1A) receptors in a time- and dose-dependent manner in SH-SY5Y neuroblastoma cells. 5-HT also transactivates PDGFβ receptors in primary cortical neurons. This transactivation pathway is pertussis-toxin sensitive and Src tyrosine kinase-dependent. This pathway is also dependent on phospholipase C activity and intracellular calcium signaling. Several studies involving PDGFβ receptor transactivation by GPCRs have also demonstrated a PDGFβ receptor-dependent increase in the phosphorylation of ERK1/2. Yet in SH-SY5Y cells, 5-HT treatment causes a PDGFβ receptor-independent increase in ERK1/2 phosphorylation. This crosstalk between 5-HT and PDGFβ receptors identifies a potentially important signaling link between the serotonergic system and growth factor signaling in neurons. PMID:23006663

  10. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection

    SciTech Connect

    Konnai, Satoru . E-mail: konnai@vetmed.hokudai.ac.jp; Usui, Tatsufumi; Ikeda, Manabu; Kohara, Junko; Hirata, Toh-ichi; Okada, Kosuke; Ohashi, Kazuhiko; Onuma, Misao

    2005-09-01

    Previously, we found an up-regulation of tumor necrosis factor alpha (TNF)-{alpha} and an imbalance of TNF receptors in sheep experimentally infected with bovine leukemia virus (BLV). In order to investigate the different TNF-{alpha}-induced responses, in this study we examined the TNF-{alpha}-induced proliferative response and the expression levels of two distinct TNF receptors on peripheral blood mononuclear cells (PBMC) derived from BLV-uninfected cattle and BLV-infected cattle that were aleukemic (AL) or had persistent lymphocytosis (PL). The proliferative response of PBMC isolated from those cattle with PL in the presence of recombinant bovine TNF-{alpha} (rTNF-{alpha}) was significantly higher than those from AL cattle and uninfected cattle and the cells from PL cattle expressed significantly higher mRNA levels of TNF receptor type II (TNF-RII) than those from AL and BLV-uninfected cattle. No difference was found in TNF-RI mRNA levels. Most cells expressing TNF-RII in PL cattle were CD5{sup +} or sIgM{sup +} cells and these cells showed resistance to TNF-{alpha}-induced apoptosis. Additionally, there were significant positive correlations between the changes in provirus load and TNF-RII mRNA levels, and TNF-{alpha}-induced proliferation and TNF-RII mRNA levels. These data suggest that imbalance in the expression of TNF receptors could at least in part contribute to the progression of lymphocytosis in BLV infection.

  11. A heteromeric transcription factor required for mammalian RNA polymerase II.

    PubMed Central

    Kitajima, S; Tanaka, Y; Kawaguchi, T; Nagaoka, T; Weissman, S M; Yasukochi, Y

    1990-01-01

    A general transcription factor, FC, essential for specific initiation of in vitro transcription by mammalian RNA polymerase II was identified and a procedure developed to purify it to near homogeneity from HeLa cell nuclei. Purified FC is composed of two polypeptides of apparent molecular masses 80 kDa and 30 kDa, on SDS-PAGE, and has a native size of 280 kDa estimated by gel filtration column. Both polypeptides were shown to be essential for reconstituting in vitro transcription activity. Biochemical analysis showed that the 80 kDa and 30 kDa components were present in a 1:1 molar ratio. FC was also demonstrated to interact directly or indirectly with purified RNA polymerase II. Similarities between FC and transcription factors reported by others from human, rat or Drosophila cells are discussed. Images PMID:2395645

  12. Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor

    PubMed Central

    Amsalem, Ayelet R.; Marom, Barak; Shapira, Keren E.; Hirschhorn, Tal; Preisler, Livia; Paarmann, Pia; Knaus, Petra; Henis, Yoav I.; Ehrlich, Marcelo

    2016-01-01

    The expression and function of transforming growth factor-β superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and –SF, respectively), which differ by an ∼500 amino acid C-terminal extension, unique among TGF-β superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3’ terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane. PMID:26739752

  13. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability.

    PubMed

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C; Levine, Kara L; Dabovic, Branka; Jung, Christine; Davis, Elaine C; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-07-15

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling.

  14. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability

    PubMed Central

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C.; Levine, Kara L.; Dabovic, Branka; Jung, Christine; Davis, Elaine C.; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-01-01

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling. PMID:25882708

  15. Influence of dietary sodium restriction on angiotensin II receptors in rat adrenals.

    PubMed

    Lehoux, J G; Bird, I M; Briere, N; Martel, D; Ducharme, L

    1997-12-01

    We studied the distribution of angiotensin II (AII) receptors type 1 (AT1) and type 2 (AT2) and the effects of a low sodium intake on these two subtypes of receptors in male rat adrenals. Binding studies on adrenal slices, on cell membranes and on cell suspensions were performed using [125I]AII and specific analogs for AT1 (Losartan) and AT2 (PD 123319) receptors. The distribution of AT1 was also studied by immunofluorescence. Complementary approaches were necessary to reach our goal. Indeed, by autoradiography on adrenal slices, [125I]AII was shown to bind to the zona glomerulosa (ZG) and to the medulla (M). When coincubated with [125I]AII, PD 123319 displaced [125I]AII from the medulla and from the ZG, indicating the presence of AT2 receptors in both zones. Losartan partially displaced [125I]AII from the ZG, indicating the presence of AT1 receptors in that zone. Furthermore, the labeling intensity of the medulla (AT2 receptors) was much stronger in adrenal sections from rats kept on a low sodium regimen than from controls. Immunofluorescence microscopy revealed that AT1 receptors were located mainly in the ZG of control rats. After sodium restriction, AT1 receptors appeared to be uniformly distributed within an enlarged ZG; furthermore AT1 receptor-positive cells were found to a limited degree in the zona fasciculata and possibly in the zona reticularis, and a greater number of these positive cells appeared in these zones under sodium restriction. Cell suspensions from rats fed a low sodium diet showed a 2.7- and 2.1-fold increase in total AII receptors in adrenal ZG and ZFR + M cells when compared with controls. Based on Losartan displacement, we calculated that [125I]AII bound to AT1 and to AT2 receptors was increased in both ZG and ZFR + M cell preparations under sodium restriction. Results of binding studies on cell membranes were also indicative of an increasing effect of sodium restriction on AT1 and AT2 receptors binding capacity. Furthermore, Northern

  16. Upregulation of retinoic acid receptor-beta by the epidermal growth factor-receptor inhibitor PD153035 is not mediated by blockade of ErbB pathways.

    PubMed

    Grunt, Thomas W; Tomek, Katharina; Wagner, Renate; Puckmair, Klaudia; Kainz, Birgit; Rünzler, Dominik; Gaiger, Alexander; Köhler, Gottfried; Zielinski, Christoph C

    2007-06-01

    Inhibiting epidermal growth factor-receptor (ErbB-1) represents a powerful anticancer strategy. Activation of retinoid pathways is also in development for cancer treatment. Retinoic acid receptor-beta-the tumor suppressor and main retinoid mediator--is silenced in many tumors. The ErbB-1 inhibitor PD153035 cooperates with retinoic acid during growth inhibition and induces retinoic acid receptor-beta suggesting that ErbB-1 controls retinoic acid receptor-beta. However, here we demonstrate that ErbB pathways are not involved in PD153035-mediated retinoic acid receptor-beta-upregulation. PD153035 inhibits ErbB-1-phosphorylation, whereas its derivative EBE-A22 is inactive. Yet both inhibit cell growth and upregulate retinoic acid receptor-beta in ErbB-1-overexpressing (MDA-MB-468), moderately expressing (OVCAR-3), ErbB-1-negative (MDA-MB-453) or ErbB-negative cells (CEM, Jurkat). Both bind DNA, whereas the closely related ErbB-1 inhibitors AG1478 and ZD1839, which are inactive on retinoic acid receptor-beta, do not significantly bind DNA. None of the other ErbB-1/ErbB-2 inhibitors tested (RG-14620, LFM-A12, AG879, AG825) affect retinoic acid receptor-beta. PD153035 decreases methylation of the retinoic acid receptor-beta2 promoter. In OVCAR-3, it stimulates dislodgement of histone deacetylase 1 from the promoter and acetylation of histones H3 and H4. Consequently, PD153035 facilitates recruitment of RNA polymerase II to the promoter and stimulates transcriptional activity. Moreover, PD153035 increases the retinoic acid receptor-beta mRNA half-life. No other retinoid receptor, nor estrogen receptor-alpha, nor RASSF1A is upregulated by PD153035. Thus PD153035 induces retinoic acid receptor-beta by ErbB-independent transcriptional and post-transcriptional mechanisms. This report highlights a triple action for an ErbB-1 inhibitor (ErbB-1 inhibition, DNA intercalation, retinoic acid receptor-beta-induction). Such multitargeting drugs bear great potential for cancer

  17. Chloride is an Agonist of Group II and III Metabotropic Glutamate Receptors.

    PubMed

    DiRaddo, John O; Miller, Eric J; Bowman-Dalley, Carrie; Wroblewska, Barbara; Javidnia, Monica; Grajkowska, Ewa; Wolfe, Barry B; Liotta, Dennis C; Wroblewski, Jarda T

    2015-09-01

    The elemental anion chloride is generally considered a passive participant in neuronal excitability, and has never been shown to function as an agonist in its own right. We show that the antagonist-mediated, glutamate-independent inverse agonism of group II and III metabotropic glutamate (mGlu) receptors results from inhibition of chloride-mediated activation. In silico molecular modeling, site-directed mutagenesis, and functional assays demonstrate (1) that chloride is an agonist of mGlu3, mGlu4, mGlu6, and mGlu8 receptors with its own orthosteric site, and (2) that chloride is not an agonist of mGlu2 receptors. Molecular modeling-predicted and site-directed mutagenesis supported that this unique property of mGlu2 receptors results from a single divergent amino acid, highlighting a molecular switch for chloride insensitivity that is transduced through an arginine flip. Ultimately, these results suggest that activation of group II and III mGlu receptors is mediated not only by glutamate, but also by physiologically relevant concentrations of chloride. PMID:26089372

  18. P2y Receptor-Mediated Angiogenesis via Vascular Endothelial Growth Factor Receptor 2 Signaling

    PubMed Central

    Rumjahn, Sharif M.; Baldwin, Karla A; Buxton, Iain L. O.

    2011-01-01

    Pathological as well as physiological angiogenesis is known to be regulated by such factors as nucleotides and Vascular Endothelial Growth Factor (VEGF). Activated P2Y nucleotide receptors have been observed to associate and transactivate VEGF Receptor 2 (VEGFR2), suggesting a cooperation between nucleotide and VEGF signaling in angiogenesis. P2YR mediated VEGFR2 signaling therefore may be important in describing the angiogenic signaling of nucleotides such as ATP. Here, we provide evidence that supports the notion of P2YR-VEGFR2 signaling. The significant angiogenic effect of P2Y1/2 receptor agonists (100 μM ATP and 10 μM 2MS-ATP) on endothelial cell tubulogenesis was suppressed back to near control levels upon addition of 1 μM SU1498 (specific VEGFR2 tyrosine kinase inhibitor). We believe that this P2YR-VEFGR2 signaling is an important component of pathological, as well as physiological angiogenesis. PMID:18605230

  19. Angiotensin II centrally induces frequent detrusor contractility of the bladder by acting on brain angiotensin II type 1 receptors in rats

    PubMed Central

    Kawamoto, Bunya; Shimizu, Shogo; Shimizu, Takahiro; Higashi, Youichirou; Honda, Masashi; Sejima, Takehiro; Saito, Motoaki; Takenaka, Atsushi

    2016-01-01

    Angiotensin (Ang) II plays an important role in the brain as a neurotransmitter and is involved in psychological stress reactions, for example through activation of the sympatho-adrenomedullary system. We investigated the effects of centrally administered Ang II on the micturition reflex, which is potentially affected by the sympatho-adrenomedullary system, and brain Ang II receptors in urethane-anesthetized (1.0 g/kg, intraperitoneally) male rats. Central administration of Ang II (0.01, 0.02, and 0.07 nmol per rat, intracerebroventricularly, icv) but not vehicle rapidly and dose-dependently decreased the urinary bladder intercontraction interval, without altering the bladder detrusor pressure. Central administration of antagonists of Ang II type 1 but not type 2 receptors inhibited the Ang II-induced shortening of intercontraction intervals. Administration of the highest dose of Ang II (0.07 nmol per rat, icv) but not lower doses (0.01 and 0.02 nmol per rat, icv) elevated the plasma concentration of adrenaline. Bilateral adrenalectomy reduced Ang II-induced elevation in adrenaline, but had no effect on the Ang II-induced shortening of the intercontraction interval. These data suggest that central administration of Ang II increases urinary frequency by acting on brain Ang II type 1 receptors, independent of activation of the sympatho-adrenomedullary system. PMID:26908391

  20. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis

    PubMed Central

    Konopacki, Filip A.; Dwivedy, Asha; Bellon, Anaïs; Blower, Michael D.

    2016-01-01

    Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo. These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS. PMID:27248654

  1. Epidermal growth factor receptor inhibitor therapy for recurrent respiratory papillomatosis

    PubMed Central

    Sidman, James D.

    2013-01-01

    The epidermal growth factor pathway has been implicated in various tumors, including human papillomavirus (HPV) lesions such as recurrent respiratory papillomatosis (RRP). Due to the presence of epidermal growth factor receptors in RRP, epidermal growth factor receptor (EGFR) inhibitors have been utilized as adjuvant therapy. This case series examines the response to EGFR inhibitors in RRP. Four patients with life-threatening RRP were treated with EGFR inhibitors. Operative frequency and anatomical Derkay scores were calculated prior to, and following EGFR inhibitor treatment via retrospective chart review. The anatomical Derkay score decreased for all four patients after initiation of EGFR inhibitor therapy. In one patient, the operative frequency increased after switching to an intravenous inhibitor after loss of control with an oral inhibitor. In the other patients there was a greater than 20% decrease in operative frequency in one and a more than doubling in the time between procedures in two.  This study suggests that EGFR inhibitors are a potential adjuvant therapy in RRP and deserve further study in a larger number of patients. PMID:24795806

  2. Tumor necrosis factor: receptor binding and expression of receptors in cultured mouse hepatocytes.

    PubMed

    Adamson, G M; Billings, R E

    1994-04-01

    Recombinant murine tumor necrosis factor (TNF-alpha) was labeled with 125I and used to determine the binding characteristics, internalization and intracellular degradation in cultured mouse hepatocytes. [125I]TNF-alpha bound specifically to hepatocytes and Scatchard analysis of the data indicated binding to both a low-affinity (Kd = 20 nM) high capacity (51225 sites/cell) component and high-affinity component (Kd = 4 pM), with low capacity (290 sites/cell). The extent of TNF-alpha binding to hepatocytes correlated closely with its biological activity in hepatocytes, as indexed by depletion of intracellular ATP. At concentrations lower than 0.06 nM there was minimal binding and no effect on cellular ATP, whereas maximal binding at concentrations greater than 45 nM caused 80% depletion (in comparison to controls) of hepatocyte ATP. Incubation at 37 degrees C resulted in rapid uptake, internalization and degradation of [125I]TNF-alpha. This was followed by release of degraded material from hepatocytes. Examination, by reverse transcriptase/polymerase chain reaction technology, of hepatocyte RNA extracted after the 4-hr adherence period revealed that mouse hepatocytes expressed mRNA for both TNF-alpha receptor 1 and TNF-alpha receptor 2, and that the relative abundance of TNF-alpha receptor 1 was approximately 7-fold greater than that for TNF-alpha receptor 2. Because it has been shown that these receptors have different affinities for TNF-alpha, this may explain the high- and low-affinity binding sites present on cultured mouse hepatocytes.

  3. Angiotensin II inhibits insulin-stimulated phosphorylation of eukaryotic initiation factor 4E-binding protein-1 in proximal tubular epithelial cells.

    PubMed Central

    Senthil, D; Faulkner, J L; Choudhury, G G; Abboud, H E; Kasinath, B S

    2001-01-01

    Interaction between angiotensin II, which binds a G-protein-coupled receptor, and insulin, a ligand for receptor tyrosine kinase, was examined in renal proximal tubular epithelial cells. Augmented protein translation by insulin involves activation of eukaryotic initiation factor 4E (eIF4E) which follows the release of the factor from a heterodimeric complex by phosphorylation of its binding protein, 4E-BP1. Angiotensin II (1 nM) or insulin (1 nM) individually stimulated 4E-BP1 phosphorylation. However, pre-incubation with angiotensin II abrogated insulin-induced phosphorylation of 4E-BP1, resulting in persistent binding to eIF4E. Although angiotensin II and insulin individually activated phosphoinositide 3-kinase and extracellular signal-regulated kinase (ERK)-1/-2-type mitogen-activated protein (MAP) kinase, pre-incubation with angiotensin II abolished insulin-induced stimulation of these kinases, suggesting more proximal events in insulin signalling may be intercepted. Pretreatment with angiotensin II markedly inhibited insulin-stimulated tyrosine phosphorylation of insulin-receptor beta-chain and insulin-receptor substrate 1. Losartan prevented angiotensin II inhibition of insulin-induced ERK-1/-2-type MAP kinase activation and 4E-BP1 phosphorylation, suggesting mediation of the effect of angiotensin II by its type 1 receptor. Insulin-stimulated de novo protein synthesis was also abolished by pre-incubation with angiotensin II. These data show that angiotensin II inhibits 4E-BP1 phosphorylation and stimulation of protein synthesis induced by insulin by interfering with proximal events in insulin signalling. Our data provide a mechanistic basis for insulin insensitivity induced by angiotensin II. PMID:11695995

  4. Epidermal growth factor receptors in the canine antrum

    SciTech Connect

    Zimmerman, R.P.; Gates, T.S.; Boehmer, C.G.; Mantyh, P.W.

    1988-11-01

    In this study we localized receptor binding sites for /sup 125/I-human epidermal growth factor (hEGF) in the antrum of the adult canine stomach. High levels of specific /sup 125/I-hEGF binding sites were observed over the mucosa and muscularis mucosa, whereas specific binding sites were not detectable over the submucosa, external circular and longitudinal muscle or myenteric neurons. These results are in agreement with previous studies which indicated that EGF stimulates the proliferation of cultured epithelial cells and inhibits gastric acid secretion. This suggests that EGF may be a useful therapeutic agent in the healing of gastric ulcers.

  5. Epidermal growth factor and its receptors in human pancreatic carcinoma

    SciTech Connect

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N. )

    1990-05-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells.

  6. Type II Turn of Receptor-bound Salmon Calcitonin Revealed by X-ray Crystallography.

    PubMed

    Johansson, Eva; Hansen, Jakob Lerche; Hansen, Ann Maria Kruse; Shaw, Allan Christian; Becker, Peter; Schäffer, Lauge; Reedtz-Runge, Steffen

    2016-06-24

    Calcitonin is a peptide hormone consisting of 32 amino acid residues and the calcitonin receptor is a Class B G protein-coupled receptor (GPCR). The crystal structure of the human calcitonin receptor ectodomain (CTR ECD) in complex with a truncated analogue of salmon calcitonin ([BrPhe(22)]sCT(8-32)) has been determined to 2.1-Å resolution. Parallel analysis of a series of peptide ligands showed that the rank order of binding of the CTR ECD is identical to the rank order of binding of the full-length CTR, confirming the structural integrity and relevance of the isolated CTR ECD. The structure of the CTR ECD is similar to other Class B GPCRs and the ligand binding site is similar to the binding site of the homologous receptors for the calcitonin gene-related peptide (CGRP) and adrenomedulin (AM) recently published (Booe, J. M., Walker, C. S., Barwell, J., Kuteyi, G., Simms, J., Jamaluddin, M. A., Warner, M. L., Bill, R. M., Harris, P. W., Brimble, M. A., Poyner, D. R., Hay, D. L., and Pioszak, A. A. (2015) Mol. Cell 58, 1040-1052). Interestingly the receptor-bound structure of the ligand [BrPhe(22)]sCT(8-32) differs from the receptor-bound structure of the homologous ligands CGRP and AM. They all adopt an extended conformation followed by a C-terminal β turn, however, [BrPhe(22)]sCT(8-32) adopts a type II turn (Gly(28)-Thr(31)), whereas CGRP and AM adopt type I turns. Our results suggest that a type II turn is the preferred conformation of calcitonin, whereas a type I turn is the preferred conformation of peptides that require RAMPs; CGRP, AM, and amylin. In addition the structure provides a detailed molecular explanation and hypothesis regarding ligand binding properties of CTR and the amylin receptors.

  7. Characterization and localization of nerve growth factor receptors in the embryonic otic vesicle and cochleovestibular ganglion

    SciTech Connect

    Bernd, P.; Represa, J. )

    1989-07-01

    We have investigated the possibility that nerve growth factor (NGF) may play a role in the development of the inner ear. Primordia of the inner ear, the otic vesicle (OV) and cochleovestibular ganglion (CVG), were isolated from 72-hr (stage 19-20) quail embryos and examined for the presence of NGF receptors. Quantitative binding studies revealed that both OV and CVG exhibited specific 125I-NGF binding; levels of nonspecific binding were 6 to 26% of total binding. Scatchard analysis yielded a linear plot, indicating the presence of a single class of NGF receptor. The average binding constant (Kd) was 8.0 nM for OV and 8.6 nM for CVG, corresponding to the low affinity (site II) NGF receptor. Examination of light microscopic radioautographs indicated that most of the specific 125I-NGF binding was located in the ventromedial wall of the OV, with little or no binding in the lateral wall and endolymphatic primordia. These studies were corroborated by microdissection of OV, in which 70% of the radioactivity was found to be localized in the medial half of the OV. In CVG, specific 125I-NGF binding was more concentrated in the cochlear portion of the ganglion, with silver grains primarily over areas containing support cells and immature neurons. Quantitative binding studies with isolated cochlear and vestibular ganglia obtained from 144-hr (stage 29-30) quail embryos revealed that the cochlear ganglion exhibited three times more specific 125I-NGF binding than the vestibular ganglion. The presence of NGF receptors on OV and CVG suggests that these structures are responsive to and/or dependent upon NGF. The following paper examines the question of whether NGF serves either as a mitogen, a survival factor, or a differentiation factor in this system.

  8. Reduced proximal tubule angiotensin II receptor expression in streptozotocin-induced diabetes mellitus.

    PubMed

    Cheng, H F; Burns, K D; Harris, R C

    1994-12-01

    Diabetes mellitus is characterized by alterations in the intrarenal renin-angiotensin system, including decreases in glomerular angiotensin II (Ang II) receptor density. Since Ang II regulates proximal tubule transport function, the present studies examined whether diabetes altered expression of proximal tubule receptors. In basolateral membranes from 14 day streptozotocin-induced diabetic rats, specific binding of 125I Ang II was decreased to 53 +/- 8% of control (3.2 +/- 0.5 vs. 1.5 +/- 0.2 fmol/mg protein; N = 7; P < 0.02). Similarly, in proximal tubule brush border membranes from diabetic animals, specific binding was decreased to 63 +/- 11% of control (1.1 +/- 0.2 vs 0.6 +/- 0.1 fmol/mg protein; N = 9; P < 0.05). Concomitant insulin treatment reversed the decrease in specific binding of 125I Ang II to basolateral membranes (109 +/- 26% of control; N = 3) and to brush border membranes (85 +/- 17% of control; N = 6). In order to determine if changes in expression of type-1 Ang II receptors (AT1R) accompanied the changes in binding, quantitative polymerase chain reaction of AT1R mRNA was performed and expressed as the ratio of the amplified AT1R to that of an Msc1/Msc1 internal deletion mutant and normalized to that of beta-actin. In total RNA from proximal tubule suspensions of diabetic animals, AT1R mRNA expression decreased by 38% (21 +/- 3 vs. 13 +/- 2 cpm AT1R/cpm deletion mutant/cpm beta actin/10(6); N = 4; P < 0.0025). Insulin treatment reverted AT1R mRNA expression to control levels (22 +/- 3 cpm AT1R/cpm deletion mutant/cpm beta actin/10(6); P < 0.001 compared to the untreated group).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7700017

  9. Upregulation of M3 muscarinic receptor inhibits cardiac hypertrophy induced by angiotensin II

    PubMed Central

    2013-01-01

    Background M3 muscarinic acetylcholine receptor (M3-mAChR) is stably expressed in the myocardium, but its pathophysiological role remains largely undefined. This study aimed to investigate the role of M3-mAChR in cardiac hypertrophy induced by angiotensin II (Ang II) and elucidate the underlying mechanisms. Methods Cardiac-specific M3-mAChR overexpression transgenic (TG) mice and rat H9c2 cardiomyoblasts with ectopic expression of M3-mAChR were established. Models of cardiac hypertrophy were induced by transverse aortic constriction (TAC) or Ang II infusion in the mice in vivo, and by isoproterenol (ISO) or Ang II treatment of H9c2 cells in vitro. Cardiac hypertrophy was evaluated by electrocardiography (ECG) measurement, hemodynamic measurement and histological analysis. mRNA and protein expression were detected by real-time RT-PCR and Western blot analysis. Results M3-mAChR was upregulated in hypertrophic heart, while M2-mAChR expression did not change significantly. M3-mAChR overexpression significantly attenuated the increased expression of atrial natriuretic peptide and β-myosin heavy chain induced by Ang II both in vivo and in vitro. In addition, M3-mAChR overexpression downregulated AT1 receptor expression and inhibited the activation of MAPK signaling in the heart. Conclusion The upregulation of M3-mAChR during myocardial hypertrophy could relieve the hypertrophic response provoked by Ang II, and the mechanism may involve the inhibition of MAPK signaling through the downregulation of AT1 receptor. PMID:24028210

  10. Coregulation of Epidermal Growth Factor Receptor/Human Epidermal Growth Factor Receptor 2 (HER2) Levels and Locations: Quantitative Analysis of HER2 Overexpression Effects

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee; Wiley, H. S.; Lauffenburger, Douglas A.

    2003-03-01

    Elevated expression of human epidermal growth factor receptor 2 (HER2) is know to alter cell signalilng and behavioral responses implicated in tumor progression. However, multiple diverse mechanisms may be involved in these overall effects, including signaling by HER2 itself, modulation of signalilng by epidermal growth factor receptor (EGFR) and modification of trafficking dynamics for both EGFR and HER2. Continued....

  11. Interleukin-1 stimulates the expression of type I and type II interleukin-1 receptors in the rat insulinoma cell line Rinm5F; sequencing a rat type II interleukin-1 receptor cDNA.

    PubMed

    Bristulf, J; Gatti, S; Malinowsky, D; Bjork, L; Sundgren, A K; Bartfai, T

    1994-01-01

    The insulin secreting rat Rinm5F cells are often used to study the cytotoxic actions of interleukin-1 (IL-1) on pancreatic beta-cells. We demonstrate here that Rinm5F insulinoma cells express both type I and type II interleukin-1 receptor (IL-1R) mRNAs and gene products. IL-1R agonists, recombinant murine IL-1 alpha (rmIL-1 alpha, 10 ng/ml) and recombinant rat IL-1 beta (rrIL-1 beta, 100 pg/ml or 10 ng/ml) induce the upregulation of mRNA expression for both types of IL-1 receptors (IL-1Rs). This effect of rrIL-1 beta is antagonised by preincubation with recombinant human interleukin 1 receptor antagonist protein (rhIL-1ra, 5 micrograms/ml). Furthermore, this rrIL-1 beta induced upregulation of IL-1R mRNAs is blocked by actinomycin D (7.5 micrograms/ml), whereas cycloheximide (20 micrograms/ml) has no effect. The phorbol ester PMA (20 nM) upregulates the expression of mRNAs both IL-1 receptors, whereas glucose (50 mM) upregulates the expression of the type I IL-1R mRNA only. Pretreatment of cells with pertussis toxin (100 ng/ml) partially blocks the rrIL-1 beta induced expression of mRNA for the type I and, to a lesser extent, the type II IL-1R. Incubation of the cells with rrIL-1 beta also induces a time-dependent expression of c-fos, interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-alpha) mRNAs. Binding studies with 125I-recombinant human IL-1 beta (125I-rhIL-1 beta) indicate that IL-1R gene products, with the ligand binding characteristics of the type I IL-1R, are constitutively present on Rinm5F cells. Treatment with rrIL-1 beta (6h) increases the number of 125I-rhIL-1 beta binding sites on Rinm5F cells. We have also demonstrated that the number of type II IL-1R binding sites increases after induction with rrIL-1 beta (6h), by indirect immunofluorescence using a monoclonal antibody (ALVA 42) raised against the human type II IL-1R. Furthermore, we have sequenced the type II IL-1R cDNA in the rat insulinoma Rinm5F cells. The comparison of the amino acid

  12. The angiotensin II type 1 receptor blocker candesartan suppresses proliferation and fibrosis in gastric cancer.

    PubMed

    Okazaki, Mitsuyoshi; Fushida, Sachio; Harada, Shinichi; Tsukada, Tomoya; Kinoshita, Jun; Oyama, Katsunobu; Tajima, Hidehiro; Ninomiya, Itasu; Fujimura, Takashi; Ohta, Tetsuo

    2014-12-01

    Gastric cancer with peritoneal dissemination has poor clinical prognosis because of the presence of rich stromal fibrosis and acquired drug resistance. Recently, Angiotensin II type I receptor blockers such as candesartan have attracted attention for their potential anti-fibrotic activity. We examined whether candesartan could attenuate tumor proliferation and fibrosis through the interaction between gastric cancer cell line (MKN45) cells and human peritoneal mesothelial cells. Candesartan significantly reduced TGF-β1 expression and epithelial-to-mesenchymal transition-like change, while tumor proliferation and stromal fibrosis were impaired. Targeting the Angiotensin II signaling pathway may therefore be an efficient strategy for treatment of tumor proliferation and fibrosis. PMID:25224569

  13. Polymorphisms in Factor II and Factor V thrombophilia genes among Circassians in Jordan.

    PubMed

    Dajani, R; Arafat, A; Hakooz, N; Al-Abbadi, Z; Yousef, Al-Motassem; El Khateeb, M; Quadan, F

    2013-01-01

    Thrombosis is a major cause of morbidity and mortality worldwide. Genetic factors are one component of thrombosis. We studied the prevalence of two mutations that are known risk factors in the pathogenesis of arterial and venous thrombosis in the genetically isolated Circassian population in Jordan. Factor II G20210A and Factor V Leiden single nucleotide polymorphisms were analysed by polymerase chain reaction and restriction fragment length polymorphism method in 104 random unrelated subjects from the Circassian population in Jordan. The prevalence rates among the Circassian population in Jordan for Factor II G20210A was 12.2% and for Factor V Leiden was 7.7%. We have shown that the population is in Hardy-Weinberg equilibrium and that the prevalences of both mutations are within the range of other ethnic groups. This is the first study to describe Circassian health related genetic characteristics in Jordan. Such population-based studies will contribute to understanding the interaction between genetic and environmental risk factors. It will remain to be seen whether carriers of Factor II G20210A and Factor V Leiden are more likely to develop thrombosis. This issue should be studied in the future to determine the need for screening of these mutations particularly in thrombophilia patients.

  14. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine.

    PubMed

    De Mattia, Elena; Cecchin, Erika; Roncato, Rossana; Toffoli, Giuseppe

    2016-09-01

    Great research effort has been focused on elucidating the contribution of host genetic variability on pharmacological outcomes in cancer. Nuclear receptors have emerged as mediators between environmental stimuli and drug pharmacokinetics and pharmacodynamics. The pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors have been reported to regulate transcription of genes that encode drug metabolizing enzymes and transporters. Altered nuclear receptor expression has been shown to affect the metabolism and pharmacological profile of traditional chemotherapeutics and targeted agents. Accordingly, polymorphic variants in these genes have been studied as pharmacogenetic markers of outcome variability. This review summarizes the state of knowledge about the roles played by pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factor expression and genetics as predictive markers of anticancer drug toxicity and efficacy, which can improve cancer precision medicine. PMID:27561454

  15. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine.

    PubMed

    De Mattia, Elena; Cecchin, Erika; Roncato, Rossana; Toffoli, Giuseppe

    2016-09-01

    Great research effort has been focused on elucidating the contribution of host genetic variability on pharmacological outcomes in cancer. Nuclear receptors have emerged as mediators between environmental stimuli and drug pharmacokinetics and pharmacodynamics. The pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors have been reported to regulate transcription of genes that encode drug metabolizing enzymes and transporters. Altered nuclear receptor expression has been shown to affect the metabolism and pharmacological profile of traditional chemotherapeutics and targeted agents. Accordingly, polymorphic variants in these genes have been studied as pharmacogenetic markers of outcome variability. This review summarizes the state of knowledge about the roles played by pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factor expression and genetics as predictive markers of anticancer drug toxicity and efficacy, which can improve cancer precision medicine.

  16. Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta.

    PubMed

    Bruno, V; Battaglia, G; Casabona, G; Copani, A; Caciagli, F; Nicoletti, F

    1998-12-01

    The medium collected from cultured astrocytes transiently exposed to the group-II metabotropic glutamate (mGlu) receptor agonists (2S,1'R, 2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) or (S)-4-carboxy-3-hydroxyphenylglycine (4C3HPG) is neuroprotective when transferred to mixed cortical cultures challenged with NMDA (). The following data indicate that this particular form of neuroprotection is mediated by transforming growth factor-beta (TGFbeta). (1) TGFbeta1 and -beta2 were highly neuroprotective against NMDA toxicity, and their action was less than additive with that produced by the medium collected from astrocytes treated with DCG-IV or 4C3HPG (GM/DCG-IV or GM/4C3HPG); (2) antibodies that specifically neutralized the actions of TGFbeta1 or -beta2 prevented the neuroprotective activity of DCG-IV or 4C3HPG, as well as the activity of GM/DCG-IV or GM/4C3HPG; and (3) a transient exposure of cultured astrocytes to either DCG-IV or 4C3HPG led to a delayed increase in both intracellular and extracellular levels of TGFbeta. We therefore conclude that a transient activation of group-II mGlu receptors (presumably mGlu3 receptors) in astrocytes leads to an increased formation and release of TGFbeta, which in turn protects neighbor neurons against excitotoxic death. These results offer a new strategy for increasing the local production of neuroprotective factors in the CNS. PMID:9822720

  17. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis

    PubMed Central

    Calvo, Charles-Félix; Fontaine, Romain H.; Soueid, Jihane; Tammela, Tuomas; Makinen, Taija; Alfaro-Cervello, Clara; Bonnaud, Fabien; Miguez, Andres; Benhaim, Lucile; Xu, Yunling; Barallobre, Maria-José; Moutkine, Imane; Lyytikkä, Johannes; Tatlisumak, Turgut; Pytowski, Bronislaw; Zalc, Bernard; Richardson, William; Kessaris, Nicoletta; Garcia-Verdugo, Jose Manuel; Alitalo, Kari; Eichmann, Anne; Thomas, Jean-Léon

    2011-01-01

    Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases. PMID:21498572

  18. Role of fibroblast growth factor receptors in astrocytic stem cells

    PubMed Central

    Galvez-Contreras, Alma Y.; Gonzalez-Castaneda, Rocio E; Luquin, Sonia; Gonzalez-Perez, Oscar

    2012-01-01

    There are two well-defined neurogenic regions in the adult brain, the subventricular zone (SVZ) lining the lateral wall of the lateral ventricles and, the subgranular zone (SGZ) in the dentate gyrus at the hippocampus. Within these neurogenic regions, there are neural stem cells with astrocytic characteristics, which actively respond to the basic fibroblast growth factor (bFGF, FGF2 or FGF-β) by increasing their proliferation, survival and differentiation, both in vivo and in vitro. FGF2 binds to fibroblast growth factor receptors 1 to 4 (FGFR1, FGFR2, FGFR3, FGFR4). Interestingly, these receptors are differentially expressed in neurogenic progenitors. During development, FGFR-1 and FGFR-2 drive oligodendrocytes and motor neuron specification. In particular, FGFR-1 determines oligodendroglial and neuronal cell fate, whereas FGFR-2 is related to oligodendrocyte specification. In the adult SVZ, FGF-2 promotes oligodendrogliogenesis and myelination. FGF-2 deficient mice show a reduction in the number of new neurons in the SGZ, which suggests that FGFR-1 is important for neuronal cell fate in the adult hippocampus. In human brain, FGF-2 appears to be an important component in the anti-depressive effect of drugs. In summary, FGF2 is an important modulator of the cell fate of neural precursor and, promotes oligodendrogenesis. In this review, we describe the expression pattern of FGFR2 and its role in neural precursors derived from the SVZ and the SGZ. PMID:22347841

  19. Persistently elevated soluble tumor necrosis factor receptor and interleukin-1 receptor antagonist levels in critically ill patients.

    PubMed

    Rogy, M A; Coyle, S M; Oldenburg, H S; Rock, C S; Barie, P S; Van Zee, K J; Smith, C G; Moldawer, L L; Lowry, S F

    1994-02-01

    The appearance of endogenously produced inhibitors against tumor necrosis factor (TNF) (soluble TNF-receptor type I, sTNFR-I) and interleukin-1 (IL-1 receptor antagonist, IL-1ra) was evaluated acutely in five normal patients after experimental endotoxemia lipopolysaccharide (LPS) and prospectively during a one to 11 week period in 12 septic, critically ill patients. Increased levels of both factors remained detectable in the circulation for up to 24 hours after LPS (2 nanograms per kilogram body weight) administration in normal patients. Despite free TNF-a activity being detected only sporadically (3 percent of the samples) and that IL-1 beta was never detectable in the patients in the intensive care unit, IL-6 bioactivity was present in 90 percent of initial samples. Circulating sTNFR-I levels up to 62,000 picograms per milliliter and IL-1ra levels of 14,800 picograms per milliliter were noted in the critically ill patients and remained consistently detectable throughout the extended period of evaluation. While there was no difference in IL-1ra levels between patients who survived or ultimately died, sTNFR-I levels were significantly (p < 0.001) lower in survivors compared with nonsurvivors. A correlation between circulating sTNFR-I and concurrent cortisol levels (r = 0.64; p < 0.002) was also noted. Furthermore, a correlation between sTNFR-I and the severity of initial insult, as assessed by APACHE II scores (r = 0.54; p < 0.01) was demonstrable. These naturally occurring cytokine antagonists likely represent additional indicators of the presence of an infectious or other inflammatory process and seem to persist in the circulation even during conditions in which their respective proinflammatory cytokines are not demonstrable. PMID:8173722

  20. Diminazene aceturate, an angiotensin-converting enzyme II activator, prevents gastric mucosal damage in mice: Role of the angiotensin-(1-7)/Mas receptor axis.

    PubMed

    Souza, Luan Kelves M; Nicolau, Lucas A D; Sousa, Nayara A; Araújo, Thiago S L; Sousa, Francisca Beatriz M; Costa, Douglas S; Souza, Fabiana M; Pacífico, Dvison M; Martins, Conceição S; Silva, Renan O; Souza, Marcellus H L P; Cerqueira, Gilberto S; Medeiros, Jand Venes R

    2016-07-15

    The angiotensin (Ang) II converting enzyme (ACE II) pathway has recently been shown to be associated with several beneficial effects in various organisms, including gastroprotection. ACE II is responsible for converting Ang II into an active peptide, Ang-(1-7), which in turn binds the Mas receptor. Recent studies have shown that diminazene aceturate (Dize) a trypanocidal used in animals, activates ACE II. Thus, in this study, we aimed to evaluate the gastroprotective effects of Dize via the ACE II/Ang-(1-7)/Mas receptor pathway against gastric lesions induced by ethanol and acetic acid in mice. The results showed that Dize could promote gastric protection via several mechanisms, including increased levels of antioxidants and anti-inflammatory factors (e.g., decreasing tumor necrosis factor and interleukin-6 expression and reducing myeloperoxidase activity), maturation of collagen fibers, and promotion of re-epithelialization and regeneration of gastric tissue in different injury models. Thus, Dize represents a novel potential gastroprotective agent. PMID:27241079

  1. Dynamic Arginine Methylation of Tumor Necrosis Factor (TNF) Receptor-associated Factor 6 Regulates Toll-like Receptor Signaling*

    PubMed Central

    Tikhanovich, Irina; Kuravi, Sudhakiranmayi; Artigues, Antonio; Villar, Maria T.; Dorko, Kenneth; Nawabi, Atta; Roberts, Benjamin; Weinman, Steven A.

    2015-01-01

    Arginine methylation is a common post-translational modification, but its role in regulating protein function is poorly understood. This study demonstrates that, TNF receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase involved in innate immune signaling, is regulated by reversible arginine methylation in a range of primary and cultured cells. Under basal conditions, TRAF6 is methylated by the methyltransferase PRMT1, and this inhibits its ubiquitin ligase activity, reducing activation of toll-like receptor signaling. In response to toll-like receptor ligands, TRAF6 is demethylated by the Jumonji domain protein JMJD6. Demethylation is required for maximal activation of NF-κB. Loss of JMJD6 leads to reduced response, and loss of PRMT1 leads to basal pathway activation with subsequent desensitization to ligands. In human primary cells, variations in the PRMT1/JMJD6 ratio significantly correlate with TRAF6 methylation, basal activation of NF-κB, and magnitude of response to LPS. Reversible arginine methylation of TRAF6 by the opposing effects of PRMT1 and JMJD6 is, therefore, a novel mechanism for regulation of innate immune pathways. PMID:26221041

  2. The properties of bird feathers as converse piezoelectric transducers and as receptors of microwave radiation. II. Bird feathers as dielectric receptors of microwave radiation.

    PubMed

    Bigu-del-Blanco, J; Romero-Sierra, C

    1975-01-01

    The characteristics of bird feathers as receptors of microwave fields were investigated in the 10- to 16-GHz region. Experiments were conducted coupling the specimen (feather) to a length of waveguide which served, together with other microwave components, as a primary detector. Microwave power radiation patterns were measured both in the presence and in the absence of the specimen. Results indicated a substantial increase in the microwave power collected in the forward direction and a decrease of the radiation pattern beam width when the feather was present. Fruthermore, some experiemental evidence indicated the possibility of inducing piezoelectric effects in the specimen by audiofrequency pulse-modulated microwave fields. These results are important in view of (i) the fundamental role that feathers play in the life of birds and (ii) the influence of environmental factors on bird behaviour. PMID:1242004

  3. Angiotensin II receptor blocker candesartan cilexetil, but not hydralazine hydrochloride, protects against mouse cardiac enlargement resulting from undernutrition in utero.

    PubMed

    Kawamura, Makoto; Itoh, Hiroaki; Yura, Shigeo; Mogami, Haruta; Fujii, Tsuyoshi; Kanayama, Naohiro; Konishi, Ikuo

    2009-10-01

    Epidemiologic studies have shown that malnutrition in utero is a risk factor for cardiovascular disease (CVD) in adulthood. Recently, we reported a mouse animal model of 30% maternal caloric reduction, in which adult offspring (undernourished [UN] offspring) showed a significant increase in cardiac remodeling-associated parameters, such as cardiac enlargement (CE) and coronary perivascular fibrosis (CPVF), as risk factors for CVD. To investigate the possible involvement of the angiotensin system, an angiotensin II receptor antagonist, candesartan cilexetil, or a nonspecific vasodilator, hydralazine hydrochloride, was administrated via a subcutaneously implanted miniosmotic pump to the UN offspring from 9 to 17 weeks after birth. Administration of candesartan cilexetil, but not hydralazine hydrochloride, significantly protected against CE. While administration of not only candesartan cilexetil but also hydralazine hydrochloride prevented an augmentation of CPVF. The angiotensin system seems to make a critical contribution to the developmental origins of cardiac enlargement.

  4. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor

    PubMed Central

    Unal, Hamiyet; Karnik, Sadashiva S.; Node, Koichi

    2015-01-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109TM3, Phe182ECL2, Gln257TM6, Tyr292TM7, and Asn295TM7) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108TM3, Ser109TM3, Ala163TM4, Phe182ECL2, Lys199TM5, Tyr292TM7, and Asn295TM7), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R. PMID:26121982

  5. Epidermal growth factor receptor in breast cancer: storage conditions affecting measurement, and relationship to steroid receptors.

    PubMed

    McLeay, W R; Horsfall, D J; Seshadri, R; Morrison, D A; Saccone, G T

    1992-01-01

    This study investigates the effect of freezing and storage of tissue and subcellular fractions on the measurement of epidermal growth factor receptors (EGF-r); compares competition binding and single saturating dose assays (SSD) for quantitating EGF-r levels; investigates several tissues as potential quality control; and examines the relationship between EGF-r and hormone receptor expression in human breast cancers. Mouse and calf uterine cell membranes were preferred sources of quality control tissue with similar levels of high affinity EGF-r to human breast cancer tissue (less than 150-200 fmol/mg membrane protein). Studies using pooled mouse uterine tissues indicated a loss of 40% in EGF-r activity following a single-20 degrees C freeze/thaw cycle, while a breast cancer tissue showed a 75% loss, independent of storage temperature (liquid nitrogen, -70 degrees C, -20 degrees C). A single freeze/thaw cycle of mouse uterine broken cell pellets (nuclei plus membrane fraction) again indicated a loss of EGF-r irrespective of storage temperature (43% loss at -70 degrees C, 52% loss at -20 degrees C). In most cases irrespective of the tissue type or tissue fraction being stored, the length of storage had little impact on the extent of the loss in activity. A second freeze/thaw cycle of intact tissue, or freezing of broken cell pellets from a previously-frozen tissue, led to a further major or total loss of the remaining EGF-r. Overall these results are commensurate with the published effects of freezing and storage on estrogen receptor measurement. In addition, our studies suggest that the most suitable procedure for assaying frozen breast cancer specimens for EGF-r levels in conjunction with steroid receptor quantitation is to prepare and assay both cytosol and membrane fractions for their respective receptor content without further storage. A concordance of 86% was found in 44 breast cancers assayed for EGF-4 by saturation analysis and SSD. Statistically significant

  6. Direct angiotensin II type 2 receptor stimulation decreases dopamine synthesis in the rat striatum.

    PubMed

    Mertens, Birgit; Vanderheyden, Patrick; Michotte, Yvette; Sarre, Sophie

    2010-06-01

    A relationship between the central renin angiotensin system and the dopaminergic system has been described in the striatum. However, the role of the angiotensin II type 2 (AT(2)) receptor in this interaction has not yet been established. The present study examined the outcome of direct AT(2) receptor stimulation on dopamine (DA) release and synthesis by means of the recently developed nonpeptide AT(2) receptor agonist, compound 21 (C21). The effects of AT(2) receptor agonism on the release of DA and its major metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) and on the activity of tyrosine hydroxylase (TH), the rate-limiting enzyme in the catecholamine biosynthesis, were investigated using in vivo microdialysis. Local administration of C21 (0.1 and 1 microM) resulted in a decrease of the extracellular DOPAC levels, whereas extracellular DA concentrations remained unaltered, suggesting a reduced synthesis of DA. This effect was mediated by the AT(2) receptor since it could be blocked by the AT(2) receptor antagonist PD123319 (1 microM). A similar effect was observed after local striatal (10 nM) as well as systemic (0.3 and 3 mg/kg i.p.) administration of the AT(1) receptor antagonist, candesartan. TH activity as assessed by accumulation of extracellular levels of L-DOPA after inhibition of amino acid decarboxylase with NSD1015, was also reduced after local administration of C21 (0.1 and 1 microM) and candesartan (10 nM). Together, these data suggest that AT(1) and AT(2) receptors in the striatum exert an opposite effect on the modulation of DA synthesis rather than DA release. PMID:20097214

  7. Ontogeny of angiotensin II receptors, types 1 and 2, in ovine mesonephros and metanephros.

    PubMed

    Butkus, A; Albiston, A; Alcorn, D; Giles, M; McCausland, J; Moritz, K; Zhuo, J; Wintour, E M

    1997-09-01

    By RNAse protection assay, hybridization histochemistry, and in vitro autoradiography it was shown that both mRNA and protein for AT1 and AT2 receptors were present in ovine fetal meso- and metanephroi at 40 days of gestation (term approximately 150 days). AT1 mRNA was localized to presumptive mesangial cells of glomeruli at 40-, 75-, 131-gestational-day-old fetuses and two-day-old lambs, in addition to being widely present in interstitial cells of the cortex and medulla, once these zones formed (60 days). By two days after birth the medullary AT1 distribution was confined to the inner stripe of the outer medulla. AT2 mRNA was present in peripheral interstitial/tissue of the mesonephros, and interstitial tissue surrounding developing glomeruli, but not the outermost nephrogenic mesenchyme in the metanephros from 40 to approximately 131 days (the period of active nephrogenesis). In addition, AT2 mRNA was localized to epithelial cells of the macula densa in metanephroi (40 to 131 gestational days) during, but not after completion, of nephrogenesis. These studies suggest that angiotensin II (Ang II) could have differentiating effects, via AT1 receptors, from very early in development. The unique epithelial site of AT2 expression in the macula densa raises the possibility that Ang II may play a role in the invariant positioning of the macula densa at the pole of its glomerulus, via this receptor.

  8. Tumor Necrosis Factor: A Mechanistic Link between Angiotensin-II-Induced Cardiac Inflammation and Fibrosis

    PubMed Central

    Duerrschmid, Clemens; Trial, JoAnn; Wang, Yanlin; Entman, Mark L.; Haudek, Sandra B.

    2015-01-01

    Background Continuous angiotensin-II (Ang-II) infusion induced the uptake of monocytic fibroblast precursors that initiated the development of cardiac fibrosis; these cells and concurrent fibrosis were absent in mice lacking tumor necrosis factor-alpha receptor 1 (TNFR1). We now investigated their cellular origin and temporal uptake, and the involvement of TNFR1 in monocyte-to-fibroblast differentiation. Methods and Results Within a day, Ang-II induced a pro-inflammatory environment characterized by production of inflammatory chemokines, cytokines, and TH1-interleukins and uptake of bone marrow-derived M1-cells. After a week, the cardiac environment changed to profibrotic with growth-factor and TH2-interleukin synthesis, uptake of bone marrow-derived M2-cells, and presence of M2-related fibroblasts. TNFR1 signaling was not necessary for early M1 uptake, but its absence diminished the amount of M2-cells. TNFR1-KO hearts also showed reduced levels of cytokine expression, but not of TH-related lymphokines. Reconstitution of wild-type bone marrow into TNFR1-KO mice was sufficient to restore M2 uptake, upregulation of pro-inflammatory and pro-fibrotic genes, and development of fibrosis in response to Ang-II. We also developed an in vitro mouse monocyte-to-fibroblast-maturation assay that confirmed the essential role of TNFR1 in the sequential progression of monocyte activation and fibroblast formation. Conclusions Development of cardiac fibrosis in response to Ang-II was mediated by myeloid precursors and consisted of two stages. A primary M1 inflammatory response was followed by a subsequent M2 fibrotic response. While the first phase appeared to be independent of TNFR1 signaling, the later phase (and development of fibrosis) was abrogated by deletion of TNFR1. PMID:25550440

  9. Inactivation of the EP3 receptor attenuates the Angiotensin II pressor response via decreasing arterial contractility

    PubMed Central

    Chen, Lihong; Miao, Yifei; Zhang, Yahua; Dou, Dou; Liu, Limei; Tian, Xiaoyu; Yang, Guangrui; Pu, Dan; Zhang, Xiaoyan; Kang, Jihong; Gao, Yuansheng; Wang, Shiqiang; Breyer, Matthew D.; Wang, Nanping; Zhu, Yi; Huang, Yu; Breyer, Richard M; Guan, Youfei

    2012-01-01

    Objective The present studies aimed at elucidating the role of prostaglandin E2 (PGE2) receptor subtype 3 (EP3) in regulating blood pressure. Methods and Results Mice bearing a genetic disruption of the EP3 gene (EP3−/−) exhibited reduced baseline mean arterial pressure monitored by both tail-cuff and carotid arterial catheterization. The pressor responses induced by EP3 agonists M&B28767 and sulprostone were markedly attenuated in EP3−/− mice, while the reduction of BP induced by PGE2 was comparable in both genotypes. Vasopressor effect of acute or chronic infusion of angiotensin II (AngII) was attenuated in EP3−/− mice. AngII–induced vasoconstriction in mesenteric arteries decreased in EP3−/− group. In mesenteric arteries from wild type mice, AngII–induced vasoconstriction was inhibited by EP3 selective antagonist DG-041 or L798106. The expression of Arhgef-1 is attenuated in EP3 deficient mesenteric arteries. EP3 antagonist DG-041 diminished AngII-induced phosphorylation of MLC20 and MYPT1 in isolated mesenteric arteries. Furthermore, in vascular smooth muscle cells (VSMCs), AngII induced intracellular Ca2+ increase was potentiated by EP3 agonist sulprostone, while inhibited by DG-041. Conclusions Activation of the EP3 receptor raises baseline blood pressure and contributes to AngII-dependent hypertension at least partially via enhancing Ca2+ sensitivity and intracellular calcium concentration in VSMCs. Selective targeting of the EP3 receptor may represent a potential therapeutic target for the treatment of hypertension. PMID:23065824

  10. Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor.

    PubMed

    Reznik, Thomas E; Sang, Yingying; Ma, Yongxian; Abounader, Roger; Rosen, Eliot M; Xia, Shuli; Laterra, John

    2008-01-01

    The mechanisms and biological implications of coordinated receptor tyrosine kinase coactivation remain poorly appreciated. Epidermal growth factor receptor (EGFR) and c-Met are frequently coexpressed in cancers, including those associated with hepatocyte growth factor (HGF) overexpression, such as malignant astrocytoma. In a previous analysis of the HGF-induced transcriptome, we found that two EGFR agonists, transforming growth factor-alpha and heparin-binding epidermal growth factor-like growth factor (HB-EGF), are prominently up-regulated by HGF in human glioma cells. We now report that stimulating human glioblastoma cells with recombinant HGF induces biologically relevant EGFR activation. EGFR phosphorylation at Tyr(845) and Tyr(1068) increased 6 to 24 h after cell stimulation with HGF and temporally coincided with the induction of transforming growth factor-alpha (~5-fold) and HB-EGF (~23-fold) expression. Tyr(845) and Tyr(1068) phosphorylation, in response to HGF, was inhibited by cycloheximide and actinomycin D, consistent with a requirement for DNA transcription and RNA translation. Specifically, blocking HB-EGF binding to EGFR with the antagonist CRM197 inhibited HGF-induced EGFR phosphorylation by 60% to 80% and inhibited HGF-induced S-G(2)-M transition. CRM197 also inhibited HGF-induced anchorage-dependent cell proliferation but had no effect on HGF-mediated cytoprotection. These findings establish that EGFR can be activated with functional consequences by HGF as a result of EGFR ligand expression. This transcription-dependent cross-talk between the HGF receptor c-Met and EGFR expands our understanding of receptor tyrosine kinase signaling networks and may have considerable consequences for oncogenic mechanisms and cancer therapeutics.

  11. Chronic angiotensin II infusion modulates angiotensin II type I receptor expression in the subfornical organ and the rostral ventrolateral medulla in hypertensive rats.

    PubMed

    Nunes, Fabíola C; Braga, Valdir A

    2011-12-01

    Blood-borne angiotensin II (Ang II) has profound effects on the central nervous system, including regulation of vasopressin secretion and modulation of sympathetic outflow. However, the mechanism by which circulating Ang II affects the central nervous system remains largely unknown. We tested the hypothesis that increased circulating levels of Ang II activate angiotensin type I (AT1) receptors in the subfornical organ (SFO), increasing the Ang II signalling in the rostral ventrolateral medulla (RVLM). Male Wistar rats were subcutaneously implanted with two 14-day osmotic minipumps filled with Ang II (150 ng/kg/minute), Losartan (10mg/kg/day), or saline. In addition, AT1 receptor mRNA levels in the SFO and RVLM were detected by reverse transcription polymerase chain reaction (RT-PCR). Infusion of Ang II-induced hypertension (134 ± 10 mmHg vs 98 ± 9 mmHg, n = 9, p < 0.05), which was blunted by concomitant infusion of Losartan (105 ± 8 vs 134 ± 10 mmHg, n = 9, p < 0.05). In addition, hexamethonium produced a greater decrease in blood pressure in Ang II-infused rats. Real time PCR revealed that chronic Ang II infusion induced an increase in AT1 receptor mRNA levels in the RVLM and a decrease in the SFO. Taken together, using combined in vivo and molecular biology approaches, our data suggest that Ang II-induced hypertension is mediated by an increase in sympathetic nerve activity, which seems to involve up-regulation of AT1 receptors in the RVLM and down-regulation of AT1 receptors in the SFO. PMID:21393361

  12. Inhibition of mammillary body neurons by direct activation of Group II metabotropic glutamate receptors

    PubMed Central

    Lee, Charles C.

    2016-01-01

    The mammillary body is an important neural component of limbic circuitry implicated in learning and memory. Excitatory and inhibitory inputs, primarily mediated by glutamate and gamma-amino butyric acid (GABA), respectively, converge and integrate in this region, before sending information to the thalamus. One potentially overlooked mechanism for inhibition of mammillary body neurons is through direct activation of Group II metabotropic glutamate receptors (mGluRs). Here, whole-cell patch clamp recordings of in vitro slice preparations containing the mammillary body nuclei of the mouse were employed to record responses to bath application of pharmacological agents to isolate the direct effect of activating Group II mGluRs. Application of the Group II mGluR specific agonist, APDC, resulted in a hyperpolarization of the membrane potential in mammillary body neurons, likely resulting from the opening of a potassium conductance. These data suggest that glutamatergic inputs to the mammillary body may be attenuated via Group II mGluRs and implicates a functional role for these receptors in memory-related circuits and broadly throughout the central nervous system. PMID:27390777

  13. Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs

    PubMed Central

    Muguruza, Carolina; Meana, J. Javier; Callado, Luis F.

    2016-01-01

    Schizophrenia is a chronic psychiatric disorder which substantially impairs patients’ quality of life. Despite the extensive research in this field, the pathophysiology and etiology of schizophrenia remain unknown. Different neurotransmitter systems and functional networks have been found to be affected in the brain of patients with schizophrenia. In this context, postmortem brain studies as well as genetic assays have suggested alterations in Group II metabotropic glutamate receptors (mGluRs) in schizophrenia. Despite many years of drug research, several needs in the treatment of schizophrenia have not been addressed sufficiently. In fact, only 5–10% of patients with schizophrenia successfully achieve a full recovery after treatment. In recent years mGluRs have turned up as novel targets for the design of new antipsychotic medications for schizophrenia. Concretely, Group II mGluRs are of particular interest due to their regulatory role in neurotransmission modulating glutamatergic activity in brain synapses. Preclinical studies have demonstrated that orthosteric Group II mGluR agonists exhibit antipsychotic-like properties in animal models of schizophrenia. However, when these compounds have been tested in human clinical studies with schizophrenic patients results have been inconclusive. Nevertheless, it has been recently suggested that this apparent lack of efficacy in schizophrenic patients may be related to previous exposure to atypical antipsychotics. Moreover, the role of the functional heterocomplex formed by 5-HT2A and mGlu2 receptors in the clinical response to Group II mGluR agonists is currently under study. PMID:27242534

  14. Identification of a new fibroblast growth factor receptor, FGFR5.

    PubMed

    Sleeman, M; Fraser, J; McDonald, M; Yuan, S; White, D; Grandison, P; Kumble, K; Watson, J D; Murison, J G

    2001-06-27

    A novel fibroblast growth factor receptor (FGFR), designated FGFR5, was identified from an EST database of a murine lymph node stromal cell cDNA library. The EST has approximately 32% identity to the extracellular domain of FGFR1-4. Library screening with this EST identified two full-length alternative transcripts which we designated as FGFR5 beta and FGFR5 gamma. The main difference between these transcripts is that FGFR5 beta contains three extracellular Ig domains whereas FGFR5 gamma contains only two. A unique feature of FGFR5 is that it does not contain an intracellular tyrosine kinase domain. Predictive structural modelling of the extracellular domain of FGFR5 gamma suggested that it was a member of the I-set subgroup of the Ig-superfamily, consistent with the known FGFRs. Northern analysis of mouse and human FGFR5 showed detectable mRNA in a broad range of tissues, including kidney, brain and lung. Genomic sequencing identified four introns but identified no alternative transcripts containing a tyrosine kinase domain. Extracellular regions of FGFR5 beta and 5 gamma were cloned in-frame with the Fc fragment of human IgG(1) to generate recombinant non-membrane bound protein. Recombinant FGFR5 beta Fc and R5 gamma Fc demonstrated specific binding to the ligand FGF-2, but not FGF-7 or EGF. However, biological data suggest that FGF-2 binding to these proteins is with lower affinity than its cognate receptor FGFR2C. The above data indicate that this receptor should be considered as the fifth member of the FGFR family. PMID:11418238

  15. Angiotensin II attenuates NMDA receptor-mediated neuronal cell death and prevents the associated reduction in Bcl-2 expression.

    PubMed

    Schelman, William R; Andres, Robert; Ferguson, Paul; Orr, Brent; Kang, Evan; Weyhenmeyer, James A

    2004-09-10

    While angiotensin II (Ang II) plays a major role in the regulation of blood pressure, fluid homeostasis and neuroendocrine function, recent studies have also implicated the peptide hormone in cell growth, differentiation and apoptosis. In support of this, we have previously demonstrated that Ang II attenuates N-methyl-D-aspartate (NMDA) receptor signaling [Molec. Brain Res. 48 (1997) 197]. To further examine the modulatory role of Ang II on NMDA receptor function, we investigated the effect of angiotensin receptor (AT) activation on NMDA-mediated cell death and the accompanying decrease in Bcl-2 expression. The viability of differentiated N1E-115 and NG108-15 neuronal cell lines was reduced following exposure to NMDA in a dose-dependent manner. MTT analysis (mitochondrial integrity) revealed a decrease in cell survival of 49.4+/-12.3% in NG108 cells and 79.9+/-6.8% in N1E cells following treatment with 10 mM NMDA for 20 h. Cytotoxicity in N1E cells was inhibited by the noncompetitive NMDA receptor antagonist, MK-801. Further, NMDA receptor-mediated cell death in NG108 cells was attenuated by treatment with Ang II. The Ang II effect was inhibited by both AT1 and AT2 receptor antagonists, losartan and PD123319, respectively, suggesting that both receptor subtypes may play a role in the survival effect of Ang II. Since it has been shown that activation of NMDA receptors alters the expression of Bcl-2 family proteins, Western blot analysis was performed in N1E cells to determine whether Ang II alters the NMDA-induced changes in Bcl-2 expression. A concentration-dependent decrease of intracellular Bcl-2 protein levels was observed following treatment with NMDA, and this reduction was inhibited by MK801. Addition of Ang II suppressed the NMDA receptor-mediated reduction in Bcl-2. The Ang II effect on NMDA-mediated changes in Bcl-2 levels was blocked by PD123319, but was not significantly changed by losartan, suggesting AT2 receptor specificity. Taken together, these

  16. Actions of Xanthurenic acid, a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus.

    PubMed

    Copeland, C S; Neale, S A; Salt, T E

    2013-03-01

    Xanthurenic acid (XA), a molecule arising from tryptophan metabolism by transamination of 3-hydroxykynurenine, has recently been identified as an endogenous Group II (mGlu2 and mGlu3) metabotropic glutamate (mGlu) receptor ligand in vitro. Impairments in Group II mGlu receptor expression and function have been implicated in the pathophysiology of schizophrenia, as have multiple steps in the kynurenine metabolism pathway. Therefore, we examined XA in vivo to further investigate its potential as a Group II mGlu receptor ligand using a preparation that has been previously demonstrated to efficiently reveal the action of other Group II mGlu receptor ligands in vivo. Extracellular single-neurone recordings were made in the rat ventrobasal thalamus (VB) in conjunction with iontophoresis of agonists, an antagonist and a positive allosteric modulator and/or intravenous (i.v.) injection of XA. We found the XA effect on sensory inhibition, when applied iontophoretically and i.v., was similar to that of other Group II mGlu receptor agonists in reducing inhibition evoked in the VB from the thalamic reticular nucleus upon physiological sensory stimulation. Furthermore, we postulate that XA may be the first potential endogenous allosteric agonist (termed 'endocoid') for the mGlu receptors. As the Group II receptors and kynurenine metabolism pathway have both been heavily implicated in the pathophysiology of schizophrenia, XA could play a pivotal role in antipsychotic research as this potential endocoid represents both a convergence within these two biological parameters and a novel class of Group II mGlu receptor ligand. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. PMID:22491023

  17. Angiotensin II AT2 receptors are functionally coupled to protein tyrosine dephosphorylation in N1E-115 neuroblastoma cells.

    PubMed Central

    Nahmias, C; Cazaubon, S M; Briend-Sutren, M M; Lazard, D; Villageois, P; Strosberg, A D

    1995-01-01

    Murine N1E-115 neuroblastoma cells are shown to express a single class of angiotensin II (Ang II) receptors that display all the pharmacological properties defining the Ang II receptor subtype 2 (AT2): high affinity for 125I-labelled AT2-selective agonist CGP 42112 (Kd 91 +/- 19 pM); expected rank order of potency (CGP 42112 = (Sar1,Ile8)Ang II > or = Ang II > PD 123319 >> DUP 753) for several Ang II analogues; increased binding in the presence of the reducing reagent dithiothreitol (DTT); and insensitivity to analogues of GTP. Molecular cloning of cDNA encoding AT2 receptors from N1E-115 cells reveals nucleotide sequence identity with the AT2 subtype expressed in fetal tissue. Murine AT2 receptors transiently expressed in COS cells display the same pharmacological profile as endogenous Ang II receptors of N1E-115 cells. Taken together, these data reveal the exclusive presence of the AT2 receptor subtype in N1E-115 cells. Incubation of N1E-115 cells with Ang II leads to a marked decrease in the level of tyrosine phosphorylation of several proteins with apparent molecular masses of 80, 97, 120, 150 and 180 kDa respectively. Tyrosine dephosphorylation of the same set of proteins is observed after treatment with the AT2-specific agonist CGP 42112. The response to both effectors is rapid and transient, showing a maximum between 5 and 10 min, and returning to basal levels after 20-30 min. In both cases, tyrosine dephosphorylation can be prevented by co-incubation with an excess of the antagonist Sarile. These data thus establish that AT2 receptor activation leads to protein tyrosine dephosphorylation in N1E-115 cells, and support a possible role for AT2 receptors in the negative regulation of cell proliferation. Images Figure 3 Figure 4 Figure 5 PMID:7532401

  18. Transcriptional down-regulation of epidermal growth factor receptors by nerve growth factor treatment of PC12 cells.

    PubMed

    Shibutani, M; Lazarovici, P; Johnson, A C; Katagiri, Y; Guroff, G

    1998-03-20

    Treatment of PC12 cells with nerve growth factor leads to a decrease in the number of epidermal growth factor receptors on the cell membrane. The mRNA for the epidermal growth factor receptor decreases in a comparable fashion. This decrease appears due to a decrease in the transcription of the epidermal growth factor receptor gene because first, there is no difference in the stability of the epidermal growth factor receptor mRNA, second, newly transcribed epidermal growth factor receptor mRNA is decreased in nerve growth factor-differentiated cells, and third, constructs containing the promoter region of the epidermal growth factor receptor gene are transcribed much less readily in nerve growth factor-differentiated cells than in untreated cells. The decreases in mRNA are not seen in the p140(trk)-deficient variant PC12nnr5 cells nor in cells containing either dominant-negative Ras or dominant-negative Src. Treatment with nerve growth factor also increases the cellular content of GCF2, a putative transcription factor inhibitory for the transcription of the epidermal growth factor receptor gene. The increase in GCF2, like the decrease in the epidermal growth factor receptor mRNA, is not seen in PC12nnr5 cells nor in cells expressing either dominant-negative Ras or dominant-negative Src. The results suggest that nerve growth factor-induced down-regulation of the epidermal growth factor receptor is under transcriptional control, is p140(trk)-, Ras-, and Src-dependent, and may involve transcriptional repression by GCF2.

  19. The epidermal growth factor receptor pathway in chronic kidney diseases.

    PubMed

    Harskamp, Laura R; Gansevoort, Ron T; van Goor, Harry; Meijer, Esther

    2016-08-01

    The epidermal growth factor receptor (EGFR) pathway has a critical role in renal development, tissue repair and electrolyte handling. Numerous studies have reported an association between dysregulation of this pathway and the initiation and progression of various chronic kidney diseases such as diabetic nephropathy, chronic allograft nephropathy and polycystic kidney disease through the promotion of renal cell proliferation, fibrosis and inflammation. In the oncological setting, compounds that target the EGFR pathway are already in clinical use or have been evaluated in clinical trials; in the renal setting, therapeutic interventions targeting this pathway by decreasing ligand availability with disintegrin and metalloproteinase inhibitors or with ligand-neutralizing antibodies, or by inhibiting receptor activation with tyrosine kinase inhibitors or monoclonal antibodies are only just starting to be explored in animal models of chronic kidney disease and in patients with autosomal dominant polycystic kidney disease. In this Review we focus on the role of the EGFR signalling pathway in the kidney under physiological conditions and during the pathophysiology of chronic kidney diseases and explore the clinical potential of interventions in this pathway to treat chronic renal diseases. PMID:27374915

  20. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes

    PubMed Central

    Kharmate, Geetanjali; Hosseini-Beheshti, Elham; Caradec, Josselin; Chin, Mei Yieng; Tomlinson Guns, Emma S.

    2016-01-01

    Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight™ analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa. PMID:27152724

  1. Clinical experience with monoclonal antibodies to epidermal growth factor receptor.

    PubMed

    Calvo, Emiliano; Rowinsky, Eric K

    2005-03-01

    Recent knowledge about the intermediate steps and final consequences of ligand-dependent epidermal growth factor receptor (EGFR) activation has clearly supported the notion that EGFR plays a fundamental role in regulating the proliferation and survival of malignant neoplasms. Among the rationally designed target-based therapeutics that are being assessed, those targeting EGFR appear to be some of the most clinically relevant. The strategy of using monoclonal antibodies (mAbs) to block ligand binding to the extracellular domain of the EGFR has led to the development of therapeutics that robustly arrest malignant cell proliferation and, in some cases, induce profound tumor regression. The chimeric mAb against EGFR, cetuximab, has already been approved by regulatory agencies worldwide to treat patients with advanced colorectal cancer. Other mAbs against EGFR, particularly panitumumab (ABX-EGF), h-R3, and EMD72000, are in advanced stages of clinical development. PMID:15717942

  2. Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy.

    PubMed

    Schaer, David A; Hirschhorn-Cymerman, Daniel; Wolchok, Jedd D

    2014-01-01

    With the success of ipilimumab and promise of programmed death-1 pathway-targeted agents, the field of tumor immunotherapy is expanding rapidly. Newer targets for clinical development include select members of the tumor necrosis factor receptor (TNFR) family. Agonist antibodies to these co-stimulatory molecules target both T and B cells, modulating T-cell activation and enhancing immune responses. In vitro and in vivo preclinical data have provided the basis for continued development of 4-1BB, OX40, glucocorticoid-induced TNFR-related gene, herpes virus entry mediator, and CD27 as potential therapies for patients with cancer. In this review, we summarize the immune response to tumors, consider preclinical and early clinical data on select TNFR family members, discuss potential translational challenges and suggest possible combination therapies with the aim of inducing durable antitumor responses. PMID:24855562

  3. MET Receptor Tyrosine Kinase as an Autism Genetic Risk Factor

    PubMed Central

    Peng, Yun; Huentelman, Matthew; Smith, Christopher; Qiu, Shenfeng

    2014-01-01

    In this chapter, we will briefly discuss recent literature on the role of MET receptor tyrosine kinase (RTK) in brain development and how perturbation of MET signaling may alter normal neurodevelopmental outcomes. Recent human genetic studies have established MET as a risk factor for autism, and the molecular and cellular underpinnings of this genetic risk are only beginning to emerge from obscurity. Unlike many autism risk genes that encode synaptic proteins, the spatial and temporal expression pattern of MET RTK indicates this signaling system is ideally situated to regulate neuronal growth, functional maturation, and establishment of functional brain circuits, particularly in those brain structures involved in higher levels of cognition, social skills, and executive functions. PMID:24290385

  4. Patterns of epidermal growth factor receptor amplification in malignant gliomas.

    PubMed Central

    Sauter, G.; Maeda, T.; Waldman, F. M.; Davis, R. L.; Feuerstein, B. G.

    1996-01-01

    Amplification of the gene for epidermal growth factor receptor (EGFR) is a common finding in malignant gliomas. We found that 18 of 29 grade 3 and grade 4 gliomas had EGFR amplification when assayed using fluorescence in situ hybridization. The amplification pattern suggests that the amplicon is contained within double minute chromosomes in most cases. EGFR copy number can differ by 20-fold in amplified cells within a single case. Polysomy 7 occurs frequently in both EGFR-amplified and -unamplified cells. More than one-third of the cases had < or = 10 percent of cells with amplified EGFR, and it is likely that these cases would not have been identified by methods that do not examine DNA on a cell by cell basis. Images Figure 1 PMID:8644846

  5. A possible role of insulin-like growth factor-II C-peptide in regulating the function of steroidogenic cells in adult frog adrenal glands.

    PubMed

    Castillo, Songül Süren

    2008-01-01

    The sole structural determinant for the differential ability of the insulin-like growth factors (IGF-I and IGF-II) to induce autophosphorylation of specific insulin receptor (IR) tyrosine residues and activate downstream signaling molecules is the C domain. The IR is structurally related to the type I insulin-like growth factor receptor (IGF-IR). This study aimed to identify the presence of IGF receptors by which the IGF-II C-peptide could mediate its effects in the frog (Rana ridibunda) adrenal glands and to observe whether injection of IGF-II C-peptide affects the function of adrenal steroidogenic cells using light and transmission electron microscopy and by the evaluation of the immunoreactivity of steroidogenic acute regulatory protein (StAR). After IGF-II C-peptide injection, there was a reduction of StAR protein immunoreactivity levels, an accumulation of large lipid droplets in close contact with each other, and an induction of proliferation of the steroidogenic cells. These results indicate a possible role of IGF-II C-peptide in steroidogenic cell function and in induction of steroidogenesis. The detection in this study of IGF-I receptor (IGF-IR) immunoreactivity in frog adrenal glands also indicates that the metabolic and mitogenic effects of IGF-II C-peptide in these glands may occur via the IGF-IR.

  6. LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors.

    PubMed

    Kingston, A E; Ornstein, P L; Wright, R A; Johnson, B G; Mayne, N G; Burnett, J P; Belagaje, R; Wu, S; Schoepp, D D

    1998-01-01

    The in vitro pharmacology of a structurally novel compound, LY341495, was investigated at human recombinant metabotropic glutamate (mGlu) receptor subtypes expressed in non-neuronal (RGT, rat glutamate transporter) cells. LY341495 was a nanomolar potent antagonist of 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD)-induced inhibition of forskolin-stimulated cAMP formation at mGlu2 and mGlu3 receptors (respective IC50S of 0.021 and 0.014 microM). At group I mGlu receptor expressing cells, LY341495 was micromolar potent in antagonizing quisqualate-induced phosphoinositide (PI) hydrolysis, with IC50 values of 7.8 and 8.2 microM for mGlu1a and mGlu5a receptors, respectively. Among the human group III mGlu receptors, the most potent inhibition of L-2-amino-4-phosphonobutyric acid (L-AP4) responses was seen for LY341495 at mGlu8, with an IC50 of 0.17 microM. LY341495 was less potent at mGlu7 (IC50 = 0.99 microM) and least potent at mGlu4 (IC50 = 22 microM). Binding studies in rat brain membranes also demonstrated nanomolar potent group II mGlu receptor affinity for LY341495, with no appreciable displacement of ionotropic glutamate receptor ligand binding. Thus, LY341495 has a unique range of selectivity across the mGlu receptor subtypes with a potency order of mGlu3 > or = mGlu2 > mGlu8 > mGlu7 > mGlu1a = mGlu5a > mGlu4. In particular, LY341495 is the most potent antagonist yet reported at mGlu2, 3 and 8 receptors. Thus, it represents a novel pharmacological agent for elucidating the function of mGlu receptors in experimental systems. PMID:9680254

  7. Hepatic Aryl Hydrocarbon Receptor Attenuates Fibroblast Growth Factor 21 Expression.

    PubMed

    Girer, Nathaniel G; Murray, Iain A; Omiecinski, Curtis J; Perdew, Gary H

    2016-07-15

    The Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in many physiological processes. Several studies indicate that AHR is also involved in energy homeostasis. Fibroblast growth factor 21 (FGF21) is an important regulator of the fasting and feeding responses. When administered to various genetic and diet-induced mouse models of obesity, FGF21 can attenuate obesity-associated morbidities. Here, we explore the role of AHR in hepatic Fgf21 expression through the use of a conditional, hepatocyte-targeted AHR knock-out mouse model (Cre(Alb)Ahr(Fx/Fx)). Compared with the congenic parental strain (Ahr(Fx/Fx)), non-fasted Cre(Alb)Ahr(Fx/Fx) mice exhibit a 4-fold increase in hepatic Fgf21 expression, as well as elevated expression of the FGF21-target gene Igfbp1 Furthermore, in vivo agonist activation of AHR reduces hepatic Fgf21 expression during a fast. The Fgf21 promoter contains several putative dioxin response elements (DREs). Using EMSA, we demonstrate that the AHR-ARNT heterodimer binds to a specific DRE that overlaps binding sequences for peroxisome proliferator-activated receptor α (PPARα), carbohydrate response element-binding protein (ChREBP), and cAMP response element-binding protein, hepatocyte specific (CREBH). In addition, we reveal that agonist-activated AHR impairs PPARα-, ChREBP-, and CREBH-mediated promoter activity in Hepa-1 cells. Accordingly, agonist treatment in Hepa-1 cells ablates potent ER stress-driven Fgf21 expression, and pre-treatment with AHR antagonist blocks this effect. Finally, we show that pre-treatment of primary human hepatocytes with AHR agonist diminishes PPARα-, glucose-, and ER stress-driven induction of FGF21 expression, indicating the effect is not mouse-specific. Together, our data show that AHR contributes to hepatic energy homeostasis, partly through the regulation of FGF21 expression and signaling. PMID:27226639

  8. Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair.

    PubMed Central

    Wenczak, B A; Lynch, J B; Nanney, L B

    1992-01-01

    Epidermal growth factor (EGF) along with several related peptide growth factors has been shown both in vivo and in vitro to accelerate events associated with epidermal wound repair. EGF and transforming growth factor alpha act by binding to a common EGF receptor tyrosine kinase thereby initiating a series of events which ultimately regulate cell proliferation. This study examined the immunohistochemical localization of EGF receptor (EGF-R) in burn wound margins, adjacent proliferating epithelium, and closely associated sweat ducts, sebaceous glands, and hair follicles. Tissue specimens removed during surgical debridement were obtained from full and partial thickness burn wounds in 32 patients with total body surface area burns ranging from 2 to 88%. In the early postburn period (days 2-4), prominent staining for EGF-R was found in undifferentiated, marginal keratinocytes, adjacent proliferating, hypertrophic epithelium, and both marginal and nonmarginal hair follicles, sweat ducts, and sebaceous glands. During the late postburn period (days 5-16), EGF-R was depleted along leading epithelial margins; however, immunoreactive EGF-R remained intensely positive in the hypertrophic epithelium and all skin appendages. Increased detection of immunoreactive EGF-R and the presence of [125I]EGF binding in the hypertrophic epithelium correlated positively with proliferating cell nuclear antigen distributions. Thus, the presence of EGF-R in the appropriate keratinocyte populations suggests a functional role for this receptor during wound repair. Dynamic modulation in EGF receptor distribution during the temporal sequence of repair provides further evidence that an EGF/transforming growth factor alpha/EGF-R-mediated pathway is activated during human wound repair. Images PMID:1361495

  9. Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme.

    PubMed

    Agata, Jun; Ura, Nobuyuki; Yoshida, Hideaki; Shinshi, Yasuyuki; Sasaki, Haruki; Hyakkoku, Masaya; Taniguchi, Shinya; Shimamoto, Kazuaki

    2006-11-01

    Angiotensin II receptor blockers (ARBs) are widely used for the treatment of hypertension. It is believed that treatment with an ARB increases the level of plasma angiotensin II (Ang II) because of a lack of negative feedback on renin activity. However, Ichikawa (Hypertens Res 2001; 24: 641-646) reported that long-term treatment of hypertensive patients with olmesartan resulted in a reduction in plasma Ang II level, though the mechanism was not determined. It has been reported that angiotensin 1-7 (Ang-(1-7)) potentiates the effect of bradykinin and acts as an angiotensin-converting enzyme (ACE) inhibitor. It is known that ACE2, which was discovered as a novel ACE-related carboxypeptidase in 2000, hydrolyzes Ang I to Ang-(1-9) and also Ang II to Ang-(1-7). It has recently been reported that olmesartan increases plasma Ang-(1-7) through an increase in ACE2 expression in rats with myocardial infarction. We hypothesized that over-expression of ACE2 may be related to a reduction in Ang II level and the cardioprotective effect of olmesartan. Administration of 0.5 mg/kg/day of olmesartan for 4 weeks to 12-week-old stroke-prone spontaneously hypertensive rats (SHRSP) significantly reduced blood pressure and left ventricular weight compared to those in SHRSP given a vehicle. Co-administration of olmesartan and (D-Ala7)-Ang-(1-7), a selective Ang-(1-7) antagonist, partially inhibited the effect of olmesartan on blood pressure and left ventricular weight. Interestingly, co-administration of (D-Ala7)-Ang-(1-7) with olmesartan significantly increased the plasma Ang II level (453.2+/-113.8 pg/ml) compared to olmesartan alone (144.9+/-27.0 pg/ml, p<0.05). Moreover, olmesartan significantly increased the cardiac ACE2 expression level compared to that in Wistar Kyoto rats and SHRSP treated with a vehicle. Olmesartan significantly improved cardiovascular remodeling and cardiac nitrite/ nitrate content, but co-administration of olmesartan and (D-Ala7)-Ang-(1-7) partially reversed

  10. Cross-linking of epidermal growth factor receptors in intact cells: detection of initial stages of receptor clustering and determination of molecular weight of high-affinity receptors

    SciTech Connect

    Fanger, B.O.; Austin, K.S.; Earp, H.S.; Cidlowski, J.A.

    1986-10-21

    A method was developed to label epidermal growth factor (EGF) receptors with /sup 125/I-EGF in whole cells using chemical cross-linking reagents. Polyacrylamide gel electrophoresis resolved an M/sub r/ approx. 180,000 EGF-receptor complex and larger M/sub r/ greater than or equal to 360,000 aggregates. The formation of the larger complexes was timed and temperature dependent and appeared to represent the initial events of EGF receptor clustering. Alteration of the ratio of /sup 125/I-EGF-labeled high- and low- affinity complexes by competition with unlabeled EGF or by induction of additional high-affinity sites with dexamethasone suggested that both sites were represented by the M/sub r/ approx. 180,000 /sup 125/I-EGF-receptor complexes. Digestion of cells before cross-linking detected a small population of trypsin-resistant M/sub r/ approx. 180,000 receptors, which could represent previously described cryptic and/or high-affinity receptors. Few of the M/sub r/ approx. 360,000 receptors were trypsin resistant. Glucocorticoid induction of high-affinity EGF receptors failed to induce detectable changes in the microclustering of EGF receptors but did result in a 50% increase in EGF-induced receptor phosphorylation in HeLa S/sub 3/ cell membranes at 4/sup 0/C. Thus, glucocorticoids increase high-affinity EGF binding sites, EGF-induced receptor phosphorylation, and cell growth.

  11. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus.

    PubMed

    Biancardi, Vinicia Campana; Stranahan, Alexis M; Krause, Eric G; de Kloet, Annette D; Stern, Javier E

    2016-02-01

    ANG II is thought to increase sympathetic outflow by increasing oxidative stress and promoting local inflammation in the paraventricular nucleus (PVN) of the hypothalamus. However, the relative contributions of inflammation and oxidative stress to sympathetic drive remain poorly understood, and the underlying cellular and molecular targets have yet to be examined. ANG II has been shown to enhance Toll-like receptor (TLR)4-mediated signaling on microglia. Thus, in the present study, we aimed to determine whether ANG II-mediated activation of microglial TLR4 signaling is a key molecular target initiating local oxidative stress in the PVN. We found TLR4 and ANG II type 1 (AT1) receptor mRNA expression in hypothalamic microglia, providing molecular evidence for the potential interaction between these two receptors. In hypothalamic slices, ANG II induced microglial activation within the PVN (∼65% increase, P < 0.001), an effect that was blunted in the absence of functional TLR4. ANG II increased ROS production, as indicated by dihydroethidium fluorescence, within the PVN of rats and mice (P < 0.0001 in both cases), effects that were also dependent on the presence of functional TLR4. The microglial inhibitor minocycline attenuated ANG II-mediated ROS production, yet ANG II effects persisted in PVN single-minded 1-AT1a knockout mice, supporting the contribution of a non-neuronal source (likely microglia) to ANG II-driven ROS production in the PVN. Taken together, these results support functional interactions between AT1 receptors and TLR4 in mediating ANG II-dependent microglial activation and oxidative stress within the PVN. More broadly, our results support a functional interaction between the central renin-angiotensin system and innate immunity in the regulation of neurohumoral outflows from the PVN.

  12. Expression of growth factor ligand and receptor genes in preimplantation stage water buffalo (Bubalus bubalis) embryos and oviduct epithelial cells.

    PubMed

    Daliri, M; Rao, K B; Kaur, G; Garg, S; Patil, S; Totey, S M

    1999-09-01

    The temporal pattern of expression of genes for several growth factor ligands and receptors was examined in preimplantation water buffalo embryos and oviduct epithelial cells using RT-PCR. The identity of the resulting PCR products was confirmed by their expected size, restriction analysis, Southern blot hybridization and nucleotide sequence analysis. Preimplantation stage embryos from the one-cell to the blastocyst stage were derived after maturation, fertilization and culture of oocytes in vitro. Expression of members of the insulin-like growth factor (IGF) family was observed predominantly in preimplantation stage embryos and oviduct epithelial cells. Similarly, transcripts encoding insulin and IGF-I receptors were detected at each stage of embryonic development. The mRNA transcript of the IGF-I receptor was not detected in oviduct epithelial cells, but a prominent band corresponding to the insulin receptor was observed. Insulin and IGF-II mRNA were expressed as maternal transcripts that were not detected at the two- to four-cell stage but were present as zygotic transcripts at the eight-cell stage. Transcripts encoding IGF-I were detected in oviduct epithelial cells, but were not observed in any of the preimplantation stage embryos. Transforming growth factor (TGF) alpha and beta and epidermal growth factor mRNA transcripts were not detected in any of the preimplantation stage embryos. These results indicate that IGF-I acts via a paracrine mechanism to promote growth and development of preimplantation water buffalo embryos. Similarly, IGF-II appears to act through a heterologous autocrine mechanism via the IGF-I or the insulin receptor. Furthermore, the presence of TGF-alpha in oviduct epithelial cells indicates that it may have a critical role during development.

  13. Selectivity of phospholipase C phosphorylation by the epidermal growth factor receptor, the insulin receptor, and their cytoplasmic domains.

    PubMed Central

    Nishibe, S; Wahl, M I; Wedegaertner, P B; Kim, J W; Rhee, S G; Carpenter, G; Kim, J J

    1990-01-01

    Phosphatidylinositol-specific phospholipase C isozyme gamma (PLC-gamma, Mr 145,000) is an excellent substrate for the epidermal growth factor (EGF) receptor both in vivo and in vitro. PLC-beta-1, another PLC isozyme, is a poor substrate for the EGF receptor. We examined the relative phosphorylation of PLC-gamma and PLC-beta-1 by the 170-kDa native EGF receptor molecule, the 66-kDa cytoplasmic kinase domain of the EGF receptor (Arg647-Ala1186), the alpha 2 beta 2 native insulin receptor, and the 48-kDa cytoplasmic kinase domain of the insulin receptor beta subunit (Gly947-Ser1343). Similar to the intact EGF receptor, the cytoplasmic kinase domain of the EGF receptor preferentially phosphorylated PLC-gamma. High-performance liquid chromatographic comparison of tryptic phosphopeptides from PLC-gamma phosphorylated by both forms of the EGF receptor kinase indicated similar patterns of multiple tyrosine phosphorylations. These results imply that substrate selectivity, at least in terms of PLC isozymes, is independent of the extracellular ligand-binding and membrane anchor domains of the EGF receptor. In comparison, neither the intact insulin receptor nor the beta-chain kinase domain was able to phosphorylate PLC-gamma to a significant extent. Also, insulin failed to stimulate the phosphorylation of PLC-gamma in NIH 3T3/HIR cells, which overexpress the human insulin receptor. Thus PLC-gamma is not a phosphorylation substrate for the insulin receptor in vitro or in the intact cell. Images PMID:2153302

  14. Angiogenesis in Breast Cancer and its Correlation with Estrogen, Progesterone Receptors and other Prognostic Factors

    PubMed Central

    Rani, Poonam; Kamal, Vinay; Agarwal, Prem Narayan

    2015-01-01

    Purpose: The aim of study is to evaluate angiogenesis using CD34, in estrogen, progesterone positive and negative breastcancer and to correlate the microvessel density with known histological prognostic factors, morphological type of breast carcinoma and lymph node metastasis. Materials and Methods: Twenty eight untreated cases of breast cancer were included in the study and paraffin embedded sections were obtained from representative mastectomy specimen of breast cancer patient. The sections were stained with hematoxylin and eosin stain and immunohistochemistry was performed using CD34, estrogen, progesterone, cytokeratin and epithelial membrane antigen antibody. Angiogenesis was analysed using CD 34 antibody. For statistical analysis, cases were grouped into estrogen, progesterone positive and negative receptors. Results: Mean microvessel density in ER-/PR-, ER-/ PR+, ER+/PR-, ER+/PR+ was 15.45, 14.83, 11, 10.89 respectively. A significant correlation was found between ER receptors and mean vascular density with p-value (< 0.05). A significant difference was observed in mean vascular density between the four groups comprising (p-value < 0.05). Infiltrating duct carcinoma (NOS) grade III has got the highest mean microvessel density (14.17) followed by grade II (12.93) and grade I (12.33). Conclusion: Information about prognostic factors in breast cancer patients may lead to better ways to identify those patients at high risk who might benefit from adjuvant therapies. PMID:25737993

  15. Key features of candesartan cilexetil and a comparison with other angiotensin II receptor antagonists.

    PubMed

    Sever, P S

    1999-01-01

    Current research on angiotensin II AT1-receptor antagonists (AIIRAs) and selected studies presented at the recent symposium held in Amsterdam, The Netherlands, on 6 June 1998, titled 'Angiotensin II Receptor Antagonists are NOT all the Same' are reviewed. AIIRAs offer a number of potential advantages over alternative antihypertensive agents acting via the renin-angiotensin-aldosterone system. They combine blood pressure-lowering effects at least equivalent to those of angiotensin-converting enzyme (ACE) inhibitors, coupled with placebo-like tolerability. Candesartan cilexetil is a novel AIIRA that has demonstrated clinical efficacy superior to losartan, has a sustained duration of action over 24 hours (trough:peak ratio close to 100%) and is well tolerated in patients with essential hypertension. Candesartan cilexetil has a rapid onset of action (approximately 80% of total blood pressure reduction within the first 2 weeks) and dose-dependent effects on blood pressure, is comparable in efficacy to a number of classes of antihypertensives, and is effective in combination therapy (eg, with hydrochlorothiazide and amlodipine). This favourable profile may be due in part to the highly selective, tight binding to and slow dissociation of candesartan from the AT1 receptor. Preliminary studies suggest that candesartan cilexetil also protects end organs (kidney, heart, vasculature, and brain) beyond blood pressure control. PMID:10076915

  16. Female protection from slow-pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors.

    PubMed

    Marques-Lopes, Jose; Lynch, Mary-Katherine; Van Kempen, Tracey A; Waters, Elizabeth M; Wang, Gang; Iadecola, Costantino; Pickel, Virginia M; Milner, Teresa A

    2015-03-01

    Renin–angiotensin system overactivity, upregulation of postsynaptic NMDA receptor function, and increased reactive oxygen species (ROS) production in the hypothalamic paraventricular nucleus (PVN) are hallmarks of angiotensin II (AngII)-induced hypertension, which is far more common in young males than in young females. We hypothesize that the sex differences in hypertension are related to differential AngII-induced changes in postsynaptic trafficking of the essential NMDA receptor GluN1 subunit and ROS production in PVN cells expressing angiotensin Type 1a receptor (AT1aR). We tested this hypothesis using slow-pressor (14-day) infusion of AngII (600 ng/kg/min) in mice, which elicits hypertension in males but not in young females. Two-month-old male and female transgenic mice expressing enhanced green fluorescent protein (EGFP) in AT1aR-containing cells were used. In males, but not in females, AngII increased blood pressure and ROS production in AT1aR–EGFP PVN cells at baseline and following NMDA treatment. Electron microscopy showed that AngII increased cytoplasmic and total GluN1–silver-intensified immunogold (SIG) densities and induced a trend toward an increase in near plasmalemmal GluN1–SIG density in AT1aR–EGFP dendrites of males and females. Moreover, AngII decreased dendritic area and diameter in males, but increased dendritic area of small (<1 µm) dendrites and decreased diameter of large (>1 µm) dendrites in females. Fluorescence microscopy revealed that AT1aR and estrogen receptor β do not colocalize, suggesting that if estrogen is involved, its effect is indirect. These data suggest that the sexual dimorphism in AngII-induced hypertension is associated with sex differences in ROS production in AT1aR-containing PVN cells but not with postsynaptic NMDA receptor trafficking. PMID:25559190

  17. Group II and III metabotropic glutamate receptors contribute to different aspects of visual response processing in the rat superior colliculus

    PubMed Central

    Cirone, Jennifer; Salt, Thomas E

    2001-01-01

    Neurones in the superior colliculus (SC) respond to novel sensory stimuli and response habituation is a key feature of this. It is known that both ionotropic and metabotropic glutamate (mGlu) receptors participate in visual responses of superficial SC neurones. A feature of Group II and Group III mGlu receptors is that they may modulate specific neural pathways, possibly via presynaptic mechanisms. However, less is known about how this may relate to functions of systems in whole animals. We have therefore investigated whether these receptors affect specific attributes of visual responses in the superficial SC. Recordings were made from visually responsive neurones in anaesthetised rats, and agonists and antagonists of Group II and III mGlu receptors were applied iontophoretically at the recording site. We found that application of the Group III metabotropic glutamate receptor agonist l-2-amino-4-phosphonobutyric acid (l-AP4) produced an increase in visual response habituation, whilst Group III antagonists decreased habituation. These effects were independent of the response habituation mediated via GABAB receptors. In contrast, modulation of Group II mGlu receptors with the specific agonist LY354740 or the antagonist LY341495 did not affect response habituation, although these compounds did modulate visual responses. This suggests a specific role for Group III mGlu receptors in visual response habituation. The magnitude of Group II effects was smaller during presentation of low contrast stimuli compared with high contrast stimuli. This suggests that activation of Group II receptors may be activity dependent and that these receptors can translate this into a functional effect in adapting to high contrast stimuli. PMID:11433000

  18. Impaired up-regulation of type II corticosteroid receptors in hippocampus of aged rats.

    PubMed

    Eldridge, J C; Fleenor, D G; Kerr, D S; Landfield, P W

    1989-01-30

    Several recent investigations have reported a decline of rat hippocampal corticosteroid-binding receptors (CSRs) with aging. This decline has been proposed to be an initial cause (through disinhibition) of the elevated adrenal steroid secretion that apparently occurs with aging; however, it could instead be an effect of corticoid elevation (through down-regulation). In order to assess the effects of age on CSR biosynthetic capacity in the absence of down-regulatory influences of endogenous corticoids, as well as to study aging changes in CSR plasticity, we examined the up-regulation of hippocampal CSR that follows adrenalectomy (ADX). The rat hippocampus contains at least two types of CSR binding and differential analysis of types I and II CSR was accomplished by selective displacement of [3H]corticosterone with RU-28362, a specific type II agonist. In young (3 months old) Fischer-344 rat hippocampus, up-regulation of type II binding above 2-day ADX baseline was present by 3-7 days and increased still further by 8-10 days post-ADX; type I CSR density did not change significantly between 1 and 10 days post-ADX. However, in aged (24-26 months old) rats, type II CSR up-regulation did not occur over the 10 day post-ADX period. Thus, the age-related impairment of type II up-regulation may reflect an intrinsic deficit in CSR biosynthesis or lability that is independent of the acute endogenous adrenal steroid environment.

  19. Genetic polymorphism of estrogen receptor alpha gene in Egyptian women with type II diabetes mellitus

    PubMed Central

    Motawi, Tarek M.K.; El-Rehany, Mahmoud A.; Rizk, Sherine M.; Ramzy, Maggie M.; el-Roby, Doaa M.

    2015-01-01

    Estrogen might play an important role in type 2 diabetes mellitus pathogenesis. A number of polymorphisms have been reported in the estrogen receptor alpha gene including the XbaI and PvuII restriction enzyme polymorphisms. The aim of this study was to determine if ESRα gene polymorphisms are associated with type 2 diabetes mellitus and correlated with lipid profile. Ninety diabetic Egyptian patients were compared with forty healthy controls. ESRα genotyping of PvuII and XbaI was performed using restriction fragment length polymorphism analysis. Our study showed that there is more significant difference in the frequency of C and G polymorphic allele between patients and control groups in PvuII and XbaI respectively. Also carriers of minor C and G alleles of PvuII and XbaI gene polymorphisms were associated with increased fasting blood glucose and disturbance in lipid profile as there is an increase in total cholesterol, triglycerides and Low density lipoprotein. So findings of present study suggest the possibility that PvuII and XbaI polymorphisms in ERα are related to T2DM and with increased serum lipids among Egyptian population. PMID:26401488

  20. Class A scavenger receptor deficiency augments angiotensin II-induced vascular remodeling.

    PubMed

    Qian, Lingling; Li, Xiaoyu; Fang, Ru; Wang, Zhuoyun; Xu, Yiming; Zhang, Hanwen; Bai, Hui; Yang, Qing; Zhu, Xudong; Ben, Jingjing; Xu, Yong; Chen, Qi

    2014-08-01

    Class A scavenger receptor (SR-A) is a multifunctional molecule that participates in macrophage-mediated inflammation. Here we evaluated the role of SR-A in angiotensin II (Ang II)-induced hypertensive vascular remodeling. Chronic infusion of Ang II leads to an increased systolic blood pressure both in SR-A knockout (SR-A(-/-)) and wild type (SR-A(+/+)) mice with no significant difference between these two groups. SR-A(-/-) hypertensive mice, however, exhibited a marked augmentation of arterial wall thickening and vascular cell proliferation compared with SR-A(+/+) hypertensive mice. M1 macrophage markers were increased whereas M2 macrophage markers were decreased in vascular tissues of SR-A(-/-) mice. Co-culture experiments revealed that more pro-inflammatory cytokines like TNF-α were produced by SR-A(-/-) peritoneal macrophages leading to a stronger proliferation of primary vascular smooth muscle cells in vitro. In addition, SR-A(-/-) macrophages were more prone to lipopolysaccharide-induced M1 differentiation while resisting interleukin-4-induced M2 differentiation. Importantly, transplantation of SR-A(-/-) bone marrow into SR-A(+/+) mice significantly augmented Ang II-induced vascular remodeling. These results show that SR-A is critical for Ang II-induced vascular remodeling by regulating macrophage polarization. Therefore, SR-A may be a useful therapeutic target for the intervention of hypertensive vascular remodeling. PMID:24875449

  1. Catalytic inhibitors of DNA topoisomerase II suppress the androgen receptor signaling and prostate cancer progression.

    PubMed

    Li, Haolong; Xie, Ning; Gleave, Martin E; Dong, Xuesen

    2015-08-21

    Although the new generation of androgen receptor (AR) antagonists like enzalutamide (ENZ) prolong survival of metastatic castration-resistant prostate cancer (CRPC), AR-driven tumors eventually recur indicating that additional therapies are required to fully block AR function. Since DNA topoisomerase II (Topo II) was demonstrated to be essential for AR to initiate gene transcription, this study tested whether catalytic inhibitors of Topo II can block AR signaling and suppress ENZ-resistant CRPC growth. Using multiple prostate cancer cell lines, we showed that catalytic Topo II inhibitors, ICRF187 and ICRF193 inhibited transcription activities of the wild-type AR, mutant ARs (F876L and W741C) and the AR-V7 splice variant. ICRF187 and ICRF193 decreased AR recruitment to target promoters and reduced AR nuclear localization. Both ICRF187 and ICRF193 also inhibited cell proliferation and delayed cell cycling at the G2/M phase. ICRF187 inhibited tumor growth of castration-resistant LNCaP and 22RV1 xenografts as well as ENZ-resistant MR49F xenografts. We conclude that catalytic Topo II inhibitors can block AR signaling and inhibit tumor growth of CRPC xenografts, identifying a potential co-targeting approach using these inhibitors in combination with AR pathway inhibitors in CRPC.

  2. Activation of Group II Metabotropic Glutamate Receptors Induces Depotentiation in Amygdala Slices and Reduces Fear-Potentiated Startle in Rats

    ERIC Educational Resources Information Center

    Lin, Chia-Ho; Lee, Chia-Ching; Huang, Ya-Chun; Wang, Su-Jane; Gean, Po-Wu

    2005-01-01

    There is a close correlation between long-term potentiation (LTP) in the synapses of lateral amygdala (LA) and fear conditioning in animals. We predict that reversal of LTP (depotentiation) in this area of the brain may ameliorate conditioned fear. Activation of group II metabotropic glutamate receptors (mGluR II) with DCG-IV induces…

  3. Markers of angiogenesis and epidermal growth factor receptor signalling in patients with pancreatic and gastroesophageal junction cancer.

    PubMed

    Rohrberg, Kristoffer Staal; Skov, Birgit Guldhammer; Lassen, Ulrik; Christensen, Ib Jarle; Høyer-Hansen, Gunilla; Buysschaert, Ian; Pappot, Helle

    2010-01-01

    The epidermal growth factor receptor (EGFR) and angiogenesis are well established targets in anti-cancer therapy. Several targeted anti-cancer therapies are in clinical trials in pancreatic and gastroesophageal (GEJ) cancer. However, many patients do not respond to these targeted therapies and there is therefore an increasing need for biomarkers for selection of patients to these therapies. We investigated the expression of EGFR, vascular endothelial growth factor A (VEGF-A), and VEGF receptor 2 (VEGFR-2) in tumour tissue by immunohistochemistry, and soluble EGFR (sEGFR), soluble VEGFR-2 (sVEGFR-2), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), plasminogen activator inhibitor 1 (PAI-1), and different forms of the urokinase plasminogen activator receptor (uPAR): uPAR (I), uPAR (I-III), and uPAR (I-III)+(II-III) in plasma by quantitative immunoassays in 14 patients with pancreatic and GEJ cancer. We found expression in tumour tissue and the plasma levels to be similar to those found in patients with other tumour types. No correlation was found between the blood levels of soluble receptors and the corresponding tumour tissue levels. We conclude that these markers are present in pancreatic and GEJ cancer patients, and could be investigated further as predictive biomarkers in such patients treated with EGFR or angiogenesis targeted therapies.

  4. Gefitinib in the treatment of nonsmall cell lung cancer with activating epidermal growth factor receptor mutation

    PubMed Central

    Nurwidya, Fariz; Takahashi, Fumiyuki; Takahashi, Kazuhisa

    2016-01-01

    Lung cancer is still the main cause of cancer-related deaths worldwide, with most patients present with advanced disease and poor long-term prognosis. The aim of lung cancer treatment is to slow down the progression of the disease, to relieve the patients from the lung cancer symptoms and whenever possible, to increase the overall survival. The discovery of small molecule targeting tyrosine kinase of epidermal growth factor receptor opens a new way in the management of advanced nonsmall cell lung cancer (NSCLC). This review will discuss several Phase II and III trials evaluated the clinical efficacy of gefitinib as monotherapy in pretreated patients with advanced NSCLC, as well as both monotherapy and combined with chemotherapy in chemotherapy-naive patients. PMID:27433059

  5. Angiopoietin-like protein 2 expression is suppressed by angiotensin II via the angiotensin II type 1 receptor in rat cardiomyocytes

    PubMed Central

    Wang, Shuya; Li, Ying; Miao, Wei; Zhao, Hong; Zhang, Feng; Liu, Nan; Su, Guohai; Cai, Xiaojun

    2016-01-01

    The present study aimed to determine the inhibitory effects of angiotensin II (AngII) on angiopoietin-like protein 2 (Angptl2) in rat primary cardiomyocytes, and to investigate the potential association between angiotensin II type 1 receptor (AT1R) and these effects. Cardiomyocytes were isolated from 3-day-old Wistar rats, and were cultured and identified. Subsequently, the expression levels of Angptl2 were detected following incubation with various concentrations of AngII for various durations using western blotting, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and immunofluorescence. Finally, under the most appropriate conditions (100 nmol/l AngII, 24 h), the cardiomyocytes were divided into six groups: Normal, AngII, AngII + losartan, normal + losartan, AngII + PD123319 and normal + PD123319 groups, in order to investigate the possible function of AT1R in Angptl2 suppression. Losartan and PD123319 are antagonists of AT1R and angiotensin II type 2 receptor, respectively. The statistical significance of the results was analyzed using Student's t-test or one-way analysis of variance. The results demonstrated that Angptl2 expression was evidently suppressed (P<0.05) following incubation with 100 nmol/l AngII for 24 h. Conversely, the expression levels of Angptl2 were significantly increased in the AngII + losartan group compared with the AngII group (P<0.01). However, no significant difference was detected between the AngII + PD123319, normal + losartan or normal + PD123319 groups and the normal group. The present in vitro study indicated that AngII was able to suppress Angptl2 expression, whereas losartan was able to significantly reverse this decrease by inhibiting AT1R. PMID:27483989

  6. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension.

    PubMed

    Antunes, Tayze T; Callera, Glaucia E; He, Ying; Yogi, Alvaro; Ryazanov, Alexey G; Ryazanova, Lillia V; Zhai, Alexander; Stewart, Duncan J; Shrier, Alvin; Touyz, Rhian M

    2016-04-01

    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension

  7. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension.

    PubMed

    Antunes, Tayze T; Callera, Glaucia E; He, Ying; Yogi, Alvaro; Ryazanov, Alexey G; Ryazanova, Lillia V; Zhai, Alexander; Stewart, Duncan J; Shrier, Alvin; Touyz, Rhian M

    2016-04-01

    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension

  8. Association of Transcobalamin II (TCN2) and Transcobalamin II-Receptor (TCblR) Genetic Variations With Cobalamin Deficiency Parameters in Elderly Women.

    PubMed

    Kurnat-Thoma, Emma L; Pangilinan, Faith; Matteini, Amy M; Wong, Bob; Pepper, Ginette A; Stabler, Sally P; Guralnik, Jack M; Brody, Lawrence C

    2015-07-01

    Cobalamin (vitamin B12) deficiency is a subtle progressive clinical disorder, affecting nearly 1 in 5 individuals > 60 years old. This deficiency is produced by age-related decreases in nutrient absorption, medications that interfere with vitamin B12 absorption, and other comorbidities. Clinical heterogeneity confounds symptom detection for elderly adults, as deficiency sequelae range from mild fatigue and weakness to debilitating megaloblastic anemia and permanent neuropathic injury. A better understanding of genetic factors that contribute to cobalamin deficiency in the elderly would allow for targeted nursing care and preventive interventions. We tested for associations of common variants in genes involved in cobalamin transport and homeostasis with metabolic indicators of cobalamin deficiency (homocysteine and methylmalonic acid) as well as hematologic, neurologic, and functional performance features of cobalamin deficiency in 789 participants of the Women's Health and Aging Studies. Although not significant when corrected for multiple testing, eight single nucleotide polymorphisms (SNPs) in two genes, transcobalamin II (TCN2) and the transcobalamin II-receptor (TCblR), were found to influence several clinical traits of cobalamin deficiency. The three most significant findings were the identified associations involving missense coding SNPs, namely, TCblR G220R (rs2336573) with serum cobalamin, TCN2 S348F (rs9621049) with homocysteine, and TCN2 P259R (rs1801198) with red blood cell mean corpuscular volume. These SNPs may modify the phenotype in older adults who are more likely to develop symptoms of vitamin B12 malabsorption. PMID:25657319

  9. Association of Transcobalamin II (TCN2) and Transcobalamin II-Receptor (TCblR) Genetic Variations With Cobalamin Deficiency Parameters in Elderly Women.

    PubMed

    Kurnat-Thoma, Emma L; Pangilinan, Faith; Matteini, Amy M; Wong, Bob; Pepper, Ginette A; Stabler, Sally P; Guralnik, Jack M; Brody, Lawrence C

    2015-07-01

    Cobalamin (vitamin B12) deficiency is a subtle progressive clinical disorder, affecting nearly 1 in 5 individuals > 60 years old. This deficiency is produced by age-related decreases in nutrient absorption, medications that interfere with vitamin B12 absorption, and other comorbidities. Clinical heterogeneity confounds symptom detection for elderly adults, as deficiency sequelae range from mild fatigue and weakness to debilitating megaloblastic anemia and permanent neuropathic injury. A better understanding of genetic factors that contribute to cobalamin deficiency in the elderly would allow for targeted nursing care and preventive interventions. We tested for associations of common variants in genes involved in cobalamin transport and homeostasis with metabolic indicators of cobalamin deficiency (homocysteine and methylmalonic acid) as well as hematologic, neurologic, and functional performance features of cobalamin deficiency in 789 participants of the Women's Health and Aging Studies. Although not significant when corrected for multiple testing, eight single nucleotide polymorphisms (SNPs) in two genes, transcobalamin II (TCN2) and the transcobalamin II-receptor (TCblR), were found to influence several clinical traits of cobalamin deficiency. The three most significant findings were the identified associations involving missense coding SNPs, namely, TCblR G220R (rs2336573) with serum cobalamin, TCN2 S348F (rs9621049) with homocysteine, and TCN2 P259R (rs1801198) with red blood cell mean corpuscular volume. These SNPs may modify the phenotype in older adults who are more likely to develop symptoms of vitamin B12 malabsorption.

  10. A unique receptor-independent mechanism by which insulinlike growth factor I regulates the availability of insulinlike growth factor binding proteins in normal and transformed human fibroblasts.

    PubMed Central

    Conover, C A

    1991-01-01

    Insulin-like growth factor I and II (IGF-I and IGF-II) associate with specific IGF binding proteins (IGFBPs) present in plasma and extracellular fluids that can modulate the anabolic effects of these peptides. IGF-I has been shown to increase IGFBP concentrations in vivo and in vitro, but the mechanism and significance of this action are unknown. We examined these issues using normal and simian virus 40-transformed adult human fibroblasts (SV40-HF) in culture. Treatment with IGF-I markedly stimulated the appearance of IGFBP-3 (42/38 kD doublet), a 36 kD IGFBP, and 28-32 kD IGFBPs in the medium of these cells, as assessed by Western ligand blotting; IGF-I decreased levels of 24 kD IGFBP in normal HF cultures. The IGF-I-induced change in IGFBP levels was not a type I IGF receptor-mediated effect on IGFBP synthesis because (a) high concentrations of insulin did not mimic IGF-I's effect; (b) IGF-II and IGF-I analogues having reduced affinity for the IGF-I receptor were equipotent with IGF-I in increasing medium IGFBPs; (c) [QAYL]IGF-I, and IGF-I analogue having normal receptor affinity and decreased affinity for IGFBPs, had no effect; and (d) alpha IR-3, a monoclonal antibody specific for the type I IGF receptor, did not block IGF-I-stimulated increases in IGFBPs. In physiological studies, preincubation with 1 nM IGF-I had no effect on type I IGF receptor binding in normal HF and SV40-HF. In contrast, preincubation of cells with an equivalent concentration of [QAYL]IGF-I downregulated the receptors 40-50%. Changes in cell surface receptor number were reflected in cell responsiveness to IGF-I-stimulated [3H]thymidine incorporation and [3H]aminoisobutyric acid uptake. In conclusion, IGF-I regulates the availability of specific IGFBPs in cultured human fibroblasts by a novel receptor-independent mechanism. Rapid changes in levels of soluble IGFBPs as a direct response to extracellular IGF-I, in turn, modulate IGF-I peptide and receptor interaction, and may constitute an

  11. Expression of the genes for insulin-like growth factors and their receptors in bone during skeletal growth

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.

    1994-01-01

    Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.

  12. Synthesis and evaluation of novel angiotensin II receptor 1 antagonists as anti-hypertension drugs.

    PubMed

    Bao, Xiaolu; Zhu, Weibo; Zhang, Ruijing; Wen, Caihong; Wang, Li; Yan, Yijia; Tang, Hesheng; Chen, Zhilong

    2016-05-01

    Three new angiotensin II receptor 1 antagonists, 1, 2 and 3 were designed, synthesized and evaluated. The AT1 receptor-binding assays in vitro showed that all the synthesized compounds had nanomolar affinity for the AT1 receptor. From which compound 3 was found to be the most potent ligands with an IC50 value of 2.67±0.23 nM. Biological evaluation in vivo revealed that all the compounds could cause significant decrease on MBP in a dose dependent manner in spontaneously hypertensive rats, and compound 3 especially showed an efficient and long-lasting effect in reducing blood pressure, whose maximal response lowered 41 mmHg of MBP at 10mg/kg and 62 mmHg at 15 mg/kg after oral administration, the significant anti-hypertensive effect lasted beyond 12 h, which is better than the reference compound losartan. The pharmacokinetic experiments showed that compound 3 could be absorbed efficiently and metabolized smoothly both in blood and in tissues in Wistar rats. The acute toxicity assay suggested that it has low toxicity with the LD50 value of 2974.35 mg/kg. These results demonstrate that compound 3 is a potent angiotensin AT1 receptor antagonist which could be considered as a novel anti-hypertension candidate and deserved for further investigation. PMID:27004954

  13. The urotensin II receptor antagonist, urantide, protects against atherosclerosis in rats

    PubMed Central

    ZHAO, JUAN; YU, QUAN-XIN; KONG, WEI; GAO, HAI-CHENG; SUN, BO; XIE, YA-QIN; REN, LI-QUN

    2013-01-01

    The aim of this study was to explore the use of urantide as an antagonist of the urotensin II (UII) receptor, G protein-coupled receptor 14 (GPR14), to protect against atherosclerosis (AS) in rats. The AS rat model was induced by an intraperitoneal injection of vitamin D3 (VD3) into rats fed with a high-fat diet for four weeks. Urantide was then injected into the rats. Immunohistochemical staining, serum biochemical assay, reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were used to investigate the expression of UII and its receptor GPR14 in the AS rat model. Four weeks after induction, pathological changes typical of AS were observed in the AS rat model. In the plaques of the aortic tunica intima and tunica media, expression of UII and GPR14 was observed. The protein and gene expression levels of UII and GPR14 in the model group were significantly increased compared with those in the normal group (P<0.01). Urantide ameliorated the pathological changes of AS in the rat model and reduced the gene and protein expression levels of UII and GPR14 (P<0.05 or P<0.01). UII is associated with AS and the UII receptor GPR14-specific antagonist, urantide, demonstrates the ability to protect against AS. Thus, this study provides new insight and experimental theories for the clinical application of urantide to treat AS. PMID:23837070

  14. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma.

  15. Epidermal growth factor receptor in adult human dorsal root ganglia.

    PubMed

    Huerta, J J; Diaz-Trelles, R; Naves, F J; Llamosas, M M; Del Valle, M E; Vega, J A

    1996-09-01

    Transforming growth factor-alpha (TGFalpha) enhances neuronal survival and neurite outgrowth in cultured dorsal root ganglia (DRG) sensory neurons. It binds a membrane protein, denominated epidermal growth factor receptor (EGFr). EGFr has been localized in developing and adult human DRG. However, it remains to be elucidated whether all DRG neurons express EGFr or whether differences exist among neuronal subtypes. This study was undertaken to investigate these topics in adult human DRG using immunoblotting, and combined immunohistochemistry and image analysis techniques. A mouse monoclonal antibody (clone F4) mapping within the intracytoplasmic domain of EGFr was used. Immunoblotting revealed two main proteins with estimated molecular masses of approximately/equal to 65 kDa and 170 kDa, and thus consistent with the full-length EGFr. Additional protein bands were also encountered. Light immunohistochemistry revealed specific immunoreactivity (IR) for EGFr-like proteins in most (86%) primary sensory neurons, the intensity of immunostaining being stronger in the small- and intermediate-sized ones. Furthermore, EGFr-like IR was also observed in the satellite glial cells of the ganglia as well as in the intraganglionic and dorsal root Schwann cells. Taken together, our findings demonstrate that EGFr, and other related proteins containing the epitope labeled with the antibody F4, are responsible for the EGFr IR reported in DRG. Furthermore, we demonstrated heterogeneity in the expression of EGFr-like IR in adult human primary sensory neurons, which suggests different responsiveness to their ligands.

  16. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma. PMID:27698817

  17. Developmental regulation of human truncated nerve growth factor receptor

    SciTech Connect

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. )

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  18. Regulation of FSHbeta and GnRH receptor gene expression in activin receptor II knockout male mice.

    PubMed

    Kumar, T Rajendra; Agno, Julio; Janovick, Jo Ann; Conn, P Michael; Matzuk, Martin M

    2003-12-30

    To examine in vivo, the local effects of inhibins and activins within the anterior pituitary, independent of their endocrine effects exerted from the gonad, in mediating FSH homeostasis, we used castrated knockout mice lacking either inhibin alpha or activin receptor II (ACVR2) alone or in combination. Compared to castrated wild-type (WT) mice, FSHbeta mRNA levels in the pituitaries of Acvr2 null mice were significantly downregulated in the absence of gonadal feedback. FSHbeta mRNA levels were not significantly higher in the pituitaries of castrated inhibin alpha null mice compared to those in Acvr2 null mice and remained the same in the pituitaries of castrated double mutant mice lacking both inhibin and ACVR2. In contrast to FSHbeta mRNA expression changes, pituitary FSH content was significantly reduced in Acvr2 null mice whereas it was only slightly upregulated in inhibin alpha null mice. Combined absence of both ACVR2 signaling and inhibins caused a decrease in FSH content compared to that in the absence of inhibins alone. These changes in pituitary content were in parallel to those in serum FSH levels in these three groups of castrated mice, suggesting that the unopposed actions of locally produced inhibins are dominant over those effects mediated by ACVR2 signaling to regulate FSH biosynthesis and secretion. Thus, our in vivo results demonstrate that within the pituitary, locally produced activins and inhibins exert their actions at distinct phases of FSH homeostasis. In an independent set of experiments, we tested whether in vivo signaling via ACVR2 is necessary for hypothalamic GnRH biosynthesis and for GnRH receptor expression. Our results demonstrate that in contrast to previous in vitro studies, signaling through ACVR2 is neither required for hypothalamic synthesis of GnRH peptide nor for expression of GnRH receptors in the anterior pituitary. We conclude that within the hypothalamic-pituitary short loop, ACVR2 signaling is critical only for FSH

  19. LH independent testosterone production is mediated by the interaction between GnRH-II and its receptor in the boar testis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The second mammalian isoform of gonadotropin-releasing hormone (GnRH-II) functions quite differently from the classical form (GnRH-I), being an ineffective modulator of gonadotropin release. Not all species that produce GnRH-II maintain a full length GnRH-II receptor (GnRHR-II). Instead, GnRH-II can...

  20. The Factor Structure of the Beck Depression Inventory-II: An Evaluation

    ERIC Educational Resources Information Center

    Vanheule, Stijn; Desmet, Mattias; Groenvynck, Hans; Rosseel, Yves; Fontaine, Johnny

    2008-01-01

    The Beck Depression Inventory-II (BDI-II) is a frequently used scale for measuring depressive severity. BDI-II data (404 clinical; 695 nonclinical adults) were analyzed by means of confirmatory factor analysis to test whether the factor structure model with a somatic-affective and cognitive component of depression, formulated by Beck and…

  1. Models for the activation pathway of epidermal growth factor receptor protein-tyrosine kinase

    SciTech Connect

    Campion, S.R.; Niyogi, S.K. )

    1991-03-15

    Activation of the epidermal growth factor (EGF) receptor's intrinsic protein-tyrosine kinase activity, which occurs upon formation of the receptor-ligand complex, is the critical regulatory event affecting the subsequent EGF-dependent cellular responses leading to DNA synthesis and cell proliferation. The molecular mechanism by which EGF-dependent activation of receptor kinase activity takes place is not clearly understood. In this study, the growth factor-dependent activation of the EGF receptor tyrosine kinase was examined in vitro using detergent-solubilized, partially purified GEF receptors from A5431 human epidermoid carcinoma cells. Evaluation of the cooperativity observed in the EGF-dependent activation of soluble receptor tyrosine kinase would suggest a mechanism requiring the binding of the EGF peptide to both ligand binding sites on a receptor dimer to induce full receptor kinase activity. Equations describing potential cooperative kinase activation pathways have been examined. The theoretical system which best simulates the allosteric regulation observed in the experimental kinase activation data is that describing multiple essential activation. In addition, studies using mutant analogs of the EGF peptide ligand appear to confirm the requirement for an essential conformational change in the receptor-ligand complex to activate the receptor kinase activity. Several mutant growth factor analogues are able to occupy the ligand binding sites on the receptor without inducing the fully active receptor conformation.

  2. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system.

    PubMed

    Hind, Sarah R; Strickler, Susan R; Boyle, Patrick C; Dunham, Diane M; Bao, Zhilong; O'Doherty, Inish M; Baccile, Joshua A; Hoki, Jason S; Viox, Elise G; Clarke, Christopher R; Vinatzer, Boris A; Schroeder, Frank C; Martin, Gregory B

    2016-01-01

    Plants and animals detect the presence of potential pathogens through the perception of conserved microbial patterns by cell surface receptors. Certain solanaceous plants, including tomato, potato and pepper, detect flgII-28, a region of bacterial flagellin that is distinct from that perceived by the well-characterized FLAGELLIN-SENSING 2 receptor. Here we identify and characterize the receptor responsible for this recognition in tomato, called FLAGELLIN-SENSING 3. This receptor binds flgII-28 and enhances immune responses leading to a reduction in bacterial colonization of leaf tissues. Further characterization of FLS3 and its signalling pathway could provide new insights into the plant immune system and transfer of the receptor to other crop plants offers the potential of enhancing resistance to bacterial pathogens that have evolved to evade FLS2-mediated immunity. PMID:27548463

  3. Topoisomerase II alpha--a fundamental prognostic factor in breast carcinoma.

    PubMed

    Hajduk, Magdalena

    2009-01-01

    Because of the introduction of modern diagnostic methods, numerous prognostic and predictive factors have been recognized and are today considered classic, yet they seem to be insufficient in assessment of prognosis, hence the need for further investigations. Among factors newly discovered by molecular techniques, there are class I and II topoisomerases, the role of which as prognosticators has not been fully determined. The objective of the present investigation was the assessment of topoisomerase II alpha (TOP2A) expression in patients with infiltrating breast carcinoma, as a prognostic factor in correlation with other recognized prognosticators and patient survival. The study was carried out in 151 patients treated by mastectomy and lymph node excision followed by adjuvant chemotherapy. The material was evaluated histopathologically according to the pTNM system, taking into consideration such parameters as grade of malignancy (G); the ER, PR as well as HER2 and TOP2A receptors status--all of them were assessed immunohistochemically. TOP2A was expressed with varying intensity in the majority of infiltrating ductal carcinomas studied, more frequently in large T3 and T4, grade G2 and G3 tumours, in patients with extensive metastases to regional N2 and N3 lymph nodes, a positive HER2 and negative ER and PR status. Five-year mortality rates were higher and 5-year symptom-free survival rates were lower in patients with TOP2A-positive tumours as compared to individuals with a negative TOP2A status. The study indicates that TOP2A expression is a negative predictive factor and may be recognized as a prognostic factor.

  4. N- and C-terminal structure-activity study of angiotensin II on the angiotensin AT2 receptor.

    PubMed

    Bouley, R; Pérodin, J; Plante, H; Rihakova, L; Bernier, S G; Maletínská, L; Guillemette, G; Escher, E

    1998-02-19

    The predominant angiotensin II receptor expressed in the human myometrium is the angiotensin AT2 receptor. This preparation was used for a structure-activity relationship study on angiotensin II analogues modified in positions 1 and 8. The angiotensin AT2 receptor present on human myometrium membranes displayed a high affinity (pKd = 9.18) and was relatively abundant (53-253 fmol/mg of protein). The pharmacological profile was typical of an angiotensin AT2 receptor with the following order of affinities: (angiotensin III > or = angiotensin II > angiotensin I > PD123319 > angiotensin-(1-7) > angiotensin-(1-6) approximately angiotensin IV > Losartan). Modifications of the N-terminal side chain and of the primary amine of angiotensin II were evaluated. Neutralisation of the methylcarboxylate (Asp) to a methylcarboxamide (Asn) or to a hydroxymethyl (Ser) or substitution for a methylsulfonate group (cysteic acid) improved the affinity. Extension from methylcarboxylate (Asp) to ethylcarboxylate (Glu) did not affect the affinity. Introduction of larger side chains such as the bulky p-benzoylphenylalanine (p-Bpa) or the positively charged Lys did not substantially affect the affinity. Complete removal of the side chain (angiotensin III), however, resulted in a significant affinity increase. Removal or acetylation of the primary amine of angiotensin II did not noticeably influence the affinity. Progressive alkylation of the primary amine significantly increased the affinity, betain structures being the most potent. It appears that quite important differences exist between the angiotensin AT1 and AT2 receptors concerning their pharmacological profile towards analogues of angiotensin II modified in position 1. On position 8 of angiotensin II, a structure-activity relationship on the angiotensin AT2 receptor was quite similar to that observed with angiotensin AT1 receptor. Bulky, hydrophobic aromatic residues displayed affinities similar to or even better than [Sarcosine1

  5. Efficacy of anti-insulin-like growth factor I receptor monoclonal antibody cixutumumab in mesothelioma is highly correlated with insulin growth factor-I receptor sites/cell.

    PubMed

    Kalra, Neetu; Zhang, Jingli; Yu, Yunkai; Ho, Mitchell; Merino, Maria; Cao, Liang; Hassan, Raffit

    2012-11-01

    Insulin growth factor-I receptor (IGF-IR) is expressed in mesothelioma and therefore an attractive target for therapy. The antitumor activity of cixutumumab, a humanized monoclonal antibody to IGF-IR, in mesothelioma and relationship to IGF-IR expression was investigated using eight early passage tumor cells obtained from patients, nine established cell lines and an in vivo human mesothelioma tumor xenograft model. Although IGF-IR expression at the mRNA and protein level was present in all mesothelioma cells, using a quantitative ELISA immunoassay, there was considerable variability of IGF-IR expression ranging from 1 to 14 ng/mg of lysate. Using flow cytometry, the number of IGF-IR surface receptors varied from ≈ 2,000 to 50,000 sites/cell. Cells expressing >10,000 sites/cell had greater than 10% growth inhibition when treated with cixutumumab (100 μg/ml). Cixutumumab also induced antibody-dependent cell-mediated toxicity (>10% specific lysis) in cell lines, which had >20,000 IGF-IR sites/cell. Treatment with cixutumumab decreased phosphorylation of IGF-IR, Akt and Erk in cell lines, H226 and H28 having 24,000 and 51,000 IGF-IR sites/cell, respectively, but not in the cell line H2052 with 3,000 IGF-IR sites/cell. In vivo, cixutumumab treatment delayed growth of H226 mesothelioma tumor xenografts in mice and improved the overall survival of these mice compared to mice treated with saline (p < 0.004). Our results demonstrate that the antitumor efficacy of cixutumumab including inhibition of IGF-IR downstream signaling is highly correlated with IGF-IR sites/cell. A phase II clinical trial of cixutumumab is currently ongoing for the treatment of patients with mesothelioma.

  6. Critical role of the endogenous interferon ligand-receptors in type I and type II interferons response.

    PubMed

    Lasfar, Ahmed; Cook, Jeffry R; Cohen Solal, Karine A; Reuhl, Kenneth; Kotenko, Sergei V; Langer, Jerome A; Laskin, Debra L

    2014-07-01

    Separate ligand-receptor paradigms are commonly used for each type of interferon (IFN). However, accumulating evidence suggests that type I and type II IFNs may not be restricted to independent pathways. Using different cell types deficient in IFNAR1, IFNAR2, IFNGR1, IFNGR2 and IFN-γ, we evaluated the contribution of each element of the IFN system to the activity of type I and type II IFNs. We show that deficiency in IFNAR1 or IFNAR2 is associated with impairment of type II IFN activity. This impairment, presumably resulting from the disruption of the ligand-receptor complex, is obtained in all cell types tested. However, deficiency of IFNGR1, IFNGR2 or IFN-γ was associated with an impairment of type I IFN activity in spleen cells only, correlating with the constitutive expression of type II IFN (IFN-γ) observed on those cells. Therefore, in vitro the constitutive expression of both the receptors and the ligands of type I or type II IFN is critical for the enhancement of the IFN activity. Any IFN deficiency can totally or partially impair IFN activity, suggesting the importance of type I and type II IFN interactions. Taken together, our results suggest that type I and type II IFNs may regulate biological activities through distinct as well as common IFN receptor complexes.

  7. Diabetic state, high plasma insulin and angiotensin II combine to augment endothelin-1-induced vasoconstriction via ETA receptors and ERK

    PubMed Central

    Kobayashi, T; Nogami, T; Taguchi, K; Matsumoto, T; Kamata, K

    2008-01-01

    Background and purpose: Mechanisms associated with the enhanced contractile response to endothelin-1 in hyperinsulinaemic diabetes have been examined using the rat aorta. Functions for angiotensin II, endothelin-1 receptor expression and extracellular signal-regulated kinase (ERK) have been investigated. Experimental approach: Streptozotocin-induced diabetic rats were infused with angiotensin II or, following insulin treatment, were treated with losartan, an angiotensin II receptor antagonist. Contractions of aortic strips with or without endothelium, in response to endothelin-1 and angiotensin II, were examined in vitro. Aortic ETA receptors and ERK/MEK expression were measured by western blotting. Key results: Insulin-treated diabetic rats exhibited increases in plasma insulin, angiotensin II and endothelin-1. The systolic blood pressure and endothelin-1-induced contractile responses in aortae in vitro were enhanced in insulin-treated diabetic rats and blunted by chronic losartan administration. LY294002 (phosphatidylinositol 3-kinase inhibitor) and/or PD98059 (MEK inhibitor) diminished the enhanced contractile response to endothelin-1 in aortae from insulin-treated diabetic rats. ETA and ETB receptors, ERK-1/2 and MEK-1/2 protein expression and endothelin-1-stimulated ERK phosphorylation were all increased in aortae from insulin-treated diabetic rats. Such increases were blunted by chronic losartan administration. Endothelin-1-induced contraction was significantly higher in aortae from angiotensin II-infused diabetic rats. angiotensin II-infusion increased ERK phosphorylation, but the expression of endothelin receptors and ERK/MEK proteins remained unchanged. Conclusions and implications: These results suggest that the combination of high plasma angiotensin II and insulin with a diabetic state induced enhancement of endothelin-1-induced vasoconstriction, ETA receptor expression and ERK expression/activity in the aorta. Losartan improved both the diabetes

  8. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue.

    PubMed

    Hughes, Stephen B; Quan, Melvyn; Guthrie, Alan; Schulman, Martin

    2013-01-01

    The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins) and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation), real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/μL and 891 copies/μL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95% limit of detection), and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor). This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1 receptor

  9. The F-BAR Protein PACSIN2 Regulates Epidermal Growth Factor Receptor Internalization

    PubMed Central

    de Kreuk, Bart-Jan; Anthony, Eloise C.; Geerts, Dirk; Hordijk, Peter L.

    2012-01-01

    Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling. PMID:23129763

  10. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.

    PubMed

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  11. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism

    SciTech Connect

    Bonaventure, J.; Rousseau, F.; Legeai-Mallet, L.; LeMerrer, M.; Munnich, A.; Maroteaux, P.

    1996-05-03

    The mapping of the achondroplasia locus to the short arm of chromosome 4 and the subsequent identification of a recurrent missense mutation (G380R) in the fibroblast growth factor receptor 3 (FGFR-3) gene has been followed by the detection of common FGFR-3 mutations in two clinically related disorders: thanatophoric dwarfism (types I and II) and hypochondroplasia. The relative clinical homogeneity of achondroplasia was substantiated by demonstration of its genetic homogeneity as more than 98% of all patients hitherto reported exhibit mutations in the transmembrane receptor domain. Although most hypochondroplasia cases were accounted for by a recurrent missense substitution (N540K) in the first tyrosine kinase (TK 1) domain of the receptor, a significant proportion (40%) of our patients did not harbor the N540K mutation and three hypochondroplasia families were not linked to the FGFR-3 locus, thus supporting clinical heterogeneity of this condition. In thanatophoric dwarfism (TD), a recurrent FGFR-3 mutation located in the second tyrosine kinase (TK 2) domain of the receptor was originally detected in 100% of TD II cases; in our series, seven distinct mutations in three different protein domains were identified in 25 of 26 TD I patients, suggesting that TD, like achondroplasia, is a genetically homogenous skeletal disorder. 31 refs., 4 figs., 2 tabs.

  12. Estrogen Receptor Alpha Polymorphisms, Estradiol Level, and Occurrence of Atherosclerosis Risk Factors in Healthy Postmenopausal Women

    PubMed Central

    Bojar, Iwona; Gujski, Mariusz; Raczkiewicz, Dorota; Łyszcz, Robert; Owoc, Jakub; Walecka, Irena

    2015-01-01

    Background The objective of the study was to analyze the relationship between interaction of polymorphisms in the estrogen receptor alpha gene (Erα) and estradiol (E2), and the occurrence of selected atherosclerosis risk factors in postmenopausal women without the diagnosis of a cardiovascular disease. Material/Methods The study covered 210 women, a minimum of 2 years after menopause, with FSH >30 mlU/ml, aged 50–60 years, with no chronic diseases diagnosed. In the women examined, the levels of estradiol, total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides were determined, as well as height, waist circumference (W), hip circumference (R), and arterial hypertension. The BMI and W/H ratio were calculated. Genotyping of the ER-α polymorphism was performed using a polymerase chain reaction and restriction enzymes (PCR-RFLP). The alleles of the XbaI polymorphism were defined as A and G: heterozygote AG, wild type GG and homozygote AA. The alleles of PvuII polymorphism were defined as T and C: heterozygote TC, homozygote TT, and wild type CC. Results The concentration of endogenous estradiol and ERα XbaI and PuvII polymorphisms as independent parameters did not significantly affect the BMI, waist circumference, W/H ratio, levels of CHOL, HDL, LDL, TG, or LDL/HDL, nor the systole and diastole in the postmenopausal women in the study. Conclusions The presented study suggests that ERα XbaI AA polymorphism may intensify the beneficial effect of estradiol on the distribution of fatty tissue after menopause; ERα XbaI GG and PuvII TC genotypes may intensify the beneficial effect of estradiol on HDL level; ERα PuvII TT genotype unfavorably modifies the relation between concentration of estradiol and systolic pressure after menopause. PMID:25836047

  13. Human epidermal growth factor receptor 2/neu protein expression in meningiomas: An immunohistochemical study

    PubMed Central

    Telugu, Ramesh Babu; Chowhan, Amit Kumar; Rukmangadha, Nandyala; Patnayak, Rashmi; Phaneendra, Bobbidi Venkata; Prasad, Bodapati Chandra Mowliswara; Reddy, Mandyam Kumaraswamy

    2016-01-01

    Background: Meningiomas are common slow-growing primary central nervous system tumors that arise from the meningothelial cells of the arachnoid and spinal cord. Human epidermal growth factor receptor 2 (HER2) or HER2/neu (also known as c-erbB2) is a 185-kD transmembrane glycoprotein with tyrosine kinase activity expressed in meningiomas and various other tumors. It can be used in targeted therapy for HER2/neu positive meningiomas. Aim: To correlate the expression of HER2/neu protein in meningiomas with gender, location, histological subtypes, and grade. Materials and Methods: It was 3½ years prospective (March 2010–October 2011) and retrospective (May 2008–February 2010) study of histopathologically diagnosed intracranial and intraspinal meningiomas. Clinical details of all the cases were noted from the computerized hospital information system. Immunohistochemistry for HER2/neu protein was performed along with scoring. Statistical analysis was done using Chi-square test to look for any association of HER2/neu with gender, location, grade, and various histological subtypes of meningiomas at 5% level of significance. Results: A total of 100 cases of meningiomas were found during the study period. Of which, 80 were Grade I, 18 were Grade II, and 2 were Grade III meningiomas as per the World Health Organization 2007 criteria. The female-male ratio was 1.9:1 and the mean age was 47.8 years. HER2/neu protein was expressed in 75% of Grade I and 72.2% of Grade II and none of Grade III meningiomas. About 72.7% brain invasive meningiomas showed HER2/neu immunopositivity. Conclusion: HER2/neu protein was expressed in 73% of meningiomas. Statistically significant difference of HER2/neu expression was not seen between females and males of Grade I and Grade II/III meningiomas, intracranial and spinal tumors, Grade I and Grade II/III cases, and various histological subtypes of meningiomas.

  14. Human epidermal growth factor receptor 2/neu protein expression in meningiomas: An immunohistochemical study

    PubMed Central

    Telugu, Ramesh Babu; Chowhan, Amit Kumar; Rukmangadha, Nandyala; Patnayak, Rashmi; Phaneendra, Bobbidi Venkata; Prasad, Bodapati Chandra Mowliswara; Reddy, Mandyam Kumaraswamy

    2016-01-01

    Background: Meningiomas are common slow-growing primary central nervous system tumors that arise from the meningothelial cells of the arachnoid and spinal cord. Human epidermal growth factor receptor 2 (HER2) or HER2/neu (also known as c-erbB2) is a 185-kD transmembrane glycoprotein with tyrosine kinase activity expressed in meningiomas and various other tumors. It can be used in targeted therapy for HER2/neu positive meningiomas. Aim: To correlate the expression of HER2/neu protein in meningiomas with gender, location, histological subtypes, and grade. Materials and Methods: It was 3½ years prospective (March 2010–October 2011) and retrospective (May 2008–February 2010) study of histopathologically diagnosed intracranial and intraspinal meningiomas. Clinical details of all the cases were noted from the computerized hospital information system. Immunohistochemistry for HER2/neu protein was performed along with scoring. Statistical analysis was done using Chi-square test to look for any association of HER2/neu with gender, location, grade, and various histological subtypes of meningiomas at 5% level of significance. Results: A total of 100 cases of meningiomas were found during the study period. Of which, 80 were Grade I, 18 were Grade II, and 2 were Grade III meningiomas as per the World Health Organization 2007 criteria. The female-male ratio was 1.9:1 and the mean age was 47.8 years. HER2/neu protein was expressed in 75% of Grade I and 72.2% of Grade II and none of Grade III meningiomas. About 72.7% brain invasive meningiomas showed HER2/neu immunopositivity. Conclusion: HER2/neu protein was expressed in 73% of meningiomas. Statistically significant difference of HER2/neu expression was not seen between females and males of Grade I and Grade II/III meningiomas, intracranial and spinal tumors, Grade I and Grade II/III cases, and various histological subtypes of meningiomas. PMID:27695231

  15. The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus

    SciTech Connect

    Pendergrass, Karl D.; Gwathmey, TanYa M.; Michalek, Ryan D.; Grayson, Jason M.; Chappell, Mark C.

    2009-06-26

    We and others have reported significant expression of the Ang II Type 1 receptor (AT1R) on renal nuclei; thus, the present study assessed the functional pathways and distribution of the intracellular AT1R on isolated nuclei. Ang II (1 nM) stimulated DCF fluorescence, an intranuclear indicator of reactive oxygen species (ROS), while the AT1R antagonist losartan or the NADPH oxidase (NOX) inhibitor DPI abolished the increase in ROS. Dual labeling of nuclei with antibodies against nucleoporin 62 (Nup62) and AT1R or the NADPH oxidase isoform NOX4 revealed complete overlap of the Nup62 and AT1R (99%) by flow cytometry, while NOX4 was present on 65% of nuclei. Treatment of nuclei with a PKC agonist increased ROS while the PKC inhibitor GF109203X or PI3 kinase inhibitor LY294002 abolished Ang II stimulation of ROS. We conclude that the Ang II-AT1R-PKC axis may directly influence nuclear function within the kidney through a redox sensitive pathway.

  16. Type 1 angiotensin II receptor subtypes in kidney of normal and salt-sensitive hypertensive rats.

    PubMed

    Bouby, N; Bankir, L; Llorens-Cortes, C

    1996-03-01

    We studied the localization and regulation of the two type 1 angiotensin II receptor subtypes AT(1A) and AT(1B) in different renal zones of the rat kidney by a reverse transcription-polymerase chain reaction amplification method. The yield of the reaction was quantified with an internal standard that was a 63-bp deleted mutant cRNA of the AT(1A) receptor. In kidneys of male Sprague-Dawley rats (n=4), the levels of AT(1A) and AT(1B) receptor mRNAs were highest in the inner stripe of the outer medulla, lowest in the inner medulla, and intermediate in the cortex and outer stripe of the outer medulla. Results (mean+/-SE) expressed in 10(5) molecules per microgram total RNA were for cortex outer stripe, inner stripe, and inner medulla, respectively, 171 +/- 15, 152 +/- 27, 322 +/- 10, and 73 +/- 3 for AT(1A), and 35 +/- 9, 26 +/- 1, 71 +/- 10, and 53 +/- 11 for AT(1B). In sabra rats sensitive (n=6) or resistant (n=6) to salt-induced hypertension and maintained on a normal salt diet, the percentage and level of each receptor subtype mRNA in cortex and outer stripe were similar in the two strains and comparable to those observed in Sprague-Dawley rats. However, AT(1A) of the inner stripe was significantly decreased in salt-resistant compared with salt-sensitive rats (166 +/- 28 and 318 +/- 58 10(5) molecules per microgram total RNA, respectively). These modifications were organ specific because no difference in the level of the receptor mRNAs was observed in the liver of the two Sabra rat strains, whereas a twofold increase in AT(1A) mRNA level but not in AT(1B) mRNA level was apparent in adrenal and in one renal zone, the inner stripe of the outer medulla, of hypertension-prone Sabra rats.

  17. Expression of human tyrosine kinase-negative epidermal growth factor receptor amplifies signaling through endogenous murine epidermal growth factor receptor.

    PubMed

    Hack, N; Sue-A-Quan, A; Mills, G B; Skorecki, K L

    1993-12-15

    Recent findings have suggested that certain ligand-dependent responses to EGF may be propagated in a manner that is not dependent on the intrinsic tyrosine kinase activity of the epidermal growth factor receptor (EGF-R, Campos-Gonzalez, R., and Glenney, J. R., Jr. (1992) J. Biol. Chem. 267, 14535-14538) or, alternatively, that these responses may occur through the interaction of the human tyrosine kinase-deficient EGF-R with an as yet unidentified kinase (Selva, E., Raden, D. L., and Davis, R. J. (1993) J. Biol. Chem. 268, 2250-2254). These conclusions represent a significant departure from our current understanding of signal transduction by receptor tyrosine kinases. Therefore we examined the effect of expression of tyrosine kinase-negative human EGF receptor in murine NIH-3T3-2.2 cells on the EGF-dependent phosphorylation of mitogen-activated protein (MAP-2) kinase. In parental cells (NIH-3T3-2.2) that express low levels of endogenous murine EGF-R, there was no demonstrable EGF-dependent coupling to MAP-2 kinase. In NIH-3T3-2.2 cells transfected with tyrosine kinase-negative human EGF-R, there was unexpected EGF-dependent phosphorylation of MAP-2 kinase. Analysis of the tyrosine kinase-negative human EGF-R in these cells revealed significant tyrosine phosphorylation of the EGF-R. A low level of endogenous murine EGF-R present in these cells were also phosphorylated on tyrosine residues and displayed autokinase activity. Similar results were obtained using an unrelated cell line (B82L cells), in which EGF-dependent phosphorylation of MAP-2 kinase was previously attributed to signal propagation through a tyrosine kinase-negative human EGF-R (Campos-Gonzalez, R., and Glenney, J. R., Jr. (1992) J. Biol. Chem. 267, 14535-14538). Taken together, these results suggest that the tyrosine kinase-negative human EGF-R are able to amplify the response to activation of low levels of endogenous murine EGF-R, thus leading to EGF-dependent phosphorylation of MAP-2 kinase in cells

  18. Direct and indirect interactions between cannabinoid CB1 receptor and group II metabotropic glutamate receptor signalling in layer V pyramidal neurons from the rat prefrontal cortex.

    PubMed

    Barbara, Jean-Gaël; Auclair, Nathalie; Roisin, Marie-Paule; Otani, Satoru; Valjent, Emmanuel; Caboche, Jocelyne; Soubrie, Philippe; Crepel, Francis

    2003-03-01

    At proximal synapses from layer V pyramidal neurons from the rat prefrontal cortex, activation of group II metabotropic glutamate receptors (group II mGlu) by (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine (DCG IV) induced a long-lasting depression of excitatory postsynaptic currents. Paired-pulse experiments suggested that the depression was expressed presynaptically. Activation of type 1 cannabinoid receptors (CB1) by WIN 55,212-2 occluded the DCG IV-induced depression in a mutually occlusive manner. At the postsynaptic level, WIN 55,212-2 and DCG IV were also occlusive for the activation of extracellular signal-regulated kinase. The postsynaptic localization of active extracellular signal-regulated kinase was confirmed by immunocytochemistry after activation of CB1 receptors. However, phosphorylation of extracellular signal-regulated kinase in layer V pyramidal neurons was dependent on the activation of N-methyl-d-aspartate receptors, consequently to a release of glutamate in the local network. Group II mGlu were also shown to be involved in long-term changes in synaptic plasticity induced by high frequency stimulations. The group II mGlu antagonist (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE) favoured long-term depression. However, no interaction was found between MSOPPE, WIN 55,212-2 and the CB1 receptor antagonist SR 141716A on the modulation of long-term depression or long-term potentiation and the effects of these drugs were rather additive. We suggest that CB1 receptor and group II mGlu signalling may interact through a presynaptic mechanism in the induction of a DCG IV-induced depression. Postsynaptically, an indirect interaction occurs for activation of extracellular signal-regulated kinase. However, none of these interactions seem to play a role in synaptic plasticities induced with high frequency stimulations.

  19. Molecular Docking and Interactions of Pueraria Tuberosa with Vascular Endothelial Growth Factor Receptors.

    PubMed

    Asthana, S; Agarwal, T; Singothu, S; Samal, A; Banerjee, I; Pal, K; Pramanik, K; Ray, S S

    2015-01-01

    Pueraria tuberosa is known for its therapeutic potentials in cardiovascular disorders, but its effect in angiogenesis has not been studied so far. In this study, a computational approach has been applied to elucidate the role of the phytochemicals in inhibition of angiogenesis through modulation of vascular endothelial growth factor receptors: Vascular endothelial growth factor receptor-1 and vascular endothelial growth factor receptor-2, major factors responsible for angiogenesis. Metabolite structures retrieved from PubChem and KNApSAcK - 3D databases, were docked using AutoDock4.2 tool. Hydrogen bond and molecular docking, absorption, distribution, metabolism and excretion and toxicity predictions were carried out using UCSF Chimera, LigPlot(+) and PreADMET server, respectively. From the docking analysis, it was observed that puerarone and tuberostan had significant binding affinity for the intracellular kinase domain of vascular endothelial growth factor receptors-1 and vascular endothelial growth factor receptor-2 respectively. It is important to mention that both the phytochemicals shared similar interaction profile as that of standard inhibitors of vascular endothelial growth factor receptors. Also, both puerarone and tuberostan interacted with Lys861/Lys868 (adenosine 5'-triphosphate binding site of vascular endothelial growth factor receptors-1/vascular endothelial growth factor receptors-2), thus providing a clue that they may enforce their inhibitory effect by blocking the adenosine 5'-triphosphate binding domain of vascular endothelial growth factor receptors. Moreover, these molecules exhibited good drug-likeness, absorption, distribution, metabolism and excretion properties without any carcinogenic and toxic effects. The interaction pattern of the puerarone and tuberostan may provide a hint for a novel drug design for vascular endothelial growth factor tyrosine kinase receptors with better specificity to treat angiogenic disorders. PMID:26664060

  20. Molecular Docking and Interactions of Pueraria Tuberosa with Vascular Endothelial Growth Factor Receptors

    PubMed Central

    Asthana, S.; Agarwal, T.; Singothu, S.; Samal, A.; Banerjee, I.; Pal, K.; Pramanik, K.; Ray, S. S.

    2015-01-01

    Pueraria tuberosa is known for its therapeutic potentials in cardiovascular disorders, but its effect in angiogenesis has not been studied so far. In this study, a computational approach has been applied to elucidate the role of the phytochemicals in inhibition of angiogenesis through modulation of vascular endothelial growth factor receptors: Vascular endothelial growth factor receptor-1 and vascular endothelial growth factor receptor-2, major factors responsible for angiogenesis. Metabolite structures retrieved from PubChem and KNApSAcK – 3D databases, were docked using AutoDock4.2 tool. Hydrogen bond and molecular docking, absorption, distribution, metabolism and excretion and toxicity predictions were carried out using UCSF Chimera, LigPlot+ and PreADMET server, respectively. From the docking analysis, it was observed that puerarone and tuberostan had significant binding affinity for the intracellular kinase domain of vascular endothelial growth factor receptors-1 and vascular endothelial growth factor receptor-2 respectively. It is important to mention that both the phytochemicals shared similar interaction profile as that of standard inhibitors of vascular endothelial growth factor receptors. Also, both puerarone and tuberostan interacted with Lys861/Lys868 (adenosine 5’-triphosphate binding site of vascular endothelial growth factor receptors-1/vascular endothelial growth factor receptors-2), thus providing a clue that they may enforce their inhibitory effect by blocking the adenosine 5’-triphosphate binding domain of vascular endothelial growth factor receptors. Moreover, these molecules exhibited good drug-likeness, absorption, distribution, metabolism and excretion properties without any carcinogenic and toxic effects. The interaction pattern of the puerarone and tuberostan may provide a hint for a novel drug design for vascular endothelial growth factor tyrosine kinase receptors with better specificity to treat angiogenic disorders. PMID:26664060

  1. Role of the guanine nucleotide exchange factor Ost in negative regulation of receptor endocytosis by the small GTPase Rac1.

    PubMed

    Ieguchi, Katsuaki; Ueda, Shuji; Kataoka, Tohru; Satoh, Takaya

    2007-08-10

    The Rho family of GTPases has been implicated in the regulation of intracellular vesicle trafficking. Here, we investigated the mechanism underlying the negative regulation of clathrin-mediated endocytosis of cell surface receptors mediated by the Rho family protein Rac1. Contrary to previous reports, only the activated mutant of Rac1, but not other Rho family members including RhoA and Cdc42, suppressed internalization of the transferrin receptor. On the other hand, down-regulation of Rac1 expression by RNA interference resulted in enhanced receptor internalization, suggesting that endogenous Rac1 in fact functions as a negative regulator. We identified a guanine nucleotide exchange factor splice variant designated Ost-III, which contains a unique C-terminal region including an Src homology 3 domain, as a regulator of Rac1 involved in the inhibition of receptor endocytosis. In contrast, other splice variants Ost-I and Ost-II exerted virtually no effect on receptor endocytosis. We also examined subcellular localization of synaptojanin 2, a putative Rac1 effector implicated in negative regulation of receptor endocytosis. Each Ost splice variant induced distinct subcellular localization of synaptojanin 2, depending on Rac1 activation. Furthermore, we isolated gamma-aminobutyric acid type A receptor-associated protein (GABARAP) as a protein that binds to the C-terminal region of Ost-III. When ectopically expressed, GABARAP was co-localized with Ost-III and potently suppressed the Ost-III-dependent Rac1 activation and the inhibition of receptor endocytosis. Lipid modification of GABARAP was necessary for the suppression of Ost-III. These results are discussed in terms of subcellular region-specific regulation of the Rac1-dependent signaling pathway that negatively regulates clathrin-mediated endocytosis.

  2. Phylogenetic Investigation of Peptide Hormone and Growth Factor Receptors in Five Dipteran Genomes

    PubMed Central

    Vogel, Kevin J.; Brown, Mark R.; Strand, Michael R.

    2013-01-01

    Peptide hormones and growth factors bind to membrane receptors and regulate a myriad of processes in insects and other metazoans. The evolutionary relationships among characterized and uncharacterized (“orphan”) receptors can provide insights into receptor-ligand biology and narrow target choices in deorphanization studies. However, the large number and low sequence conservation of these receptors make evolutionary analysis difficult. Here, we characterized the G-protein-coupled receptors (GPCRs), receptor guanylyl cyclases (RGCs), and protein kinase receptors (PKRs) of mosquitoes and select other flies by interrogating the genomes of Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster, and D. mojavensis. Sequences were grouped by receptor type, clustered using the program CLANS, aligned using HMMR, and phylogenetic trees built using PhyML. Our results indicated that PKRs had relatively few orphan clades whereas GPCRs and RGCs had several. In addition, more than half of the Class B secretin-like GPCRs and RGCs remained uncharacterized. Additional studies revealed that Class B GPCRs exhibited more gain and loss events than other receptor types. Finally, using the neuropeptide F family of insect receptors and the neuropeptide Y family of vertebrate receptors, we also show that functional sites considered critical for ligand binding are conserved among distinct family members and between distantly related taxa. Overall, our results provide the first comprehensive analysis of peptide hormone and growth factor receptors for a major insect group. PMID:24379806

  3. Ovarian hormones influence corticotropin releasing factor receptor colocalization with delta opioid receptors in CA1 pyramidal cell dendrites

    PubMed Central

    Williams, Tanya J.; Akama, Keith T.; Knudsen, Margarete G.; McEwen, Bruce S.; Milner, Teresa A.

    2011-01-01

    Stress interacts with addictive processes to increase drug use, drug seeking, and relapse. The hippocampal formation (HF) is an important site at which stress circuits and endogenous opioid systems intersect and likely plays a critical role in the interaction between stress and drug addiction. Our prior studies demonstrate that the stress-related neuropeptide corticotropin-releasing factor (CRF) and the delta-opioid receptor (DOR) colocalize in interneuron populations in the hilus of the dentate gyrus and stratum oriens of CA1 and CA3. While independent ultrastructural studies of DORs and CRF receptors suggest that each receptor is found in CA1 pyramidal cell dendrites and dendritic spines, whether DORs and CRF receptors colocalize in CA1 neuronal profiles has not been investigated. Here, hippocampal sections of adult male and proestrus female Sprague-Dawley rats were processed for dual label pre-embedding immunoelectron microscopy using well-characterized antisera directed against the DOR for immunoperoxidase and against the CRF receptor for immunogold. DOR-immunoreactivity (-ir) was found presynaptically in axons and axon terminals as well as postsynaptically in somata, dendrites and dendritic spines in stratum radiatum of CA1. In contrast, CRF receptor-ir was predominantly found postsynaptically in CA1 somata, dendrites, and dendritic spines. CRF receptor-ir frequently was observed in DOR-labeled dendritic profiles and primarily was found in the cytoplasm rather than at or near the plasma membrane. Quantitative analysis of CRF receptor-ir colocalization with DOR-ir in pyramidal cell dendrites revealed that proestrus females and males show comparable levels of CRF receptor-ir per dendrite and similar cytoplasmic density of CRF receptor-ir. In contrast, proestrus females display an increased number of dual-labeled dendritic profiles and increased membrane density of CRF receptor-ir in comparison to males. We further examined the functional consequences of CRF

  4. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  5. A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains.

    PubMed

    Zapata, J M; Pawlowski, K; Haas, E; Ware, C F; Godzik, A; Reed, J C

    2001-06-29

    We have identified three new tumor necrosis factor-receptor associated factor (TRAF) domain-containing proteins in humans using bioinformatics approaches, including: MUL, the product of the causative gene in Mulibrey Nanism syndrome; USP7 (HAUSP), an ubiquitin protease; and SPOP, a POZ domain-containing protein. Unlike classical TRAF family proteins involved in TNF family receptor (TNFR) signaling, the TRAF domains (TDs) of MUL, USP7, and SPOP are located near the NH(2) termini or central region of these proteins, rather than carboxyl end. MUL and USP7 are capable of binding in vitro via their TDs to all of the previously identified TRAF family proteins (TRAF1, TRAF2, TRAF3, TRAF4, TRAF5, and TRAF6), whereas the TD of SPOP interacts weakly with TRAF1 and TRAF6 only. The TD of MUL also interacted with itself, whereas the TDs of USP7 and SPOP did not self-associate. Analysis of various MUL and USP7 mutants by transient transfection assays indicated that the TDs of these proteins are necessary and sufficient for suppressing NF-kappaB induction by TRAF2 and TRAF6 as well as certain TRAF-binding TNF family receptors. In contrast, the TD of SPOP did not inhibit NF-kappaB induction. Immunofluorescence confocal microscopy indicated that MUL localizes to cytosolic bodies, with targeting to these structures mediated by a RBCC tripartite domain within the MUL protein. USP7 localized predominantly to the nucleus, in a TD-dependent manner. Data base searches revealed multiple proteins containing TDs homologous to those found in MUL, USP7, and SPOP throughout eukaryotes, including yeast, protists, plants, invertebrates, and mammals, suggesting that this branch of the TD family arose from an ancient gene. We propose the moniker TEFs (TD-encompassing factors) for this large family of proteins.

  6. The Factor Structure of the CIBS-II-Readiness Assessment

    ERIC Educational Resources Information Center

    Gotch, Chad M.; French, Brian F.

    2011-01-01

    The Brigance Comprehensive Inventory of Basic Skills-II (CIBS-II)-Readiness form is a diagnostic battery intended for children aged 5 and 6 years. The CIBS-II-Readiness is a new version of the CIBS-Revised-Readiness and includes updated normative information on a larger representative sample in comparison to the CIBS-Revised-Readiness. Empirical…

  7. Computational identification of novel natural inhibitors of glucagon receptor for checking type II diabetes mellitus

    PubMed Central

    2014-01-01

    Background Interaction of the small peptide hormone glucagon with glucagon receptor (GCGR) stimulates the release of glucose from the hepatic cells during fasting; hence GCGR performs a significant function in glucose homeostasis. Inhibiting the interaction between glucagon and its receptor has been reported to control hepatic glucose overproduction and thus GCGR has evolved as an attractive therapeutic target for the treatment of type II diabetes mellitus. Results In the present study, a large library of natural compounds was screened against 7 transmembrane domain of GCGR to identify novel therapeutic molecules that can inhibit the binding of glucagon with GCGR. Molecular dynamics simulations were performed to study the dynamic behaviour of the docked complexes and the molecular interactions between the screened compounds and the ligand binding residues of GCGR were analysed in detail. The top scoring compounds were also compared with already documented GCGR inhibitors- MK-0893 and LY2409021 for their binding affinity and other ADME properties. Finally, we have reported two natural drug like compounds PIB and CAA which showed good binding affinity for GCGR and are potent inhibitor of its functional activity. Conclusion This study contributes evidence for application of these compounds as prospective small ligand molecules against type II diabetes. Novel natural drug like inhibitors against the 7 transmembrane domain of GCGR have been identified which showed high binding affinity and potent inhibition of GCGR PMID:25521597

  8. Synthesis and biological evaluation of a new angiotensin II receptor antagonist.

    PubMed

    Zheng, H-l; Zhu, W-b; Wu, D; Da, Y-j; Yan, Y-J; Bian, J; Chen, Z-l

    2014-12-01

    The design, synthesis, in vitro and in vivo evaluation of (2 R,6 S)-4-({1-[2-(1 H-tetrazol-5-yl)phenyl]-1 H-indol-4-yl}methyl)-2,6-dimethylmorpholine, compound 1, as a novel angiotensin II receptor antagonist is outlined. Radioligand binding assays showed that 1 displayed a high affinity for the angiotensin II type 1receptor with IC50 value of 0.82 nM. It acted as a potent anti-hypertensive derivative (maximal reduction of mean arterial pressure of 47 mm Hg at 10 mg/kg po in spontaneously hypertensive rat producing a dose-dependent fall in blood pressure following oral administration lasting beyond 10 h. Acute toxicity tests measured the LD50 of 1 value as 2431.7 mg/kg, which is higher than Losartan (LD50=2248 mg/kg). In addition further testing showed that 1 also demonstrated efficient anti-proliferative activity in vitro and anti-prostate cancer activity in vivo were also found. Taken together this compound could be considered as an effective and durable anti-hypertension drug candidate with additional anti-prostate cancer activity. These encouraging results are deserved of further investigation towards its use for therapeutic benefit. PMID:24573978

  9. Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor.

    PubMed Central

    Wolf, G; Ziyadeh, F N; Thaiss, F; Tomaszewski, J; Caron, R J; Wenzel, U; Zahner, G; Helmchen, U; Stahl, R A

    1997-01-01

    Glomerular influx of monocytes/macrophages (M/M) occurs in many immune- and non-immune-mediated renal diseases. The mechanisms targeting M/M into the glomerulus are incompletely understood, but may involve stimulated expression of chemokines. We investigated whether angiotensin II (ANG II) induces the chemokine RANTES in cultured glomerular endothelial cells of the rat and in vivo. ANG II stimulated mRNA and protein expression of RANTES in cultured glomerular endothelial cells. The ANG II-induced RANTES protein was chemotactic for human monocytes. Surprisingly, the ANG II-stimulated RANTES expression was transduced by AT2 receptors because the AT2 receptor antagonists PD 123177 and CGP-42112A, but not an AT1 receptor blocker, abolished the induced RANTES synthesis. Intraperitoneal infusion of ANG II (500 ng/h) into naive rats for 4 d significantly stimulated glomerular RANTES mRNA and protein expression compared with solvent-infused controls. Immunohistochemistry revealed induction of RANTES protein mainly in glomerular endothelial cells and small capillaries. Moreover, ANG II- infused animals exhibited an increase in glomerular ED-1- positive cells compared with controls. Oral treatment with PD 123177 (50 mg/liter drinking water) attenuated the glomerular M/M influx without normalizing the slightly elevated systolic blood pressure caused by ANG II infusion, suggesting that the effects on blood pressure and RANTES induction can be separated. We conclude that the vasoactive peptide ANG II may play an important role in glomerular chemotaxis of M/M through local induction of the chemokine RANTES. The observation that the ANG II- mediated induction of RANTES is transduced by AT2 receptors may influence the decision as to which substances might be used for the therapeutic interference with the activity of the renin-angiotensin system. PMID:9276721

  10. The Estrogen-Related Receptor Alpha Upregulates Secretin Expressions in Response to Hypertonicity and Angiotensin II Stimulation

    PubMed Central

    Lee, Vien H. Y.; Lam, Ian P. Y.; Choi, Hueng-Sik; Chow, Billy K. C.; Lee, Leo T. O.

    2012-01-01

    Osmoregulation via maintenance of water and salt homeostasis is a vital process. In the brain, a functional secretin (SCT) and secretin receptor (SCTR) axis has recently been shown to mediate central actions of angiotensin II (ANGII), including initiation of water intake and stimulation of vasopressin (VP) expression and release. In this report, we provide evidence that estrogen-related receptor α (ERRα, NR3B1), a transcription factor mainly involved in metabolism, acts as an upstream activator of the SCT gene. In vitro studies using mouse hypothalamic cell line N-42 show that ERRα upregulates SCT promoter and gene expression. More importantly, knockdown of endogenous ERRα abolishes SCT promoter activation in response to hypertonic and ANGII stimulations. In mouse brain, ERRα coexpresses with SCT in various osmoregulatory brain regions, including the lamina terminalis and the paraventricular nucleus of the hypothalamus, and its expression is induced by hyperosmotic and ANGII treatments. Based on our data, we propose that both the upregulation of ERRα and/or the increased binding of ERRα to the mouse SCT promoter are two possible mechanisms for the elevated SCT expression upon hyperosmolality and central ANGII stimulation. PMID:22761926

  11. Engineered epidermal growth factor mutants with faster binding on-rates correlate with enhanced receptor activation

    PubMed Central

    Lahti, Jennifer L.; Lui, Bertrand H.; Beck, Stayce E.; Lee, Stephen S.; Ly, Daphne P.; Longaker, Michael T.; Yang, George P.; Cochran, Jennifer R.

    2011-01-01

    Receptor tyrosine kinases (RTKs) regulate critical cell signaling pathways, yet the properties of their cognate ligands that influence receptor activation are not fully understood. There is great interest in parsing these complex ligand-receptor relationships using engineered proteins with altered binding properties. Here we focus on the interaction between two engineered epidermal growth factor (EGF) mutants and the EGF receptor (EGFR), a model member of the RTK superfamily. We found that EGF mutants with faster kinetic on-rates stimulate increased EGFR activation compared to wild-type EGF. These findings support previous predictions that faster association rates correlate with enhanced receptor activity. PMID:21439278

  12. NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus Contributes to the Elevated Blood Pressure Produced by Angiotensin II.

    PubMed

    Glass, Michael J; Wang, Gang; Coleman, Christal G; Chan, June; Ogorodnik, Evgeny; Van Kempen, Tracey A; Milner, Teresa A; Butler, Scott D; Young, Colin N; Davisson, Robin L; Iadecola, Costantino; Pickel, Virginia M

    2015-07-01

    Hypertension induced by angiotensin II (Ang II) is associated with glutamate-dependent dysregulation of the hypothalamic paraventricular nucleus (PVN). Many forms of glutamate-dependent plasticity are mediated by NMDA receptor GluN1 subunit expression and the distribution of functional receptor to the plasma membrane of dendrites. Here, we use a combined ultrastructural and functional analysis to examine the relationship between PVN NMDA receptors and the blood pressure increase induced by chronic infusion of a low dose of Ang II. We report that the increase in blood pressure produced by a 2 week administration of a subpressor dose of Ang II results in an elevation in plasma membrane GluN1 in dendrites of PVN neurons in adult male mice. The functional implications of these observations are further demonstrated by the finding that GluN1 deletion in PVN neurons attenuated the Ang II-induced increases in blood pressure. These results indicate that NMDA receptor plasticity in PVN neurons significantly contributes to the elevated blood pressure mediated by Ang II.

  13. NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus Contributes to the Elevated Blood Pressure Produced by Angiotensin II

    PubMed Central

    Wang, Gang; Coleman, Christal G.; Chan, June; Ogorodnik, Evgeny; Van Kempen, Tracey A.; Milner, Teresa A.; Butler, Scott D.; Young, Colin N.; Davisson, Robin L.; Iadecola, Costantino; Pickel, Virginia M.

    2015-01-01

    Hypertension induced by angiotensin II (Ang II) is associated with glutamate-dependent dysregulation of the hypothalamic paraventricular nucleus (PVN). Many forms of glutamate-dependent plasticity are mediated by NMDA receptor GluN1 subunit expression and the distribution of functional receptor to the plasma membrane of dendrites. Here, we use a combined ultrastructural and functional analysis to examine the relationship between PVN NMDA receptors and the blood pressure increase induced by chronic infusion of a low dose of Ang II. We report that the increase in blood pressure produced by a 2 week administration of a subpressor dose of Ang II results in an elevation in plasma membrane GluN1 in dendrites of PVN neurons in adult male mice. The functional implications of these observations are further demonstrated by the finding that GluN1 deletion in PVN neurons attenuated the Ang II-induced increases in blood pressure. These results indicate that NMDA receptor plasticity in PVN neurons significantly contributes to the elevated blood pressure mediated by Ang II. PMID:26134639

  14. Identification of Type II Interferon Receptors in Geese: Gene Structure, Phylogenetic Analysis, and Expression Patterns

    PubMed Central

    Zhou, Hao; Chen, Shun; Qi, Yulin; Zhou, Qin; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Chen, Xiaoyue; Cheng, Anchun

    2015-01-01

    Interferon γ receptor 1 (IFNGR1) and IFNGR2 are two cell membrane molecules belonging to class II cytokines, which play important roles in the IFN-mediated antiviral signaling pathway. Here, goose IFNGR1 and IFNGR2 were cloned and identified for the first time. Tissue distribution analysis revealed that relatively high levels of goose IFNγ mRNA transcripts were detected in immune tissues, including the harderian gland, cecal tonsil, cecum, and thymus. Relatively high expression levels of both IFNGR1 and IFNGR2 were detected in the cecal tonsil, which implicated an important role of IFNγ in the secondary immune system of geese. No specific correlation between IFNγ, IFNGR1, and IFNGR2 expression levels was observed in the same tissues of healthy geese. IFNγ and its cognate receptors showed different expression profiles, although they appeared to maintain a relatively balanced state. Furthermore, the agonist R848 led to the upregulation of goose IFNγ but did not affect the expression of goose IFNGR1 or IFNGR2. In summary, trends in expression of goose IFNγ and its cognate receptors showed tissue specificity, as well as an age-related dependency. These findings may help us to better understand the age-related susceptibility to pathogens in birds. PMID:26345454

  15. Selective small molecule angiotensin II type 2 receptor antagonists for neuropathic pain: preclinical and clinical studies.

    PubMed

    Smith, Maree T; Anand, Praveen; Rice, Andrew S C

    2016-02-01

    Neuropathic pain affects up to 10% of the general population, but drug treatments recommended for the treatment of neuropathic pain are associated with modest efficacy and/or produce dose-limiting side effects. Hence, neuropathic pain is an unmet medical need. In the past 2 decades, research on the pathobiology of neuropathic pain has revealed many novel pain targets for use in analgesic drug discovery programs. However, these efforts have been largely unsuccessful as molecules that showed promising pain relief in rodent models of neuropathic pain generally failed to produce analgesia in early phase clinical trials in patients with neuropathic pain. One notable exception is the angiotensin II type 2 (AT2) receptor that has clinical validity on the basis of a successful double-blind, randomized, placebo-controlled, clinical trial of EMA401, a highly selective, orally active, peripherally restricted AT2 receptor antagonist in patients with postherpetic neuralgia. In this study, we review research to date on target validation, efficacy, and mode of action of small molecule AT2 receptor antagonists in rodent models of peripheral neuropathic pain and in cultured human sensory neurons, the preclinical pharmacokinetics of these compounds, and the outcome of the above clinical trial.

  16. Identification of Type II Interferon Receptors in Geese: Gene Structure, Phylogenetic Analysis, and Expression Patterns.

    PubMed

    Zhou, Hao; Chen, Shun; Qi, Yulin; Zhou, Qin; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Chen, Xiaoyue; Cheng, Anchun

    2015-01-01

    Interferon γ receptor 1 (IFNGR1) and IFNGR2 are two cell membrane molecules belonging to class II cytokines, which play important roles in the IFN-mediated antiviral signaling pathway. Here, goose IFNGR1 and IFNGR2 were cloned and identified for the first time. Tissue distribution analysis revealed that relatively high levels of goose IFNγ mRNA transcripts were detected in immune tissues, including the harderian gland, cecal tonsil, cecum, and thymus. Relatively high expression levels of both IFNGR1 and IFNGR2 were detected in the cecal tonsil, which implicated an important role of IFNγ in the secondary immune system of geese. No specific correlation between IFNγ, IFNGR1, and IFNGR2 expression levels was observed in the same tissues of healthy geese. IFNγ and its cognate receptors showed different expression profiles, although they appeared to maintain a relatively balanced state. Furthermore, the agonist R848 led to the upregulation of goose IFNγ but did not affect the expression of goose IFNGR1 or IFNGR2. In summary, trends in expression of goose IFNγ and its cognate receptors showed tissue specificity, as well as an age-related dependency. These findings may help us to better understand the age-related susceptibility to pathogens in birds.

  17. A novel chemical footprinting approach identifies critical lysine residues involved in the binding of receptor-associated protein to cluster II of LDL receptor-related protein.

    PubMed

    Bloem, Esther; Ebberink, Eduard H T M; van den Biggelaar, Maartje; van der Zwaan, Carmen; Mertens, Koen; Meijer, Alexander B

    2015-05-15

    Tandem mass tags (TMTs) were utilized in a novel chemical footprinting approach to identify lysine residues that mediate the interaction of receptor-associated protein (RAP) with cluster II of LDL (low-density lipoprotein) receptor (LDLR)-related protein (LRP). The isolated RAP D3 domain was modified with TMT-126 and the D3 domain-cluster II complex with TMT-127. Nano-LC-MS analysis revealed reduced modification with TMT-127 of peptides including Lys(256), Lys(270) and Lys(305)-Lys(306) suggesting that these residues contribute to cluster II binding. This agrees with previous findings that Lys(256) and Lys(270) are critical for binding cluster II sub-domains [Fisher, Beglova and Blacklow (2006) Mol. Cell 22, 277-283]. Cluster II-binding studies utilizing D3 domain variants K(256)A, K(305)A and K(306)A now showed that Lys(306) contributes to cluster II binding as well. For full-length RAP, we observed that peptides including Lys(60), Lys(191), Lys(256), Lys(270) and Lys(305)-Lys(306) exhibited reduced modification with TMT in the RAP-cluster II complex. Notably, Lys(60) has previously been implicated to mediate D1 domain interaction with cluster II. Our results suggest that also Lys(191) of the D2 domain contributes to cluster II binding. Binding studies employing the RAP variants K(191)A, K(256)A, K(305)A and K(306)A, however, revealed a modest reduction in cluster II binding for the K(256)A variant only. This suggests that the other lysine residues can compensate for the absence of a single lysine residue for effective complex assembly. Collectively, novel insight has been obtained into the contribution of lysine residues of RAP to cluster II binding. In addition, we propose that TMTs can be utilized to identify lysine residues critical for protein complex formation. PMID:25728577

  18. Corticotropin-releasing factor receptors induce calcium mobilization through cross-talk with Gq-coupled receptors.

    PubMed

    Gutknecht, Eric; Vauquelin, Georges; Dautzenberg, Frank M

    2010-09-10

    The cross-talk between corticotropin-releasing factor (CRF) and muscarinic receptors was investigated by measuring evoked transient increases in cytosolic calcium concentration. HEK293 cells stably expressing human CRF type 1 (hCRF(1)) and type 2(a) (hCRF(2(a))) receptors were stimulated with the muscarinic receptor agonist carbachol and shortly after by a CRF agonist. Unexpectedly, this second response was enhanced when compared to stimulating naive cells either with carbachol or CRF agonist only. Priming with 100 microM carbachol increased the maximal CRF agonist response and shifted its concentration-response curve to the left to attain almost the same potency as for stimulating the production of the natural second messenger cyclic AMP. Yet, priming did not affect CRF agonist-stimulated cyclic AMP production itself. Carbachol priming was not restricted to recombinant CRF receptors only since endogenously expressed beta(2)-adrenoceptors also started to produce a robust calcium signal. Without priming no such signal was observed. Similar findings were made in the human retinoblastoma cell line Y79 for endogenously expressed CRF(1) receptors and the type 1 pituitary adenylate cyclase-activating polypeptide receptors but not for the CRF(2(a)) receptors. This differentiation between CRF(1) and CRF(2) receptors was further supported by use of selective agonists and antagonists. The results suggest that stimulating a Gq-coupled receptor shortly before stimulating a Gs-coupled receptor may result in a parallel signaling event on top of the classical cyclic AMP pathway. PMID:20594969

  19. Abilities of candesartan and other AT(1) receptor blockers to impair angiotensin II-induced AT(1) receptor activation after wash-out.

    PubMed

    Kiya, Yoshihiro; Miura, Shin-ichiro; Matsuo, Yoshino; Karnik, Sadashiva S; Saku, Keijiro

    2012-03-01

    Angiotensin II (Ang II) binds to Ang II type 1 (AT(1)) receptor and evokes cell signaling, and subsequently stimulates vasoconstriction and cell proliferation, which eventually lead to cardiovascular disease. Since most AT(1) receptor blockers (ARBs) have molecular (differential) effects, we evaluated the specific features of candesartan and compared the abilities of candesartan and other ARBs (olmesartan, telmisartan, valsartan, irbesartan and losartan) to bind to and activate AT(1) receptors using a cell-based wash-out assay. Each ARB blocked Ang II-induced extracellular signal-regulated kinase (ERK) activation and inositol phosphate production to different degrees after wash-out. In addition, a small difference in the molecular structure, i.e. a carboxyl group, between candesartan and candesartan-7H was associated with a difference in the degree of this blocking effect. In addition, interaction between Gln(257) in the AT(1) receptor and the carboxyl group of candesartan may be partially associated with the effect of candesartan after wash-out. Although our findings regarding the molecular effects of ARB are based on basic research, these findings may lead to an exciting new area in the clinical application of ARBs. PMID:21824992

  20. Epidermal growth factor, oestrogen and progesterone receptor expression in primary ovarian cancer: correlation with clinical outcome and response to chemotherapy.

    PubMed Central

    Scambia, G.; Benedetti-Panici, P.; Ferrandina, G.; Distefano, M.; Salerno, G.; Romanini, M. E.; Fagotti, A.; Mancuso, S.

    1995-01-01

    The expression of epidermal growth factor receptor (EGFR), oestrogen receptor (ER) and progesterone receptor (PR) was assayed by a radioreceptor method in 117 primary ovarian cancers. EGFR was not significantly related to any of the clinicopathological parameters examined. In patients with stage II-IV disease who underwent second-look surgery after primary chemotherapy, a significant correlation between high EGFR levels and poor response to chemotherapy was demonstrated (P = 0.031). Moreover, post-operative residual tumour showed an independent role in predicting chemotherapy response (P = 0.0007) and EGFR status showed a borderline significance (P = 0.052) in the multivariate analysis. No correlation between steroid hormone receptors and clinicopathological parameters was observed. Whereas a significant relationship was shown between EGFR positivity and a shorter overall survival (OS) (P = 0.0022) and progression-free survival (PFS) (P = 0.0033), patient survival was not related to steroid hormone receptor status. Among the parameters tested only stage, ascites and EGFR status retained an independent prognostic value in the multivariate analysis. PMID:7640219

  1. Immunologic studies of factor IX (Christmas factor). II. Immunoradiometric assay of factor IX antigen.

    PubMed

    Yang, H C

    1978-06-01

    A solid-phase two-site immunoradiometric assay has been developed which measures factor IX antigen levels as low as 0.0004 u per ml of plasma. In normal individuals, the factor IX antigen level correlated with the factor IX procoagulant level. In haemophilia B, 14 patients had markedly reduced antigen levels (less than 0.06 u/ml) and five had normal levels (greater than 0.60 u/ml).

  2. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer

    PubMed Central

    Sobani, Zain A; Sawant, Ashwin; Jafri, Mikram; Correa, Amit Keith; Sahin, Ibrahim Halil

    2016-01-01

    Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade. PMID:27777877

  3. The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor.

    PubMed

    Segarini, P R; Nesbitt, J E; Li, D; Hays, L G; Yates, J R; Carmichael, D F

    2001-11-01

    Connective tissue growth factor (CTGF) expression is regulated by transforming growth factor-beta (TGF-beta) and strong up-regulation occurs during wound healing; in situ hybridization data indicate that there are high levels of CTGF expression in fibrotic lesions. Recently the binding parameters of CTGF to both high and lower affinity cell surface binding components have been characterized. Affinity cross-linking and SDS-polyacrylamide gel electrophoresis analysis demonstrated the binding of CTGF to a cell surface protein with a mass of approximately 620 kDa. We report here the purification of this protein by affinity chromatography on CTGF coupled to Sepharose and sequence information obtained by mass spectroscopy. The binding protein was identified as the multiligand receptor, low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor (LRP). The identification of LRP as a receptor for CTGF was validated by several studies: 1) binding competition with many ligands that bind to LRP, including receptor-associated protein; 2) immunoprecipitation of CTGF-receptor complex with LRP antibodies; and 3) cells that are genetically deficient for LRP were unable to bind CTGF. Last, CTGF is rapidly internalized and degraded and this process is LRP-dependent. In summary, our data indicate that LRP is a receptor for CTGF, and may play an important role in mediating CTGF biology.

  4. The type 2 vascular endothelial growth factor receptor recruits insulin receptor substrate-1 in its signalling pathway.

    PubMed Central

    Senthil, Duraisamy; Ghosh Choudhury, Goutam; Bhandari, Basant K; Kasinath, Balakuntalam S

    2002-01-01

    Vascular endothelial growth factor (VEGF) isoforms exert their biological effects through receptors that possess intrinsic tyrosine kinase activity. Whether VEGF binding to its receptors recruits insulin receptor substrate (IRS) family of docking proteins to the receptor is not known. Following incubation of mouse kidney proximal tubular epithelial cells with VEGF, we observed an increase in tyrosine phosphorylation of several proteins, including one of approximately 200 kDa, suggesting possible regulation of phosphorylation of IRS proteins. VEGF augmented tyrosine phosphorylation of IRS-1 in kidney epithelial cells and rat heart endothelial cells in a time-dependent manner. In the epithelial cells, association of IRS-1 with type 2 VEGF receptor was promoted by VEGF. VEGF also increased association of IRS-1 with the p85 regulatory subunit of phosphoinositide 3-kinase (PI 3-kinase), and PI 3-kinase activity in IRS-1 immunoprecipitates was increased in VEGF-treated cells. Incubation of epithelial cells with antisense IRS-1 oligonucleotide, but not sense oligonucleotide, reduced expression of the protein and VEGF-induced PI 3-kinase activity in IRS-1 immunoprecipitates. Additionally, VEGF-induced protein synthesis was also impaired by antisense but not sense IRS-1 oligonucleotide. These data provide the first evidence that binding of VEGF to its type 2 receptor promotes association of IRS-1 with the receptor complex. This association may account for some of the increase in VEGF-induced PI 3-kinase activity, and the increase in de novo protein synthesis seen in renal epithelial cells. PMID:12153400

  5. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3.

    PubMed Central

    Keegan, K; Johnson, D E; Williams, L T; Hayman, M J

    1991-01-01

    The fibroblast growth factors are a family of polypeptide growth factors involved in a variety of activities including mitogenesis, angiogenesis, and wound healing. Fibroblast growth factor receptors (FGFRs) have previously been identified in chicken, mouse, and human and have been shown to contain an extracellular domain with either two or three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain. We have isolated a human cDNA for another tyrosine kinase receptor that is highly homologous to the previously described FGFR. Expression of this receptor cDNA in COS cells directs the expression of a 125-kDa glycoprotein. We demonstrate that this cDNA encodes a biologically active receptor by showing that human acidic and basic fibroblast growth factors activate this receptor as measured by 45Ca2+ efflux assays. These data establish the existence of an additional member of the FGFR family that we have named FGFR-3. Images PMID:1847508

  6. High-salt intake induces cardiomyocyte hypertrophy in rats in response to local angiotensin II type 1 receptor activation.

    PubMed

    Katayama, Isis A; Pereira, Rafael C; Dopona, Ellen P B; Shimizu, Maria H M; Furukawa, Luzia N S; Oliveira, Ivone B; Heimann, Joel C

    2014-10-01

    Many studies have shown that risk factors that are independent of blood pressure (BP) can contribute to the development of cardiac hypertrophy (CH). Among these factors, high-salt (HS) intake was prominent. Although some studies have attempted to elucidate the role of salt in the development of this disease, the mechanisms by which salt acts are not yet fully understood. Thus, the aim of this study was to better understand the mechanisms of CH and interstitial fibrosis (IF) caused by HS intake. Male Wistar rats were divided into 5 groups according to diet [normal salt (NS; 1.27% NaCl) or HS (8% NaCl)] and treatment [losartan (LOS) (HS+LOS group), hydralazine (HZ) (HS+HZ group), or N-acetylcysteine (NAC) (HS+NAC group)], which was given in the drinking water. Tail-cuff BP, transverse diameter of the cardiomyocyte, IF, angiotensin II type 1 receptor (AT1) gene and protein expression, serum aldosterone, cardiac angiotensin II, cardiac thiobarbituric acid-reactive substances, and binding of conformation-specific anti-AT1 and anti-angiotensin II type 2 receptor (AT2) antibodies in the 2 ventricles were measured. Based on the left ventricle transverse diameter data, the primary finding was the occurrence of significant BP-independent CH in the HS+HZ group (96% of the HS group) and a partial or total prevention of such hypertrophy via treatment with NAC or LOS (81% and 67% of the HS group, respectively). The significant total or partial prevention of IF using all 3 treatments (HS+HZ, 27%; HS+LOS, 27%; and HS+NAC, 58% of the HS group, respectively), and an increase in the AT1 gene and protein expression and activity in groups that developed CH, confirmed that CH occurred via the AT1 in this experimental model. Thus, this study unveiled some relevant previously unknown mechanisms of CH induced by chronic HS intake in Wistar rats. The link of oxidative stress with CH in our experimental model is very interesting and stimulates further evaluation for its full comprehension.

  7. Stimulation of RNA polymerase I and II activities by 17 beta -estradiol receptor on chick liver chromatin.

    PubMed Central

    Dierks-Ventling, C; Bieri-Bonniot, F

    1977-01-01

    The endogenous transcriptional capacity (RNA polymerase I and II activity) of liver chromatin from chicks treated with 17 beta-estradiol for 24 h (E 24) was double that of the controls. E 24 chromatin contained estradiol receptor activity while control chromatin did not. Its presence suggested an implication in the enhanced activities of RNA polymerases of E 24 chromatin. When semi-purified estradiol receptor was added to control chromatin, the endogenous transcriptional capacity of this chromatin was greatly increased. Studies with alpha-amanitin showed that both RNA polymerase I and II were stimulated by the estradiol receptor. This stimulation was observed as long as homology of the system was maintained. Solubilized homologous RNA polymerases were stimulated much less by the hormone complex in the presence of heterologous DNA than with homologous chromatin. Prokaryotic RNA polymerase could not be stimulated by chick liver estradiol receptor in the presence of heterologous DNA. PMID:840645

  8. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  9. Enhanced expression of DNA topoisomerase II by recombinant human granulocyte colony-stimulating factor in human leukemia cells.

    PubMed

    Towatari, M; Ito, Y; Morishita, Y; Tanimoto, M; Kawashima, K; Morishima, Y; Andoh, T; Saito, H

    1990-11-15

    The effect of recombinant human granulocyte colony-stimulating factor (G-CSF) on DNA topoisomerase II (topo II) expression was studied in two human acute myelogenous leukemia cell lines, NKM-1 and NOMO-1, which express G-CSF receptor and proliferate in response to exogenous G-CSF. Northern blot analysis revealed that the level of topo II mRNA in 16-h stimulated cells in serum-free medium with G-CSF (10 ng/ml) was approximately 2-fold higher than that in cells without G-CSF. Enhanced topo II mRNA expression was detectable within 3 h after the addition of G-CSF. Topo II activity in crude nuclear extracts from 16-h G-CSF-stimulated cells was also found to be approximately 2-fold greater than that from unstimulated cells. According to in vitro cytotoxic assay, the sensitivity of G-CSF-stimulated cells to intercalating (daunorubicin) and nonintercalating (etoposide) topo II-targeting drugs increased significantly, whereas no enhancement of sensitivity was observed with an alkylating agent (4-hydroperoxycyclophosphamide). The augmented drug sensitivity observed was not due to the increased level of drug transport, as suggested by the similar extent of [3H]etoposide uptake between G-CSF-stimulated and unstimulated cells. By measuring the topo II mRNA and the cytotoxicity of the above mentioned drugs, we obtained essentially the same results in G-CSF-responsive leukemia cells isolated from three acute myeloblastic leukemia patients, as observed in the cultured cell lines. These findings strongly suggest that the sensitivity to "topo II-targeting drugs" could be augmented by exogenous G-CSF through elevated topo II activity in G-CSF-responsive leukemia cells. PMID:1699657

  10. Purinergic receptors contribute to early mesangial cell transformation and renal vessel hypertrophy during angiotensin II-induced hypertension

    PubMed Central

    Graciano, Miguel L.; Nishiyama, Akira; Jackson, Keith; Seth, Dale M.; Ortiz, Rudy M.; Prieto-Carrasquero, Minolfa C.; Kobori, Hiroyuki; Navar, L. Gabriel

    2008-01-01

    Chronic ANG II infusions lead to increases in intrarenal ANG II levels, hypertension, and tissue injury. Increased blood pressure also elicits increases in renal interstitial fluid (RIF) ATP concentrations that stimulate cell proliferation. We evaluated the contribution of purinergic receptor activation to ANG II-induced renal injury in rats by treating with clopidogrel, a P2Y12 receptor blocker, or with PPADS, a nonselective P2 receptor blocker. α-Actin expression in mesangial cells, afferent arteriolar wall thickness (AAWT), cortical cell proliferation, and macrophage infiltration were used as early markers of renal injury. Clopidogrel and PPADS did not alter blood pressure, renin or kidney ANG II content. α-Actin expression increased from control of 0.6 ± 0.4% of mesangial area to 6.3 ± 1.9% in ANG II-infused rats and this response was prevented by clopidogrel (0.4 ± 0.2%) and PPADS. The increase in AAWT from 4.7 ± 0.1 to 6.0 ± 0.1 mm in ANG II rats was also prevented by clopidogrel (4.8 ± 0.1 mm) and PPADS. ANG II infusion led to interstitial macrophage infiltration (105 ± 16 vs. 62 ± 4 cell/mm2) and tubular proliferation (71 ± 15 vs. 20 ± 4 cell/mm2) and these effects were prevented by clopidogrel (52 ± 4 and 36 ± 3 cell/mm2) and PPADS. RIF ATP levels were higher in ANG II-infused rats than in control rats (11.8 ± 1.9 vs. 5.6 ± 0.6 nmol/l, P < 0.05). The results suggest that activation of vascular and glomerular purinergic P2 receptors may contribute to the mesangial cell transformation, renal inflammation, and vascular hypertrophy observed in ANG II-dependent hypertension. PMID:17989111

  11. The renin-angiotensin system mediates epidermal growth factor receptor-vitamin D receptor cross-talk in colitis-associated colon cancer

    PubMed Central

    Sadiq, Farhana; Almoghrabi, Anas; Mustafi, Devkumar; Kreisheh, Maggi; Sundaramurthy, Sumana; Liu, Weicheng; Konda, Vani J.; Pekow, Joel; Khare, Sharad; Hart, John; Joseph, Loren; Wyrwicz, Alice; Karczmar, Gregory S.; Li, Yan Chun; Bissonnette, Marc

    2014-01-01

    Purpose We previously showed that epidermal growth factor receptor (EGFR) promotes tumorigenesis in the azoxymethane/dextran sulfate sodium (AOM/DSS) model, whereas vitamin D (VD) suppresses tumorigenesis. EGFR-vitamin D receptor (VDR) interactions, however, are incompletely understood. VD inhibits the renin-angiotensin system (RAS), whereas RAS can activate EGFR. We aimed to elucidate EGFR-VDR cross-talk in colorectal carcinogenesis. Experimental Design To examine VDR-RAS interactions, we treated Vdr+/+ and Vdr/− mice with AOM/DSS. Effects of VDR on RAS and EGFR were examined by Westerns, immunostaining and real time PCR. We also examined the effect of vitamin D3 on colonic RAS in Vdr+/+ mice. EGFR regulation of VDR was examined in hypomorphic EgfrWaved2 (Wa2) and Egfrwildtype mice. Ang II-induced EGFR activation was studied in cell culture. Results Vdr deletion significantly increased tumorigenesis, activated EGFR and βcatenin signaling and increased colonic RAS components: including renin and angiotensin II. Dietary VD3 supplementation suppressed colonic renin. Renin was increased in human colon cancers. In studies in vitro, Ang II activated EGFR and stimulated colon cancer cell proliferation by an EGFR-mediated mechanism. Ang II also activated macrophages and colonic fibroblasts. Compared to tumors from EgfrWaved2 mice, tumors from Egfrwildtype mice showed up-regulated Snail1, a suppressor of VDR, and down-regulated VDR. Conclusions VDR suppresses the colonic RAS cascade, limits EGFR signals and inhibits colitis-associated tumorigenesis, whereas EGFR increases Snail1 and down-regulates VDR in colonic tumors. Taken together, these results uncover a RAS-dependent mechanism mediating EGFR and VDR cross-talk in colon cancer. PMID:25212605

  12. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  13. Ca(2+) -induced binding of anticoagulation factor II from the venom of Agkistrodon acutus with factor IX.

    PubMed

    Shen, Deng-Ke; Xu, Xiao-Long; Zhang, Yan; Song, Jia-Jia; Yan, Xin-Cheng; Guo, Ming-Chun

    2012-10-01

    Anticoagulation factor II (ACF II), a coagulation factor X- binding protein from the venom of Agkistrodon acutus has both anticoagulant and hypotensive activities. Previous studies show that ACF II binds specifically with activated factor X (FXa) in a Ca(2+) -dependent manner and inhibits intrinsic coagulation pathway. In this study, the inhibition of extrinsic coagulation pathway by ACF II was measured in vivo by prothrombin time assay and the binding of ACF II to factor IX (FIX) was investigated by native polyacrylamide gel electrophoresis and surface plasmon resonance (SPR). The results indicate that ACF II also inhibits extrinsic coagulation pathway, but does not inhibit thrombin activity. ACF II also binds with FIX with high binding affinity in a Ca(2+) -dependent manner and their maximal binding occurs at about 0.1 mM Ca(2+) . ACF II has similar binding affinity to FIX and FX as determined by SPR. Ca(2+) has a slight effect on the secondary structure of FIX as determined by circular dichroism spectroscopy. Ca(2+) ions are required to maintain in vivo function of FIX Gla domain for its recognition of ACF II. However, Ca(2+) at high concentrations (>0.1 mM) inhibits the binding of ACF II to FIX. Ca(2+) functions as a switch for the binding between ACF II and FIX. ACF II extends activated partial thromboplastin time more strongly than prothrombin time, suggesting that the binding of ACF II with FIX may play a dominant role in the anticoagulation of ACF II in vivo. PMID:22806501

  14. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  15. Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer's disease model.

    PubMed

    Ongali, Brice; Nicolakakis, Nektaria; Tong, Xin-Kang; Aboulkassim, Tahar; Papadopoulos, Panayiota; Rosa-Neto, Pedro; Lecrux, Clotilde; Imboden, Hans; Hamel, Edith

    2014-08-01

    Angiotensin II (AngII) receptor blockers that bind selectively AngII type 1 (AT1) receptors may protect from Alzheimer's disease (AD). We studied the ability of the AT1 receptor antagonist losartan to cure or prevent AD hallmarks in aged (~18months at endpoint, 3months treatment) or adult (~12months at endpoint, 10months treatment) human amyloid precursor protein (APP) transgenic mice. We tested learning and memory with the Morris water maze, and evaluated neurometabolic and neurovascular coupling using [(18)F]fluoro-2-deoxy-D-glucose-PET and laser Doppler flowmetry responses to whisker stimulation. Cerebrovascular reactivity was assessed with on-line videomicroscopy. We measured protein levels of oxidative stress enzymes (superoxide dismutases SOD1, SOD2 and NADPH oxidase subunit p67phox), and quantified soluble and deposited amyloid-β (Aβ) peptide, glial fibrillary acidic protein (GFAP), AngII receptors AT1 and AT2, angiotensin IV receptor AT4, and cortical cholinergic innervation. In aged APP mice, losartan did not improve learning but it consolidated memory acquisition and recall, and rescued neurovascular and neurometabolic coupling and cerebrovascular dilatory capacity. Losartan normalized cerebrovascular p67phox and SOD2 protein levels and up-regulated those of SOD1. Losartan attenuated astrogliosis, normalized AT1 and AT4 receptor levels, but failed to rescue the cholinergic deficit and the Aβ pathology. Given preventively, losartan protected cognitive function, cerebrovascular reactivity, and AT4 receptor levels. Like in aged APP mice, these benefits occurred without a decrease in soluble Aβ species or plaque load. We conclude that losartan exerts potent preventive and restorative effects on AD hallmarks, possibly by mitigating AT1-initiated oxidative stress and normalizing memory-related AT4 receptors.

  16. Neonatal handling reduces angiotensin II receptor density in the medial preoptic area and paraventricular nucleus but not in arcuate nucleus and locus coeruleus of female rats.

    PubMed

    Gomes, Cármen Marilei; Donadio, Márcio Vinícius Fagundes; Franskoviaki, Inélia; Anselmo-Franci, Janete A; Franci, Celso Rodrigues; Lucion, Aldo Bolten; Sanvitto, Gilberto Luiz

    2006-01-01

    Neonatal handling alters the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonads axis (HPG) in adult animals, and angiotensin II (Ang II) modulates the functions in these axes. We tested whether neonatal handling could change the density of Ang II receptors in some central areas in female rats. Results showed decreased density of the Ang II receptors in the medial preoptic area (MPOA) and hypothalamic paraventricular nucleus (PVN) of the neonatal handled group.

  17. Modulation of the delayed rectifier K+ current in neurons by an angiotensin II type 2 receptor fragment.

    PubMed

    Kang, J; Richards, E M; Posner, P; Sumners, C

    1995-01-01

    Angiotensin II (ANG II) stimulates the delayed rectifier K+ current (IK) in neurons cultured from rat hypothalamus and brain stem via AT2 receptors, and this effect involves activation of a Gi protein and protein phosphatase 2A (PP2A). However, there was no evidence that the AT2 receptor involved in this response was the same as the recently cloned AT2 receptor. In the present study, intracellular injection of a 22-amino acid peptide (PEP-22) corresponding to the putative third intracellular loop of the cloned AT2 receptor elicited an increase in IK in cultured neurons that was similar to the effect produced by ANG II. Furthermore, this effect of PEP-22 was abolished by pertussis toxin (200 ng/ml, 24 h) pretreatment and also by superfusion of the PP2A inhibitor okadaic acid (10 nM), suggesting the involvement of Gi protein and PP2A, respectively. Intracellular injection of a random peptide or normal pipette solution did not affect neuronal IK. This is direct evidence to link the cloned AT2 receptor to a defined response elicited by ANG II.

  18. [Angiotensin II-receptor antagonists compared to other antihypertensives: still insufficient evidence for reducing the risk of cerebrovascular incidents].

    PubMed

    Meerum Terwogt, J M; Koopmans, R P; Roos, Y B W E M; van Montfrans, G A

    2008-01-12

    --There is growing evidence that angiotensin II-receptor antagonists may have protective effects for preventing cerebrovascular incidents. --It is unlikely that these effects are due only to a decrease in blood pressure. --One hypothesis is that high concentrations ofangiotensin II result in improved cerebral perfusion ofangiotensin type 2-receptor mediated mechanisms such as local vasodilatation and angiogenesis. --Several clinical and preclinical studies support this hypothesis. --The results of these studies are discussed in this overview. There is still insufficient evidence that a protective effect on the brain occurs.

  19. DNA Aptamer Assembly as a Vascular Endothelial Growth Factor Receptor Agonist

    PubMed Central

    Ramaswamy, Vidhya; Monsalve, Adam; Sautina, Larysa; Segal, Mark S.; Dobson, Jon

    2015-01-01

    Controlling receptor-mediated processes in cells is paramount in many research areas. The activity of small molecules and growth factors is difficult to control and can lead to off-target effects through the activation of nonspecific receptors as well as binding affinity to nonspecific cell types. In this study, we report the development of a molecular trigger in the form of a divalent nucleic acid aptamer assembly toward vascular endothelial growth factor receptor-2 (VEGFR2). The assembly binds to VEGFR2 and functions as a receptor agonist with targeted receptor binding, promoting receptor phosphorylation, activation of the downstream Akt pathway, upregulation of endothelial nitric oxide synthase, and endothelial cell capillary tube formation. The agonist action we report makes this aptamer construct a promising strategy to control VEGFR2-mediated cell signaling. PMID:26125598

  20. DNA Aptamer Assembly as a Vascular Endothelial Growth Factor Receptor Agonist.

    PubMed

    Ramaswamy, Vidhya; Monsalve, Adam; Sautina, Larysa; Segal, Mark S; Dobson, Jon; Allen, Josephine B

    2015-10-01

    Controlling receptor-mediated processes in cells is paramount in many research areas. The activity of small molecules and growth factors is difficult to control and can lead to off-target effects through the activation of nonspecific receptors as well as binding affinity to nonspecific cell types. In this study, we report the development of a molecular trigger in the form of a divalent nucleic acid aptamer assembly toward vascular endothelial growth factor receptor-2 (VEGFR2). The assembly binds to VEGFR2 and functions as a receptor agonist with targeted receptor binding, promoting receptor phosphorylation, activation of the downstream Akt pathway, upregulation of endothelial nitric oxide synthase, and endothelial cell capillary tube formation. The agonist action we report makes this aptamer construct a promising strategy to control VEGFR2-mediated cell signaling.

  1. Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130.

    PubMed Central

    Gearing, D P; Thut, C J; VandeBos, T; Gimpel, S D; Delaney, P B; King, J; Price, V; Cosman, D; Beckmann, M P

    1991-01-01

    Leukemia inhibitory factor (LIF) is a cytokine with a broad range of activities that in many cases parallel those of interleukin-6 (IL-6) although LIF and IL-6 appear to be structurally unrelated. A cDNA clone encoding the human LIF receptor was isolated by expression screening of a human placental cDNA library. The LIF receptor is related to the gp130 'signal-transducing' component of the IL-6 receptor and to the G-CSF receptor, with the transmembrane and cytoplasmic regions of the LIF receptor and gp130 being most closely related. This relationship suggests a common signal transduction pathway for the two receptors and may help to explain similar biological effects of the two ligands. Murine cDNAs encoding soluble LIF receptors were isolated by cross-hybridization and share 70% amino acid sequence identity to the human sequence. Images PMID:1915266

  2. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors.

    PubMed

    Kellici, Tahsin F; Tzakos, Andreas G; Mavromoustakos, Thomas

    2015-03-02

    The angiotensin II (Ang II) type 1 and type 2 receptors (AT1R and AT2R) orchestrate an array of biological processes that regulate human health. Aberrant function of these receptors triggers pathophysiological responses that can ultimately lead to death. Therefore, it is important to design and synthesize compounds that affect beneficially these two receptors. Cardiovascular disease, which is attributed to the overactivation of the vasoactive peptide hormone Αng II, can now be treated with commercial AT1R antagonists. Herein, recent achievements in rational drug design and synthesis of molecules acting on the two AT receptors are reviewed. Quantitative structure activity relationships (QSAR) and molecular modeling on the two receptors aim to assist the search for new active compounds. As AT1R and AT2R are GPCRs and drug action is localized in the transmembrane region the role of membrane bilayers is exploited. The future perspectives in this field are outlined. Tremendous progress in the field is expected if the two receptors are crystallized, as this will assist the structure based screening of the chemical space and lead to new potent therapeutic agents in cardiovascular and other diseases.

  3. On the Factor Structure of the Beck Depression Inventory-II: G Is the Key

    ERIC Educational Resources Information Center

    Brouwer, Danny; Meijer, Rob R.; Zevalkink, Jolien

    2013-01-01

    The Beck Depression Inventory-II (BDI-II; Beck, Steer, & Brown, 1996) is intended to measure severity of depression, and because items represent a broad range of depressive symptoms, some multidimensionality exists. In recent factor-analytic studies, there has been a debate about whether the BDI-II can be considered as one scale or whether…

  4. A limited spectrum of mutations causes constitutive activation of the yeast alpha-factor receptor.

    PubMed

    Sommers, C M; Martin, N P; Akal-Strader, A; Becker, J M; Naider, F; Dumont, M E

    2000-06-13

    Activation of G protein coupled receptors (GPCRs) by binding of ligand is the initial event in diverse cellular signaling pathways. To examine the frequency and diversity of mutations that cause constitutive activation of one particular GPCR, the yeast alpha-factor receptor, we screened libraries of random mutations for constitutive alleles. In initial screens for mutant receptor alleles that exhibit signaling in the absence of added ligand, 14 different point mutations were isolated. All of these 14 mutants could be further activated by alpha-factor. Ten of the mutants also acquired the ability to signal in response to binding of desTrp(1)¿Ala(3)ălpha-factor, a peptide that acts as an antagonist toward normal alpha-factor receptors. Of these 10 mutants, at least eight alleles residing in the third, fifth, sixth, and seventh transmembrane segments exhibit bona fide constitutive signaling. The remaining alleles are hypersensitive to alpha-factor rather than constitutive. They can be activated by low concentrations of endogenous alpha-factor present in MATa cells. The strongest constitutively active receptor alleles were recovered multiple times from the mutational libraries, and extensive mutagenesis of certain regions of the alpha-factor receptor did not lead to recovery of any additional constitutive alleles. Thus, only a limited number of mutations is capable of causing constitutive activation of this receptor. Constitutive and hypersensitive signaling by the mutant receptors is partially suppressed by coexpression of normal receptors, consistent with preferential association of the G protein with unactivated receptors. PMID:10841771

  5. Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy

    PubMed Central

    Yasuno, Shinji; Kuwahara, Koichiro; Kinoshita, Hideyuki; Yamada, Chinatsu; Nakagawa, Yasuaki; Usami, Satoru; Kuwabara, Yoshihiro; Ueshima, Kenji; Harada, Masaki; Nishikimi, Toshio; Nakao, Kazuwa

    2013-01-01

    BACKGROUND AND PURPOSE Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large-scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects. EXPERIMENTAL APPROACH We induced cardiac hypertrophy in wild-type (WT) and angiotensin II type 1a receptor knockout (AT1aR-KO) mice by transverse aortic constriction (TAC). The susceptibility to ventricular tachycardia (VT) assessed in an in vivo electrophysiological study was compared in the two genotypes. The effect of acute pharmacological blockade of AT1R on the incidences of arrhythmias was also assessed. KEY RESULTS As described previously, WT and AT1aR-KO mice with TAC developed cardiac hypertrophy to the same degree, but the incidence of VT was much lower in the latter. Moreover, although TAC induced an increase in tyrosine phosphorylation of connexin 43, a critical component of gap junctional channels, and a reduction in ventricular levels of connexin 43 protein in both genotypes, the effect was significantly ameliorated in AT1aR-KO mice. Acute pharmacological blockade of AT1R also reduced the incidence of arrhythmias. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate that AT1aR-mediated signalling makes a direct contribution to the increase in arrhythmogenicity in hypertrophied hearts independently of structural remodelling. PMID:23937445

  6. Interaction of angiotensin II with the C-terminal 300-320 fragment of the rat angiotensin II receptor AT1a monitored by NMR.

    PubMed

    D'Amelio, Nicola; Gaggelli, Elena; Gaggelli, Nicola; Lozzi, Luisa; Neri, Paolo; Valensin, Daniela; Valensin, Gianni

    2003-10-01

    Interaction between angiotensin II (Ang II) and the fragment peptide 300-320 (fCT300-320) of the rat angiotensin II receptor AT1a was demonstrated by relaxation measurements, NOE effects, chemical shift variations, and CD measurements. The correlation times modulating dipolar interactions for the bound and free forms of Ang II were estimated by the ratio of the nonselective and single-selective longitudinal relaxation rates. The intermolecular NOEs observed in NOESY spectra between HN protons of 9Lys(fCT) and 6His(ang), 10Phe(fCT) and 8Phe(ang), HN proton of 3Tyr(fCT) and Halpha of 4Tyr(ang), 5Phe(fCT)Hdelta and Halpha of 4Tyr(ang) indicated that Ang II aromatic residues are directly involved in the interaction, as also verified by relaxation data. Some fCT300-320 backbone features were inferred by the CSI method and CD experiments revealing that the presence of Ang II enhances the existential probability of helical conformations in the fCT fragment. Restrained molecular dynamics using the simulated annealing protocol was performed with intermolecular NOEs as constraints, imposing an alpha-helix backbone structure to fCT300-320 fragment. In the built model, one strongly preferred interaction was found that allows intermolecular stacking between aromatic rings and forces the peptide to wrap around the 6Leu side chain of the receptor fragment.

  7. A constitutive promoter directs expression of the nerve growth factor receptor gene

    SciTech Connect

    Sehgal, A.; Patil, N.; Chao, M.

    1988-08-01

    Expression of nerve growth factor receptor is normally restricted to cells derived from the neural crest in a developmentally regulated manner. The authors analyzed promoter sequences for the human nerve growth factor receptor gene and found that the receptor promoter resembles others which are associated with constitutively expressed genes that have housekeeping and growth-related functions. Unlike these other genes, the initiation of transcription occurred at one major site rather than at multiple sites. The constitutive nature of the nerve growth factor receptor promoter may account for the ability of this gene to be transcribed in a diverse number of heterologous cells after gene transfer. The intron-exon structure of the receptor gene indicated that structural features are precisely divided into discrete domains.

  8. Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells.

    PubMed

    Morales, María Gabriela; Vazquez, Yaneisi; Acuña, María José; Rivera, Juan Carlos; Simon, Felipe; Salas, José Diego; Alvarez Ruf, Joel; Brandan, Enrique; Cabello-Verrugio, Claudio

    2012-11-01

    Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF

  9. Selective inhibition of the hypoxia-inducible factor prolyl hydroxylase PHD3 by Zn(II).

    PubMed

    Na, Yu-Ran; Woo, Dustin J; Choo, Hyunah; Chung, Hak Suk; Yang, Eun Gyeong

    2015-07-01

    We report herein that Zn(II) selectively inhibits the hypoxia-inducible factor prolyl hydroxylase PHD3 over PHD2, and does not compete with Fe(II). Independent of the oligomer formation induced by Zn(II), inhibition of the activity of PHD3 by Zn(II) involves Cys42 and Cys52 residues distantly located from the active site. PMID:26051901

  10. Insulin-like growth factors I and II are produced in the metanephros and are required for growth and development in vitro.

    PubMed

    Rogers, S A; Ryan, G; Hammerman, M R

    1991-06-01

    The role(s) of one family of polypeptide growth factors in a developing organ system was examined. Renal anlagen (metanephroi) were surgically removed from 13-d-old rat embryos and grown in organ culture for up to 6 d. Over this period of time when placed in serum-free defined media, the metanephroi increased in size and morphologic complexity. Messenger RNAs for both insulin-like growth factors (IGFs), IGF I and IGF II, were present in the metanephroi. Immunoreactive IGF I and IGF II were produced by the renal anlagen and released into culture media. Levels were relatively constant during the 6 d in culture and averaged 3.5 X 10(-9) M IGF I and 8.3 X 10(-9) M IGF II in media removed from metanephroi after contact for 24 h. IGF binding protein activity was not detected in culture media. Growth and development of metanephroi in vitro was prevented by the addition of anti-IGF I or anti-IGF II antibodies to organ cultures. IGF II produced by metanephroi was active in an IGF II biological assay system and addition of anti-IGF II receptor antibodies to organ cultures prevented growth and development, consistent with the action of IGF II in metanephroi being mediated via the IGF II receptor. The data demonstrate production of both IGF I and IGF II by developing rat metanephroi in organ culture. Each of these peptides is necessary for growth and development of the renal anlage to take place in vitro. Our findings suggest that both IGF I and IGF II are produced within the developing metanephros in vivo and promote renal organogenesis.

  11. Reproductive factors and hormone receptor status among very young (<35 years) breast cancer patients.

    PubMed

    Jia, Xiaoqing; Liu, Guangyu; Mo, Miao; Cheng, Jingyi; Shen, Zhenzhou; Shao, Zhimin

    2015-09-15

    The prognosis for breast cancer occurs in young women is usually poor. The impact of different reproductive factors on disease characteristics is still largely unknown. We analyzed 261 patients aged ≤35 years old who were treated at the Cancer Hospital of Fudan University, Shanghai, China. The relationships between certain reproductive factors (age at menarche, parity, number of children, breastfeeding, history of abortion, age at first full-term pregnancy and oral contraceptive (OC) use) and disease characteristics were evaluated. Compared with patients who experienced fewer full-term pregnancies (<2 times), the patients with more full-term pregnancies (≥2 times) exhibited higher percentage of ER-positive tumors (61.5%) (P = 0.015), and patients whose age of menarche was ≥15 years exhibited a greater chance of PR-positive tumors (64.8%) (P = 0.036) compared with those whose age of menarche was <15 years old. Additionally, patients who had taken OCs were more likely to present with late-stage tumors (II stage or later) (87.5%) (P = 0.002) than patients who had never taken OCs. Our study provides evidence that women with more full-term pregnancies and later age at menarche are more possible to exhibit hormone receptor-positive tumors. Additionally, patients who have taken OCs are more likely to present with advanced disease.

  12. ADAM binding protein Eve-1 is required for ectodomain shedding of epidermal growth factor receptor ligands.

    PubMed

    Tanaka, Motonari; Nanba, Daisuke; Mori, Seiji; Shiba, Fumio; Ishiguro, Hiroshi; Yoshino, Koichiro; Matsuura, Nariaki; Higashiyama, Shigeki

    2004-10-01

    A disintegrin and metalloproteases (ADAMs) are implicated in the ectodomain shedding of epidermal growth factor receptor (EGFR) ligands in EGFR transactivation. However, the activation mechanisms of ADAMs remain elusive. To analyze the regulatory mechanisms of ADAM activation, we performed yeast two-hybrid screening using the cytoplasmic domain of ADAM12 as bait, and identified a protein that we designated Eve-1. Two cDNAs were cloned and characterized. They encode alternatively spliced isoforms of Eve-1, called Eve-1a and Eve-1b, that have four and five tandem Src homology 3 (SH3) domains in the carboxyl-terminal region, respectively, and seven proline-rich SH3 domain binding motifs in the amino-terminal region. The short forms of Eve-1, Eve-1c and Eve-1d, translated at Met-371 are human counterparts of mouse Sh3d19. Northern blot analysis demonstrated that Eve-1 is abundantly expressed in skeletal muscle and heart. Western blot analysis revealed the dominant production of Eve-1c in human cancer cell lines. Knockdown of Eve-1 by small interfering RNA in HT1080 cells reduced the shedding of proHB-EGF induced by angiotensin II and 12-O-tetradecanoylphorbol-13-acetate, as well as the shedding of pro-transforming growth factor-alpha, promphiregulin, and proepiregulin by 12-O-tetradecanoylphorbol-13-acetate, suggesting that Eve-1 plays a role in positively regulating the activity of ADAMs in the signaling of EGFR-ligand shedding.

  13. Urotensin-II and UII-receptor expression and function in the rat adrenal cortex.

    PubMed

    Albertin, Giovanna; Casale, Valentina; Ziolkowska, Agnieszka; Spinazzi, Raffaella; Malendowicz, Ludwik K; Rossi, Gian Paolo; Nussdorfer, Gastone G

    2006-06-01

    Urotensin-II (UII) is a potent hypertensive peptide, which has been recognized as an endogenous ligand of the G protein-coupled receptor (GPR)-14, now named UT-R. Real-time PCR demonstrated the expression of UII and UT-R mRNAs in both dispersed and in vitro cultured rat adrenocortical cells. UII concentration-dependently decreased basal, but not ACTH-stimulated, corticosterone secretion from cultured adrenocortical cells, and the effect was abolished by the UT-R antagonist Palosuran. UII did not affect the proliferation rate of cultured cells. Taken together, these findings suggest that UII may be included in the group of peptides (adrenomedullin, atrial natriuretic peptide, neurotensin and beacon), that, acting in an autocrine-paracrine manner, are involved in the inhibitory tuning of adrenocortical secretion.

  14. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  15. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  16. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.

    PubMed Central

    Yakushiji, T.; Shirasaki, T.; Munakata, M.; Hirata, A.; Akaike, N.

    1993-01-01

    1. The effects of benzodiazepine receptor (BZR) partial agonists, Y-23684 and CL218,872, were compared with its full agonist, diazepam, on gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) in acutely dissociated rat cerebral cortex (CTX), cerebellar Purkinje (CPJ) and spinal ventral horn (SVH) neurones, by the whole-cell mode patch-clamp technique. 2. The GABA-induced responses were essentially the same in both SVH and CPJ neurones, but the KD value of the GABA response in CTX neurone was lower than those in the other two brain regions. 3. Enhancement of the GABA response by the two partial agonists was about one-third of that by diazepam in the SVH neurones (where type II subtype of BZR, BZ2, is predominant), whereas these partial agonists potentiated the GABA response as much as diazepam in CPJ neurones (where the type I subtype of BZR, BZ1, is predominant). In CTX neurones where both type I and II variants are expressed, the augmentation ratio of the GABA response by diazepam was between the values in CPJ and SVH neurones. 4. In concentration-response relationships of BZR partial agonists, the threshold concentrations, KD values and maximal augmentation ratio of the GABA response were similar in all CTX, CPJ and SVH neurones. Also, in all preparations, the threshold concentration and KD values of diazepam action were 10 fold less than those induced by partial agonists. 5. All BZR agonists shifted the concentration-response relationship for GABA to the left without changing the maximum current amplitude, indicating that activation of both BZ1 and BZ2 increase the affinity of the GABAA receptor for GABA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8395299

  17. Angiotensin II Type 1 Receptor-Mediated Electrical Remodeling in Mouse Cardiac Myocytes.

    PubMed

    Kim, Jeremy; Gao, Junyuan; Cohen, Ira S; Mathias, Richard T

    2015-01-01

    We recently characterized an autocrine renin angiotensin system (RAS) in canine heart. Activation of Angiotensin II Type 1 Receptors (AT1Rs) induced electrical remodeling, including inhibition of the transient outward potassium current Ito, prolongation of the action potential (AP), increased calcium entry and increased contractility. Electrical properties of the mouse heart are very different from those of dog heart, but if a similar system existed in mouse, it could be uniquely studied through genetic manipulations. To investigate the presence of a RAS in mouse, we measured APs and Ito in isolated myocytes. Application of angiotensin II (A2) for 2 or more hours reduced Ito magnitude, without affecting voltage dependence, and prolonged APs in a dose-dependent manner. Based on dose-inhibition curves, the fast and slow components of Ito (Ito,fast and IK,slow) appeared to be coherently regulated by [A2], with 50% inhibition at an A2 concentration of about 400 nM. This very high K0.5 is inconsistent with systemic A2 effects, but is consistent with an autocrine RAS in mouse heart. Pre-application of the microtubule destabilizing agent colchicine eliminated A2 effects on Ito and AP duration, suggesting these effects depend on intracellular trafficking. Application of the biased agonist SII ([Sar1-Ile4-Ile8]A2), which stimulates receptor internalization without G protein activation, caused Ito reduction and AP prolongation similar to A2-induced changes. These data demonstrate AT1R mediated regulation of Ito in mouse heart. Moreover, all measured properties parallel those measured in dog heart, suggesting an autocrine RAS may be a fundamental feedback system that is present across species. PMID:26430746

  18. Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease.

    PubMed

    Blázquez, Cristina; Chiarlone, Anna; Sagredo, Onintza; Aguado, Tania; Pazos, M Ruth; Resel, Eva; Palazuelos, Javier; Julien, Boris; Salazar, María; Börner, Christine; Benito, Cristina; Carrasco, Carolina; Diez-Zaera, María; Paoletti, Paola; Díaz-Hernández, Miguel; Ruiz, Carolina; Sendtner, Michael; Lucas, José J; de Yébenes, Justo G; Marsicano, Giovanni; Monory, Krisztina; Lutz, Beat; Romero, Julián; Alberch, Jordi; Ginés, Silvia; Kraus, Jürgen; Fernández-Ruiz, Javier; Galve-Roperh, Ismael; Guzmán, Manuel

    2011-01-01

    Endocannabinoids act as neuromodulatory and neuroprotective cues by engaging type 1 cannabinoid receptors. These receptors are highly abundant in the basal ganglia and play a pivotal role in the control of motor behaviour. An early downregulation of type 1 cannabinoid receptors has been documented in the basal ganglia of patients with Huntington's disease and animal models. However, the pathophysiological impact of this loss of receptors in Huntington's disease is as yet unknown. Here, we generated a double-mutant mouse model that expresses human mutant huntingtin exon 1 in a type 1 cannabinoid receptor-null background, and found that receptor deletion aggravates the symptoms, neuropathology and molecular pathology of the disease. Moreover, pharmacological administration of the cannabinoid Δ(9)-tetrahydrocannabinol to mice expressing human mutant huntingtin exon 1 exerted a therapeutic effect and ameliorated those parameters. Experiments conducted in striatal cells show that the mutant huntingtin-dependent downregulation of the receptors involves the control of the type 1 cannabinoid receptor gene promoter by repressor element 1 silencing transcription factor and sensitizes cells to excitotoxic damage. We also provide in vitro and in vivo evidence that supports type 1 cannabinoid receptor control of striatal brain-derived neurotrophic factor expression and the decrease in brain-derived neurotrophic factor levels concomitant with type 1 cannabinoid receptor loss, which may contribute significantly to striatal damage in Huntington's disease. Altogether, these results support the notion that downregulation of type 1 cannabinoid receptors is a key pathogenic event in Huntington's disease, and suggest that activation of these receptors in patients with Huntington's disease may attenuate disease progression.

  19. Phase II Trial of Talampanel, a Glutamate Receptor Inhibitor, for Adults with Recurrent Malignant Gliomas

    PubMed Central

    Iwamoto, Fabio M.; Kreisl, Teri N.; Kim, Lyndon; Duic, J. Paul; Butman, John A.; Albert, Paul S.; Fine, Howard A.

    2010-01-01

    Background: Glioma cells secrete glutamate and also express AMPA glutamate receptors, which contribute to proliferation, migration and neurotoxicity of malignant gliomas. Talampanel is an oral AMPA receptor inhibitor with excellent CNS penetration and good tolerability in clinical trials for epilepsy and other neurological disorders. Methods: We conducted a phase II trial to evaluate the efficacy of talampanel in patients with recurrent malignant glioma as measured by 6-month progression free survival (PFS6). Results: Thirty patients (22 glioblastomas [GBM], 8 anaplastic gliomas [AG]; 63% men) with median age of 51 years (range, 20 to 67) and median KPS of 80 were included. Patients tolerated treatment well and most adverse events were mild and reversible; the most common toxicities were fatigue (27%), dizziness (23%) and ataxia (17%). There was only one partial response (5%) in the GBM stratum and none among AG patients. With a median follow-up of 13 months, 28 patients (93%) had died. The PFS6 was 4.6% for the initial 22 GBM patients and the study was terminated early due to treatment futility; PFS6 was 0% for 8 AG patients. Median PFS was 5.9 weeks for GBM and 8.9 weeks for AG patients. Median overall survival was 13 weeks for GBM and 14 months for AG patients. Conclusion: Talampanel was well tolerated but had no significant activity as a single agent in unselected recurrent malignant gliomas. PMID:20143438

  20. Synthesis and biological evaluation of novel potent angiotensin II receptor antagonists with anti-hypertension effect.

    PubMed

    Nie, Yong-yan; Da, Ya-jing; Zheng, Hao; Yang, Xiao-xia; Jia, Lin; Wen, Cai-hong; Liang, Li-sha; Tian, Juan; Chen, Zhi-long

    2012-04-15

    A series of novel angiotensin II type 1 receptor antagonists were prepared. Radioligand binding assay suggested that compounds 1b and 1c could be recognized by the AT(1) receptor with an IC(50) value of 1.6 ± 0.09 nM and 2.64 ± 0.7 nM, respectively. In vivo anti-hypertension experiments showed that compounds (1a, 1b, 1c, 1e) elicited a significant decrease in SBP and DBP of spontaneous hypertensive rats (SHRs). The antihypertensive effects maintained for 10 h, which indicated that these compounds had a favorable blood pressure-lowering effect. Acute toxicity testing suggested that the LD(50) value of compound 1b was 2316.8 mg/kg which was lower than valsartan (LD(50)=307.50 mg/kg) but higher than losartan (LD(50)=2248 mg/kg). So they could be considered as novel anti-hypertension candidates and deserved for further investigation. PMID:22410249

  1. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach.

    PubMed

    Samkoe, Kimberley S; Tichauer, Kenneth M; Gunn, Jason R; Wells, Wendy A; Hasan, Tayyaba; Pogue, Brian W

    2014-12-15

    As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant; therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects, but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry (IHC). Using multiple xenograft tumor models with varying EGFR expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored IHC and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot analysis or in vitro flow-cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immunostaining, with implications for use in noninvasive monitoring of therapy or therapeutic guidance during surgery. PMID:25344226

  2. Evidence for involvement of 3'-untranslated region in determining angiotensin II receptor coupling specificity to G-protein.

    PubMed Central

    Thekkumkara, Thomas J; Linas, Stuart L

    2003-01-01

    The mRNA 3'-untranslated region (3'-UTR) of many genes has been identified as an important regulator of the mRNA transcript itself as well as the translated product. Previously, we demonstrated that Chinese-hamster ovary-K1 cells stably expressing angiotensin receptor subtypes (AT(1A)) with and without 3'-UTR differed in AT(1A) mRNA content and its coupling with intracellular signalling pathways. Moreover, RNA mobility-shift assay and UV cross-linking studies using the AT(1A) 3'-UTR probe identified a major mRNA-binding protein complex of 55 kDa in Chinese-hamster ovary-K1 cells. In the present study, we have determined the functional significance of the native AT(1A) receptor 3'-UTR in rat liver epithelial (WB) cell lines by co-expressing the AT(1A) 3'-UTR sequence 'decoy' to compete with the native receptor 3'-UTR for its mRNA-binding proteins. PCR analysis using specific primers for the AT(1A) receptor and [(125)I]angiotensin II (AngII)-binding studies demonstrated the expression of the native AT(1A) receptors in WB (B(max)=2.7 pmol/mg of protein, K(d)=0.56 nM). Northern-blot analysis showed a significant increase in native receptor mRNA expression in 3'-UTR decoy-expressing cells, confirming the role of 3'-UTR in mRNA destabilization. Compared with vehicle control, AngII induced DNA and protein synthesis in wild-type WB as measured by [(3)H]thymidine and [(3)H]leucine incorporation respectively. Activation of [(3)H]thymidine and [(3)H]leucine correlated with a significant increase in cell number (cellular hyperplasia). In these cells, AngII stimulated GTPase activity by AT(1) receptor coupling with G-protein alpha i. We also delineated that functional coupling of AT(1A) receptor with G-protein alpha i is an essential mechanism for AngII-mediated cellular hyperplasia in WB by specifically blocking G-protein alpha i activation. In contrast with wild-type cells, stable expression of the 3'-UTR 'decoy' produced AngII-stimulated protein synthesis and cellular

  3. Adverse Reaction to Cetuximab, an Epidermal Growth Factor Receptor Inhibitor.

    PubMed

    Štulhofer Buzina, Daška; Martinac, Ivana; Ledić Drvar, Daniela; Čeović, Romana; Bilić, Ivan; Marinović, Branka

    2016-04-01

    Dear Editor, Inhibition of the epidermal growth factor receptor (EGFR) is a new strategy in treatment of a variety of solid tumors, such as colorectal carcinoma, non-small cell lung cancer, squamous cell carcinoma of the head and neck, and pancreatic cancer (1). Cetuximab is a chimeric human-murine monoclonal antibody against EGFR. Cutaneous side effects are the most common adverse reactions occurring during epidermal growth factor receptor inhibitors (EGFRI) therapy. Papulopustular rash (acne like rash) develop with 80-86% patients receiving cetuximab, while xerosis, eczema, fissures, teleangiectasiae, hyperpigmentations, and nail and hair changes occur less frequently (2). The mechanism underlying these skin changes has not been established and understood. It seems EGFRI alter cell growth and differentiation, leading to impaired stratum corneum and cell apoptosis (3-5). An abdominoperineal resection of the rectal adenocarcinoma (Dukes C) was performed on a 43-year-old female patient. Following surgery, adjuvant chemo-radiotherapy was applied. After two years, the patient suffered a metastatic relapse. Abdominal lymphadenopathy was detected on multi-slice computer tomography (MSCT) images, with an increased value of the carcinoembryonic antigen (CEA) tumor marker (maximal value 57 ng/mL). Hematological and biochemical tests were within normal limits, so first-line chemotherapy with oxaliplatin and a 5-fluorouracil (FOLFOX4) protocol was introduced. A wild type of the KRAS gene was confirmed in tumor tissue (diagnostic prerequisite for the introduction of EGFRI) and cetuximab (250 mg per m2 of body surface) was added to the treatment protocol. The patient responded well to the treatment with confirmed partial regression of the tumor formations. Three months after the patient started using cetuximab, an anti-EGFR monoclonal antibody, the patient presented with a papulopustular eruption in the seborrhoeic areas (Figure 1) and eczematoid reactions on the extremities

  4. Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1.

    PubMed

    Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria

    2015-03-12

    Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP₃ receptors (IP₃Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP₃R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP₃R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP₃R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment.

  5. Severe Hyponatremia Associated with the Use of Angiotensin II Receptor Blocker/thiazide Combinations

    PubMed Central

    Kim, Da-Rae; Cho, Joo-Hee; Jang, Won-Seok; Kim, Jin-Sug; Jeong, Kyung-Hwan; Lee, Tae-Won

    2013-01-01

    There are several widely used combinations of angiotensin II receptor blocker (ARB)/thiazide. The complimentary mechanism of action for such anti-hypertensive therapies is that, while ARB inhibits the vasoconstricting and aldosterone-secreting effects of angiotensin II, hydrochlorothiazide affects the renal tubular mechanisms of electrolyte reabsorption and increases excretion of sodium and chloride in the distal tubule, consequently promoting water excretion. In addition, hypokalemia, which may be triggered by a hydrochlorothiazide-induced increase in urinary potassium loss, is resisted by the use of ARB. Hence, the ARB/thiazide combination is safe in terms of potassium imbalance. For these reasons, fixed-dose ARB/thiazide combination anti-hypertensive drugs have been widely used for the treatment of hypertension. However, there have not been many studies done regarding cases where patients under such regimens showed severe hyponatremia, even when the amount of thiazide included was low. Here we report two cases in which severe hyponatremia occurred following treatment with the ARB/thiazide combinations. Upon discontinuation of the regimen, both patients showed recovery from hyponatremia. PMID:24627706

  6. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    ERIC Educational Resources Information Center

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  7. Gene Expression of Growth Factors and Growth Factor Receptors for Potential Targeted Therapy of Canine Hepatocellular Carcinoma

    PubMed Central

    IIDA, Gentoku; ASANO, Kazushi; SEKI, Mamiko; SAKAI, Manabu; KUTARA, Kenji; ISHIGAKI, Kumiko; KAGAWA, Yumiko; YOSHIDA, Orie; TESHIMA, Kenji; EDAMURA, Kazuya; WATARI, Toshihiro

    2013-01-01

    ABSTRACT The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  8. Hormonal regulation of type II glucocorticoid receptor messenger ribonucleic acid in rat brain.

    PubMed

    Peiffer, A; Lapointe, B; Barden, N

    1991-10-01

    Differences in the regulation of type II glucocorticoid receptor (GR) mRNA levels in female rat brain regions involved in the control of the hypothalamic-pituitary-adrenal axis were studied by Northern blot analysis after chronic administration of corticosterone or dexamethasone to adrenalectomized (ADX), ovariectomized (OVX), and ADX/OVX animals. The effect of chronic estradiol or progesterone treatment of intact animals was also studied. Our results show that type II GR mRNA levels of ADX animals were significantly increased above control values in amygdala (140%) and hippocampus (196%), but not in hypothalamus. These increased transcript levels were down-regulated by corticosterone or dexamethasone, with the exception of those in the amygdala, where corticosterone had no effect. Ovariectomy significantly increased hypothalamic GR mRNA content (174%) over control values, and this increase was sensitive to dexamethasone. The combined effect of adrenalectomy/ovariectomy on GR mRNA levels was greater than that of adrenalectomy only in amygdala. Corticosterone increased amygdala transcript levels in OVX and ADX/OVX animals. Estradiol administration to intact animals raised the GR mRNA content of amygdala, while progesterone treatment had no effect on any of the brain regions studied. We conclude that there exists heterogeneity with respect to type II GR mRNA regulation by corticosterone and dexamethasone in brain regions of ADX female rats, and that certain limbic structures show greater sensitivity to these hormonal manipulations, suggesting a more prominent role in the regulation of the hypothalamic-pituitary-adrenal axis. Our results also suggest that circulating estrogens can influence the sensitivity of brain structures (i.e. hypothalamus and amygdala) to glucocorticoids by altering GR mRNA levels. These regions may represent integration sites at which gonadal steroids are able to alter stress hormone secretion.

  9. Modulation of Photofrin II accumulation in C6 glioma cells by stimulation of beta-adrenergic receptors

    NASA Astrophysics Data System (ADS)

    Croce, Anna C.; Mares, V.; Lisa, V.; Krajci, D.; Bottiroli, Giovanni F.

    1997-12-01

    The influence of drugs acting as (beta) -receptors agonists or antagonists on the uptake of Photofrin II in C6 glioma cultured cells was studied by microspectrofluorometric analysis. The pharmacological effect was evaluated on the semiconfluently grown cells, characterized by a long lasting uptake process and higher values of fluorescence intensity with respect to the solitary ones. Isoproterenol treatments resulted in a significant enhancement (by 50%) of the intracellular fluorescence signal of Photofrin II. This effect was hindered by contemporary treatments with equimolar alprenolol or propranolol, two (beta) -receptor antagonists, indicating a specific effect of isoproterenol. Both pharmacological activation of vesicular transport and changes in the membrane physical-chemico properties can explain the effects induced by drugs interacting with (beta) -receptor.

  10. Functional properties of an isolated. cap alpha beta. heterodimeric human placenta insulin-like growth factor 1 receptor complex

    SciTech Connect

    Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.; Pessin, J.E.

    1988-05-03

    Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.

  11. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research

    PubMed Central

    Wang, Zhixiang

    2016-01-01

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges. PMID:26771606

  12. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    PubMed

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  13. Atrial fibrillation after radiofrequency ablation of atrial flutter: preventive effect of angiotensin converting enzyme inhibitors, angiotensin II receptor blockers, and diuretics

    PubMed Central

    Anné, W; Willems, R; Van der Merwe, N; Van de Werf, F; Ector, H; Heidbüchel, H

    2004-01-01

    Objectives: To determine risk factors for the development of atrial fibrillation (AF) after atrial flutter (AFL) ablation; and to study the relation between AF development and periprocedural drug use. Methods: AFL ablation was performed in 196 patients. The relation between AF occurrence and clinical, echocardiographic, and procedural factors and periprocedural drug use was analysed retrospectively by a Cox proportional hazard method. Results: After a median follow up of 2.2 years, 114 patients (58%) developed at least one AF episode. Factors associated with AF development were the presence of preprocedural AF, a history of cardioversion, and the number of antiarrhythmic drugs used before the procedure. Use of angiotensin converting enzyme (ACE) inhibitors/angiotensin II receptor blockers and diuretics was significantly associated by univariate and multivariate analyses with less development of AF. Conclusions: A high proportion of patients develop AF after AFL ablation. The incidence of AF is related to pre-ablation AF and its persistence. ACE inhibitors/angiotensin II receptor blockers and diuretics seem to protect against AF. PMID:15310691

  14. Human pulmonary acinar aplasia: reduction of transforming growth factor-beta ligands and receptors.

    PubMed

    Chen, M F; Gray, K D; Prentice, M A; Mariano, J M; Jakowlew, S B

    1999-07-01

    Pulmonary hypoplasia has been found in the human neonatal autopsy population and has been attributed to an alteration in epithelial-mesenchymal interactions during development of the lung. Pulmonary acinar aplasia is a very rare and severe form of pulmonary hypoplasia. The transforming growth factor-betas (TGF-beta) are multifunctional regulatory peptides that are secreted by a variety of normal and malignant cells and are expressed in developing organs including the lung; their tissue distribution patterns have possible significance for signaling roles in many epithelial-mesenchymal interactions. Here, we report our examination of TGF-beta in the lungs of a term female infant diagnosed with pulmonary acinar aplasia whose autopsy revealed extremely hypoplastic lungs with complete absence of alveolar ducts and alveoli. Immunohistochemical and in situ hybridization analyses were used to localize and measure the proteins and mRNA, respectively, for TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta type I and type II receptors (TGF-beta RI and RII) in formalin-fixed and paraffin-embedded sections of these hypoplastic lungs and normal lungs. Immunostaining for TGF-beta1, TGF-beta2, and TGF-beta RI and RII was significantly lower in the bronchial epithelium and muscle of the hypoplastic lungs than in normal lungs, whereas no difference was detected in staining for other proteins including Clara cell 10-kD protein, adrenomedullin, hepatocyte growth factor/scatter factor, and hepatocyte growth factor receptor/Met in the hypoplastic and normal lungs or in the liver and kidneys of this infant compared with normal liver and kidney. In addition, in situ hybridization showed that TGF-beta1 and TGF-beta RI transcripts were considerably reduced in the bronchial epithelium of the hypoplastic lung compared with normal lung. These results show that there is a selective reduction of TGF-beta in pulmonary acinar aplasia and suggest that the signaling action of TGF-beta in epithelial

  15. Angiotensin II type I and prostaglandin F2α receptors cooperatively modulate signaling in vascular smooth muscle cells.

    PubMed

    Goupil, Eugénie; Fillion, Dany; Clément, Stéphanie; Luo, Xiaoyan; Devost, Dominic; Sleno, Rory; Pétrin, Darlaine; Saragovi, H Uri; Thorin, Éric; Laporte, Stéphane A; Hébert, Terence E

    2015-01-30

    The angiotensin II type I (AT1R) and the prostaglandin F2α (PGF2α) F prostanoid (FP) receptors are both potent regulators of blood pressure. Physiological interplay between AT1R and FP has been described. Abdominal aortic ring contraction experiments revealed that PGF2α-dependent activation of FP potentiated angiotensin II-induced contraction, whereas FP antagonists had the opposite effect. Similarly, PGF2α-mediated vasoconstriction was symmetrically regulated by co-treatment with AT1R agonist and antagonist. The underlying canonical Gαq signaling via production of inositol phosphates mediated by each receptor was also regulated by antagonists for the other receptor. However, binding to their respective agonists, regulation of receptor-mediated MAPK activation and vascular smooth muscle cell growth were differentially or asymmetrically regulated depending on how each of the two receptors were occupied by either agonist or antagonist. Physical interactions between these receptors have never been reported, and here we show that AT1R and FP form heterodimeric complexes in both HEK 293 and vascular smooth muscle cells. These findings imply that formation of the AT1R/FP dimer creates a novel allosteric signaling unit that shows symmetrical and asymmetrical signaling behavior, depending on the outcome measured. AT1R/FP dimers may thus be important in the regulation of blood pressure.

  16. Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II.

    PubMed

    Monillas, Elizabeth S; Caplan, Jeffrey L; Thévenin, Anastasia F; Bahnson, Brian J

    2015-05-01

    The intracellular enzyme platelet-activating factor acetylhydrolase type-II (PAFAH-II) hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. PAFAH-II in its resting state is mainly cytoplasmic, and it responds to oxidative stress by becoming increasingly bound to endoplasmic reticulum and Golgi membranes. Numerous studies have indicated that this enzyme is essential for protecting cells from oxidative stress induced apoptosis. However, the regulatory mechanism of the oxidative stress response by PAFAH-II has not been fully resolved. Here, changes to the oligomeric state of human PAFAH-II were investigated as a potential regulatory mechanism toward enzyme trafficking. Native PAGE analysis in vitro and photon counting histogram within live cells showed that PAFAH-II is both monomeric and dimeric. A Gly-2-Ala site-directed mutation of PAFAH-II demonstrated that the N-terminal myristoyl group is required for homodimerization. Additionally, the distribution of oligomeric PAFAH-II is distinct within the cell; homodimers of PAFAH-II were localized to the cytoplasm while monomers were associated to the membranes of the endoplasmic reticulum and Golgi. We propose that the oligomeric state of PAFAH-II drives functional protein trafficking. PAFAH-II localization to the membrane is critical for substrate acquisition and effective oxidative stress protection. It is hypothesized that the balance between monomer and dimer serves as a regulatory mechanism of a PAFAH-II oxidative stress response.

  17. Serotonin 5-hydroxytryptamine(2A) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency.

    PubMed

    Yu, Bangning; Becnel, Jaime; Zerfaoui, Mourad; Rohatgi, Rasika; Boulares, A Hamid; Nichols, Charles D

    2008-11-01

    The G protein-coupled serotonin 5-hydroxytryptamine (5-HT)(2A) receptor is primarily recognized for its role in brain neurotransmission, where it mediates a wide variety of functions, including certain aspects of cognition. However, there is significant expression of this receptor in peripheral tissues, where its importance is largely unknown. We have now discovered that activation of 5-HT(2A) receptors in primary aortic smooth muscle cells provides a previously unknown and extremely potent inhibition of tumor necrosis factor (TNF)-alpha-mediated inflammation. 5-HT(2A) receptor stimulation with the agonist (R)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(R)-DOI] rapidly inhibits a variety of TNF-alpha-mediated proinflammatory markers, including intracellular adhesion molecule 1 (ICAM-1), vascular adhesion molecule 1 (VCAM-1), and interleukin (IL)-6 gene expression, nitric-oxide synthase activity, and nuclear translocation of nuclear factor kappaB, with IC(50) values of only 10 to 20 pM. It is significant that proinflammatory markers can also be inhibited by (R)-DOI hours after treatment with TNF-alpha. With the exception of a few natural toxins, no current drugs or small molecule therapeutics demonstrate a comparable potency for any physiological effect. TNF-alpha-mediated inflammatory pathways have been strongly implicated in a number of diseases, including atherosclerosis, rheumatoid arthritis, psoriasis, type II diabetes, depression, schizophrenia, and Alzheimer's disease. Our results indicate that activation of 5-HT(2A) receptors represents a novel, and extraordinarily potent, potential therapeutic avenue for the treatment of disorders involving TNF-alpha-mediated inflammation. Note that because (R)-DOI can significantly inhibit the effects of TNF-alpha many hours after the administration of TNF-alpha, potential therapies could be aimed not only at preventing inflammation but also treating inflammatory injury that has already occurred or is ongoing. PMID

  18. Estrogen receptor α gene PvuII polymorphism and coronary artery disease: a meta-analysis of 21 studies*

    PubMed Central

    Ding, Jie; Xu, Hui; Yin, Xiang; Zhang, Fu-rong; Pan, Xiao-ping; Gu, Yi-an; Chen, Jun-zhu; Guo, Xiao-gang

    2014-01-01

    The association between the estrogen receptor α gene (ESR1) PvuII polymorphism (c.454-397T>C) and coronary artery disease (CAD) is controversial. Thus, we conducted a meta-analysis to evaluate the relationship. Data were collected from 21 studies encompassing 9926 CAD patients and 16 710 controls. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the relationship between PvuII polymorphism and CAD. The polymorphism in control populations in all studies followed Hardy-Weinberg equilibrium. We found a significant association between ESR1 PvuII polymorphism and CAD risk in all subjects. When the data were stratified by region, a significant association between ESR1 PvuII polymorphism and CAD risk was observed in Asian populations but not in Western populations. The current study suggests that ESR1 PvuII polymorphism has an important role in CAD susceptibility. PMID:24599688

  19. Rapidly activated epidermal growth factor receptor mediates lipopolysaccharide-triggered migration of microglia.

    PubMed

    Qu, Wen-Sheng; Liu, Jun-Li; Li, Chun-Yu; Li, Xiao; Xie, Min-Jie; Wang, Wei; Tian, Dai-Shi

    2015-11-01

    Previous reports have suggested that epidermal growth factor receptor (EGFR) is involved in microglia activation characterized by cell morphology changes, cytokine production and cell migration; and the biochemical regulation of the microglia migration is a potential therapeutic target following CNS inflammatory damages. However, the role of EGFR in microglia motility after inflammatory stimulation remains unknown. In the present study, lipopolysaccharide (LPS) was found to trigger rapid EGFR phosphorylation within 10 min, which was sustained during long-term stimulation in both primary microglial cells and the cultured BV2 microglial cells, furthermore, blocking EGFR phosphorylation by AG1478 significantly attenuated the LPS-induced chemotactic and chemokinetic migration of microglia. In addition, LPS could initiate calcium oscillation in microglia during live-cell recording, however, an intracellular calcium chelator and a selective inhibitor of calcium/calmodulin-dependent protein kinase II, but not an extracellular calcium chelator, remarkably suppressed the LPS-induced EGFR phosphorylation in BV2 microglia cells. As EGFR is not a traditional receptor for LPS, these findings suggest that the rapid phosphorylation of EGFR is attributed to the LPS-triggered intracellular calcium mobilization. By examining the downstream signals of EGFR, we further proved that extracellular signal-regulated kinase (ERK) is essential for EGFR-mediated microglia migration, because ERK inhibition attenuated the chemotactic and chemokinetic migration of microglia that had been induced by either LPS or EGF. Collectively, these results suggest that LPS could trigger the rapid phosphorylation of EGFR and subsequent ERK activation through mobilizing calcium activity, which underlies the microglia migration in an inflammatory condition.

  20. Pharmacological profiling of native group II metabotropic glutamate receptors in primary cortical neuronal cultures using a FLIPR.

    PubMed

    Sanger, Helen; Hanna, Lydia; Colvin, Ellen M; Grubisha, Olivera; Ursu, Daniel; Heinz, Beverly A; Findlay, Jeremy D; Vivier, Richard G; Sher, Emanuele; Lodge, David; Monn, James A; Broad, Lisa M

    2013-03-01

    The group II metabotropic glutamate (mGlu) receptors comprised of the mGlu2 and mGlu3 receptor subtypes have gained recognition in recent years as potential targets for psychiatric disorders, including anxiety and schizophrenia. In addition to studies already indicating which subtype mediates the anxiolytic and anti-psychotic effects observed in disease models, studies to help further define the preferred properties of selective group II mGlu receptor ligands will be essential. Comparison of the in vitro properties of these ligands to their in vivo efficacy and tolerance profiles may help provide these additional insights. We have developed a relatively high-throughput native group II mGlu receptor functional assay to aid this characterisation. We have utilised dissociated primary cortical neuronal cultures, which after 7 days in vitro have formed functional synaptic connections and display periodic and spontaneous synchronised calcium (Ca(2+)) oscillations in response to intrinsic action potential bursts. We herein demonstrate that in addition to non-selective group II mGlu receptor agonists, (2R,4R)-APDC, LY379268 and DCG-IV, a selective mGlu2 agonist, LY541850, and mGlu2 positive allosteric modulators, BINA and CBiPES, inhibit the frequency of synchronised Ca(2+) oscillations in primary cultures of rat and mouse cortical neurons. Use of cultures from wild-type, mGlu2(-/-), mGlu3(-/-) and mGlu2/3(-/-) mice allowed us to further probe the contribution of mGlu2 and mGlu3, and revealed LY541850 to be a partial mGlu2 agonist and a full mGlu3 antagonist. Overnight pre-treatment of cultures with these ligands revealed a preferred desensitisation profile after treatment with a positive allosteric modulator. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. PMID:22659090

  1. A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis.

    PubMed Central

    Hartmann, G; Naldini, L; Weidner, K M; Sachs, M; Vigna, E; Comoglio, P M; Birchmeier, W

    1992-01-01

    We recently found that scatter factor (SF), a cell motility factor with a multimodular structure, is identical to hepatocyte growth factor (HGF), a potent mitogen of various cell types. SF/HGF is the ligand of the c-Met receptor tyrosine kinase. Here we used transient expression of naturally occurring and in vitro mutagenized cDNAs of SF/HGF to delineate the protein domains necessary for biological activity and binding to the c-Met receptor. (i) A single-chain SF/HGF resulting from the destruction of the protease cleavage site between heavy and light chain (Arg-494--> Gln) was largely inactive, indicating that proteolytic cleavage is essential for acquisition of the biologically active conformation. (ii) A SF/HGF splice variant encoding a protein with a 5-amino acid deletion in the first kringle domain was as highly active as the wild-type molecule. (iii) The separately expressed light chain (with serine protease homology) was inactive in all assays tested. (iv) The separate heavy chain as well as a naturally occurring splice variant consisting of the N terminus and the first two kringle domains bound the c-Met receptor, stimulated tyrosine auto-phosphorylation, and induced scattering of epithelial cells but not mitogenesis. These data indicate that a functional domain in the N terminus/first two kringle regions of SF/HGF is sufficient for binding to the Met receptor and that this leads to the activation of the downstream signal cascade involved in the motility response. However, the complete SF/HGF protein seems to be required for mitogenic activity. Images PMID:1280830

  2. Asymmetric Receptor Contact is Required for Tyrosine Autophosphorylation of Fibroblast Growth Factor Receptor in Living Cells

    SciTech Connect

    Bae, J.; Boggon, T; Tomé, F; Mandiyan, V; Lax, I; Schlessinge, J

    2010-01-01

    Tyrosine autophosphorylation of receptor tyrosine kinases plays a critical role in regulation of kinase activity and in recruitment and activation of intracellular signaling pathways. Autophosphorylation is mediated by a sequential and precisely ordered intermolecular (trans) reaction. In this report we present structural and biochemical experiments demonstrating that formation of an asymmetric dimer between activated FGFR1 kinase domains is required for transphosphorylation of FGFR1 in FGF-stimulated cells. Transphosphorylation is mediated by specific asymmetric contacts between the N-lobe of one kinase molecule, which serves as an active enzyme, and specific docking sites on the C-lobe of a second kinase molecule, which serves a substrate. Pathological loss-of-function mutations or oncogenic activating mutations in this interface may hinder or facilitate asymmetric dimer formation and transphosphorylation, respectively. The experiments presented in this report provide the molecular basis underlying the control of transphosphorylation of FGF receptors and other receptor tyrosine kinases.

  3. An angiotensin II receptor blocker–calcium channel blocker combination prevents cardiovascular events in elderly high-risk hypertensive patients with chronic kidney disease better than high-dose angiotensin II receptor blockade alone

    PubMed Central

    Kim-Mitsuyama, Shokei; Ogawa, Hisao; Matsui, Kunihiko; Jinnouchi, Tomio; Jinnouchi, Hideaki; Arakawa, Kikuo

    2013-01-01

    The OSCAR study was a multicenter, prospective randomized open-label blinded end-point study of 1164 Japanese elderly hypertensive patients comparing the efficacy of angiotensin II receptor blocker (ARB) uptitration to an ARB plus calcium channel blocker (CCB) combination. In this prospective study, we performed prespecified subgroup analysis according to baseline estimated glomerular filtration rate (eGFR) with chronic kidney disease (CKD) defined as an eGFR <60 ml/min per 1.73 m2. Blood pressure was lower in the combined therapy than in the high-dose ARB cohort in both groups with and without CKD. In patients with CKD, significantly more primary events (a composite of cardiovascular events and noncardiovascular death) occurred in the high-dose ARB group than in the combination group (30 vs. 16, respectively, hazard ratio 2.25). Significantly more cerebrovascular and more heart failure events occurred in the high-dose ARB group than in the combination group. In patients without CKD, however, the incidence of primary events was similar between the two treatments. The treatment-by-subgroup interaction was significant. Allocation to the high-dose ARB was a significant independent prognostic factor for primary events in patients with CKD. Thus, the ARB plus CCB combination conferred greater benefit in prevention of cardiovascular events in patients with CKD compared with high-dose ARB alone. Our findings provide new insight into the antihypertensive strategy for elderly hypertensive patients with CKD. PMID:23051740

  4. Dopamine D2 Receptor Is Involved in Alleviation of Type II Collagen-Induced Arthritis in Mice.

    PubMed

    Lu, Jian-Hua; Liu, Yi-Qian; Deng, Qiao-Wen; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-01-01

    Human and murine lymphocytes express dopamine (DA) D2-like receptors including DRD2, DRD3, and DRD4. However, their roles in rheumatoid arthritis (RA) are less clear. Here we showed that lymphocyte DRD2 activation alleviates both imbalance of T-helper (Th)17/T-regulatory (Treg) cells and inflamed symptoms in a mouse arthritis model of RA. Collagen-induced arthritis (CIA) was prepared by intradermal injection of chicken collagen type II (CII) in tail base of DBA/1 mice or Drd2 (-/-) C57BL/6 mice. D2-like receptor agonist quinpirole downregulated expression of proinflammatory Th17-related cytokines interleukin- (IL-) 17 and IL-22 but further upregulated expression of anti-inflammatory Treg-related cytokines transforming growth factor- (TGF-) β and IL-10 in lymphocytes in vitro and in ankle joints in vivo in CIA mice. Quinpirole intraperitoneal administration reduced both clinical arthritis score and serum anti-CII IgG level in CIA mice. However, Drd2 (-/-) CIA mice manifested more severe limb inflammation and higher serum anti-CII IgG level and further upregulated IL-17 and IL-22 expression and downregulated TGF-β and IL-10 expression than wild-type CIA mice. In contrast, Drd1 (-/-) CIA mice did not alter limb inflammation or anti-CII IgG level compared with wild-type CIA mice. These results suggest that DRD2 activation is involved in alleviation of CIA symptoms by amelioration of Th17/Treg imbalance. PMID:26693483

  5. Anti-Müllerian hormone (AMH) receptor type II expression and AMH activity in bovine granulosa cells.

    PubMed

    Poole, Daniel H; Ocón-Grove, Olga M; Johnson, Alan L

    2016-09-15

    Anti-Müllerian hormone (AMH) produced by granulosa cells has previously been proposed to play a role in regulating granulosa cell differentiation and follicle selection. Although AMH receptor type II (AMHR2) dimerizes with a type I receptor to initiate AMH signaling, little is known about the regulation of AMHR2 expression in bovine granulosa cells and the role of AMH in follicle development. The primary objectives of this study were to: (1) characterize AMHR2 expression in granulosa cells during follicle development; (2) identify factors that regulate AMHR2 mRNA expression in granulosa cells; and (3) examine the role of AMH signaling in granulosa cell differentiation and proliferation. Bovine granulosa cells were isolated from 5- to 8-mm follicles before selection and deviation, as well as from 9- to 12-mm and 13- to 24-mm follicles after selection. Analyses revealed that expression of AMHR2 was greater in 5- to 8-mm follicles compared with 13- to 24-mm follicles (P < 0.05). Granulosa cells treated with bone morphogenetic protein 6 (BMP6) or BMP15, but not BMP2, significantly increased AMHR2 expression when compared with control cultured cells (P < 0.05). In addition, expression of AMH was greater in granulosa cells cultured with BMP2, BMP6, or BMP15 when compared with controls (P < 0.05). Finally, treatment with recombinant human AMH, in vitro, inhibited CYP19A1 expression in a dose-related (10-100 ng/mL) fashion, and reduced granulosa cell proliferation at 48 and 72 hours (P < 0.05). Results from these studies indicate that AMH signaling plays a role in both regulating granulosa cell proliferation and preventing granulosa cells from 5- to 8-mm follicles from undergoing premature differentiation before follicle selection. PMID:27268296

  6. Cleavage of the angiotensin II type 1 receptor and nuclear accumulation of the cytoplasmic carboxy-terminal fragment.

    PubMed

    Cook, Julia L; Mills, Sarah J; Naquin, Ryan T; Alam, Jawed; Re, Richard N

    2007-04-01

    Our published studies show that the distribution of the ANG II type 1 (AT(1)) receptor (AT(1)R), expressed as a enhanced yellow fluorescent fusion (YFP) protein (AT(1)R/EYFP), is altered upon cellular treatment with ANG II or coexpression with intracellular ANG II. AT(1)R accumulates in nuclei of cells only in the presence of ANG II. Several transmembrane receptors are known to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. The present study was designed to determine whether the AT(1)R is cleaved before nuclear transport. A plasmid encoding a rat AT(1)R labeled at the amino terminus with enhanced cyan fluorescent protein (CFP) and at the carboxy terminus with EYFP was employed. Image analyses of this protein in COS-7 cells, CCF-STTG1 glial cells, and A10 vascular smooth muscle cells show the two fluorescent moieties to be largely spatially colocalized in untreated cells. ANG II treatment, however, leads to a separation of the fluorescent moieties with yellow fluorescence accumulating in more than 30% of cellular nuclei. Immunoblot analyses of extracts and conditioned media from transfected cells indicate that the CFP domain fused to the extracellular amino-terminal AT(1)R domain is cleaved from the membrane and that the YFP domain, together with the intracellular cytoplasmic carboxy terminus of the AT(1)R, is also cleaved from the membrane-bound receptor. The carboxy terminus of the AT(1)R is essential for cleavage; cleavage does not occur in protein deleted with respect to this region. Overexpressed native AT(1)R (nonfusion) is also cleaved; the intracellular 6-kDa cytoplasmic domain product accumulates to a significantly higher level with ANG II treatment.

  7. A(1) and A(3) adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Stefanelli, Angela; Fazzi, Debora; Varani, Katia; Borea, Pier Andrea

    2013-10-01

    Adenosine (Ado) exerts neuroprotective and anti-inflammatory functions by acting through four receptor subtypes A1, A2A, A2B and A3. Astrocytes are one of its targets in the central nervous system. Hypoxia-inducible factor-1 (HIF-1), a master regulator of oxygen homeostasis, is induced after hypoxia, ischemia and inflammation and plays an important role in brain injury. HIF-1 is expressed by astrocytes, however the regulatory role played by Ado on HIF-1α modulation induced by inflammatory and hypoxic conditions has not been investigated. Primary murine astrocytes were activated with lipopolysaccharide (LPS) with or without Ado, Ado receptor agonists, antagonists and receptor silencing, before exposure to normoxia or hypoxia. HIF-1α accumulation and downstream genes regulation were determined. Ado inhibited LPS-increased HIF-1α accumulation under both normoxic and hypoxic conditions, through activation of A1 and A3 receptors. In cells incubated with the blockers of p44/42 MAPK and Akt, LPS-induced HIF-1α accumulation was significantly decreased in normoxia and hypoxia, suggesting the involvement of p44/42 MAPK and Akt in this effect and Ado inhibited kinases phosphorylation. A series of angiogenesis and metabolism related genes were modulated by hypoxia in an HIF-1 dependent way, but not further increased by LPS, with the exception of GLUT-1 and hexochinase II that were elevated by LPS only in normoxia and inhibited by Ado receptors. Instead, genes involved in inflammation, like inducible nitric-oxide synthase (iNOS) and A2B receptors, were increased by LPS in normoxia, strongly stimulated by LPS in concert with hypoxia and inhibited by Ado, through A1 and A3 receptor subtypes. In conclusion A1 and A3 receptors reduce the LPS-mediated HIF-1α accumulation in murine astrocytes, resulting in a downregulation of genes involved in inflammation and hypoxic injury, like iNOS and A2B receptors, in both normoxic and hypoxic conditions.

  8. G-Protein binding domains of the angiotensin II AT1A receptors mapped with synthetic peptides selected from the receptor sequence.

    PubMed Central

    Kai, H; Alexander, R W; Ushio-Fukai, M; Lyons, P R; Akers, M; Griendling, K K

    1998-01-01

    The vascular angiotensin II type 1 receptor (AT1AR) is a member of the G-protein-coupled receptor superfamily. We mapped the G-protein binding domains of the AT1AR using synthetic peptides selected from the receptor sequence, which interfere with AT1AR-G-protein coupling. Membrane GTPase activity was used as a measure of the functional coupling in rat vascular smooth muscle cells. Peptides corresponding to the N-terminal region of the second intracellular loop (residues 125-137), the N-terminal region of the third intracellular loop (217-227) and the juxtamembranous region of the C-terminal tail (304-316) inhibited angiotensin II-induced GTPase activation by 30%, 30%, and 70%, respectively. The latter two domains (217-227 and 304-316) are predicted to form amphiphilic alpha-helices. Only the peptide representing residues 217-227 stimulated basal activity (45%). No synthetic peptide had a significant effect on either the number or the affinity of the AT1AR binding. These observations indicate that domains of the second and third regions and the cytoplasmic tail of the AT1AR interact with G-proteins, and that multiple contacts with these receptor domains may be important for binding and activation of the G-proteins. PMID:9620883

  9. Angiotensin II AT2 receptors regulate NGF-mediated neurite outgrowth via the NO-cGMP pathway.

    PubMed

    Hashikawa-Hobara, Narumi; Hashikawa, Naoya

    2016-09-16

    We investigated whether Angiotensin II type 2 (AT2) receptor activation was involved in NGF-induced nerve regeneration. NGF-mediated neurite outgrowth in cultured dorsal root ganglia (DRG) cells was significantly inhibited by AT2 receptor antagonist (PD123,319) treatment. AT2 receptor knockdown also inhibited NGF-mediated neurite outgrowth. To determine the mechanisms, we analyzed the NO-cGMP pathway. The cGMP analog increased NGF-mediated nerve elongation, which inhibited by PD123,319. Furthermore, soluble guanylate cyclase expression was significantly less in NGF and PD123,319 treatment DRG than in NGF treatment alone. These results suggest that NGF-mediated neurite outgrowth is suppressed by AT2 receptor signaling via the NO-cGMP-PKG pathway. PMID:27524238

  10. Keratinocyte growth factor and hepatocyte growth factor/scatter factor are heparin-binding growth factors for alveolar type II cells in fibroblast-conditioned medium.

    PubMed Central

    Panos, R J; Rubin, J S; Csaky, K G; Aaronson, S A; Mason, R J

    1993-01-01

    Epithelial-mesenchymal interactions mediate aspects of normal lung growth and development and are important in the restoration of normal alveolar architecture after lung injury. To determine if fibroblasts are a source of soluble growth factors for alveolar type II cells, we investigated the effect of fibroblast-conditioned medium (CM) on alveolar type II cell DNA synthesis. Serum-free CM from confluent adult human lung fibroblasts was concentrated fivefold by lyophilization. Type II cells were isolated from adult rats by elastase dissociation and incubated with [3H]thymidine and varying dilutions of concentrated CM and serum from day 1 to 3 of culture. Stimulation of type II cell DNA synthesis by fibroblast-CM was maximal after 48 h of conditioning and required the presence of serum. The activity of the CM was eliminated by boiling and by treatment with trypsin, pepsin, or dithiothreitol and was additive with saturating concentrations of acidic fibroblast growth factor, epidermal growth factor, and insulin. The growth factor activity bound to heparin-Sepharose and was eluted with 0.6 and 1.0 M NaCl. Neutralizing antibody studies demonstrated that the primary mitogens isolated in the 0.6 and 1.0 M NaCl fractions were keratinocyte growth factor (KGF, fibroblast growth factor 7) and hepatocyte growth factor/scatter factor (HGF/SF), respectively. HGF/SF was demonstrated in the crude CM and KGF was detected in the 0.6 M NaCl eluent by immunoblotting. Northern blot analysis confirmed that the lung fibroblasts expressed both KGF and HGF/SF transcripts. Human recombinant KGF and HGF/SF induced a concentration- and serum-dependent increase in rat alveolar type II cell DNA synthesis. We conclude that adult human lung fibroblasts produce at least two soluble heparin-binding growth factors, KGF and HGF/SF, which promote DNA synthesis and proliferation of rat alveolar type II cells in primary culture. KGF and HGF/SF may be important stimuli for alveolar type II cell

  11. Targeting the Insulin-Like Growth Factor 1 Receptor in Ewing's Sarcoma: Reality and Expectations

    PubMed Central

    Olmos, David; Martins, Ana Sofia; Jones, Robin L.; Alam, Salma; Scurr, Michelle; Judson, Ian R.

    2011-01-01

    Ewing's sarcoma family of tumours comprises a group of very aggressive diseases that are potentially curable with multimodality treatment. Despite the undoubted success of current treatment, approximately 30% of patients will relapse and ultimately die of disease. The insulin-like growth factor 1 receptor (IGF-1R) has been implicated in the genesis, growth, proliferation, and the development of metastatic disease in Ewing's sarcoma. In addition, IGF1-R has been validated, both in vitro and in vivo, as a potential therapeutic target in Ewing's sarcoma. Phase I studies of IGF-1R monoclonal antibodies reported several radiological and clinical responses in Ewing's sarcoma patients, and initial reports of several Phase II studies suggest that about a fourth of the patients would benefit from IGF-1R monoclonal antibodies as single therapy, with approximately 10% of patients achieving objective responses. Furthermore, these therapies are well tolerated, and thus far severe toxicity has been rare. Other studies assessing IGF-1R monoclonal antibodies in combination with traditional cytotoxics or other targeted therapies are expected. Despite, the initial promising results, not all patients benefit from IGF-1R inhibition, and consequently, there is an urgent need for the identification of predictive markers of response. PMID:21647361

  12. Safety experience with IMC-C225, an anti-epidermal growth factor receptor antibody.

    PubMed

    Needle, Michael N

    2002-10-01

    In phase II trials, the anti-epidermal growth factor receptor antibody IMC-C225 did not appear to significantly exacerbate the common toxicities associated with cytotoxic chemotherapy when combined with standard anticancer treatments in patients with colorectal cancer, squamous cell carcinoma of the head and neck, or pancreatic cancer. The most common treatment-related adverse events reported during therapy with IMC-C225 were an acne-like rash and hypersensitivity reactions. The acne-like rash appeared as a sterile, suppurative form of folliculitis, commonly starting on the face, scalp, chest, and upper back. It resolved without scarring once treatment was stopped. Notably, the appearance of acne-like rash, particularly grade 3, was associated with higher treatment responses in patients with refractory colorectal cancer. The hypersensitivity reactions occurred less often than acne-like rash. They responded to standard treatments and were less common after the first dose. In summary, IMC-C225 is generally well tolerated as a single agent and when combined with chemotherapy or radiotherapy and possesses a manageable toxicity profile.

  13. Modulation of insulin-like growth factor I (IGF-I) receptors and membrane-associated IGF-binding proteins in endometrial cancer cells by estradiol.

    PubMed

    Kleinman, D; Karas, M; Roberts, C T; LeRoith, D; Phillip, M; Segev, Y; Levy, J; Sharoni, Y

    1995-06-01

    Insulin-like growth factor I (IGF-I) receptors and membrane-associated IGF-binding proteins (IGFBPs) were examined in Ishikawa endometrial cancer cells. Our findings suggest that about 95% of [125I]IGF-I is bound to membrane-associated IGFBPs rather than to IGF-I receptors. Specifically, [125I]IGF-I binding to cell membranes could be completely displaced by cold IGF-I or IGF-II, but not by insulin, suggesting that binding was primarily due to IGFBPs. This was confirmed by using [125I]des-(1-3)IGF-I as the ligand. Des-(1-3) IGF-I binds with high affinity to IGF-I receptors, but with markedly lower affinity to IGFBPs. [125I]Des-(1-3)IGF-I bound to Ishikawa cells was displaced by IGF-I, IGF-II, and insulin. These results suggest that measuring IGF-I receptor levels using labeled IGF-I may be misleading. Accordingly, we evaluated the differential binding of [125I]IGF-I and [125I]des-(1-3)IGF-I to study the involvement of the IGF system in the stimulation of Ishikawa cell growth by estradiol. IGF-I stimulates Ishikawa cell proliferation, but at low concentrations, and this stimulation is largely dependent on the presence of estradiol. Estradiol caused a 2.5-fold increase in IGF-I receptor levels. Moreover, estradiol reduced soluble IGFBP levels, presumably increasing the availability of IGFs for their receptors. This elevation in IGF-I receptor levels and the decrease in IGFBP levels were accompanied by a 3.5-fold increase in IGF-I receptor messenger RNA and a 2.5-fold decrease in IGFBP messenger RNAs. These experiments suggest that estradiol sensitizes endometrial cancer cells to the effects of IGFs by simultaneously elevating receptor levels and decreasing (potentially inhibitory) IGFBP levels.

  14. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    SciTech Connect

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers.

  15. Angiotensin II type 2 receptor correlates with therapeutic effects of losartan in rats with adjuvant-induced arthritis.

    PubMed

    Wang, Di; Hu, Shanshan; Zhu, Jie; Yuan, Jun; Wu, Jingjing; Zhou, Aiwu; Wu, Yujing; Zhao, Wendi; Huang, Qiong; Chang, Yan; Wang, Qingtong; Sun, Wuyi; Wei, Wei

    2013-12-01

    The angiotensin II type 1 receptor (AT1R) blocker losartan ameliorates rheumatoid arthritis (RA) in an experimental model. In RA, AT2R mainly opposes AT1R, but the mechanism by which this occurs still remains obscure. In the present study, we investigated the role of AT2R in the treatment of rats with adjuvant-induced arthritis (AIA) by losartan. Adjuvant-induced arthritis rats were treated with losartan (5, 10 and 15 mg/kg) and methotrexate (MTX; 0.5 mg/kg) in vivo from day 14 to day 28. Arthritis was evaluated by the arthritis index and histological examination. Angiotensin II, tumour necrosis factor-α, and VEGF levels were examined by ELISA. The expression of AT1R and AT2R was detected by western blot and immunohistochemistry analysis. After stimulation with interleukin-1β in vitro, the effects of the AT2R agonist CGP42112 (10(-8) -10(-5)  M) on the chemotaxis of monocytes induced by 10% foetal calf serum (FCS) were analysed by using Transwell assay. Subsequently, the therapeutic effects of CGP42112 (5, 10 and 20 μg/kg) were evaluated in vivo by intra-articular injection in AIA rats. After treatment with losartan, the down-regulation of AT1R expression and up-regulation of AT2R expression in the spleen and synovium of AIA rats correlated positively with reduction in the polyarthritis index. Treatment with CGP42112 inhibited the chemotaxis of AIA monocytes in vitro, possibly because of the up-regulation of AT2R expression. Intra-articular injection with CGP42112 (10 and 20 μg/kg) ameliorated the arthritis index and histological signs of arthritis. In summary, the present study strongly suggests that the up-regulation of AT2R might be an additional mechanism by which losartan exerts its therapeutic effects in AIA rats.

  16. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease.

    PubMed

    Michel, Martin C; Brunner, Hans R; Foster, Carolyn; Huo, Yong

    2016-08-01

    We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined. PMID:27130806

  17. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy.

    PubMed

    Raymond, E; Faivre, S; Armand, J P

    2000-01-01

    Increasing knowledge of the structure and function of the epidermal growth factor receptor (EGFR) subfamily of tyrosine kinases and of their role in the initiation and progression of various cancers has, in recent years, provided the impetus for a substantial research effort aimed at developing new anticancer therapies that target specific components of the EGFR signal transduction pathway. Selective compounds have been developed that target either the extracellular ligand-binding region of the EGFR or the intracellular tyrosine kinase region, resulting in interference with the signalling pathways that modulate mitogenic and other cancer-promoting responses (e.g. cell motility, cell adhesion, invasion and angiogenesis). Potential new anticancer agents that target the extracellular ligand-binding region of the receptor include a number of monoclonal antibodies, immunotoxins and ligand-binding cytotoxic agents. Agents that target the intracellular tyrosine kinase region include small molecule tyrosine kinase inhibitors (TKIs), which act by interfering with ATP binding to the receptor, and various other compounds that act at substrate-binding regions or downstream components of the signalling pathway. Currently, the most advanced of the newer therapies undergoing clinical development are antireceptor monoclonal antibodies (e.g. trastuzumab and cetuximab) and a number of small molecule EGFR-TKIs principally of the quinazoline and pyrazolo-pyrrolo-pyridopyrimidine inhibitor structural classes. The latter group of compounds offers several advantages in cancer chemotherapy, including the possibility of inhibiting specific deregulated pathways in cancer cells while having minimal effects on normal cell function. They also have favourable pharmacokinetic and pharmacodynamic properties and low toxicity, and some TKIs such as the reversible inhibitor ZD1839 ('Iressa') are now undergoing phase II to III clinical trials. In addition, the accumulation of evidence from laboratory

  18. Phase II Study of Lapatinib in Combination With Trastuzumab in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer: Clinical Outcomes and Predictive Value of Early [18F]Fluorodeoxyglucose Positron Emission Tomography Imaging (TBCRC 003)

    PubMed Central

    Lin, Nancy U.; Guo, Hao; Yap, Jeffrey T.; Mayer, Ingrid A.; Falkson, Carla I.; Hobday, Timothy J.; Dees, E. Claire; Richardson, Andrea L.; Nanda, Rita; Rimawi, Mothaffar F.; Ryabin, Nicole; Najita, Julie S.; Barry, William T.; Arteaga, Carlos L.; Wolff, Antonio C.; Krop, Ian E.; Winer, Eric P.; Van den Abbeele, Annick D.

    2015-01-01

    Purpose Lapatinib plus trastuzumab improves outcomes relative to lapatinib alone in heavily pretreated, human epidermal growth factor receptor 2–positive metastatic breast cancer (MBC). We tested the combination in the earlier-line setting and explored the predictive value of [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) for clinical outcomes. Patients and Methods Two cohorts were enrolled (cohort 1: no prior trastuzumab for MBC and ≥ 1 year from adjuvant trastuzumab, if given; cohort 2: one to two lines of chemotherapy including trastuzumab for MBC and/or recurrence < 1 year from adjuvant trastuzumab). The primary end point was objective response rate by RECIST v1.0; secondary end points included clinical benefit rate (complete response plus partial response plus stable disease ≥ 24 weeks) and progression-free survival. [18F]FDG-PET scans were acquired at baseline, week 1, and week 8. Associations between metabolic response and clinical outcomes were explored. Results Eighty-seven patients were registered (85 were evaluable for efficacy). The confirmed objective response rate was 50.0% (95% CI, 33.8% to 66.2%) in cohort 1 and 22.2% (95% CI, 11.3% to 37.3%) in cohort 2. Clinical benefit rate was 57.5% (95% CI, 40.9% to 73.0%) in cohort 1 and 40.0% (95% CI, 25.7% to 55.7%) in cohort 2. Median progression-free survival was 7.4 and 5.3 months, respectively. Lack of week-1 [18F]FDG-PET/computed tomography ([18F]FDG-PET/CT) response was associated with failure to achieve an objective response by RECIST (negative predictive value, 91% [95% CI, 74% to 100%] for cohort 1 and 91% [95% CI, 79% to 100%] for cohort 2). Conclusion Early use of lapatinib and trastuzumab is active in human epidermal growth factor receptor 2–positive MBC. Week-1 [18F]FDG-PET/CT may allow selection of patients who can be treated with targeted regimens and spared the toxicity of chemotherapy. PMID:26169615

  19. Functional Interaction between Angiotensin II Receptor Type 1 and Chemokine (C-C Motif) Receptor 2 with Implications for Chronic Kidney Disease

    PubMed Central

    Kelly, Robyn S.; See, Heng B.; Johnstone, Elizabeth K. M.; McCall, Elizabeth A.; Williams, James H.; Kelly, Darren J.; Pfleger, Kevin D. G.

    2015-01-01

    Understanding functional interactions between G protein-coupled receptors is of great physiological and pathophysiological importance. Heteromerization provides one important potential mechanism for such interaction between different signalling pathways via macromolecular complex formation. Previous studies suggested a functional interplay between angiotensin II receptor type 1 (AT1) and Chemokine (C-C motif) Receptor 2 (CCR2). However the molecular mechanisms are not understood. We investigated AT1-CCR2 functional interaction in vitro using bioluminescence resonance energy transfer in HEK293 cells and in vivo using subtotal-nephrectomized rats as a well-established model for chronic kidney disease. Our data revealed functional heteromers of these receptors resulting in CCR2-Gαi1 coupling being sensitive to AT1 activation, as well as apparent enhanced β-arrestin2 recruitment with agonist co-stimulation that is synergistically reversed by combined antagonist treatment. Moreover, we present in vivo findings where combined treatment with AT1- and CCR2-selective inhibitors was synergistically beneficial in terms of decreasing proteinuria, reducing podocyte loss and preventing renal injury independent of blood pressure in the subtotal-nephrectomized rat model. Our findings further support a role for G protein-coupled receptor functional heteromerization in pathophysiology and provide insights into previous observations indicating the importance of AT1-CCR2 functional interaction in inflammation, renal and hypertensive disorders. PMID:25807547

  20. Effect of angiotensin II receptor blockade on the interaction between enalaprilat and doxazosin in rat tail arteries.

    PubMed

    Marwood, J F

    1998-01-01

    1. Previous work has shown that enalaprilat, an inhibitor of angiotensin-converting enzyme (ACE), potentiated the actions of alpha 1-adrenoceptor antagonists; it was hypothesized that angiotensin II (AngII) modulated the activity of alpha 1-adrenoceptors. This hypothesis was tested in Sprague-Dawley rat isolated perfused tail arteries using the AT1 receptor antagonist losartan and the AT2 receptor antagonist PD123319. 2. Losartan had no alpha 1-adrenoceptor antagonist effects at concentrations below 1 mumol/L. Similarly, losartan (0.1 mumol/L) had no effect on the alpha 1-adrenoceptor antagonist action of doxazosin (1, 10 nmol/L) nor on the potentiation of doxazosin by enalaprilat (1 mumol/L). 3. PD123319 (0.1 mumol/L) had no alpha 1-adrenoceptor antagonist effect but altered the mode of action of the alpha 1-adrenoceptor antagonist doxazosin: PD123319 changed doxazosin from a competitive to a non-competitive antagonist, as evidenced by the reduced slope of the dose-response curve for the alpha 1-adrenoceptor agonist phenylephrine. 4. These results suggest that AngII can modulate alpha 1-adrenoceptor function in rat tail arteries via an indirect action at AT2 receptors. However, the present results do not rule out the involvement of bradykinin, endothelin or prostaglandin in the modulation of alpha 1-adrenoceptor function by angiotensin II.

  1. Role of angiotensin II and alpha-adrenergic receptors during estrogen-induced vasodilation in ewes.

    PubMed

    Davis, L E; Magness, R R; Rosenfeld, C R

    1992-11-01

    Estradiol-17 beta (E2 beta) produces uterine and systemic vasodilation in nonpregnant ewes without altering mean arterial pressure (MAP). Mechanisms responsible for maintaining MAP and thus uterine blood flow (UBF) may include activation of the renin-angiotensin and/or adrenergic systems. We therefore investigated the effects of systemic blockade of angiotensin II (ANG II) and/or alpha-adrenergic receptors in nonpregnant, castrated ewes, using saralasin (Sar) and/or phentolamine (Phen) in the presence or absence of intravenous E2 beta (1.0 microgram/kg). In nonestrogenized ewes neither antagonist alone had substantial cardiovascular effects; however, Sar + Phen decreased systemic vascular resistance (SVR) 20 +/- 7.4% (SE) and increased heart rate (HR) 50 +/- 19% (P < 0.01); MAP and UBF were unaffected. Following E2 beta treatment SVR fell 17 +/- 2.4% (P < 0.01), UBF increased more than fourfold, and MAP was unchanged. Compared with E2 beta alone, Phen + E2 beta decreased SVR 42 +/- 4.7%, and MAP fell 11 +/- 1.8% (P < 0.05) despite 40-50% increases in HR and cardiac output (P < 0.05). Responses to Sar + E2 beta were similar to E2 beta alone, except for a fall in MAP, whereas responses to Sar + Phen + E2 beta resembled those of Phen + E2 beta. E2 beta-induced uterine vasodilation was unaltered by Sar and/or Phen. During E2 beta-induced vasodilation, MAP is maintained by enhanced activation of the alpha-adrenergic and renin-angiotensin systems; however, uterine vascular responses to E2 beta are independent of both systems and perfusion pressure.

  2. Insulin-Like Growth Factor Receptor Signaling is Necessary for Epidermal Growth Factor Mediated Proliferation of SVZ Neural Precursors in vitro Following Neonatal Hypoxia–Ischemia

    PubMed Central

    Alagappan, Dhivyaa; Ziegler, Amber N.; Chidambaram, Shravanthi; Min, Jungsoo; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    In this study, we assessed the importance of insulin-like growth factor (IGF) and epidermal growth factor (EGF) receptor co-signaling for rat neural precursor (NP) cell proliferation and self-renewal in the context of a developmental brain injury that is associated with cerebral palsy. Consistent with previous studies, we found that there is an increase in the in vitro growth of subventricular zone NPs isolated acutely after cerebral hypoxia–ischemia; however, when cultured in medium that is insufficient to stimulate the IGF type 1 receptor, neurosphere formation and the proliferative capacity of those NPs was severely curtailed. This reduced growth capacity could not be attributed simply to failure to survive. The growth and self-renewal of the NPs could be restored by addition of both IGF-I and IGF-II. Since the size of the neurosphere is predominantly due to cell proliferation we hypothesized that the IGFs were regulating progression through the cell cycle. Analyses of cell cycle progression revealed that IGF-1R activation together with EGFR co-signaling decreased the percentage of cells in G1 and enhanced cell progression into S and G2. This was accompanied by increases in expression of cyclin D1, phosphorylated histone 3, and phosphorylated Rb. Based on these data, we conclude that coordinate signaling between the EGF receptor and the IGF type 1 receptor is necessary for the normal proliferation of NPs as well as for their reactive expansion after injury. These data indicate that manipulations that maintain or amplify IGF signaling in the brain during recovery from developmental brain injuries will enhance the production of new brain cells to improve neurological function in children who are at risk for developing cerebral palsy. PMID:24904523

  3. Troglitazone stimulates {beta}-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1{sub A} receptor

    SciTech Connect

    Tilley, Douglas G.; Nguyen, Anny D.; Rockman, Howard A.

    2010-06-11

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR{gamma}-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR{gamma} activity, thus we hypothesized that a PPAR{gamma} agonist may exert physiologic effects via the angiotensin II type 1{sub A} receptor (AT1{sub A}R). In AT1{sub A}R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR{gamma} agonist troglitazone (Trog) enhanced AT1{sub A}R internalization and recruitment of endogenous {beta}-arrestin1/2 ({beta}arr1/2) to the AT1{sub A}R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1{sub A}R-G{sub q} protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of {beta}arr1/2 was selective to AT1{sub A}R as the response was prevented by an ARB- and Trog-mediated {beta}arr1/2 recruitment to {beta}1-adrenergic receptor ({beta}1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be {beta}arr2-dependent, as cardiomyocytes isolated from {beta}arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR{gamma} agonist Trog acts at the AT1{sub A}R to simultaneously block G{sub q} protein activation and induce the recruitment of {beta}arr1/2, which leads to an increase in cardiomyocyte contractility.

  4. Group II metabotropic glutamate receptors in the striatum of non-human primates: dysregulation following chronic cocaine self-administration.

    PubMed

    Beveridge, T J R; Smith, H R; Nader, M A; Porrino, L J

    2011-05-27

    A growing body of evidence has demonstrated a role for group II metabotropic glutamate receptors (mGluRs) in the reinforcing effects of cocaine. These receptors are important given their location in limbic-related areas, and their ability to control the release of glutamate and other neurotransmitters. They are also potential targets for novel pharmacotherapies for cocaine addiction. The present study investigated the impact of chronic cocaine self-administration (9.0mg/kg/session for 100 sessions, 900 mg/kg total intake) on the densities of group II mGluRs, as assessed with in vitro receptor autoradiography, in the striatum of adult male rhesus monkeys. Binding of [(3)H]LY341495 to group II mGluRs in control animals was heterogeneous, with a medial to lateral gradient in binding density. Significant elevations in the density of group II mGluRs following chronic cocaine self-administration were measured in the dorsal, central and ventral portions of the caudate nucleus (P<0.05), compared to controls. No differences in receptor density were observed between the groups in either the putamen or nucleus accumbens. These data demonstrate that group II mGluRs in the dorsal striatum are more sensitive to the effects of chronic cocaine exposure than those in the ventral striatum. Cocaine-induced dysregulation of the glutamate system, and its consequent impact on plasticity and synaptic remodeling, will likely be an important consideration in the development of novel pharmacotherapies for cocaine addiction. PMID:21458540

  5. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells.

    PubMed

    Adebiyi, Adebowale; Soni, Hitesh; John, Theresa A; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca(2+) ([Ca(2+)]i) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca(2+)]i elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca(2+)]i chelator; KN-93, a Ca(2+)/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca(2+)]i-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. PMID:24662198

  6. Possible mechanisms and function of nuclear trafficking of the colony-stimulating factor-1 receptor.

    PubMed

    Rovida, Elisabetta; Dello Sbarba, Persio

    2014-10-01

    Receptor tyrosine kinases (RTK) have long being studied with respect to the "canonical" signaling. This includes ligand-induced activation of a receptor tyrosine kinase at the cell surface that leads to receptor dimerization, followed by its phosphorylation in the intracellular domain and activation. The activated receptor then recruits cytoplasmic signaling molecules including other kinases. Activation of the downstream signaling cascade frequently leads to changes in gene expression following nuclear translocation of downstream targets. However, RTK themselves may localize within the nucleus, as either full-length molecules or cleaved fragments, with or without their ligands. Significant differences in this mechanism have been reported depending on the individual RTK, cellular context or disease. Accumulating evidences indicate that the colony-stimulating factor-1 receptor (CSF-1R) may localize within the nucleus. To date, however, little is known about the mechanism of CSF-1R nuclear shuttling, as well as the functional role of nuclear CSF-1R.

  7. Evidence that the epidermal growth factor receptor on host cells confers reovirus infection efficiency.

    PubMed

    Strong, J E; Tang, D; Lee, P W

    1993-11-01

    Reovirus binds to multiple sialoglycoproteins on the host cell surface. In an attempt to probe additional specific determinants that dictate host cell susceptibility to reovirus infection, we found that two mouse cell lines (NR6 and B82) previously shown to express no endogenous epidermal growth factor (EGF) receptors were relatively resistant to reovirus infection, whereas the same cell lines transfected with the gene encoding the EGF receptor manifested significantly higher susceptibility as determined by induction of cytopathic effects, viral protein synthesis, and plaque titration. This enhancement of infection efficiency requires a functional EGF receptor since it was not observed in cells expressing a mutated (kinase-inactive) EGF receptor. The observed difference in infection efficiency is not due to differences in virus binding or internalization. These studies suggest that the reovirus infection process is closely coupled to the EGF receptor-mediated cell signal transduction pathway.

  8. Internephron heterogeneity of growth factors and sclerosis--modulation of platelet-derived growth factor by angiotensin II.

    PubMed

    Tanaka, R; Sugihara, K; Tatematsu, A; Fogo, A

    1995-01-01

    We studied the early phase after 5/6 nephrectomy in Munich-Wistar rats to determine whether treatment with angiotensin II receptor antagonist (AIIRA) modulates the expression of platelet-derived growth factor (PDGF) mRNA and its protein among the glomeruli which are undergoing progressive hypertrophy and sclerosis. Average PDGF-B immunohistochemistry staining score (IHS, 0 to 3 scale) in glomeruli and PDGF-B chain mRNA from kidneys were both increased in 5/6 nephrectomy rats (N = 6) versus age-matched normal (N = 5) at week 4, when glomeruli were at early stages of sclerosis (IHS, 0.81 +/- 0.12 vs. 0.19 +/- 0.05; sclerosis index, S.I., 0 to 4 scale: 0.41 +/- 0.04 vs. 0.05 +/- 0.01, both P < 0.05). AIIRA (80 mg/liter drinking water, N = 6) started at time of 5/6 nephrectomy prevented the development of sclerosis (S.I. 0.08 +/- 0.03) and decreased PDGF-B protein (IHS 0.22 +/- 0.08, both P = NS vs. normal), and PDGF-B chain mRNA. In contrast, triple therapy (TRX; hydralazine, reserpine and hydrochlorothiazide, N = 5) in doses which controlled systemic blood pressure resulted in intermediate level of glomerulosclerosis at this early time point of progressive injury. Concurrently, TRX failed to affect the expression of PDGF-B protein (IHS 0.86 +/- 0.19) or its mRNA expression. The PDGF-B distribution was not uniform amongst the glomeruli with varying stages of sclerosis. There was a strong correlation in individual glomeruli of increased PDGF-B staining with early sclerotic changes (P < 0.01), with the disappearance of this correlation in glomeruli with advanced sclerosis.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Type I interferon mimetics bypass vaccinia virus decoy receptor virulence factor for protection of mice against lethal infection.

    PubMed

    Ahmed, Chulbul M; Johnson, Howard M

    2014-08-01

    The canonical model of interferon (IFN) signaling focuses solely on the activation of STAT transcription factors which, according to the model, are initiated by the singular event of cross-linkage of the receptor extracellular domain by the IFN. The IFN has no further function beyond this. The model thus provides no approach to circumventing poxviruses decoy receptors that compete with the IFN receptors for IFNs. This simple event has allowed smallpox virus to decimate human populations throughout the ages. We have developed a noncanonical model of IFN signaling that has resulted in the development of small peptide mimetics to both types I and II IFNs. In this report, we focus on a type I IFN mimetic at positions 152 to 189, IFN-α1(152-189), which corresponds to the C terminus of human IFN-α1. This mimetic functions intracellularly and is thus not recognized by the B18R vaccinia virus decoy receptor. Mimetic synthesized with an attached palmitate (lipo-) for cell penetration protects mice from a lethal dose of vaccinia virus, while the parent IFN-α1 is ineffective. Unlike IFN-α1, the mimetic does not bind to the B18R decoy receptor. It further differs from the parent IFN in that it lacks the toxicity of weight loss and bone marrow suppression in mice while at the same time possessing a strong adjuvant effect on the immune system. The mimetic is thus an innate and adaptive immune regulator that is evidence of the dynamic nature of the noncanonical model of IFN signaling, in stark contrast to the canonical or classical model of signaling.

  10. Phosphorylation of the human leukemia inhibitory factor (LIF) receptor by mitogen-activated protein kinase and the regulation of LIF receptor function by heterologous receptor activation.

    PubMed Central

    Schiemann, W P; Graves, L M; Baumann, H; Morella, K K; Gearing, D P; Nielsen, M D; Krebs, E G; Nathanson, N M

    1995-01-01

    We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044. Images Fig. 2 Fig. 4 PMID:7777512

  11. beta-Arrestin mediates beta1-adrenergic receptor-epidermal growth factor receptor interaction and downstream signaling.

    PubMed

    Tilley, Douglas G; Kim, Il-Man; Patel, Priyesh A; Violin, Jonathan D; Rockman, Howard A

    2009-07-24

    beta1-Adrenergic receptor (beta1AR) stimulation confers cardioprotection via beta-arrestin-de pend ent transactivation of epidermal growth factor receptors (EGFRs), however, the precise mechanism for this salutary process is unknown. We tested the hypothesis that the beta1AR and EGFR form a complex that differentially directs intracellular signaling pathways. beta1AR stimulation and EGF ligand can each induce equivalent EGFR phosphorylation, internalization, and downstream activation of ERK1/2, but only EGF ligand causes translocation of activated ERK to the nucleus, whereas beta1AR-stimulated/EGFR-transactivated ERK is restricted to the cytoplasm. beta1AR and EGFR are shown to interact as a receptor complex both in cell culture and endogenously in human heart, an interaction that is selective and undergoes dynamic regulation by ligand stimulation. Although catecholamine stimulation mediates the retention of beta1AR-EGFR interaction throughout receptor internalization, direct EGF ligand stimulation initiates the internalization of EGFR alone. Continued interaction of beta1AR with EGFR following activation is dependent upon C-terminal tail GRK phosphorylation sites of the beta1AR and recruitment of beta-arrestin. These data reveal a new signaling paradigm in which beta-arrestin is required for the maintenance of a beta1AR-EGFR interaction that can direct cytosolic targeting of ERK in response to catecholamine stimulation.

  12. ErbB receptors and their growth factor ligands in pediatric intestinal inflammation

    PubMed Central

    Frey, Mark R.; Polk, D. Brent

    2014-01-01

    The ErbB tyrosine kinases (epidermal growth factor receptor (EGFR), ErbB2/HER2, ErbB3, and ErbB4) are cell surface growth factor receptors widely expressed in many developing mammalian tissues, including in the intestinal tract. Signaling elicited by these receptors promotes epithelial cell growth and survival, and ErbB ligands have been proposed as therapeutic agents for intestinal diseases of pediatric populations, including inflammatory bowel diseases (IBD), necrotizing enterocolitis (NEC), and inflammation associated with total parenteral nutrition (TPN). Furthermore, emerging evidence points to reduced ErbB ligand expression and thus reduced ErbB activity in IBD, NEC, and TPN models. This review will discuss the current understanding of the role of ErbB receptors in the pathogenesis and potential treatment of pediatric intestinal inflammation, with focus on the altered signaling in disease and the molecular mechanisms by which exogenous ligands are protective. PMID:24402051

  13. Factors Influencing College Selection by NCAA Division I, II, and III Lacrosse Players

    ERIC Educational Resources Information Center

    Pauline, Jeffrey

    2010-01-01

    The purpose of this investigation was to examine factors influencing college selection by NCAA Division I, II and III lacrosse players. The Influential Factors Survey for Student-Athletes-Revised was used to collect data from 792 male and female collegiate lacrosse players. Descriptive statistics showed the most influential factors were: career…

  14. Effects of Angiotensin II Receptor Blockers on Metabolism of Arachidonic Acid via CYP2C8.

    PubMed

    Senda, Asuna; Mukai, Yuji; Toda, Takaki; Hayakawa, Toru; Yamashita, Miki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2015-01-01

    Arachidonic acid (AA) is metabolized to epoxyeicosatrienoic acids (EETs) via cytochrome enzymes such as CYP 2C9, 2C8 and 2J2. EETs play a role in cardioprotection and regulation of blood pressure. Recently, adverse reactions such as sudden heart attack and fatal myocardial infarction were reported among patients taking angiotensin II receptor blockers (ARBs). As some ARBs have affinity for these CYP enzymes, metabolic inhibition of AA by ARBs is a possible cause for the increase in cardiovascular events. In this study, we quantitatively investigated the inhibitory effects of ARBs on the formation of EETs and further metabolites, dihydroxyeicosatrienoic acids (DHETs), from AA via CYP2C8. In incubations with recombinant CYP2C8 in vitro, the inhibitory effects were compared by measuring EETs and DHETs by HPLC-MS/MS. Inhibition of AA metabolism by ARBs was detected in a concentration-dependent manner with IC50 values of losartan (42.7 µM), telmisartan (49.5 µM), irbesartan (55.6 µM), olmesartan (66.2 µM), candesartan (108 µM), and valsartan (279 µM). Losartan, telmisartan and irbesartan, which reportedly accumulate in the liver and kidneys, have stronger inhibitory effects than other ARBs. The lower concentration of EETs leads to less protective action on the cardiovascular system and a higher incidence of adverse effects such as sudden heart attack and myocardial infarction in patients taking ARBs. PMID:26632190

  15. Phospholipase D2 Localizes to the Plasma Membrane and Regulates Angiotensin II Receptor Endocytosis

    PubMed Central

    Du, Guangwei; Huang, Ping; Liang, Bruce T.; Frohman, Michael A.

    2004-01-01

    Phospholipase D (PLD) is a key facilitator of multiple types of membrane vesicle trafficking events. Two PLD isoforms, PLD1 and PLD2, exist in mammals. Initial studies based on overexpression studies suggested that in resting cells, human PLD1 localized primarily to the Golgi and perinuclear vesicles in multiple cell types. In contrast, overexpressed mouse PLD2 was observed to localize primarily to the plasma membrane, although internalization on membrane vesicles was observed subsequent to serum stimulation. A recent report has suggested that the assignment of PLD2 to the plasma membrane is in error, because the endogenous isoform in rat secretory cells was imaged and found to be present primarily in the Golgi apparatus. We have reexamined this issue by using a monoclonal antibody specific for mouse PLD2, and find, as reported initially using overexpression studies, that endogenous mouse PLD2 is detected most readily at the plasma membrane in multiple cell types. In addition, we report that mouse, rat, and human PLD2 when overexpressed all similarly localize to the plasma membrane in cell lines from all three species. Finally, studies conducted using overexpression of wild-type active or dominant-negative isoforms of PLD2 and RNA interference-mediated targeting of PLD2 suggest that PLD2 functions at the plasma membrane to facilitate endocytosis of the angiotensin II type 1 receptor. PMID:14718562

  16. Condensin I and II Complexes License Full Estrogen Receptor α-Dependent Enhancer Activation.

    PubMed

    Li, Wenbo; Hu, Yiren; Oh, Soohwan; Ma, Qi; Merkurjev, Daria; Song, Xiaoyuan; Zhou, Xiang; Liu, Zhijie; Tanasa, Bogdan; He, Xin; Chen, Aaron Yun; Ohgi, Kenny; Zhang, Jie; Liu, Wen; Rosenfeld, Michael G

    2015-07-16

    Enhancers instruct spatio-temporally specific gene expression in a manner tightly linked to higher-order chromatin architecture. Critical chromatin architectural regulators condensin I and condensin II play non-redundant roles controlling mitotic chromosomes. But the chromosomal locations of condensins and their functional roles in interphase are poorly understood. Here we report that both condensin complexes exhibit an unexpected, dramatic estrogen-induced recruitment to estrogen receptor α (ER-α)-bound eRNA(+) active enhancers in interphase breast cancer cells, exhibiting non-canonical interaction with ER-α via its DNA-binding domain (DBD). Condensins positively regulate ligand-dependent enhancer activation at least in part by recruiting an E3 ubiquitin ligase, HECTD1, to modulate the binding of enhancer-associated coactivators/corepressors, including p300 and RIP140, permitting full eRNA transcription, formation of enhancer:promoter looping, and the resultant coding gene activation. Collectively, our results reveal an important, unanticipated transcriptional role of interphase condensins in modulating estrogen-regulated enhancer activation and coding gene transcriptional program.

  17. Non-peptide angiotensin II receptor antagonists: chemical feature based pharmacophore identification.

    PubMed

    Krovat, Eva M; Langer, Thierry

    2003-02-27

    Chemical feature based pharmacophore models were elaborated for angiotensin II receptor subtype 1 (AT(1)) antagonists using both a quantitative and a qualitative approach (Catalyst HypoGen and HipHop algorithms, respectively). The training sets for quantitative model generation consisted of 25 selective AT(1) antagonists exhibiting IC(50) values ranging from 1.3 nM to 150 microM. Additionally, a qualitative pharmacophore hypothesis was derived from multiconformational structure models of the two highly active AT(1) antagonists 4u (IC(50) = 0.2 nM) and 3k (IC(50) = 0.7 nM). In the case of the quantitative model, the best pharmacophore hypothesis consisted of a five-features model (Hypo1: seven points, one hydrophobic aromatic, one hydrophobic aliphatic, a hydrogen bond acceptor, a negative ionizable function, and an aromatic plane function). The best qualitative model consisted of seven features (Hypo2: 11 points, two aromatic rings, two hydrogen bond acceptors, a negative ionizable function, and two hydrophobic functions). The obtained pharmacophore models were validated on a wide set of test molecules. They were shown to be able to identify a range of highly potent AT(1) antagonists, among those a number of recently launched drugs and some candidates presently undergoing clinical tests and/or development phases. The results of our stu