Science.gov

Sample records for factor ii receptors

  1. The transforming growth factor beta type II receptor can replace the activin type II receptor in inducing mesoderm.

    PubMed Central

    Bhushan, A; Lin, H Y; Lodish, H F; Kintner, C R

    1994-01-01

    The type II receptors for the polypeptide growth factors transforming growth factor beta (TGF-beta) and activin belong to a new family of predicted serine/threonine protein kinases. In Xenopus embryos, the biological effects of activin and TGF-beta 1 are strikingly different; activin induces a full range of mesodermal cell types in the animal cap assay, while TGF-beta 1 has no effects, presumably because of the lack of functional TGF-beta receptors. In order to assess the biological activities of exogenously added TGF-beta 1, RNA encoding the TGF-beta type II receptor was introduced into Xenopus embryos. In animal caps from these embryos, TGF-beta 1 and activin show similar potencies for induction of mesoderm-specific mRNAs, and both elicit the same types of mesodermal tissues. In addition, the response of animal caps to TGF-beta 1, as well as to activin, is blocked by a dominant inhibitory ras mutant, p21(Asn-17)Ha-ras. These results indicate that the activin and TGF-beta type II receptors can couple to similar signalling pathways and that the biological specificities of these growth factors lie in their different ligand-binding domains and in different competences of the responding cells. Images PMID:8196664

  2. Insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver

    SciTech Connect

    McElduff, A.; Poronnik, P.; Baxter, R.C.

    1987-10-01

    The binding subunits of the insulin and insulin-like growth factor-I (IGF I) receptors from rat brain are of lower molecular weight than the corresponding receptor in rat liver, possibly due to variations in sialic acid content. We have compared the IGF II receptor from rat brain and rat liver. The brain receptor is of smaller apparent mol wt (about 10 K) on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This size difference is independent of ligand binding as it persists in iodinated and specifically immunoprecipitated receptors. From studies of wheat germ agglutinin binding and the effect of neuraminidase on receptor mobility, we conclude that this difference is not simply due to variations in sialic acid content. Treatment with endoglycosidase F results in reduction in the molecular size of both liver and brain receptors and after this treatment the aglycoreceptors are of similar size. We conclude that in rat brain tissue the IGF II receptor like the binding subunits of the insulin and IGF I receptors is of lower molecular size than the corresponding receptors in rat liver. This difference is due to differences in N-linked glycosylation.

  3. CrkII signals from epidermal growth factor receptor to Ras.

    PubMed Central

    Kizaka-Kondoh, S; Matsuda, M; Okayama, H

    1996-01-01

    A rat fibroblast mutant defective in oncogenic transformation and signaling from epidermal growth factor receptor to Ras has been isolated. The mutant contains dominant negative-type point mutations in the C-terminal SH3 domain of one crkII gene. Among the adapters tested, the mutant is complemented only by crkII cDNA. Expression of the mutated crkII in parent cells generates the phenotype indistinguishable from the mutant cell. Yet overexpression or reduced expression of Grb2 in the mutant before and after complementation with crkII have little effect on its phenotype. We conclude that adapter molecules are highly specific and that the oncogenic growth signal from epidermal growth factor receptor to Ras is predominantly mediated by CrkII in rat fibroblast. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8901553

  4. Signaling activity of transforming growth factor beta type II receptors lacking specific domains in the cytoplasmic region.

    PubMed Central

    Wieser, R; Attisano, L; Wrana, J L; Massagué, J

    1993-01-01

    The transforming growth factor beta (TGF-beta) type II receptor (T beta R-II) is a transmembrane serine/threonine kinase that contains two inserts in the kinase region and a serine/threonine-rich C-terminal extension. T beta R-II is required for TGF-beta binding to the type I receptor, with which it forms a heteromeric receptor complex, and its kinase activity is required for signaling by this complex. We investigated the role of various cytoplasmic regions in T beta R-II by altering or deleting these regions and determining the signaling activity of the resulting products in cell lines made resistant to TGF-beta by inactivation of the endogenous T beta R-II. TGF-beta binding to receptor I and responsiveness to TGF-beta in these cells can be restored by transfection of wild-type T beta R-II. Using this system, we show that the kinase insert 1 and the C-terminal tail of T beta R-II, in contrast to the corresponding regions in most tyrosine kinase receptors, are not essential to specify ligand-induced responses. Insert 2 is necessary to support the catalytic activity of the receptor kinase, and its deletion yields a receptor that is unable to mediate any of the responses tested. However, substitution of this insert with insert 2 from the activin receptor, ActR-IIB, does not diminish the ability of T beta R-II to elicit these responses. A truncated T beta R-II lacking the cytoplasmic domain still binds TGF-beta, supports ligand binding to receptor I, and forms a complex with this receptor. However, TGF-beta binding to receptor I facilitated by this truncated T beta R-II fails to inhibit cell proliferation, activate extracellular matrix protein production, or activate transcription from a promoter containing TGF-beta-responsive elements. We conclude that the transcriptional and antiproliferative responses to TGF-beta require both components of a heteromeric receptor complex that differs from tyrosine kinase receptors in its mode of signaling. Images PMID:8246946

  5. Dysfunctional Transforming Growth FactorReceptor II Accelerates Prostate Tumorigenesis in the TRAMP Mouse Model

    PubMed Central

    Pu, Hong; Collazo, Joanne; Jones, Elisabeth; Gayheart, Dustin; Sakamoto, Shinichi; Vogt, Adam; Mitchell, Bonnie; Kyprianou, Natasha

    2009-01-01

    The contribution of a dysfunctional TGF-β type II receptor (TGFβRII) to prostate cancer initiation and progression was investigated in an in vivo mouse model. Transgenic mice harboring the dominant-negative mutant TGF-β type II receptor (DNTGFβRII) in mouse epithelial cell were crossed with the TRAMP prostate cancer transgenic mouse to characterize the in vivo consequences of inactivated TGF-β signaling on prostate tumor initiation and progression. Histopathological diagnosis of prostate specimens from the TRAMP+/DNTGFβRII double transgenic mice, revealed the appearance of early malignant changes and subsequently highly aggressive prostate tumors at a younger age, compared to littermates TRAMP+/Wt TGFβRII mice. Immunohistochemical and western blotting analysis revealed significantly increased proliferative and apoptotic activities, as well as vascularity and macrophage infiltration that correlated with an elevated VEGF and MCP-1 protein levels in prostates from TRAMP+/DNTGFβRII+ mice. An epithelial-mesenchymal transition (EMT)-effect was also detected in prostates of TRAMP+/DNTGFβRII mice, as documented by the loss of epithelial markers (E-cadherin and β-catenin) and upregulation of mesenchymal markers (N-cadherin) and EMT-transcription factor Snail. A significant increase in the androgen receptor (AR) mRNA and protein levels was associated with the early onset of prostate tumorigenesis in TRAMP+/DNTGFβRII mice. Our results indicate that in vivo disruption of TGF-β signaling accelerates the pathological malignant changes in the prostate by altering the kinetics of prostate growth and inducing EMT. The study also suggests that a dysfunctional TGFβRII augments AR expression and promotes inflammation in early stage tumor growth thus conferring a significant contribution by TGF-β to prostate cancer progression. PMID:19738062

  6. Vertebral Artery Aneurysm Mimicking as Left Subclavian Artery Aneurysm in a Patient with Transforming Growth Factor Beta Receptor II Mutation.

    PubMed

    Afifi, Rana O; Dhillon, Baltej Singh; Sandhu, Harleen K; Charlton-Ouw, Kristofer M; Estrera, Anthony L; Azizzadeh, Ali

    2015-10-01

    We report successful endovascular repair of a left vertebral artery aneurysm in a patient with transforming growth factor beta receptor II mutation. The patient was initially diagnosed with a left subclavian artery aneurysm on computed tomography angiography. The patient consented to publication of this report.

  7. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    SciTech Connect

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-03-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human /sup 125/-I-IGF-II (10 pM) was incubated for 16 hrs at 4/sup 0/C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA/sub 1/-CA/sub 2/ and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of /sup 125/I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning.

  8. Insulin and Insulin-like Growth Factor II Differentially Regulate Endocytic Sorting and Stability of Insulin Receptor Isoform A*

    PubMed Central

    Morcavallo, Alaide; Genua, Marco; Palummo, Angela; Kletvikova, Emilia; Jiracek, Jiri; Brzozowski, Andrzej M.; Iozzo, Renato V.; Belfiore, Antonino; Morrione, Andrea

    2012-01-01

    The insulin receptor isoform A (IR-A) binds both insulin and insulin-like growth factor (IGF)-II, although the affinity for IGF-II is 3–10-fold lower than insulin depending on a cell and tissue context. Notably, in mouse embryonic fibroblasts lacking the IGF-IR and expressing solely the IR-A (R−/IR-A), IGF-II is a more potent mitogen than insulin. As receptor endocytosis and degradation provide spatial and temporal regulation of signaling events, we hypothesized that insulin and IGF-II could affect IR-A biological responses by differentially regulating IR-A trafficking. Using R−/IR-A cells, we discovered that insulin evoked significant IR-A internalization, a process modestly affected by IGF-II. However, the differential internalization was not due to IR-A ubiquitination. Notably, prolonged stimulation of R−/IR-A cells with insulin, but not with IGF-II, targeted the receptor to a degradative pathway. Similarly, the docking protein insulin receptor substrate 1 (IRS-1) was down-regulated after prolonged insulin but not IGF-II exposure. Similar results were also obtained in experiments using [NMeTyrB26]-insulin, an insulin analog with IR-A binding affinity similar to IGF-II. Finally, we discovered that IR-A was internalized through clathrin-dependent and -independent pathways, which differentially regulated the activation of downstream effectors. Collectively, our results suggest that a lower affinity of IGF-II for the IR-A promotes lower IR-A phosphorylation and activation of early downstream effectors vis à vis insulin but may protect IR-A and IRS-1 from down-regulation thereby evoking sustained and robust mitogenic stimuli. PMID:22318726

  9. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain*

    PubMed Central

    Hexnerová, Rozálie; Křížková, Květoslava; Fábry, Milan; Sieglová, Irena; Kedrová, Kateřina; Collinsová, Michaela; Ullrichová, Pavlína; Srb, Pavel; Williams, Christopher; Crump, Matthew P.; Tošner, Zdeněk; Jiráček, Jiří; Veverka, Václav; Žáková, Lenka

    2016-01-01

    Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains. PMID:27510031

  10. Regulation of insulin-like growth factor II receptors by growth hormone and insulin in rat adipocytes

    SciTech Connect

    Loennroth, P.; Assmundsson, K.; Eden, S.; Enberg, G.; Gause, I.; Hall, K.; Smith, U.

    1987-06-01

    The acute and long-term effects of growth hormone (GH) on the binding of insulin-like growth factor II (IGF-II) were evaluated in adipose cells from hypophysectomized rats given replacement therapy with thyroxine and hydrocortisone and in cells from their sham-operated littermates. After the cells were incubated with insulin and/or GH, the recycling of /sup 125/I-labeled IGF-II receptors was metabolically inhibited by treating the cells with KCN. IGF-II binding was 100 +/- 20% higher in cells from GH-deficient animals when compared with sham-operated controls. These GH-deficient cells also showed an increased sensitivity for insulin as compared with control cells (the EC/sub 50/ for insulin was 0.06 ng/ml in GH-deficient cells and 0.3 ng/ml in control cells.). However, the maximal incremental effect of insulin on IGH-II binding was reduced approx. = 27% by hypophysectomy. GH added to the incubation medium increased the number of IGF-II binding sites by 100 +/- 18% in cells from hypophysectomized animals. This increase was rapidly induced, but the time course was slower than that for the stimulatory effect of insulin. Half-maximal effect of GH on IGF-II binding was obtained at approx. = 30 ng/ml. Thus, GH added in vitro exerted a rapid insulin-like effect on the number of IGH-II receptors. GH also appears to play a regulating role for maintaining the cellular number of IGH-II receptors and, in addition, modulates the stimulatory effect of insulin on IGF-II binding.

  11. The kangaroo cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II with low affinity.

    PubMed

    Yandell, C A; Dunbar, A J; Wheldrake, J F; Upton, Z

    1999-09-17

    The mammalian cation-independent mannose 6-phosphate receptor (CI-MPR) binds mannose 6-phosphate-bearing glycoproteins and insulin-like growth factor (IGF)-II. However, the CI-MPR from the opossum has been reported to bind bovine IGF-II with low affinity (Dahms, N. M., Brzycki-Wessell, M. A., Ramanujam, K. S., and Seetharam, B. (1993) Endocrinology 133, 440-446). This may reflect the use of a heterologous ligand, or it may represent the intrinsic binding affinity of this receptor. To examine the binding of IGF-II to a marsupial CI-MPR in a homologous system, we have previously purified kangaroo IGF-II (Yandell, C. A., Francis, G. L., Wheldrake, J. F., and Upton, Z. (1998) J. Endocrinol. 156, 195-204), and we now report the purification and characterization of the CI-MPR from kangaroo liver. The interaction of the kangaroo CI-MPR with IGF-II has been examined by ligand blotting, radioreceptor assay, and real-time biomolecular interaction analysis. Using both a heterologous and homologous approach, we have demonstrated that the kangaroo CI-MPR has a lower binding affinity for IGF-II than its eutherian (placental mammal) counterparts. Furthermore, real-time biomolecular interaction analysis revealed that the kangaroo CI-MPR has a higher affinity for kangaroo IGF-II than for human IGF-II. The cDNA sequence of the kangaroo CI-MPR indicates that there is considerable divergence in the area corresponding to the IGF-II binding site of the eutherian receptor. Thus, the acquisition of a high-affinity binding site for regulating IGF-II appears to be a recent event specific to the eutherian lineage.

  12. The Chicken Ovalbumin Upstream Promoter-Transcription Factor II Negatively Regulates the Transactivation of Androgen Receptor in Prostate Cancer Cells

    PubMed Central

    Song, Chin-Hee; Lee, Hyun Joo; Park, Eunsook; Lee, Keesook

    2012-01-01

    Androgen receptor (AR) is involved in the development and progression of prostate cancers. However, the mechanisms by which this occurs remain incompletely understood. In previous reports, chicken ovalbumin upstream promoter-transcription factor II (COUP-TF II) has been suggested to play a role in the development of cancers. In the present study, we explored a putative role of COUP-TF II in prostate cancers by investigating its effect on cell proliferation and a cross-talk between COUP-TF II and AR. Overexpression of COUP-TF II results in the inhibition of androgen-dependent proliferation of prostate cancer cells. Further studies show that COUP-TF II functions as a corepressor of AR. It represses AR transactivation on target promoters containing the androgen response element (ARE) in a dose-dependent manner. In addition, COUP-TF II interacts physically with AR in vitro and in vivo. It binds to both the DNA binding domain (DBD) and the ligand-binding domain (LBD) of AR and disrupts the N/C terminal interaction of AR. Furthermore, COUP-TF II competes with coactivators such as ARA70, SRC-1, and GRIP1 to modulate AR transactivation as well as inhibiting the recruitment of AR to its ARE-containing target promoter. Taken together, our findings suggest that COUP-TF II is a novel corepressor of AR, and provide an insight into the role of COUP-TF II in prostate cancers. PMID:23145053

  13. Polymorphism in the tumour necrosis factor receptor II gene is associated with circulating levels of soluble tumour necrosis factor receptors in rheumatoid arthritis

    PubMed Central

    Glossop, John R; Dawes, Peter T; Nixon, Nicola B; Mattey, Derek L

    2005-01-01

    Levels of soluble tumour necrosis factor receptors (sTNFRs) are elevated in the circulation of patients with rheumatoid arthritis (RA). Although these receptors can act as natural inhibitors of tumour necrosis factor-α, levels of sTNFRs in RA appear to be insufficient to prevent tumour necrosis factor-α induced inflammation. The factors that regulate circulating levels of sTNFRs are unclear, but polymorphisms in the tumour necrosis factor receptor genes may play a role. We investigated the relationship between polymorphisms in the tumour necrosis factor receptor I (TNF-RI) and II (TNF-RII) genes and levels of sTNFRs in two groups of Caucasian RA patients: one with early (disease duration ≤2 years; n = 103) and one with established disease (disease duration ≥5 years; n = 151). PCR restriction fragment length polymorphism analysis was used to genotype patients for the A36G polymorphism in the TNF-RI gene and the T676G polymorphism in TNF-RII. Levels of sTNFRs were measured using ELISA. We also isolated T cells from peripheral blood of 58 patients with established RA with known TNF-R genotypes, and release of sTNFRs into the culture medium was measured in cells incubated with or without phytohaemagglutinin. Serum levels of the two sTNFRs (sTNF-RI and sTNF-RII) were positively correlated in both populations, and the level of each sTNFR was significantly higher in the patients with established disease (P < 0.0001). Multiple regression analyses corrected for age, sex and disease duration revealed a significant trend toward decreasing sTNF-RI and sTNF-RII levels across the TNF-RII genotypes (TT > TG > GG) of patients with established disease (P for trend = 0.01 and P for trend = 0.03, respectively). A similar nonsignificant trend was seen for early disease. No relationship with the TNF-RI A36G polymorphism was observed. sTNFRs released by isolated T cells exhibited a similar trend toward decreasing levels according to TNF-RII genotype, although only the association

  14. Add-on angiotensin II receptor blockade lowers urinary transforming growth factor-beta levels.

    PubMed

    Agarwal, Rajiv; Siva, Senthuran; Dunn, Stephen R; Sharma, Kumar

    2002-03-01

    Progression of renal failure, despite renoprotection with angiotensin-converting enzyme (ACE) inhibitors in patients with proteinuric nephropathies, may be caused by persistent renal production of transforming growth factor-beta1 (TGF-beta1) through the angiotensin II subtype 1 (AT1) receptors. We tested the hypothesis that AT1-receptor blocker therapy added to a background of chronic maximal ACE inhibitor therapy will result in a reduction in urinary TGF-beta1 levels in such patients. Sixteen patients completed a two-period, crossover, randomized, controlled trial, details of which have been previously reported. All patients were administered lisinopril, 40 mg/d, with either losartan, 50 mg/d, or placebo. Blood pressure (BP) was measured using a 24-hour ambulatory BP monitor. Overnight specimens of urine were analyzed for urine TGF-beta1, protein, and creatinine concentrations. Mean age of the study population was 53 +/- 9 (SD) years; body mass index, 38 +/- 5.7 kg/m2; seated BP, 156 +/- 18/88 +/- 12 mm Hg; and urine protein excretion, 3.6 +/- 0.71 g/g of creatinine. Twelve patients had diabetic nephropathy, and the remainder had chronic glomerulonephritis. At baseline, urinary TGF-beta1 levels were significantly increased in the study population compared with healthy controls (13.2 +/- 1.2 versus 1.7 +/- 1.1 ng/g creatinine; P < 0.001). There was a strong correlation between baseline urine protein excretion and urinary TGF-beta1 level (r2 = 0.53; P = 0.001), as well as systolic BP and urinary TGF-beta1 level (r2 = 0.57; P < 0.001). After 4 weeks of add-on losartan therapy, there was a 38% (95% confidence interval [CI], 16% to 55%) decline in urinary TGF-beta1 levels (13.3 [95% CI, 11.4 to 15.5] to 8.2 pg/mg creatinine [95% CI, 6.2 to 10.7]). The reduction in urinary TGF-beta1 levels occurred independent of changes in mean urinary protein excretion or BP. Thus, proteinuric patients with renal failure, despite maximal ACE inhibition, had increased urinary levels of

  15. A Novel Approach to Identify Two Distinct Receptor Binding Surfaces of Insulin-like Growth Factor II*S⃞

    PubMed Central

    Alvino, Clair L.; McNeil, Kerrie A.; Ong, Shee Chee; Delaine, Carlie; Booker, Grant W.; Wallace, John C.; Whittaker, Jonathan; Forbes, Briony E.

    2009-01-01

    Very little is known about the residues important for the interaction of insulin-like growth factor II (IGF-II) with the type 1 IGF receptor (IGF-1R) and the insulin receptor (IR). Insulin, to which IGF-II is homologous, is proposed to cross-link opposite halves of the IR dimer through two receptor binding surfaces, site 1 and site 2. In the present study we have analyzed the contribution of IGF-II residues equivalent to insulin's two binding surfaces toward the interaction of IGF-II with the IGF-1R and IR. Four “site 1” and six “site 2” analogues were produced and analyzed in terms of IGF-1R and IR binding and activation. The results show that Val43, Phe28, and Val14 (equivalent to site 1) are critical to IGF-1R and IR binding, whereas mutation to alanine of Gln18 affects only IGF-1R and not IR binding. Alanine substitutions at Glu12, Asp15, Phe19, Leu53, and Glu57 analogues resulted in significant (>2-fold) decreases in affinity for both the IGF-1R and IR. Furthermore, taking a novel approach using a monomeric, single-chain minimized IGF-1R we have defined a distinct second binding surface formed by Glu12, Phe19, Leu53, and Glu57 that potentially engages the IGF-1R at one or more of the FnIII domains. PMID:19139090

  16. The genomic structure of the gene encoding the human transforming growth factor {beta} type II receptor (TGF-{beta} RII)

    SciTech Connect

    Takenoshita, Seiichi; Hagiwara, Koichi; Nagashima, Makoto; Gemma, Akihiko

    1996-09-01

    The genomic structure of the human transforming growth factor-{beta} type II receptor gene (TGF-{beta} RII) was determined by two PCR-based methods, the {open_quotes}long distance sequencer{close_quotes} method and the {open_quotes}promoter finder{close_quotes} method. Genomic fragments containing exons and adjacent introns were amplified by PCR, and the nucleotide sequences were determined by direct sequencing and subcloning sequencing. The TGF-{beta} RII protein is encoded by 567 codons in 7 exons. This is the first report about the genomic structure of a gene that belongs to the serine/threonine kinase type II receptor subfamily. Knowledge of the genomic structure of the TGF-{beta} RII gene will facilitate investigation of the TGF-{beta} RII gene will facilitate investigation of the TGF-{beta} signaling pathway in normal human cells and of the aberrations occurring during carcinogenesis. 18 refs., 2 figs., 1 tab.

  17. Insulin-like Growth Factor-II (IGF-II) and IGF-II Analogs with Enhanced Insulin Receptor-a Binding Affinity Promote Neural Stem Cell Expansion*

    PubMed Central

    Ziegler, Amber N.; Chidambaram, Shravanthi; Forbes, Briony E.; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    The objective of this study was to employ genetically engineered IGF-II analogs to establish which receptor(s) mediate the stemness promoting actions of IGF-II on mouse subventricular zone neural precursors. Neural precursors from the subventricular zone were propagated in vitro in culture medium supplemented with IGF-II analogs. Cell growth and identity were analyzed using sphere generation and further analyzed by flow cytometry. F19A, an analog of IGF-II that does not bind the IGF-2R, stimulated an increase in the proportion of neural stem cells (NSCs) while decreasing the proportion of the later stage progenitors at a lower concentration than IGF-II. V43M, which binds to the IGF-2R with high affinity but which has low binding affinity to the IGF-1R and to the A isoform of the insulin receptor (IR-A) failed to promote NSC growth. The positive effects of F19A on NSC growth were unaltered by the addition of a functional blocking antibody to the IGF-1R. Altogether, these data lead to the conclusion that IGF-II promotes stemness of NSCs via the IR-A and not through activation of either the IGF-1R or the IGF-2R. PMID:24398690

  18. Tumor necrosis factor receptor-associated protein 1 improves hypoxia-impaired energy production in cardiomyocytes through increasing activity of cytochrome c oxidase subunit II.

    PubMed

    Xiang, Fei; Ma, Si-Yuan; Zhang, Dong-Xia; Zhang, Qiong; Huang, Yue-Sheng

    2016-10-01

    Tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes against hypoxia, but the underlying mechanisms are not completely understood. In the present study, we used gain- and loss-of-function approaches to explore the effects of tumor necrosis factor receptor-associated protein 1 and cytochrome c oxidase subunit II on energy production in hypoxic cardiomyocytes. Hypoxia repressed ATP production in cultured cardiomyocytes, whereas overexpression of tumor necrosis factor receptor-associated protein 1 significantly improved ATP production. Conversely, knockdown of tumor necrosis factor receptor-associated protein 1 facilitated the hypoxia-induced decrease in ATP synthesis. Further investigation revealed that tumor necrosis factor receptor-associated protein 1 induced the expression and activity of cytochrome c oxidase subunit II, a component of cytochrome c oxidase that is important in mitochondrial respiratory chain function. Moreover, lentiviral-mediated overexpression of cytochrome c oxidase subunit II antagonized the decrease in ATP synthesis caused by knockdown of tumor necrosis factor receptor-associated protein 1, whereas knockdown of cytochrome c oxidase subunit II attenuated the increase in ATP synthesis caused by overexpression of tumor necrosis factor receptor-associated protein 1. In addition, inhibition of cytochrome c oxidase subunit II by a specific inhibitor sodium azide suppressed the ATP sy nthesis induced by overexpressed tumor necrosis factor receptor-associated protein 1. Hence, tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes from hypoxia at least partly via potentiation of energy generation, and cytochrome c oxidase subunit II is one of the downstream effectors that mediates the tumor necrosis factor receptor-associated protein 1-mediated energy generation program.

  19. Factor II deficiency

    MedlinePlus

    ... if one or more of these factors are missing or are not functioning like they should. Factor II is one such coagulation factor. Factor II deficiency runs in families (inherited) and is very rare. Both parents must ...

  20. Inhibition of insulin-like growth factor II (IGF-II)-dependent cell growth by multidentate pentamannosyl 6-phosphate-based ligands targeting the mannose 6-phosphate/IGF-II receptor

    PubMed Central

    Grosely, Rosslyn; MacDonald, Richard G.

    2016-01-01

    The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) binds M6P-capped ligands and IGF-II at different binding sites within the ectodomain and mediates ligand internalization and trafficking to the lysosome. Multivalent M6P-based ligands can cross-bridge the M6P/IGF2R, which increases the rate of receptor internalization, permitting IGF-II binding as a passenger ligand and subsequent trafficking to the lysosome, where the IGF-II is degraded. This unique feature of the receptor may be exploited to design novel therapeutic agents against IGF-II-dependent cancers that will lead to decreased bioavailable IGF-II within the tumor microenvironment. We have designed a panel of M6P-based ligands that bind to the M6P/IGF2R with high affinity in a bivalent manner and cause decreased cell viability. We present evidence that our ligands bind through the M6P-binding sites of the receptor and facilitate internalization and degradation of IGF-II from conditioned medium to mediate this cellular response. To our knowledge, this is the first panel of synthetic bivalent ligands for the M6P/IGF2R that can take advantage of the ligand-receptor interactions of the M6P/IGF2R to provide proof-of-principle evidence for the feasibility of novel chemotherapeutic agents that decrease IGF-II-dependent growth of cancer cells. PMID:27694692

  1. Tumor necrosis factor-α inhibits angiotensin II receptor type 1 expression in dorsal root ganglion neurons via β-catenin signaling.

    PubMed

    Yang, Y; Wu, H; Yan, J-Q; Song, Z-B; Guo, Q-L

    2013-09-17

    Both tumor necrosis factor (TNF)-α and the angiotensin (Ang) II/angiotensin II receptor type 1 (AT1) axis play important roles in neuropathic pain and nociception. In the present study, we explored the interaction between the two systems by examining the mutual effects between TNF-α and the Ang II/AT1 receptor axis in dorsal root ganglion (DRG) neurons. Rat DRG neurons were treated with TNF-α in different concentrations for different lengths of time in the presence or absence of transcription inhibitor actinomycin D, TNF receptor 1 (TNFR1) inhibitor SPD304, β-catenin signaling inhibitor CCT031374, or different kinase inhibitors. TNF-α decreased the AT1 receptor mRNA level as well as the AT1a receptor promoter activity in a dose-dependent manner within 30 h, which led to dose-dependent inhibition of Ang II-binding AT1 receptor level on the cell membrane. Actinomycin D (1 mg/ml), SPD304 (50 μM), p38 mitogen-activated protein kinase (MAPK) inhibitor PD169316 (25 μM), and CCT031374 (50 μM) completely abolished the inhibitory effect of TNF-α on AT1 receptor expression. TNF-α dose-dependently increased soluble β-catenin and phosphorylated GSK-3β levels, which was blocked by SPD304 and PD169316. In DRG neurons treated with AT2 receptor agonist CGP421140, or Ang II with or without AT1 receptor antagonist losartan or AT2 receptor antagonist PD123319 for 30 h, we found that Ang II and Ang II+PD123319 significantly decreased TNF-α expression, whereas CPG421140 and Ang II+losartan increased TNF-α expression. In conclusion, we demonstrate that TNF-α inhibits AT1 receptor expression at the transcription level via TNFR1 in rat DRG neurons by increasing the soluble β-catenin level through the p38 MAPK/GSK-3β pathway. In addition, Ang II appears to inhibit and induce TNF-α expression via the AT1 receptor and the AT2 receptor in DRG neurons, respectively. This is the first evidence of crosstalk between TNF-α and the Ang II/AT receptor axis in DRG neurons.

  2. Serum factors alter the extent of dephosphorylation of ligands endocytosed via the mannose 6-phosphate/insulin-like growth factor II receptor

    PubMed Central

    1989-01-01

    Mouse L-cells that contain the cation-independent (CI) mannose 6- phosphate (Man 6-P)/insulin-like growth factor (IGF) II receptor endocytose acid hydrolases and deliver these enzymes to lysosomes. The postendocytic loss of the Man 6-P recognition marker from the cell- associated acid hydrolases was assessed by CI-Man 6-P receptor affinity chromatography. 125I-labeled acid hydrolases internalized by L-cells grown at high density were delivered to lysosomes but were not dephosphorylated. In contrast, the same 125I-labeled hydrolases internalized by L-cells maintained at low density were delivered to lysosomes and were extensively dephosphorylated. The dephosphorylation at low density required 5 h for completion suggesting that the phosphatase responsible for the dephosphorylation is located within the lysosomal compartment. Transition from the high to low density state was rapid and was not inhibited by cycloheximide. Medium substitution experiments indicated that serum factors were necessary to maintain the L-cells in the dephosphorylation-competent (low density) state, and that serum-free conditions led to a dephosphorylation-incompetent (high density) state. Addition of IGF II to cells in serum-free medium allowed acid hydrolases subsequently introduced by endocytosis to be dephosphorylated. The results indicate that the removal of the Man 6-P recognition marker from endocytosed acid hydrolases is regulated by serum factors in the growth medium, including IGF II. PMID:2549075

  3. Angiotensin II receptor heterogeneity

    SciTech Connect

    Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )

    1991-04-01

    The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.

  4. Endocytosis of receptor-bound insulin-like growth factor II is enhanced by mannose-6-phosphate in IM9 cells.

    PubMed

    Polychronakos, C; Piscina, R

    1988-10-01

    The insulin-like growth factor II (IGF-II), and glycoproteins containing mannose 6-phosphate (M6P), bind to two different sites of the same receptor molecule (Morgan et al, Nature 329:301, 1987). To study the interactions between the two ligands on their common receptor in intact cells, we examined the effect of free M6P on IGF-II binding and endocytosis in the IM9 human lymphoblastoid cell line. M6P, up to a 3 mM concentration, had no effect on the binding of IGF-II to the cell surface receptor of intact IM9 cells at 4 degrees C. By contrast, when IM9 cells were incubated with 125I-IGF-II at 37 degrees C, 1mM M6P increased cell-associated radioactivity by twofold. The increase was resistant to acid wash at 4 degrees C, and therefore assumed to represent endocytosed IGF-II. Acid-washable radioactivity was no different, confirming that, in intact cells, M6P does not affect IGF-II surface binding. In addition, preincubation of cells with M6P at 37 degrees C for up to 3 hours did not change the abundance of receptor on the cell surface, as measured by a subsequent 4 degrees C binding assay. We conclude that M6P causes a shift of IGF-II-occupied receptors form the cell surface to intracellular locations without affecting surface binding of this ligand in IM9 cells. The effect could be produced by the binding of M6P itself, or by the displacement of endogenous phosphomannosylated ligands.

  5. Endocytosis of receptor-bound insulin-like growth factor II is enhanced by mannose-6-phosphate in IM9 cells.

    PubMed

    Polychronakos, C; Piscina, R

    1988-12-01

    The insulin-like growth factor II (IGF-II), and glycoproteins containing mannose 6-phosphate (M6P), bind to two different sites of the same receptor molecule (Morgan et al, Nature 329:301, 1987). To study the interactions between the two ligands on their common receptor in intact cells, we examined the effect of free M6P on IGF-II binding and endocytosis in the IM9 human lymphoblastoid cell line. M6P, up to a 3 mM concentration, had no effect on the binding of IGF-II to the cell surface receptor of intact IM9 cells at 4 degrees C. By contrast, when IM9 cells were incubated with 125I-IGF-II at 37 degrees C, 1 mM M6P increased cell-associated radioactivity by twofold. The increase was resistant to acid wash at 4 degrees C, and therefore assumed to represent endocytosed IGF-II. Acid-washable radioactivity was no different, confirming that, in intact cells, M6P does not affect IGF-II surface binding. In addition, preincubation of cells with M6P at 37 degrees C for up to 3 hours did not change the abundance of receptor on the cell surface, as measured by a subsequent 4 degrees C binding assay. We conclude that M6P causes a shift of IGF-II-occupied receptors form the cell surface to intracellular locations without affecting surface binding of this ligand in IM9 cells. The effect could be produced by the binding of M6P itself, or by the displacement of endogenous phosphomannosylated ligands.

  6. Corticotropin-releasing factor type II (CRF-sub-2) receptors in the bed nucleus of the stria terminalis modulate conditioned defeat in Syrian hamsters (Mesocricetus auratus).

    PubMed

    Cooper, Matthew A; Huhman, Kim L

    2005-08-01

    In Syrian hamsters (Mesocricetus auratus), social defeat produces a subsequent increase in submissive and defensive behavior and a loss of normal territorial aggression, which the authors have called conditioned defeat. In this study, the authors investigated the effect of blocking corticotropin-releasing factor (CRF) Type I and Type II receptors on conditioned defeat. Intracerebroventricular infusion of the CRF-sub-2 receptor antagonist antisauvagine-30 prior to testing significantly reduced conditioned defeat compared with vehicle controls, whereas the CRF-sub-1 receptor antagonist CP-154,526 had no effect. Also, infusion of antisauvagine-30 into the bed nucleus of the stria terminalis (BNST) 15 min, but not immediately, prior to testing reduced conditioned defeat in a dose-dependent manner. The authors' results provide evidence that CRF-sub-2 receptors in the BNST, but not CRF-sub-1 receptors, are an important component in the neural circuitry regulating conditioned defeat.

  7. Transforming growth factor type beta 1 increases the expression of angiotensin II receptor type 2 by a SMAD- and p38 MAPK-dependent mechanism in skeletal muscle.

    PubMed

    Painemal, Paula; Acuña, María José; Riquelme, Cecilia; Brandan, Enrique; Cabello-Verrugio, Claudio

    2013-01-01

    Excessive deposition of extracellular matrix (ECM) proteins, a condition known as fibrosis, is a hallmark of Duchenne muscular dystrophy. Among the factors that trigger muscle fibrosis are transforming growth factor beta (TGF-β) and angiotensin II (Ang-II). Ang-II belongs to the renin-angiotensin system, and its biological effects are exerted by Ang-II receptors type 1 and type 2 (AT-1 and AT-2, respectively). This study aims to determine the effect of TGF-β1 on the expression of AT-1 and AT-2 receptor in skeletal muscle. C2 C12 myoblasts exposed to TGF-β1 showed a dose-dependent increase in AT-2 expression but with no effect on AT-1 levels. Injection of TGF-β1 in the skeletal muscle of mice increased the levels of AT-2 and ECM protein but unchanged AT-1 levels. We also detected higher expression levels of AT-2 receptor in dystrophic skeletal muscle of mdx mice than in normal mice. The induction of AT-2 was mediated by the canonical TGF-β pathway because under the inhibitory conditions of the kinase activity of TGFβ receptor I or the knockdown of Smad2/3 levels, TGF-β-induced AT-2 receptor increase was strongly inhibited. Furthermore, we demonstrated that p38MAPK activity in response to TGF-β is also required for AT-2 increase as evaluated by a p38MAPK inhibitor. Our results show that the levels of AT-2 but not AT-1 receptor are modulated by the pro-fibrotic factor TGF-β1 in myoblasts and mouse skeletal muscle. This finding suggests that AT-2 might be involved in the physiopathology of fibrosis in dystrophic skeletal muscle.

  8. Angiotensin II receptors in testes

    SciTech Connect

    Millan, M.A.; Aguilera, G.

    1988-05-01

    Receptors for angiotensin II (AII) were identified and characterized in testes of rats and several primate species. Autoradiographic analysis of the binding of 125I-labeled (Sar1,Ile8)AII to rat, rhesus monkey, cebus monkey, and human testicular slide-mounted frozen sections indicated specific binding to Leydig cells in the interstitium. In rat collagenase-dispersed interstitial cells fractionated by Percoll gradient, AII receptor content was parallel to that of hCG receptors, confirming that the AII receptors are in the Leydig cells. In rat dispersed Leydig cells, binding was specific for AII and its analogs and of high affinity (Kd, 4.8 nM), with a receptor concentration of 15 fmol/10(6) cells. Studies of AII receptors in rat testes during development reveals the presence of high receptor density in newborn rats which decreases toward the adult age (4934 +/- 309, 1460 +/- 228, 772 +/- 169, and 82 +/- 12 fmol/mg protein at 5, 15, 20, and 30 days of age, respectively) with no change in affinity. At all ages receptors were located in the interstitium, and the decrease in binding was parallel to the decrease in the interstitial to tubular ratio observed with age. AII receptor properties in membrane-rich fractions from prepuberal testes were similar in the rat and rhesus monkey. Binding was time and temperature dependent, reaching a plateau at 60 min at 37 C, and was increased by divalent cations, EGTA, and dithiothreitol up to 0.5 mM. In membranes from prepuberal monkey testes, AII receptors were specific for AII analogs and of high affinity (Kd, 4.2 nM) with a receptor concentration of 7599 +/- 1342 fmol/mg protein. The presence of AII receptors in Leydig cells in rat and primate testes in conjunction with reports of the presence of other components of the renin-angiotensin system in the testes suggests that the peptide has a physiological role in testicular function.

  9. The bovine mannose 6-phosphate/insulin-like growth factor II receptor. The role of arginine residues in mannose 6-phosphate binding.

    PubMed

    Dahms, N M; Rose, P A; Molkentin, J D; Zhang, Y; Brzycki, M A

    1993-03-15

    The extracytoplasmic region of the bovine cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF-II receptor) consists of 15 homologous repeating domains, each of which is approximately 147 residues in length. The receptor contains two high affinity mannose 6-phosphate (Man-6-P) binding sites and our recent studies (Westlund, B., Dahms, N. M., and Kornfeld, S. (1991) J. Biol. Chem. 266, 23233-23239) have localized these two binding sites to domains 1-3 and 7-11. To further define the location of the Man-6-P binding sites and to determine the role of specific arginine residues in Man-6-P binding, site-directed mutagenesis was utilized to create truncated soluble forms of the M6P/IGF-II receptor in conjunction with either conservative (Lys) or nonconservative (Ala) replacement of arginine residues. These mutants were expressed transiently in COS-1 cells and assayed for their ability to bind phosphomannosyl residues by affinity chromatography. Analysis of the ligand binding activity of carboxyl-terminal truncated forms of the receptor's extracytoplasmic region demonstrated that the second Man-6-P binding site is contained within domains 7-9. Substitution of Arg435 in domain 3 of the amino-terminal binding site and Arg1334 in domain 9 of the second binding site results in a dramatic loss of ligand binding activity. However, substitutions at positions 435 and/or 1334 did not affect the secretion, glycosylation, or immunoreactivity of these truncated proteins. Taken together, these results indicate that Arg435 and Arg1334 are essential components of the M6P/IGF-II receptor's high affinity Man-6-P binding sites.

  10. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    SciTech Connect

    Randazzo, P.A.; Jarett, L. )

    1990-09-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.

  11. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    PubMed

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt.

  12. Krüppel-like factor KLF10 regulates transforming growth factor receptor II expression and TGF-β signaling in CD8+ T lymphocytes.

    PubMed

    Papadakis, Konstantinos A; Krempski, James; Reiter, Jesse; Svingen, Phyllis; Xiong, Yuning; Sarmento, Olga F; Huseby, April; Johnson, Aaron J; Lomberk, Gwen A; Urrutia, Raul A; Faubion, William A

    2015-03-01

    KLF10 has recently elicited significant attention as a transcriptional regulator of transforming growth factor-β1 (TGF-β1) signaling in CD4(+) T cells. In the current study, we demonstrate a novel role for KLF10 in the regulation of TGF-β receptor II (TGF-βRII) expression with functional relevance in antiviral immune response. Specifically, we show that KLF10-deficient mice have an increased number of effector/memory CD8(+) T cells, display higher levels of the T helper type 1 cell-associated transcription factor T-bet, and produce more IFN-γ following in vitro stimulation. In addition, KLF10(-/-) CD8(+) T cells show enhanced proliferation in vitro and homeostatic proliferation in vivo. Freshly isolated CD8(+) T cells from the spleen of adult mice express lower levels of surface TGF-βRII (TβRII). Congruently, in vitro activation of KLF10-deficient CD8(+) T cells upregulate TGF-βRII to a lesser extent compared with wild-type (WT) CD8(+) T cells, which results in attenuated Smad2 phosphorylation following TGF-β1 stimulation compared with WT CD8(+) T cells. Moreover, we demonstrate that KLF10 directly binds to the TGF-βRII promoter in T cells, leading to enhanced gene expression. In vivo viral infection with Daniel's strain Theiler's murine encephalomyelitis virus (TMEV) also led to lower expression of TGF-βRII among viral-specific KLF10(-/-) CD8(+) T cells and a higher percentage of IFN-γ-producing CD8(+) T cells in the spleen. Collectively, our data reveal a critical role for KLF10 in the transcriptional activation of TGF-βRII in CD8(+) T cells. Thus, KLF10 regulation of TGF-βRII in this cell subset may likely play a critical role in viral and tumor immune responses for which the integrity of the TGF-β1/TGF-βRII signaling pathway is crucial.

  13. Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries.

    PubMed Central

    Jin, L.; Qian, X.; Kulig, E.; Sanno, N.; Scheithauer, B. W.; Kovacs, K.; Young, W. F.; Lloyd, R. V.

    1997-01-01

    Transforming growth factor (TGF)-beta has been implicated in the regulation of normal and neoplastic anterior pituitary cell function. TGF-beta regulates the expression of various proteins, including p27Kip1 (p27), a cell cycle inhibitory protein. We examined TGF-beta, TGF-beta type II receptor (TGF-beta-RII), and p27 expression in normal pituitaries, pituitary adenomas, and carcinomas to analyze the possible roles of these proteins in pituitary tumorigenesis. Normal pituitary, pituitary adenomas, and pituitary carcinomas all expressed TGF-beta and TGF-beta-RII immunoreactivity. Reverse transcription polymerase chain reaction analysis showed TGF-beta 1, -beta 2, and -beta 3 isoforms and TGF-beta-RII in normal pituitaries and pituitary adenomas. Pituitary adenomas cells cultured for 7 days in defined media showed a biphasic response to TGF-beta with significant inhibition of follicle-stimulating hormone secretion at higher concentrations (10(-9) mol/L) and stimulation of follicle-stimulating hormone secretion at lower concentrations (10(-13) mol/L) of TGF-beta 1 in gonadotroph adenomas. Immunohistochemical analysis for p27 protein expression showed the highest levels in nontumorous pituitaries with decreased immunoreactivity in adenomas and carcinomas. When nontumorous pituitaries and various adenomas were analyzed for p27 and specific hormone production, growth hormone, luteinizing hormone, and thyroid-stimulating hormone cells and tumors had the highest percentages of cells expressing p27, whereas adrenocorticotrophic hormone cells and tumors had the lowest percentages. Immunoblotting analysis showed that adrenocorticotrophic hormone adenomas also had the lowest levels of p27 protein. Semiquantitative reverse transcription polymerase chain reaction and Northern hybridization analysis did not show significant differences in p27 mRNA expression in the various types of adenomas or in nontumorous pituitaries. In situ hybridization for p27 mRNA showed similar

  14. Group II metabotropic glutamate receptors and schizophrenia.

    PubMed

    Moreno, José L; Sealfon, Stuart C; González-Maeso, Javier

    2009-12-01

    Schizophrenia is one of the most common mental illnesses, with hereditary and environmental factors important for its etiology. All antipsychotics have in common a high affinity for monoaminergic receptors. Whereas hallucinations and delusions usually respond to typical (haloperidol-like) and atypical (clozapine-like) monoaminergic antipsychotics, their efficacy in improving negative symptoms and cognitive deficits remains inadequate. In addition, devastating side effects are a common characteristic of monoaminergic antipsychotics. Recent biochemical, preclinical and clinical findings support group II metabotropic glutamate receptors (mGluR2 and mGluR3) as a new approach to treat schizophrenia. This paper reviews the status of general knowledge of mGluR2 and mGluR3 in the psychopharmacology, genetics and neuropathology of schizophrenia.

  15. Clinical significance of platelet-derived growth factor receptor-β gene expression in stage II/III gastric cancer with S-1 adjuvant chemotherapy

    PubMed Central

    Higuchi, Akio; Oshima, Takashi; Yoshihara, Kazue; Sakamaki, Kentaro; Aoyama, Toru; Suganuma, Nobuyasu; Yamamoto, Naoto; Sato, Tsutomu; Cho, Haruhiko; Shiozawa, Manabu; Yoshikawa, Takaki; Rino, Yasushi; Kunisaki, Chikara; Imada, Toshio; Masuda, Munetaka

    2017-01-01

    Overall survival remains unsatisfactory in stage II/III gastric cancer, even after curative surgery and adjuvant chemotherapy. Platelet-derived growth factor receptor-β (PDGFR-β) is associated with the proliferation of cancer cells. The present study therefore investigated the association of PDGFR-β gene expression with patient outcome in 134 stage II/III gastric cancer patients who received adjuvant chemotherapy with S-1. Relative PDGFR-β gene expression was measured in surgical cancer tissue and adjacent normal mucosa specimens by reverse transcription-quantitative polymerase chain reaction. The PDGFR-β gene expression levels were found to be significantly higher in the cancer tissues compared with the adjacent normal mucosa. A high level of PDGFR-β gene expression was associated with a significantly poorer 5-year overall survival rate compared with a low level of PDGFR-β expression. Upon multivariate analysis, PDGFR-β gene expression was found to be an independent predictor of survival. Overall, the study indicates that PDGFR-β overexpression in gastric cancer tissues is a useful independent predictor of outcome in patients with stage II/III gastric cancer who receive adjuvant chemotherapy with S-1.

  16. Tumor Necrosis Factor Receptor Associated Factors (TRAFs) 2 and 3 Form a Transcriptional Complex with Phosho-RNA Polymerase II and p65 in CD40 Ligand Activated Neuro2a Cells.

    PubMed

    El Hokayem, Jimmy; Brittain, George C; Nawaz, Zafar; Bethea, John R

    2017-03-01

    The tumor necrosis factor receptor-associated factors (TRAFs) have been classically described as adaptor proteins that function as solely cytosolic signaling intermediates for the TNF receptor superfamily, Toll-like receptors (TLRs), NOD, like receptors (NLRs), cytokine receptors, and others. In this study, we show for the first time that TRAFs are present within the cytoplasm and nucleus of Neuro2a cells and primary cortical neurons, and that TRAF2 and TRAF3 translocate into the nucleus within minutes of CD40L stimulation. Analysis of the transcriptional regulatory potential of TRAFs by luciferase assay revealed that each of the TRAFs differentially functions as a transcriptional activator or repressor in a cell-specific manner. Interestingly, ChIP-qPCR data demonstrate that TRAFs 2/3, p65, and pRNAPol II form part of a transcriptional complex on the Icam-1 gene promoter upon CD40L stimulation. We further determined that TRAF2 recruitment to the nucleus is critical for the ubiquitination of H2b, a transcription permissive epigenetic modification. Our findings demonstrate for the first time that TRAFs 2/3 participate in the formation of a CD40L-induced transcriptional complex in neuronal cells.

  17. Gene expression of transforming growth factor-beta 1 and its type II receptor in giant cell tumors of bone. Possible involvement in osteoclast-like cell migration.

    PubMed Central

    Zheng, M. H.; Fan, Y.; Wysocki, S. J.; Lau, A. T.; Robertson, T.; Beilharz, M.; Wood, D. J.; Papadimitriou, J. M.

    1994-01-01

    Giant cell tumor of bone (GCT) is a relatively rare skeletal neoplasm characterized by multinuclear giant cells (osteoclast-like cells) scattered in a mass of mononuclear cells. The currently favored hypothesis for the origin of cells within GCT is that the multinuclear giant cells are reactive osteoclasts, whereas the truly neoplastic cells are the major component of the mononuclear population. However, the pathological significance and the precise relationship of tumor cells and osteoclast-like cells in GCT have not been fully established. In this study, we evaluated two GCTs for the presence of transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta type II receptor gene transcripts and attempted to establish a possible role for TGF-beta 1 in the interaction between tumor cells and osteoclast-like cells. By using in situ hybridization and Northern blot analysis, we have demonstrated that TGF-beta 1 mRNA transcript is consistently detected in both tumor mononuclear cells and osteoclast-like cells, whereas TGF-beta type II receptor gene transcript is only present in osteoclast-like cells. Moreover, isolated rat osteoclasts were tested for their ability to migrate in response to GCT-conditioned medium (GCTCM) in an in vitro chemotactic assay. Our results showed that GCTCM stimulates the migration of osteoclasts in a dose-dependent manner. Interestingly, only osteoclasts containing less than three nuclei can migrate through 12-mu pore filters. Addition of monoclonal antibody against TGF-beta significantly reduced but did not abolish the chemotactic activity of GCTCM. Moreover, TGF-beta type II receptor mRNA has been demonstrated in the normal rat osteoclasts and may be involved in the chemotactic action of TGF-beta 1. We concluded that TGF-beta 1, possibly in concert with other cytokines, is involved in the recruitment of osteoclast-like cells in GCT by acting in an autocrine or paracrine fashion. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

  18. Reduced surface expression of transforming growth factor beta receptor type II in mitogen-activated T cells from Sézary patients.

    PubMed Central

    Capocasale, R J; Lamb, R J; Vonderheid, E C; Fox, F E; Rook, A H; Nowell, P C; Moore, J S

    1995-01-01

    Sézary syndrome (SzS), the leukemic form of cutaneous T-cell lymphoma, is characterized by clonal proliferation of CD4+ T cells and immune dysfunctions, raising the possibility of cytokine-related abnormalities. We previously described a decreased response to the growth-inhibitory effects of transforming growth factor type beta (TGF-beta) in SzS T cells accompanied by apparent loss of surface type II TGF-beta receptor (TGF beta RII). To specifically determine if defects exist in TGF beta RII protein expression and/or transport in SzS patients, we developed a sensitive flow cytometric method to detect TGF beta RII on the surface and intracellularly in the CD4+ T cells. Our results indicate that unlike normal CD4+ T cells, CD4+ T cells from 9 of 12 SzS patients expressed little, if any, surface TGF beta RII in response to mitogen stimulation. At the intracellular level, however, pools of TGF beta RII were comparable to those in normal CD4+ T cells. This indicates that defective trafficking of this inhibitory cytokine receptor may contribute significantly to the development of this disease. Images Fig. 2 PMID:7777538

  19. Release of Nonmuscle Myosin II from the Cytosolic Domain of Tumor Necrosis Factor Receptor 2 Is Required for Target Gene Expression

    PubMed Central

    Chandrasekharan, Unni M.; Dechert, Lisa; Davidson, Uchechukwu I.; Waitkus, Matthew; Mavrakis, Lori; Lyons, Katherine; Beach, Jordan R.; Li, Xiaoxia; Egelhoff, Thomas T.; Fox, Paul L.; DiCorleto, Paul E.

    2013-01-01

    Tumor necrosis factor α (TNF-α) elicits its biological activities through activation of TNF receptor 1 (TNFR1, also known as p55) and TNFR2 (also known as p75). The activities of both receptors are required for the TNF-α–induced proinflammatory response. The adaptor protein TNFR-associated factor 2 (TRAF2) is critical for either p55- or p75-mediated activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, as well as for target gene expression. Here, we identified nonmuscle myosin II (myosin) as a binding partner of p75. TNF-α–dependent signaling by p75 and induction of target gene expression persisted for substantially longer in cells deficient in myosin regulatory light chain (MRLC, a component of myosin) than in cells replete in myosin. In resting endothelial cells, myosin was bound constitutively to the intracellular region of p75, a region that overlaps with the TRAF2-binding domain, and TNF-α caused the rapid dissociation of myosin from p75. At early time points after exposure to TNF-α, p75 activated Rho-associated kinase 1 (ROCK1). Inhibition of ROCK1 activity blocked TNF-α–dependent phosphorylation of MRLC and the dissociation of myosin from p75. ROCK1-dependent release of myosin was necessary for the TNF-α–dependent recruitment of TRAF2 to p75 and for p75-specific activation of NF-κB and MAPK signaling. Thus, our findings have revealed a previously uncharacterized, noncanonical regulatory function of myosin in cytokine signaling. PMID:23861542

  20. Differential regulation of Smad3 and of the type II transforming growth factorreceptor in mitosis: implications for signaling.

    PubMed

    Hirschhorn, Tal; Barizilay, Lior; Smorodinsky, Nechama I; Ehrlich, Marcelo

    2012-01-01

    The response to transforming growth factor-β (TGF-β) depends on cellular context. This context is changed in mitosis through selective inhibition of vesicle trafficking, reduction in cell volume and the activation of mitotic kinases. We hypothesized that these alterations in cell context may induce a differential regulation of Smads and TGF-β receptors. We tested this hypothesis in mesenchymal-like ovarian cancer cells, arrested (or not) in mitosis with 2-methoxyestradiol (2ME2). In mitosis, without TGF-β stimulation, Smad3 was phosphorylated at the C-terminus and linker regions and localized to the mitotic spindle. Phosphorylated Smad3 interacted with the negative regulators of Smad signaling, Smurf2 and Ski, and failed to induce a transcriptional response. Moreover, in cells arrested in mitosis, Smad3 levels were progressively reduced. These phosphorylations and reduction in the levels of Smad3 depended on ERK activation and Mps1 kinase activity, and were abrogated by increasing the volume of cells arrested in mitosis with hypotonic medium. Furthermore, an Mps1-dependent phosphorylation of GFP-Smad3 was also observed upon its over-expression in interphase cells, suggesting a mechanism of negative regulation which counters increases in Smad3 concentration. Arrest in mitosis also induced a block in the clathrin-mediated endocytosis of the type II TGF-β receptor (TβRII). Moreover, following the stimulation of mitotic cells with TGF-β, the proteasome-mediated attenuation of TGF-β receptor activity, the degradation and clearance of TβRII from the plasma membrane, and the clearance of the TGF-β ligand from the medium were compromised, and the C-terminus phosphorylation of Smad3 was prolonged. We propose that the reduction in Smad3 levels, its linker phosphorylation, and its association with negative regulators (observed in mitosis prior to ligand stimulation) represent a signal attenuating mechanism. This mechanism is balanced by the retention of active TGF

  1. Comparison of drug and cell-based delivery: engineered adult mesenchymal stem cells expressing soluble tumor necrosis factor receptor II prevent arthritis in mouse and rat animal models.

    PubMed

    Liu, Linda N; Wang, Gang; Hendricks, Kyle; Lee, Keunmyoung; Bohnlein, Ernst; Junker, Uwe; Mosca, Joseph D

    2013-05-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with unknown etiology where tumor necrosis factor-α (TNFα) plays a critical role. Etanercept, a recombinant fusion protein of human soluble tumor necrosis factor receptor II (hsTNFR) linked to the Fc portion of human IgG1, is used to treat RA based on the rationale that sTNFR binds TNFα and blocks TNFα-mediated inflammation. We compared hsTNFR protein delivery from genetically engineered human mesenchymal stem cells (hMSCs) with etanercept. Blocking TNFα-dependent intercellular adhesion molecule-1 expression on transduced hMSCs and inhibition of nitric oxide production from TNFα-treated bovine chondrocytes by conditioned culture media from transduced hMSCs demonstrated the functionality of the hsTNFR construction. Implanted hsTNFR-transduced mesenchymal stem cells (MSCs) reduced mouse serum circulating TNFα generated from either implanted TNFα-expressing cells or lipopolysaccharide induction more effectively than etanercept (TNFα, 100%; interleukin [IL]-1α, 90%; and IL-6, 60% within 6 hours), suggesting faster clearance of the soluble tumor necrosis factor receptor (sTNFR)-TNFα complex from the animals. In vivo efficacy of sTNFR-transduced MSCs was illustrated in two (immune-deficient and immune-competent) arthritic rodent models. In the antibody-induced arthritis BalbC/SCID mouse model, intramuscular injection of hsTNFR-transduced hMSCs reduced joint inflammation by 90% compared with untransduced hMSCs; in the collagen-induced arthritis Fischer rat model, both sTNFR-transduced rat MSCs and etanercept inhibited joint inflammation by 30%. In vitro chondrogenesis assays showed the ability of TNFα and IL1α, but not interferon γ, to inhibit hMSC differentiation to chondrocytes, illustrating an additional negative role for inflammatory cytokines in joint repair. The data support the utility of hMSCs as therapeutic gene delivery vehicles and their potential to be used in alleviating inflammation

  2. De-ubiquitinating enzyme, USP11, promotes transforming growth factor β-1 signaling through stabilization of transforming growth factor β receptor II

    PubMed Central

    Jacko, A M; Nan, L; Li, S; Tan, J; Zhao, J; Kass, D J; Zhao, Y

    2016-01-01

    The transforming growth factor β-1 (TGFβ-1) signaling pathway plays a central role in the pathogenesis of pulmonary fibrosis. Two TGFβ-1 receptors, TβRI and TβRII, mediate this pathway. TβRI protein stability, as mediated by the ubiquitin/de-ubiquitination system, has been well studied; however, the molecular regulation of TβRII still remains unclear. Here we reveal that a de-ubiquitinating enzyme, USP11, promotes TGFβ-1 signaling through de-ubiquitination and stabilization of TβRII. We elucidate the role that mitoxantrone (MTX), an USP11 inhibitor, has in the attenuation of TGFβ-1 signaling. Inhibition or downregulation of USP11 results in increases in TβRII ubiquitination and reduction of TβRII stability. Subsequently, TGFβ-1 signaling is greatly attenuated, as shown by the decreases in phosphorylation of SMAD2/3 levels as well as that of fibronectin (FN) and smooth muscle actin (SMA). Overexpression of USP11 reduces TβRII ubiquitination and increases TβRII stabilization, thereby elevating phosphorylation of SMAD2/3 and the ultimate expression of FN and SMA. Further, elevated expression of USP11 and TβRII were detected in lung tissues from bleomycin-challenged mice and IPF patients. Therefore, USP11 may contribute to the pathogenesis of pulmonary fibrosis by stabilization of TβRII and promotion of TGFβ-1 signaling. This study provides mechanistic evidence for development of USP11 inhibitors as potential antifibrotic drugs for pulmonary fibrosis. PMID:27853171

  3. Angiotensin II receptors in the gonads

    SciTech Connect

    Aguilera, G.; Millan, M.A.; Harwood, J.P.

    1989-05-01

    The presence of components of the renin-angiotensin system in ovaries and testes suggests that angiotensin II (AII) is involved in gonadal function, and thus we sought to characterize receptors for AII in rat and primate gonads. In the testes, autoradiographic studies showed receptors in the interstitium in all species. In rat interstitial cells fractionated by Percoll gradient, AII receptors coincided with hCG receptors indicating that AII receptors are located on the Leydig cells. In Leydig cells and membranes from rat and rhesus monkey prepuberal testes, AII receptors were specific for AII analogues and of high affinity (Kd=nM). During development, AII receptor content in rat testes decreases with age parallel to a fall in the ratio of interstitial to tubular tissue. In the ovary, the distribution of AII receptors was dependent on the stage of development, being high in the germinal epithelium and stromal tissue between five and 15 days, and becoming localized in secondary follicles in 20-and 40-day-old rats. No binding was found in primordial or primary follicles. In rhesus monkey ovary, AII receptors were higher in stromal tissue and lower in granulosa and luteal cells of the follicles. Characterization of the binding in rat and monkey ovarian membranes showed a single class of sites with a Kd in the nmol/L range and specificity similar to that of the adrenal glomerulosa and testicular AII receptors. Receptors for AII were also present in membrane fractions from PMSG/hCG primed rat ovaries. Infusion of AII (25 ng/min) or captopril (1.4 micrograms/min) during the PMSG/hCG induction period had no effect on ovarian weight or AII receptor concentration in the ovaries.

  4. Characterization of the Igf-II Binding Site of the IGF-II/MAN-6-P Receptor Extracellular Domain.

    NASA Astrophysics Data System (ADS)

    Garmroudi, Farideh

    1995-01-01

    In mammals, insulin-like growth factor II (IGF -II) and glycoproteins bearing the mannose 6-phosphate (Man -6-P) recognition marker bind with high affinity to the same receptor. The functional consequences of IGF-II binding to the receptor at the cell surface are not clear. In these studies, we sought to broaden our understanding of the functional regions of the receptor regarding its IGF -II binding site. The IGF-II binding/cross-linking domain of the IGF-II/Man-6-P receptor was mapped by sequencing receptor fragments covalently attached to IGF-II. Purified rat placental or bovine liver receptors were affinity-labeled, with ^{125}I-IGF-II and digested with endoproteinase Glu-C. Analysis of digests by gel electrophoresis revealed a major radiolabeled band of 18 kDa, which was purified by gel filtration chromatography followed by reverse-phase HPLC and electroblotting. Sequence analysis revealed that, the peptide S(H)VNSXPMF, located within extracellular repeat 10 and beginning with serine 1488 of the bovine receptor, was the best candidate for the IGF-II cross-linked peptide. These data indicated that residues within repeats 10-11 were important for IGF -II binding. To define the location of the IGF-II binding site further, a nested set of six human receptor cDNA constructs was designed to produce epitope-tagged fusion proteins encompassing the region between repeats 8 and 11 of the human IGF-II/Man-6-P receptor extracellular domain. These truncated receptors were transiently expressed in COS-7 cells, immunoprecipitated and analyzed for their abilities to bind and cross-link to IGF-II. All of the constructs were capable of binding/cross-linking to IGF-II, except for the 9.0-11 construct. Displacement curve analysis indicated that the truncated receptors were approximately equivalent in IGF-II binding affinity, but were of 5- to 10-fold lower affinity than full-length receptors. Sequencing of the 9.0-11 construct indicated the presence of a point mutation

  5. Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension.

    PubMed

    Van Kempen, T A; Dodos, M; Woods, C; Marques-Lopes, J; Justice, N J; Iadecola, C; Pickel, V M; Glass, M J; Milner, T A

    2015-10-29

    There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate plasticity in corticotropin-releasing factor (CRF)-receptive neurons in brain cardiovascular regulatory areas, including the rostral ventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), is not understood. In the present study, we used dual-label immuno-electron microscopy to analyze sex differences in slow-pressor angiotensin II (AngII) hypertension with respect to the subcellular distribution of the obligatory NMDA glutamate receptor subunit 1 (GluN1) subunit of the N-methyl-D-aspartate receptor (NMDAR) in the RVLM and PVN. Studies were conducted in mice expressing the enhanced green fluorescence protein (EGFP) under the control of the CRF type 1 receptor (CRF1) promoter (i.e., CRF1-EGFP reporter mice). By light microscopy, GluN1-immunoreactivity (ir) was found in CRF1-EGFP neurons of the RVLM and PVN. Moreover, in both regions tyrosine hydroxylase (TH) was found in CRF1-EGFP neurons. In response to AngII, male mice showed an elevation in blood pressure that was associated with an increase in the proportion of GluN1 on presumably functional areas of the plasma membrane (PM) in CRF1-EGFP dendritic profiles in the RVLM. In female mice, AngII was neither associated with an increase in blood pressure nor an increase in PM GluN1 in the RVLM. Unlike the RVLM, AngII-mediated hypertension had no effect on GluN1 localization in CRF1-EGFP dendrites in the PVN of either male or female mice. These studies provide an anatomical mechanism for sex-differences in the convergent modulation of RVLM catecholaminergic neurons by CRF and glutamate. Moreover, these results suggest that sexual dimorphism in

  6. [Angiotensin II receptor antagonists: different or equivalent?].

    PubMed

    Mounier-Vehier, C; Devos, P

    ARA-II: Angiotensin II receptor antagonists (ARA-II) belong to a recent class of antihypertensive drugs whose mechanism of action is similar to converting enzyme inhibitors (CEI). ARA-II are particularly interesting due to the excellent clinical and biological tolerance, similar to placebo, and their antihypertensive efficacy, comparable with classical drug classes. PUBLISHED TRIALS: A meta-analysis, published by Conlin in the American Journal of Hypertension, suggests that ARA-II, specifically losartan, valsartan, irbesartan and candesartan, have an equipotent blood pressure lowering effect. The careful lecture of this meta-analysis however discloses a faulty methodology from which no valid conclusion can be drawn. Since this early publication, several other comparative studies have been published. These multicentric, randomized double-blind studies enrolled a sufficient number of patients and demonstrated a clinical difference between certain ARA-II at usual dosages. CLINICAL PRACTICE: These studies do have an impact on everyday practice. For the practitioner, the goal is to obtain and then maintain a long-term and optimal reduction in the blood pressure level (reduction or prevention of target-organ disorders and cardiovascular complications of high blood pressure). This reduction in the cardiovascular risk will also depend directly on tolerance and compliance to the antihypertensive treatment. This element must also be considered in assessing treatment efficacy, independent of the blood pressure lowering effect. The results of several other studies will be published in 2001-2003. These large-scale studies on ARA-II related morbidity and mortality will be most useful in determining the role of these drugs in different therapeutic strategies compared with other drug classes.

  7. Evidence for selective expression of angiotensin II receptors on atretic follicles in the rat ovary: an autoradiographic study

    SciTech Connect

    Daud, A.I.; Bumpus, F.M.; Husain, A.

    1988-06-01

    Ovarian angiotensin II (Ang II) receptors display a cyclical pattern of variation during the rat estrous cycle. Ang II receptors, estimated by the specific binding of the Ang II receptor antagonist (/sup 125/I)iodo-(Sar1,Ile8) Ang II to ovarian membranes, were lowest at estrus (binding site density (Bmax) = 35 +/- 2 fmol/mg; binding site affinity (KD) = 2.0 +/- 0.2 nM) and highest at diestrus I (Bmax = 59 +/- 3 fmol/mg; KD = 1.6 +/- 0.1 nM). We have previously shown that Ang II receptors in the rat ovary predominantly exist on the granulosa cell layer of a subpopulation of follicles. Our present studies show that the Ang II receptor-containing follicles in the rat ovary are mainly atretic (approximately 80%) or show signs of early atresia (approximately 15%) during all stages of the estrous cycle. A small number of Ang II receptor-containing follicles were healthy (approximately 5%). In contrast to the Ang II receptor-containing follicles, the FSH receptor-containing follicles were predominantly healthy (greater than 90%). Follicles which contained both Ang II receptors and FSH receptors were mainly early atretic. Since Ang II receptor-containing follicles in the rat ovary were mainly atretic these studies suggest that in the rat Ang II may be a major factor in regulating the function of atretic ovarian follicles.

  8. Identification of angiotensin II receptor subtypes

    SciTech Connect

    Chiu, A.T.; Herblin, W.F.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L.; )

    1989-11-30

    We have demonstrated the existence of two distinct subtypes of the angiotensin II receptor in the rat adrenal gland using radioligand binding and tissue section autoradiography. The identification of the subtypes was made possible by the discovery of two structurally dissimilar, nonpeptide compounds, DuP 753 and EXP655, that show reciprocal selectivity for the two subtypes. In the rat adrenal cortex, DuP 753 inhibited 80% of the total AII binding with an IC50 value on the sensitive sites of 2 x 10(-8) M, while EXP655 displaced only 20%. In the rat adrenal medulla, EXP655 gave 90% inhibition of AII binding with an IC50 value of 3.0 x 10(-8) M, while DuP 753 was essentially inactive. The combination of the two compounds completely inhibited AII binding in both tissues.

  9. Unexpected binding of an octapeptide to the angiotensin II receptor

    SciTech Connect

    Soffer, R.L.; Bandyopadhyay, S.; Rosenberg, E.; Hoeprich, P.; Teitelbaum, A.; Brunck, T.; Colby, C.B.; Gloff, C.

    1987-12-01

    An octapeptide, TBI-22 (Lys-Gly-Val-Tyr-Ile, His-Ala-Leu), inhibited binding of angiotensin II by a solubilized angiotensin receptor partially purified from rabbit liver. This inhibition appears to result from competition for binding to the same receptor. Radioiodinated TBI-22, like angiotensin II, bound to the solubilized receptor with an affinity such that the binding was inhibited 50% by unlabeled TBI-22 or angiotensin II at nanomolar concentrations. The binding reaction, like that for angiotensin II, required p-chloromercuriphenylsulfonic acid and was reversed in the presence of dithiothreitol. TBI-22 and angiotensin II share the sequence Val-Tyr-Ile-His; this tetrapeptide alone, however, did not inhibit binding of angiotensin II. Replacement of the tyrosine residue by aspartic acid in TBI-22 greatly reduced the ability of the peptide to compete with angiotensin II for binding, suggesting an important contribution of this residue to the configuration required for recognition by the receptor.

  10. Attenuation of corneal myofibroblast development through nanoparticle-mediated soluble transforming growth factor-β type II receptor (sTGFβRII) gene transfer

    PubMed Central

    Sharma, Ajay; Rodier, Jason T.; Tandon, Ashish; Klibanov, Alexander M.

    2012-01-01

    Purpose To explore (i) the potential of polyethylenimine (PEI)-DNA nanoparticles as a vector for delivering genes into human corneal fibroblasts, and (ii) whether the nanoparticle-mediated soluble extracellular domain of the transforming growth factor–β type II receptor (sTGFβRII) gene therapy could be used to reduce myofibroblasts and fibrosis in the cornea using an in vitro model. Methods PEI-DNA nanoparticles were prepared at a nitrogen-to-phosphate ratio of 30 by mixing linear PEI and a plasmid encoding sTGFβRII conjugated to the fragment crystallizable (Fc) portion of human immunoglobulin. The PEI-DNA polyplex formation was confirmed through gel retardation assay. Human corneal fibroblasts (HCFs) were generated from donor corneas; myofibroblasts and fibrosis were induced with TGFβ1 (1 ng/ml) stimulation employing serum-free conditions. The sTGFβRII conjugated to the Fc portion of human immunoglobulin gene was introduced into HCF using either PEI-DNA nanoparticles or Lipofectamine. Suitable negative and positive controls to compare selected nanoparticle and therapeutic gene efficiency were included. Delivered gene copies and mRNA (mRNA) expression were quantified with real-time quantitative PCR (qPCR) and protein with enzyme-linked immunosorbent assay (ELISA). The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (SMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Cytotoxicity was determined using cellular viability, proliferation, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results PEI readily bound to plasmids to form nanoparticular polyplexes and exhibited much greater transfection efficiency (p<0.01) than the commercial reagent Lipofectamine. The PEI-DNA-treated cultures showed 4.5×104 plasmid copies/µg DNA in real-time qPCR and 7,030±87 pg/ml sTGFβRII protein in ELISA analyses, whereas Lipofectamine-transfected cultures demonstrated 1.9

  11. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  12. Interaction of the glucocorticoid receptor and the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII): implications for the actions of glucocorticoids on glucose, lipoprotein, and xenobiotic metabolism.

    PubMed

    De Martino, Massimo U; Alesci, Salvatore; Chrousos, George P; Kino, Tomoshige

    2004-06-01

    Glucocorticoids exert their extremely diverse effects on numerous biologic activities of humans via only one protein module, the glucocorticoid receptor (GR). The GR binds to the glucocorticoid response elements located in the promoter region of target genes and regulates their transcriptional activity. In addition, GR associates with other transcription factors through direct protein-protein interactions and mutually represses or stimulates each other's transcriptional activities. The latter activity of GR may be more important than the former one, granted that mice harboring a mutant GR, which is active in terms of protein-protein interactions but inactive in terms of transactivation via DNA, survive and procreate, in contrast to mice with a deletion of the entire GR gene that die immediately after birth. We recently found that GR physically interacts with the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), which plays a critical role in the metabolism of glucose, cholesterol, and xenobiotics, as well as in the development of the central nervous system in fetus. GR stimulates COUP-TFII-induced transactivation by attracting cofactors via its activation function-1, while COUP-TFII represses the GR-governed transcriptional activity by tethering corepressors, such as the silencing mediator for retinoid and thyroid hormone receptors (SMRT) and the nuclear receptor corepressors (NCoRs) via its C-terminal domain. Their mutual interaction may play an important role in gluconeogenesis, lipoprotein metabolism, and enzymatic clearance of clinically important compounds and bioactive chemicals, by regulating their rate-limiting enzymes and molecules, including the phosphoenolpyruvate carboxykinase (PEPCK), the cytochrome P450 CYP3A and CYP7A, and several apolipoproteins. It appears that glucocorticoids exert their intermediary effects partly via physical interaction with COUP-TFII.

  13. Cardiac angiotensin II type I and type II receptors are increased in rats submitted to experimental hypothyroidism

    PubMed Central

    Carneiro-Ramos, M S; Diniz, G P; Almeida, J; Vieira, R L P; Pinheiro, S V B; Santos, R A; Barreto-Chaves, M L M

    2007-01-01

    This study assessed the behaviour of angiotensin II (Ang II) receptors in an experimental hypothyroidism model in male Wistar rats. Animals were subjected to thyroidectomy and resting for 14 days. The alteration of cardiac mass was evaluated by total heart weight (HW), right ventricle weight (RVW), left ventricle weight (LVW), ratio of HW, RVW and LVW to body weight (BW) and atrial natriuretic factor (ANF) expression. Cardiac and plasma Ang II levels and serum T3 and T4 were determined. The mRNA and protein levels of Ang II receptors were investigated by RT-PCR and Western blotting, respectively. Functional analyses were performed using binding assays. T3 and T4 levels and the haemodynamic parameters confirmed the hypothyroid state. HW/BW, RVW/BW and LVW/BW ratios and the ANF expression were lower than those of control animals. No change was observed in cardiac or plasma Ang II levels. Both AT1/AT2 mRNA and protein levels were increased in the heart of hypothyroid animals due to a significant increase of these receptors in the RV. Experiments performed in cardiomyocytes showed a direct effect promoted by low thyroid hormone levels upon AT1 and AT2 receptors, discarding possible influence of haemodynamic parameters. Functional assays showed that both receptors are able to bind Ang II. Herein, we have identified, for the first time, a close and direct relation of elevated Ang II receptor levels in hypothyroidism. Whether the increase in these receptors in hypothyroidism is an alternative mechanism to compensate the atrophic state of heart or whether it may represent a potential means to the progression of heart failure remains unknown. PMID:17540701

  14. Myometrial angiotensin II receptor subtypes change during ovine pregnancy.

    PubMed Central

    Cox, B E; Ipson, M A; Shaul, P W; Kamm, K E; Rosenfeld, C R

    1993-01-01

    Although regulation of angiotensin II receptor (AT) binding in vascular and uterine smooth muscle is similar in nonpregnant animals, studies suggest it may differ during pregnancy. We, therefore, examined binding characteristics of myometrial AT receptors in nulliparous (n = 7), pregnant (n = 24, 110-139 d of gestation), and postpartum (n = 21, 5 to > or = 130 d) sheep and compared this to vascular receptor binding. We also determined if changes in myometrial binding reflect alterations in receptor subtype. By using plasma membrane preparations from myometrium and medial layer of abdominal aorta, we determined receptor density and affinity employing radioligand binding; myometrial AT receptor subtypes were assessed by inhibiting [125I]-ANG II binding with subtype-specific antagonists. Compared to nulliparous ewes, myometrial AT receptor density fell approximately 90% during pregnancy (1,486 +/- 167 vs. 130 +/- 16 fmol/mg protein) and returned to nulliparous values > or = 4 wk postpartum; vascular binding was unchanged. Nulliparous myometrium expressed predominantly AT2 receptors (AT1/AT2 congruent to 15%/85%), whereas AT1 receptors predominated during pregnancy (AT1/AT2 congruent to 80%/20%). By 5 d postpartum AT1/AT2 congruent to 40%/60%, and > 4 wk postpartum AT2 receptors again predominated (AT1/AT2 congruent to 15%/85%). In studies of ANG II-induced force generation, myometrium from pregnant ewes (n = 10) demonstrated dose-dependent increases in force (P < 0.001), which were inhibited with an AT1 receptor antagonist. Postpartum myometrial responses were less at doses > or = 10(-9) M (P < 0.05) and unaffected by AT2 receptor antagonists. Vascular and myometrial AT receptor binding are differentially regulated during ovine pregnancy, the latter primarily reflecting decreases in AT2 receptor expression. This is the first description of reversible changes in AT receptor subtype in adult mammals. PMID:8227339

  15. Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair.

    PubMed Central

    Gold, L. I.; Sung, J. J.; Siebert, J. W.; Longaker, M. T.

    1997-01-01

    Transforming growth factor (TGF)-beta isoforms (TGF-beta 1, -beta 2, and -beta 3) regulate cell growth and differentiation and have critical regulatory roles in the process of tissue repair and remodeling. Signal transduction for TGF-beta function is transmitted by a heteromeric complex of receptors consisting of two serine/threonine kinase transmembrane proteins (RI and RII). We have previously shown that each TGF-beta isoform is widely expressed in a distinct spatial and temporal pattern throughout the processes of excisional and incisional wound repair. As the presence of TGF-beta receptors determines cellular responsiveness, we have currently examined, by immunohistochemistry, the localization of RI (ALK-1, ALK-5) and RII throughout repair of full-thickness excisional wounds up to 21 days after wounding. The expression of RI (ALK-5) and RII co-localized in both the unwounded and wounded skin and was present in the same cell types as TGF-beta ligands. However, immunoreactivity for TGF-beta receptors, throughout repair, occurred 1 to 5 days later than TGF-beta isoform immunostaining. This implies that the presence of TGF-beta ligands may up-regulate TGF-beta receptors for function and/or may reflect a lag due to local processing of latent TGF-beta. As observed for the immunohistochemical localization of TGF-beta isoforms in unwounded skin, RI and RII were expressed throughout the four layers of the epidermis, showing a wavy pattern of slight to moderate immunostaining, and hair follicles, sweat glands, and sebaceous glands were moderately immunoreactive. The extracellular matrix, fibroblasts, and blood vessels in the dermis were not immunoreactive. After injury, as observed for TGF-beta ligands, RI and RII expression was increased in the epidermis adjacent to the wound and the epithelium migrating over the wound was completely devoid of TGF-beta receptor immunoreactivity until re-epithelialization was completed by day 7 after wounding. The dermis was only

  16. TAF4, a subunit of transcription factor II D, directs promoter occupancy of nuclear receptor HNF4A during post-natal hepatocyte differentiation.

    PubMed

    Alpern, Daniil; Langer, Diana; Ballester, Benoit; Le Gras, Stephanie; Romier, Christophe; Mengus, Gabrielle; Davidson, Irwin

    2014-09-10

    The functions of the TAF subunits of mammalian TFIID in physiological processes remain poorly characterised. In this study, we describe a novel function of TAFs in directing genomic occupancy of a transcriptional activator. Using liver-specific inactivation in mice, we show that the TAF4 subunit of TFIID is required for post-natal hepatocyte maturation. TAF4 promotes pre-initiation complex (PIC) formation at post-natal expressed liver function genes and down-regulates a subset of embryonic expressed genes by increased RNA polymerase II pausing. The TAF4-TAF12 heterodimer interacts directly with HNF4A and in vivo TAF4 is necessary to maintain HNF4A-directed embryonic gene expression at post-natal stages and promotes HNF4A occupancy of functional cis-regulatory elements adjacent to the transcription start sites of post-natal expressed genes. Stable HNF4A occupancy of these regulatory elements requires TAF4-dependent PIC formation highlighting that these are mutually dependent events. Local promoter-proximal HNF4A-TFIID interactions therefore act as instructive signals for post-natal hepatocyte differentiation.

  17. [Dynamics of local expression of connexin-43 and basic fibroblast growth factor receptors in patients with skin and soft-tissue infections against the background of diabetes mellitus type II].

    PubMed

    Vinnik, Iu S; Salmina, A B; Tepliakova, O V; Drobushevskaia, A I; Malinovskaia, N A; Pozhilenkova, E A; Morgun, A V; Gitlina, A G

    2014-01-01

    Clinical results of wound healing dynamics were studied in 60 patients with soft-tissue infection against the background of diabetes mellitus type II. At the same time the study considered indices of intercellular contacts protein tissue expression such as connexin 43 (Cx43) and basic fibroblast growth factor receptors (bFGFR). The basic therapy of biopsy material of wound borders was applied. The reduction of bFGFR expression and the minor growth of Cx43 expression were observed. The pain syndrome proceeded for a long time and there were signs of perifocal inflammation, retard wound healing with granulation tissue. The application of combined method of ozone therapy which included autohemotherapy with ozone and an external management of wound by ozone-oxygen mixture facilitated to considerable shortening of inflammatory phase and regeneration. It was associated with increased Cx43 expression (in 1.9 times) in comparison with initial level and bFGFR was enlarged in 1.7 times to eighth day of postoperative period.

  18. Gasdermin C Is Upregulated by Inactivation of Transforming Growth Factor β Receptor Type II in the Presence of Mutated Apc, Promoting Colorectal Cancer Proliferation.

    PubMed

    Miguchi, Masashi; Hinoi, Takao; Shimomura, Manabu; Adachi, Tomohiro; Saito, Yasufumi; Niitsu, Hiroaki; Kochi, Masatoshi; Sada, Haruki; Sotomaru, Yusuke; Ikenoue, Tsuneo; Shigeyasu, Kunitoshi; Tanakaya, Kohji; Kitadai, Yasuhiko; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2016-01-01

    Mutations in TGFBR2, a component of the transforming growth factor (TGF)-β signaling pathway, occur in high-frequency microsatellite instability (MSI-H) colorectal cancer (CRC). In mouse models, Tgfbr2 inactivation in the intestinal epithelium accelerates the development of malignant intestinal tumors in combination with disruption of the Wnt-β-catenin pathway. However, no studies have further identified the genes influenced by TGFBR2 inactivation following disruption of the Wnt-β-catenin pathway. We previously described CDX2P-G19Cre;Apcflox/flox mice, which is stochastically null for Apc in the colon epithelium. In this study, we generated CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice, with simultaneous loss of Apc and Tgfbr2. These mice developed tumors, including adenocarcinoma in the proximal colon. We compared gene expression profiles between tumors of the two types of mice using microarray analysis. Our results showed that the expression of the murine homolog of GSDMC was significantly upregulated by 9.25-fold in tumors of CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice compared with those of CDX2P-G19Cre;Apcflox/flox mice. We then investigated the role of GSDMC in regulating CRC tumorigenesis. The silencing of GSDMC led to a significant reduction in the proliferation and tumorigenesis of CRC cell lines, whereas the overexpression of GSDMC enhanced cell proliferation. These results suggested that GSDMC functioned as an oncogene, promoting cell proliferation in colorectal carcinogenesis. In conclusion, combined inactivation of both Apc and Tgfbr2 in the colon epithelium of a CRC mouse model promoted development of adenocarcinoma in the proximal colon. Moreover, GSDMC was upregulated by TGFBR2 mutation in CRC and promoted tumor cell proliferation in CRC carcinogenesis, suggesting that GSDMC may be a promising therapeutic target.

  19. Gasdermin C Is Upregulated by Inactivation of Transforming Growth Factor β Receptor Type II in the Presence of Mutated Apc, Promoting Colorectal Cancer Proliferation

    PubMed Central

    Miguchi, Masashi; Hinoi, Takao; Shimomura, Manabu; Adachi, Tomohiro; Saito, Yasufumi; Niitsu, Hiroaki; Kochi, Masatoshi; Sada, Haruki; Sotomaru, Yusuke; Ikenoue, Tsuneo; Shigeyasu, Kunitoshi; Tanakaya, Kohji; Kitadai, Yasuhiko; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2016-01-01

    Mutations in TGFBR2, a component of the transforming growth factor (TGF)-β signaling pathway, occur in high-frequency microsatellite instability (MSI-H) colorectal cancer (CRC). In mouse models, Tgfbr2 inactivation in the intestinal epithelium accelerates the development of malignant intestinal tumors in combination with disruption of the Wnt-β-catenin pathway. However, no studies have further identified the genes influenced by TGFBR2 inactivation following disruption of the Wnt-β-catenin pathway. We previously described CDX2P-G19Cre;Apcflox/flox mice, which is stochastically null for Apc in the colon epithelium. In this study, we generated CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice, with simultaneous loss of Apc and Tgfbr2. These mice developed tumors, including adenocarcinoma in the proximal colon. We compared gene expression profiles between tumors of the two types of mice using microarray analysis. Our results showed that the expression of the murine homolog of GSDMC was significantly upregulated by 9.25-fold in tumors of CDX2P-G19Cre;Apcflox/flox;Tgfbr2flox/flox mice compared with those of CDX2P-G19Cre;Apcflox/flox mice. We then investigated the role of GSDMC in regulating CRC tumorigenesis. The silencing of GSDMC led to a significant reduction in the proliferation and tumorigenesis of CRC cell lines, whereas the overexpression of GSDMC enhanced cell proliferation. These results suggested that GSDMC functioned as an oncogene, promoting cell proliferation in colorectal carcinogenesis. In conclusion, combined inactivation of both Apc and Tgfbr2 in the colon epithelium of a CRC mouse model promoted development of adenocarcinoma in the proximal colon. Moreover, GSDMC was upregulated by TGFBR2 mutation in CRC and promoted tumor cell proliferation in CRC carcinogenesis, suggesting that GSDMC may be a promising therapeutic target. PMID:27835699

  20. Clinical effects of prior trastuzumab on combination eribulin mesylate plus trastuzumab as first-line treatment for human epidermal growth factor receptor 2 positive locally recurrent or metastatic breast cancer: results from a Phase II, single-arm, multicenter study

    PubMed Central

    Puhalla, Shannon; Wilks, Sharon; Brufsky, Adam M; O’Shaughnessy, Joyce; Schwartzberg, Lee S; Berrak, Erhan; Song, James; Vahdat, Linda

    2016-01-01

    Eribulin mesylate, a novel nontaxane microtubule dynamics inhibitor in the halichondrin class of antineoplastic drugs, is indicated for the treatment of patients with metastatic breast cancer who previously received ≥2 chemotherapy regimens in the metastatic setting. Primary data from a Phase II trial for the first-line combination of eribulin plus trastuzumab in human epidermal growth factor receptor 2 positive patients showed a 71% objective response rate and tolerability consistent with the known profile of these agents. Here, we present prespecified analyses of efficacy of this combination based on prior trastuzumab use. Patients received eribulin mesylate 1.4 mg/m2 (equivalent to 1.23 mg/m2 eribulin [expressed as free base]) intravenously on days 1 and 8 plus trastuzumab (8 mg/kg intravenously/cycle 1, then 6 mg/kg) on day 1 of each 21-day cycle. Objective response rates, progression-free survival, and tolerability were assessed in patients who had and had not received prior adjuvant or neoadjuvant (neo/adjuvant) trastuzumab treatment. Fifty-two patients (median age: 59.5 years) received eribulin/trastuzumab for a median treatment duration of ~31 weeks; 40.4% (n=21) had been previously treated with neo/adjuvant trastuzumab prior to treatment with eribulin plus trastuzumab for metastatic disease (median time between neo/adjuvant and study treatment: 23 months). In trastuzumab-naïve patients (n=31) compared with those who had received prior trastuzumab, objective response rate was 77.4% versus 61.9%, respectively; duration of response was 11.8 versus 9.5 months, respectively; clinical benefit rate was 87.1% versus 81.0%, respectively; and median progression-free survival was 12.2 versus 11.5 months, respectively. The most common grade 3/4 treatment-emergent adverse events (occuring in ≥5% of patients) in patients who received prior trastuzumab versus trastuzumab naïve patients, respectively, were neutropenia (47.6% vs 32.3%), peripheral neuropathy (14

  1. Autoradiographic localization of angiotensin II receptors in rat brain.

    PubMed Central

    Mendelsohn, F A; Quirion, R; Saavedra, J M; Aguilera, G; Catt, K J

    1984-01-01

    The 125I-labeled agonist analog [1-sarcosine]-angiotensin II ( [Sar1]AII) bound with high specificity and affinity (Ka = 2 X 10(9) M-1) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. Images PMID:6324205

  2. Autoradiographic localization of angiotensin II receptors in rat brain

    SciTech Connect

    Mendelsohn, F.A.O.; Quirion, R.; Saavedra, J.M.; Aguilera, G.; Catt, K.J.

    1984-03-01

    The /sup 125/I-labeled agonist analog (1-sarcosine)-angiotensin II ((Sar/sup 1/)AII) bound with high specificity and affinity (K/sub a/ = 2 x 10/sup 9/ M/sup -1/) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. 75 references, 2 figures.

  3. TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis.

    PubMed

    Duerrschmid, Clemens; Crawford, Jeffrey R; Reineke, Erin; Taffet, George E; Trial, Joann; Entman, Mark L; Haudek, Sandra B

    2013-04-01

    Angiotensin-II (Ang-II) is associated with many conditions involving heart failure and pathologic hypertrophy. Ang-II induces the synthesis of monocyte chemoattractant protein-1 that mediates the uptake of CD34(+)CD45(+) monocytic cells into the heart. These precursor cells differentiate into collagen-producing fibroblasts and are responsible for the Ang-II-induced development of non-adaptive cardiac fibrosis. In this study, we demonstrate that in vitro, using a human monocyte-to-fibroblast differentiation model, Ang-II required the presence of tumor necrosis factor-alpha (TNF) to induce fibroblast maturation from monocytes. In vivo, mice deficient in both TNF receptors did not develop cardiac fibrosis in response to 1week Ang-II infusion. We then subjected mice deficient in either TNF receptor 1 (TNFR1-KO) or TNF receptor 2 (TNFR2-KO) to continuous Ang-II infusion. Compared to wild-type, in TNFR1-KO, but not in TNFR2-KO hearts, collagen deposition was greatly attenuated, and markedly fewer CD34(+)CD45(+) cells were present. Quantitative RT-PCR demonstrated a striking reduction of key fibrosis-related, as well as inflammation-related mRNA expression in Ang-II-treated TNFR1-KO hearts. TNFR1-KO animals also developed less cardiac remodeling, cardiac hypertrophy, and hypertension compared to wild-type and TNFR2-KO in response to Ang-II. Our data suggest that TNF induced Ang-II-dependent cardiac fibrosis by signaling through TNFR1, which enhances the generation of monocytic fibroblast precursors in the heart.

  4. Cripto forms a complex with activin and type II activin receptors and can block activin signaling

    PubMed Central

    Gray, Peter C.; Harrison, Craig A.; Vale, Wylie

    2003-01-01

    Activin, nodal, Vg1, and growth and differentiation factor 1 are members of the transforming growth factor β superfamily and signal via the activin type II (ActRII/IIB) and type I (ALK4) serine/threonine kinase receptors. Unlike activins, however, signaling by nodal, Vg1, and growth and differentiation factor 1 requires a coreceptor from the epidermal growth factor-Cripto-FRL1-Cryptic protein family such as Cripto. Cripto has important roles during development and oncogenesis and binds nodal or related ligands and ALK4 to facilitate assembly of type I and type II receptor signaling complexes. Because Cripto mediates signaling via activin receptors and binds directly to ALK4, we tested whether transfection with Cripto would affect the ability of activin to signal and/or interact with its receptors. Here we show that Cripto can form a complex with activin and ActRII/IIB. We were unable to detect activin binding to Cripto in the absence of ActRII/IIB, indicating that unlike nodal, activin requires type II receptors to bind Cripto. If cotransfected with ActRII/IIB and ALK4, Cripto inhibited crosslinking of activin to ALK4 and the association of ALK4 with ActRII/IIB. In addition, Cripto blocked activin signaling when transfected into either HepG2 cells or 293T cells. We have also shown that under conditions in which Cripto facilitates nodal signaling, it antagonizes activin. Inhibition of activin signaling provides an additional example of a Cripto effect on the regulation of signaling by transforming growth factor-β superfamily members. Because activin is a potent inhibitor of cell growth in multiple cell types, these results provide a mechanism that may partially explain the oncogenic action of Cripto. PMID:12682303

  5. Angiotensin II activates the proinflammatory transcription factor nuclear factor-kappaB in human monocytes.

    PubMed

    Kranzhöfer, R; Browatzki, M; Schmidt, J; Kübler, W

    1999-04-21

    The renin-angiotensin system may contribute to the pathogenesis of atherosclerosis. A common feature of all stages of atherosclerosis is inflammation of the vessel wall. The transcription factor nuclear factor-kappaB (NF-kappaB) participates in most signaling pathways involved in inflammation. This study therefore examined the effect of angiotensin (ANG) II on NF-kappaB activation in monocytic cells, a major cellular component of human atheroma, by electrophoretic mobility shift assay. ANG II, like TNFalpha, caused rapid activation of NF-kappaB in human mononuclear cells isolated from peripheral blood by Ficoll density gradient. This ANG II effect was blocked by the angiotensin AT1 receptor antagonist losartan. Specificity of ANG II-induced NF-kappaB activation was ascertained by supershift and competition experiments. Moreover, ANG II stimulated NF-kappaB activation in human monocytes, but not in lymphocytes from the same preparation. Together, the data demonstrate the ability of the vasoactive peptide ANG II to activate inflammatory pathways in human monocytes.

  6. Angiotensin II binding to cultured bovine adrenal chromaffin cells: identification of angiotensin II receptors

    SciTech Connect

    Boyd, V.L.; Printz, M.P.

    1986-03-05

    Physiological experiments have provided evidence that angiotensin II stimulates catecholamine secretion from the adrenal gland. Their laboratory and others have now shown by receptor autoradiography the presence of angiotensin II receptors (AIIR) in bovine and rat adrenal medulla. In order to extend these studies they have undertaken to define AIIR on cultured bovine adrenal chromaffin cells. Cells were isolated using the method of Levitt including cell enrichment with Percoll gradient centrifugation. Primary cultures of bovine adrenal medullary cells were maintained in DME/F12 medium containing 10% FCS. Cells were characterized by immunocytochemistry for Met- and Leu-enkephalin, PNMT, DBH and Chromagranin A. Cultured cells bind with high affinity and specificity (/sup 125/I)-ANG II yielding a K/sub D/ of 0.74 nM and B/sub max/ of 24,350 sites/cell. After Percoll treatment values of .77 nm and 34,500 sites/cell are obtained. K/sub D/ values are in close agreement with that obtained in adrenal slices by Healy. Competition studies identify a rank order of binding by this receptor similar to that of other tissues. They conclude that cultured chromaffin cells provide a suitable model system for the investigation and characterization of the ANG II receptor and for cellular studies of its functional significance.

  7. Translational Breast Cancer Research Consortium (TBCRC) 022: A Phase II Trial of Neratinib for Patients With Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer and Brain Metastases

    PubMed Central

    Gelman, Rebecca S.; Wefel, Jeffrey S.; Melisko, Michelle E.; Hess, Kenneth R.; Connolly, Roisin M.; Van Poznak, Catherine H.; Niravath, Polly A.; Puhalla, Shannon L.; Ibrahim, Nuhad; Blackwell, Kimberly L.; Moy, Beverly; Herold, Christina; Liu, Minetta C.; Lowe, Alarice; Agar, Nathalie Y.R.; Ryabin, Nicole; Farooq, Sarah; Lawler, Elizabeth; Rimawi, Mothaffar F.; Krop, Ian E.; Wolff, Antonio C.; Winer, Eric P.; Lin, Nancy U.

    2016-01-01

    Purpose Evidence-based treatments for metastatic, human epidermal growth factor receptor 2 (HER2)–positive breast cancer in the CNS are limited. Neratinib is an irreversible inhibitor of erbB1, HER2, and erbB4, with promising activity in HER2-positive breast cancer; however, its activity in the CNS is unknown. We evaluated the efficacy of treatment with neratinib in patients with HER2-positive breast cancer brain metastases in a multicenter, phase II open-label trial. Patients and Methods Eligible patients were those with HER2-positive brain metastases (≥ 1 cm in longest dimension) who experienced progression in the CNS after one or more line of CNS-directed therapy, such as whole-brain radiotherapy, stereotactic radiosurgery, and/or surgical resection. Patients received neratinib 240 mg orally once per day, and tumors were assessed every two cycles. The primary endpoint was composite CNS objective response rate (ORR), requiring all of the following: ≥50% reduction in volumetric sum of target CNS lesions and no progression of non-target lesions, new lesions, escalating corticosteroids, progressive neurologic signs/symptoms, or non-CNS progression—the threshold for success was five of 40 responders. Results Forty patients were enrolled between February 2012 and June 2013; 78% of patients had previous whole-brain radiotherapy. Three women achieved a partial response (CNS objective response rate, 8%; 95% CI, 2% to 22%). The median number of cycles received was two (range, one to seven cycles), with a median progression-free survival of 1.9 months. Five women received six or more cycles. The most common grade ≥ 3 event was diarrhea (occurring in 21% of patients taking prespecified loperamide prophylaxis and 28% of those without prophylaxis). Patients in the study experienced a decreased quality of life over time. Conclusion Although neratinib had low activity and did not meet our threshold for success, 12.5% of patients received six or more cycles. Studies

  8. Testicular gonadotropin-releasing hormone II receptor (GnRHR-II) knockdown constitutively impairs diurnal testosterone secretion in the boar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The second mammalian GnRH isoform (GnRH-II) and its specific receptor (GnRHR-II) are highly expressed in the testis, suggesting an important role in testis biology. Gene coding errors prevent the production of GnRH-II and GnRHR-II in many species, but both genes are functional in swine. We have demo...

  9. Nuclear transportation of exogenous epidermal growth factor receptor and androgen receptor via extracellular vesicles.

    PubMed

    Read, Jolene; Ingram, Alistair; Al Saleh, Hassan A; Platko, Khrystyna; Gabriel, Kathleen; Kapoor, Anil; Pinthus, Jehonathan; Majeed, Fadwa; Qureshi, Talha; Al-Nedawi, Khalid

    2017-01-01

    Epidermal growth factor receptor (EGFR) plays a central role in the progression of several human malignancies. Although EGFR is a membrane receptor, it undergoes nuclear translocation, where it has a distinct signalling pathway. Herein, we report a novel mechanism by which cancer cells can directly transport EGFR to the nucleus of other cells via extracellular vesicles (EVs). The transported receptor is active and stimulates the nuclear EGFR pathways. Interestingly, the translocation of EGFR via EVs occurs independently of the nuclear localisation sequence that is required for nuclear translocation of endogenous EGFR. Also, we found that the mutant receptor EGFRvIII could be transported to the nucleus of other cells via EVs. To assess the role of EVs in the regulation of an actual nuclear receptor, we studied the regulation of androgen receptor (AR). We found that full-length AR and mutant variant ARv7 are secreted in EVs derived from prostate cancer cell lines and could be transported to the nucleus of AR-null cells. The EV-derived AR was able to bind the androgen-responsive promoter region of prostate specific antigen, and recruit RNA Pol II, an indication of active transcription. The nuclear-translocated AR via EVs enhanced the proliferation of acceptor cells in the absence of androgen. Finally, we provide evidence that nuclear localisation of AR could occur in vivo via orthotopically-injected EVs in male SCID mice prostate glands. To our knowledge, this is the first study showing the nuclear translocation of nuclear receptors via EVs, which significantly extends the role of EVs as paracrine transcriptional regulators.

  10. Limiting angiotensin II signaling with a cell penetrating peptide mimicking the second intracellular loop of the angiotensin II type I receptor

    PubMed Central

    Yu, Jun; Taylor, Linda; Mierke, Dale; Berg, Eric; Shia, Michael; Fishman, Jordan; Sallum, Christine; Polgar, Peter

    2010-01-01

    A cell-penetrating peptide consisting of the second intracellular loop (IC2) of the Angiotensin II (AngII) type I receptor (AT1) linked to the HIV transactivating regulatory protein (TAT) domain was used to identify the role of this motif for intracellular signal transduction. HEK-293 cells stably transfected with AT1R cDNA and primary cultures of human pulmonary artery smooth muscle cells expressing endogenous AT1 receptor were exposed to the cell-penetrating peptide construct and the effect on angiotensin II signaling determined. The AT1 IC2 peptide effectively inhibited AngII stimulated phosphatidylinositol turnover and calcium influx. It also limited the activation of Akt/PKB as determined by an inhibition of phosphorylation of Akt at Ser473 and completely abolished the AngII dependent activation of the transcriptional factor NFκB. In contrast, the AT1 IC2 peptide had no effect on AngII/AT1 receptor activation of ERK. These results illustrate the potential of using cell penetrating peptides to both delineate receptor-mediated signal transduction as well as to selectively regulate G protein coupled receptor signaling. PMID:20492449

  11. Oxidative DNA Damage in Kidneys and Heart of Hypertensive Mice Is Prevented by Blocking Angiotensin II and Aldosterone Receptors

    PubMed Central

    Brand, Susanne; Amann, Kerstin; Mandel, Philipp; Zimnol, Anna; Schupp, Nicole

    2014-01-01

    Introduction Recently, we could show that angiotensin II, the reactive peptide of the blood pressure-regulating renin-angiotensin-aldosterone-system, causes the formation of reactive oxygen species and DNA damage in kidneys and hearts of hypertensive mice. To further investigate on the one hand the mechanism of DNA damage caused by angiotensin II, and on the other hand possible intervention strategies against end-organ damage, the effects of substances interfering with the renin-angiotensin-aldosterone-system on angiotensin II-induced genomic damage were studied. Methods In C57BL/6-mice, hypertension was induced by infusion of 600 ng/kg • min angiotensin II. The animals were additionally treated with the angiotensin II type 1 receptor blocker candesartan, the mineralocorticoid receptor blocker eplerenone and the antioxidant tempol. DNA damage and the activation of transcription factors were studied by immunohistochemistry and protein expression analysis. Results Administration of angiotensin II led to a significant increase of blood pressure, decreased only by candesartan. In kidneys and hearts of angiotensin II-treated animals, significant oxidative stress could be detected (1.5-fold over control). The redox-sensitive transcription factors Nrf2 and NF-κB were activated in the kidney by angiotensin II-treatment (4- and 3-fold over control, respectively) and reduced by all interventions. In kidneys and hearts an increase of DNA damage (3- and 2-fold over control, respectively) and of DNA repair (3-fold over control) was found. These effects were ameliorated by all interventions in both organs. Consistently, candesartan and tempol were more effective than eplerenone. Conclusion Angiotensin II-induced DNA damage is caused by angiotensin II type 1 receptor-mediated formation of oxidative stress in vivo. The angiotensin II-mediated physiological increase of aldosterone adds to the DNA-damaging effects. Blocking angiotensin II and mineralocorticoid receptors therefore

  12. Gene expression profiles of some cytokines, growth factors, receptors, and enzymes (GM-CSF, IFNγ, MMP-2, IGF-II, EGF, TGF-β, IGF-IIR) during pregnancy in the cat uterus.

    PubMed

    Agaoglu, Ozgecan Korkmaz; Agaoglu, Ali Reha; Guzeloglu, Aydin; Aslan, Selim; Kurar, Ercan; Kayis, Seyit Ali; Schäfer-Somi, Sabine

    2016-03-01

    Early pregnancy is one of the most critical periods of pregnancy, and many factors such as cytokines, enzymes, and members of the immune system have to cooperate in a balanced way. In the present study, the gene expression profiles of factors associated with pregnancy such as EGF, transforming growth factor beta, granulocyte-macrophage colony-stimulating factor, interferon gamma, insulin-like growth factor 2, insulin-like growth factor 2 receptor, and matrix metalloproteinase 2 were analyzed in uterine tissues of female cats. The cats were assigned to five groups: G1 (embryo positive, n = 7; 7th day after mating), G2 (after implantation, n = 7; 20th day after mating), G3 (midgestation, n = 7; 24-25th day after mating), G4 (late gestation, n = 7; 30-45th day after mating), G5 (oocyte group, n = 7; 7th day after estrus). Tissue samples from the uterus and placenta were collected after ovariohysterectomy. Relative messenger RNA levels were determined by real-time polymerase chain reaction. All the factors examined were detected in all tissue samples. In the course of pregnancy, significantly higher expression of EGF and matrix metalloproteinase 2 in G2 than in G1 was observed (P < 0.05). Insulin-like growth factor 2 expression was higher in all groups than in G1 (P < 0.05). Upregulation of EGF during implantation was detected. The expression of interferon gamma was significantly higher in G3 than in G1 (P < 0.05). Transforming growth factor beta and granulocyte-macrophage colony-stimulating factor were constantly expressed in all groups. In conclusion, the expressions of these factors in feline uterine tissue at different stages of pregnancy might indicate that these factors play roles in the development of pregnancy such as trophoblast invasion, vascularization, implantation, and placentation.

  13. Activating types 1 and 2 angiotensin II receptors modulate the hypertrophic differentiation of chondrocytes☆

    PubMed Central

    Tsukamoto, Ichiro; Inoue, Shinji; Teramura, Takeshi; Takehara, Toshiyuki; Ohtani, Kazuhiro; Akagi, Masao

    2013-01-01

    A local tissue-specific renin–angiotensin system (local RAS) has been identified in many organs. However, no report has described the role of a local RAS in the hypertrophic differentiation of chondrocytes. To examine the role of a local RAS in the hypertrophic differentiation, we activated angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) separately in the cell line ATDC5, which involves differentiation from mesenchymal stem cells to hypertrophic chondrocytes. Activation of AT1R suppressed and activation of AT2R enhanced the expression of markers of hypertrophic differentiation, including type X collagen, matrix metalloproteinase 13 and runt-related transcription factor 2. PMID:23905010

  14. Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders.

    PubMed

    Saavedra, Juan M

    2012-11-01

    The effects of brain AngII (angiotensin II) depend on AT(1) receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT(1) receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood-brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT(1) receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT(1) receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer's disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer's disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic

  15. 40 CFR Table II-1 to Subpart II of... - Emission Factors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Emission Factors II Table II-1 to Subpart II of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98, Subpt. II, Table...

  16. 40 CFR Table II-1 to Subpart II of... - Emission Factors

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Emission Factors II Table II-1 to Subpart II of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98, Subpt. II, Table...

  17. Inactivation of Smad-Transforming Growth Factor β Signaling by Ca2+-Calmodulin-Dependent Protein Kinase II

    PubMed Central

    Wicks, Stephen J.; Lui, Stephen; Abdel-Wahab, Nadia; Mason, Roger M.; Chantry, Andrew

    2000-01-01

    Members of the transforming growth factor β (TGF-β) family transduce signals through Smad proteins. Smad signaling can be regulated by the Ras/Erk/mitogen-activated protein pathway in response to receptor tyrosine kinase activation and the gamma interferon pathway and also by the functional interaction of Smad2 with Ca2+-calmodulin. Here we report that Smad–TGF-β-dependent transcriptional responses are prevented by expression of a constitutively activated Ca2+-calmodulin-dependent protein kinase II (Cam kinase II). Smad2 is a target substrate for Cam kinase II in vitro at serine-110, -240, and -260. Cam kinase II induces in vivo phosphorylation of Smad2 and Smad4 and, to a lesser extent, Smad3. A phosphopeptide antiserum raised against Smad2 phosphoserine-240 reacted with Smad2 in vivo when coexpressed with Cam kinase II and by activation of the platelet-derived growth factor receptor, the epidermal growth factor receptor, HER2 (c-erbB2), and the TGF-β receptor. Furthermore, Cam kinase II blocked nuclear accumulation of a Smad2 and induced Smad2-Smad4 hetero-oligomerization independently of TGF-β receptor activation, while preventing TGF-β-dependent Smad2-Smad3 interactions. These findings provide a novel cross-talk mechanism by which Ca2+-dependent kinases activated downstream of multiple growth factor receptors antagonize cell responses to TGF-β. PMID:11027280

  18. Progesterone receptor induces bcl-x expression through intragenic binding sites favoring RNA polymerase II elongation

    PubMed Central

    Bertucci, Paola Y.; Nacht, A. Silvina; Alló, Mariano; Rocha-Viegas, Luciana; Ballaré, Cecilia; Soronellas, Daniel; Castellano, Giancarlo; Zaurin, Roser; Kornblihtt, Alberto R.; Beato, Miguel; Vicent, Guillermo P.; Pecci, Adali

    2013-01-01

    Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of progestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions surrounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-distribution of the active Pol II toward the 3′-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene expression by facilitating the proper passage of the polymerase along hormone-dependent genes. PMID:23640331

  19. Transforming Growth Factor-B Receptors in Human Breast Cancer.

    DTIC Science & Technology

    1998-05-01

    receptor. Nature 370:341-347,1994 60. Wang T, Donahoe P, Zervos AS: Specific interaction of type I receptors of the TGFß family with the immunophilin...Res 56: 44^48,1996 82. Kadin ME. Cavaille-Coll MW, Gertz R. Massague J, Chei- fetz S. George D: Loss of receptors for transforming growth factor ß

  20. Generation of monoclonal antibody targeting fibroblast growth factor receptor 3.

    PubMed

    Gorbenko, Olena; Ovcharenko, Galyna; Klymenko, Tetyana; Zhyvoloup, Olexandr; Gaman, Nadia; Volkova, Darija; Gout, Ivan; Filonenko, Valeriy

    2009-08-01

    Fibroblast growth factor receptor 3 (FGFR3) is a member of the FGFR family of receptor tyrosine kinases, whose function has been implicated in diverse biological processes, including cell proliferation, differentiation, survival, and tumorigenesis. Deregulation of FGFR3 signaling has been implicated with human pathologies, including cancer. Activating mutations in FGFR3 gene are frequently detected in bladder cancer, multiple myeloma, and noninvasive papillary urothelial cell carcinomas, while the overexpression of the receptor is observed in thyroid lymphoma and bladder cancer. The main aim of this study was to generate hybridoma clones producing antibody that could specifically recognize FGFR3/S249C mutant, but not the wild-type FGFR. To achieve this, we used for immunization bacterially expressed fragment of FGFR3 corresponding to loops II-III of the extracellular domain (GST-His/FGFR3/S249C-LII-III), which possesses oncogenic mutation at Ser249 detected in at least 50% of bladder cancers. Primary ELISA screening allowed us to isolate several hybridoma clones that showed specificity towards FGFR3/S249C, but not FGFR3wt protein. Unfortunately, these clones were not stable during single-cell cloning and expansion and lost the ability to recognize specifically FGFR3/S249C. However, this study allowed us to generate several monoclonal antibodies specific towards both FGFR3wt and FGFR3/S249C recombinant proteins. Produced hybridomas secreted MAbs that were specific in Western blotting towards bacterially expressed FGFR3wt and FGFR3/S249C, as well as the full-length receptors ectopically expressed in Sf21 and HEK293 cells. Moreover, transiently expressed wild-type and oncogenic forms of FGFR were efficiently immunoprecipitated with selected antibodies from the lysates of infected Sf21 and transiently transfected HEK293. In summary, generated antibodies should be useful as tools for examining the expression pattern and biological functions of FGFR3 in normal and

  1. Evidence that the modulator of the glucocorticoid-receptor complex is the endogenous molybdate factor.

    PubMed Central

    Bodine, P V; Litwack, G

    1988-01-01

    We have recently purified the modulator of the glucocorticoid-receptor complex from rat liver. Purified modulator inhibits glucocorticoid-receptor complex activation and stabilizes the steroid-binding ability of the unoccupied glucocorticoid receptor. Since these activities are shared by exogenous sodium molybdate, modulator appears to be the endogenous factor that sodium molybdate mimics. In this report, we present additional evidence for the mechanism of action of purified modulator. (i) Molybdate and modulator inhibit receptor activation as measured by DNA-cellulose binding, DEAE-cellulose chromatography, and Sepharose 4B gel filtration. (ii) The ability of molybdate and modulator to inhibit receptor activation and stabilize the unoccupied receptor appears to be additive. (iii) Scatchard analysis of heat-destabilized unoccupied receptors indicates that the number of steroid-binding sites is reduced during destabilization, whereas the steroid dissociation constant remains unchanged. Molybdate and modulator stabilize the receptor by maintaining the number of steroid-binding sites. (iv) Molybdate and modulator do not inhibit alkaline phosphatase-induced destabilization of the unoccupied receptor. However, alkaline phosphatase-induced destabilization is reversed by the addition of dithiothreitol in the presence, but not in the absence, of molybdate or modulator. These results suggest that the mechanism of action for modulator is identical to that of sodium molybdate, and we propose that modulator is the endogenous molybdate factor for the glucocorticoid receptor. PMID:3422744

  2. Mechanism of kinase activation in the receptor for colony-stimulating factor 1.

    PubMed Central

    Lee, A W; Nienhuis, A W

    1990-01-01

    Receptor tyrosine kinases remain dormant until activated by ligand binding to the extracellular domain. Two mechanisms have been proposed for kinase activation: (i) ligand binding to the external domain of a receptor monomer may induce a conformational change that is transmitted across the cell membrane (intramolecular model) or (ii) the ligand may facilitate oligomerization, thereby allowing interactions between the juxtaposed kinase domains (intermolecular model). The receptor for colony-stimulating factor 1 was used to test these models. Large insertions at the junction between the external and transmembrane domains of the receptor, introduced by site-directed mutagenesis of the cDNA, were positioned to isolate the external domain and prevent transmembrane conformational propagation while allowing for receptor oligomerization. Such mutant receptors were expressed on the cell surface, bound ligand with high affinity, exhibited ligand-stimulated autophosphorylation, and signaled mitogenesis and cellular proliferation in the presence of ligand. A second experimental strategy directly tested the intermolecular model of ligand activation. A hybrid receptor composed of the external domain of human glycophorin A and the transmembrane and cytoplasmic domains of the colony-stimulating factor 1 receptor exhibited anti-glycophorin antibody-induced kinase activity that supported mitogenesis. Our data strongly support a mechanism of receptor activation based on ligand-induced receptor oligomerization. Images PMID:2169623

  3. Macrocyclic receptor showing extremely high Sr(II)/Ca(II) and Pb(II)/Ca(II) selectivities with potential application in chelation treatment of metal intoxication.

    PubMed

    Ferreirós-Martínez, Raquel; Esteban-Gómez, David; Tóth, Éva; de Blas, Andrés; Platas-Iglesias, Carlos; Rodríguez-Blas, Teresa

    2011-04-18

    Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 Å) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 Å). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that

  4. Randomized Phase II Study of Erlotinib in Combination With Placebo or R1507, a Monoclonal Antibody to Insulin-Like Growth Factor-1 Receptor, for Advanced-Stage Non–Small-Cell Lung Cancer

    PubMed Central

    Ramalingam, Suresh S.; Spigel, David R.; Chen, David; Steins, Martin B.; Engelman, Jeffrey A.; Schneider, Claus-Peter; Novello, Silvia; Eberhardt, Wilfried E.E.; Crino, Lucio; Habben, Kai; Liu, Lian; Jänne, Pasi A.; Brownstein, Carrie M.; Reck, Martin

    2011-01-01

    Purpose R1507 is a selective, fully human, recombinant monoclonal antibody (immunoglobulin G1 subclass) against insulin-like growth factor-1 receptor (IGF-1R). The strong preclinical evidence supporting coinhibition of IGF-1R and epidermal growth factor receptor (EGFR) as anticancer therapy prompted this study. Patients and Methods Patients with advanced-stage non–small-cell lung cancer (NSCLC) with progression following one or two prior regimens, Eastern Cooperative Oncology Group (ECOG) performance status 0 to 2, and measurable disease were eligible. Patients were randomly assigned to receive erlotinib (150 mg orally once a day) in combination with either placebo, R1507 9 mg/kg weekly, or R1507 16 mg/kg intravenously once every 3 weeks. Treatment cycles were repeated every 3 weeks. The primary end point was comparison of the 12-week progression-free survival (PFS) rate. Results In all, 172 patients were enrolled: median age, 61 years; female, 33%; never-smokers, 12%; and performance status 0 or 1, 88%. The median number of R1507 doses was six for the weekly arm and 3.5 for the every-3-weeks arm. Grades 3 to 4 adverse events occurred in 37%, 44%, and 48% of patients with placebo, R1507 weekly, and R1507 every 3 weeks, respectively. The 12-week PFS rates were 39%, 37%, and 44%, and the median overall survival was 8.1, 8.1, and 12.1 months for the three groups, respectively, with statistically nonsignificant hazard ratios. The 12-week PFS rate in patients with KRAS mutation was 36% with R1507 compared with 0% with placebo. Conclusion The combination of R1507 with erlotinib did not provide PFS or survival advantage over erlotinib alone in an unselected group of patients with advanced NSCLC. Predictive biomarkers are essential for further development of combined inhibition of IGF-1R and EGFR. PMID:22025157

  5. Use of Enterally Delivered Angiotensin II Type Ia Receptor Antagonists to Reduce the Severity of Colitis

    PubMed Central

    Okawada, Manabu; Koga, Hiroyuki; Larsen, Scott D.; Showalter, Hollis D.; Turbiak, Anjanette J.; Jin, Xiaohong; Lucas, Peter C.; Lipka, Elke; Hillfinger, John; Kim, Jae Seung

    2011-01-01

    Background Renin-angiotensin system blockade reduces inflammation in several organ systems. Having found a fourfold increase in angiotensin II type Ia receptor expression in a dextran sodium sulfate colitis model, we targeted blockade with angiotensin II type Ia receptor antagonists to prevent colitis development. Because hypotension is a major complication of angiotensin II type Ia receptor antagonists use, we hypothesized that use of angiotensin II type Ia receptor antagonists compounds which lack cell membrane permeability, and thus enteric absorption, would allow for direct enteral delivery at far higher concentrations than would be tolerated systemically, yet retain efficacy. Methods Based on the structure of the angiotensin II type Ia receptor antagonist losartan, deschloro-losartan was synthesized, which has extremely poor cell membrane permeability. Angiotensin II type Ia receptor antagonist efficacy was evaluated by determining the ability to block NF-κB activation in vitro. Dextran sodium sulfate colitis was induced in mice and angiotensin II type Ia receptor antagonist efficacy delivered transanally was assessed. Results In vitro, deschloro-losartan demonstrated near equal angiotensin II type Ia receptor blockade compared to losartan as well as another angiotensin II type Ia receptor antagonist, candesartan. In the dextran sodium sulfate model, each compound significantly improved clinical and histologic scores and epithelial cell apoptosis. Abundance of TNF-α, IL-1β, and IL6 mRNA were significantly decreased with each compound. In vitro and in vivo intestinal drug absorption, as well as measures of blood pressure and mucosal and colonic blood flow, showed significantly lower uptake of deschloro-losartan compared to losartan and candesartan. Conclusions This study demonstrated efficacy of high-dose angiotensin II type Ia receptor antagonists in this colitis model. We postulate that a specially designed angiotensin II type Ia receptor antagonist with

  6. High resolution structures of the bone morphogenetic protein type II receptor in two crystal forms: Implications for ligand binding

    SciTech Connect

    Mace, Peter D.; Cutfield, John F.; Cutfield, Sue M. . E-mail: sue.cutfield@otago.ac.nz

    2006-12-29

    BMPRII is a type II TGF-{beta} serine threonine kinase receptor which is integral to the bone morphogenetic protein (BMP) signalling pathway. It is known to bind BMP and growth differentiation factor (GDF) ligands, and has overlapping ligand specificity with the activin type II receptor, ActRII. In contrast to activin and TGF-{beta} type ligands, BMPs bind to type II receptors with lower affinity than type I receptors. Crystals of the BMPRII ectodomain were grown in two different forms, both of which diffracted to high resolution. The tetragonal form exhibited some disorder, whereas the entire polypeptide was seen in the orthorhombic form. The two structures retain the basic three-finger toxin fold of other TGF-{beta} receptor ectodomains, and share the main hydrophobic patch used by ActRII to bind various ligands. However, they present different conformations of the A-loop at the periphery of the proposed ligand-binding interface, in conjunction with rearrangement of a disulfide bridge within the loop. This particular disulfide (Cys94-Cys117) is only present in BMPRII and activin receptors, suggesting that it is important for their likely shared mode of binding. Evidence is presented that the two crystal forms represent ligand-bound and free conformations of BMPRII. Comparison with the solved structure of ActRII bound to BMP2 suggests that His87, unique amongst TGF-{beta} receptors, may play a key role in ligand recognition.

  7. Properties of angiotensin II receptors in glial cells from the adult corpus callosum.

    PubMed Central

    Matute, C; Pulakat, L; Río, C; Valcárcel, C; Miledi, R

    1994-01-01

    The existence and the properties of angiotensin II receptors in the adult bovine and human corpus callosum (CC) were investigated by using Xenopus oocytes and primary glial cell cultures. In oocytes injected with CC mRNA, angiotensin II elicited oscillatory Cl- currents due to activation of the inositol phosphate/Ca(2+)-receptor-channel coupling system. The receptors expressed in oocytes and in CC cultures were pharmacologically similar to the AT1 receptor type as assayed by binding. Northern blot analysis and in situ hybridization studies in sections from CC and in glial cultures revealed that the receptors were molecularly related to the AT1 receptor and that they were present in astrocytes. In these cells, activation of the receptors with angiotensin II increased de novo DNA synthesis, promoted the release of aldosterone, and induced c-Fos expression. These findings indicate that CC astrocytes possess functional AT1 receptors that participate in various physiological processes. Images PMID:8170986

  8. Clinical Profile of Eprosartan: A Different Angiotensin II Receptor Blocker

    PubMed Central

    Blankestijn, P. J; Rupp, H

    2008-01-01

    Rationale. The goal of antihypertensive treatment is to reduce risk of cardiovascular morbidity and mortality. Apart from blood pressure lowering per se, also reducing the activities of the renin-angiotensin system and sympathetic nervous system appears to be important. Angiotensin II receptor blocker drugs (ARBs) have provided a useful class of anti-hypertensive drugs. Eprosartan is a relatively new ARB which is chemically distinct (non-biphenyl, non-tetrazole) from all other ARBs (biphenyl tetrazoles). An analysis has been made on available experimental and clinical data on eprosartan which not only is an effective and well tolerated antihypertensive agent, but also lowers the activities of the renin-angiotensin system and sympathetic nervous system. Experimental and pharmacokinetic studies on eprosartan have shown differences with the other ARBs. The distinct properties of this non-biphenyl, non-tetrazole ARB might be relevant in the effort to reduce cardiovascular risk, also beyond its blood pressure lowering capacity. PMID:18855637

  9. pK(a) determination of angiotensin II receptor antagonists (ARA II) by spectrofluorimetry.

    PubMed

    Cagigal, E; González, L; Alonso, R M; Jiménez, R M

    2001-10-01

    The acid-base equilibrium constants of a new family of antihypertensive drugs, the angiotensin II receptor antagonists (ARA II), Losartan, Irbesartan, Valsartan, Candesartan cilexetil, its metabolite Candesartan M1 and Telmisartan were determined by spectrofluorimetry. Relative fluorescent intensity (I(F,rel))-pH data were treated by graphical (derivatives and curve-fitting) and numerical methods (LETAGROP SPEFO). The resultant pK(a) values at an ionic strength of 0.5 M were (3.15+/-0.07) for Losartan, (4.70+/-0.06) for Irbesartan, (4.90+/-0.09) for Valsartan, (6.0+/-0.1) for Candesartan cilexetil, (3.9+/-0.1) for Candesartan M1, and (4.45+/-0.09) for Telmisartan.

  10. Simvastatin enhances bone morphogenetic protein receptor type II expression

    SciTech Connect

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N. . E-mail: peterkao@stanford.edu

    2006-01-06

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function.

  11. Acute Systemic Infection with Dengue Virus Leads to Vascular Leakage and Death through Tumor Necrosis Factor-α and Tie2/Angiopoietin Signaling in Mice Lacking Type I and II Interferon Receptors

    PubMed Central

    Limkittikul, Kriengsak; Sakai, Yusuke; Takakura, Nobuyuki; Saijo, Masayuki

    2016-01-01

    Severe dengue is caused by host responses to viral infection, but the pathogenesis remains unknown. This is, in part, due to the lack of suitable animal models. Here, we report a non-mouse-adapted low-passage DENV-3 clinical isolate, DV3P12/08, derived from recently infected patients. DV3P12/08 caused a lethal systemic infection in type I and II IFN receptor KO mice (IFN-α/β/γR KO mice), which have the C57/BL6 background. Infection with DV3P12/08 induced a cytokine storm, resulting in severe vascular leakage (mainly in the liver, kidney and intestine) and organ damage, leading to extensive hemorrhage and rapid death. DV3P12/08 infection triggered the release of large amounts of TNF-α, IL-6, and MCP-1. Treatment with a neutralizing anti-TNF-α antibody (Ab) extended survival and reduced liver damage without affecting virus production. Anti-IL-6 neutralizing Ab partly prolonged mouse survival. The anti-TNF-α Ab suppressed IL-6, MCP-1, and IFN-γ levels, suggesting that the severe response to infection was triggered by TNF-α. High levels of TNF-α mRNA were expressed in the liver and kidneys, but not in the small intestine, of infected mice. Conversely, high levels of IL-6 mRNA were expressed in the intestine. Importantly, treatment with Angiopoietin-1, which is known to stabilize blood vessels, prolonged the survival of DV3P12/08-infected mice. Taken together, the results suggest that an increased level of TNF-α together with concomitant upregulation of Tie2/Angiopoietin signaling have critical roles in severe dengue infection. PMID:26844767

  12. Angiotensin-(1–7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor

    PubMed Central

    Liu, Yanping; Li, Bin; Wang, Ximing; Li, Guishuang; Shang, Rui; Yang, Jianmin; Wang, Jiali; Zhang, Meng; Chen, Yuguo; Zhang, Yun; Zhang, Cheng; Hao, Panpan

    2015-01-01

    We recently confirmed that angiotensin II (Ang II) type 1 receptor (AT1R) was overexpressed in hepatocellular carcinoma tissue using a murine hepatoma model. Angiotensin(Ang)-(1–7) has been found beneficial in ameliorating lung cancer and prostate cancer. Which receptor of Ang-(1–7) is activated to mediate its effects is much speculated. This study was designed to investigate the effects of Ang-(1–7) on hepatocellular carcinoma, as well as the probable mechanisms. H22 hepatoma-bearing mice were randomly divided into five groups for treatment: mock group, low-dose Ang-(1–7), high-dose Ang-(1–7), high-dose Ang-(1–7) + A779 and high-dose Ang-(1–7) + PD123319. Ang-(1–7) treatment inhibited tumor growth time- and dose-dependently by arresting tumor proliferation and promoting tumor apoptosis as well as inhibiting tumor angiogenesis. The effects of Ang-(1–7) on tumor proliferation and apoptosis were reversed by coadministration with A779 or PD123319, whereas the effects on tumor angiogenesis were completely reversed by A779 but not by PD123319. Moreover, Ang-(1–7) downregulated AT1R mRNA, upregulated mRNA levels of Ang II type 2 receptor (AT2R) and Mas receptor (MasR) and p38-MAPK phosphorylation and suppressed H22 cell–endothelial cell communication. Thus, Ang-(1–7) administration suppresses hepatocellular carcinoma via complex interactions of AT1R, AT2R and MasR and may provide a novel and promising approach for the treatment of hepatocellular carcinoma. PMID:26225830

  13. Angiotensin-(1-7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor.

    PubMed

    Liu, Yanping; Li, Bin; Wang, Ximing; Li, Guishuang; Shang, Rui; Yang, Jianmin; Wang, Jiali; Zhang, Meng; Chen, Yuguo; Zhang, Yun; Zhang, Cheng; Hao, Panpan

    2015-07-27

    We recently confirmed that angiotensin II (Ang II) type 1 receptor (AT1R) was overexpressed in hepatocellular carcinoma tissue using a murine hepatoma model. Angiotensin(Ang)-(1-7) has been found beneficial in ameliorating lung cancer and prostate cancer. Which receptor of Ang-(1-7) is activated to mediate its effects is much speculated. This study was designed to investigate the effects of Ang-(1-7) on hepatocellular carcinoma, as well as the probable mechanisms. H22 hepatoma-bearing mice were randomly divided into five groups for treatment: mock group, low-dose Ang-(1-7), high-dose Ang-(1-7), high-dose Ang-(1-7) + A779 and high-dose Ang-(1-7) + PD123319. Ang-(1-7) treatment inhibited tumor growth time- and dose-dependently by arresting tumor proliferation and promoting tumor apoptosis as well as inhibiting tumor angiogenesis. The effects of Ang-(1-7) on tumor proliferation and apoptosis were reversed by coadministration with A779 or PD123319, whereas the effects on tumor angiogenesis were completely reversed by A779 but not by PD123319. Moreover, Ang-(1-7) downregulated AT1R mRNA, upregulated mRNA levels of Ang II type 2 receptor (AT2R) and Mas receptor (MasR) and p38-MAPK phosphorylation and suppressed H22 cell-endothelial cell communication. Thus, Ang-(1-7) administration suppresses hepatocellular carcinoma via complex interactions of AT1R, AT2R and MasR and may provide a novel and promising approach for the treatment of hepatocellular carcinoma.

  14. Targeting fibroblast growth factor receptor signaling in hepatocellular carcinoma.

    PubMed

    Cheng, Ann-Lii; Shen, Ying-Chun; Zhu, Andrew X

    2011-01-01

    Hepatocellular carcinoma (HCC) is the primary type of liver cancer, and both the age-adjusted incidence and mortality of HCC have steadily increased in recent years. Advanced HCC is associated with a very poor survival rate. Despite accumulating data regarding the risk factors for HCC, the mechanisms that contribute to HCC tumorigenesis remain poorly understood. Signaling through the fibroblast growth factor (FGF) family is involved in fibrosis and its progression to cirrhosis of the liver, which is a risk factor for the development of HCC. Furthermore, several alterations in FGF/FGF receptor (FGFR) signaling correlate with the outcomes of HCC patients, suggesting that signaling through this family of proteins contributes to the development or progression of HCC tumors. Currently, there are no established systemic treatments for patients with advanced HCC in whom sorafenib treatment has failed or who were unable to tolerate it. Recently, several multikinase inhibitors that target FGFRs have demonstrated some early evidence of antitumor activity in phase I/II trials. Therefore, this review discusses the molecular implications of FGFR-mediated signaling in HCC and summarizes the clinical evidence for novel FGFR-targeted therapies for HCC currently being studied in clinical trials.

  15. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    SciTech Connect

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Yang, Yang; Yang, Hua

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. Black-Right-Pointing-Pointer The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. Black-Right-Pointing-Pointer GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. Black-Right-Pointing-Pointer GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.

  16. Effect of gonadotropin-releasing hormone II receptor (GnRHR-II) knockdown on testosterone secretion in the boar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unlike the classical gonadotropin-releasing hormone (GnRH-I), the second mammalian GnRH isoform (GnRH-II; His5, Trp7, Tyr8) is a poor stimulator of gonadotropin secretion. In addition, GnRH-II is ubiquitously expressed, with transcript levels highest in tissues outside of the brain. A receptor speci...

  17. Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis.

    PubMed Central

    Sankar, S; Mahooti-Brooks, N; Bensen, L; McCarthy, T L; Centrella, M; Madri, J A

    1996-01-01

    Microvascular endothelial cells (RFCs) cultured in two-dimensional (2D) cultures proliferate rapidly and exhibit an undifferentiated phenotype. Addition of transforming growth factor beta1 (TGFbeta1) increases fibronectin expression and inhibits proliferation. RFCs cultured in three-dimensional (3D) type I collagen gels proliferate slowly and are refractory to the anti-proliferative effects of TGF beta1. TGF beta1 promotes tube formation in 3D cultures. TGF beta1 increases fibronectin expression and urokinase plasminogen activator (uPA) activity and plasminogen activator inhibitor-1 (PAI-1) levels in 3D cultures. Since the TGF beta type I and II receptors have been reported to regulate different activities induced by TGF beta1, we compared the TGF beta receptor profiles on cells in 2D and 3D cultures. RFCs in 3D cultures exhibited a significant loss of cell surface type II receptor compared with cells in 2D cultures. The inhibitory effect of TGF beta1 on proliferation is suppressed in transfected 2D cultures expressing a truncated form of the type II receptor, while its stimulatory effect on fibronectin production is reduced in both 2D and 3D transfected cultures expressing a truncated form of the type I receptor. These data suggest that the type II receptor mediates the antiproliferative effect of TGF beta1 while the type I receptor mediates the matrix response of RFCs to TGF beta1 and demonstrate that changes in the matrix environment can modulate the surface expression of TGF beta receptors, altering the responsiveness of RFCs to TGF beta1. PMID:8617876

  18. Combination of ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) and the epidermal growth factor receptor inhibitor erlotinib results in efficient angiostatic and antitumor activity

    PubMed Central

    Berndsen, Robert H.; Weiss, Andrea; Abdul, U. Kulsoom; Wong, Tse J.; Meraldi, Patrick; Griffioen, Arjan W.; Dyson, Paul J.; Nowak-Sliwinska, Patrycja

    2017-01-01

    Ruthenium-based compounds show strong potential as anti-cancer drugs and are being investigated as alternatives to other well-established metal-based chemotherapeutics. The organometallic compound [Ru(η6-p-cymene)Cl2(pta)], where pta = 1,3,5-triaza-7-phosphaadamantane (RAPTA-C) exhibits broad acting anti-tumor efficacy with intrinsic angiostatic activity. In the search for an optimal anti-angiogenesis drug combination, we identified synergistic potential between RAPTA-C and the epidermal growth factor receptor (EGFR) inhibitor, erlotinib. This drug combination results in strong synergistic inhibition of cell viability in human endothelial (ECRF24 and HUVEC) and human ovarian carcinoma (A2780 and A2780cisR) cells. Additionally, erlotinib significantly enhances the cellular uptake of RAPTA-C relative to treatment with RAPTA-C alone in human ovarian carcinoma cells, but not endothelial cells. Drug combinations induce the formation of chromosome bridges that persist after mitotic exit and delay abscission in A2780 and A2780cisR, therefore suggesting initiation of cellular senescence. The therapeutic potential of these compounds and their combination is further validated in vivo on A2780 tumors grown on the chicken chorioallantoic membrane (CAM) model, and in a preclinical model in nude mice. Immunohistochemical analysis confirms effective anti-angiogenic and anti-proliferative activity in vivo, based on a significant reduction of microvascular density and a decrease in proliferating cells. PMID:28223694

  19. Group II metabotropic glutamate receptors modify N-methyl-D-aspartate receptors via Src kinase

    PubMed Central

    Trepanier, Catherine; Lei, Gang; Xie, Yu-Feng; MacDonald, John F.

    2013-01-01

    Group II metabotropic glutamate receptors (mGluR2/3) have emerged as important targets for the treatment of schizophrenia. Since hypofunction of N-methyl-D-aspartate receptors (NMDARs) has also been implicated in the etiology of schizophrenia, we examined whether postsynaptic mGluR2/3 regulate NMDAR function. Activation of mGluR2/3 significantly decreased the ratio of AMPA-to-NMDA excitatory postsynaptic currents at Schaffer Collateral-CA1 synapses and enhanced the peak of NMDA-evoked currents in acutely isolated CA1 neurons. The mGluR2/3-mediated potentiation of NMDAR currents was selective for GluN2A-containing NMDARs and was mediated by the Src family kinase Src. Activation of mGluR2/3 inhibited the adenylyl cyclase-cAMP-PKA pathway and thereby activated Src by inhibiting its regulatory C-terminal Src kinase (Csk). We suggest a novel model of regulation of NMDARs by Gi/o-coupled receptors whereby inhibition of the cAMP-PKA pathway via mGluR2/3 activates Src kinase and potentiates GluN2A-containing NMDAR currents. This represents a potentially novel mechanism to correct the hypoglutamatergic state found in schizophrenia. PMID:23378895

  20. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage.

    PubMed

    Villapol, Sonia; Balarezo, María G; Affram, Kwame; Saavedra, Juan M; Symes, Aviva J

    2015-11-01

    See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and

  1. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage

    PubMed Central

    Balarezo, María G.; Affram, Kwame; Saavedra, Juan M.; Symes, Aviva J.

    2015-01-01

    See Moon (doi:10.1093/awv239) for a scientific commentary on this article. Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan’s blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking

  2. Testis composition and steroidogenic protein abundance in GnRH-II receptor knockdown boars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Testosterone, secreted from Leydig cells, is classically stimulated by luteinizing hormone (LH) from the anterior pituitary gland, but an LH-independent mechanism of testosterone production has also been identified in the boar. Gonadotropin-releasing hormone II (GnRH-II) and its receptor (GnRHR-II) ...

  3. Inclusion of Strep-Tag II in design of antigen receptors for T cell immunotherapy

    PubMed Central

    Liu, Lingfeng; Sommermeyer, Daniel; Cabanov, Alexandra; Kosasih, Paula; Hill, Tyler; Riddell, Stanley R

    2016-01-01

    The tactical introduction of Strep-tag II into synthetic antigen receptors provides engineered T cells with a marker for identification and rapid purification, and a functional element for selective antibody coated microbead-driven large-scale expansion. Such receptor designs can be applied to chimeric antigen receptors of different ligand specificities and costimulatory domains, and to T cell receptors to facilitate cGMP manufacturing of adoptive T cell therapies to treat cancer and other diseases. PMID:26900664

  4. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  5. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors.

    PubMed Central

    Hatva, E.; Kaipainen, A.; Mentula, P.; Jääskeläinen, J.; Paetau, A.; Haltia, M.; Alitalo, K.

    1995-01-01

    Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7856749

  6. Blockade of Urotensin II Receptor Prevents Vascular Dysfunction

    PubMed Central

    Kim, Young-Ae; Lee, Dong Gil; Yi, Kyu Yang; Lee, Byung Ho; Jung, Yi-Sook

    2016-01-01

    Urotensin II (UII) is a potent vasoactive peptide and mitogenic agent to induce proliferation of various cells including vascular smooth muscle cells (VSMCs). In this study, we examined the effects of a novel UII receptor (UT) antagonist, KR-36676, on vasoconstriction of aorta and proliferation of aortic SMCs. In rat aorta, UII-induced vasoconstriction was significantly inhibited by KR-36676 in a concentration-dependent manner. In primary human aortic SMCs (hAoSMCs), UII-induced cell proliferation was significantly inhibited by KR-36676 in a concentration-dependent manner. In addition, KR-36676 decreased UII-induced phosphorylation of ERK, and UII-induced cell proliferation was also significantly inhibited by a known ERK inhibitor U0126. In mouse carotid ligation model, intimal thickening of carotid artery was dramatically suppressed by oral treatment with KR-36676 (30 mg/ kg/day) for 4 weeks compared to vehicle-treated group. From these results, it is indicated that KR-36676 suppress UII-induced proliferation of VSMCs at least partially through inhibition of ERK activation, and that it also attenuates UII-induced vasoconstriction and vascular neointima formation. Our study suggest that KR-36676 may be an attractive candidate for the pharmacological management of vascular dysfunction. PMID:27582556

  7. Purkinje cells express Angiotensin II AT(2) receptors at different developmental stages.

    PubMed

    Arce, María E; Sánchez, Susana I; Aguilera, Francisco López; Seguin, Leonardo R; Seltzer, Alicia M; Ciuffo, Gladys M

    2011-02-01

    Angiotensin II (Ang II) binds and activates two major receptors subtypes, namely AT(1) and AT(2). In the fetus, AT(2) receptors predominate in all tissues and decline shortly after birth, being restricted to a few organs including brain. Interpretation of the function of Ang II in the cerebellum requires a thorough understanding of the localization of Ang II receptors. The aim of the present paper is to evaluate the localization of Ang II AT(2) receptors in the Purkinje cell (PC) layer during development. By binding autoradiography, a clear complementary pattern of AT(1) and AT(2) binding labeled by [(125)I] Ang II was observed in young rats within the cerebellar cortex. This pattern was present at the stages P8 and P15, but not at P30 and P60, where AT(2) binding appears low and superimposed with AT(1) binding. We demonstrate that AT(2) antibodies recognized postmitotic Purkinje cells, labeling the somata of these cells at all the stages studied, from P8 to P60, suggesting that PCs express these receptors from early stages of development until adulthood. In P8 and P15 animals, we observed a clear correspondence between immunolabeling and the well-defined layer observed by binding autoradiography. Confocal analysis allowed us to discard the co-localization of AT(2) receptors with glial fibrillary acidic protein (GFAP), a glial marker. Double immunolabeling allowed us to demonstrate the co-localization of Ang II AT(2) receptors with zebrin II, a specific PC marker. Since PCs are the sole output signal from the cerebellar cortex and considering the role of cerebellum in movement control, the specific receptor localization suggests a potential role for Ang II AT(2) receptors in the cerebellar function.

  8. Inhibition of prolyl hydroxylase domain-containing protein downregulates vascular angiotensin II type 1 receptor.

    PubMed

    Matsuura, Hirohide; Ichiki, Toshihiro; Ikeda, Jiro; Takeda, Kotaro; Miyazaki, Ryohei; Hashimoto, Toru; Narabayashi, Eriko; Kitamoto, Shiro; Tokunou, Tomotake; Sunagawa, Kenji

    2011-09-01

    Inhibition of prolyl hydroxylase domain-containing protein (PHD) by hypoxia stabilizes hypoxia-inducible factor 1 and increases the expression of target genes, such as vascular endothelial growth factor. Although the systemic renin-angiotensin system is activated by hypoxia, the role of PHD in the regulation of the renin-angiotensin system remains unknown. We examined the effect of PHD inhibition on the expression of angiotensin II type 1 receptor (AT(1)R). Hypoxia, cobalt chloride, and dimethyloxalylglycine, all known to inhibit PHD, reduced AT(1)R expression in vascular smooth muscle cells. Knockdown of PHD2, a major isoform of PHDs, by RNA interference also reduced AT(1)R expression. Cobalt chloride diminished angiotensin II-induced extracellular signal-regulated kinase phosphorylation. Cobalt chloride decreased AT(1)R mRNA through transcriptional and posttranscriptional mechanisms. Oral administration of cobalt chloride (14 mg/kg per day) to C57BL/6J mice receiving angiotensin II infusion (490 ng/kg per minute) for 4 weeks significantly attenuated perivascular fibrosis of the coronary arteries without affecting blood pressure level. These data suggest that PHD inhibition may be beneficial for the treatment of cardiovascular diseases by inhibiting renin-angiotensin system via AT(1)R downregulation.

  9. CD95 death receptor and epidermal growth factor receptor (EGFR) in liver cell apoptosis and regeneration.

    PubMed

    Reinehr, Roland; Häussinger, Dieter

    2012-02-01

    Recent evidence suggests that signaling pathways towards cell proliferation and cell death are much more interconnected than previously thought. Whereas not only death receptors such as CD95 (Fas, APO-1) can couple to both, cell death and proliferation, also growth factor receptors such as the epidermal growth factor receptor (EGFR) are involved in these opposing kinds of cell fate. EGFR is briefly discussed as a growth factor receptor involved in liver cell proliferation during liver regeneration. Then the role of EGFR in activating CD95 death receptor in liver parenchymal cells (PC) and hepatic stellate cells (HSC), which represent a liver stem/progenitor cell compartment, is described summarizing different ways of CD95- and EGFR-dependent signaling in the liver. Here, depending on the hepatic cell type (PC vs. HSC) and the respective signaling context (sustained vs. transient JNK activation) CD95-/EGFR-mediated signaling ends up in either liver cell apoptosis or cell proliferation.

  10. Development of the epidermal growth factor receptor inhibitor OSI-774.

    PubMed

    Grünwald, Viktor; Hidalgo, Manuel

    2003-06-01

    The epidermal growth factor receptor (EGFR) is a transmembrane receptor involved in the regulation of a complex array of essential biological processes such as cell proliferation and survival. Dysregulation of the EGFR signaling network has been frequently reported in multiple human cancers and has been associated with the processes of tumor development, growth, proliferation, metastasis, and angiogenesis. Inhibition of the EGFR was associated with antitumor effects in preclinical models. On the basis of these data, therapeutics targeting the EGFR were explored in clinical trials. OSI-774 is a small-molecule selective inhibitor of the EGFR tyrosine kinase. In preclinical studies, OSI-774 inhibited the phosphorylation of the EGFR in a dose-dependent and concentration-dependent manner resulting in cell cycle arrest and induction of apoptosis. In in vivo studies, this agent caused tumor growth inhibition and showed synergistic effects when combined with conventional chemotherapy. Subsequent single-agent phase I studies and phase I studies in combination with chemotherapy showed that the agent has a good safety profile and induced tumor growth inhibition in a substantial number of patients with a variety of different solid tumors. Preliminary reports from phase II studies confirmed the excellent tolerability of OSI-774 and showed encouraging preliminary activity. Phase III studies have either been completed or are ongoing in several tumor types such as lung cancer and pancreatic cancer. In summary, OSI-774 is a novel inhibitor of the EGFR tyrosine kinase that has shown promising activity in initial studies and is currently undergoing full development as an anticancer drug.

  11. Angiotensin II activates endothelial constitutive nitric oxide synthase via AT1 receptors.

    PubMed

    Saito, S; Hirata, Y; Emori, T; Imai, T; Marumo, F

    1996-09-01

    To determine whether angiotensin (ANG) II, a vasoconstrictor hormone, activates constitutive nitric oxide synthase (cNOS) in endothelial cells (ECs), we investigated the cellular mechanism by which ANG II induces nitric oxide (NO) formation in cultured bovine ECs. ANG II rapidly (within 1 min) and dose-dependently (10(-9)-10(-6) M) increased nitrate/nitrite (NOx) production. This effect of ANG II was abolished by a NOS inhibitor, NG-monomethyl-L-arginine. An ANG II type 1 (AT1) receptor antagonist (DuP 753), but not an ANG II type 2 (AT2) receptor antagonist (PD 123177), dose-dependently inhibited ANG II-induced NOx production. A Ca(2+)-channel blocker (barnidipine) failed to affect ANG II-induced NOx production, whereas an intracellular Ca2+ chelator (BAPTA) and a calmodulin inhibitor (W-7) abolished NOx production induced by ANG II. A protein kinase C (PKC) inhibitor (H-7) and down-regulation of endogenous PKC after pretreatment with phorbol ester decreased NOx production stimulated by ANG II. ANG II transiently stimulated inositol 1,4,5-trisphosphate (IP3) formation, and increased cytosolic free Ca2+ concentrations; these effects were blocked by DuP 753. Our data demonstrate that ANG II stimulates NO release by activation of Ca2+/calmodulin-dependent cNOS via AT1 receptors in bovine ECs.

  12. Calix receptor edifice; scrupulous turn off fluorescent sensor for Fe(III), Co(II) and Cu(II).

    PubMed

    Bhatt, Keyur D; Gupte, Hrishikesh S; Makwana, Bharat A; Vyas, Disha J; Maity, Debdeep; Jain, Vinod K

    2012-11-01

    Novel Supramolecular fluorescence receptor derived from calix-system i.e. calix[4]resorcinarene bearing dansylchloride as fluorophore was designed and synthesized. The compound was purified by column chromatography and characterized by elemental analysis, NMR and Mass spectroscopy. Tetradansylated calix[4] resorcinarene (TDCR) shows a boat conformation with C(2)v symmetry. The complexation behaviour of metal cations [Ag(I), Cd(II), Co(II), Fe(III), Hg(II), Cu(II), Pb(II), Zn(II), U(VI) (1 × 10(-4) M)] with tetra dansylated calix[4]resorcinarene (1 × 10(-6) M) was studied by spectophotometry and spectrofluorometry. Red shift in the absorption spectra led us to conclude that there is strong complexation Fe(III), Co(II) and Cu(II) with TDCR. These metal cations also produce quenching with red shifts in the emission spectra. The maximum quenching in emission intensity was observed in the case of Fe(III) and its binding constant was also found to be significantly higher than that of Co(II) and Cu(II). Quantum yield of metal complexes of Fe(III) was found to be lower in comparison with Co(II) and Cu(II) complexes. Stern Volmer analysis indicates that the mechanism of fluorescence quenching is either purely dynamic, or purely static.

  13. The BDI-II factor structure in pregnancy and postpartum: Two or three factors?

    PubMed

    Carvalho Bos, Sandra; Pereira, Ana Telma; Marques, Mariana; Maia, Berta; Soares, Maria João; Valente, José; Gomes, Ana; Macedo, António; Azevedo, Maria Helena

    2009-06-01

    The purpose of the present study was to investigate the factor structure of the Beck Depression Inventory-II (BDI-II) in pregnancy and postpartum. Women were asked to fill in the BDI-II in their last trimester of pregnancy and at 3 months after delivery. A total of 331 pregnant women, with a mean age of 29.7 years (SD=4.6), and 354 mothers, aged 30.6 years (SD=4.6 years), answered the BDI-II. The first group was mainly nulliparas (65.6%) and the second group was mostly primiparas (57.4%). Factor analyses with principal components solution and varimax rotation were performed. Based on the scree test of Cattell a 2-factor solution and a 3-factor solution were explored. The 2-factor solution was identical in pregnancy and postpartum. Items loading in the Cognitive-Affective factor and in the Somatic-Anxiety factor were almost the same, though the Cognitive-Affective factor explained more of the BDI-II total variance in pregnancy, whereas in postpartum both factors explained similar total variances. The 3-factor solution of the BDI-II in pregnancy and postpartum slightly diverged. Besides the Cognitive-Affective and the Somatic-Anxiety factors, a third factor, Fatigue, was obtained in pregnancy while Guilt was the third factor identified in postpartum. This study reveals that the BDI-II 3-factor solution might be more appropriate to assess depressive symptoms in pregnancy and postpartum.

  14. Randomized Phase II Study of Dacomitinib (PF-00299804), an Irreversible Pan–Human Epidermal Growth Factor Receptor Inhibitor, Versus Erlotinib in Patients With Advanced Non–Small-Cell Lung Cancer

    PubMed Central

    Ramalingam, Suresh S.; Blackhall, Fiona; Krzakowski, Maciej; Barrios, Carlos H.; Park, Keunchil; Bover, Isabel; Seog Heo, Dae; Rosell, Rafael; Talbot, Denis C.; Frank, Richard; Letrent, Stephen P.; Ruiz-Garcia, Ana; Taylor, Ian; Liang, Jane Q.; Campbell, Alicyn K.; O'Connell, Joseph; Boyer, Michael

    2012-01-01

    Purpose This randomized, open-label trial compared dacomitinib (PF-00299804), an irreversible inhibitor of human epidermal growth factor receptors (EGFR)/HER1, HER2, and HER4, with erlotinib, a reversible EGFR inhibitor, in patients with advanced non–small-cell lung cancer (NSCLC). Patients and Methods Patients with NSCLC, Eastern Cooperative Oncology Group performance status 0 to 2, no prior HER-directed therapy, and one/two prior chemotherapy regimens received dacomitinib 45 mg or erlotinib 150 mg once daily. Results One hundred eighty-eight patients were randomly assigned. Treatment arms were balanced for most clinical and molecular characteristics. Median progression-free survival (PFS; primary end point) was 2.86 months for patients treated with dacomitinib and 1.91 months for patients treated with erlotinib (hazard ratio [HR] = 0.66; 95% CI, 0.47 to 0.91; two-sided P = .012); in patients with KRAS wild-type tumors, median PFS was 3.71 months for patients treated with dacomitinib and 1.91 months for patients treated with erlotinib (HR = 0.55; 95% CI, 0.35 to 0.85; two-sided P = .006); and in patients with KRAS wild-type/EGFR wild-type tumors, median PFS was 2.21 months for patients treated with dacomitinib and 1.84 months for patients treated with erlotinib (HR = 0.61; 95% CI, 0.37 to 0.99; two-sided P = .043). Median overall survival was 9.53 months for patients treated with dacomitinib and 7.44 months for patients treated with erlotinib (HR = 0.80; 95% CI, 0.56 to 1.13; two-sided P = .205). Adverse event-related discontinuations were uncommon in both arms. Common treatment-related adverse events were dermatologic and gastrointestinal, predominantly grade 1 to 2, and more frequent with dacomitinib. Conclusion Dacomitinib demonstrated significantly improved PFS versus erlotinib, with acceptable toxicity. PFS benefit was observed in most clinical and molecular subsets, notably KRAS wild-type/EGFR any status, KRAS wild-type/EGFR wild-type, and EGFR mutants

  15. The insulin-like growth factor 1 receptor in cancer: old focus, new future.

    PubMed

    Hartog, Hermien; Wesseling, Jelle; Boezen, H Marike; van der Graaf, Winette T A

    2007-09-01

    The importance of insulin-like growth factor 1 receptor (IGF-1R) signalling in malignant behaviour of tumour cells is well established. Currently, development of drugs targeting the IGF-1R as anticancer treatment is emerging. Several IGF-1R targeting strategies are being investigated in phases I and II clinical trials. Interactions of IGF-1R with insulin receptor, however, might complicate efficiency and tolerability of such drugs. This review describes mechanisms, recent developments and potential limitations of IGF-1R antibodies and tyrosine kinase inhibitors.

  16. Angiotensin II type 1 receptor A1166C gene polymorphism and essential hypertension in San Luis.

    PubMed

    Lapierre, Alicia Viviana; Arce, Maria Elena; Lopez, José Raul; Ciuffo, Gladys María

    2006-12-01

    Essential hypertension is considered a multifactorial trait resulting from a combination of environmental and genetic factors. The angiotensin II type 1 receptor mediates the vasoconstrictor and growth-promoting effects of Ang II. The A1166C polymorphism of the AT1 receptor gene may be associated with cardiovascular phenotypes, such as high arterial blood pressure, aortic stiffness, and increased cardiovascular risk. We investigated the association between this A1166C polymorphism and hypertension in hypertense and normotense subjects from San Luis (Argentina) by mismatch PCR-RFLP analysis. Hypertense patients exhibited significant increases in lipid related values and body mass index. The frequency of occurrence of the C1166 allele was higher among patients with hypertension (0.19) than in the control group (0.06). No significant association was found between this polymorphism and essential hypertension in the study population, although the AC genotype prevalence was higher in patients with hypertension and positive family history of hypertension (32%) than in control subjects (12%). Patients with the A1166C polymorphism exhibited higher levels of serum total cholesterol, LDL-cholesterol and BMI than in control subjects. Taken together the genotype and biochemical parameters and considering the restrictive selection criteria used, the present results suggest a correlation between AT1 A1166C gene polymorphism and risk of cardiovascular disease.

  17. [Ca{sup 2+}]{sub i} and PKC-{alpha} are involved in the inhibitory effects of Ib, a novel nonpeptide AngiotensinII subtype AT{sub 1} receptor antagonist, on AngiotensinII-induced vascular contraction in vitro

    SciTech Connect

    Wang Yu; Wang Wei; Wang Qiujuan Wu Jinhui; Xu Jinyi; Wu Xiaoming

    2007-12-07

    The vasoactive peptide AngiotensinII (AngII) is an important factor in the cardiovascular system, exerting most of its effects through AngII receptor type 1 (AT{sub 1}). Ib, a new nonpeptide AT{sub 1} receptor antagonist, has been observed to play a positive role in the treatment of hypertension in preclinical tests. In this study, the inhibitory effects of Ib on AngII-induced vascular contraction in vitro were investigated, and its molecular mechanisms were further explored. In endothelium-denuded aortic rings from rabbits, Ib produced a rightward shift in the concentration-response curve for AngII with a decrease in the maximal contractile response and the pD{sub 2}{sup '} was 7.29. In vascular smooth muscle cells (VSMCs), the specific binding of [{sup 125}I]AngII to AT{sub 1} receptors was inhibited by Ib in a concentration-dependent manner with IC{sub 50} value of 0.96 nM. Ib could inhibit both AngII-induced Ca{sup 2+} mobilization from internal stores and Ca{sup 2+} influx. Moreover, the translocation of PKC-{alpha} stimulated by AngII was inhibited by Ib. Thus, the inhibitory effects of Ib might be related with the depression on AngII-induced increase in [Ca{sup 2+}]{sub i} and translocation of PKC-{alpha} through blocking AT{sub 1} receptors.

  18. Self-assembly of dinuclear Pd(ii)/Pt(ii) metallacyclic receptors incorporating N-heterocyclic carbene complexes as corners.

    PubMed

    Marcos, Ismael; Domarco, Olaya; Peinador, Carlos; Fenández, Alberto; Fernández, Jesús J; Vázquez-García, Digna; García, Marcos D

    2017-03-07

    We report herein the self-assembly of a series of new square and rectangular-shaped dinuclear M2L2 metallacycles (M = Pd(ii)/Pt(ii)), receptors self-assembled in water from four different N-monoalkyl-4,4'-bipyridinium derivatives as ligands and square-planar Pd(ii) and Pt(ii) metal centers having the chelating N-heterocyclic carbene 1,1'-di(methyl)-3,3'-methylene-4-diimidazolin-2,2'-diylidene. The concentration-dependent Pd2L2 metallacycles were successfully obtained and characterized by means of NMR experiments in aqueous media. Due to the strong trans effect exerted by the carbene ligands, the synthesis of the Pt2L2 receptors was achieved as well by self-assembly of the components at room temperature in a few hours, in clear contraposition to the harsh reaction conditions usually required for the labilization of other kinetically inert Pt(ii)-N(pyridine) bonds. X-ray diffraction studies of suitable single crystals of two of the obtained receptors offered additional information on the structure of the obtained supramolecules, whose ability as receptors has been explored by the preparation and study of the corresponding inclusion complexes in water with 1,5-dihydroxynaphthalene as the model substrate.

  19. Differential expression of anti-Müllerian hormone (amh) and anti-Müllerian hormone receptor type II (amhrII) in the teleost medaka.

    PubMed

    Klüver, Nils; Pfennig, Frank; Pala, Irene; Storch, Katja; Schlieder, Marlen; Froschauer, Alexander; Gutzeit, Herwig O; Schartl, Manfred

    2007-01-01

    In mammals, the anti-Müllerian hormone (Amh) is responsible for the regression of the Müllerian ducts; therefore, Amh is an important factor of male sex differentiation. The amh gene has been cloned in various vertebrates, as well as in several teleost species. To date, all described species show a sexually dimorphic expression of amh during sex differentiation or at least in differentiated juvenile gonads. We have identified the medaka amh ortholog and examined its expression pattern. Medaka amh shows no sexually dimorphic expression pattern. It is expressed in both developing XY male and XX female gonads. In adult testes, amh is expressed in the Sertoli cells and in adult ovaries in granulosa cells surrounding the oocytes, like in mammals. To better understand the function of amh, we cloned the anti-Müllerian hormone receptor type II (amhrII) ortholog and compared its expression pattern with amh, aromatase (cyp19a1), and scp3. During gonad development, amhrII is coexpressed with medaka amh in somatic cells of the gonads and shows no sexually dimorphic expression. Only the expression level of the Amh type II receptor gene was decreased noticeably in adult female gonads. These results suggest that medaka Amh and AmhrII are involved in gonad formation and maintenance in both sexes.

  20. Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release.

    PubMed

    Kalinowski, Leszek; Matys, Tomasz; Chabielska, Ewa; Buczko, Włodzimierz; Malinski, Tadeusz

    2002-10-01

    This study investigated the process of nitric oxide (NO) release from platelets after stimulation with different angiotensin II type 1 (AT1)-receptor antagonists and its effect on platelet adhesion and aggregation. Angiotensin II AT1-receptor antagonist-stimulated NO release in platelets was compared with that in human umbilical vein endothelial cells by using a highly sensitive porphyrinic microsensor. In vitro and ex vivo effects of angiotensin II AT1-receptor antagonists on platelet adhesion to collagen and thromboxane A2 analog U46619-induced aggregation were evaluated. Losartan, EXP3174, and valsartan alone caused NO release from platelets and endothelial cells in a dose-dependent manner in the range of 0.01 to 100 micro mol/L, which was attenuated by NO synthase inhibitor N(G)-nitro-L-arginine methyl ester. The angiotensin II AT1-receptor antagonists had more than 70% greater potency in NO release in platelets than in endothelial cells. The degree of inhibition of platelet adhesion (collagen-stimulated) and aggregation (U46619-stimulated) elicited by losartan, EXP3174, and valsartan, either in vitro or ex vivo, closely correlated with the NO levels produced by each of these drugs alone. The inhibiting effects of angiotensin II AT1-receptor antagonists on collagen-stimulated adhesion and U46619-stimulated aggregation of platelets were significantly reduced by pretreatment with N(G)-nitro-L-arginine methyl ester. Neither the AT2 receptor antagonist PD123319, the cyclooxygenase synthase inhibitor indomethacin, nor the selective thromboxane A2/prostaglandin H2 receptor antagonist SQ29,548 had any effect on angiotensin II AT1-receptor antagonist-stimulated NO release in platelets and endothelial cells. The presented studies clearly indicate a crucial role of NO in the arterial antithrombotic effects of angiotensin II AT1-receptor antagonists.

  1. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  2. Factoring handedness data: II. Geschwind's multidimensional hypothesis.

    PubMed

    Messinger, H B; Messinger, M I

    1996-06-01

    The challenge in this journal by Peters and Murphy to the validity of two published factor analyses of handedness data because of bimodality was dealt with in Part I by identifying measures to normalize the handedness item distributions. A new survey using Oldfield's questionnaire format had 38 bell-shaped (unimodal) handedness-item distributions and 11 that were only marginally bimodal out of the 55 items used in Geschwind's 1986 study. Yet they were still non-normal and the factor analysis was unsatisfactory; bimodality is not the only problem. By choosing a transformation for each item that was optimal as assessed by D'Agostino's K2 statistic, all but two items could be normalized. Seven factors were derived that showed high congruence between maximum likelihood and principal components extractions before and after varimax rotation. Geschwind's assertion that handedness is not unidimensional is therefore supported.

  3. Quantitative autoradiography of angiotensin II receptors in brain and kidney: focus on cardiovascular implications

    SciTech Connect

    Gehlert, D.R.; Speth, R.C.; Wamsley, J.K.

    1985-01-01

    Quantitative techniques of receptor autoradiography have been applied to localize (/sup 125/I)-angiotensin II binding sites in brain and kidney. High densities of autoradiographic grains, indicating the presence of angiotensin II receptors, have been localized to several rat brain nuclei including the dorsal motor nucleus of the vagus, nucleus of the solitary tract, anterior pituitary, locus coeruleus and several hypothalamic nuclei. Cat thoracic spinal cord exhibited a high density of sites over the intermedio-lateral cell column. In sections of rat kidney, angiotensin II receptors were detected in the glomerulus, vasa recta and ureter. The cardiovascular implications of these results are apparent and relate angiotensin II to hypertensive mechanisms. Thus, angiotensin II represents an endocoid which is involved in control of blood pressure through its effects on peripheral organs as well as the central nervous system.

  4. The role of angiotensin II type 1 receptor antagonists in elderly patients with hypertension.

    PubMed

    Thomas, G Neil; Chan, Paul; Tomlinson, Brian

    2006-01-01

    Hypertension is a major risk factor for stroke and coronary events in elderly people and clinical trials have shown that treatment of hypertension with various drugs can result in a substantial reduction in cerebrovascular and cardiovascular events. The angiotensin II type 1 (AT1) receptor antagonists are the newest class of antihypertensive agents to be used widely in clinical practice. AT1 receptor antagonists can generally be given once-daily. They are also extremely well tolerated with minimal first-dose hypotension and an incidence of adverse effects similar to that seen with placebo. Adverse event rates are significantly lower than with other classes of antihypertensive drugs including ACE inhibitors. These factors result in improved compliance and increased rates of continuance on therapy. AT1 receptor antagonists show similar efficacy in lowering blood pressure to other classes of antihypertensive agents and their antihypertensive effect is potentiated when they are given concomitantly with low-dose thiazide diuretics. AT1 receptor antagonists are eliminated predominantly by the hepatic route but most are not subject to extensive metabolism and interactions with other drugs are uncommon. This is an advantage in the elderly, who are often receiving multiple medications which increases the risk for adverse drug interactions. Dose adjustments are not usually required in the elderly unless there is plasma volume depletion. Although plasma AT1 receptor antagonist concentrations are generally higher in the elderly than in younger subjects, this pharmacokinetic difference may be balanced by decreased activation of the circulating renin-angiotensin-aldosterone system in the elderly. Recent clinical studies in high-risk hypertensive patients with left ventricular hypertrophy or in patients with diabetic nephropathy or heart failure have demonstrated that AT1 receptor antagonists can improve clinical outcomes to a similar or sometimes greater extent than other

  5. The epidermal growth factor receptor family: Biology driving targeted therapeutics

    PubMed Central

    Wieduwilt, M. J.; Moasser, M. M.

    2011-01-01

    The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in regulating cell proliferation, survival, differentiation and migration. The ErbB receptors carry out both redundant and restricted functions in mammalian development and in the maintenance of tissues in the adult mammal. Loss of regulation of the ErbB receptors underlies many human diseases, most notably cancer. Our understanding of the function and complex regulation of these receptors has fueled the development of targeted therapeutic agents for human malignancies in the last 15 years. Here we review the biology of ErbB receptors, including their structure, signaling, regulation, and roles in development and disease, then briefly touch on their increasing roles as targets for cancer therapy. PMID:18259690

  6. Expression of growth factor and receptor mRNAs in skin epithelial cells following acute cutaneous injury.

    PubMed Central

    Antoniades, H. N.; Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C. P.; Lynch, S. E.

    1993-01-01

    We report that acute injury induces the expression of selective growth factor and growth factor receptors in the epithelial cells of the wounded tissue. In situ hybridization analysis of skin biopsy specimens obtained after cutaneous injury in swine demonstrated the induction of the expression of transforming growth factor-alpha, its receptor, epidermal growth factor-R, acidic fibroblast growth factor, and basic fibroblast growth factor messenger RNAs in the skin epithelial cells of the wounded tissue. There was no significant expression in the epithelial cells of control, uninjured tissues. The expression levels were maximal during the period of active tissue repair (1 to 5 days after injury) and were totally suppressed upon the healing of the wounded tissues. In contrast, insulinlike growth factor-I, (IGF-I), IGF-I receptor, and IGF-II receptor messenger RNAs were expressed in the epithelial cells of both the control, uninjured tissues and in tissue specimens obtained after injury. There was no significant expression of IGF-II messenger RNA in the epithelial cells before or after injury. It seems that injury induces the coordinated expression of selective growth factor and growth factor receptor genes whose products contribute to the regulation of the complex processes involved in tissue repair and remodeling. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8386442

  7. The Angiotensin II Type 2 Receptor in Brain Functions: An Update

    PubMed Central

    Guimond, Marie-Odile; Gallo-Payet, Nicole

    2012-01-01

    Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor. PMID:23320146

  8. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats

    PubMed Central

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Garner, Ron E; McKallip, Robert J; Zhao, Zhi-Qing

    2015-01-01

    Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II) receptors and angiotensin-converting enzyme 2 (ACE2). Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min) using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day) was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1) receptor was reduced, and the Ang II type 2 (AT2) receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02%) vs in the Ang II group (0.7±0.03%, P<0.05). These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was inhibited, and tissue fibrosis was attenuated, as demonstrated by less extensive collagen-rich fibrosis. Furthermore, curcumin increased protein level of ACE2 and enhanced its expression in the intermyocardium relative to the Ang II group. These results suggest that curcumin could be considered as an add-on therapeutic agent in the treatment of fibrosis-derived heart failure patient who is intolerant of ACE inhibitor therapy. PMID:26648693

  9. Mechanism of adrenal angiotensin II receptor changes after nephrectomy in rats.

    PubMed Central

    Douglas, J G

    1981-01-01

    At 48 h after bilateral nephrectomy in rats there is a two- to threefold increase in the number of adrenal angiotensin II receptors and a decrease in Kd of smooth muscle angiotensin II receptors. These changes have been attributed to the absence of circulating angiotensin II. Serum K+, which increases after nephrectomy may be an important and overlooked modulator. Therefore, the present experiments were designed to assess the role of K+ as a regulator of angiotensin II receptors after nephrectomy. Serum K+ was controlled with Na polystyrene sulfonate (Kayexalate), a resin designed to exchange Na+ for K+ in the gastrointestinal tract. Acutely nephrectomized rats were divided into two groups: experimental animals received Kayexalate resin every 12 h for four doses, and controls received Kayexalate exchanged with KCl in vitro before gavage. There was a significant positive correlation serum K+ and aldosterone (r = 0.78, P less than 0.001). Kayexalate maintained a normal serum K+ of 5.9 +/- 0.2 meq/liter (n = 27), aldosterone 25 +/- 3 ng/dl (n = 27) and adrenal receptor concentration of 934 +/- 156 fmol/mg protein (n = 4). Control animals had significantly higher serum K+ of 10.5 +/- 0.4 meq/liter (n = 23), aldosterone 435 +/- 32 (n = 23), and adrenal receptors of 2726 +/- 235 fmol/mg protein (n = 4). There was a linear relationship between serum K+ and number of adrenal receptors (r = 0.87). No such relationship was present in uterine smooth muscle. Therefore, these studies demonstrate that K+ modulates the number of adrenal but not smooth muscle angiotensin II receptors after nephrectomy. This is the first evidence that potassium modulates angiotensin II receptors independently of changes in angiotensin II blood levels. PMID:6259213

  10. Production of angiotensin II receptors type one (AT1) and type two (AT2) during the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Mallow, H; Trindl, A; Löffler, G

    2000-01-01

    During their development from progenitor cells, adipocytes not only express enzymatic activities necessary for the storage of triglycerides, but also achieve the capability to produce a number of endocrine factors such as leptin, tumor necrosis factor alpha (TNFalpha), complement factors, adiponectin/adipoQ, plasminogen activator inhibitor-1 (PAI-1), angiotensin II and others. Angiotensin II is produced from angiotensinogen by the proteolytic action of renin and angiotensin-converting enzyme; and several data point to the existence of a complete local renin-angiotensin system in adipose tissue, including angiotensin II receptors. In this study, we directly monitored the production of angiotensin II type one receptor (AT1) and angiotensin II type two receptor (AT2) proteins during the adipose conversion of murine 3T3-L1 preadipocytes by immunodetection with specific antibodies. AT1 receptors could be detected throughout the whole differentiation period. The strong AT2 signal in preadipocytes however was completely lost during the course of differentiation, which suggests that expression of AT2 receptors is inversely correlated to the adipose conversion program.

  11. Tumor necrosis factor receptor-associated factor 3 is a positive regulator of pathological cardiac hypertrophy.

    PubMed

    Jiang, Xi; Deng, Ke-Qiong; Luo, Yuxuan; Jiang, Ding-Sheng; Gao, Lu; Zhang, Xiao-Fei; Zhang, Peng; Zhao, Guang-Nian; Zhu, Xueyong; Li, Hongliang

    2015-08-01

    Cardiac hypertrophy, a common early symptom of heart failure, is regulated by numerous signaling pathways. Here, we identified tumor necrosis factor receptor-associated factor 3 (TRAF3), an adaptor protein in tumor necrosis factor-related signaling cascades, as a key regulator of cardiac hypertrophy in response to pressure overload. TRAF3 expression was upregulated in hypertrophied mice hearts and failing human hearts. Four weeks after aortic banding, cardiac-specific conditional TRAF3-knockout mice exhibited significantly reduced cardiac hypertrophy, fibrosis, and dysfunction. Conversely, transgenic mice overexpressing TRAF3 in the heart developed exaggerated cardiac hypertrophy in response to pressure overload. TRAF3 also promoted an angiotensin II- or phenylephrine-induced hypertrophic response in isolated cardiomyocytes. Mechanistically, TRAF3 directly bound to TANK-binding kinase 1 (TBK1), causing increased TBK1 phosphorylation in response to hypertrophic stimuli. This interaction between TRAF3 and TBK1 further activated AKT signaling, which ultimately promoted the development of cardiac hypertrophy. Our findings not only reveal a key role of TRAF3 in regulating the hypertrophic response but also uncover TRAF3-TBK1-AKT as a novel signaling pathway in the development of cardiac hypertrophy and heart failure. This pathway may represent a potential therapeutic target for this pathological process.

  12. Hypotensive effect of angiotensin II after AT1-receptor blockade with losartan.

    PubMed

    Matys, T; Pawlak, R; Kucharewicz, I; Chabielska, E; Buczko, W

    2000-03-01

    Recent data suggest that hypotensive effect of losartan may not be attributed solely to AT1-receptor blockade, but also to excessive AT2 or other receptors stimulation by elevated angiotensin II and its derivative peptides. Therefore in the present study we examined the effect of angiotensin II on mean blood pressure after AT -receptor blockade with losartan. Male Wistar rats were anaesthetised and received injection of either losartan (30 mg/kg, 1 ml/kg, i.v.) or saline (the same volume and route) followed by bolus injection of angiotensin II (100, 300 or 1,000 ng/kg; 1 ml/kg, i.v.) or 1-hour infusion of angiotensin II (200 ng/kg/min; 2.5 ml/kg/h, i.v.). Control animals received saline instead. Angiotensin II, given either as the injection or the infusion, caused an evident increase in mean blood pressure (p ranged from 0.05 to 0.001 depending on the experimental group). Losartan caused a rapid drop in mean blood pressure and blunted the hypertensive effect of angiotensin II (p < 0.01). Moreover, in the losartan-pretreated animals the hypotensive phase was enhanced by the infusion, but not single injection of angiotensin II, which was most evident from the 30 th minute of observation (p < 0.05 vs control). In conclusion, hypotensive effect of losartan may be amplified by simultaneous increase in angiotensin II level, the situation observed during chronic AT1-receptor blockade.

  13. Astrocyte Mitogen Inhibitor Related to Epidermal Growth Factor Receptor

    NASA Astrophysics Data System (ADS)

    Nieto-Sampedro, Manuel

    1988-06-01

    Epidermal growth factor (EGF) is a well-characterized polypeptide hormone with diverse biological activities, including stimulation of astrocyte division. A soluble astrocyte mitogen inhibitor, immunologically related to the EGF receptor, is present in rat brain. Injury to the brain causes a time-dependent reduction in the levels of this inhibitor and the concomitant appearance of EGF receptor on the astrocyte surface. Intracerebral injection of antibody capable of binding the inhibitor caused the appearance of numerous reactive astrocytes. EGF receptor-related inhibitors may play a key role in the control of glial cell division in both normal and injured brain.

  14. Neuroprotective effect of angiotensin II type 2 receptor during cerebral ischemia/reperfusion

    PubMed Central

    Ma, Chun-ye; Yin, Lin

    2016-01-01

    Angiotensin II type 2 receptor (AT2R) activation has been shown to protect against stroke, but its precise mechanism remains poorly understood. We investigated whether the protective effect of AT2R against ischemia/reperfusion injury is mediated by the suppression of immune and inflammatory responses. Rat models of middle cerebral artery occlusion were intraperitoneally injected with physiological saline, the AT2R agonist CGP42112 (1 mg/kg per day) or antagonist PD123319 (1 mg/kg per day). In the CGP42112 group, AT2R expression increased, the infarct area decreased, interleukin-1β and tumor necrosis factor-α expression decreased, and interleukin-10 expression increased compared with the saline group. Antagonisin AT2R using PD123319 produced the opposite effects. These results indicate that AT2R activation suppresses immune and inflammatory responses, and protects against cerebral ischemia/reperfusion injury. PMID:27630693

  15. Angiotensin II, hypertension, and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease.

    PubMed

    Wiesmann, Maximilian; Roelofs, Monica; van der Lugt, Robert; Heerschap, Arend; Kiliaan, Amanda J; Claassen, Jurgen Ahr

    2016-01-01

    Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced hypertension on systolic blood pressure, and treatment with the angiotensin II receptor blockers, eprosartan mesylate, after one month of induced hypertension in wild-type C57bl/6j and AβPPswe/PS1ΔE9 (AβPP/PS1/Alzheimer's disease) mice. AβPP/PS1 showed higher systolic blood pressure than wild-type. Subsequent eprosartan mesylate treatment restored this elevated systolic blood pressure in all mice. Functional connectivity was decreased in angiotensin II-infused Alzheimer's disease and wild-type mice, and only 12 months of Alzheimer's disease mice showed impaired cerebral blood flow. Only angiotensin II-infused Alzheimer's disease mice exhibited decreased spatial learning in the Morris water maze. Altogether, angiotensin II-induced hypertension not only exacerbated Alzheimer's disease-like pathological changes such as impairment of cerebral blood flow, functional connectivity, and cognition only in Alzheimer's disease model mice, but it also induced decreased functional connectivity in wild-type mice. However, we could not detect hypertension-induced overexpression of Aβ nor increased neuroinflammation. Our findings suggest a link between midlife hypertension, decreased cerebral hemodynamics and connectivity in an Alzheimer's disease mouse model. Eprosartan mesylate treatment restored and beneficially affected cerebral blood flow and connectivity. This model could be used to investigate prevention/treatment strategies in early Alzheimer's disease.

  16. Modulation of the NMDA Receptor Through Secreted Soluble Factors.

    PubMed

    Cerpa, Waldo; Ramos-Fernández, Eva; Inestrosa, Nibaldo C

    2016-01-01

    Synaptic activity is a critical determinant in the formation and development of excitatory synapses in the central nervous system (CNS). The excitatory current is produced and regulated by several ionotropic receptors, including those that respond to glutamate. These channels are in turn regulated through several secreted factors that function as synaptic organizers. Specifically, Wnt, brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF), and transforming growth factor (TGF) particularly regulate the N-methyl-D-aspartate receptor (NMDAR) glutamatergic channel. These factors likely regulate early embryonic development and directly control key proteins in the function of important glutamatergic channels. Here, we review the secreted molecules that participate in synaptic organization and discuss the cell signaling behind of this fine regulation. Additionally, we discuss how these factors are dysregulated in some neuropathologies associated with glutamatergic synaptic transmission in the CNS.

  17. Rhamnogalacturonan II is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+ T cells.

    PubMed

    Park, Sung Nam; Noh, Kyung Tae; Jeong, Young-Il; Jung, In Duk; Kang, Hyun Kyu; Cha, Gil Sun; Lee, Su Jung; Seo, Jong Keun; Kang, Dae Hwan; Hwang, Tae-Ho; Lee, Eun Kyung; Kwon, Byungsuk; Park, Yeong-Min

    2013-02-08

    We evaluated the effectiveness of rhamnogalacturonan II (RG-II)-stimulated bone marrow-derived dendritic cells (BMDCs) vaccination on the induction of antitumor immunity in a mouse lymphoma model using EG7-lymphoma cells expressing ovalbumin (OVA). BMDCs treated with RG-II had an activated phenotype. RG-II induced interleukin (IL)-12, IL-1β, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production during dendritic cell (DC) maturation. BMDCs stimulated with RG-II facilitate the proliferation of CD8+ T cells. Using BMDCs from the mice deficient in Toll-like receptors (TLRs), we revealed that RG-II activity is dependent on TLR4. RG-II showed a preventive effect of immunization with OVA-pulsed BMDCs against EG7 lymphoma. These results suggested that RG-II expedites the DC-based immune response through the TLR4 signaling pathway.

  18. Localization of the ANG II type 2 receptor in the microcirculation of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Nora, E. H.; Munzenmaier, D. H.; Hansen-Smith, F. M.; Lombard, J. H.; Greene, A. S.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Only functional studies have suggested the presence of the ANG II type 2 (AT2) receptor in the microcirculation. To determine the distribution of this receptor in the rat skeletal muscle microcirculation, a polyclonal rabbit anti-rat antiserum was developed and used for immunohistochemistry and Western blot analysis. The antiserum was prepared against a highly specific and antigenic AT2-receptor synthetic peptide and was validated by competition and sensitivity assays. Western blot analysis demonstrated a prominent, single band at approximately 40 kDa in cremaster and soleus muscle. Immunohistochemical analysis revealed a wide distribution of AT2 receptors throughout the skeletal muscle microcirculation in large and small microvessels. Microanatomic studies displayed an endothelial localization of the AT2 receptor, whereas dual labeling with smooth muscle alpha-actin also showed colocalization of the AT2 receptor with vascular smooth muscle cells. Other cells associated with the microvessels also stained positive for AT2 receptors. Briefly, this study confirms previous functional data and localizes the AT2 receptor to the microcirculation. These studies demonstrate that the AT2 receptor is present on a variety of vascular cell types and that it is situated in a fashion that would allow it to directly oppose ANG II type 1 receptor actions.

  19. EFFECT OF GROWTH FACTOR-FIBRONECTIN MATRIX INTERACTION ON RAT TYPE II CELL ADHESION AND DNA SYTHESIS

    EPA Science Inventory

    ABSTRACT

    Type II cells attach, migrate and proliferate on a provisional fibronectin-rich matrix during alveolar wall repair after lung injury. The combination of cell-substratum interactions via integrin receptors and exposure to local growth factors are likely to initiat...

  20. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  1. Properly timed exposure to central ANG II prevents behavioral sensitization and changes in angiotensin receptor expression

    PubMed Central

    Santollo, Jessica; Whalen, Philip E.; Speth, Robert C.; Clark, Stewart D.

    2014-01-01

    Previous studies show that the angiotensin type 1 receptor (AT1R) is susceptible to rapid desensitization, but that more chronic treatments that stimulate ANG II lead to sensitization of several responses. It is unclear, however, if the processes of desensitization and sensitization interact. To test for differences in AT1R expression associated with single or repeated injections of ANG II, we measured AT1R mRNA in nuclei that control fluid intake of rats given ANG II either in a single injection or divided into three injections spaced 20 min apart. Rats given a single injection of ANG II had more AT1R mRNA in the subfornical organ (SFO) and the periventricular tissue surrounding the anteroventral third ventricle (AV3V) than did controls. The effect was not observed, however, when the same cumulative dose of ANG II was divided into multiple injections. Behavioral tests found that single daily injections of ANG II sensitized the dipsogenic response to ANG II, but a daily regimen of four injections did not cause sensitization. Analysis of 125I-Sar1-ANG II binding revealed a paradoxical decrease in binding in the caudal AV3V and dorsal median preoptic nucleus after 5 days of single daily injections of ANG II; however, this effect was absent in rats treated for 5 days with four daily ANG II injections. Taken together, these data suggest that a desensitizing treatment regimen prevents behavior- and receptor-level effects of repeated daily ANG II. PMID:25354729

  2. Platelet-activating factor: receptors and signal transduction.

    PubMed

    Chao, W; Olson, M S

    1993-06-15

    During the past two decades, studies describing the chemistry and biology of PAF have been extensive. This potent phosphoacylglycerol exhibits a wide variety of physiological and pathophysiological effects in various cells and tissues. PAF acts, through specific receptors and a variety of signal transduction systems, to elicit diverse biochemical responses. Several important future directions can be enumerated for the characterization of PAF receptors and their attendant signalling mechanisms. The recent cloning and sequence analysis of the gene for the PAF receptor will allow a number of important experimental approaches for characterizing the structure and analysing the function of the various domains of the receptor. Using molecular genetic and immunological technologies, questions relating to whether there is receptor heterogeneity, the precise mechanism(s) for the regulation of the PAF receptor, and the molecular details of the signalling mechanisms in which the PAF receptor is involved can be explored. Another area of major significance is the examination of the relationship between the signalling response(s) evoked by PAF binding to its receptor and signalling mechanisms activated by a myriad of other mediators, cytokines and growth factors. A very exciting recent development in which PAF receptors undoubtedly play a role is in the regulation of the function of various cellular adhesion molecules. Finally, there remain many incompletely characterized physiological and pathophysiological situations in which PAF and its receptor play a crucial signalling role. Our laboratory has been active in the elucidation of several tissue responses in which PAF exhibits major autocoid signalling responses, e.g. hepatic injury and inflammation, acute and chronic pancreatitis, and cerebral stimulation and/or trauma. As new experimental strategies are developed for characterizing the fine structure of the molecular mechanisms involved in tissue injury and inflammation, the

  3. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    PubMed

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis.

  4. Contribution of renal purinergic receptors to renal vasoconstriction in angiotensin II-induced hypertensive rats.

    PubMed

    Franco, Martha; Bautista, Rocio; Tapia, Edilia; Soto, Virgilia; Santamaría, José; Osorio, Horacio; Pacheco, Ursino; Sánchez-Lozada, L Gabriela; Kobori, Hiroyuki; Navar, L Gabriel

    2011-06-01

    To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO(2)(-)/NO(3)(-)) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.

  5. Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade

    PubMed Central

    Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu

    2016-01-01

    Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named ‘beige’ or ‘brite’ adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders. PMID:27992452

  6. Angiotensin-II mediates ACE2 Internalization and Degradation through an Angiotensin-II type I receptor-dependent mechanism

    PubMed Central

    Lazartigues, Eric; Filipeanu, Catalin M.

    2014-01-01

    Angiotensin Converting Enzyme type 2 (ACE2) is a pivotal component of the renin-angiotensin system, promoting the conversion of Angiotensin (Ang)-II to Ang-(1-7). We previously reported that decreased ACE2 expression and activity contribute to the development of Ang-II-mediated hypertension in mice. The present study aimed to investigate the mechanisms involved in ACE2 down-regulation during neurogenic hypertension. In ACE2-transfected Neuro-2A cells, Ang-II treatment resulted in a significant attenuation of ACE2 enzymatic activity. Examination of the subcellular localization of ACE2 revealed that Ang-II treatment leads to ACE2 internalization and degradation into lysosomes. These effects were prevented by both the Ang-II type 1 receptor (AT1R) blocker losartan and the lysosomal inhibitor leupeptin. In contrast, in HEK293T cells, which lack endogenous AT1R, Ang-II failed to promote ACE2 internalization. Moreover, this effect could be induced after AT1R transfection. Further, co-immunoprecipitation experiments demonstrated that AT1R and ACE2 form complexes and these interactions were decreased by Ang-II treatment, which also enhanced ACE2 ubiquitination. In contrast, ACE2 activity was not changed by transfection of AT2 or Mas receptors. In vivo, Ang-II-mediated hypertension was blunted by chronic infusion of leupeptin in wildtype C57Bl/6, but not in ACE2 knockout mice. Overall, this is the first demonstration that elevated Ang-II levels reduce ACE2 expression and activity by stimulation of lysosomal degradation through an AT1R-dependent mechanism. PMID:25225202

  7. Cell and molecular biology of epidermal growth factor receptor.

    PubMed

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  8. Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein.

    PubMed

    Li, Wencheng; Liu, Jiao; Hammond, Sean L; Tjalkens, Ronald B; Saifudeen, Zubaida; Feng, Yumei

    2015-07-15

    We reported that brain (pro)renin receptor (PRR) expression levels are elevated in DOCA-salt-induced hypertension; however, the underlying mechanism remained unknown. To address whether ANG II type 1 receptor (AT1R) signaling is involved in this regulation, we implanted a DOCA pellet and supplied 0.9% saline as the drinking solution to C57BL/6J mice. Sham pellet-implanted mice that were provided regular drinking water served as controls. Concurrently, mice were intracerebroventricularly infused with the AT1R blocker losartan, angiotensin-converting-enzyme inhibitor captopril, or artificial cerebrospinal fluid for 3 wk. Intracerebroventricular infusion of losartan or captopril attenuated DOCA-salt-induced PRR mRNA elevation in the paraventricular nucleus of the hypothalamus, suggesting a role for ANG II/AT1R signaling in regulating PRR expression during DOCA-salt hypertension. To test which ANG II/AT1R downstream transcription factors were involved in PRR regulation, we treated Neuro-2A cells with ANG II with or without CREB (cAMP response element-binding protein) or AP-1 (activator protein-1) inhibitors, or CREB siRNA. CREB and AP-1 inhibitors, as well as CREB knockdown abolished ANG II-induced increases in PRR levels. ANG II also induced PRR upregulation in primary cultured neurons. Chromatin immunoprecipitation assays revealed that ANG II treatment increased CREB binding to the endogenous PRR promoter in both cultured neurons and hypothalamic tissues of DOCA-salt hypertensive mice. This increase in CREB activity was reversed by AT1R blockade. Collectively, these findings indicate that ANG II acts via AT1R to upregulate PRR expression both in cultured cells and in DOCA-salt hypertensive mice by increasing CREB binding to the PRR promoter.

  9. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas.

    PubMed Central

    Hatva, E.; Böhling, T.; Jääskeläinen, J.; Persico, M. G.; Haltia, M.; Alitalo, K.

    1996-01-01

    Capillary hemangioblastomas and hemangiopericytomas are highly vascular central nervous system tumors of controversial origin. Of interest in their pathogenesis are mechanisms regulating endothelial cell growth. The endothelial cell mitogen vascular endothelial growth factor (VEGF) stimulates angiogenesis, and together with its two receptor tyrosine kinases VEGFR-1(FLT1) and VEGFR-2(KDR), is up-regulated during the malignant progression of gliomas. We have analyzed the expression of VEGF and its receptors, the related placental growth factor (PlGF) and the endothelial receptors FLT4 and Tie by in situ hybridization in capillary hemangioblastomas and hemangiopericytomas. VEGF mRNA was up-regulated in all of the hemangiopericytomas studied and highly expressed in the stromal cells of hemangioblastomas. In addition, some hemangioblastoma tumor cells expressed high levels of PlGF. Significantly elevated levels of Tie mRNA, Tie protein, VEGFR-1, and VEGFR-2 but not FLT4 mRNAs were observed in the endothelia of both tumor types. In hemangioblastomas, however, the receptors were also highly expressed by a subpopulation of stromal cells. Consistent results were obtained for a human hemangioblastoma cell line in culture. Up-regulation of the endothelial growth factors and receptors may result in autocrine or paracrine stimulation of endothelial cells and their precursors involved in the genesis of these two vascular tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8774132

  10. Identification and characterization of an angiotensin II receptor on cultured bovine adrenal chromaffin cells

    SciTech Connect

    Boyd, V.L.

    1987-01-01

    The presence of an angiotensin II receptor on cultured bovine adrenal chromaffin cells was demonstrated by radioligand binding. A single class of finding sites with a K/sub D/ of 0.7 nM was characterized. The use of radioligands also allows the localization of receptors by autoradiography. Autoradiography demonstrated that approximately 50% of the isolated cells bound angiotensin II. It was of interest to see if angiotensin II bound to a cell that possessed a certain phenotype. In order to evaluate this possibility a technique was developed that combined autoradiography and immunocytochemistry. Results indicated that angiotensin II binding sites were not localized preferentially to either norepinephrine or epinephrine cells. Binding of angiotensin II was associated with the release of intracellular catecholamine stores. Cells were pre-loaded with /sup 3/H-norepinephrine and secretion was monitored by following radioactivity released into the supernatant. Alternatively, release of endogenous catecholamines was determined by fluorometric assay.

  11. Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375

    PubMed Central

    Douglas, Stephen A; Behm, David J; Aiyar, Nambi V; Naselsky, Diane; Disa, Jyoti; Brooks, David P; Ohlstein, Eliot H; Gleason, John G; Sarau, Henry M; Foley, James J; Buckley, Peter T; Schmidt, Dulcie B; Wixted, William E; Widdowson, Katherine; Riley, Graham; Jin, Jian; Gallagher, Timothy F; Schmidt, Stanley J; Ridgers, Lance; Christmann, Lisa T; Keenan, Richard M; Knight, Steven D; Dhanak, Dashyant

    2005-01-01

    SB-706375 potently inhibited [125I]hU-II binding to both mammalian recombinant and ‘native' UT receptors (Ki 4.7±1.5 to 20.7±3.6 nM at rodent, feline and primate recombinant UT receptors and Ki 5.4±0.4 nM at the endogenous UT receptor in SJRH30 cells). Prior exposure to SB-706375 (1 μM, 30 min) did not alter [125I]hU-II binding affinity or density in recombinant cells (KD 3.1±0.4 vs 5.8±0.9 nM and Bmax 3.1±1.0 vs 2.8±0.8 pmol mg−1) consistent with a reversible mode of action. The novel, nonpeptidic radioligand [3H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (KD 2.6±0.4 nM, Bmax 0.86±0.12 pmol mg−1) in a manner that was inhibited by both U-II isopeptides and SB-706375 (Ki 4.6±1.4 to 17.6±5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. SB-706375 was a potent, competitive hU-II antagonist across species with pKb 7.29–8.00 in HEK293-UT receptor cells (inhibition of [Ca2+]i-mobilization) and pKb 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (Kapp∼20 nM). SB-706375 was a selective U-II antagonist with ⩾100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (Ki/IC50>1 μM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 μM). In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals. PMID:15852036

  12. Angiotensin II Type 1 Receptor-Dependent GLP-1 and PYY Secretion in Mice and Humans

    PubMed Central

    Pais, Ramona; Rievaj, Juraj; Larraufie, Pierre

    2016-01-01

    Angiotensin II (Ang II) is the key hormone mediator of the renin angiotensin system, which regulates blood pressure and fluid and electrolyte balance in the body. Here we report that in the colonic epithelium, the Ang II type 1 receptor is highly and exclusively expressed in enteroendocrine L cells, which produce the gut hormones glucagon-like peptide-1 and peptide YY (PYY). Ang II stimulated glucagon-like peptide-1 and PYY release from primary cultures of mouse and human colon, which was antagonized by the specific Ang II type 1 receptor blocker candesartan. Ang II raised intracellular calcium levels in L cells in primary cultures, recorded by live-cell imaging of L cells specifically expressing the fluorescent calcium sensor GCaMP3. In Ussing chamber recordings, Ang II reduced short circuit currents in mouse distal colon preparations, which was antagonized by candesartan or a specific neuropeptide Y1 receptor inhibitor but insensitive to amiloride. We conclude that Ang II stimulates PYY secretion, in turn inhibiting epithelial anion fluxes, thereby reducing net fluid secretion into the colonic lumen. Our findings highlight an important role of colonic L cells in whole-body fluid homeostasis by controlling water loss through the intestine. PMID:27447725

  13. Growth factor control of epidermal growth factor receptor kinase activity via an intramolecular mechanism.

    PubMed

    Koland, J G; Cerione, R A

    1988-02-15

    The mechanism by which the protein kinase activity of the epidermal growth factor (EGF) receptor is activated by binding of growth factor was investigated. Detergent-solubilized receptor in monomeric form was isolated by sucrose density gradient centrifugation and both its kinase and autophosphorylation activities monitored. In a low ionic strength medium and with MnCl2 as an activator, the activity of the monomeric receptor was EGF-independent. However, with 0.25 M ammonium sulfate present, the MnCl2-stimulated kinase activity was strikingly EGF-dependent. In contrast, the kinase activity expressed in the presence of MgCl2 showed growth factor control in the absence of added salt. Under the conditions of these experiments there was apparently little tendency for growth factor to induce aggregation of the receptor, indicating that the allosteric activation of the receptor kinase by EGF occurred via an intramolecular mechanism. Whereas detergent-solubilized receptor was the subject of these studies, the kinase activity of cell surface receptors might also be controlled by an intramolecular mechanism. These results indicate that an individual receptor molecule has the potential to function as a transmembrane signal transducer.

  14. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling

    PubMed Central

    Hurst, Liam A.; Dunmore, Benjamin J.; Long, Lu; Crosby, Alexi; Al-Lamki, Rafia; Deighton, John; Southwood, Mark; Yang, Xudong; Nikolic, Marko Z.; Herrera, Blanca; Inman, Gareth J.; Bradley, John R.; Rana, Amer A.; Upton, Paul D.; Morrell, Nicholas W.

    2017-01-01

    Heterozygous germ-line mutations in the bone morphogenetic protein type-II receptor (BMPR-II) gene underlie heritable pulmonary arterial hypertension (HPAH). Although inflammation promotes PAH, the mechanisms by which inflammation and BMPR-II dysfunction conspire to cause disease remain unknown. Here we identify that tumour necrosis factor-α (TNFα) selectively reduces BMPR-II transcription and mediates post-translational BMPR-II cleavage via the sheddases, ADAM10 and ADAM17 in pulmonary artery smooth muscle cells (PASMCs). TNFα-mediated suppression of BMPR-II subverts BMP signalling, leading to BMP6-mediated PASMC proliferation via preferential activation of an ALK2/ACTR-IIA signalling axis. Furthermore, TNFα, via SRC family kinases, increases pro-proliferative NOTCH2 signalling in HPAH PASMCs with reduced BMPR-II expression. We confirm this signalling switch in rodent models of PAH and demonstrate that anti-TNFα immunotherapy reverses disease progression, restoring normal BMP/NOTCH signalling. Collectively, these findings identify mechanisms by which BMP and TNFα signalling contribute to disease, and suggest a tractable approach for therapeutic intervention in PAH. PMID:28084316

  15. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling.

    PubMed

    Hurst, Liam A; Dunmore, Benjamin J; Long, Lu; Crosby, Alexi; Al-Lamki, Rafia; Deighton, John; Southwood, Mark; Yang, Xudong; Nikolic, Marko Z; Herrera, Blanca; Inman, Gareth J; Bradley, John R; Rana, Amer A; Upton, Paul D; Morrell, Nicholas W

    2017-01-13

    Heterozygous germ-line mutations in the bone morphogenetic protein type-II receptor (BMPR-II) gene underlie heritable pulmonary arterial hypertension (HPAH). Although inflammation promotes PAH, the mechanisms by which inflammation and BMPR-II dysfunction conspire to cause disease remain unknown. Here we identify that tumour necrosis factor-α (TNFα) selectively reduces BMPR-II transcription and mediates post-translational BMPR-II cleavage via the sheddases, ADAM10 and ADAM17 in pulmonary artery smooth muscle cells (PASMCs). TNFα-mediated suppression of BMPR-II subverts BMP signalling, leading to BMP6-mediated PASMC proliferation via preferential activation of an ALK2/ACTR-IIA signalling axis. Furthermore, TNFα, via SRC family kinases, increases pro-proliferative NOTCH2 signalling in HPAH PASMCs with reduced BMPR-II expression. We confirm this signalling switch in rodent models of PAH and demonstrate that anti-TNFα immunotherapy reverses disease progression, restoring normal BMP/NOTCH signalling. Collectively, these findings identify mechanisms by which BMP and TNFα signalling contribute to disease, and suggest a tractable approach for therapeutic intervention in PAH.

  16. Expression of type 1 corticotropin-releasing factor receptor in the guinea pig enteric nervous system.

    PubMed

    Liu, Sumei; Gao, Xiang; Gao, Na; Wang, Xiyu; Fang, Xiucai; Hu, Hong-Zhen; Wang, Guo-Du; Xia, Yun; Wood, Jackie D

    2005-01-17

    Reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiological recording, and intraneuronal injection of the neuronal tracer biocytin were integrated in a study of the functional expression of corticotropin-releasing factor (CRF) receptors in the guinea pig enteric nervous system. RT-PCR revealed expression of CRF1 receptor mRNA, but not CRF2, in both myenteric and submucosal plexuses. Immunoreactivity for the CRF1 receptor was distributed widely in the myenteric plexus of the stomach and small and large intestine and in the submucosal plexus of the small and large intestine. CRF1 receptor immunoreactivity was coexpressed with calbindin, choline acetyltransferase, and substance P in the myenteric plexus. In the submucosal plexus, CRF1 receptor immunoreactivity was found in neurons that expressed calbindin, substance P, choline acetyltransferase, or neuropeptide Y. Application of CRF evoked slowly activating depolarizing responses associated with elevated excitability in both myenteric and submucosal neurons. Histological analysis of biocytin-filled neurons revealed that both uniaxonal neurons with S-type electrophysiological behavior and neurons with AH-type electrophysiological behavior and Dogiel II morphology responded to CRF. The CRF-evoked depolarizing responses were suppressed by the CRF1/CRF2 receptor antagonist astressin and the selective CRF1 receptor antagonist NBI27914 and were unaffected by the selective CRF2 receptor antagonist antisauvagine-30. The findings support the hypothesis that the CRF1 receptor mediates the excitatory actions of CRF on neurons in the enteric nervous system. Actions on enteric neurons might underlie the neural mechanisms by which stress-related release of CRF in the periphery alters intestinal propulsive motor function, mucosal secretion, and barrier functions.

  17. Isolation and characterization of two alternatively spliced complementary DNAs encoding a Xenopus laevis angiotensin II receptor.

    PubMed

    Nishimatsu, S; Koyasu, N; Sugaya, T; Ohnishi, J; Yamagishi, T; Murakami, K; Miyazaki, H

    1994-08-02

    We have isolated two cDNAs of 1.7 and 3.0 kb, produced by alternative splicing, that encode a angiotensin II (AII) receptor from a Xenopus laevis heart cDNA library. The two clones had identical coding regions with each other and were found to belong to the G protein-coupled receptor superfamily like the mammalian type 1 AII receptors (AT1); their amino acid sequence was 68.7% homologous with the human AT1 receptor sequence. However, there was a 1.3 kb insertion at the 3'-untranslated region of the longer clone. The insertion contained 9 repeats of an ATTTA motif, suggesting that the two mRNAs undergo distinct post-transcriptional regulation by virtue of a difference in their stability. Although the Xenopus receptor exhibited distinct specificities for AII receptor antagonists compared with mammalian AII receptors, several common characteristics, including the effect of dithiothreitol and guanosine 5'-O-(3-thiotriphosphate), demonstrated that the cloned receptor is a counterpart of the mammalian AT1 receptor. Moreover, the cloned receptor was expressed most abundantly in the Xenopus heart, which is inconsistent with the tissue distribution of mammalian AII receptors. This indicated that the Xenopus heart, unlike that of mammals, plays a major role in the AII-dependent regulation of blood pressure and extracellular fluid volume.

  18. The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding

    SciTech Connect

    Thompson, T.B.; Lerch, T.F.; Cook, R.W.; Woodruff, T.K.; Jardetzky, T.S.

    2010-03-08

    TGF-{beta} ligands stimulate diverse cellular differentiation and growth responses by signaling through type I and II receptors. Ligand antagonists, such as follistatin, block signaling and are essential regulators of physiological responses. Here we report the structure of activin A, a TGF-{beta} ligand, bound to the high-affinity antagonist follistatin. Two follistatin molecules encircle activin, neutralizing the ligand by burying one-third of its residues and its receptor binding sites. Previous studies have suggested that type I receptor binding would not be blocked by follistatin, but the crystal structure reveals that the follistatin N-terminal domain has an unexpected fold that mimics a universal type I receptor motif and occupies this receptor binding site. The formation of follistatin:BMP:type I receptor complexes can be explained by the stoichiometric and geometric arrangement of the activin:follistatin complex. The mode of ligand binding by follistatin has important implications for its ability to neutralize homo- and heterodimeric ligands of this growth factor family.

  19. Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues.

    PubMed Central

    Luo, K; Lodish, H F

    1997-01-01

    The type II transforming growth factor-beta (TGF-beta) receptor Ser/Thr kinase (TbetaRII) is responsible for the initiation of multiple TGF-beta signaling pathways, and loss of its function is associated with many types of human cancer. Here we show that TbetaRII kinase is regulated intricately by autophosphorylation on at least three serine residues. Ser213, in the membrane-proximal segment outside the kinase domain, undergoes intra-molecular autophosphorylation which is essential for the activation of TbetaRII kinase activity, activation of TbetaRI and TGF-beta-induced growth inhibition. In contrast, phosphorylation of Ser409 and Ser416, located in a segment corresponding to the substrate recognition T-loop region in a three-dimensional structural model of protein kinases, is enhanced by receptor dimerization and can occur via an intermolecular mechanism. Phosphorylation of Ser409 is essential for TbetaRII kinase signaling, while phosphorylation of Ser416 inhibits receptor function. Mutation of Ser416 to alanine results in a hyperactive receptor that is better able than wild-type to induce TbetaRI activation and subsequent cell cycle arrest. Since on a single receptor either Ser409 or Ser416, but not both simultaneously, can become autophosphorylated, our results show that TbetaRII phosphorylation is regulated intricately and affects TGF-beta receptor signal transduction both positively and negatively. PMID:9155023

  20. Simultaneous determination of hydrochlorothiazide and several angiotensin-II-receptor antagonists by capillary electrophoresis.

    PubMed

    Hillaert, S; Van den Bossche, W

    2003-02-26

    We have investigated the capability of the capillary zone electrophoretic (CZE) and micellar electrokinetic capillary chromatographic (MEKC) methods to simultaneously separate hydrochlorothiazide and six angiotensin-II-receptor antagonists (ARA-IIs): candesartan, eprosartan mesylate, irbesartan, losartan potassium, telmisartan, and valsartan. The CZE and MEKC methods are suitable for the qualitative and quantitative determination of combined HCT/ARA-IIs in pharmaceutical formulations. Depending on the ARA-II, at least one of the two methods can be used for each combination. The two methods have been validated in terms of their linearity of response, reproducibility, and accuracy.

  1. Angiotensin II-induced angiotensin II type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Li, Hewang; Yu, Peiying; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2009-02-01

    Upon activation, the angiotensin (Ang) II type 1 receptor (AT1Rs) rapidly undergoes endocytosis. After a series of intracellular processes, the internalized AT1Rs recycle back to the plasma membrane or are trafficked to proteasomes or lysosomes for degradation. We recently reported that AT1Rs degrades in proteasomes upon stimulation of the D5 dopamine receptor (D5R) in human renal proximal tubule and HEK-293 cells. This is in contrast to the degradation of AT1R in lysosomes upon binding Ang II. However, the dynamic regulation of the AT1Rs in lysosomes is not well understood. Here we investigated the AT1Rs lysosomal degradation using FRET-FLIM in HEK 293 cells heterologously expressing the human AT1R tagged with EGFP as the donor fluorophore. Compared to its basal state, the lifetime of AT1Rs decreased after a 5-minute treatment with Ang II treatment and colocalized with Rab5 but not Rab7 and LAMP1. With longer Ang II treatment (30 min), the AT1Rs lifetime decreased and co-localized with Rab5, as well as Rab7 and LAMP1. The FLIM data are corroborated with morphological and biochemical co-immunoprecipitation studies. These data demonstrate that Ang II induces the internalization of AT1Rs into early sorting endosomes prior to trafficking to late endosomes and subsequent degradation in lysosomes.

  2. The ontogeny of epidermal growth factor receptors during mouse development

    SciTech Connect

    Adamson, E.D.; Meek, J.

    1984-05-01

    In an attempt to understand the role(s) of epidermal growth factor (EGF) in vivo during murine development, we have examined the /sup 125/I-EGF binding characteristics of EGF-receptors in membrane preparations of tissues from the 12th day of gestation to parturition. Using autoradiography, the earliest time that we could detect EGF-receptors was on trophoblast cells cultured for 3 days as blastocyst outgrowths. Trophoblast eventually forms a large portion of the placenta, where EGF-receptors have long been recognized. We measured the number and affinity of EGF-receptors on tissues dissected from conceptuses from the 12th day of gestation in order to identify a stage when tissues may be most sensitive to EGF. Whereas the number of EGF receptors increases during gestation for all tissues examined, the affinity of the receptors declines for carcass and placenta and remains relatively unchanged for brain and liver. This suggests that EGF may function differently throughout development. Our hypothesis is that EGF (or its embryonic equivalent) initially stimulates proliferation in embryonic cells and then stimulates differentiation as the tissues mature. In the adult, its main role could be to stimulate tissue repair after damage.

  3. Biochemical and biological properties of the nerve growth factor receptor

    SciTech Connect

    Taniuchi, M.

    1988-01-01

    We have utilized a monoclonal antibody (192-IgG) to study the rat nerve growth factor receptor. After intraocular injection, {sup 125}I-192-IgG was retrogradely transported in sympathetic neuronal axons to the superior cervical ganglion. When the sciatic nerve was ligated to induce the accumulation of axonally transported materials, 192-IgG immunostaining was observed on both sides of the ligature, indicating that NGF receptors are transported in both orthograde and retrograde directions. By using {sup 125}I-NGF crosslinking and 192-IgG immunoprecipitation, we detected receptor molecules throughout the rat brain, thereby supporting the hypothesis that NGF is active in the central nervous system. We also discovered that sciatic nerve transection leads to a dramatic increase in the amount of NGF receptor found in the distal portion of the nerve. Immunostaining revealed that all Schwann cells in the distal axotomized nerve were expressing NGF receptors. We examined phosphorylation of NGF receptor in cultured sympathetic neurons and PC12 cells. We also examined pharmacological effects of 192-IgG. Systemic injection of 192-IgG into neonatal rats caused a permanent partial sympathectomy in a dose-dependent manner; a maximum of 50% of the cells were killed.

  4. Inhibition of Angiotensin Converting Enzyme, Angiotensin II Receptor Blocking, and Blood Pressure Lowering Bioactivity across Plant Families.

    PubMed

    Patten, Glen S; Abeywardena, Mahinda Y; Bennett, Louise E

    2016-01-01

    Hypertension is a major risk factor for coronary heart disease, kidney disease, and stroke. Interest in medicinal or nutraceutical plant bioactives to reduce hypertension has increased dramatically. The main biological regulation of mammalian blood pressure is via the renin-angiotensin-aldosterone system. The key enzyme is angiotensin converting enzyme (ACE) that converts angiotensin I into the powerful vasoconstrictor, angiotensin II. Angiotensin II binds to its receptors (AT1) on smooth muscle cells of the arteriole vasculature causing vasoconstriction and elevation of blood pressure. This review focuses on the in vitro and in vivo reports of plant-derived extracts that inhibit ACE activity, block angiotensin II receptor binding and demonstrate hypotensive activity in animal or human studies. We describe 74 families of plants that exhibited significant ACE inhibitory activity and 16 plant families with potential AT1 receptor blocking activity, according to in vitro studies. From 43 plant families including some of those with in vitro bioactivity, the extracts from 73 plant species lowered blood pressure in various normotensive or hypertensive in vivo models by the oral route. Of these, 19 species from 15 families lowered human BP when administered orally. Some of the active plant extracts, isolated bioactives and BP-lowering mechanisms are discussed.

  5. Therapeutic Targeting of Fibroblast Growth Factor Receptors in Gastric Cancer

    PubMed Central

    Fujimori, Yoshitaka; Otsuki, Sho; Sato, Yuya; Nakagawa, Masatoshi

    2015-01-01

    Chemotherapy has become the global standard treatment for patients with metastatic or unresectable gastric cancer (GC), although outcomes remain unfavorable. Many molecular-targeted therapies inhibiting signaling pathways of various tyrosine kinase receptors have been developed, and monoclonal antibodies targeting human epidermal growth factor receptor 2 (HER2) have become standard therapy for HER2-positive GC. An inhibitor of vascular endothelial growth factor receptor 2 or MET has also produced promising results in patients with GC. Fibroblast growth factor receptors (FGFR) play key roles in tumor growth via activated signaling pathways in GC. Genomic amplification of FGFR2 leads to the aberrant activation found in GC tumors and is related to survival in patients with GC. This review discusses the clinical relevance of FGFR in GC and examines FGFR as a potential therapeutic target in patients with GC. Preclinical studies in animal models suggest that multitargeted tyrosine kinase inhibitors (TKIs), including FGFR inhibitor, suppress tumor cell proliferation and delay tumor progression. Several TKIs are now being evaluated in clinical trials as treatment for metastatic or unresectable GC harboring FGFR2 amplification. PMID:26000013

  6. Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model.

    PubMed

    Obama, Takashi; Tsuji, Toshiyuki; Kobayashi, Tomonori; Fukuda, Yamato; Takayanagi, Takehiko; Taro, Yoshinori; Kawai, Tatsuo; Forrester, Steven J; Elliott, Katherine J; Choi, Eric; Daugherty, Alan; Rizzo, Victor; Eguchi, Satoru

    2015-05-01

    Angiotensin II (Ang II) has been implicated in the development of abdominal aortic aneurysm (AAA). In vascular smooth muscle cells (VSMC), Ang II activates epidermal growth factor receptor (EGFR) mediating growth promotion. We hypothesized that inhibition of EGFR prevents Ang II-dependent AAA. C57BL/6 mice were co-treated with Ang II and β-aminopropionitrile (BAPN) to induce AAA with or without treatment with EGFR inhibitor, erlotinib. Without erlotinib, 64.3% of mice were dead due to aortic rupture. All surviving mice had AAA associated with EGFR activation. Erlotinib-treated mice did not die and developed far fewer AAA. The maximum diameters of abdominal aortas were significantly shorter with erlotinib treatment. In contrast, both erlotinib-treated and non-treated mice developed hypertension. The erlotinib treatment of abdominal aorta was associated with lack of EGFR activation, endoplasmic reticulum (ER) stress, oxidative stress, interleukin-6 induction and matrix deposition. EGFR activation in AAA was also observed in humans. In conclusion, EGFR inhibition appears to protect mice from AAA formation induced by Ang II plus BAPN. The mechanism seems to involve suppression of vascular EGFR and ER stress.

  7. Role of Mas receptor antagonist (A779) in renal hemodynamics in condition of blocked angiotensin II receptors in rats.

    PubMed

    Mansoori, A; Oryan, S; Nematbakhsh, M

    2016-03-01

    The vasodilatory effect of angiotensin 1-7 (Ang 1-7) is exerted in the vascular bed via Mas receptor (MasR) gender dependently. However, the crosstalk between MasR and angiotensin II (Ang II) types 1 and 2 receptors (AT1R and AT2R) may change some actions of Ang 1-7 in renal circulation. In this study by blocking AT1R and AT2R, the role of MasR in kidney hemodynamics was described. In anaesthetized male and female Wistar rats, the effects of saline as vehicle and MasR blockade (A779) were tested on mean arterial pressure (MAP), renal perfusion pressure (RPP), renal blood flow (RBF), and renal vascular resistance (RVR) when both AT1R and AT2R were blocked by losartan and PD123319, respectively. In male rats, when AT1R and AT2R were blocked, there was a tendency for the increase in RBF/wet kidney tissue weight (RBF/KW) to be elevated by A779 as compared with the vehicle (P=0.08), and this was not the case in female rats. The impact of MasR on renal hemodynamics appears not to be sexual dimorphism either when Ang II receptors were blocked. It seems that co-blockade of all AT1R, AT2R, and MasR may alter RBF/ KW in male more than in female rats. These findings support a crosstalk between MasR and Ang II receptors in renal circulation.

  8. Central angiotensin II stimulates cutaneous water intake behavior via an angiotensin II type-1 receptor pathway in the Japanese tree frog Hyla japonica.

    PubMed

    Maejima, Sho; Konno, Norifumi; Matsuda, Kouhei; Uchiyama, Minoru

    2010-08-01

    Angiotensin II (Ang II) stimulates oral water intake by causing thirst in all terrestrial vertebrates except anurans. Anuran amphibians do not drink orally but absorb water osmotically through ventral skin. In this study, we examined the role of Ang II on the regulation of water-absorption behavior in the Japanese tree frog (Hyla japonica). In fully hydrated frogs, intracerebroventricular (ICV) and intralymphatic sac (ILS) injection of Ang II significantly extended the residence time of water in a dose-dependent manner. Ang II-dependent water uptake was inhibited by ICV pretreatment with an angiotensin II type-1 (AT(1)) receptor antagonist but not a type-2 (AT(2)) receptor antagonist. These results suggest that Ang II stimulates water-absorption behavior in the tree frog via an AT(1)-like but not AT(2)-like receptor. We then cloned and characterized cDNA of the tree frog AT(1) receptor from the brain. The tree frog AT(1) receptor cDNA encodes a 361 amino acid residue protein, which is 87% identical to the toad (Bufo marinus) AT(1) receptor and exhibits the functional characteristics of an Ang II receptor. AT(1) receptor mRNAs were found to be present in a number of tissues including brain (especially in the diencephalon), lung, large intestine, kidney and ventral pelvic skin. When tree frogs were exposed to dehydrating conditions, AT(1) receptor mRNA significantly increased in the diencephalon and the rhombencephalon. These data suggest that central Ang II may control water intake behavior via an AT(1) receptor on the diencephalon and rhombencephalon in anuran amphibians and may have implications for water consumption in vertebrates.

  9. The role of insulin-like growth factor II in the malignant transformation of rat liver oval cells.

    PubMed

    Zhang, N; Siegel, K; Odenthal, M; Becker, R; Oesch, F; Dienes, H P; Schirmacher, P; Steinberg, P

    1997-04-01

    Oval cells are small nonparenchymal epithelial cells that first appear in the periportal areas of the liver and thereafter invade the whole parenchyma when mice or rats are exposed to a variety of chemical carcinogens. In the present study we have analyzed the expression of insulin-like growth factor II (IGF II) in the recently established oval cell line OC/CDE 22 and its malignantly transformed counterpart (the M22 cells) and the biological consequences of the constitutive expression of IGF II in oval cells. OC/CDE 22 cells do not express the above-mentioned growth factor, whereas the M22 cells do and addition of a neutralizing anti-IGF II antibody to M22 cells resulted in an almost complete proliferation stop. The presence of type 1 as well as type 2 insulin-like growth factor receptors in OC/CDE 22 and M22 cells was revealed by Northern blotting; however, only neutralizing antibodies directed against the type 1 IGF receptor were able to inhibit the proliferation of the cultured oval cells. Finally, transfection of an IGF II complementary DNA (cDNA) into OC/CDE 22 cells resulted in the release of active IGF II into the extracellular medium but not in the concomitant malignant transformation of the cells. Taken together these results show that: 1) upon transformation oval cells start producing IGF II and 2) IGF II acts on oval cells as a pure mitogen (without being per se oncogenic) via an autocrine loop involving the activation of the type 1 IGF receptor.

  10. Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice.

    PubMed

    Ishii, S; Shimizu, T

    2000-01-01

    Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active phospholipid mediator. Although PAF was initially recognized for its potential to induce platelet aggregation and secretion, intense investigations have elucidated potent biological actions of PAF in a broad range of cell types and tissues, many of which also produce the molecule. PAF acts by binding to a unique G-protein-coupled seven transmembrane receptor. PAF receptor is linked to intracellular signal transduction pathways, including turnover of phosphatidylinositol, elevation in intracellular calcium concentration, and activation of kinases, resulting in versatile bioactions. On the basis of numerous pharmacological reports, PAF is thought to have many pathophysiological and physiological functions. Recently advanced molecular technics enable us not only to clone PAF receptor cDNAs and genes, but also generate PAF receptor mutant animals, i.e., PAF receptor-overexpressing mouse and PAF receptor-deficient mouse. These mutant mice gave us a novel and specific approach for identifying the pathophysiological and physiological functions of PAF. This review also describes the phenotypes of these mutant mice and discusses them by referring to previously reported pharmacological and genetical data.

  11. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.

    PubMed

    Wiedemann, Agnès; Mijouin, Lily; Ayoub, Mohammed Akli; Barilleau, Emilie; Canepa, Sylvie; Teixeira-Gomes, Ana Paula; Le Vern, Yves; Rosselin, Manon; Reiter, Eric; Velge, Philippe

    2016-12-01

    The Salmonella Rck outer membrane protein binds to the cell surface, which leads to bacterial internalization via a Zipper mechanism. This invasion process requires induction of cellular signals, including phosphorylation of tyrosine proteins, and activation of c-Src and PI3K, which arises as a result of an interaction with a host cell surface receptor. In this study, epidermal growth factor receptor (EGFR) was identified as the cell signaling receptor required for Rck-mediated adhesion and internalization. First, Rck-mediated adhesion and internalization were shown to be altered when EGFR expression and activity were modulated. Then, immunoprecipitations were performed to demonstrate the Rck-EGFR interaction. Furthermore, surface plasmon resonance biosensor and homogeneous time-resolved fluorescence technologies were used to demonstrate the direct interaction of Rck with the extracellular domain of human EGFR. Finally, our study strongly suggests a noncompetitive binding of Rck and EGF to EGFR. Overall, these results demonstrate that Rck is able to bind to EGFR and thereby establish a tight adherence to provide a signaling cascade, which leads to internalization of Rck-expressing bacteria.-Wiedemann, A., Mijouin, L., Ayoub, M. A., Barilleau, E., Canepa, S., Teixeira-Gomes, A. P., Le Vern, Y., Rosselin, M., Reiter, E., Velge, P. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.

  12. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions.

    PubMed

    Morabito, Alessandro; Piccirillo, Maria Carmela; Falasconi, Fabiano; De Feo, Gianfranco; Del Giudice, Antonia; Bryce, Jane; Di Maio, Massimo; De Maio, Ermelinda; Normanno, Nicola; Perrone, Francesco

    2009-04-01

    Vandetanib is a novel, orally available inhibitor of different intracellular signaling pathways involved in tumor growth, progression, and angiogenesis: vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and REarranged during Transfection tyrosine kinase activity. Phase I clinical trials have shown that vandetanib is well tolerated as a single agent at daily doses < or =300 mg. In the phase II setting, negative results were observed with vandetanib in small cell lung cancer, metastatic breast cancer, and multiple myeloma. In contrast, three randomized phase II studies showed that vandetanib prolonged the progression-free survival (PFS) time of patients with non-small cell lung cancer (NSCLC) as a single agent when compared with gefitinib or when added to chemotherapy. Rash, diarrhea, hypertension, fatigue, and asymptomatic QTc prolongation were the most common adverse events. Antitumor activity was also observed in medullary thyroid cancer. Four randomized phase III clinical trials in NSCLC are exploring the efficacy of vandetanib in combination with docetaxel, the Zactima in cOmbination with Docetaxel In non-small cell lung Cancer (ZODIAC) trial, or with pemetrexed, the Zactima Efficacy with Alimta in Lung cancer (ZEAL) trial, or as a single agent, the Zactima Efficacy when Studied versus Tarceva (ZEST) and the Zactima Efficacy trial for NSCLC Patients with History of EGFR-TKI chemo-Resistance (ZEPHYR) trials. Based on a press release by the sponsor of these trials, the PFS time was longer with vandetanib in the ZODIAC and ZEAL trials; the ZEST trial was negative for its primary superiority analysis, but was successful according to a preplanned noninferiority analysis of PFS. Ongoing phase II and III clinical trials will better define the appropriate schedule, the optimal setting of evaluation, and the safety of long-term use of vandetanib.

  13. Glutamate receptors on myelinated spinal cord axons: II)AMPA and GluR5 receptors

    PubMed Central

    Ouardouz, M.; Coderre, E.; Zamponi, G. W.; Hameed, S.; Yin, X.; Trapp, B.D.; Stys, P.K.

    2010-01-01

    Objective Glutamate receptors, which play a major role in the physiology and pathology of CNS gray matter, are also involved in the pathophysiology of white matter. However the cellular and molecular mechanisms responsible for excitotoxic damage to white matter elements are not fully understood. We explored the roles of AMPA and GluR5 kainate receptors in axonal Ca2+ deregulation. Methods Dorsal column axons were loaded with a Ca2+ indicator and imaged in vitro using confocal microscopy. Results Both AMPA and a GluR5 kainate receptor agonists increased intra-axonal Ca2+ in myelinated rat dorsal column fibers. These responses were inhibited by selective antagonists of these glutamate receptors. The GluR5-mediated Ca2+ rise was mediated by both canonical (i.e. ionotropic) and non-canonical (metabotropic) signalling, dependent on a pertussis toxin-sensitive G protein and a phospholipase C-dependent pathway, promoting Ca2+ release from IP3-dependent stores. Additionally, the GluR5 response was significantly reduced by intra-axonal NO scavengers. In contrast, GluR4 AMPA receptors operated via Ca2+ induced Ca2+ release, dependent on ryanodine receptors, and unaffected by NO scavengers. Neither pathway depended on L-type Ca2+ channels, in contrast to GlurR6 kainate receptor action 1. Immunohistochemistry confirmed the presence of GluR4 and GluR5 clustered at the surface of myelinated axons; GluR5 co-immunoprecipitated with nNOS and often co-localized with nNOS clusters on the internodal axon. Interpretation Central myelinated axons express functional AMPA and GluR5 kainate receptors, and can directly respond to glutamate receptor agonists. These glutamate receptor-dependent signalling pathways promote an increase in intra-axonal Ca2+ levels potentially contributing to axonal degeneration. PMID:19224531

  14. Cubilin, the endocytic receptor for intrinsic factor-vitamin B(12) complex, mediates high-density lipoprotein holoparticle endocytosis.

    PubMed

    Hammad, S M; Stefansson, S; Twal, W O; Drake, C J; Fleming, P; Remaley, A; Brewer, H B; Argraves, W S

    1999-08-31

    Receptors that endocytose high-density lipoproteins (HDL) have been elusive. Here yolk-sac endoderm-like cells were used to identify an endocytic receptor for HDL. The receptor was isolated by HDL affinity chromatography and identified as cubilin, the recently described endocytic receptor for intrinsic factor-vitamin B(12). Cubilin antibodies inhibit HDL endocytosis by the endoderm-like cells and in mouse embryo yolk-sac endoderm, a prominent site of cubilin expression. Cubilin-mediated HDL endocytosis is inhibitable by HDL(2), HDL(3), apolipoprotein (apo)A-I, apoA-II, apoE, and RAP, but not by low-density lipoprotein (LDL), oxidized LDL, VLDL, apoC-I, apoC-III, or heparin. These findings, coupled with the fact that cubilin is expressed in kidney proximal tubules, suggest a role for this receptor in embryonic acquisition of maternal HDL and renal catabolism of filterable forms of HDL.

  15. Brefeldin A-Inhibited Guanine Nucleotide-Exchange Factor 1 (BIG1) Governs the Recruitment of Tumor Necrosis Factor Receptor-Associated Factor 2 (TRAF2) to Tumor Necrosis Factor Receptor 1 (TNFR1) Signaling Complexes

    PubMed Central

    Noguchi, Takuya; Tsuchida, Mei; Kogue, Yosuke; Spadini, Christian; Hirata, Yusuke; Matsuzawa, Atsushi

    2016-01-01

    Tumor necrosis factor receptor-associated factor 2 (TRAF2) is a critical mediator of tumor necrosis factor-α (TNF-α) signaling. However, the regulatory mechanisms of TRAF2 are not fully understood. Here we show evidence that TRAF2 requires brefeldin A-inhibited guanine nucleotide-exchange factor 1 (BIG1) to be recruited into TNF receptor 1 (TNFR1) signaling complexes. In BIG1 knockdown cells, TNF-α-induced c-Jun N-terminal kinase (JNK) activation was attenuated and the sensitivity to TNF-α-induced apoptosis was increased. Since these trends correlated well with those of TRAF2 deficient cells as previously demonstrated, we tested whether BIG1 functions as an upstream regulator of TRAF2 in TNFR1 signaling. As expected, we found that knockdown of BIG1 suppressed TNF-α-dependent ubiquitination of TRAF2 that is required for JNK activation, and impaired the recruitment of TRAF2 to the TNFR1 signaling complex (complex I). Moreover, we found that the recruitment of TRAF2 to the death-inducing signaling complex termed complex II was also impaired in BIG1 knockdown cells. These results suggest that BIG1 is a key component of the machinery that drives TRAF2 to the signaling complexes formed after TNFR1 activation. Thus, our data demonstrate a novel and unexpected function of BIG1 that regulates TNFR1 signaling by targeting TRAF2. PMID:27834853

  16. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2007-03-01

    Fibroblast growth factor receptors (Fgfrs) are expressed in the ureteric bud and metanephric mesenchyme of the developing kidney. Furthermore, in vitro and in vivo studies have shown that exogenous fibroblast growth factors (Fgfs) increase growth and maturation of the metanephric mesenchyme and ureteric bud. Deletion of fgf7, fgf10, and fgfr2IIIb (the receptor isoform that binds Fgf7 and Fgf10) in mice lead to smaller kidneys with fewer collecting ducts and nephrons. Overexpression of a dominant negative receptor isoform in transgenic mice has revealed more striking defects including renal aplasia or severe dysplasia. Moreover, deletion of many fgf ligands and receptors in mice results in early embryonic lethality, making it difficult to determine their roles in kidney development. Recently, conditional targeting approaches revealed that deletion of fgf8 from the metanephric mesenchyme interrupts nephron formation. Furthermore, deletion of fgfr2 from the ureteric bud resulted in both ureteric bud branching and stromal mesenchymal patterning defects. Deletion of both fgfr1 and fgfr2 in the metanephric mesenchyme resulted in renal aplasia, characterized by defects in metanephric mesenchyme formation and initial ureteric bud elongation and branching. Thus, Fgfr signaling is critical for growth and patterning of all renal lineages at early and later stages of kidney development.

  17. A heteromeric transcription factor required for mammalian RNA polymerase II.

    PubMed Central

    Kitajima, S; Tanaka, Y; Kawaguchi, T; Nagaoka, T; Weissman, S M; Yasukochi, Y

    1990-01-01

    A general transcription factor, FC, essential for specific initiation of in vitro transcription by mammalian RNA polymerase II was identified and a procedure developed to purify it to near homogeneity from HeLa cell nuclei. Purified FC is composed of two polypeptides of apparent molecular masses 80 kDa and 30 kDa, on SDS-PAGE, and has a native size of 280 kDa estimated by gel filtration column. Both polypeptides were shown to be essential for reconstituting in vitro transcription activity. Biochemical analysis showed that the 80 kDa and 30 kDa components were present in a 1:1 molar ratio. FC was also demonstrated to interact directly or indirectly with purified RNA polymerase II. Similarities between FC and transcription factors reported by others from human, rat or Drosophila cells are discussed. Images PMID:2395645

  18. Identification and pharmacological characterization of native, functional human urotensin-II receptors in rhabdomyosarcoma cell lines

    PubMed Central

    Douglas, Stephen A; Naselsky, Diane; Ao, Zhaohui; Disa, Jyoti; Herold, Christopher L; Lynch, Frank; Aiyar, Nambi V

    2004-01-01

    In an effort to identify endogenous, native mammalian urotensin-II (U-II) receptors (UT), a diverse range of human, primate and rodent cell lines (49 in total) were screened for the presence of detectable [125I]hU-II binding sites. UT mRNA (Northern blot, PCR) and protein (immunocytochemistry) were evident in human skeletal muscle tissue and cells. [125I]hU-II bound to a homogenous population of high-affinity, saturable (Kd 67.0±11.8 pM, Bmax 9687±843 sites cell−1) receptors in the skeletal muscle (rhabdomyosarcoma) cell line SJRH30. Radiolabel was characteristically slow to dissociate (⩽15% dissociation 90 min). A lower density of high-affinity U-II binding sites was also evident in the rhabdomyosarcoma cell line TE671 (1667±165 sites cell−1, Kd 74±8 pM). Consistent with the profile recorded in human recombinant UT-HEK293 cells, [125I]hU-II binding to SJRH30 cells was selectively displaced by both mammalian and fish U-II isopeptides (Kis 0.5±0.1–1.2±0.3 nM) and related analogues (hU-II[4-11]>[Cys5,10]Acm hU-II; Kis 0.4±0.1 and 864±193 nM, respectively). U-II receptor activation was functionally coupled to phospholipase C-mediated [Ca2+]i mobilization (EC50 6.9±2.2 nM) in SJRH30 cells. The present study is the first to identify the presence of ‘endogenous' U-II receptors in SJRH30 and TE671 cells. SJRH30 cells, in particular, might prove to be of utility for (a) investigating the pharmacological properties of hU-II and related small molecule antagonists at native human UT and (b) delineating the role of this neuropeptide in the (patho)physiological regulation of mammalian neuromuscular function. PMID:15210573

  19. Inhibition of Angiotensin II receptors during pregnancy induces malformations in developing rat kidney.

    PubMed

    Sánchez, Susana I; Seltzer, Alicia M; Fuentes, Lucia B; Forneris, Myriam L; Ciuffo, Gladys M

    2008-06-24

    Evidence suggests that Angiotensin II plays an important role in the complex process of renal organogenesis. Rat kidney organogenesis starts between E13-14 and lasts up to 2 weeks after birth. The present study demonstrates histologic modifications and changes in receptor localisation in animals born from mothers treated with Angiotensin II, Losartan or PD123319 (1.0 mg/kg/day) during late pregnancy. Angiotensin II-treated animals exhibited very well developed tubules in the renal medulla in coincidence with higher AT(1) binding. Control animals exhibited angiotensin AT(2) binding in the outer stripe of the outer medulla, while in the Angiotensin II-treated animals binding was observed to the inner stripe. In Angiotensin II-treated 1-week-old animals, the nephrogenic zone contained fewer immature structures, and more developed collecting tubules than control animals. Treatment with Losartan resulted in severe renal abnormalities. For newborn and 1-week-old animals, glomeruli exhibited altered shape and enlarged Bowman spaces, in concordance with a loss of [(125)I]Angiotensin II binding in the cortex. Blockade with PD123319 led to an enlarged nephrogenic zone with increased number of immature glomeruli, and less glomeruli in the juxtamedullary area. Autoradiography showed a considerable loss of AT(1) binding in the kidney cortex of PD123319-treated animals at both ages. The present results show for the first time histomorphological and receptor localisation alterations following treatment with low doses of Losartan and PD123319 during pregnancy. These observations confirm previous assumptions that in the developing kidney Angiotensin II exerts stimulatory effects through AT(1) receptors that might be counterbalanced by angiotensin AT(2) receptors.

  20. Control of gravitropic orientation. II. Dual receptor model for gravitropism

    NASA Technical Reports Server (NTRS)

    LaMotte, Clifford E.; Pickard, Barbara G.

    2004-01-01

    Gravitropism of vascular plants has been assumed to require a single gravity receptor mechanism. However, based on the evidence in Part I of this study, we propose that maize roots require two. The first mechanism is without a directional effect and, by itself, cannot give rise to tropism. Its role is quantitative facilitation of the second mechanism, which is directional like the gravitational force itself and provides the impetus for tropic curvature. How closely coupled the two mechanisms may be is, as yet, unclear. The evidence for dual receptors supports a general model for roots. When readiness for gravifacilitation, or gravifacilitation itself, is constitutive, orthogravitropic curvature can go to completion. If not constitutively enabled, gravifacilitation can be weak in the absence of light and water deficit or strong in the presence of light and water deficit. In either case, it can decay and permit roots to assume reproducible non-vertical orientations (plagiogravitropic or plagiotropic orientations) without using non-vertical setpoints. In this way roots are deployed in a large volume of soil. Gravitropic behaviours in shoots are more diverse than in roots, utilising oblique and horizontal as well as vertical setpoints. As a guide to future experiments, we assess how constitutive v. non-constitutive modes of gravifacilitation might contribute to behaviours based on each kind of setpoint.

  1. Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer's Disease.

    PubMed

    Saavedra, Juan M

    2016-03-01

    Alzheimer's disease is the most frequent type of dementia and diagnosed late in the progression of the illness when irreversible brain tissue loss has already occurred. For this reason, treatments have been ineffective. It is imperative to find novel therapies ameliorating modifiable risk factors (hypertension, stroke, diabetes, chronic kidney disease, and traumatic brain injury) and effective against early pathogenic mechanisms including alterations in cerebral blood flow leading to poor oxygenation and decreased access to nutrients, impaired glucose metabolism, chronic inflammation, and glutamate excitotoxicity. Angiotensin II receptor blockers (ARBs) fulfill these requirements. ARBs are directly neuroprotective against early injury factors in neuronal, astrocyte, microglia, and cerebrovascular endothelial cell cultures. ARBs protect cerebral blood flow and reduce injury to the blood brain barrier and neurological and cognitive loss in animal models of brain ischemia, traumatic brain injury, and Alzheimer's disease. These compounds are clinically effective against major risk factors for Alzheimer's disease: hypertension, stroke, chronic kidney disease, diabetes and metabolic syndrome, and ameliorate age-dependent cognitive loss. Controlled studies on hypertensive patients, open trials, case reports, and database meta-analysis indicate significant therapeutic effects of ARBs in Alzheimer's disease. ARBs are safe compounds, widely used to treat cardiovascular and metabolic disorders in humans, and although they reduce hypertension, they do not affect blood pressure in normotensive individuals. Overall, there is sufficient evidence to consider long-term controlled clinical studies with ARBs in patients suffering from established risk factors, in patients with early cognitive loss, or in normal individuals when reliable biomarkers of Alzheimer's disease risk are identified.

  2. Transcobalamin II Receptor Polymorphisms Are Associated with Increased Risk for Neural Tube Defects

    PubMed Central

    Pangilinan, Faith; Mitchell, Adam; VanderMeer, Julie; Molloy, Anne M.; Troendle, James; Conley, Mary; Kirke, Peadar N.; Sutton, Marie; Sequeira, Jeffrey M.; Quadros, Edward V.; Scott, John M.; Mills, James L.; Brody, Lawrence C.

    2014-01-01

    Objective: Women who have low cobalamin (vitamin B12) levels are at increased risk for having children with neural tube defects (NTDs). The transcobalamin II receptor (TCblR) mediates uptake of cobalamin into cells. We evaluated inherited variants in the TCblR gene as NTD risk factors. Methods: Case-control and family-based tests of association were used to screen common variation in TCblR as genetic risk factors for NTDs in a large Irish group. A confirmatory group of NTD triads was used to test positive findings. Results: We found two tightly linked variants associated with NTDs in a recessive model: TCblR rs2336573 (G220R) (pcorr=0.0080, corrected for multiple hypothesis testing) and TCblR rs9426 (pcorr =0. 0279). These variants were also associated with NTDs in a family-based test prior to multiple test correction (log-linear analysis of a recessive model: rs2336573 (G220R) (RR=6.59, p=0.0037) and rs9426 (RR=6.71, p=0.0035)). We describe a copy number variant (CNV) distal to TCblR and two previously unreported exonic insertion-deletion polymorphisms. Conclusions: TCblR rs2336573 (G220R) and TCblR rs9426 represent a significant risk factor in NTD cases in the Irish population. The homozygous risk genotype was not detected in nearly one thousand controls, indicating this NTD risk factor may be of low frequency and high penetrance. Nine other variants are in perfect LD with the associated SNPs. Additional work is required to identify the disease-causing variant. Our data suggest that variation in TCblR plays a role in NTD risk and that these variants may modulate cobalamin metabolism. PMID:20577008

  3. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.

    PubMed

    Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E

    2015-02-05

    The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors.

  4. Transforming growth factor-beta receptor requirements for the induction of the endothelin-1 gene.

    PubMed

    Castañares, Cristina; Redondo-Horcajo, Mariano; Magan-Marchal, Noemi; Lamas, Santiago; Rodriguez-Pascual, Fernando

    2006-06-01

    Expression of the endothelin (ET)-1 gene is subject to complex regulation by numerous factors, among which the cytokine transforming growth factor-beta (TGF-beta) is one of the most important. TGF-beta action is based on the activation of the Smad signaling pathway. Smad proteins activate transcription of the gene by cooperation with activator protein-1 (AP-1) at specific sites on the ET-1 promoter. Smad signaling pathway is initiated by binding of the cytokine to a heteromeric complex of type I and type II receptors. Signal is then propagated to the nucleus by specific members of the Smad family. Most cell types contain a type I receptor known as ALK5. However, endothelial cells are unique because they coexpress an additional type I receptor named ALK1. These forms do not constitute redundant receptors with the same function, but they actually activate different Smad-mediated expression programs that lead to specific endothelial phenotypes. TGF-beta/ALK5/Smad3 pathway is associated to a mature endothelium because it leads to inhibition of cell migration/proliferation. Conversely, TGF-beta/ALK1/Smad5 activates both processes and is more related to the angiogenic state. We have analyzed the TGF-beta receptor subtype requirements for the activation of the ET-1 gene. For that purpose, we have overexpressed type I receptor and Smad isoforms in endothelial cells and analyzed the effect on ET-1 expression. Our experiments indicate that TGF-beta induces ET-1 expression preferentially through the activation of the ALK5/Smad3 pathway and, therefore, the expression of the vaso-constrictor may be associated to a quiescent and mature endothelial phenotype.

  5. Fibroblast growth factor receptor levels decrease during chick embryogenesis

    PubMed Central

    1990-01-01

    Two putative receptors for fibroblast growth factor (FGF) of approximately 150 and 200 kD were identified in membrane preparations from chick embryos. Specific binding (femtomoles/milligram) of 125I- aFGF to whole chick embryonic membranes was relatively constant from day 2 to 7, then decreased fivefold between days 7 and 13. Day-19 chick embryos retained 125I-aFGF binding at low levels to brain, eye, and liver tissues but not to skeletal muscle or cardiac tissues. The 200-kD FGF receptor began to decline between day 4.5 and 7 and was barely detectable by day 9, whereas the 150-kD FGF receptor began to decline by day 7 but was still detectable in day-9 embryonic membranes. It is not known whether the two FGF-binding proteins represent altered forms of one polypeptide, but it is clear that their levels undergo differential changes during development. Because endogenous chick FGF may remain bound to FGF receptor in membrane preparations, membranes were treated with acidic (pH 4.0) buffers to release bound FGF; such treatment did not affect 125I-aFGF binding and moderately increased the number of binding sites in day-7 and -19 embryos. Consequently, the observed loss of high affinity 125I-aFGF binding sites and FGF-binding polypeptides most likely represents a loss of FGF receptor protein. These experiments provide in vivo evidence to support the hypothesis that regulation of FGF receptor levels may function as a mechanism for controlling FGF-dependent processes during embryonic development. PMID:2153684

  6. Expression of androgen receptor in breast cancer & its correlation with other steroid receptors & growth factors

    PubMed Central

    Mishra, Ashwani K.; Agrawal, Usha; Negi, Shivani; Bansal, Anju; Mohil, R.; Chintamani, Chintamani; Bhatnagar, Amar; Bhatnagar, Dinesh; Saxena, Sunita

    2012-01-01

    Background & objectives: Breast cancer is the second most common malignancy in Indian women. Among the members of the steroid receptor superfamily the role of estrogen and progesterone receptors (ER and PR) is well established in breast cancer in predicting the prognosis and management of therapy, however, little is known about the clinical significance of androgen receptor (AR) in breast carcinogenesis. The present study was aimed to evaluate the expression of AR in breast cancer and to elucidate its clinical significance by correlating it with clinicopathological parameters, other steroid receptors (ER and PR) and growth factors receptors (EGFR and CD105). Methods: Expression of AR, ER, PR, epidermal growth factor receptor (EGFR) and endoglin (CD105) was studied in 100 cases of breast cancer by immunohistochemistry (IHC). Risk ratio (RR) along with 95% confidence interval (CI) was estimated to assess the strength of association between the markers and clinicopathological characteristics. Categorical principal component analysis (CATPCA) was applied to obtain new sets of linearly combined expression, for their further evaluation with clinicopathological characteristics (n=100). Results: In 31 cases presenting with locally advanced breast cancer (LABC), the expression of AR, ER, PR, EGFR and CD105 was associated with response to neoadjuvant chemotherapy (NACT). The results indicated the association of AR+ (P=0.001) and AR+/EGFR- (P=0.001) with the therapeutic response to NACT in LABC patients. The AR expression exhibited maximum sensitivity, specificity and likelihood ratio of positive and negative test. The present results showed the benefit of adding AR, EGFR and CD105 to the existing panel of markers to be able to predict response to therapy. Interpretation & conclusions: More studies on the expression profiles of AR+, AR+/CD105+ and AR+/EGFR- in larger set of breast cancer patients may possibly help in confirming their predictive role for therapeutic response

  7. Local actions of angiotensin II: quantitative in vitro autoradiographic localization of angiotensin II receptor binding and angiotensin converting enzyme in target tissues

    SciTech Connect

    Chai, S.Y.; Allen, A.M.; Adam, W.R.; Mendelsohn, F.A.

    1986-01-01

    In order to gain insight into the local actions of angiotensin II (ANG II) we have determined the distribution of a component of the effector system for the peptide, the ANG II receptor, and that of an enzyme-catalysing ANG II formation, angiotensin converting enzyme (ACE), by in vitro autoradiography in several target tissues. The superagonist ANG II analog, /sup 125/I(Sar1)ANG II, or the antagonist analog, /sup 125/I(Sar1,Ile8)ANG II, were used as specific radioligands for ANG II receptors. A derivative of the specific ACE inhibitor, lysinopril, called /sup 125/I-351A, was used to label ACE in tissues. In the adrenal, a high density of ANG II receptors occurs in the glomerulosa zone of the cortex and in the medulla. ACE is also localized in these two zones, indicating that local production of ANG II may occur close to its sites of action in the zona glomerulosa and adrenal medulla. In the kidney, a high density of ANG II receptors is associated with glomeruli in the cortex and also with vasa recta bundles in the inner stripe of the outer medulla. ACE is found in very high concentration in deep proximal convoluted tubules of the cortex, while much lower concentrations of the enzyme occur in the vascular endothelium throughout the kidney. In the central nervous system three classes of relationships between ANG II receptors and ACE are observed: In the circumventricular organs, including the subfornical organ and organum vasculosum of the lamina terminalis, a high concentration of both components occurs. Since these structures have a deficient blood-brain barrier, local conversion of circulating angiotensin I (ANG I) to ANG II may contribute to the action of ANG II at these sites.

  8. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists.

    PubMed Central

    Di Marco, A; Gloaguen, I; Graziani, R; Paonessa, G; Saggio, I; Hudson, K R; Laufer, R

    1996-01-01

    Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by alanine mutagenesis. Substitution of either F152 or K155 with alanine was found to specifically inhibit cytokine interaction with LIFR without affecting binding to CNTFR alpha or gp130. The resulting variants behaved as partial agonists with varying degrees of residual bioactivity in different cell-based assays. Simultaneous alanine substitution of both F152 and K155 totally abolished biological activity. Combining these mutations with amino acid substitutions in the D-helix, which enhance binding affinity for the CNTFR alpha, gave rise to a potent competitive CNTF receptor antagonist. This protein constitutes a new tool for studies of CNTF function in normal physiology and disease. Images Fig. 1 Fig. 6 PMID:8799186

  9. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata

    PubMed Central

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-01

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone. PMID:26729427

  10. Potential effect of angiotensin II receptor blockade in adipose tissue and bone.

    PubMed

    Nakagami, Hironori; Osako, Mariana Kiomy; Morishita, Ryuichi

    2013-01-01

    Recent evidence demonstrated that dysregulation of adipocytokine functions seen in abdominal obesity may be involved in the pathogenesis of the metabolic syndrome. Angiotensinogen, the precursor of angiotensin (Ang) II, is produced primarily in the liver, and also in adipose tissue, where it is up-regulated during the development of obesity and involved in blood pressure regulation and adipose tissue growth. Blockade of renin-angiotensin system (RAS) attenuates weight gain and adiposity by enhanced energy expenditure, and the favorable metabolic effects of telmisartan have been related to its Ang II receptor blockade and action as a partial agonist of peroxisome proliferators activated receptor (PPAR)-γ. PPARγ plays an important role in regulating carbohydrate and lipid metabolism, and ligands for PPARγ can improve insulin sensitivity and reduce triglyceride levels. Similarly, bone metabolism is closely regulated by hormones and cytokines, which have effects on both bone resorption and deposition. It is known that the receptors of Ang II are expressed in culture osteoclasts and osteoblasts, and Ang II is postulated to be able to act upon the cells involved in bone metabolism. In in vitro system, Ang II induced the differentiation and activation of osteoclasts responsible for bone resorption. Importantly, it was demonstrated by the sub-analysis of a recent clinical study that the fracture risk was significantly reduced by the usage of angiotensin-converting enzyme inhibitors. To treat the subgroups of hypertensive patients with osteoporosis RAS can be considered a novel target.

  11. Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata.

    PubMed

    Zhang, Dan-Dan; Wang, Hong-Lei; Schultze, Anna; Froß, Heidrun; Francke, Wittko; Krieger, Jürgen; Löfstedt, Christer

    2016-01-05

    How signal diversity evolves under stabilizing selection in a pheromone-based mate recognition system is a conundrum. Female moths produce two major types of sex pheromones, i.e., long-chain acetates, alcohols and aldehydes (Type I) and polyenic hydrocarbons and epoxides (Type II), along different biosynthetic pathways. Little is known on how male pheromone receptor (PR) genes evolved to perceive the different pheromones. We report the identification of the first PR tuned to Type II pheromones, namely ObruOR1 from the winter moth, Operophtera brumata (Geometridae). ObruOR1 clusters together with previously ligand-unknown orthologues in the PR subfamily for the ancestral Type I pheromones, suggesting that O. brumata did not evolve a new type of PR to match the novel Type II signal but recruited receptors within an existing PR subfamily. AsegOR3, the ObruOR1 orthologue previously cloned from the noctuid Agrotis segetum that has Type I acetate pheromone components, responded significantly to another Type II hydrocarbon, suggesting that a common ancestor with Type I pheromones had receptors for both types of pheromones, a preadaptation for detection of Type II sex pheromone.

  12. Sequence analysis of bone morphogenetic protein receptor type II mRNA from ascitic and nonascitic commercial broilers.

    PubMed

    Cisar, C R; Balog, J M; Anthony, N B; Donoghue, A M

    2003-10-01

    Ascites syndrome, also known as pulmonary hypertension syndrome (PHS), is a common metabolic disorder in rapidly growing meat-type chickens. Environmental factors, such as cold, altitude, and diet, play significant roles in development of the disease, but there is also an important genetic component to PHS susceptibility. The human disease familial primary pulmonary hypertension (FPPH) is similar to PHS in broilers both genetically and physiologically. Several recent studies have shown that mutations in the bone morphogenetic protein receptor type II (BMPR2) gene are a cause of FPPH in humans. To determine whether mutations in the chicken BMPR2 gene play a similar role in PHS susceptibility, BMPR-II mRNA from ascitic and nonascitic commercial broilers were sequenced and compared with the published Leghorn chicken BMPR-II mRNA sequence. Fourteen single nucleotide polymorphisms (SNP) were identified in the commercial broiler BMPR-II mRNA. No mutations unique to ascites-susceptible broilers were present in the coding, 5' untranslated or 3' untranslated regions of BMPR-II mRNA. The twelve SNP present within the coding region of BMPR-II mRNA were synonymous substitutions and did not alter the BMPR-II protein sequence. In addition, analysis of BMPR2 gene expression by reverse transcriptase-PCR indicated that there were no differences in BMPR-II mRNA levels in ascitic and nonascitic birds. Therefore, it appears unlikely that mutations in the BMPR2 gene were responsible for susceptibility to PHS in these commercial broilers.

  13. Angiotensin II modulates tyr-phosphorylation of IRS-4, an insulin receptor substrate, in rat liver membranes.

    PubMed

    Villarreal, Rodrigo S; Alvarez, Sergio E; Ayub, Maximiliano Juri; Ciuffo, Gladys M

    2006-12-01

    Angiotensin II (Ang II), a major regulator of blood pressure, is also involved in the control of cellular proliferation and hypertrophy and might exhibit additional actions in vivo by modulating the signaling of other hormones. As hypertension and Insulin (Ins) resistance often coexist and are risk factors for cardiovascular diseases, Ang II and Insulin signaling cross-talk may have an important role in hypertension development. The effect of Ins on protein tyrosine phosphorylation was assayed in rat liver membrane preparations, a rich source of Ins receptors. Following stimulation, Ins (10(-7) M) induced tyr-phosphorylation of different proteins. Insulin consistently induced tyr-phosphorylation of a 160 kDa protein (pp160) with maximum effect between 1 and 3 min. The pp160 protein was identified by anti-IRS-4 but not by anti-IRS-1 antibody. Pre-stimulation with Ang II (10(-7) M) diminishes tyr-phosphorylation level of pp160/IRS-4 in a dose-dependent manner. Okadaic acid, the PP1A and PP2A Ser/Thr phosphatase inhibitor, increases pp160 phosphorylation induced by Ins and prevents the inhibitory effect of Ang II pre-stimulation. Genistein, a tyrosine kinase inhibitor, diminishes tyr-phosphorylation level of IRS-4. PI3K inhibitors Wortmanin and LY294002, both increase tyr-phosphorylation of IRS-4, either in the presence of Ins alone or combined with Ang II. These results suggest that Ins and Ang II modulate IRS-4 tyr-phosphorylation in a PI3K-dependent manner. In summary, we showed that Ins induces tyr-phosphorylation of IRS-4, an effect modulated by Ang II. Assays performed in the presence of different inhibitors points toward a PI3K involvement in this signaling pathway.

  14. Methods for studying the platelet-derived growth factor receptor

    SciTech Connect

    Bowen-Pope, D.F.; Ross, R.

    1985-01-01

    Platelet-derived growth factor (PDGF) is a basic 30,000-dalton protein circulating in normal blood sequestered within the platelet alpha granule. Radioiodinated PDGF shows saturable (e.g., 60,000-120,000 receptors per diploid human fibroblast) high affinity binding to culture PDGF-responsive cells. The apparent dissociation constant reported for this binding interaction has varied widely. This paper focuses on factors which affect (/sup 125/I)PGDF binding and on the development of a radioreceptor assay for PDGF.

  15. Chemical modification of Class II G-protein coupled receptor ligands

    PubMed Central

    Chapter, Megan C.; White, Caitlin M.; De Ridder, Angela; Chadwick, Wayne; Martin, Bronwen; Maudsley, Stuart

    2009-01-01

    Recent research and clinical data have begun to demonstrate the huge potential therapeutic importance of ligands that modulate the activity of the secretin-like, Class II, G-protein coupled receptors (GPCRs). Ligands that can modulate the activity of these Class II GPCRs may have important clinical roles in the treatment of a wide variety of conditions such as osteoporosis, diabetes, amyotrophic lateral sclerosis and autism spectrum disorders. While these receptors present important new therapeutic targets, the large glycoprotein nature of their cognate ligands poses many problems with respect to therapeutic peptidergic drug design. These native peptides often exhibit poor bioavailability, metabolic instability, poor receptor selectivity and resultant low potencies in vivo. Recently, increased attention has been paid to the structural modification of these peptides to enhance their therapeutic efficacy. Successful modification strategies have included D-amino acid substitutions, selective truncation, and fatty acid acylation of the peptide. Through these and other processes, these novel peptide ligand analogs can demonstrate enhanced receptor subtype selectivity, directed signal transduction pathway activation, resistance to proteolytic degradation, and improved systemic bioavailability. In the future, it is likely, through additional modification strategies such as addition of circulation-stabilizing transferrin moieties, that the therapeutic pharmacopeia of drugs targeted towards Class II secretin-like receptors may rival that of the Class I rhodopsin-like receptors that currently provide the majority of clinically used GPCR-based therapeutics. Currently, Class II-based drugs include synthesized analogues of vasoactive intestinal peptide for type 2 diabetes or parathyroid hormone for osteoporosis. PMID:19686775

  16. Computational evaluation of unsaturated carbonitriles as neutral receptor model for beryllium(II) recognition.

    PubMed

    Rosli, Ahmad Nazmi; Ahmad, Mohd Rais; Alias, Yatimah; Zain, Sharifuddin Md; Lee, Vannajan Sanghiran; Woi, Pei Meng

    2014-12-01

    Design of neutral receptor molecules (ionophores) for beryllium(II) using unsaturated carbonitrile models has been carried out via density functional theory, G3, and G4 calculations. The first part of this work focuses on gas phase binding energies between beryllium(II) and 2-cyano butadiene (2-CN BD), 3-cyano propene (3-CN P), and simpler models with two separate fragments; acrylonitrile and ethylene. Interactions between beryllium(II) and cyano nitrogen and terminal olefin in the models have been examined in terms of geometrical changes, distribution of charge over the entire π-system, and rehybridization of vinyl carbon orbitals. NMR shieldings and vibrational frequencies probed charge centers and strength of interactions. The six-membered cyclic complexes have planar structures with the rehybridized carbon slightly out of plane (16° in 2-CN BD). G3 results show that in 2-CN BD complex participation of vinyl carbon further stabilizes the cyclic adduct by 16.3 kcal mol(-1), whereas, in simpler models, interaction between beryllium(II) and acetonitrile is favorable by 46.4 kcal mol(-1) compared with that of ethylene. The terminal vinyl carbon in 2-CN BD rehybridizes to sp (3) with an increase of 7 % of s character to allow interaction with beryllium(II). G4 calculations show that the Be(II) and 2-CN BD complex is more strongly bound than those with Mg(II) and Ca(II) by 98.5 and 139.2 kcal mol(-1) (-1), respectively. QST2 method shows that the cyclic and acyclic forms of Be(II)-2-CN BD complexes are separated by 12.3 kcal mol(-1) barrier height. Overlap population analysis reveals that Ca(II) can be discriminated based on its tendency to form ionic interaction with the receptor models.

  17. Adenosine-A1 receptor agonist induced hyperalgesic priming type II.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-03-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor.

  18. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  19. Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo.

    PubMed

    Watson, A J; Hogan, A; Hahnel, A; Wiemer, K E; Schultz, G A

    1992-02-01

    The sensitive technique of mRNA phenotyping with the reverse transcription-polymerase chain reaction was employed to determine the patterns of gene expression for several growth factor ligand and receptor genes during bovine preimplantation development. Several thousand bovine embryos encompassing a developmental series from one-cell zygotes to hatched blastocysts were produced by the application of in vitro maturation, fertilization, and oviductal epithelial cell embryo coculture methods. Transcripts for transforming growth factor (TGF-alpha) and platelet-derived growth factor (PDGF-A) are detectable in all preimplantation bovine stages as observed in the mouse. Transcripts for TGF-beta 2 and insulin-like growth factor (IGF-II) and the receptors for PDGF-alpha, insulin, IGF-I, and IGF-II are also detectable throughout bovine preimplantation development, suggesting that these mRNAs are products of both the maternal and the embryonic genomes in the cow, whereas in the mouse they are present only following the activation of the embryonic genome at the two-cell stage. In contrast to the mouse embryo, IGF-I mRNA was detected within preimplantation bovine embryos. Basic fibroblast growth factor (bFGF) is a maternal message in the bovine embryo, since it is only detectable up until the eight-cell embryo stage. Bovine trophoblast protein (bTP) mRNA was detectable within day 8 bovine blastocysts. As was observed in the mouse, the transcripts for insulin, epidermal growth factor (EGF), or nerve growth factor (NGF) were not detectable in any bovine embryo stage. Analyses of this type should aid the development of a completely defined culture medium for the more efficient production of preimplantation bovine embryos.

  20. Antiangiogenic effect of angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb.

    PubMed

    Silvestre, Jean-Sébastien; Tamarat, Radia; Senbonmatsu, Takaaki; Icchiki, Toshihiro; Ebrahimian, Teni; Iglarz, Marc; Besnard, Sandrine; Duriez, Micheline; Inagami, Tadashi; Lévy, Bernard I

    2002-05-31

    This study examined the potential role of angiotensin type 2 (AT(2)) receptor on angiogenesis in a model of surgically induced hindlimb ischemia. Ischemia was produced by femoral artery ligature in both wild-type and AT(2) gene-deleted mice (Agtr2(-)/Y). After 28 days, angiogenesis was quantitated by microangiography, capillary density measurement, and laser Doppler perfusion imaging. Protein levels of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), Bax, and Bcl-2 were determined by Western blot analysis in hindlimbs. The AT(2) mRNA level (assessed by semiquantitative RT-PCR) was increased in the ischemic hindlimb of wild-type mice. Angiographic vessel density and laser Doppler perfusion data showed significant improvement in ischemic/nonischemic leg ratio, 1.9- and 1.7-fold, respectively, in Agtr2(-)/Y mice compared with controls. In ischemic leg of Agtr2(-)/Y mice, revascularization was associated with an increase in the antiapoptotic protein content, Bcl-2 (211% of basal), and a decrease (60% of basal) in the number of cell death, determined by TUNEL method. Angiotensin II treatment (0.3 mg/kg per day) raised angiogenic score, blood perfusion, and both VEGF and eNOS protein content in ischemic leg of wild-type control but did not modulate the enhanced angiogenic response observed in untreated Agtr2(-)/Y mice. Finally, immunohistochemistry analysis revealed that VEGF was mainly localized to myocyte, whereas eNOS-positive staining was mainly observed in the capillary of ischemic leg of both wild-type and AT(2)-deficient mice. This study demonstrates for the first time that the AT(2) receptor subtype may negatively modulate ischemia-induced angiogenesis through an activation of the apoptotic process.

  1. Dietary sodium intake regulates angiotensin II type 1, mineralocorticoid receptor, and associated signaling proteins in heart.

    PubMed

    Ricchiuti, Vincent; Lapointe, Nathalie; Pojoga, Luminita; Yao, Tham; Tran, Loc; Williams, Gordon H; Adler, Gail K

    2011-10-01

    Liberal or high-sodium (HS) intake, in conjunction with an activated renin-angiotensin-aldosterone system, increases cardiovascular (CV) damage. We tested the hypothesis that sodium intake regulates the type 1 angiotensin II receptor (AT(1)R), mineralocorticoid receptor (MR), and associated signaling pathways in heart tissue from healthy rodents. HS (1.6% Na(+)) and low-sodium (LS; 0.02% Na(+)) rat chow was fed to male healthy Wistar rats (n=7 animals per group). Protein levels were assessed by western blot and immunoprecipitation analysis. Fractionation studies showed that MR, AT(1)R, caveolin-3 (CAV-3), and CAV-1 were located in both cytoplasmic and membrane fractions. In healthy rats, consumption of an LS versus a HS diet led to decreased cardiac levels of AT(1)R and MR. Decreased sodium intake was also associated with decreased cardiac levels of CAV-1 and CAV-3, decreased immunoprecipitation of AT(1)R-CAV-3 and MR-CAV-3 complexes, but increased immunoprecipitation of AT(1)R/MR complexes. Furthermore, decreased sodium intake was associated with decreased cardiac extracellular signal-regulated kinase (ERK), phosphorylated ERK (pERK), and pERK/ERK ratio; increased cardiac striatin; decreased endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS), but increased peNOS/eNOS ratio; and decreased cardiac plasminogen activator inhibitor-1. Dietary sodium restriction has beneficial effects on the cardiac expression of factors associated with CV injury. These changes may play a role in the cardioprotective effects of dietary sodium restriction.

  2. VOC Source - Receptor Relationships in Houston during TexAQS-II

    NASA Astrophysics Data System (ADS)

    Leuchner, M.; Rappenglück, B.

    2009-04-01

    During the TexAQS-II field campaign in August and September 2006, C2 - C10 volatile organic compounds (VOC) were measured continuously and online at the urban Moody Tower (MT) site. This data set was compared to corresponding VOC data sets obtained at six sites located in the highly industrialized Houston Ship Channel area (HSC). Receptor modeling was performed by positive matrix factorization (PMF) at all sites. Conditional probability functions were used to determine the origin of the polluted air masses in the Houston area. A subdivision into daytime and nighttime was carried out to discriminate photochemical influences. Eight main source categories of industrial, mobile, and biogenic emissions were identified at the urban receptor site, seven and six, respectively, at the different HSC sites. Amongst these categories, natural gas / crude oil, LPG, and vehicular exhaust contributed most to the total measured VOC mass, followed by fuel evaporation, aromatics, petrochemical sources from ethylene and propylene, and biogenic sources. Based on PMF analyses of different wind sectors, the total VOC mass was estimated to be twofold at MT with wind directions from HSC compared to air from a typical urban sector, for petrochemical compounds more than threefold. Despite the strong impact of air masses influenced by industrial sources at HSC, still a significant fraction of the total mass contributions at MT can be apportioned to other sources, mainly motor vehicles and aromatic solvents. The investigation of diurnal variation in combination with wind directional frequencies revealed the greatest HSC impact at the urban site during the morning, and the least during the evening.

  3. G protein-coupled receptor kinase and beta-arrestin-mediated desensitization of the angiotensin II type 1A receptor elucidated by diacylglycerol dynamics.

    PubMed

    Violin, Jonathan D; Dewire, Scott M; Barnes, William G; Lefkowitz, Robert J

    2006-11-24

    Receptor desensitization progressively limits responsiveness of cells to chronically applied stimuli. Desensitization in the continuous presence of agonist has been difficult to study with available assay methods. Here, we used a fluorescence resonance energy transfer-based live cell assay for the second messenger diacylglycerol to measure desensitization of a model seven-transmembrane receptor, the Gq-coupled angiotensin II type 1(A) receptor, expressed in human embryonic kidney 293 cells. In response to angiotensin II, we observed a transient diacylglycerol response reflecting activation and complete desensitization of the receptor within 2-5 min. By utilizing a variety of approaches including graded tetracycline-inducible receptor expression, mutated receptors, and overexpression or short interfering RNA-mediated silencing of putative components of the cellular desensitization machinery, we conclude that the rate and extent of receptor desensitization are critically determined by the following: receptor concentration in the plasma membrane; the presence of phosphorylation sites on the carboxyl terminus of the receptor; kinase activity of G protein-coupled receptor kinase 2, but not of G protein-coupled receptor kinases 3, 5, or 6; and stoichiometric expression of beta-arrestin. The findings introduce the use of the biosensor diacylglycerol reporter as a powerful means for studying Gq-coupled receptor desensitization and document that, at the levels of receptor overexpression commonly used in such studies, the properties of the desensitization process are markedly perturbed and do not reflect normal cellular physiology.

  4. Reciprocal roles of angiotensin II and Angiotensin II Receptors Blockade (ARB) in regulating Cbfa1/RANKL via cAMP signaling pathway: possible mechanism for hypertension-related osteoporosis and antagonistic effect of ARB on hypertension-related osteoporosis.

    PubMed

    Guan, Xiao-Xu; Zhou, Yi; Li, Ji-Yao

    2011-01-01

    Hypertension is a risk factor for osteoporosis. Animal and epidemiological studies demonstrate that high blood pressure is associated with increased calcium loss, elevated parathyroid hormone, and increased calcium movement from bone. However, the mechanism responsible for hypertension-related osteoporosis remains elusive. Recent epidemiological studies indicate the benefits of Angiotensin II Receptors Blockade (ARB) on decreasing fracture risks. Since receptors for angiotensin II, the targets of ARB, are expressed in both osteoblasts and osteoclasts, we postulated that angiotensin II plays an important role in hypertension-related osteoporosis. Cbfa1 and RANKL, the important factors for maintaining bone homeostasis and key mediators in controlling osteoblast and osteoclast differentiation, are both regulated by cAMP-dependent signaling. Angiotensin II along with factors such as LDL, HDL, NO and homocysteine that are commonly altered both in hypertension and osteoporosis, can down-regulate the expression of Cbfa1 but up-regulate RANKL expression via the cAMP signaling pathway. We thus hypothesized that, by altering the ratio of Cbfa1/RANKL expression via the cAMP-dependent pathway, angiotensin II differently regulates osteoblast and osteoclast differentiation leading to enhanced bone resorption and reduced bone formation. Since ARB can antagonize the adverse effect of angiotensin II on bone by lowering cAMP levels and modifying other downstream targets, including LDL, HDL, NO and Cbfa1/RANKL, we propose the hypothesis that the antagonistic effects of ARB may also be exerted via cAMP signaling pathway.

  5. Vascular Endothelial Growth Factor Receptor -2 in Breast Cancer

    PubMed Central

    Guo, Shanchun; Colbert, Laronna S.; Fuller, Miles; Zhang, Yuanyuan; Gonzalez-Perez, Ruben R.

    2010-01-01

    Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR were structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival. PMID:20462514

  6. Conformational thermostabilisation of corticotropin releasing factor receptor 1

    PubMed Central

    Kean, James; Bortolato, Andrea; Hollenstein, Kaspar; Marshall, Fiona H.; Jazayeri, Ali

    2015-01-01

    Recent technical advances have greatly facilitated G-protein coupled receptors crystallography as evidenced by the number of successful x-ray structures that have been reported recently. These technical advances include novel detergents, specialised crystallography techniques as well as protein engineering solutions such as fusions and conformational thermostabilisation. Using conformational thermostabilisation, it is possible to generate variants of GPCRs that exhibit significantly increased stability in detergent micelles whilst preferentially occupying a single conformation. In this paper we describe for the first time the application of this technique to a member of a class B GPCR, the corticotropin releasing factor receptor 1 (CRF1R). Mutational screening in the presence of the inverse agonist, CP-376395, resulted in the identification of a construct with twelve point mutations that exhibited significantly increased thermal stability in a range of detergents. We further describe the subsequent construct engineering steps that eventually yielded a crystallisation-ready construct which recently led to the solution of the first x-ray structure of a class B receptor. Finally, we have used molecular dynamic simulation to provide structural insight into CRF1R instability as well as the stabilising effects of the mutants, which may be extended to other class B receptors considering the high degree of structural conservation. PMID:26159865

  7. Imbalance of angiotensin type 1 receptor and angiotensin II type 2 receptor in the rostral ventrolateral medulla: potential mechanism for sympathetic overactivity in heart failure.

    PubMed

    Gao, Lie; Wang, Wei-Zhong; Wang, Wei; Zucker, Irving H

    2008-10-01

    Upregulation of angiotensin II type 1 receptors (AT(1)R) in the rostral ventrolateral medulla (RVLM) contributes to the sympathoexcitation in the chronic heart failure (CHF). However, the role of angiotensin II type 2 receptor (AT(2)R) is not clear. In this study, we measured AT(1)R and AT(2)R protein expression in the RVLM and determined their effects on renal sympathetic nerve activity, blood pressure, and heart rate in anesthetized sham and CHF rats. We found that (1) although AT(1)R expression in the RVLM was upregulated, the AT(2)R was significantly downregulated (CHF: 0.06+/-0.02 versus sham: 0.15+/-0.02, P<0.05); (2) simultaneously stimulating RVLM AT(1)R and AT(2)R by angiotensin II evoked sympathoexcitation, hypertension, and tachycardia in both sham and CHF rats with greater responses in CHF; (3) stimulating RVLM AT1R with angiotensin II plus the specific AT(2)R antagonist PD123319 induced a larger sympathoexcitatory response than simultaneously stimulating AT(1)R and AT(2)R in sham rats, but not in CHF; (4) activating RVLM AT(2)R with CGP42112 induced a sympathoinhibition, hypotension, and bradycardia only in sham rats (renal sympathetic nerve activity: 36.4+/-5.1% of baseline versus 102+/-3.9% of baseline in artificial cerebrospinal fluid, P<0.05); (5) pretreatment with 5,8,11,14-eicosatetraynoic acid, a general inhibitor of arachidonic acid metabolism, into the RVLM attenuates the CGP42112-induced sympathoinhibition. These results suggest that AT(2)R in the RVLM exhibits an inhibitory effect on sympathetic outflow, which is, at least partially, mediated by an arachidonic acid metabolic pathway. These data implicate a downregulation in the AT(2)R as a contributory factor in the sympathoexcitation in CHF.

  8. Upregulation of epidermal growth factor receptor 4 in oral leukoplakia

    PubMed Central

    Kobayashi, Hiroshi; Kumagai, Kenichi; Gotoh, Akito; Eguchi, Takanori; Yamada, Hiroyuki; Hamada, Yoshiki; Suzuki, Satsuki; Suzuki, Ryuji

    2013-01-01

    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP). The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP. PMID:23492901

  9. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-09-01

    Fibroblast growth factor receptors (Fgfrs) are expressed throughout the developing kidney. Several early studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB). Transgenic mice that over-express a dominant negative receptor isoform develop renal aplasia/severe dysplasia, confirming the importance of Fgfrs in renal development. Furthermore, global deletion of Fgf7, Fgf10, and Fgfr2IIIb (isoform that binds Fgf7 and Fgf10) in mice leads to small kidneys with fewer collecting ducts and nephrons. Deletion of Fgfrl1, a receptor lacking intracellular signaling domains, causes severe renal dysgenesis. Conditional targeting of Fgf8 from the MM interrupts nephron formation. Deletion of Fgfr2 from the UB results in severe ureteric branching and stromal mesenchymal defects, although loss of Frs2α (major signaling adapter for Fgfrs) in the UB causes only mild renal hypoplasia. Deletion of both Fgfr1 and Fgfr2 in the MM results in renal aplasia with defects in MM formation and initial UB elongation and branching. Loss of Fgfr2 in the MM leads to many renal and urinary tract anomalies as well as vesicoureteral reflux. Thus, Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  10. The chicken vitellogenin II gene is flanked by a GATA factor-dependent estrogen response unit.

    PubMed

    Davis, D L; Burch, J B

    1996-08-01

    The chicken vitellogenin II (VTGII) gene is flanked by an imperfect estrogen response element (ERE) at -350 and a perfect ERE at -620. In the present study we show that this imperfect ERE lies within an estrogen response unit (ERU) that requires a GATA factor and the estrogen receptor to function as an estrogen-dependent enhancer. We infer that GATA-6 contributes to the estrogen-dependent and liver-specific regulation of the endogenous VTGII gene since this is the predominant GATA factor expressed in adult liver. Our analysis of the VTGII ERU revealed four salient points. First, this ERU is comprised of an ERE and a bank of functionally redundant GATA-binding sites. Second, the GATA-6 transactivation domain is necessary (and sufficient, when tethered near the ERE) to render this ERU functional. Third, ERU enhancer activity is dependent on GATA 6, regardless of whether the resident ERE is imperfect or perfect. Fourth, in contrast to a report that the estrogen receptor antagonizes the activity of another GATA factor (GATA-1), we show that these two factors can function in a synergistic manner within the context of the VTGII ERU.

  11. Signal Transduction by Vascular Endothelial Growth Factor Receptors

    PubMed Central

    Koch, Sina; Claesson-Welsh, Lena

    2012-01-01

    Vascular endothelial growth factors (VEGFs) are master regulators of vascular development and of blood and lymphatic vessel function during health and disease in the adult. It is therefore important to understand the mechanism of action of this family of five mammalian ligands, which act through three receptor tyrosine kinases (RTKs). In addition, coreceptors like neuropilins (NRPs) and integrins associate with the ligand/receptor signaling complex and modulate the output. Therapeutics to block several of the VEGF signaling components have been developed with the aim to halt blood vessel formation, angiogenesis, in diseases that involve tissue growth and inflammation, such as cancer. In this review, we outline the current information on VEGF signal transduction in relation to blood and lymphatic vessel biology. PMID:22762016

  12. Knockdown of the GnRH-II receptor in the procine testis impairs the biosynthesis of 10 gonadal steroids.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The second mammalian GnRH isoform (GnRH-II) and its cognate receptor (GnRHR-II) are poor modulators of gonadotropin secretion in swine. However, both are abundantly produced within the porcine testis suggesting an autocrine/paracrine role. Within the boar testis, GnRHR-II immunolocalizes to the plas...

  13. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection

    SciTech Connect

    Konnai, Satoru . E-mail: konnai@vetmed.hokudai.ac.jp; Usui, Tatsufumi; Ikeda, Manabu; Kohara, Junko; Hirata, Toh-ichi; Okada, Kosuke; Ohashi, Kazuhiko; Onuma, Misao

    2005-09-01

    Previously, we found an up-regulation of tumor necrosis factor alpha (TNF)-{alpha} and an imbalance of TNF receptors in sheep experimentally infected with bovine leukemia virus (BLV). In order to investigate the different TNF-{alpha}-induced responses, in this study we examined the TNF-{alpha}-induced proliferative response and the expression levels of two distinct TNF receptors on peripheral blood mononuclear cells (PBMC) derived from BLV-uninfected cattle and BLV-infected cattle that were aleukemic (AL) or had persistent lymphocytosis (PL). The proliferative response of PBMC isolated from those cattle with PL in the presence of recombinant bovine TNF-{alpha} (rTNF-{alpha}) was significantly higher than those from AL cattle and uninfected cattle and the cells from PL cattle expressed significantly higher mRNA levels of TNF receptor type II (TNF-RII) than those from AL and BLV-uninfected cattle. No difference was found in TNF-RI mRNA levels. Most cells expressing TNF-RII in PL cattle were CD5{sup +} or sIgM{sup +} cells and these cells showed resistance to TNF-{alpha}-induced apoptosis. Additionally, there were significant positive correlations between the changes in provirus load and TNF-RII mRNA levels, and TNF-{alpha}-induced proliferation and TNF-RII mRNA levels. These data suggest that imbalance in the expression of TNF receptors could at least in part contribute to the progression of lymphocytosis in BLV infection.

  14. Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor

    PubMed Central

    Amsalem, Ayelet R.; Marom, Barak; Shapira, Keren E.; Hirschhorn, Tal; Preisler, Livia; Paarmann, Pia; Knaus, Petra; Henis, Yoav I.; Ehrlich, Marcelo

    2016-01-01

    The expression and function of transforming growth factor-β superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and –SF, respectively), which differ by an ∼500 amino acid C-terminal extension, unique among TGF-β superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3’ terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane. PMID:26739752

  15. Angiotensin II type 1 (AT1) receptor-mediated accumulation of angiotensin II in tissues and its intracellular half-life in vivo.

    PubMed

    van Kats, J P; de Lannoy, L M; Jan Danser, A H; van Meegen, J R; Verdouw, P D; Schalekamp, M A

    1997-07-01

    Angiotensin II (Ang II) is internalized by various cell types via receptor-mediated endocytosis. Little is known about the kinetics of this process in the whole animal and about the half-life of intact Ang II after its internalization. We measured the levels of 125I-Ang II and 125I-Ang I that were reached in various tissues and blood plasma during infusions of these peptides into the left cardiac ventricle of pigs. Steady-state concentrations of 125I-Ang II in skeletal muscle, heart, kidney, and adrenal were 8% to 41%, 64% to 150%, 340% to 550%, and 680% to 2100%, respectively, of the 125I-Ang II concentration in arterial blood plasma (ranges of six experiments). The tissue concentrations of 125I-Ang I were less than 5% of the arterial plasma concentrations. 125I-Ang II accumulation seen in heart, kidney, and adrenal was almost completely blocked by a specific Ang II type 1 (AT1) receptor antagonist. Steady-state concentrations of 125I-Ang II were reached within 30 to 60 minutes in the tissues and within 5 minutes in blood plasma. The in vivo half-life of intact 125I-Ang II in heart, kidney, and adrenal was approximately 15 minutes, compared with 0.5 minute in the circulation. Thus, Ang II, but not Ang I, from the circulation is accumulated by some tissues, and this is mediated by AT1 receptors. The time course of this process and the long half-life of the accumulated Ang II support the contention that this Ang II has been internalized after its binding to the AT1 receptor, so that it is protected from rapid degradation by endothelial peptidases. The results of this study are in agreement with growing evidence of an important physiological role for internalized Ang II.

  16. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis.

    PubMed

    Konopacki, Filip A; Wong, Hovy Ho-Wai; Dwivedy, Asha; Bellon, Anaïs; Blower, Michael D; Holt, Christine E

    2016-04-01

    Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS.

  17. Telmisartan, an angiotensin II type 1 receptor blocker, prevents the development of diabetes in male Spontaneously Diabetic Torii rats.

    PubMed

    Hasegawa, Goji; Fukui, Michiaki; Hosoda, Hiroko; Asano, Mai; Harusato, Ichiko; Tanaka, Muhei; Shiraishi, Emi; Senmaru, Takashi; Sakabe, Kazumi; Yamasaki, Masahiro; Kitawaki, Jo; Fujinami, Aya; Ohta, Mitsuhiro; Obayashi, Hiroshi; Nakamura, Naoto

    2009-03-01

    To assess the beneficial effects of the angiotensin II type 1 receptor blocker telmisartan on a non-obese animal model of reduced function and mass of islet beta-cells prior to the development of diabetes, Spontaneously Diabetic Torii (SDT) rats were treated with telmisartan at 8 weeks of age. At 24 weeks of age, the treatment with telmisartan dose-dependently ameliorated hyperglycemia and hypoinsulinemia, and high-dose (5 mg/kg/day) treated SDT rats did not developed diabetes. Real-time RT-PCR analysis revealed that treatment with high-dose telmisartan reduced mRNA expression of local renin-angiotensin system (RAS) components, components of NAD(P)H oxidase, transforming growth factor-beta1 and vascular endothelial growth factor in the pancreas of male SDT rats. Immunohistochemical and Western blot analyses revealed that treatment with telmisartan also reduced expression of p47(phox). These results suggest that treatment with telmisartan reduces oxidative stress by local RAS activation and protects against islet beta-cell damage and dysfunction. These findings provide at least a partial explanation for the reduced incidence of new-onset diabetes that has been observed in several clinical trials involving angiotensin II type 1 receptor blockers and ACE inhibitors.

  18. Glomerular angiotensin II receptors in gentamicin-induced renal failure in the rat.

    PubMed

    Esquerro, E; Rivas-Cabãnero, L; López-Novoa, J M

    1995-11-01

    We evaluated the properties of glomerular angiotensin II receptors in renal glomeruli isolated from control rats and from rats with gentamicin-induced renal failure. There were no differences in the affinity of angiotensin II for its receptor between glomeruli from control and those from rats treated with gentamicin. Angiotensin II receptor density was lower in glomeruli from rats with renal failure than in those from control rats (985 +/- 71 in gentamicin treated rats vs. 1602 +/- 213 fmol/mg prot in controls). No significant differences were observed in renin activity in the supernatant from glomeruli isolated from control rats (3.74 +/- 0.29 ng angiotensin l/mL h) and those isolated from rats with gentamicin-induced renal failure (2.99 +/- 0.29 ng angiotensin l/mL h, p > 0.1). These findings do not support the contention of a role of angiotensin II in the development and maintenance of gentamicin-induced ARF.

  19. Purified human platelet-derived growth factor receptor has ligand-stimulated tyrosine kinase activity.

    PubMed Central

    Bishayee, S; Ross, A H; Womer, R; Scher, C D

    1986-01-01

    The platelet-derived growth factor receptor (PDGF-R), a 180-kDa single-chain polypeptide, was purified from membranes of the human osteogenic sarcoma cell line MG-63. Purification was achieved by treatment of membranes with PDGF and ATP, followed by solubilization with nonionic detergent and successive chromatography on solid-phase anti-phosphotyrosine monoclonal antibody and DEAE-cellulose. The PDGF-R, which was estimated to be 50-80% pure by NaDodSO4/polyacrylamide gel electrophoresis of 32P-labeled preparations, was free of contaminating epidermal growth factor receptor and had no detectable phosphatase activity. It specifically bound 125I-labeled PDGF, a reaction quantified by binding of the ligand-PDGF-R complex to the anti-phosphotyrosine antibody. The purified receptor displayed PDGF-stimulatable tyrosine kinase activity, assayed by autophosphorylation of PDGF-R at tyrosine residues and by phosphorylation of angiotensin II. The Km for ATP in the autophosphorylation reaction was 7.5 microM. Addition of PDGF did not change the Km but increased the Vmax 1.7-fold. Images PMID:3018745

  20. Type II Turn of Receptor-bound Salmon Calcitonin Revealed by X-ray Crystallography.

    PubMed

    Johansson, Eva; Hansen, Jakob Lerche; Hansen, Ann Maria Kruse; Shaw, Allan Christian; Becker, Peter; Schäffer, Lauge; Reedtz-Runge, Steffen

    2016-06-24

    Calcitonin is a peptide hormone consisting of 32 amino acid residues and the calcitonin receptor is a Class B G protein-coupled receptor (GPCR). The crystal structure of the human calcitonin receptor ectodomain (CTR ECD) in complex with a truncated analogue of salmon calcitonin ([BrPhe(22)]sCT(8-32)) has been determined to 2.1-Å resolution. Parallel analysis of a series of peptide ligands showed that the rank order of binding of the CTR ECD is identical to the rank order of binding of the full-length CTR, confirming the structural integrity and relevance of the isolated CTR ECD. The structure of the CTR ECD is similar to other Class B GPCRs and the ligand binding site is similar to the binding site of the homologous receptors for the calcitonin gene-related peptide (CGRP) and adrenomedulin (AM) recently published (Booe, J. M., Walker, C. S., Barwell, J., Kuteyi, G., Simms, J., Jamaluddin, M. A., Warner, M. L., Bill, R. M., Harris, P. W., Brimble, M. A., Poyner, D. R., Hay, D. L., and Pioszak, A. A. (2015) Mol. Cell 58, 1040-1052). Interestingly the receptor-bound structure of the ligand [BrPhe(22)]sCT(8-32) differs from the receptor-bound structure of the homologous ligands CGRP and AM. They all adopt an extended conformation followed by a C-terminal β turn, however, [BrPhe(22)]sCT(8-32) adopts a type II turn (Gly(28)-Thr(31)), whereas CGRP and AM adopt type I turns. Our results suggest that a type II turn is the preferred conformation of calcitonin, whereas a type I turn is the preferred conformation of peptides that require RAMPs; CGRP, AM, and amylin. In addition the structure provides a detailed molecular explanation and hypothesis regarding ligand binding properties of CTR and the amylin receptors.

  1. Utilizing reversible copper(II) peptide coordination in a sequence-selective luminescent receptor.

    PubMed

    Stadlbauer, Stefan; Riechers, Alexander; Späth, Andreas; König, Burkhard

    2008-01-01

    Although vast information about the coordination ability of amino acids and peptides to metal ions is available, little use of this has been made in the rational design of selective peptide receptors. We have combined a copper(II) nitrilotriacetato (NTA) complex with an ammonium-ion-sensitive and luminescent benzocrown ether. This compound revealed micromolar affinities and selectivities for glycine- and histidine-containing sequences, which closely resembles those of copper(II) ion peptide binding: the two free coordination sites of the copper(II) NTA complex bind to imidazole and amido nitrogen atoms, replicating the initial coordination steps of non-complexed copper(II) ions. The benzocrown ether recognizes the N-terminal amino moiety intramolecularly, and the significantly increased emission intensity signals the binding event, because only if prior coordination of the peptide has taken place is the intramolecular ammonium ion-benzocrown ether interaction of sufficient strength in water to trigger an emission signal. Intermolecular ammonium ion-benzocrown ether binding is not observed. Isothermal titration calorimetry confirmed the binding constants derived from emission titrations. Thus, as deduced from peptide coordination studies, the combination of a truncated copper(II) coordination sphere and a luminescent benzocrown ether allows for the more rational design of sequence-selective peptide receptors.

  2. Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter.

    PubMed

    Iwanaga, Takashi; Sato, Masanobu; Maeda, Tomoji; Ogihara, Toshio; Tamai, Ikumi

    2007-01-01

    Serum uric acid (SUA) is currently recognized as a risk factor for cardiovascular disease. It has been reported that an angiotensin II receptor blocker (ARB), losartan, decreases SUA level, whereas other ARBs, such as candesartan, have no lowering effect. Because the renal uric acid transporter (URAT1) is an important factor controlling the SUA level, we examined the involvement of URAT1 in those differential effects of various ARBs on SUA level at clinically relevant concentrations. This study was done by using URAT1-expressing Xenopus oocytes. Losartan, pratosartan, and telmisartan exhibited cis-inhibitory effects on the uptake of uric acid by URAT1, whereas at higher concentrations, only telmisartan did, and these ARBs reduced the uptake in competitive inhibition kinetics. On the other hand, candesartan, EXP3174 [2-n-butyl-4-chloro-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yI)methyl]imidazole-5-carboxylic acid] (a major metabolite of losartan), olmesartan, and valsartan were not inhibitory. Preloading of those ARBs in the oocytes enhanced the URAT1-mediated uric acid uptake, showing a trans-stimulatory effect. The present study is a first demonstration of the differential effects of ARBs on URAT1 that some ARBs are both cis-inhibitory and trans-stimulatory, depending on concentration, whereas others exhibit either a trans-stimulatory or cis-inhibitory effect alone, which could explain the clinically observed differential effects of ARBs on SUA level. Furthermore, it was found that such differential effects of ARBs on URAT1 could be predicted from the partial chemical structures of ARBs, which will be useful information for the appropriate use and development of ARBs without an increase of SUA.

  3. Epidermal growth factor and its receptors in human pancreatic carcinoma

    SciTech Connect

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N. )

    1990-05-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells.

  4. The role of tumour necrosis factor alpha and soluble tumour necrosis factor alpha receptors in the symptomatology of schizophrenia.

    PubMed

    Turhan, Levent; Batmaz, Sedat; Kocbiyik, Sibel; Soygur, Arif Haldun

    2016-07-01

    Background Immunological mechanisms may be responsible for the development and maintenance of schizophrenia symptoms. Aim The aim of this study is to measure tumour necrosis factor-alpha (TNF-α), soluble tumour necrosis factor-alpha receptor I (sTNF-αRI), and soluble tumour necrosis factor-alpha receptor II (sTNF-αRII) levels in patients with schizophrenia and healthy individuals, and to determine their relationship with the symptoms of schizophrenia. Methods Serum TNF-α, sTNF-αRI and sTNF-αRII levels were measured. The Positive and Negative Syndrome Scale (PANSS) was administered for patients with schizophrenia (n = 35), and the results were compared with healthy controls (n = 30). Hierarchical regression analyses were undertaken to predict the levels of TNF-α, sTNF-αRI and sTNF-αRII. Results No significant difference was observed in TNF-α levels, but sTNF-αRI and sTNF-αRII levels were lower in patients with schizophrenia. Serum sTNF-αRI and sTNF-αRII levels were found to be negatively correlated with the negative subscale score of the PANSS, and sTNF-αRI levels were also negatively correlated with the total score of the PANSS. Smoking, gender, body mass index were not correlated with TNF-α and sTNF-α receptor levels. Conclusions These results suggest that there may be a change in anti-inflammatory response in patients with schizophrenia due to sTNF-αRI and sTNF-αRII levels. The study also supports low levels of TNF activity in schizophrenia patients with negative symptoms.

  5. Characterization and localization of nerve growth factor receptors in the embryonic otic vesicle and cochleovestibular ganglion

    SciTech Connect

    Bernd, P.; Represa, J. )

    1989-07-01

    We have investigated the possibility that nerve growth factor (NGF) may play a role in the development of the inner ear. Primordia of the inner ear, the otic vesicle (OV) and cochleovestibular ganglion (CVG), were isolated from 72-hr (stage 19-20) quail embryos and examined for the presence of NGF receptors. Quantitative binding studies revealed that both OV and CVG exhibited specific 125I-NGF binding; levels of nonspecific binding were 6 to 26% of total binding. Scatchard analysis yielded a linear plot, indicating the presence of a single class of NGF receptor. The average binding constant (Kd) was 8.0 nM for OV and 8.6 nM for CVG, corresponding to the low affinity (site II) NGF receptor. Examination of light microscopic radioautographs indicated that most of the specific 125I-NGF binding was located in the ventromedial wall of the OV, with little or no binding in the lateral wall and endolymphatic primordia. These studies were corroborated by microdissection of OV, in which 70% of the radioactivity was found to be localized in the medial half of the OV. In CVG, specific 125I-NGF binding was more concentrated in the cochlear portion of the ganglion, with silver grains primarily over areas containing support cells and immature neurons. Quantitative binding studies with isolated cochlear and vestibular ganglia obtained from 144-hr (stage 29-30) quail embryos revealed that the cochlear ganglion exhibited three times more specific 125I-NGF binding than the vestibular ganglion. The presence of NGF receptors on OV and CVG suggests that these structures are responsive to and/or dependent upon NGF. The following paper examines the question of whether NGF serves either as a mitogen, a survival factor, or a differentiation factor in this system.

  6. Development of filtration-based time-resolved fluorescence assay for the high-throughput screening of urotensin II receptor antagonist.

    PubMed

    Oh, Kwang-Seok; Lee, Sunghou; Lee, Byung Ho

    2011-10-01

    The time-resolved fluorescence (TRF) receptor binding assay has many advantages over the traditional radioligand binding assay in terms of sensitivity and reproducibility for the screening of receptor ligands. The TRF-based urotensin receptor (UT) binding assay with an automatic vacuum filtration system was developed and evaluated for the high-throughput screening of UT receptor antagonists. For this assay development, the human recombinant urotensin II (UII) was modified by labeling europium at its N-terminal position (Eu-UII) and used as a fluorescent tracer. The microsomal membrane fraction of UT receptor was prepared from HEK293 cells stably expressing the human UT receptor. The 50% inhibitory concentration (IC(50)) values of UII from competition binding assays with Eu-UII were 2.76 nM, which is very similar to that of fluorescence polarization (FP)-based UT receptor binding experiment (2.18 nM). Comparing with the FP-based receptor binding assay for UII (Z' factor, 0.36), the current TRF assay presented improved Z' factor (0.76) with a relatively higher signal-to-background ratio (1.5 and 2.1, respectively). The known high-affinity UT receptor antagonists, palosuran and SB657510, exhibited IC(50) values of 23.6 and 73.4 nM, respectively, which were consistent with the IC(50) values from FP-based receptor binding assay (30.6 and 78.7 nM, respectively). These results suggest that our filtration-based TRF UT receptor binding assay can achieve the desired sensitivity with higher reproducibility to adapt for the high-throughput screening of compound libraries.

  7. Deletion of the UT receptor gene results in the selective loss of urotensin-II contractile activity in aortae isolated from UT receptor knockout mice

    PubMed Central

    Behm, David J; Harrison, Stephen M; Ao, Zhaohui; Maniscalco, Kristeen; Pickering, Susan J; Grau, Evelyn V; Woods, Tina N; Coatney, Robert W; Doe, Christopher P A; Willette, Robert N; Johns, Douglas G; Douglas, Stephen A

    2003-01-01

    Urotensin-II (U-II) is among the most potent mammalian vasoconstrictors identified and may play a role in the aetiology of essential hypertension. Currently, only one mouse U-II receptor (UT) gene has been cloned. It is postulated that this protein is solely responsible for mediating U-II-induced vasoconstriction. This hypothesis has been investigated in the present study, which assessed basal haemodynamics and vascular reactivity to hU-II in wild-type (UT(+/+)) and UT receptor knockout (UT(−/−)) mice. Basal left ventricular end-diastolic and end-systolic volumes/pressures, stroke volumes, mean arterial blood pressures, heart rates, cardiac outputs and ejection fractions in UT(+/+) mice and in UT(−/−) mice were similar. Relative to UT(+/+) mouse isolated thoracic aorta, where hU-II was a potent spasmogen (pEC50=8.26±0.08) that evoked relatively little vasoconstriction (17±2% 60 mM KCl), vessels isolated from UT(−/−) mice did not respond to hU-II. However, in contrast, the superior mesenteric artery isolated from both the genotypes did not contract in the presence of hU-II. Reactivity to unrelated vasoconstrictors (phenylephrine, endothelin-1, KCl) and endothelium-dependent/independent vasodilator agents (carbachol, sodium nitroprusside) was similar in the aorta and superior mesenteric arteries isolated from both the genotypes. The present study is the first to directly link hU-II-induced vasoconstriction with the UT receptor. Deletion of the UT receptor gene results in loss of hU-II contractile action with no ‘nonspecific' alterations in vascular reactivity. However, as might be predicted based on the limited contractile efficacy recorded in vitro, the contribution that hU-II and its receptor make to basal systemic haemodynamics appears to be negligible in this species. PMID:12770952

  8. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions.

    PubMed Central

    Pinkas-Kramarski, R; Soussan, L; Waterman, H; Levkowitz, G; Alroy, I; Klapper, L; Lavi, S; Seger, R; Ratzkin, B J; Sela, M; Yarden, Y

    1996-01-01

    The ErbB family includes two receptors, ErbB-1 and ErbB-3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB-2. Unlike ErbB-1 and ErbB-2, the intrinsic tyrosine kinase of ErbB-3 is catalytically impaired. By using interleukin-3-dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB-3 is devoid of any biological activity but both ErbB-1 and ErbB-2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB-3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter-receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB-3-containing complexes, especially the ErbB-2/ErbB-3 heterodimer, are more active than ErbB-1 complexes. Nevertheless, ErbB-1 signaling displays dominance over ErbB-3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen-activated protein kinases ERK and c-Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase-defective ErbB-3. Images PMID:8665853

  9. Coregulation of Epidermal Growth Factor Receptor/Human Epidermal Growth Factor Receptor 2 (HER2) Levels and Locations: Quantitative Analysis of HER2 Overexpression Effects

    SciTech Connect

    Hendriks, Bart S.; Opresko, Lee; Wiley, H. S.; Lauffenburger, Douglas A.

    2003-03-01

    Elevated expression of human epidermal growth factor receptor 2 (HER2) is know to alter cell signalilng and behavioral responses implicated in tumor progression. However, multiple diverse mechanisms may be involved in these overall effects, including signaling by HER2 itself, modulation of signalilng by epidermal growth factor receptor (EGFR) and modification of trafficking dynamics for both EGFR and HER2. Continued....

  10. [Functional properties of taste bud cells. Mechanisms of afferent neurotransmission in Type II taste receptor cells].

    PubMed

    Romanov, R A

    2013-01-01

    Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.

  11. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1.

    PubMed

    Meza-Carmen, Victor; Pacheco-Rodriguez, Gustavo; Kang, Gi Soo; Kato, Jiro; Donati, Chiara; Zhang, Chun-Yi; Vichi, Alessandro; Payne, D Michael; El-Chemaly, Souheil; Stylianou, Mario; Moss, Joel; Vaughan, Martha

    2011-06-28

    ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis, we used mouse embryo fibroblasts (MEFs) from ARD1-/- mice stably transfected with plasmids for inducible expression of wild-type ARD1 protein (KO-WT), or ARD1 protein with inactivating mutations in E3 ligase domain (KO-E3), or containing persistently active GTP-bound (KO-GTP), or inactive GDP-bound (KO-GDP) GTPase domains. Inhibition of proteasomal proteases in mifepristone-induced KO-WT, KO-GDP, or KO-GTP MEFs resulted in accumulation of these ARD1 proteins, whereas KO-E3 accumulated without inhibitors. All data were consistent with the conclusion that ARD1 regulates its own steady-state levels in cells by autoubiquitination. Based on reported growth factor receptor-cytohesin interactions, EGF receptor (EGFR) was investigated in induced MEFs. Amounts of cell-surface and total EGFR were higher in KO-GDP and lower in KO-GTP than in KO-WT MEFs, with levels in both mutants greater (p = 0.001) after proteasomal inhibition. Significant differences among MEF lines in content of TGF-β receptor III were similar to those in EGFR, albeit not as large. Differences in amounts of insulin receptor mirrored those in EGFR, but did not reach statistical significance. Overall, the capacity of ARD1 GTPase to cycle between active and inactive forms and its autoubiquitination both appear to be necessary for the appropriate turnover of EGFR and perhaps additional growth factor receptors.

  12. Bone Morphogenetic Protein Receptor Type II Deficiency and Increased Inflammatory Cytokine Production. A Gateway to Pulmonary Arterial Hypertension

    PubMed Central

    Soon, Elaine; Crosby, Alexi; Southwood, Mark; Yang, Peiran; Tajsic, Tamara; Toshner, Mark; Appleby, Sarah; Shanahan, Catherine M.; Bloch, Kenneth D.; Pepke-Zaba, Joanna; Upton, Paul

    2015-01-01

    Rationale: Mutations in bone morphogenetic protein receptor type II (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (PAH). However, disease penetrance is only 20–30%, suggesting a requirement for additional triggers. Inflammation is emerging as a key disease-related factor in PAH, but to date there is no clear mechanism linking BMPR-II deficiency and inflammation. Objectives: To establish a direct link between BMPR-II deficiency, a consequentially heightened inflammatory response, and development of PAH. Methods: We used pulmonary artery smooth muscle cells from Bmpr2+/− mice and patients with BMPR2 mutations and compared them with wild-type controls. For the in vivo model, we used mice heterozygous for a null allele in Bmpr2 (Bmpr2+/−) and wild-type littermates. Measurements and Main Results: Acute exposure to LPS increased lung and circulating IL-6 and KC (IL-8 analog) levels in Bmpr2+/− mice to a greater extent than in wild-type controls. Similarly, pulmonary artery smooth muscle cells from Bmpr2+/− mice and patients with BMPR2 mutations produced higher levels of IL-6 and KC/IL-8 after lipopolysaccharide stimulation compared with controls. BMPR-II deficiency in mouse and human pulmonary artery smooth muscle cells was associated with increased phospho-STAT3 and loss of extracellular superoxide dismutase. Chronic lipopolysaccharide administration caused pulmonary hypertension in Bmpr2+/− mice but not in wild-type littermates. Coadministration of tempol, a superoxide dismutase mimetic, ameliorated the exaggerated inflammatory response and prevented development of PAH. Conclusions: This study demonstrates that BMPR-II deficiency promotes an exaggerated inflammatory response in vitro and in vivo, which can instigate development of pulmonary hypertension. PMID:26073741

  13. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor.

    PubMed

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2015-09-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109(TM3), Phe182(ECL2), Gln257(TM6), Tyr292(TM7), and Asn295(TM7)) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108(TM3), Ser109(TM3), Ala163(TM4), Phe182(ECL2), Lys199(TM5), Tyr292(TM7), and Asn295(TM7)), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R.

  14. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor

    PubMed Central

    Unal, Hamiyet; Karnik, Sadashiva S.; Node, Koichi

    2015-01-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109TM3, Phe182ECL2, Gln257TM6, Tyr292TM7, and Asn295TM7) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108TM3, Ser109TM3, Ala163TM4, Phe182ECL2, Lys199TM5, Tyr292TM7, and Asn295TM7), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R. PMID:26121982

  15. Polychlorinated Biphenyls Disrupt Hepatic Epidermal Growth Factor Receptor Signaling.

    PubMed

    Hardesty, Josiah E; Wahlang, Banrida; Falkner, K Cameron; Clair, Heather B; Clark, Barbara J; Ceresa, Brian P; Prough, Russell A; Cave, Matthew C

    2016-07-26

    1. Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that disrupt hepatic xenobiotic and intermediary metabolism, leading to metabolic syndrome and nonalcoholic steatohepatitis (NASH). 2. Since phenobarbital indirectly activates Constitutive Androstane Receptor (CAR) by antagonizing growth factor binding to the epidermal growth factor receptor (EGFR), we hypothesised that PCBs may also diminish EGFR signaling. 3. The effects of the PCB mixture Aroclor 1260 on the protein phosphorylation cascade triggered by EGFR activation were determined in murine (in vitro and in vivo) and human models (in vitro). EGFR tyrosine residue phosphorylation was decreased by PCBs in all models tested. 4. The IC50 values for Aroclor 1260 concentrations that decreased Y1173 phosphorylation of EGFR were similar in murine AML-12 and human HepG2 cells (∼2-4 μg/mL). Both dioxin and non-dioxin-like PCB congeners decreased EGFR phosphorylation in cell culture. 5. PCB treatment reduced phosphorylation of downstream EGFR effectors including Akt and mTOR, as well as other phosphoprotein targets including STAT3 and c-RAF in vivo. 6. PCBs diminish EGFR signaling in human and murine hepatocyte models and may dysregulate critical phosphoprotein regulators of energy metabolism and nutrition, providing a new mechanism of action in environmental diseases.

  16. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-08-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  17. Depletion of Endothelial or Smooth Muscle Cell-Specific Angiotensin II Type 1a Receptors Does Not Influence Aortic Aneurysms or Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Rateri, Debra L.; Moorleghen, Jessica J.; Knight, Victoria; Balakrishnan, Anju; Howatt, Deborah A.; Cassis, Lisa A.; Daugherty, Alan

    2012-01-01

    Background Whole body genetic deletion of AT1a receptors in mice uniformly reduces hypercholesterolemia and angiotensin II-(AngII) induced atherosclerosis and abdominal aortic aneurysms (AAAs). However, the role of AT1a receptor stimulation of principal cell types resident in the arterial wall remains undefined. Therefore, the aim of this study was to determine whether deletion of AT1a receptors in either endothelial cells or smooth muscle cells influences the development of atherosclerosis and AAAs. Methodology/Principal Findings AT1a receptor floxed mice were developed in an LDL receptor −/− background. To generate endothelial or smooth muscle cell specific deficiency, AT1a receptor floxed mice were bred with mice expressing Cre under the control of either Tie2 or SM22, respectively. Groups of males and females were fed a saturated fat-enriched diet for 3 months to determine effects on atherosclerosis. Deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effect on the size of atherosclerotic lesions. We also determined the effect of cell-specific AT1a receptor deficiency on atherosclerosis and AAAs using male mice fed a saturated fat-enriched diet and infused with AngII (1,000 ng/kg/min). Again, deletion of AT1a receptors in either endothelial or smooth muscle cells had no discernible effects on either AngII-induced atherosclerotic lesions or AAAs. Conclusions Although previous studies have demonstrated whole body AT1a receptor deficiency diminishes atherosclerosis and AAAs, depletion of AT1a receptors in either endothelial or smooth muscle cells did not affect either of these vascular pathologies. PMID:23236507

  18. Drosophila factor 2, an RNA polymerase II transcript release factor, has DNA-dependent ATPase activity.

    PubMed

    Xie, Z; Price, D

    1997-12-12

    Drosophila factor 2 has been identified as a component of negative transcription elongation factor (N-TEF) that causes the release of RNA polymerase II transcripts in an ATP-dependent manner (Xie, Z. and Price D. H. (1996) J. Biol. Chem. 271, 11043-11046). We show here that the transcript release activity of factor 2 requires ATP or dATP and that adenosine 5'-O-(thiotriphosphate) (ATPgammaS), adenosine 5'-(beta,gamma-imino)triphosphate (AMP-PNP), or other NTPs do not support the activity. Factor 2 demonstrated a strong DNA-dependent ATPase activity that correlated with its transcript release activity. At 20 microg/ml DNA, the ATPase activity of factor 2 had an apparent Km(ATP) of 28 microM and an estimated Kcat of 140 min-1. Factor 2 caused the release of nascent transcripts associated with elongation complexes generated by RNA polymerase II on a dC-tailed template. Therefore, no other protein cofactors are required for the transcript release activity of factor 2. Using the dC-tailed template assay, it was found that renaturation of the template was required for factor 2 function.

  19. Structure of the human angiotensin II type 1 (AT1) receptor bound to angiotensin II from multiple chemoselective photoprobe contacts reveals a unique peptide binding mode.

    PubMed

    Fillion, Dany; Cabana, Jérôme; Guillemette, Gaétan; Leduc, Richard; Lavigne, Pierre; Escher, Emanuel

    2013-03-22

    Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs.

  20. Detection of interleukin-1 receptors in human epidermis. Induction of the type II receptor after organ culture and in psoriasis.

    PubMed Central

    Groves, R. W.; Sherman, L.; Mizutani, H.; Dower, S. K.; Kupper, T. S.

    1994-01-01

    Normal human epidermis is a rich source of biologically active interleukin-1 alpha (IL-1 alpha). Keratinocytes both synthesize this cytokine and respond to it via cell surface receptors (IL-1R), suggesting that the IL-1 system may play an important role in normal epidermal physiology and inflammation. In this study, we have examined the expression of IL-1R in normal and psoriatic epidermis, as judged at a functional level by the capacity to bind 125I-labeled IL-1 alpha (the principal IL-1 species present in epidermis) and by immunostaining with antibodies specific for each species of IL-1R. IL-1R was not readily detectable by either technique in normal, freshly isolated human epidermis. However, in lesional psoriasis or normal epidermis after 24 hours of organ culture, expression of IL-1R was dramatically induced, especially in basal keratinocytes. Immunostaining and antibody blocking studies demonstrated the induced IL-1R to be the type II species, a nonsignal transducing molecule previously demonstrated only on leukocytes. The Ka of this receptor was comparable to that previously demonstrated in vitro. mRNA for both species of IL-1R could be demonstrated by reverse transcriptase-polymerase chain reaction in fresh and cultured epidermis. These in vivo findings were confirmed in culture, where normal human keratinocytes expressed few IL-1R at rest but large numbers of type II IL-1R after activation by phorbol ester or interferon-gamma. We conclude that under resting conditions, epidermal expression of IL-1R is low. However, the potential for keratinocytes in vivo to express large numbers of the nonsignal transducing type II IL-1R is evident from both organ cultured and psoriatic epidermis. The in vitro induction of keratinocyte IL-1R by interferon-gamma suggests that this cytokine may be involved in the induction of type II IL-1R in inflammatory skin disease. The presence of bioactive IL-1 in epidermis, coupled with the inducible expression of the decoy type II IL

  1. Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs

    PubMed Central

    Muguruza, Carolina; Meana, J. Javier; Callado, Luis F.

    2016-01-01

    Schizophrenia is a chronic psychiatric disorder which substantially impairs patients’ quality of life. Despite the extensive research in this field, the pathophysiology and etiology of schizophrenia remain unknown. Different neurotransmitter systems and functional networks have been found to be affected in the brain of patients with schizophrenia. In this context, postmortem brain studies as well as genetic assays have suggested alterations in Group II metabotropic glutamate receptors (mGluRs) in schizophrenia. Despite many years of drug research, several needs in the treatment of schizophrenia have not been addressed sufficiently. In fact, only 5–10% of patients with schizophrenia successfully achieve a full recovery after treatment. In recent years mGluRs have turned up as novel targets for the design of new antipsychotic medications for schizophrenia. Concretely, Group II mGluRs are of particular interest due to their regulatory role in neurotransmission modulating glutamatergic activity in brain synapses. Preclinical studies have demonstrated that orthosteric Group II mGluR agonists exhibit antipsychotic-like properties in animal models of schizophrenia. However, when these compounds have been tested in human clinical studies with schizophrenic patients results have been inconclusive. Nevertheless, it has been recently suggested that this apparent lack of efficacy in schizophrenic patients may be related to previous exposure to atypical antipsychotics. Moreover, the role of the functional heterocomplex formed by 5-HT2A and mGlu2 receptors in the clinical response to Group II mGluR agonists is currently under study. PMID:27242534

  2. The glucocorticoid receptor type II complex is a target of the HIV-1 vpr gene product.

    PubMed Central

    Refaeli, Y; Levy, D N; Weiner, D B

    1995-01-01

    The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a 15-kDa virion-associated protein that functions as a regulator of cellular processes linked to the HIV life cycle. We report the interaction of a 41-kDa cytosolic viral protein R interacting protein 1 (Rip-1) with Vpr in vitro. Rip-1 displays a wide tissue distribution, including relevant targets of HIV infection. Vpr protein induced nuclear translocation of Rip-1, as did glucocorticoid receptor (GR)-II-stimulating steroids. Importantly, Vpr and Rip-1 coimmunoprecipitated with the human GR as part of an activated receptor complex. Vpr complementation of a vpr mutant virus was also mimicked by GR-II-stimulating steroids. Vpr and GR-II actions were inhibited by mifepristone, a GR-II pathway inhibitor. Together these data directly link the activity of the vpr gene product to the glucocorticoid steroid pathway and provide a biochemical mechanism for the cellular and viral activity of Vpr, as well as suggest that a unique class of antivirals, which includes mifepristone (RU486), may influence HIV-1 replication. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:7724608

  3. Results With Accelerated Partial Breast Irradiation in Terms of Estrogen Receptor, Progesterone Receptor, and Human Growth Factor Receptor 2 Status

    SciTech Connect

    Wilder, Richard B.; Curcio, Lisa D.; Khanijou, Rajesh K.; Eisner, Martin E.; Kakkis, Jane L.; Chittenden, Lucy; Agustin, Jeffrey; Lizarde, Jessica; Mesa, Albert V.; Macedo, Jorge C.; Ravera, John; Tokita, Kenneth M.

    2010-11-01

    Purpose: To report our results with accelerated partial breast irradiation (APBI) in terms of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2/neu) status. Methods and Materials: Between February 2003 and June 2009, 209 women with early-stage breast carcinomas were treated with APBI using multicatheter, MammoSite, or Contura brachytherapy to 34 Gy in 10 fractions twice daily over 5-7 days. Three patient groups were defined by receptor status: Group 1: ER or PR (+) and HER-2/neu (-) (n = 180), Group 2: ER and PR (-) and HER-2/neu (+) (n = 10), and Group 3: ER, PR, and HER-2/neu (-) (triple negative breast cancer, n = 19). Median follow-up was 22 months. Results: Group 3 patients had significantly higher Scarff-Bloom-Richardson scores (p < 0.001). The 3-year ipsilateral breast tumor control rates for Groups 1, 2, and 3 were 99%, 100%, and 100%, respectively (p = 0.15). Group 3 patients tended to experience relapse in distant sites earlier than did non-Group 3 patients. The 3-year relapse-free survival rates for Groups 1, 2, and 3 were 100%, 100%, and 81%, respectively (p = 0.046). The 3-year cause-specific and overall survival rates for Groups 1, 2, and 3 were 100%, 100%, and 89%, respectively (p = 0.002). Conclusions: Triple negative breast cancer patients typically have high-grade tumors with significantly worse relapse-free, cause-specific, and overall survival. Longer follow-up will help to determine whether these patients also have a higher risk of ipsilateral breast tumor relapse.

  4. A new therapeutic approach to erectile dysfunction: urotensin-II receptor high affinity agonist ligands.

    PubMed

    di Villa Bianca, Roberta d'Emmanuele; Mitidieri, Emma; Donnarumma, Erminia; Fusco, Ferdinando; Longo, Nicola; Rosa, Giuseppe De; Novellino, Ettore; Grieco, Paolo; Mirone, Vincenzo; Cirino, Giuseppe; Sorrentino, Raffaella

    2015-01-01

    Urotensin-II (U-II) is a cyclic peptide that acts through a G protein-coupled receptor (urotensin-II receptor [UTR]) mainly involved in cardiovascular function in humans. The urotensinergic system is also implicated in the urogenital tract. Indeed, U-II relaxes human corpus cavernosum strips and causes an increase in intracavernous pressure (ICP) in rats. In light of this, the U-II/UTR pathway can be considered a new target for the treatment of erectile dysfunction. On this hypothesis, herein we report on two new UTR high affinity-agonists, P5U (H-Asp-c[Pen-Phe-Trp-Lys-Tyr-Cys]-Val-OH) and UPG84(H-Asp-c[Pen-Phe-DTrp-Orn-(pNH 2 ) Phe-Cys]-Val-OH). The effects of P5U and UPG84 were each compared separately with U-II by monitoring the ICP in anesthetized rats. Intracavernous injection of U-II (0.03-1 nmol), P5U (0.03-1 nmol) or UPG84 (0.03-1 nmol) caused an increase in ICP. P5U, in particular, elicited a significant increase in ICP as compared to U-II. The observed effect by using P5U at a dose of 0.1 nmol per rat was comparable to the effect elicited by U-II at a dose of 0.3 nmol. Moreover, UPG84 at the lowest dose (0.03 nmol) showed an effect similar to the highest dose of U-II (1 nmol). Furthermore, UPG84 was found to be more effective than P5U. Indeed, while the lowest dose of P5U (0.03 nmol) did not affect the ICP, UPG84, at the same dose, induced a prominent penile erection in rat. These compounds did not modify the blood pressure, which indicates a good safety profile. In conclusion, UPG84 and P5U may open new perspectives for the management of erectile dysfunction.

  5. Epidermal growth factor receptor degradation: an alternative view of oncogenic pathways.

    PubMed

    Kirisits, Andreas; Pils, Dietmar; Krainer, Michael

    2007-01-01

    Positive regulation of epidermal growth factor receptor signalling is related to many human malignancies. Besides overexpression and gain of function mutations, the escape from negative regulation through an increase in epidermal growth factor receptor stability has evolved as yet another key factor contributing to enhanced receptor activity. Intensive research over the past years has provided considerable evidence concerning the molecular mechanisms which provide epidermal growth factor receptor degradation. c-Cbl mediated ubiquitination, endocytosis via clathrin-coated pits, endosomal sorting and lysosomal degradation have become well-investigated cornerstones. Recent findings on the interdependency of the endosomal sorting complexes required for transport in multivesicular body sorting, stress the topicality of receptor tyrosine kinase downregulation. Here, we review the degradation pathway of the epidermal growth factor receptor, following the receptor from ligand binding to the lysosome and illustrating different modes of oncogenic deregulation.

  6. Mammary tumorigenesis induced by fibroblast growth factor receptor 1 requires activation of the epidermal growth factor receptor.

    PubMed

    Bade, Lindsey K; Goldberg, Jodi E; Dehut, Hazel A; Hall, Majken K; Schwertfeger, Kathryn L

    2011-09-15

    Fibroblast growth factor receptor 1 (FGFR1) is an oncoprotein with known involvement in mammary tumorigenesis. To understand how FGFR1 signaling promotes mammary tumorigenesis, an inducible FGFR1 (iFGFR1) system was created previously. Previous studies have demonstrated that upon iFGFR1 activation in vivo, the epidermal growth factor (EGF) ligands amphiregulin (AREG) and epiregulin (EREG) are upregulated. Both AREG and EREG interact with the EGF receptor (EGFR). Here, we investigated whether the FGFR1-induced increase in AREG and EREG expression might coordinately increase EGFR signaling to promote mammary tumorigenesis. Treatment of mouse mammary epithelial cells with either AREG or EREG conferred a greater migratory potential, increased cellular proliferation and increased extracellular regulated kinase 1/2 (ERK1/2) activation. These effects could be blocked with the EGFR-specific inhibitor erlotinib, suggesting that they are EGFR-dependent. In transgenic mice with iFGFR1 under the control of the mouse mammary tumor virus (MMTV) promoter, iFGFR1 activation also led to increased mammary epithelial cell proliferation that was inhibited with erlotinib. Taken together, these data suggest that AREG and EREG mediate tumorigenic phenotypes by activating EGFR signaling, and that the oncogenic potential of FGFR1 requires EGFR activation to promote mammary tumorigenesis.

  7. Recombinant pigment epithelium-derived factor PEDF binds vascular endothelial growth factor receptors 1 and 2.

    PubMed

    Johnston, Erin K; Francis, Mary K; Knepper, Janice E

    2015-08-01

    Angiogenesis, or the formation of new blood vessels, is stimulated by angiogenic factors such as vascular endothelial growth factor (VEGF). Pigment epithelium-derived factor (PEDF) is a potent inhibitor of angiogenesis. To explore the mechanism by which PEDF acts, recombinant PEDF was expressed with a 6x-His tag (for purification) and a green fluorescent protein (GFP) tag. The PEDF fusion protein was confirmed to be active in inhibition of endothelial cell proliferation and migration. Direct binding of PEDF to both vascular endothelial growth factor receptor-1 (VEGFR-1) and VEGFR-2 was demonstrated in an in vitro assay similar to an enzyme-linked immunosorbent assay (ELISA). PEDF was shown by immune-confocal microscopy to be localized within treated endothelial cells. When VEGF-stimulated endothelial cells were incubated with PEDF the VEGF receptors showed intracellular localization. These data suggest that the interaction between PEDF and VEGFR-1 or VEGFR-2 may be a possible mechanism for inhibiting angiogenesis. PEDF may be binding to the VEGF receptors to promote their internalization and/or degradation to limit VEGF responses in treated cells.

  8. Action of AT1 receptor antagonists on angiotensin II-induced tone in human isolated subcutaneous resistance arteries.

    PubMed

    Garcha, R S; Sever, P S; Hughes, A D

    1999-08-01

    1. Human isolated subcutaneous arteries were studied under isometric conditions in a myograph. 2. Addition of angiotensin II (AII) induced a concentration-dependent increase in tone in isolated arteries. The active metabolite of candesartan (CV 11974), losartan and the active metabolite of losartan, E-3174 antagonized AII-induced tone in a non-competitive manner, but the AT2 selective antagonist, PD123319, was without effect on responses to AII. The effects of candesartan, losartan and E-3174 were analysed using a classical model of non-competitive antagonism and a two-state receptor model. 3. Mechanical removal of the endothelium; pre-incubation with Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME); pre-incubation with indomethacin, a cyclo-oxygenase inhibitor; or pre-incubation with BQ 485, an endothelin antagonist; had no significant effect on contractions induced by AII. 4. Our results suggest AII contracts human isolated resistance arteries by an action on AT1 receptors and does not involve release of endothelial factors. Use of a two-state receptor model successfully described the action of the AT1 antagonists without sacrificing assumptions regarding the competitive nature of binding of these antagonists.

  9. Determinants for the adoption of angiotensin II receptor blockers by general practitioners.

    PubMed

    Greving, Jacoba P; Denig, Petra; van der Veen, Willem Jan; Beltman, Frank W; Sturkenboom, Miriam C J M; Haaijer-Ruskamp, Flora M

    2006-12-01

    Results of studies conducted 10-20 years ago show the prominence of commercial information sources in the adoption process of new drugs. Over the past decade, there has been a growing emphasis on practicing evidence-based medicine in drug prescribing. This raises the question whether professional information sources currently counterbalance the influence of commercial information sources in the adoption process. The aim of this study was to identify determinants influencing the adoption of a new drug class, the angiotensin II receptor blockers (ARBs), by general practitioners (GPs) in The Netherlands. A retrospective study was conducted to assess prevalent ARB prescribing for hypertensive patients using the Integrated Primary Care Information (IPCI) database. We conducted a survey among all GPs who participated in the IPCI project in 2003 to assess their exposure to commercial and professional information sources, perceived benefits and risks of ARBs, perceived influences of the professional network, and general characteristics. Multilevel logistic regression was applied to identify determinants of ARB adoption while adjusting for patient characteristics. Data were obtained from 70 GPs and 9470 treated hypertensive patients. A total of 1093 patients received ARBs (12%). GPs who reported frequent use of commercial information sources were more likely to prescribe ARBs routinely in preference to other antihypertensives, whereas GPs who used a prescribing decision support system and those who were involved in pharmacotherapy education were less likely to prescribe ARBs. Other factors that were associated with higher levels of ARB adoption included a more positive perception of ARBs regarding their effectiveness in lowering blood pressure, and working in single-handed practices or in rural areas. Aside from determinants related to the patient population, adoption of a new drug class among Dutch GPs is still determined more by their reliance on promotional information

  10. Paradoxical role of angiotensin II type 2 receptors in resistance arteries of old rats

    PubMed Central

    Pinaud, Frédéric; Bocquet, Arnaud; Dumont, Odile; Retailleau, Kevin; Baufreton, Christophe; Andriantsitohaina, Ramaroson; Loufrani, Laurent; Henrion, Daniel

    2007-01-01

    The role of angiotensin II type 2 receptors (AT2R) remains a matter of controversy. Its vasodilatory and antitrophic properties are well accepted. Nevertheless, in hypertensive rats AT2R stimulation induces a vasoconstriction counteracting flow-mediated dilation (FMD). This contraction is reversed by hydralazine. As FMD is also decreased in aging, another risk factor for cardiovascular diseases, we hypothesized that AT2R function might be altered in old rats resistance arteries. Mesenteric resistance arteries (250 μm diameter) were isolated from old (24 months) and control (4 months) rats receiving hydralazine (16 mg/kg/day, 2 weeks) or water. FMD, NO-mediated dilation and eNOS expression were lower in old than in control rats. AT2R blockade improved FMD in old rats, suggesting that AT2R stimulation produced vasoconstriction. AT2R expression was higher in old rats and mainly located in the smooth muscle layer. In old rats AT2R stimulation induced endothelium-independent contraction, which was suppressed by the antioxydant Tempol. Reactive oxygen species (ROS) level was higher in old rats arteries than in controls. Hydralazine improved FMD and NO-dependent dilation in old rats without change in AT2R expression and location. In old rats treated with hydralazine ROS level was reduced in endothelial and smooth muscle cells and AT2R-dependent contraction was abolished. Thus, AT2R stimulation induced vasoconstriction through activation of ROS production, contributing to decrease FMD in old rats resistance arteries. Hydralazine suppressed AT2R-dependent ROS production and AT2R-dependent contraction, improving FMD. Importantly, endothelial alterations in aging were reversible. These findings are important to consider in the choice of vasoactive drugs in aging. PMID:17485601

  11. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines.

    PubMed Central

    Nørgaard, P.; Spang-Thomsen, M.; Poulsen, H. S.

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II mRNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF-beta receptor proteins beta-glycan mRNA was rapidly down-regulated and this effect was sustained throughout the 24 h observation period. RI and RII mRNAs were slightly increased 24 h after treatment. In one cell line sensitive to growth inhibition by TGF-beta, 1 but lacking beta-glycan expression, and one cell line expressing only beta-glycan and thus TGF-beta 1 -resistant, no autoregulation of mRNA of either TGF-beta receptor was demonstrated. The results suggest that TGF-beta 1 regulates the expression of its receptors, in particular beta-glycan, and that this effect is dependent on co-expression of beta-glycan, RI and RII. Images Figure 1 Figure 2 Figure 4 PMID:8624260

  12. The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2.

    PubMed

    Leitinger, Birgit; Steplewski, Andrzej; Fertala, Andrzej

    2004-12-03

    The human discoidin domain receptors (DDRs), DDR1 and DDR2, are expressed widely and, uniquely among receptor tyrosine kinases, activated by the extracellular matrix protein collagen. This activation is due to a direct interaction of collagen with the DDR discoidin domain. Here, we localised a specific DDR2 binding site on the triple-helical region of collagen II. Collagen II was found to be a much better ligand for DDR2 than for DDR1. As expected, DDR2 binding to collagen II was dependent on triple-helical collagen and was mediated by the DDR2 discoidin domain. Collagen II served as a potent stimulator of DDR2 autophosphorylation, the first step in transmembrane signalling. To map the DDR2 binding site(s) on collagen II, we used recombinant collagen II variants with specific deletions of one of the four repeating D periods. We found that the D2 period of collagen II was essential for DDR2 binding and receptor autophosphorylation, whereas the D3 and D4 periods were dispensable. The DDR2 binding site on collagen II was further defined by recombinant collagen II-like proteins consisting predominantly of tandem repeats of the D2 or D4 period. The D2 construct, but not the D4 construct, mediated DDR2 binding and receptor autophosphorylation, demonstrating that the D2 period of collagen II harbours a specific DDR2 recognition site. The discovery of a site-specific interaction of DDR2 with collagen II gives novel insight into the nature of the interaction of collagen II with matrix receptors.

  13. The Factor Structure of the Beck Depression Inventory-II: An Evaluation

    ERIC Educational Resources Information Center

    Vanheule, Stijn; Desmet, Mattias; Groenvynck, Hans; Rosseel, Yves; Fontaine, Johnny

    2008-01-01

    The Beck Depression Inventory-II (BDI-II) is a frequently used scale for measuring depressive severity. BDI-II data (404 clinical; 695 nonclinical adults) were analyzed by means of confirmatory factor analysis to test whether the factor structure model with a somatic-affective and cognitive component of depression, formulated by Beck and…

  14. Angiotensin II receptor type 1 blockers suppress the cell proliferation effects of angiotensin II in breast cancer cells by inhibiting AT1R signaling.

    PubMed

    Du, Ning; Feng, Jiang; Hu, Li-Juan; Sun, Xin; Sun, Hai-Bing; Zhao, Yang; Yang, Yi-Ping; Ren, Hong

    2012-06-01

    Chronic stress and a high-fat diet are well-documented risk factors associated with the renin-angiotensin system in the development of breast cancer. The angiotensin II type 1 receptor (AT1R) is a novel component of the renin-angiotensin system. Several recent studies have focused on the function of AT1R in cell proliferation during cancer development. Thus, we hypothesized that angiotensin II (Ang Ⅱ) can promote proliferation of breast cancer via activated AT1R; the activation of AT1R may play an important role in promoting breast cancer growth, and AT1R blocker (ARB) may suppress the promotional effect on proliferation by antagonizing AT1R. The expression level of AT1R was found to be significantly upregulated in breast cancer cells by immunohistochemistry, but no correlation between AT1R expression and ER/PR/Her-2 expression was observed. The AT1R(+)-MCF-7 cell line exhibited high expression of AT1R protein, and we generated the AT1R(-)-MCF-7 cell line using RNA interference. ARBs, and in particular irbesartan, effectively inhibited the effects of Ang II on cell proliferation, cell cycle development and downstream AT1R signaling events, including the activation of the Ras-Raf-MAPK pathway and the transcription factors NF-κB and CREB. Irbesartan also significantly altered p53, PCNA and cyclin D1 expression, which was also influenced by activated AT1R in AT1R(+)-MCF-7 cells. These results suggest that ARBs may be useful as a novel preventive and therapeutic strategy for treating breast cancer.

  15. A novel urotensin II receptor antagonist, KR-36996, improved cardiac function and attenuated cardiac hypertrophy in experimental heart failure.

    PubMed

    Oh, Kwang-Seok; Lee, Jeong Hyun; Yi, Kyu Yang; Lim, Chae Jo; Park, Byung Kil; Seo, Ho Won; Lee, Byung Ho

    2017-03-15

    Urotensin II and its receptor are thought to be involved in various cardiovascular diseases such as heart failure, pulmonary hypertension and atherosclerosis. Since the regulation of the urotensin II/urotensin II receptor offers a great potential for therapeutic strategies related to the treatment of cardiovascular diseases, the study of selective and potent antagonists for urotensin II receptor is more fascinating. This study was designed to determine the potential therapeutic effects of a newly developed novel urotensin II receptor antagonist, N-(1-(3-bromo-4-(piperidin-4-yloxy)benzyl)piperidin-4-yl)benzo[b]thiophene-3-carboxamide (KR-36996), in experimental models of heart failure. KR-36996 displayed a high binding affinity (Ki=4.44±0.67nM) and selectivity for urotensin II receptor. In cell-based study, KR-36996 significantly inhibited urotensin II-induced stress fiber formation and cellular hypertrophy in H9c2UT cells. In transverse aortic constriction-induced cardiac hypertrophy model in mice, the daily oral administration of KR-36996 (30mg/kg) for 14 days significantly decreased left ventricular weight by 40% (P<0.05). In myocardial infarction-induced chronic heart failure model in rats, repeated echocardiography and hemodynamic measurements demonstrated remarkable improvement of the cardiac performance by KR-36996 treatment (25 and 50mg/kg/day, p.o.) for 12 weeks. Moreover, KR-36996 decreased interstitial fibrosis and cardiomyocyte hypertrophy in the infarct border zone. These results suggest that potent and selective urotensin II receptor antagonist could efficiently attenuate both cardiac hypertrophy and dysfunction in experimental heart failure. KR-36996 may be useful as an effective urotensin II receptor antagonist for pharmaceutical or clinical applications.

  16. Different Epidermal Growth Factor Receptor (EGFR) Agonists Produce Unique Signatures for the Recruitment of Downstream Signaling Proteins* ♦

    PubMed Central

    Ronan, Tom; Macdonald-Obermann, Jennifer L.; Huelsmann, Lorel; Bessman, Nicholas J.; Naegle, Kristen M.; Pike, Linda J.

    2016-01-01

    The EGF receptor can bind seven different agonist ligands. Although each agonist appears to stimulate the same suite of downstream signaling proteins, different agonists are capable of inducing distinct responses in the same cell. To determine the basis for these differences, we used luciferase fragment complementation imaging to monitor the recruitment of Cbl, CrkL, Gab1, Grb2, PI3K, p52 Shc, p66 Shc, and Shp2 to the EGF receptor when stimulated by the seven EGF receptor ligands. Recruitment of all eight proteins was rapid, dose-dependent, and inhibited by erlotinib and lapatinib, although to differing extents. Comparison of the time course of recruitment of the eight proteins in response to a fixed concentration of each growth factor revealed differences among the growth factors that could contribute to their differing biological effects. Principal component analysis of the resulting data set confirmed that the recruitment of these proteins differed between agonists and also between different doses of the same agonist. Ensemble clustering of the overall response to the different growth factors suggests that these EGF receptor ligands fall into two major groups as follows: (i) EGF, amphiregulin, and EPR; and (ii) betacellulin, TGFα, and epigen. Heparin-binding EGF is distantly related to both clusters. Our data identify differences in network utilization by different EGF receptor agonists and highlight the need to characterize network interactions under conditions other than high dose EGF. PMID:26786109

  17. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes

    PubMed Central

    Kharmate, Geetanjali; Hosseini-Beheshti, Elham; Caradec, Josselin; Chin, Mei Yieng; Tomlinson Guns, Emma S.

    2016-01-01

    Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight™ analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa. PMID:27152724

  18. Epidermal Growth Factor Receptor Cell Survival Signaling Requires Phosphatidylcholine Biosynthesis

    PubMed Central

    Crook, Matt; Upadhyay, Awani; Ido, Liyana J.; Hanna-Rose, Wendy

    2016-01-01

    Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR) has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions. PMID:27605519

  19. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration.

    PubMed

    Klein, Daryl E; Nappi, Valerie M; Reeves, Gregory T; Shvartsman, Stanislav Y; Lemmon, Mark A

    2004-08-26

    The epidermal growth factor receptor (EGFR) has critical functions in development and in many human cancers. During development, the spatial extent of EGFR signalling is regulated by feedback loops comprising both well-understood activators and less well-characterized inhibitors. In Drosophila melanogaster the secreted protein Argos functions as the only known extracellular inhibitor of EGFR, with clearly identified roles in multiple stages of development. Argos is only expressed when the Drosophila EGFR (DER) is activated at high levels, and downregulates further DER signalling. Although there is ample genetic evidence that Argos inhibits DER activation, the biochemical mechanism has not been established. Here we show that Argos inhibits DER signalling without interacting directly with the receptor, but instead by sequestering the DER-activating ligand Spitz. Argos binds tightly to the EGF motif of Spitz and forms a 1:1 (Spitz:Argos) complex that does not bind DER in vitro or at the cell surface. Our results provide an insight into the mechanism of Argos function, and suggest new strategies for EGFR inhibitor design.

  20. Nuclear receptors, nuclear-receptor factors, and nuclear-receptor-like orphans form a large paralog cluster in Homo sapiens.

    PubMed

    Garcia-Vallvé, S; Palau, J

    1998-06-01

    We studied a human protein paralog cluster formed by 38 nonredundant sequences taken from the Swiss-Prot database and its supplement, TrEMBL. These sequences include nuclear receptors, nuclear-receptor factors and nuclear-receptor-like orphans. Working separately with both the central cysteine-rich DNA-binding domain and the carboxy-terminal ligand-binding domain, we performed multialignment analyses that included drawings of paralog trees. Our results show that the cluster is highly multibranched, with considerable differences in the amino acid sequence in the ligand-binding domain (LBD), and 17 proximal subbranches which are identifiable and fully coincident when independent trees from both domains are compared. We identified the six recently proposed subfamilies as groups of neighboring clusters in the LBD paralog tree. We found similarities of 80%-100% for the N-terminal transactivation domain among mammalian ortholog receptors, as well as some paralog resemblances within diverse subbranches. Our studies suggest that during the evolutionary process, the three domains were assembled in a modular fashion with a nonshuffled modular fusion of the LBD. We used the EMBL server PredictProtein to make secondary-structure predictions for all 38 LBD subsequences. Amino acid residues in the multialigned homologous domains--taking the beginning of helix H3 of the human retinoic acid receptor-gamma as the initial point of reference--were substituted with H or E, which identify residues predicted to be helical or extended, respectively. The result was a secondary structure multialignment with the surprising feature that the prediction follows a canonical pattern of alignable alpha-helices with some short extended elements in between, despite the fact that a number of subsequences resemble each other by less than 25% in terms of the similarity index. We also identified the presence of a binary patterning in all of the predicted helices that were conserved throughout the 38

  1. Topoisomerase II alpha--a fundamental prognostic factor in breast carcinoma.

    PubMed

    Hajduk, Magdalena

    2009-01-01

    Because of the introduction of modern diagnostic methods, numerous prognostic and predictive factors have been recognized and are today considered classic, yet they seem to be insufficient in assessment of prognosis, hence the need for further investigations. Among factors newly discovered by molecular techniques, there are class I and II topoisomerases, the role of which as prognosticators has not been fully determined. The objective of the present investigation was the assessment of topoisomerase II alpha (TOP2A) expression in patients with infiltrating breast carcinoma, as a prognostic factor in correlation with other recognized prognosticators and patient survival. The study was carried out in 151 patients treated by mastectomy and lymph node excision followed by adjuvant chemotherapy. The material was evaluated histopathologically according to the pTNM system, taking into consideration such parameters as grade of malignancy (G); the ER, PR as well as HER2 and TOP2A receptors status--all of them were assessed immunohistochemically. TOP2A was expressed with varying intensity in the majority of infiltrating ductal carcinomas studied, more frequently in large T3 and T4, grade G2 and G3 tumours, in patients with extensive metastases to regional N2 and N3 lymph nodes, a positive HER2 and negative ER and PR status. Five-year mortality rates were higher and 5-year symptom-free survival rates were lower in patients with TOP2A-positive tumours as compared to individuals with a negative TOP2A status. The study indicates that TOP2A expression is a negative predictive factor and may be recognized as a prognostic factor.

  2. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor–Resistant Disease

    PubMed Central

    Ohashi, Kadoaki; Maruvka, Yosef E.; Michor, Franziska; Pao, William

    2013-01-01

    Purpose EGFR-mutant lung cancer was first described as a new clinical entity in 2004. Here, we present an update on new controversies and conclusions regarding the disease. Methods This article reviews the clinical implications of EGFR mutations in lung cancer with a focus on epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results The discovery of EGFR mutations has altered the ways in which we consider and treat non–small-cell lung cancer (NSCLC). Patients whose metastatic tumors harbor EGFR mutations are expected to live longer than 2 years, more than double the previous survival rates for lung cancer. Conclusion The information presented in this review can guide practitioners and help them inform their patients about EGFR mutations and their impact on the treatment of NSCLC. Efforts should now concentrate on making EGFR-mutant lung cancer a chronic rather than fatal disease. PMID:23401451

  3. Genetic polymorphism of estrogen receptor alpha gene in Egyptian women with type II diabetes mellitus

    PubMed Central

    Motawi, Tarek M.K.; El-Rehany, Mahmoud A.; Rizk, Sherine M.; Ramzy, Maggie M.; el-Roby, Doaa M.

    2015-01-01

    Estrogen might play an important role in type 2 diabetes mellitus pathogenesis. A number of polymorphisms have been reported in the estrogen receptor alpha gene including the XbaI and PvuII restriction enzyme polymorphisms. The aim of this study was to determine if ESRα gene polymorphisms are associated with type 2 diabetes mellitus and correlated with lipid profile. Ninety diabetic Egyptian patients were compared with forty healthy controls. ESRα genotyping of PvuII and XbaI was performed using restriction fragment length polymorphism analysis. Our study showed that there is more significant difference in the frequency of C and G polymorphic allele between patients and control groups in PvuII and XbaI respectively. Also carriers of minor C and G alleles of PvuII and XbaI gene polymorphisms were associated with increased fasting blood glucose and disturbance in lipid profile as there is an increase in total cholesterol, triglycerides and Low density lipoprotein. So findings of present study suggest the possibility that PvuII and XbaI polymorphisms in ERα are related to T2DM and with increased serum lipids among Egyptian population. PMID:26401488

  4. Class II G Protein-Coupled Receptors and Their Ligands in Neuronal Function and Protection

    PubMed Central

    Martin, Bronwen; de Maturana, Rakel Lopez; Brenneman, Randall; Walent, Tom; Mattson, Mark P.; Maudsley, Stuart

    2008-01-01

    G protein-coupled receptors (GPCRs) play pivotal roles in regulating the function and plasticity of neuronal circuits in the nervous system. Among the myriad of GPCRs expressed in neural cells, class II GPCRs which couples predominantly to the Gs–adenylate cyclase–cAMP signaling pathway, have recently received considerable attention for their involvement in regulating neuronal survival. Neuropeptides that activate class II GPCRs include secretin, glucagon-like peptides (GLP-1 and GLP-2), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating peptide (PACAP), corticotropin-releasing hormone (CRH), vasoactive intestinal peptide (VIP), parathyroid hormone (PTH), and calcitonin-related peptides. Studies of patients and animal and cell culture models, have revealed possible roles for class II GPCRs signaling in the pathogenesis of several prominent neurodegenerative conditions including stroke, Alzheimer's, Parkinson's, and Huntington's diseases. Many of the peptides that activate class II GPCRs promote neuron survival by increasing the resistance of the cells to oxidative, metabolic, and excitotoxic injury. A better understanding of the cellular and molecular mechanisms by which class II GPCRs signaling modulates neuronal survival and plasticity will likely lead to novel therapeutic interventions for neurodegenerative disorders. PMID:16052036

  5. Catalytic inhibitors of DNA topoisomerase II suppress the androgen receptor signaling and prostate cancer progression

    PubMed Central

    Li, Haolong; Xie, Ning; Gleave, Martin E.; Dong, Xuesen

    2015-01-01

    Although the new generation of androgen receptor (AR) antagonists like enzalutamide (ENZ) prolong survival of metastatic castration-resistant prostate cancer (CRPC), AR-driven tumors eventually recur indicating that additional therapies are required to fully block AR function. Since DNA topoisomerase II (Topo II) was demonstrated to be essential for AR to initiate gene transcription, this study tested whether catalytic inhibitors of Topo II can block AR signaling and suppress ENZ-resistant CRPC growth. Using multiple prostate cancer cell lines, we showed that catalytic Topo II inhibitors, ICRF187 and ICRF193 inhibited transcription activities of the wild-type AR, mutant ARs (F876L and W741C) and the AR-V7 splice variant. ICRF187 and ICRF193 decreased AR recruitment to target promoters and reduced AR nuclear localization. Both ICRF187 and ICRF193 also inhibited cell proliferation and delayed cell cycling at the G2/M phase. ICRF187 inhibited tumor growth of castration-resistant LNCaP and 22RV1 xenografts as well as ENZ-resistant MR49F xenografts. We conclude that catalytic Topo II inhibitors can block AR signaling and inhibit tumor growth of CRPC xenografts, identifying a potential co-targeting approach using these inhibitors in combination with AR pathway inhibitors in CRPC. PMID:26009876

  6. Targeting extracellular domains D4 and D7 of vascular endothelial growth factor receptor 2 reveals allosteric receptor regulatory sites.

    PubMed

    Hyde, Caroline A C; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H Kaspar; Ballmer-Hofer, Kurt

    2012-10-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory "designed ankyrin repeat proteins" (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies.

  7. Targeting Extracellular Domains D4 and D7 of Vascular Endothelial Growth Factor Receptor 2 Reveals Allosteric Receptor Regulatory Sites

    PubMed Central

    Hyde, Caroline A. C.; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H. Kaspar

    2012-01-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory “designed ankyrin repeat proteins” (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies. PMID:22801374

  8. Activation of Group II Metabotropic Glutamate Receptors Induces Depotentiation in Amygdala Slices and Reduces Fear-Potentiated Startle in Rats

    ERIC Educational Resources Information Center

    Lin, Chia-Ho; Lee, Chia-Ching; Huang, Ya-Chun; Wang, Su-Jane; Gean, Po-Wu

    2005-01-01

    There is a close correlation between long-term potentiation (LTP) in the synapses of lateral amygdala (LA) and fear conditioning in animals. We predict that reversal of LTP (depotentiation) in this area of the brain may ameliorate conditioned fear. Activation of group II metabotropic glutamate receptors (mGluR II) with DCG-IV induces…

  9. Combining chemotherapy with epidermal growth factor receptor inhibition in advanced non-small cell lung cancer

    PubMed Central

    Leung, Linda; Loong, Herbert

    2012-01-01

    Treatment of advanced stage lung cancer is changing rapidly. With the new found knowledge on molecular targets such as the epidermal growth factor receptor (EGFR), effective therapy is now available in a selected population with the target mutation. Single-agent epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is a standard first-line therapy for patients with activating-EGFR mutation such as base-pair deletion in exon 19 or point mutation at exon 21. At the same time, this class of drugs may be combined with chemotherapy. Studies on the concurrent combination of chemotherapy and EGFR-TKI confirmed a lack of efficacy. A phase II study on sequential intercalated combination has demonstrated an improvement in progression-free survival (PFS), but this needs to be validated by the ongoing phase III study. The third approach is to combine EGFR-TKI as maintenance therapy after tumour response or stable disease to cytotoxic chemotherapy. Two phase III studies have shown improvement in PFS, but the use of biomarkers for the selection of maintenance therapy remains debatable. Cetuximab is a monoclonal antibody against EGFR and its combination with chemotherapy was shown to improve overall survival in an unselected population. A new biomarker using the H-score will help to select patients for this combination. PMID:22754591

  10. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension.

    PubMed

    Antunes, Tayze T; Callera, Glaucia E; He, Ying; Yogi, Alvaro; Ryazanov, Alexey G; Ryazanova, Lillia V; Zhai, Alexander; Stewart, Duncan J; Shrier, Alvin; Touyz, Rhian M

    2016-04-01

    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension

  11. A dominant negative mutation suppresses the function of normal epidermal growth factor receptors by heterodimerization.

    PubMed Central

    Kashles, O; Yarden, Y; Fischer, R; Ullrich, A; Schlessinger, J

    1991-01-01

    Recent studies provide evidence that defective receptors can function as a dominant negative mutation suppressing the action of wild-type receptors. This causes various diminished responses in cell culture and developmental disorders in murine embryogenesis. Here, we describe a model system and a potential mechanism underlying the dominant suppressing response caused by defective epidermal growth factor (EGF) receptors. We used cultured 3T3 cells coexpressing human wild-type receptors and an inactive deletion mutant lacking most of the cytoplasmic domain. When expressed alone, EGF was able to stimulate the dimerization of either wild-type or mutant receptors in living cells as revealed by chemical covalent cross-linking experiments. In response to EGF, heterodimers and homodimers of wild-type and mutant receptors were observed in cells coexpressing both receptor species. However, only homodimers of wild-type EGF receptors underwent EGF-induced tyrosine autophosphorylation in living cells. These results indicate that the integrity of both receptor moieties within receptor dimers is essential for kinase activation and autophosphorylation. Moreover, the presence of mutant receptors in cells expressing wild-type receptors diminished the number of high-affinity binding sites for EGF, reduced the rate of receptor endocytosis and degradation, and diminished biological signalling via EGF receptors. We propose that heterodimerization with defective EGF receptors functions as a dominant negative mutation suppressing the activation and response of normal receptors by formation of unproductive heterodimers. Images PMID:1705006

  12. Myosin II-dependent exclusion of CD45 from the site of Fcγ receptor activation during phagocytosis.

    PubMed

    Yamauchi, Shota; Kawauchi, Keiko; Sawada, Yasuhiro

    2012-09-21

    Fcγ receptor (FcγR)-mediated phagocytosis requires myosin II activity. Here we show that myosin II contributes to FcγR activation and subsequent F-actin assembly at the nascent phagocytic cup. Inhibition of myosin II attenuates phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of FcγR and binding of Syk to the ITAM. Furthermore, FcγR clusters independently of myosin II activity at the phagocytic cup, from which the receptor-like protein tyrosine phosphatase CD45 is excluded depending on myosin II activity. These findings suggest that myosin II-dependent segregation of CD45 from FcγR facilitates phosphorylation of the ITAM and triggers phagocytosis.

  13. Expression of the genes for insulin-like growth factors and their receptors in bone during skeletal growth

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.

    1994-01-01

    Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.

  14. The Factor Structure of the CIBS-II-Readiness Assessment

    ERIC Educational Resources Information Center

    Gotch, Chad M.; French, Brian F.

    2011-01-01

    The Brigance Comprehensive Inventory of Basic Skills-II (CIBS-II)-Readiness form is a diagnostic battery intended for children aged 5 and 6 years. The CIBS-II-Readiness is a new version of the CIBS-Revised-Readiness and includes updated normative information on a larger representative sample in comparison to the CIBS-Revised-Readiness. Empirical…

  15. Factors Affecting Perceptual Threshold in Argus II Retinal Prosthesis Subjects

    PubMed Central

    Ahuja, A. K.; Yeoh, J.; Dorn, J. D.; Caspi, A.; Wuyyuru, V.; McMahon, M. J.; Humayun, M. S.; Greenberg, R. J.; daCruz, L.

    2013-01-01

    Purpose The Argus II epiretinal prosthesis has been developed to provide partial restoration of vision to subjects blinded from outer retinal degenerative disease. Participants were surgically implanted with the system in the United States and Europe in a single arm, prospective, multicenter clinical trial. The purpose of this investigation was to determine which factors affect electrical thresholds in order to inform surgical placement of the device. Methods Electrode–retina and electrode–fovea distances were determined using SD-OCT and fundus photography, respectively. Perceptual threshold to electrical stimulation of electrodes was measured using custom developed software, in which current amplitude was varied until the threshold was found. Full field stimulus light threshold was measured using the Espion D-FST test. Relationships between electrical threshold and these three explanatory variables (electrode–retina distance, electrode–fovea distance, and monocular light threshold) were quantified using regression. Results Regression analysis showed a significant correlation between electrical threshold and electrode–retina distance (R2 = 0.50, P = 0.0002; n = 703 electrodes). 90.3% of electrodes in contact with the macula (n = 207) elicited percepts at charge densities less than 1 mC/cm2/phase. These threshold data also correlated well with ganglion cell density profile (P = 0.03). A weaker, but still significant, inverse correlation was found between light threshold and electrical threshold (R2 < 0.52, P = 0.01). Multivariate modeling indicated that electrode–retina distance and light threshold are highly predictive of electrode threshold (R2 = 0.87; P < 0.0005). Conclusions Taken together, these results suggest that while light threshold should be used to inform patient selection, macular contact of the array is paramount. Translational Relevance Reported Argus II clinical study results are in good agreement with prior in vitro and in vivo studies

  16. Losartan, a selective inhibitor of subtype AT1 receptors for angiotensin II, inhibits the binding of N-formylmethionyl-leucyl-phenylalanine to neutrophil receptors.

    PubMed

    Raiden, S; Giordano, M; Andonegui, G; Trevani, A S; López, D H; Nahmod, V; Geffner, J R

    1997-05-01

    Losartan, a selective antagonist of AT1 receptors for angiotensin II, is widely used clinically to manage hypertension. We report here that losartan markedly inhibits neutrophil shape change, adherence and chemiluminescence responses triggered by N-formylmethionyl-leucyl-phenylalanine (fMLP), without affecting responses induced by immune complexes, zymosan or concanavalin A. Neither saralasin, another antagonist of angiotensin II receptors, nor captopril, an angiotensin-converting enzyme inhibitor, reproduced the effects of losartan. It was also observed that neutrophil responses triggered by fMLP were not affected by exogenously added angiotensin II. The effect of losartan on the binding of fMLP was measured using [3H]fMLP. It was found that losartan inhibits the binding of [3H]fMLP to neutrophil receptors. As observed for neutrophils, studies performed with monocytes showed that losartan inhibits chemiluminescence emission triggered by fMLP, without affecting chemiluminescence responses triggered by immune complexes, zymosan or concanavalin A.

  17. LH independent testosterone production is mediated by the interaction between GnRH-II and its receptor in the boar testis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The second mammalian isoform of gonadotropin-releasing hormone (GnRH-II) functions quite differently from the classical form (GnRH-I), being an ineffective modulator of gonadotropin release. Not all species that produce GnRH-II maintain a full length GnRH-II receptor (GnRHR-II). Instead, GnRH-II can...

  18. Vascular endothelial growth factor in primate endometrium is regulated by oestrogen-receptor and progesterone-receptor ligands in vivo.

    PubMed

    Greb, R R; Heikinheimo, O; Williams, R F; Hodgen, G D; Goodman, A L

    1997-06-01

    We investigated hormonal regulation of endometrial angiogenesis in menstruating primates. This study was designed to demonstrate: (i) that cell-specific vascular endothelial growth factor (VEGF) production and expression in monkey endometrium are regulated by steroid receptor ligands; and (ii) mifepristone (RU 486) alters VEGF production even in the absence of a progestin agonist. Endometrial VEGF production was compared by computer-assisted immunohistochemical analysis during induced hypoestrogenism and after oestradiol, progestin, or antiprogestin (mifepristone) treatment. VEGF gene expression was estimated by quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) in endometrial samples from castrate cynomolgus monkeys, from intact monkeys in the luteal phase, and from monkeys treated for 20 days with levonorgestrel (LNG) or mifepristone. VEGF staining intensities in glandular epithelium and VEGF mRNA expression were highest in hypoestrogenic monkeys. Progestin treatment induced intense VEGF staining in the stroma. Gene expression of VEGF-189, but not other isoforms, was higher in progesterone- and progestin (LNG)-exposed endometria compared to mifepristone-exposed endometria or endometria from anovulatory cycles (P < 0.04). Mifepristone abolished VEGF staining in glandular epithelium almost completely. We conclude that VEGF protein and VEGF mRNA expression levels in primate endometrium depend on the steroidal milieu. Anti-angiogenic effects of mifepristone via suppression of VEGF production might represent a mechanism for its quelling effects on endometrium.

  19. GnRH-II receptor-like antigenicity in human placenta and in cancers of the human reproductive organs.

    PubMed

    Eicke, Nicola; Günthert, Andreas R; Viereck, Volker; Siebold, Doreen; Béhé, Martin; Becker, Tamara; Emons, Günter; Gründker, Carsten

    2005-10-01

    We have recently demonstrated that the antiproliferative activity of GnRH-II on human endometrial and ovarian cancer cell lines is not mediated through the GnRH-I receptor. A functional receptor for human GnRH-II has not yet been identified. In this study, we have generated a polyclonal antiserum to the putative human GnRH-II receptor using a peptide (YSPTMLTEVPPC) corresponding to the third extracellular domain coupled to keyhole limpet haemocyanin via the Cys residue. A database search showed no identical peptide sequences in any other human gene. To avoid cross-reactions against two similar amino acid sequences the antiserum was pre-absorbed using these peptides. Immune histological sections of human placenta and human endometrial, ovarian and prostate cancers using rabbit anti-human GnRH-II receptor antiserum showed GnRH-II receptor-like staining. Western blot analysis of cell membrane preparations of human endometrial and ovarian cancer cell lines yielded a band at approximately 43 kDa whereas Western blot analysis of cell membrane preparations of ovaries obtained from the marmoset monkey (Callithrix jacchus) yielded a band at approximately 54 kDa. To identify the GnRH-II receptor-like antigen we used the photo-affinity labelling technique. Photochemical reaction of (125)I-labelled (4-azidobenzoyl)-N-hydroxysuccinimide-[d-Lys(6)]-GnRH-II (10(-9) M) with cell membrane preparations of human endometrial and ovarian cancer cells yielded a band at approximately 43 kDa. In competition experiments, the GnRH-I agonist Triptorelin (10(-7) M) showed a weak decrease of (125)I-labelled (4-azidobenzoyl)-N-hydroxysuccinimide-[d-Lys(6)]-GnRH-II binding to its binding site. The GnRH-I antagonist Cetrorelix (10(-7) M) showed a clearly stronger decrease, whereas GnRH-II agonist [d-Lys(6)]-GnRH-II (10(-7) M) was the most potent competitor. Western blot analysis of the same gel using rabbit anti-human GnRH-II receptor antiserum identified this band as GnRH-II receptor

  20. Synthesis and evaluation of novel angiotensin II receptor 1 antagonists as anti-hypertension drugs.

    PubMed

    Bao, Xiaolu; Zhu, Weibo; Zhang, Ruijing; Wen, Caihong; Wang, Li; Yan, Yijia; Tang, Hesheng; Chen, Zhilong

    2016-05-01

    Three new angiotensin II receptor 1 antagonists, 1, 2 and 3 were designed, synthesized and evaluated. The AT1 receptor-binding assays in vitro showed that all the synthesized compounds had nanomolar affinity for the AT1 receptor. From which compound 3 was found to be the most potent ligands with an IC50 value of 2.67±0.23 nM. Biological evaluation in vivo revealed that all the compounds could cause significant decrease on MBP in a dose dependent manner in spontaneously hypertensive rats, and compound 3 especially showed an efficient and long-lasting effect in reducing blood pressure, whose maximal response lowered 41 mmHg of MBP at 10mg/kg and 62 mmHg at 15 mg/kg after oral administration, the significant anti-hypertensive effect lasted beyond 12 h, which is better than the reference compound losartan. The pharmacokinetic experiments showed that compound 3 could be absorbed efficiently and metabolized smoothly both in blood and in tissues in Wistar rats. The acute toxicity assay suggested that it has low toxicity with the LD50 value of 2974.35 mg/kg. These results demonstrate that compound 3 is a potent angiotensin AT1 receptor antagonist which could be considered as a novel anti-hypertension candidate and deserved for further investigation.

  1. Overexpression of Annexin II Receptor-Induced Autophagy Protects Against Apoptosis in Uveal Melanoma Cells.

    PubMed

    Zhang, Yuelu; Song, Hongyuan; Guo, Ting; Zhu, Yongzhe; Tang, Hailin; Qi, Zhongtian; Zhao, Ping; Zhao, Shihong

    2016-05-01

    Uveal melanoma is the most common primary malignant intraocular tumor in adults and still lacks effective systemic therapies. Annexin A2 receptor (AXIIR), a receptor for Annexin II, was demonstrated to play an important role in multiple cells, but its role in uveal melanoma cells remains exclusive. Herein, the authors reported that overexpression of AXIIR was able to reduce cell viability and activate apoptosis apparently in the Mum2C uveal melanoma cell line. Meanwhile, overexpression of AXIIR could induce autophagy and increase autophagy flux. After autophagy was inhibited by chloroquine, enhanced apoptosis and cytotoxicity could be detected. In summary, these data highlighted the crucial role of AXIIR in reducing Mum2C cell viability through inducing apoptosis, while autophagy played a protective role in this process. Interference of this gene may be a promising method for uveal melanoma therapy and combination with specific inhibitor of autophagy may serve as a supplementary.

  2. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma. PMID:27698817

  3. Conversion of epidermal growth factor receptor 2 and hormone receptor expression in breast cancer metastases to the brain

    PubMed Central

    2012-01-01

    Introduction We investigated the status of estrogen receptor alpha (ERα), progesterone receptor (PR), and epidermal growth factor receptor 2 (HER2) in primary tumor and in the corresponding brain metastases in a consecutive series of breast cancer patients. Additionally, we studied factors potentially influencing conversion and evaluated its association with survival. Methods The study group included 120 breast cancer patients. ERα, PR, and HER2 status in primary tumors and in matched brain metastases was determined centrally by immunohistochemistry and/or fluorescence in situ hybridization. Results Using the Allred score of ≥ 3 as a threshold, conversion of ERα and PR in brain metastases occurred in 29% of cases for both receptors, mostly from positive to negative. Conversion of HER2 occurred in 14% of patients and was more balanced either way. Time to brain relapse and the use of chemotherapy or trastuzumab did not influence conversion, whereas endocrine therapy induced conversion of ERα (P = 0.021) and PR (P = 0.001), mainly towards their loss. Receptor conversion had no significant impact on survival. Conclusions Receptor conversion, particularly loss of hormone receptors, is a common event in brain metastases from breast cancer, and endocrine therapy may increase its incidence. Receptor conversion does not significantly affect survival. PMID:22898337

  4. Developmental regulation of human truncated nerve growth factor receptor

    SciTech Connect

    DiStefano, P.S.; Clagett-Dame, M.; Chelsea, D.M.; Loy, R. )

    1991-01-01

    Monoclonal antibodies (designated XIF1 and IIIG5) recognizing distinct epitopes of the human truncated nerve growth factor receptor (NGF-Rt) were used in a two-site radiometric immunosorbent assay to monitor levels of NGF-Rt in human urine as a function of age. Urine samples were collected from 70 neurologically normal subjects ranging in age from 1 month to 68 years. By using this sensitive two-site radiometric immunosorbent assay, NGF-Rt levels were found to be highest in urine from 1-month old subjects. By 2.5 months, NGF-Rt values were half of those seen at 1 month and decreased more gradually between 0.5 and 15 years. Between 15 and 68 years, urine NGF-Rt levels were relatively constant at 5% of 1-month values. No evidence for diurnal variation of adult NGF-Rt was apparent. Pregnant women in their third trimester showed significantly elevated urine NGF-Rt values compared with age-matched normals. Affinity labeling of NGF-Rt with 125I-NGF followed by immunoprecipitation with ME20.4-IgG and gel autoradiography indicated that neonatal urine contained high amounts of truncated receptor (Mr = 50 kd); decreasingly lower amounts of NGF-Rt were observed on gel autoradiograms with development, indicating that the two-site radiometric immunosorbent assay correlated well with the affinity labeling technique for measuring NGF-Rt. NGF-Rt in urines from 1-month-old and 36-year-old subjects showed no differences in affinities for NGF or for the monoclonal antibody IIIG5. These data show that NGF-Rt is developmentally regulated in human urine, and are discussed in relation to the development and maturation of the peripheral nervous system.

  5. Ditopic receptors containing urea groups for solvent extraction of Cu(ii) salts.

    PubMed

    Carreira-Barral, Israel; Mato-Iglesias, Marta; de Blas, Andrés; Platas-Iglesias, Carlos; Tasker, Peter A; Esteban-Gómez, David

    2017-02-21

    The ditopic receptor L3 [1-(2-((7-(4-(tert-butyl)benzyl)-1,4,7,10-tetraazacyclododecan-1-yl)methyl)phenyl)-3-(3-nitrophenyl)urea] containing a macrocyclic cyclen unit for Cu(ii)-coordination and a urea moiety for anion binding was designed for recognition of metal salts. The X-ray structure of [CuL3(SO4)] shows that the sulfate anion is involved in cooperative binding via coordination to the metal ion and hydrogen-bonding to the urea unit. This behaviour is similar to that observed for the related receptor L1 [1-(2-((bis(pyridin-2-ylmethyl)amino)methyl)phenyl)-3-(3-nitrophenyl)urea], which forms a dimeric [CuL1(μ-SO4)]2 structure in the solid state. In contrast, the single crystal X-ray structure of [ZnL3(NO3)2] contains a 1 : 2 complex (metal : anion) where one anion coordinates to the metal and the other is hydrogen-bonded to the urea group. Spectrophotometric titrations performed for the [CuL3(OSMe2)](2+) complex indicate that this system is able to bind a wide range of anions with an affinity sequence: MeCO2(-) > Cl(-) > H2PO4(-) > Br(-) > NO2(-) > HSO4(-) > NO3(-). Lipophilic analogues of L1 and L3 extract CuSO4 and CuCl2 from water into chloroform with high selectivity over the corresponding Co(ii), Ni(ii) and Zn(ii) salts.

  6. Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent.

    PubMed

    Zhang, Zhi-Hua; Yu, Yang; Wei, Shun-Guang; Felder, Robert B

    2012-02-01

    Angiotensin II (ANG II)-induced mitogen-activated protein kinase (MAPK) signaling upregulates angiotensin II type-1 receptors (AT(1)R) in hypothalamic paraventricular nucleus (PVN) and contributes to AT(1)R-mediated sympathetic excitation in heart failure. Aldosterone has similar effects to increase AT(1)R expression in the PVN and sympathetic drive. The present study was undertaken to determine whether aldosterone also activates the sympathetic nervous system via MAPK signaling and, if so, whether its effect is independent of ANG II and AT(1)R. In anesthetized rats, a 4-h intravenous infusion of aldosterone induced increases (P < 0.05) in phosphorylated (p-) p44/42 MAPK in PVN, PVN neuronal excitation, renal sympathetic nerve activity (RSNA), mean blood pressure (MBP), and heart rate (HR). Intracerebroventricular or bilateral PVN microinjection of the p44/42 MAPK inhibitor PD-98059 reduced the aldosterone-induced RSNA, HR, and MBP responses. Intracerebroventricular pretreatment (5 days earlier) with pooled small interfering RNAs targeting p44/42 MAPK reduced total and p-p44/42 MAPK, aldosterone-induced c-Fos expression in the PVN, and the aldosterone-induced increases in RSNA, HR, and MBP. Intracerebroventricular infusion of either the mineralocorticoid receptor antagonist RU-28318 or the AT(1)R antagonist losartan blocked aldosterone-induced phosphorylation of p44/42 MAPK and prevented the increases in RSNA, HR, and MBP. These data suggest that aldosterone-induced sympathetic excitation depends upon that AT(1)R-induced MAPK signaling in the brain. The short time course of this interaction suggests a nongenomic mechanism, perhaps via an aldosterone-induced transactivation of the AT(1)R as described in peripheral tissues.

  7. The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus

    SciTech Connect

    Pendergrass, Karl D.; Gwathmey, TanYa M.; Michalek, Ryan D.; Grayson, Jason M.; Chappell, Mark C.

    2009-06-26

    We and others have reported significant expression of the Ang II Type 1 receptor (AT1R) on renal nuclei; thus, the present study assessed the functional pathways and distribution of the intracellular AT1R on isolated nuclei. Ang II (1 nM) stimulated DCF fluorescence, an intranuclear indicator of reactive oxygen species (ROS), while the AT1R antagonist losartan or the NADPH oxidase (NOX) inhibitor DPI abolished the increase in ROS. Dual labeling of nuclei with antibodies against nucleoporin 62 (Nup62) and AT1R or the NADPH oxidase isoform NOX4 revealed complete overlap of the Nup62 and AT1R (99%) by flow cytometry, while NOX4 was present on 65% of nuclei. Treatment of nuclei with a PKC agonist increased ROS while the PKC inhibitor GF109203X or PI3 kinase inhibitor LY294002 abolished Ang II stimulation of ROS. We conclude that the Ang II-AT1R-PKC axis may directly influence nuclear function within the kidney through a redox sensitive pathway.

  8. Pluripotency Factors and Polycomb Group Proteins Repress Aryl Hydrocarbon Receptor Expression in Murine Embryonic Stem Cells

    PubMed Central

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development. PMID:24316986

  9. Human epidermal growth factor receptor 2/neu protein expression in meningiomas: An immunohistochemical study

    PubMed Central

    Telugu, Ramesh Babu; Chowhan, Amit Kumar; Rukmangadha, Nandyala; Patnayak, Rashmi; Phaneendra, Bobbidi Venkata; Prasad, Bodapati Chandra Mowliswara; Reddy, Mandyam Kumaraswamy

    2016-01-01

    Background: Meningiomas are common slow-growing primary central nervous system tumors that arise from the meningothelial cells of the arachnoid and spinal cord. Human epidermal growth factor receptor 2 (HER2) or HER2/neu (also known as c-erbB2) is a 185-kD transmembrane glycoprotein with tyrosine kinase activity expressed in meningiomas and various other tumors. It can be used in targeted therapy for HER2/neu positive meningiomas. Aim: To correlate the expression of HER2/neu protein in meningiomas with gender, location, histological subtypes, and grade. Materials and Methods: It was 3½ years prospective (March 2010–October 2011) and retrospective (May 2008–February 2010) study of histopathologically diagnosed intracranial and intraspinal meningiomas. Clinical details of all the cases were noted from the computerized hospital information system. Immunohistochemistry for HER2/neu protein was performed along with scoring. Statistical analysis was done using Chi-square test to look for any association of HER2/neu with gender, location, grade, and various histological subtypes of meningiomas at 5% level of significance. Results: A total of 100 cases of meningiomas were found during the study period. Of which, 80 were Grade I, 18 were Grade II, and 2 were Grade III meningiomas as per the World Health Organization 2007 criteria. The female-male ratio was 1.9:1 and the mean age was 47.8 years. HER2/neu protein was expressed in 75% of Grade I and 72.2% of Grade II and none of Grade III meningiomas. About 72.7% brain invasive meningiomas showed HER2/neu immunopositivity. Conclusion: HER2/neu protein was expressed in 73% of meningiomas. Statistically significant difference of HER2/neu expression was not seen between females and males of Grade I and Grade II/III meningiomas, intracranial and spinal tumors, Grade I and Grade II/III cases, and various histological subtypes of meningiomas. PMID:27695231

  10. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism

    SciTech Connect

    Bonaventure, J.; Rousseau, F.; Legeai-Mallet, L.; LeMerrer, M.; Munnich, A.; Maroteaux, P.

    1996-05-03

    The mapping of the achondroplasia locus to the short arm of chromosome 4 and the subsequent identification of a recurrent missense mutation (G380R) in the fibroblast growth factor receptor 3 (FGFR-3) gene has been followed by the detection of common FGFR-3 mutations in two clinically related disorders: thanatophoric dwarfism (types I and II) and hypochondroplasia. The relative clinical homogeneity of achondroplasia was substantiated by demonstration of its genetic homogeneity as more than 98% of all patients hitherto reported exhibit mutations in the transmembrane receptor domain. Although most hypochondroplasia cases were accounted for by a recurrent missense substitution (N540K) in the first tyrosine kinase (TK 1) domain of the receptor, a significant proportion (40%) of our patients did not harbor the N540K mutation and three hypochondroplasia families were not linked to the FGFR-3 locus, thus supporting clinical heterogeneity of this condition. In thanatophoric dwarfism (TD), a recurrent FGFR-3 mutation located in the second tyrosine kinase (TK 2) domain of the receptor was originally detected in 100% of TD II cases; in our series, seven distinct mutations in three different protein domains were identified in 25 of 26 TD I patients, suggesting that TD, like achondroplasia, is a genetically homogenous skeletal disorder. 31 refs., 4 figs., 2 tabs.

  11. A transcription factor active on the epidermal growth factor receptor gene.

    PubMed Central

    Kageyama, R; Merlino, G T; Pastan, I

    1988-01-01

    We have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. We found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO4/polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I "footprinting" and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR. Images PMID:3393529

  12. The F-BAR Protein PACSIN2 Regulates Epidermal Growth Factor Receptor Internalization

    PubMed Central

    de Kreuk, Bart-Jan; Anthony, Eloise C.; Geerts, Dirk; Hordijk, Peter L.

    2012-01-01

    Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling. PMID:23129763

  13. Epidermal Growth Factor Receptor Overexpression as a Target for Auger Electron Radiotherapy of Breast Cancer

    DTIC Science & Technology

    1999-08-01

    proportion of estrogen receptor-negative and hormone-resistant breast cancers. Our objective is to construct a human epidermal growth factor (hEGF...61 5 INTRODUCTION Overexpression of the epidermal growth factor receptor (EGFR) occurs in a high proportion of estrogen receptor-negative and...Lac Iq promotor induced by isopropyl-b- D -thiogalactopyranoside (IPTG). The DNA sequence of the final hEGF-CH1 construct was confirmed (FUi. 2). BamHJ

  14. Angiotensin II acting on brain AT1 receptors induces adrenaline secretion and pressor responses in the rat.

    PubMed

    Nakamura, Kumiko; Shimizu, Takahiro; Yanagita, Toshihiko; Nemoto, Takayuki; Taniuchi, Keisuke; Shimizu, Shogo; Dimitriadis, Fotios; Yawata, Toshio; Higashi, Youichirou; Ueba, Tetsuya; Saito, Motoaki

    2014-11-28

    Angiotensin II (AngII) plays important roles in the regulation of cardiovascular function. Both peripheral and central actions of AngII are involved in this regulation, but mechanisms of the latter actions as a neurotransmitter/neuromodulator within the brain are still unclear. Here we show that (1) intracerebroventricularly (i.c.v.) administered AngII in urethane-anesthetized male rats elevates plasma adrenaline derived from the adrenal medulla but not noradrenaline with valsartan- (AT1 receptor blocker) sensitive brain mechanisms, (2) peripheral AT1 receptors are not involved in the AngII-induced elevation of plasma adrenaline, although AngII induces both noradrenaline and adrenaline secretion from bovine adrenal medulla cells, and (3) i.c.v. administered AngII elevates blood pressure but not heart rate with the valsartan-sensitive mechanisms. From these results, i.c.v. administered AngII acts on brain AT1 receptors, thereby inducing the secretion of adrenaline and pressor responses. We propose that the central angiotensinergic system can activate central adrenomedullary outflow and modulate blood pressure.

  15. Angiotensin II acting on brain AT1 receptors induces adrenaline secretion and pressor responses in the rat

    PubMed Central

    Nakamura, Kumiko; Shimizu, Takahiro; Yanagita, Toshihiko; Nemoto, Takayuki; Taniuchi, Keisuke; Shimizu, Shogo; Dimitriadis, Fotios; Yawata, Toshio; Higashi, Youichirou; Ueba, Tetsuya; Saito, Motoaki

    2014-01-01

    Angiotensin II (AngII) plays important roles in the regulation of cardiovascular function. Both peripheral and central actions of AngII are involved in this regulation, but mechanisms of the latter actions as a neurotransmitter/neuromodulator within the brain are still unclear. Here we show that (1) intracerebroventricularly (i.c.v.) administered AngII in urethane-anesthetized male rats elevates plasma adrenaline derived from the adrenal medulla but not noradrenaline with valsartan- (AT1 receptor blocker) sensitive brain mechanisms, (2) peripheral AT1 receptors are not involved in the AngII-induced elevation of plasma adrenaline, although AngII induces both noradrenaline and adrenaline secretion from bovine adrenal medulla cells, and (3) i.c.v. administered AngII elevates blood pressure but not heart rate with the valsartan-sensitive mechanisms. From these results, i.c.v. administered AngII acts on brain AT1 receptors, thereby inducing the secretion of adrenaline and pressor responses. We propose that the central angiotensinergic system can activate central adrenomedullary outflow and modulate blood pressure. PMID:25431019

  16. On the Factor Structure of the Beck Depression Inventory-II: G Is the Key

    ERIC Educational Resources Information Center

    Brouwer, Danny; Meijer, Rob R.; Zevalkink, Jolien

    2013-01-01

    The Beck Depression Inventory-II (BDI-II; Beck, Steer, & Brown, 1996) is intended to measure severity of depression, and because items represent a broad range of depressive symptoms, some multidimensionality exists. In recent factor-analytic studies, there has been a debate about whether the BDI-II can be considered as one scale or whether…

  17. Modeling the epidermal growth factor -- epidermal growth factor receptor l2 domain interaction: implications for the ligand binding process.

    PubMed

    Jorissen, Robert N; Treutlein, Herbert R; Epa, V Chandana; Burgess, Antony W

    2002-06-01

    Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.

  18. Identification of transmembrane domain 6 & 7 residues that contribute to the binding pocket of the urotensin II receptor.

    PubMed

    Holleran, Brian J; Domazet, Ivana; Beaulieu, Marie-Eve; Yan, Li Ping; Guillemette, Gaétan; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard

    2009-04-15

    Urotensin II (U-II), a cyclic undecapeptide, is the natural ligand of the urotensin II (UT) receptor, a G protein-coupled receptor. In the present study, we used the substituted-cysteine accessibility method to identify specific residues in transmembrane domains (TMDs) six and seven of the rat urotensin II receptor (rUT) that contribute to the formation of the binding pocket of the receptor. Each residue in the R256(6.32)-Q283(6.59) fragment of TMD6 and the A295(7.31)-T321(7.57) fragment of TMD7 was mutated, individually, to a cysteine. The resulting mutants were expressed in COS-7 cells, which were subsequently treated with the positively charged methanethiosulfonate-ethylammonium (MTSEA) or the negatively charged methanethiosulfonate-ethylsulfonate (MTSES) sulfhydryl-specific alkylating agents. MTSEA treatment resulted in a significant reduction in the binding of TMD6 mutants F268C(6.44) and W278C(6.54) and TMD7 mutants L298C(7.34), T302C(7.38), and T303C(7.39) to (125)I-U-II. MTSES treatment resulted in a significant reduction in the binding of two additional mutants, namely L282C(6.58) in TMD6 and Y300C(7.36) in TMD7. These results suggest that specific residues orient themselves within the water-accessible binding pocket of the rUT receptor. This approach, which allowed us to identify key determinants in TMD6 and TMD7 that contribute to the UT receptor binding pocket, enabled us to further refine our homology-based model of how U-II interacts with its cognate receptor.

  19. Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor.

    PubMed Central

    Wolf, G; Ziyadeh, F N; Thaiss, F; Tomaszewski, J; Caron, R J; Wenzel, U; Zahner, G; Helmchen, U; Stahl, R A

    1997-01-01

    Glomerular influx of monocytes/macrophages (M/M) occurs in many immune- and non-immune-mediated renal diseases. The mechanisms targeting M/M into the glomerulus are incompletely understood, but may involve stimulated expression of chemokines. We investigated whether angiotensin II (ANG II) induces the chemokine RANTES in cultured glomerular endothelial cells of the rat and in vivo. ANG II stimulated mRNA and protein expression of RANTES in cultured glomerular endothelial cells. The ANG II-induced RANTES protein was chemotactic for human monocytes. Surprisingly, the ANG II-stimulated RANTES expression was transduced by AT2 receptors because the AT2 receptor antagonists PD 123177 and CGP-42112A, but not an AT1 receptor blocker, abolished the induced RANTES synthesis. Intraperitoneal infusion of ANG II (500 ng/h) into naive rats for 4 d significantly stimulated glomerular RANTES mRNA and protein expression compared with solvent-infused controls. Immunohistochemistry revealed induction of RANTES protein mainly in glomerular endothelial cells and small capillaries. Moreover, ANG II- infused animals exhibited an increase in glomerular ED-1- positive cells compared with controls. Oral treatment with PD 123177 (50 mg/liter drinking water) attenuated the glomerular M/M influx without normalizing the slightly elevated systolic blood pressure caused by ANG II infusion, suggesting that the effects on blood pressure and RANTES induction can be separated. We conclude that the vasoactive peptide ANG II may play an important role in glomerular chemotaxis of M/M through local induction of the chemokine RANTES. The observation that the ANG II- mediated induction of RANTES is transduced by AT2 receptors may influence the decision as to which substances might be used for the therapeutic interference with the activity of the renin-angiotensin system. PMID:9276721

  20. Expression of fibroblast growth factor receptors during development and regression of the bovine corpus luteum.

    PubMed

    Guerra, D M; Giometti, I C; Price, C A; Andrade, P B; Castilho, A C; Machado, M F; Ripamonte, P; Papa, P C; Buratini, J

    2008-01-01

    There is evidence that fibroblast growth factors (FGFs) are involved in the regulation of growth and regression of the corpus luteum (CL). However, the expression pattern of most FGF receptors (FGFRs) during CL lifespan is still unknown. The objective of the present study was to determine the pattern of expression of 'B' and 'C' splice variants of FGFRs in the bovine CL. Bovine CL were collected from an abattoir and classed as corpora hemorrhagica (Stage I), developing (Stage II), developed (Stage III) or regressed (Stage IV) CL. Expression of FGFR mRNA was measured by semiquantitative reverse transcription-polymerase chain reaction and FGFR protein was localised by immunohistochemistry. Expression of mRNA encoding the 'B' and 'C' spliced forms of FGFR1 and FGFR2 was readily detectable in the bovine CL and was accompanied by protein localisation. FGFR1C and FGFR2C mRNA expression did not vary throughout CL lifespan, whereas FGFR1B was upregulated in the developed (Stage III) CL. FGFR3B, FGFR3C and FGFR4 expression was inconsistent in the bovine CL. The present data indicate that FGFR1 and FGFR2 splice variants are the main receptors for FGF action in the bovine CL.

  1. Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma

    PubMed Central

    Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187

  2. Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis

    PubMed Central

    Hofer, Erhard; Schweighofer, Bernhard

    2010-01-01

    Summary New vessel formation during development and in the adult is triggered by concerted signals of largely endothelial-specific receptors for ligands of the VEGF, angiopoietin and ephrin families. The signals and genes induced by these receptors operate in the context of additional signals transduced by non-endothelial specific growth factor receptors, inflammatory cytokine receptors as well as adhesion molecules. We summarize here available data on characteristic signaling of the VEGF receptor-2 and the current state of knowledge regarding the additional different receptor tyrosine kinases of the VEGF, Tie and Ephrin receptor families. Furthermore, the potential cross-talk with signals induced by other growth factors and inflammatory cytokines as well as the modulation by VE-cadherin is discussed. PMID:17334501

  3. Identification of Type II Interferon Receptors in Geese: Gene Structure, Phylogenetic Analysis, and Expression Patterns.

    PubMed

    Zhou, Hao; Chen, Shun; Qi, Yulin; Zhou, Qin; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Chen, Xiaoyue; Cheng, Anchun

    2015-01-01

    Interferon γ receptor 1 (IFNGR1) and IFNGR2 are two cell membrane molecules belonging to class II cytokines, which play important roles in the IFN-mediated antiviral signaling pathway. Here, goose IFNGR1 and IFNGR2 were cloned and identified for the first time. Tissue distribution analysis revealed that relatively high levels of goose IFNγ mRNA transcripts were detected in immune tissues, including the harderian gland, cecal tonsil, cecum, and thymus. Relatively high expression levels of both IFNGR1 and IFNGR2 were detected in the cecal tonsil, which implicated an important role of IFNγ in the secondary immune system of geese. No specific correlation between IFNγ, IFNGR1, and IFNGR2 expression levels was observed in the same tissues of healthy geese. IFNγ and its cognate receptors showed different expression profiles, although they appeared to maintain a relatively balanced state. Furthermore, the agonist R848 led to the upregulation of goose IFNγ but did not affect the expression of goose IFNGR1 or IFNGR2. In summary, trends in expression of goose IFNγ and its cognate receptors showed tissue specificity, as well as an age-related dependency. These findings may help us to better understand the age-related susceptibility to pathogens in birds.

  4. Selective small molecule angiotensin II type 2 receptor antagonists for neuropathic pain: preclinical and clinical studies.

    PubMed

    Smith, Maree T; Anand, Praveen; Rice, Andrew S C

    2016-02-01

    Neuropathic pain affects up to 10% of the general population, but drug treatments recommended for the treatment of neuropathic pain are associated with modest efficacy and/or produce dose-limiting side effects. Hence, neuropathic pain is an unmet medical need. In the past 2 decades, research on the pathobiology of neuropathic pain has revealed many novel pain targets for use in analgesic drug discovery programs. However, these efforts have been largely unsuccessful as molecules that showed promising pain relief in rodent models of neuropathic pain generally failed to produce analgesia in early phase clinical trials in patients with neuropathic pain. One notable exception is the angiotensin II type 2 (AT2) receptor that has clinical validity on the basis of a successful double-blind, randomized, placebo-controlled, clinical trial of EMA401, a highly selective, orally active, peripherally restricted AT2 receptor antagonist in patients with postherpetic neuralgia. In this study, we review research to date on target validation, efficacy, and mode of action of small molecule AT2 receptor antagonists in rodent models of peripheral neuropathic pain and in cultured human sensory neurons, the preclinical pharmacokinetics of these compounds, and the outcome of the above clinical trial.

  5. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy.

    PubMed

    Lach-Trifilieff, Estelle; Minetti, Giulia C; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji; Glass, David J

    2014-02-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings.

  6. The TGFβ type II receptor plays a critical role in the endothelial cells during cardiac development.

    PubMed

    Robson, Andrew; Allinson, Kathleen R; Anderson, Robert H; Henderson, Deborah J; Arthur, Helen M

    2010-09-01

    TGFβ signalling is required for normal cardiac development. To investigate which cell types are involved, we used mice carrying a floxed Type II TGFβ receptor (Tgfbr2fl) allele and Cre-lox genetics to deplete this receptor in different regions of the heart. The three target tissues and corresponding Cre transgenic lines were atrioventricular myocardium (using cGata6-Cre), ventricular myocardium (using Mlc2v-Cre), and vascular endothelium (using tamoxifen-activated Cdh5(PAC)-CreERT2). Spatio-temporal Cre activity in each case was tracked via lacZ activation from the Rosa26R locus. Atrioventricular-myocardial-specific Tgfbr2 knockout (KO) embryos had short septal leaflets of the tricuspid valve, whereas ventricular myocardial-specific KO embryos mainly exhibited a normal cardiac phenotype. Inactivation of Tgfbr2 in endothelial cells from E11.5 resulted in deficient ventricular septation, accompanied by haemorrhage from cerebral blood vessels. We conclude that TGFβ signalling through the Tgfbr2 receptor, in endothelial cells, plays an important role in cardiac development, and is essential for cerebral vascular integrity.

  7. Dynamic tracing for epidermal growth factor receptor mutations in urinary circulating DNA in gastric cancer patients.

    PubMed

    Shi, Xiu-Qin; Xue, Wen-Hua; Zhao, Song-Feng; Zhang, Xiao-Jian; Sun, Wukong

    2017-02-01

    The mutations of epidermal growth factor receptor are detected in gastric cancer, indicating its suitability as a target for receptor tyrosine kinase inhibitors, as well as a marker for clinical outcome of chemotherapeutic treatments. However, extraction of quality tumor tissue for molecular processes remains challenging. Here, we aimed to examine the clinical relevance of urinary cell-free DNA as an alternative tumor material source used specifically for monitoring epidermal growth factor receptor mutations. Therefore, 120 gastric cancer patients with epidermal growth factor receptor mutations and 100 healthy controls were recruited for the study. The gastric patients also received epidermal growth factor receptor inhibitor treatment for a serial monitoring study. Paired primary tumor specimens were obtained with blood and urine samples, which were taken at a 1-month interval for a duration of 12 months. We found that urinary cell-free DNA yielded a close agreement of 92% on epidermal growth factor receptor mutation status when compared to primary tissue at baseline, and of 99% epidermal growth factor receptor mutation status when compared to plasma samples at different time points. Thus, our data suggest that urinary cell-free DNA may be a reliable source for screening and monitoring epidermal growth factor receptor mutations in the primary gastric cancer.

  8. Risk factors for major bleeding in the SEATTLE II trial

    PubMed Central

    Sadiq, Immad; Goldhaber, Samuel Z; Liu, Ping-Yu; Piazza, Gregory

    2017-01-01

    Ultrasound-facilitated, catheter-directed, low-dose fibrinolysis minimizes the risk of intracranial bleeding compared with systemic full-dose fibrinolytic therapy for pulmonary embolism (PE). However, major bleeding is nevertheless a potential complication. We analyzed the 150-patient SEATTLE II trial of submassive and massive PE patients to describe those who suffered major bleeding events following ultrasound-facilitated, catheter-directed, low-dose fibrinolysis and to identify risk factors for bleeding. Major bleeding was defined as GUSTO severe/life-threatening or moderate bleeds within 72 hours of initiation of the procedure. Of the 15 patients with major bleeding, four (26.6%) developed access site-related bleeding. Multiple venous access attempts were more frequent in the major bleeding group (27.6% vs 3.6%; p<0.001). All patients with major bleeding had femoral vein access for device delivery. Patients who developed major bleeding had a longer intensive care stay (6.8 days vs 4.7 days; p=0.004) and longer hospital stay (12.9 days vs 8.4 days; p=0.004). The frequency of inferior vena cava filter placement was 40% in patients with major bleeding compared with 13% in those without major bleeding (p=0.02). Massive PE (adjusted odds ratio 3.6; 95% confidence interval 1.01–12.9; p=0.049) and multiple venous access attempts (adjusted odds ratio 10.09; 95% confidence interval 1.98–51.46; p=0.005) were independently associated with an increased risk of major bleeding. In conclusion, strategies for improving venous access should be implemented to reduce the risk of major bleeding associated with ultrasound-facilitated, catheter-directed, low-dose fibrinolysis. ClinicalTrials.gov Identifier: NCT01513759; EKOS Corporation 10.13039/100006522 PMID:27913777

  9. Risk factors for major bleeding in the SEATTLE II trial.

    PubMed

    Sadiq, Immad; Goldhaber, Samuel Z; Liu, Ping-Yu; Piazza, Gregory

    2017-02-01

    Ultrasound-facilitated, catheter-directed, low-dose fibrinolysis minimizes the risk of intracranial bleeding compared with systemic full-dose fibrinolytic therapy for pulmonary embolism (PE). However, major bleeding is nevertheless a potential complication. We analyzed the 150-patient SEATTLE II trial of submassive and massive PE patients to describe those who suffered major bleeding events following ultrasound-facilitated, catheter-directed, low-dose fibrinolysis and to identify risk factors for bleeding. Major bleeding was defined as GUSTO severe/life-threatening or moderate bleeds within 72 hours of initiation of the procedure. Of the 15 patients with major bleeding, four (26.6%) developed access site-related bleeding. Multiple venous access attempts were more frequent in the major bleeding group (27.6% vs 3.6%; p<0.001). All patients with major bleeding had femoral vein access for device delivery. Patients who developed major bleeding had a longer intensive care stay (6.8 days vs 4.7 days; p=0.004) and longer hospital stay (12.9 days vs 8.4 days; p=0.004). The frequency of inferior vena cava filter placement was 40% in patients with major bleeding compared with 13% in those without major bleeding ( p=0.02). Massive PE (adjusted odds ratio 3.6; 95% confidence interval 1.01-12.9; p=0.049) and multiple venous access attempts (adjusted odds ratio 10.09; 95% confidence interval 1.98-51.46; p=0.005) were independently associated with an increased risk of major bleeding. In conclusion, strategies for improving venous access should be implemented to reduce the risk of major bleeding associated with ultrasound-facilitated, catheter-directed, low-dose fibrinolysis. ClinicalTrials.gov Identifier: NCT01513759; EKOS Corporation 10.13039/100006522.

  10. Teaching resources. Growth factor and receptor tyrosine kinases.

    PubMed

    Aaronson, Stuart

    2005-02-22

    This Teaching Resource provides lecture notes and slides for a graduate-level class on ligand regulation of signaling by receptor tyrosine kinases and receptors involved in the Wnt canonical pathway. It is part of a series of lectures that constitute the Cell Signaling Systems course. A description of the lecture, along with a set of slides used to present this information, is provided.

  11. Determination of circulating levels of insulin-like growth factor II (IGF-II) in swine.

    PubMed

    Buonomo, F C; Grohs, D L; Baile, C A; Campion, D R

    1988-10-01

    A heterologous radioimmunoassay system was developed for the determination of circulating IGF-II concentrations in swine. The assay utilized a monoclonal antibody against human IGF-II (Amano Intl. Ez, VA) and bovine IGF-II (Monsanto Co., MO) as the cold standard and iodinated ligand. Serial dilutions of acid-ethanol extracted normal swine sera resulted in a curve which was parallel to the bovine IGF-II standard curve. Recovery of unlabeled standard added to extracted swine sera was 101%. Neither IGF-I nor insulin were capable of cross-reacting in this assay at levels up to 100-fold excess. Using this assay, serum IGF-II levels were determined to be significantly lower when subnormal growth hormone (GH) levels existed such as in hypophysectomized swine. However, in contrast to serum IGF-I concentrations, supranormal levels of porcine GH (pGH) did not elevate serum IGF-II concentrations after 13 wk of treatment in 25 kg hogs (initial body wt). In addition, serum IGF-II levels were reduced in fasted swine, despite a significant increase in circulating GH concentrations. Thus, although normal concentrations of GH are required for maintenance of physiological levels of IGF-II in swine, the mechanism for stimulation of IGF-II secretion is less GH-dependent than IGF-I.

  12. A new avian fibroblast growth factor receptor in myogenic and chondrogenic cell differentiation.

    PubMed

    Halevy, O; Monsonego, E; Marcelle, C; Hodik, V; Mett, A; Pines, M

    1994-06-01

    We studied the expression of FREK (fibroblast growth factor receptor-like embryonic kinase), a new receptor recently cloned from quail embryo, during the differentiation of skeletal muscle satellite cells and epiphyseal growth-plate chondrocytes. Although FREK mRNA was expressed in both cell types, satellite cells expressed higher levels of this mRNA than chondrocytes. FREK gene expression was found to be modulated by b-FGF in a biphasic manner: low concentrations increased expression, whereas high concentrations attenuated it. In both cell cultures, the levels of FREK mRNA declined during terminal differentiation. Moreover, retinoic acid (RA), which induces skeletal muscle satellite cells to differentiate, also caused a reduction in FREK gene expression in these cells. Induction of chondrocyte differentiation with ascorbic acid was monitored by a decrease in collagen type II gene expression and an increase in alkaline phosphatase activity. Satellite cell differentiation was marked by morphological changes as well as by increased sarcomeric myogenin content and creatine kinase activity and changes in the expression of the regulatory muscle-specific genes, MyoD and myogenin. DNA synthesis in both cell types was stimulated by b-FGF. However, in satellite cells, the response was bell-shaped, peaking at 1 ng/ml b-FGF, whereas in chondrocytes, higher levels of b-FGF were needed. b-FGF-dependent DNA synthesis in satellite cells was decreased by RA at concentrations over 10(-7) M. The observed correlation between the level of FREK gene expression and various stages of differentiation, its modulation by b-FGF and RA, as well as the correlation between FREK gene expression and the physiological response to b-FGF, suggest that this specific FGF receptor plays an important role in muscle and cartilage cell differentiation.

  13. Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells.

    PubMed

    Morales, María Gabriela; Vazquez, Yaneisi; Acuña, María José; Rivera, Juan Carlos; Simon, Felipe; Salas, José Diego; Alvarez Ruf, Joel; Brandan, Enrique; Cabello-Verrugio, Claudio

    2012-11-01

    Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF

  14. Identification and functional characterization of platelet-activating factor receptors in human leukocyte populations using polyclonal anti-peptide antibody.

    PubMed Central

    Müller, E; Dagenais, P; Alami, N; Rola-Pleszczynski, M

    1993-01-01

    Recently, the successful cloning of a receptor for platelet-activating factor (PAF), a lipid mediator of inflammation, was reported. Here we investigated the distribution and potential diversity of human PAF receptors (hPAF-Rs) among individual leukocyte populations by (i) hPAF-R mRNA transcription studies and (ii) analysis of cell surface expression of hPAF-R protein using a polyclonal anti-peptide antibody (anti-hPAF-R164-173). Northern blot analysis, flow cytometry, and immunoblotting with anti-hPAF-R antibody indicated that monocytic, neutrophilic, and B-lymphocytic cell lines all shared a similar hPAF-R species, whereas resting T-cell and natural killer cell lines failed to express detectable levels of either hPAF-R protein or mRNA. Peripheral blood leukocyte populations showed a distribution of hPAF-R cell surface expression similar to that of the corresponding cell lines. Furthermore, binding of anti-hPAF-R164-173 antiserum, purified IgG, or Fab and F(ab')2 fragments to the receptor of all investigated PAF-R-positive cell lines induced an increase in intracellular free calcium concentration. The characterization of the expression of a lipid ligand receptor using antibodies against an intrinsic portion of the receptor protein has, to our knowledge, never been reported previously. Images Fig. 1 Fig. 5 Fig. 7 PMID:8390683

  15. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer

    PubMed Central

    Sobani, Zain A; Sawant, Ashwin; Jafri, Mikram; Correa, Amit Keith; Sahin, Ibrahim Halil

    2016-01-01

    Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade. PMID:27777877

  16. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    SciTech Connect

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-04-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.

  17. The renin-angiotensin system mediates epidermal growth factor receptor-vitamin D receptor cross-talk in colitis-associated colon cancer

    PubMed Central

    Sadiq, Farhana; Almoghrabi, Anas; Mustafi, Devkumar; Kreisheh, Maggi; Sundaramurthy, Sumana; Liu, Weicheng; Konda, Vani J.; Pekow, Joel; Khare, Sharad; Hart, John; Joseph, Loren; Wyrwicz, Alice; Karczmar, Gregory S.; Li, Yan Chun; Bissonnette, Marc

    2014-01-01

    Purpose We previously showed that epidermal growth factor receptor (EGFR) promotes tumorigenesis in the azoxymethane/dextran sulfate sodium (AOM/DSS) model, whereas vitamin D (VD) suppresses tumorigenesis. EGFR-vitamin D receptor (VDR) interactions, however, are incompletely understood. VD inhibits the renin-angiotensin system (RAS), whereas RAS can activate EGFR. We aimed to elucidate EGFR-VDR cross-talk in colorectal carcinogenesis. Experimental Design To examine VDR-RAS interactions, we treated Vdr+/+ and Vdr/− mice with AOM/DSS. Effects of VDR on RAS and EGFR were examined by Westerns, immunostaining and real time PCR. We also examined the effect of vitamin D3 on colonic RAS in Vdr+/+ mice. EGFR regulation of VDR was examined in hypomorphic EgfrWaved2 (Wa2) and Egfrwildtype mice. Ang II-induced EGFR activation was studied in cell culture. Results Vdr deletion significantly increased tumorigenesis, activated EGFR and βcatenin signaling and increased colonic RAS components: including renin and angiotensin II. Dietary VD3 supplementation suppressed colonic renin. Renin was increased in human colon cancers. In studies in vitro, Ang II activated EGFR and stimulated colon cancer cell proliferation by an EGFR-mediated mechanism. Ang II also activated macrophages and colonic fibroblasts. Compared to tumors from EgfrWaved2 mice, tumors from Egfrwildtype mice showed up-regulated Snail1, a suppressor of VDR, and down-regulated VDR. Conclusions VDR suppresses the colonic RAS cascade, limits EGFR signals and inhibits colitis-associated tumorigenesis, whereas EGFR increases Snail1 and down-regulates VDR in colonic tumors. Taken together, these results uncover a RAS-dependent mechanism mediating EGFR and VDR cross-talk in colon cancer. PMID:25212605

  18. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3

    SciTech Connect

    Keegan, K.; Hayman, M.J. ); Johnson, D.E.; Williams, L.T. )

    1991-02-15

    The fibroblast growth factors are a family of polypeptide growth factors involved in a variety of activities including mitogenesis, angiogenesis, and wound healing. Fibroblast growth factor receptors (FGFRs) have previously been identified in chicken, mouse, and human and have been shown to contain an extracellular domain with either two or three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain. The authors have isolated a human cDNA for another tyrosine kinase receptor that is highly homologous to the previously described FGFR. Expression of this receptor cDNA in COS cells directs the expression of a 125-kDa glycoprotein. They demonstrate that this cDNA encodes a biologically active receptor by showing that human acidic and basic fibroblast growth factors activate this receptor as measured by {sup 45}Ca{sup 2+} efflux assays. These data establish the existence of an additional member of the FGFR family that they have named FGFR-3.

  19. Characterization of a comparative model of the extracellular domain of the epidermal growth factor receptor.

    PubMed

    Jorissen, R N; Epa, V C; Treutlein, H R; Garrett, T P; Ward, C W; Burgess, A W

    2000-02-01

    The Epidermal Growth Factor (EGF) receptor is a tyrosine kinase that mediates the biological effects of ligands such as EGF and transforming growth factor alpha. An understanding of the molecular basis of its action has been hindered by a lack of structural and mutational data on the receptor. We have constructed comparative models of the four extracellular domains of the EGF receptor that are based on the structure of the first three domains of the insulin-like growth factor-1 (IGF-1) receptor. The first and third domains of the EGF receptor, L1 and L2, are right-handed beta helices. The second and fourth domains of the EGF receptor, S1 and S2, consist of the modules held together by disulfide bonds, which, except for the first module of the S1 domain, form rod-like structures. The arrangement of the L1 and S1 domains of the model are similar to that of the first two domains of the IGF-1 receptor, whereas that of the L2 and S2 domains appear to be significantly different. Using the EGF receptor model and limited information from the literature, we have proposed a number of regions that may be involved in the functioning of the receptor. In particular, the faces containing the large beta sheets in the L1 and L2 domains have been suggested to be involved with ligand binding of EGF to its receptor.

  20. Characterization of a comparative model of the extracellular domain of the epidermal growth factor receptor.

    PubMed Central

    Jorissen, R. N.; Epa, V. C.; Treutlein, H. R.; Garrett, T. P.; Ward, C. W.; Burgess, A. W.

    2000-01-01

    The Epidermal Growth Factor (EGF) receptor is a tyrosine kinase that mediates the biological effects of ligands such as EGF and transforming growth factor alpha. An understanding of the molecular basis of its action has been hindered by a lack of structural and mutational data on the receptor. We have constructed comparative models of the four extracellular domains of the EGF receptor that are based on the structure of the first three domains of the insulin-like growth factor-1 (IGF-1) receptor. The first and third domains of the EGF receptor, L1 and L2, are right-handed beta helices. The second and fourth domains of the EGF receptor, S1 and S2, consist of the modules held together by disulfide bonds, which, except for the first module of the S1 domain, form rod-like structures. The arrangement of the L1 and S1 domains of the model are similar to that of the first two domains of the IGF-1 receptor, whereas that of the L2 and S2 domains appear to be significantly different. Using the EGF receptor model and limited information from the literature, we have proposed a number of regions that may be involved in the functioning of the receptor. In particular, the faces containing the large beta sheets in the L1 and L2 domains have been suggested to be involved with ligand binding of EGF to its receptor. PMID:10716183

  1. A third distinct tumor necrosis factor receptor of orthopoxviruses

    PubMed Central

    Loparev, Vladimir N.; Parsons, Joseph M.; Knight, Janice C.; Panus, Joanne Fanelli; Ray, Caroline A.; Buller, R. Mark L.; Pickup, David J.; Esposito, Joseph J.

    1998-01-01

    Cowpox virus Brighton red strain (CPV) contains a gene, crmD, which encodes a 320-aa tumor necrosis factor receptor (TNFR) of 44% and 22% identity, respectively, to the CPV TNFR-like proteins, cytokine response modifiers (crm) CrmB and CrmC. The crmD gene was interrupted in three other cowpox strains examined and absent in various other orthopoxviruses; however, four strains of ectromelia virus (ECT) examined contained an intact crmD (97% identity to CPV crmD) and lacked cognates of crmB and crmC. The protein, CrmD, contains a transport signal; a 151-aa cysteine-rich region with 21 cysteines that align with human TNFRII ligand-binding region cysteines; and C-terminal region sequences that are highly diverged from cellular TNFR C-terminal region sequences involved in signal transduction. Bacterial maltose-binding proteins containing the CPV or ECT CrmD cysteine-rich region bound TNF and lymphotoxin-α (LTα) and blocked their in vitro cytolytic activity. Secreted viral CrmD bound TNF and LTα and was detectable after the early stage of replication, using nonreducing conditions, as 60- to 70-kDa predominant and 90- to 250-kDa minor disulfide-linked complexes that were able to be reduced to a 46-kDa form and deglycosylated to a 38-kDa protein. Cells infected with CPV produced extremely low amounts of CrmD compared with ECT. Possessing up to three TNFRs, including CrmD, which is secreted as disulfide-linked complexes in varied amounts by CPV and ECT, likely enhances the dynamics of the immune modulating mechanisms of orthopoxviruses. PMID:9520445

  2. MICAL-like1 mediates epidermal growth factor receptor endocytosis

    PubMed Central

    Abou-Zeid, Nancy; Pandjaitan, Rudy; Sengmanivong, Lucie; David, Violaine; Le Pavec, Gwenaelle; Salamero, Jean; Zahraoui, Ahmed

    2011-01-01

    Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein–Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways. PMID:21795389

  3. Angiotensin II receptor antagonists and heart failure: angiotensin-converting-enzyme inhibitors remain the first-line option.

    PubMed

    2005-10-01

    (1) Some angiotensin-converting-enzyme inhibitors (ACE inhibitors) reduce mortality in patients with heart failure (captopril, enalapril, ramipril and trandolapril), and in patients with recent myocardial infarction and heart failure or marked left ventricular dysfunction (captopril, ramipril and trandolapril). (2) Angiotensin II receptor antagonists, otherwise known as angiotensin receptor blockers, have haemodynamic effects similar to ACE inhibitors, but differ in their mechanism of action and certain adverse effects. (3) Five clinical trials have evaluated angiotensin II receptor antagonists (candesartan, losartan and valsartan) in terms of their effect on mortality and on the risk of clinical deterioration in patients with symptomatic heart failure, but without severe renal failure, hyperkalemia or hypotension. In these trials, candesartan and valsartan were used at much higher doses than those recommended for the treatment of arterial hypertension. (4) In patients with heart failure who were not taking an angiotensin II receptor antagonist or an ACE inhibitor at enrollment, no significant difference was found between losartan and captopril in terms of mortality or the risk of clinical deterioration. (5) In patients with heart failure who had stopped taking an ACE inhibitor because of adverse effects, candesartan had no effect on mortality as compared with placebo, but it did reduce the risk of clinical deterioration (3 fewer hospitalisations per year per 100 patients). However, candesartan was associated with adverse effects such as renal failure and hyperkalemia, especially in patients who had experienced these same adverse effects while taking an ACE inhibitor. (6) In patients with heart failure who were already taking an ACE inhibitor, adjunctive candesartan or valsartan treatment did not influence mortality in comparison to the addition of a placebo. Adding candesartan or valsartan reduced the risk of hospitalisation (between 1 and 3 fewer hospitalisations

  4. Noncontiguous domains of the alpha-factor receptor of yeasts confer ligand specificity.

    PubMed

    Sen, M; Marsh, L

    1994-01-14

    The Saccharomyces cerevisiae alpha-factor receptor has a 3400-fold higher affinity for the S. cerevisiae alpha-factor peptide (c-alpha-f) than for the Saccharomyces kluyveri alpha-factor peptide (k-alpha-f) as determined by competition for [3H] c-alpha-f binding. The S. kluyveri alpha-factor receptor has an approximately 2-fold higher affinity for k-alpha-f than for c-alpha-f. The S. kluyveri receptor gene (k-STE2) is incompletely regulated by S. cerevisiae mating type and poorly expressed on the surface of an S. cerevisiae mating type a strain. A chimeric receptor (c/k1) with amino acid residues 1-45 derived from S. cerevisiae and amino acid residues 46-427 from S. kluyveri exhibits the binding specificity of the S. kluyveri receptor. However, chimeric receptors containing residues 1-168 (c/k2) or 1-250 (c/k3) from S. cerevisiae and the remainder from the S. kluyveri receptor exhibit specificities similar to one another, but intermediate between the parent S. cerevisiae and S. kluyveri receptors. The relative ability of c-alpha-f and k-alpha-f to induce growth arrest in strains expressing chimeric receptors parallels relative affinity. Thus, two noncontiguous domains that include putative extracellular loops 1 and 3 and associated transmembrane segments, but exclude the extracellular NH2 terminus and loop 2, appear to contribute to alpha-factor receptor ligand specificity. COOH-terminal regions of the S. kluyveri receptor appear to confer a desensitization defect when expressed in S. cerevisiae. The S. cerevisiae receptor truncated at residue 296 retains ligand specificity for growth arrest.

  5. Sperm Epidermal Growth Factor Receptor (EGFR) Mediates α7 Acetylcholine Receptor (AChR) Activation to Promote Fertilization

    PubMed Central

    Jaldety, Yael; Glick, Yair; Orr-Urtreger, Avi; Ickowicz, Debby; Gerber, Doron; Breitbart, Haim

    2012-01-01

    To attain fertilization the spermatozoon binds to the egg zona pellucida (ZP) via sperm receptor(s) and undergoes an acrosome reaction (AR). Several sperm receptors have been described in the literature; however, the identity of this receptor is not yet certain. In this study, we suggest that the α7 nicotinic acetylcholine receptor (α7nAChR) might be a sperm receptor activated by ZP to induce epidermal growth factor receptor (EGFR)-mediated AR. We found that isolated ZP or α7 agonists induced the AR in sperm from WT but not α7-null spermatozoa, and the induced AR was inhibited by α7 or EGFR antagonists. Moreover, α7-null sperm showed very little binding to the egg, and microfluidic affinity in vitro assay clearly showed that α7nAChR, as well as EGFR, interacted with ZP3. Induction of EGFR activation and the AR by an α7 agonist was inhibited by a Src family kinase (SFK) inhibitor. In conclusion we suggest that activation of α7 by ZP leads to SFK-dependent EGFR activation, Ca2+ influx, and the acrosome reaction. PMID:22577141

  6. Preliminary crystallographic analysis of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-[beta] receptor promoter DNA

    SciTech Connect

    Agarkar, Vinod B.; Babayeva, Nigar D.; Rizzino, Angie; Tahirov, Tahir H.

    2010-10-08

    Ets proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Like other Ets-family members, Elf3 functions as a sequence-specific DNA-binding transcriptional factor. A mouse Elf3 C-terminal fragment (amino-acid residues 269-371) containing the DNA-binding domain has been crystallized in complex with mouse type II TGF-{beta} receptor promoter (TR-II) DNA. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 42.66, b = 52, c = 99.78 {angstrom}, and diffracted to a resolution of 2.2 {angstrom}.

  7. Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors.

    PubMed

    Kellici, Tahsin F; Tzakos, Andreas G; Mavromoustakos, Thomas

    2015-03-02

    The angiotensin II (Ang II) type 1 and type 2 receptors (AT1R and AT2R) orchestrate an array of biological processes that regulate human health. Aberrant function of these receptors triggers pathophysiological responses that can ultimately lead to death. Therefore, it is important to design and synthesize compounds that affect beneficially these two receptors. Cardiovascular disease, which is attributed to the overactivation of the vasoactive peptide hormone Αng II, can now be treated with commercial AT1R antagonists. Herein, recent achievements in rational drug design and synthesis of molecules acting on the two AT receptors are reviewed. Quantitative structure activity relationships (QSAR) and molecular modeling on the two receptors aim to assist the search for new active compounds. As AT1R and AT2R are GPCRs and drug action is localized in the transmembrane region the role of membrane bilayers is exploited. The future perspectives in this field are outlined. Tremendous progress in the field is expected if the two receptors are crystallized, as this will assist the structure based screening of the chemical space and lead to new potent therapeutic agents in cardiovascular and other diseases.

  8. Toremifene decreases type I, type II and increases type III receptors in desmoid and fibroma and inhibits TGFbeta1 binding in desmoid fibroblasts.

    PubMed

    Stabellini, Giordano; Balducci, Chiara; Lilli, Cinzia; Marinucci, Lorella; Becchetti, Ennio; Carinci, Francesco; Calastrini, Carla; Dolci, Claudia; Lumare, Eleonora; Locci, Paola

    2008-09-01

    Tissue infiltration is different in desmoid and fibroma tumours. Both produce high levels of transforming growth factor beta1 (TGFbeta1), which is related to extracellular matrix (ECM) accumulation which in turn regulates cell function and cell migration. Interactions between collagen, proteoglycans and cell surface fibronectin are involved in the assembly and functions of the ECM. As toremifene inhibits collagen and TGFbeta1 synthesis, we tested it in normal, desmoid and fibroma fibroblasts. We will report the changes in glycosaminoglycan (GAG) and collagen synthesis, TGFbeta1 activity, fibronectin mRNA expression and TGFbeta1 receptors after toremifene treatment in normal, fibroma and desmoid fibroblasts. We evaluated GAG and collagen synthesis with 3H-glucosamine and 3H-proline incorporation, TGFbeta1 activity with the ELISA method, TGFbeta1 receptor affinity with 125I-TGFbeta1 binding and total RNA with Northern blot analysis. GAG and collagen synthesis, TGFbeta1 activity and fibronectin levels were higher in fibroma and desmoid than normal fibroblasts. The increase was greater in desmoid than fibroma tumour cells. Toremifene treatment reduced GAG and collagen synthesis, TGFbeta1 activity and fibronectin levels in all cell cultures. The percentage reduction in GAG was similar in all cultures; the reduction in collagen synthesis and TGFbeta1 activity was the highest in desmoid fibroblasts. TGFbeta1 receptors were higher in fibroma and desmoid cells than controls. Toremifene reduced TGFbeta1 receptors only in desmoid fibroblasts, with no effect on the changes in type I, II, and III receptors. Our data show that toremifene modifies the ECM components that regulate cytokine activity and cell migration. The reduction in receptor number only in desmoid cells suggests that toremifene may reduce TGFbeta1's affinity for its receptors. Synthesis of a substance regulating protein kinase activity, which is directly involved in the link between TGFbeta1 and its receptors

  9. Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy

    PubMed Central

    Yasuno, Shinji; Kuwahara, Koichiro; Kinoshita, Hideyuki; Yamada, Chinatsu; Nakagawa, Yasuaki; Usami, Satoru; Kuwabara, Yoshihiro; Ueshima, Kenji; Harada, Masaki; Nishikimi, Toshio; Nakao, Kazuwa

    2013-01-01

    BACKGROUND AND PURPOSE Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large-scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects. EXPERIMENTAL APPROACH We induced cardiac hypertrophy in wild-type (WT) and angiotensin II type 1a receptor knockout (AT1aR-KO) mice by transverse aortic constriction (TAC). The susceptibility to ventricular tachycardia (VT) assessed in an in vivo electrophysiological study was compared in the two genotypes. The effect of acute pharmacological blockade of AT1R on the incidences of arrhythmias was also assessed. KEY RESULTS As described previously, WT and AT1aR-KO mice with TAC developed cardiac hypertrophy to the same degree, but the incidence of VT was much lower in the latter. Moreover, although TAC induced an increase in tyrosine phosphorylation of connexin 43, a critical component of gap junctional channels, and a reduction in ventricular levels of connexin 43 protein in both genotypes, the effect was significantly ameliorated in AT1aR-KO mice. Acute pharmacological blockade of AT1R also reduced the incidence of arrhythmias. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate that AT1aR-mediated signalling makes a direct contribution to the increase in arrhythmogenicity in hypertrophied hearts independently of structural remodelling. PMID:23937445

  10. [Is there an indication for the association of betablockers and angiotensin II receptor antagonists in cardiac failure?].

    PubMed

    Jondeau, G; Milleron, O; Morisson-Castagnet, J F

    2004-06-01

    ACE inhibitors initially developed as vasodilators are effective by their anti-hormonal action. Antagonists of the receptors of angiotensin II (ARA II) should provide an equivalent or better blockade of the rennin-angiotensin system (absence of tolerance). Clinical trials have shown equivalent haemodynamic effects of the two classes, equal functional tolerance but mortality studies have shown more variable results. None have shown the superiority of ARA II over ACE inhibitors and the demonstration of their equivalence has just been reported with high doses in the post-infarction period. A deleterious effect of ARA II in association with betablockers was reported in two mortality studies but has not been confirmed in the most recent trials. The difficulty is to determine the roles of the association of ARA II-ACE inhibitors, ARA II-antialdosterones or of the association of all three classes of molecules.

  11. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  12. Oligomeric State Regulated Trafficking of Human Platelet-Activating Factor Acetylhydrolase Type-II

    PubMed Central

    Monillas, Elizabeth S.; Caplan, Jeffrey L.; Thévenin, Anastasia F.; Bahnson, Brian J.

    2015-01-01

    The intracellular enzyme platelet-activating factor acetylhydrolase type-II (PAFAH-II) hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. PAFAH-II in its resting state is mainly cytoplasmic, and it responds to oxidative stress by becoming increasingly bound to endoplasmic reticulum and Golgi membranes. Numerous studies have indicated that this enzyme is essential for protecting cells from oxidative stress induced apoptosis. However, the regulatory mechanism of the oxidative stress response by PAFAH-II has not been fully resolved. Here, changes to the oligomeric state of human PAFAH-II were investigated as a potential regulatory mechanism toward enzyme trafficking. Native PAGE analysis in vitro and photon counting histogram within live cells showed that PAFAH-II is both monomeric and dimeric. A Gly-2-Ala site-directed mutation of PAFAH-II demonstrated that the N-terminal myristoyl group is required for homodimerization. Additionally, the distribution of oligomeric PAFAH-II is distinct within the cell; homodimers of PAFAH-II were localized to the cytoplasm while monomers were associated to the membranes of the endoplasmic reticulum and Golgi. We propose that the oligomeric state of PAFAH-II drives functional protein trafficking. PAFAH-II localization to the membrane is critical for substrate acquisition and effective oxidative stress protection. It is hypothesized that the balance between monomer and dimer serves as a regulatory mechanism of a PAFAH-II oxidative stress response. PMID:25707358

  13. Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II.

    PubMed

    Monillas, Elizabeth S; Caplan, Jeffrey L; Thévenin, Anastasia F; Bahnson, Brian J

    2015-05-01

    The intracellular enzyme platelet-activating factor acetylhydrolase type-II (PAFAH-II) hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. PAFAH-II in its resting state is mainly cytoplasmic, and it responds to oxidative stress by becoming increasingly bound to endoplasmic reticulum and Golgi membranes. Numerous studies have indicated that this enzyme is essential for protecting cells from oxidative stress induced apoptosis. However, the regulatory mechanism of the oxidative stress response by PAFAH-II has not been fully resolved. Here, changes to the oligomeric state of human PAFAH-II were investigated as a potential regulatory mechanism toward enzyme trafficking. Native PAGE analysis in vitro and photon counting histogram within live cells showed that PAFAH-II is both monomeric and dimeric. A Gly-2-Ala site-directed mutation of PAFAH-II demonstrated that the N-terminal myristoyl group is required for homodimerization. Additionally, the distribution of oligomeric PAFAH-II is distinct within the cell; homodimers of PAFAH-II were localized to the cytoplasm while monomers were associated to the membranes of the endoplasmic reticulum and Golgi. We propose that the oligomeric state of PAFAH-II drives functional protein trafficking. PAFAH-II localization to the membrane is critical for substrate acquisition and effective oxidative stress protection. It is hypothesized that the balance between monomer and dimer serves as a regulatory mechanism of a PAFAH-II oxidative stress response.

  14. Radiosensitizing effect of lapatinib in human epidermal growth factor receptor 2-positive breast cancer cells

    PubMed Central

    Park, Ji Min; Kim, Dan Hyo; Kim, In Ah

    2016-01-01

    Trastuzumab has been widely used for the treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer, however, it cannot easily cross the blood-brain barrier (BBB) and is known to increase the incidence of brain metastases. In contrast, lapatinib has a low molecular weight and can cross the BBB and it could be useful to treat brain metastases in patients with HER2-positive breast cancer. To explore the impact of lapatinib on radiation response, we conducted an in vitro experiment using SKBR3 and BT474 breast carcinoma cells exhibiting HER2/neu amplification. Lapatinib down-regulated phosphorylated (p)-HER2, p-epidermal growth factor receptor, p-AKT, and p-extracellular signal-regulated kinase. Pretreatment of lapatinib increased the radiosensitivity of SKBR3 (sensitizer enhancement ratio [SER]: 1.21 at a surviving fraction of 0.5) and BT474 (SER: 1.26 at a surviving fraction of 0.5) cells and hindered the repair of DNA damage, as suggested by the prolongation of radiation-induced γH2AX foci and the down-regulation of phosphorylated DNA-dependent protein kinase, catalytic subunit (p-DNAPKcs). Increases in radiation-induced apoptosis and senescence were suggested to be the major modes of cell death induced by the combination of lapatinib and radiation. Furthermore, lapatinib did not radiosensitize a HER2- negative breast cancer cell line or normal human astrocytes. These findings suggest that lapatinib can potentiate radiation-induced cell death in HER2-overexpressing breast cancer cells and may increase the efficacy of radiotherapy. A phase II clinical trial using lapatinib concurrently with whole-brain radiation therapy (WBRT) is currently being conducted. PMID:27738326

  15. Heregulin-Induced Growth Factor Receptor Signaling and Breast Carcinogenesis

    DTIC Science & Technology

    1995-07-17

    and/or signaling of erbB family receptors plays a significant role in tumors of mammary or neuroectodermal origin [Reviewed in Hynes and Stern, 1994...MDA- MB-231 human mammary tumor cell line [Holmes, et al., 1992], suggesting that NRGs establish or maintain the growth-transformed phenotype. NRG also...et al., 1992] the in vitro proliferation of human mammary tumor cells, which frequently overexpress erbB 5 family receptors [Reviewed in Hynes and

  16. RISK FACTORS FOR HTLV-II INFECTION IN PERUVIAN MEN WHO HAVE SEX WITH MEN

    PubMed Central

    ZUNT, JOSEPH R.; LA ROSA, ALBERTO M.; PEINADO, JESÚS; LAMA, JAVIER R.; SUAREZ, LUIS; PUN, MONICA; CABEZAS, CESAR; SANCHEZ, JORGE

    2009-01-01

    Human T-cell lymphotropic virus type-II (HTLV-II) infection is endemic in indigenous groups in the Americas and injection drug users (IDUs) worldwide. In Peru, HTLV-II infection was previously identified in two indigenous Amazonians. We examined risk factors for HTLV-II infection in 2,703 Peruvian men who have sex with men (MSM): 35 (1.3%) were HTLV-II positive. HTLV-II infection was associated with syphilis, HSV-2 infection, unprotected receptive anal intercourse, and older age. This is the first report of HTLV-II in a non-indigenous non-IDU population in Peru. Additional studies are needed to determine if HTLV-II is a sexually transmitted infection in this and other sexually active populations. PMID:16687704

  17. Effects of estrogen receptor antagonist on biological behavior and expression of growth factors in the prolactinoma MMQ cell line.

    PubMed

    Lv, Hongtao; Li, Chuzhong; Gui, Songbai; Sun, Meizhen; Li, Dan; Zhang, Yazhuo

    2011-04-01

    The relationship between estrogen and pituitary prolactinoma is well documented. The biological effects of estrogen are mainly mediated by estrogen receptor α (ERα). Several lines of evidence demonstrate that growth factors such as pituitary tumor transforming gene (PTTG), basic fibroblast growth factor (bFGF), transforming growth factor β1 (TGFβ1), transforming growth factor β3 (TGFβ3), and transforming growth factor β receptor type II (TGFβRII) play an important role in prolactinoma pathogenesis induced by estrogen, but the relationship between ERα and such growth factors is still unclear. The aims of this study are to investigate the functional role of ERα in proliferation, prolactin (PRL) secretion, and expression of the above-mentioned growth factors in MMQ cells in the absence of estrogen and to discuss the feasibility of using an estrogen receptor antagonist to treat prolactinoma. Fulvestrant, a "pure" antiestrogen without any estrogen-like activity, was used to block expression of ERα in the MMQ cell line. Proliferation and PRL secretion of MMQ cells were measured using CellTiter 96(®) AQueous One Solution Cell Proliferation Assay (MTS) and the enzyme-linked immunosorbent assay (ELISA) method. Levels of ERα, PTTG, bFGF, TGFβ1, TGFβ3, and TGFβRII were analyzed by real-time polymerase chain reaction (PCR) and Western blot. Fulvestrant significantly inhibited cell proliferation (up to 60.80%) and PRL secretion (up to 77.95%), and changed expression of TGFβ3 and TGFβRII in the absence of estrogen. In conclusion, ERα plays an important functional role in proliferation and PRL secretion of pituitary prolactinomas and also can change expression of some growth factors even under the condition of no estrogen. Fulvestrant could potentially be an effective therapy for treating such tumors.

  18. Epidermal growth factor receptor and KRAS mutations in Brazilian lung cancer patients

    PubMed Central

    Bacchi, Carlos E.; Ciol, Heloísa; Queiroga, Eduardo M.; Benine, Lucimara C.; Silva, Luciana H.; Ojopi, Elida B.

    2012-01-01

    OBJECTIVE: Epidermal growth factor receptor is involved in the pathogenesis of non-small cell lung cancer and has recently emerged as an important target for molecular therapeutics. The KRAS oncogene also plays an important role in the development of lung cancer. The aim of this study was to evaluate the frequency of epidermal growth factor receptor and KRAS mutations in a population of Brazilian patients with non-small cell lung cancer. METHODS: A total of 207 specimens from Brazilian patients with non-small cell lung cancer were analyzed for activating epidermal growth factor receptor and KRAS somatic mutations, and their associations with clinicopathological characteristics (including age, gender, ethnicity, smoking habits, and histological subtype) were examined. RESULTS: We identified 63 cases (30.4%) with epidermal growth factor receptor mutations and 30 cases (14.6%) with KRAS mutations. The most frequent epidermal growth factor receptor mutation we detected was a deletion in exon 19 (60.3%, 38 patients), followed by an L858R amino acid substitution in exon 21 (27%, 17 patients). The most common types of KRAS mutations were found in codon 12. There were no significant differences in epidermal growth factor receptor or KRAS mutations by gender or primary versus metastatic lung cancer. There was a higher prevalence of KRAS mutations in the non-Asian patients. Epidermal growth factor receptor mutations were more prevalent in adenocarcinomas than in non-adenocarcinoma histological types. Being a non-smoker was significantly associated with the prevalence of epidermal growth factor receptor mutations, but the prevalence of KRAS mutations was significantly associated with smoking. CONCLUSIONS: This study is the first to examine the prevalence of epidermal growth factor receptor and KRAS mutations in a Brazilian population sample with non-small cell lung cancer. PMID:22666783

  19. Effect of dietary fiber on the level of free angiotensin II receptor blocker in vitro.

    PubMed

    Iwazaki, Ayano; Takahashi, Kazuhiro; Tamezane, Yui; Tanaka, Kenta; Nakagawa, Minami; Imai, Kimie; Nakanishi, Kunio

    2014-01-01

    The interaction between angiotensin II type 1 (AT1) receptor blockers (ARBs), such as losartan potassium (LO), candesartan (CA), and telmisartan (TE), and dietary fiber was studied as to the level of free ARB in vitro. When ARB was incubated with soluble (sodium alginate, pectin, and glucomannan) or insoluble (cellulose and chitosan) dietary fiber, the levels of free LO, TE, and CA decreased. This resulted only from mixing the dietary fiber with the ARBs and differed among the types of dietary fiber, and the pH and electrolytes in the mixture. The levels of free LO and TE tended to decrease with a higher concentration of sodium chloride in pH 1.2 fluid. These results suggest that it is important to pay attention to the possible interactions between ARBs and dietary fiber.

  20. ADAM binding protein Eve-1 is required for ectodomain shedding of epidermal growth factor receptor ligands.

    PubMed

    Tanaka, Motonari; Nanba, Daisuke; Mori, Seiji; Shiba, Fumio; Ishiguro, Hiroshi; Yoshino, Koichiro; Matsuura, Nariaki; Higashiyama, Shigeki

    2004-10-01

    A disintegrin and metalloproteases (ADAMs) are implicated in the ectodomain shedding of epidermal growth factor receptor (EGFR) ligands in EGFR transactivation. However, the activation mechanisms of ADAMs remain elusive. To analyze the regulatory mechanisms of ADAM activation, we performed yeast two-hybrid screening using the cytoplasmic domain of ADAM12 as bait, and identified a protein that we designated Eve-1. Two cDNAs were cloned and characterized. They encode alternatively spliced isoforms of Eve-1, called Eve-1a and Eve-1b, that have four and five tandem Src homology 3 (SH3) domains in the carboxyl-terminal region, respectively, and seven proline-rich SH3 domain binding motifs in the amino-terminal region. The short forms of Eve-1, Eve-1c and Eve-1d, translated at Met-371 are human counterparts of mouse Sh3d19. Northern blot analysis demonstrated that Eve-1 is abundantly expressed in skeletal muscle and heart. Western blot analysis revealed the dominant production of Eve-1c in human cancer cell lines. Knockdown of Eve-1 by small interfering RNA in HT1080 cells reduced the shedding of proHB-EGF induced by angiotensin II and 12-O-tetradecanoylphorbol-13-acetate, as well as the shedding of pro-transforming growth factor-alpha, promphiregulin, and proepiregulin by 12-O-tetradecanoylphorbol-13-acetate, suggesting that Eve-1 plays a role in positively regulating the activity of ADAMs in the signaling of EGFR-ligand shedding.

  1. Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors.

    PubMed

    Fliegmann, Judith; Bono, Jean-Jacques

    2015-10-01

    Lipo-chitooligosaccharides produced by nitrogen-fixing rhizobia are signaling molecules involved in the establishment of an important agronomical and ecological symbiosis with plants. These compounds, known as Nod factors, are biologically active on plant roots at very low concentrations indicating that they are perceived by specific receptors. This article summarizes the main strategies developed for the syntheses of bioactive Nod factors and their derivatives in order to better understand their mode of perception. Different Nod factor receptors and LCO-binding proteins identified by genetic or biochemical approaches are also presented, indicating perception mechanisms that seem to be more complicated than expected, probably involving multi-component receptor complexes.

  2. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy.

    PubMed

    MacLennan, A J; Devlin, B K; Neitzel, K L; McLaurin, D L; Anderson, K J; Lee, N

    1999-01-01

    Spinal motor neurons are one of the few classes of neurons capable of regenerating axons following axotomy. Injury-induced expression of neurotrophic factors and corresponding receptors may play an important role in this rare ability. A wide variety of indirect data suggests that ciliary neurotrophic factor receptor alpha may critically contribute to the regeneration of injured spinal motor neurons. We used immunohistochemistry, in situ hybridization and retrograde tracing techniques to study the regulation of ciliary neurotrophic factor receptor alpha in axotomized sciatic motor neurons. Ciliary neurotrophic factor receptor alpha immunoreactivity, detected with two independent antisera, is increased in a subpopulation of caudal sciatic motor neuron soma one, two and six weeks after sciatic nerve transection and reattachment, while no changes are detected at one day and 15 weeks post-lesion. Ciliary neurotrophic factor receptor alpha messenger RNA levels are augmented in the same classes of neurons following an identical lesion, suggesting that increased synthesis contributes, at least in part, to the additional ciliary neurotrophic factor receptor alpha protein. Separating the proximal and distal nerve stumps with a plastic barrier does not noticeably affect the injury-induced change in ciliary neurotrophic factor receptor alpha regulation, thereby indicating that this injury response is not dependent on signals distal to the lesion traveling retrogradely through the nerve or signals generated by axonal growth through the distal nerve. The prolonged increases in ciliary neurotrophic factor receptor alpha protein and messenger RNA found in regenerating sciatic motor neurons contrast with the responses of non-regenerating central neurons, which are reported to display, at most, a short-lived increase in ciliary neurotrophic factor receptor alpha messenger RNA expression following injury. The present data are the first to demonstrate, in vivo, neuronal regulation of

  3. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.

    PubMed Central

    Yakushiji, T.; Shirasaki, T.; Munakata, M.; Hirata, A.; Akaike, N.

    1993-01-01

    1. The effects of benzodiazepine receptor (BZR) partial agonists, Y-23684 and CL218,872, were compared with its full agonist, diazepam, on gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) in acutely dissociated rat cerebral cortex (CTX), cerebellar Purkinje (CPJ) and spinal ventral horn (SVH) neurones, by the whole-cell mode patch-clamp technique. 2. The GABA-induced responses were essentially the same in both SVH and CPJ neurones, but the KD value of the GABA response in CTX neurone was lower than those in the other two brain regions. 3. Enhancement of the GABA response by the two partial agonists was about one-third of that by diazepam in the SVH neurones (where type II subtype of BZR, BZ2, is predominant), whereas these partial agonists potentiated the GABA response as much as diazepam in CPJ neurones (where the type I subtype of BZR, BZ1, is predominant). In CTX neurones where both type I and II variants are expressed, the augmentation ratio of the GABA response by diazepam was between the values in CPJ and SVH neurones. 4. In concentration-response relationships of BZR partial agonists, the threshold concentrations, KD values and maximal augmentation ratio of the GABA response were similar in all CTX, CPJ and SVH neurones. Also, in all preparations, the threshold concentration and KD values of diazepam action were 10 fold less than those induced by partial agonists. 5. All BZR agonists shifted the concentration-response relationship for GABA to the left without changing the maximum current amplitude, indicating that activation of both BZ1 and BZ2 increase the affinity of the GABAA receptor for GABA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8395299

  4. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.

    PubMed

    Yakushiji, T; Shirasaki, T; Munakata, M; Hirata, A; Akaike, N

    1993-07-01

    1. The effects of benzodiazepine receptor (BZR) partial agonists, Y-23684 and CL218,872, were compared with its full agonist, diazepam, on gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) in acutely dissociated rat cerebral cortex (CTX), cerebellar Purkinje (CPJ) and spinal ventral horn (SVH) neurones, by the whole-cell mode patch-clamp technique. 2. The GABA-induced responses were essentially the same in both SVH and CPJ neurones, but the KD value of the GABA response in CTX neurone was lower than those in the other two brain regions. 3. Enhancement of the GABA response by the two partial agonists was about one-third of that by diazepam in the SVH neurones (where type II subtype of BZR, BZ2, is predominant), whereas these partial agonists potentiated the GABA response as much as diazepam in CPJ neurones (where the type I subtype of BZR, BZ1, is predominant). In CTX neurones where both type I and II variants are expressed, the augmentation ratio of the GABA response by diazepam was between the values in CPJ and SVH neurones. 4. In concentration-response relationships of BZR partial agonists, the threshold concentrations, KD values and maximal augmentation ratio of the GABA response were similar in all CTX, CPJ and SVH neurones. Also, in all preparations, the threshold concentration and KD values of diazepam action were 10 fold less than those induced by partial agonists. 5. All BZR agonists shifted the concentration-response relationship for GABA to the left without changing the maximum current amplitude, indicating that activation of both BZ1 and BZ2 increase the affinity of the GABAA receptor for GABA. 6. The results are important in clarifying the mechanism of anxiety and might explain the anxioselectivity of BZR partial agonists.

  5. Effects of angiotensin II (AT1) receptor blockade on cardiac vagal control in heart failure.

    PubMed

    Vaile, J C; Chowdhary, S; Osman, F; Ross, H F; Fletcher, J; Littler, W A; Coote, J H; Townend, J N

    2001-12-01

    The objective of the present study was to determine the autonomic effects of angiotensin II (AT(1)) receptor blocker therapy in heart failure. In a randomized double-blind cross-over study, we compared the effects of candesartan and placebo on baroreflex sensitivity and on heart rate variability at rest, during stress and during 24 h monitoring. Acute effects were assessed 4 h after oral candesartan (8 mg) and chronic effects after 4 weeks of treatment (dose titrated to 16 mg daily). The study group comprised 21 patients with heart failure [mean (S.E.M.) ejection fraction 33% (1%)], in the absence of angiotensin-converting enzyme (ACE) inhibitor therapy. We found that acute candesartan was not different from placebo in its effects on blood pressure or mean RR interval. Chronic candesartan significantly reduced blood pressure [placebo, 137 (3)/82 (3) mmHg; candesartan, 121 (4)/75 (2) mmHg; P<0.001; values are mean (S.E.M.)], but had no effect on mean RR interval [placebo, 857 (25) ms; candesartan, 857 (21) ms]. Compared with placebo there were no significant effects of acute or chronic candesartan on heart rate variability in the time domain and no consistent effects in the frequency domain. Baroreflex sensitivity assessed by the phenylephrine bolus method was significantly increased after chronic candesartan [placebo, 3.5 (0.5) ms/mmHg; candesartan, 4.8 (0.7) ms/mmHg; P<0.05], although there were no changes in cross-spectral baroreflex sensitivity. Thus, in contrast with previous results with ACE inhibitors, angiotensin II receptor blockade in heart failure did not increase heart rate variability, and there was no consistent effect on baroreflex sensitivity.

  6. Nicousamide protects kidney podocyte by inhibiting the TGFβ receptor II phosphorylation and AGE-RAGE signaling

    PubMed Central

    Zhang, Sen; Wang, Dongjie; Xue, Nina; Lai, Fangfang; Ji, Ming; Jin, Jing; Chen, Xiaoguang

    2017-01-01

    Nicousamide, a clinical phase II renal protective new drug, has been demonstrated to have renal protective effect on diabetic nephropathy (DN) by experimental animal model. Its known molecular mechanisms include AGE formation blocking and moderately decreasing the blood pressure. Nicousamide shows potential on attenuating albuminuria, thereby suggests it might have protective effect on podocytes. The aim of present study was to investigate whether nicousamide could protect integrity of podocytes, and further its protection mechanisms. Sprague-Dawley (SD) rats were induced to DN by streptozotocin, and nicousamide (20 and 40 mg/kg) was orally administrated for 20 weeks. Every five weeks, the albuminuria was measured, and renal pathology was evaluated at the end of experiment. Real-time PCR and immunofluorescence were used to test expression of podocyte marker nephrin, CD2AP and podocine in rat kidney tissues. Western blot was used to test the activation and phosphorylation of TGFβ1-smad signaling pathway. surface plasmon resonance (SPR) technology was used to analyze whether nicousamide can interact with TGFβ1 receptor II (TGFβ RII) and receptor for advanced glycation endproducts (RAGE). Results demonstrate that nicousamide significantly reduces albuminuria and ameliorate the glomerulosclerosis in DN rats. RT-PCR and immunofluorescence demonstrate that nicousamide can increase the expression of podocyte markers and keep podocyte effacement. Phosphorylation of TGFβ RII and smad2 in rat kidney was inhibited by nicousamide dose dependently. SPR demonstrate that nicousamide have strong binding capability with hRAGE with Kd approximate 6 μM. These results indicate a protective effect of nicousamide against podocyte injury, and this effect might contribute from suppression of TGFβ-involved fibrosis and AGE-RAGE signaling activation. PMID:28123638

  7. Angiotensin II directly stimulates macula densa Na-2Cl-K cotransport via apical AT(1) receptors.

    PubMed

    Kovács, Gergely; Peti-Peterdi, János; Rosivall, László; Bell, P Darwin

    2002-02-01

    ANG II is a modulator of tubuloglomerular feedback (TGF); however, the site of its action remains unknown. Macula densa (MD) cells sense changes in luminal NaCl concentration ([NaCl](L)) via a Na-2Cl-K cotransporter, and these cells do possess ANG II receptors. We tested whether ANG II regulates Na-2Cl-K cotransport in MD cells. MD cell Na(+) concentration ([Na(+)](i)) was measured using sodium-binding benzofuran isophthalate with fluorescence microscopy. Resting [Na(+)](i) in MD cells was 27.7 +/- 1.05 mM (n = 138) and increased (Delta[Na(+)](i)) by 18.5 +/- 1.14 mM (n = 17) at an initial rate (Delta[Na(+)](i)/Deltat) of 5.54 +/- 0.53 x 10(-4) U/s with an increase in [NaCl](L) from 25 to 150 mM. Both Delta[Na(+)](i) and Delta[Na(+)](i)/Deltat were inhibited by 80% with 100 microM luminal furosemide. ANG II (10(-9) or 10(-12) M) added to the lumen increased MD resting [Na(+)](i) and [NaCl](L)-dependent Delta[Na(+)](i) and caused a twofold increase in Delta[Na(+)](i)/Deltat. Bath (10(-9) M) ANG II also stimulated cotransport activity, and there was no additive effect of simultaneous addition of ANG II to bath and lumen. The effects of luminal ANG II were furosemide sensitive and abolished by the AT(1) receptor blocker candesartan. ANG II at 10(-6) M failed to stimulate the cotransporter, whereas increased cotransport activity could be restored by blocking AT(2) receptors with PD-123, 319. Thus ANG II may modulate TGF responses via alterations in MD Na-2Cl-K cotransport activity.

  8. Enhancement of CA3 hippocampal network activity by activation of group II metabotropic glutamate receptors.

    PubMed

    Ster, Jeanne; Mateos, José María; Grewe, Benjamin Friedrich; Coiret, Guyllaume; Corti, Corrado; Corsi, Mauro; Helmchen, Fritjof; Gerber, Urs

    2011-06-14

    Impaired function or expression of group II metabotropic glutamate receptors (mGluRIIs) is observed in brain disorders such as schizophrenia. This class of receptor is thought to modulate activity of neuronal circuits primarily by inhibiting neurotransmitter release. Here, we characterize a postsynaptic excitatory response mediated by somato-dendritic mGluRIIs in hippocampal CA3 pyramidal cells and in stratum oriens interneurons. The specific mGluRII agonists DCG-IV or LCCG-1 induced an inward current blocked by the mGluRII antagonist LY341495. Experiments with transgenic mice revealed a significant reduction of the inward current in mGluR3(-/-) but not in mGluR2(-/-) mice. The excitatory response was associated with periods of synchronized activity at theta frequency. Furthermore, cholinergically induced network oscillations exhibited decreased frequency when mGluRIIs were blocked. Thus, our data indicate that hippocampal responses are modulated not only by presynaptic mGluRIIs that reduce glutamate release but also by postsynaptic mGluRIIs that depolarize neurons and enhance CA3 network activity.

  9. Shedding of tumor necrosis factor receptors by activated human neutrophils

    PubMed Central

    1990-01-01

    The capacity of human neutrophils (PMN) to bind tumor necrosis factor (TNF) was rapidly lost when the cells were incubated in suspension with agents that can stimulate their migratory and secretory responses. Both physiological (poly)peptides (FMLP, C5a, CSF-GM) and pharmacologic agonists (PMN, calcium ionophore A23187) induced the loss of TNF receptors (TNF-R) from the cell surface. Half-maximal loss in TNF-R ensued after only approximately 2 min with 10(-7) M FMLP at 37 degrees C, and required only 10(-9) M FMLP during a 30-min exposure. However, there were no such changes even with prolonged exposure of PMN to FMLP at 4 degrees or 16 degrees C. Scatchard analysis revealed loss of TNF- binding sites without change in their affinity (Kd approximately 0.4 nM) as measured at incompletely modulating concentrations of FMLP, C5a, PMA, or A23187. The binding of anti-TNF-R mAbs to PMN decreased in parallel, providing independent evidence for the loss of TNF-R from the cell surface. At the same time, soluble TNF-R appeared in the medium of stimulated PMN. This inference was based on the PMN- and FMLP-dependent generation of a nonsedimentable activity that could inhibit the binding of TNF to fresh human PMN or to mouse macrophages, and the ability of mAbs specific for human TNF-R to abolish inhibition by PMN-conditioned medium of binding of TNF to mouse macrophages. Soluble TNF-R activity was associated with a protein of Mr approximately 28,000 by ligand blot analysis of cell-free supernatants of FMLP-treated PMN. Thus, some portion of the FMLP-induced loss of TNF-R from human PMN is due to shedding of TNF-R. Shedding was unaffected by inhibitors of serine and thiol proteases and could not be induced with phosphatidylinositol- specific phospholipase C. Loss of TNF-R from PMN first stimulated by other agents may decrease their responsiveness to TNF. TNF-R shed by PMN may be one source of the TNF-binding proteins found in body fluids, and may blunt the actions of the

  10. TAF1, From a General Transcription Factor to Modulator of Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2008-02-01

    Factor to Modulator of Androgen Receptor in Prostate Cancer PRINCIPAL INVESTIGATOR: Peyman Tavassoli M.D...Receptor in Prostate Cancer 5b. GRANT NUMBER W81XWH-07-1-0131 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Peyman Tavassoli M.D., Paul Rennie...9 Tavassoli Peyman , Annual Summary Page - 3 - Feb 2008 Tavassoli Peyman , Annual Summary

  11. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  12. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  13. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system.

    PubMed

    Walsh, Matthew C; Lee, JangEun; Choi, Yongwon

    2015-07-01

    Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an adapter protein that mediates a wide array of protein-protein interactions via its TRAF domain and a RING finger domain that possesses non-conventional E3 ubiquitin ligase activity. First identified nearly two decades ago as a mediator of interleukin-1 receptor (IL-1R)-mediated activation of NFκB, TRAF6 has since been identified as an actor downstream of multiple receptor families with immunoregulatory functions, including members of the TNFR superfamily, the Toll-like receptor (TLR) family, tumor growth factorreceptors (TGFβR), and T-cell receptor (TCR). In addition to NFκB, TRAF6 may also direct activation of mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and interferon regulatory factor pathways. In the context of the immune system, TRAF6-mediated signals have proven critical for the development, homeostasis, and/or activation of B cells, T cells, and myeloid cells, including macrophages, dendritic cells, and osteoclasts, as well as for organogenesis of thymic and secondary lymphoid tissues. In multiple cellular contexts, TRAF6 function is essential not only for proper activation of the immune system but also for maintaining immune tolerance, and more recent work has begun to identify mechanisms of contextual specificity for TRAF6, involving both regulatory protein interactions, and messenger RNA regulation by microRNAs.

  14. Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1.

    PubMed

    Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria

    2015-03-12

    Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP₃ receptors (IP₃Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP₃R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP₃R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP₃R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment.

  15. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor.

    PubMed Central

    Mellon, J. K.; Cook, S.; Chambers, P.; Neal, D. E.

    1996-01-01

    We have examined levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) in neoplastic and non-neoplastic bladder tissue using a standard radioimmunoassay technique. Tumour samples had much higher TGF-alpha levels compared with EGF and TGF-alpha levels in malignant tissue were significantly higher than in benign bladder samples. There was, in addition, a difference in mean EGF levels from 'normal' bladder samples from non-tumour bearing areas of bladder in patients with bladder cancer compared with 'normal' bladder tissue obtained at the time of organ retrieval surgery. Levels of EGF and TGF-alpha did not correlate with levels of EGF receptor (EGFR) as determined by a radioligand binding method but levels of TGF-alpha > 10 ng gm-1 of tumour tissue did correlate with EGFR positivity defined using immunohistochemistry. These data suggest that TGF-alpha is the likely ligand for EGFR in bladder tumours. PMID:8605103

  16. Aldosterone Receptor Antagonism Reduces Urinary C-Reactive Protein Excretion in Angiotensin II-Infused, Hypertensive Rats

    PubMed Central

    Ortiz, Rudy M.; Mamalis, Andrew; Navar, L. Gabriel

    2009-01-01

    Background Elevated C-reactive protein (CRP) may contribute to elevated arterial pressure in Ang II-dependent hypertension. However, the in vivo effects of Ang II and of mineralocorticoid receptor (MR) antagonism on CRP during Ang II-dependent hypertension have not been examined. In addition, urinary CRP excretion as a method to monitor the progression of Ang II-induced inflammation has not been evaluated. Methods Urine samples were collected from three groups (n = 10/group) of rats: 1) normotensive control, 2) angiotensin II infused (Ang II; 60 ng/min), and 3) Ang II + eplerenone (epl; 25 mg/d). A diet containing epl (0.1 %) was provided after 1 week of Ang II infusion. Results After 28 d, Ang II increased SBP from 136 ± 5 to 207 ± 8 mmHg; this response in SBP was not altered following MR antagonism (215 ± 6 mmHg). Ang II-infusion increased plasma CRP from 14 ± 2 to 26 ± 3 μg/mL and increased urinary CRP excretion nearly 8-fold (143 ± 26 vs 1102 ± 115 ng/d). Treatment with eplerenone reduced plasma CRP by 25 % and urinary immunoreactive CRP (irCRP) by 34 % in Ang II-infused rats suggesting that aldosterone contributes to the CRP-associated inflammatory response in Ang II-dependent hypertension. Conclusions The increase in SBP preceded the increase in irCRP excretion by at least 4 days suggesting that CRP does not significantly contribute to increased arterial blood pressure in Ang II-dependent hypertension. The blockade of MR reduced plasma CRP and urinary irCRP excretion demonstrating the contribution of aldosterone to the Ang II-induced generation of CRP. Furthermore, urinary CRP may serve as a non-invasive index for monitoring cardiovascular inflammation during hypertension. PMID:20161115

  17. Platelet-derived growth factor receptor: Studies examining synthesis, phosphorylation and degradation of the receptor using an anti-receptor monoclonal antibody

    SciTech Connect

    Hart, C.E.

    1987-01-01

    A monoclonal antibody, designated PR7212 (IgG1), has been developed with specifically recognizes a cell-surface receptor for platelet-derived growth factor (PDGF). The antibody recognizes an extracellular epitope of the receptor, demonstrated by its ability to bind to intact cells. Using this antibody I have detected three forms of the receptor of 180, 164, and 130 kDa. All three forms were detected by Western blot analysis of human dermal fiberblasts. Immunoprecipitates of {sup 32}P-labeled membrane extracts of human dermal fibroblasts demonstrate that phosphorylation of all three forms of the receptor is stimulated by PDGF. In addition, several smaller molecules were detected, ranging in size from 113 to 49 kDa, which are also phosphorylated in response to PDGF addition. These smaller molecules may be either PDGF receptor kinase substrates or partially degraded receptor. Only the 180 and the 164 kDa forms of the receptor are detectable from immunoprecipitates of soluble extracts of {sup 35}S-metabolically labeled cells. Pulse-chase experiments demonstrate that the 164 kDa form is a precursor of the 180 kDa molecule.

  18. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    ERIC Educational Resources Information Center

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  19. Selective C1 Lesioning Slightly Decreases Angiotensin II type I Receptor Expression in the Rat Rostral Ventrolateral Medulla (RVLM)

    PubMed Central

    Bourassa, Erick A.; Stedenfeld, Kristen A.; Sved, Alan F.; Speth, Robert C.

    2015-01-01

    Cardiovascular homeostasis is regulated in large part by the rostral ventrolateral medulla (RVLM) in mammals. Projections from the RVLM to the intermediolateral column of the thoracolumbar spinal cord innervate preganglionic neurons of the sympathetic nervous system causing elevation of blood pressure and heart rate. A large proportion, but not all, of the neurons in the RVLM contain the enzymes necessary for the production of epinephrine and are identified as the C1 cell group. Angiotensin II (Ang II) activates the RVLM acting upon AT1 receptors. To assess the proportion of AT1 receptors that are located on C1 neurons in the rat RVLM this study employed an antibody to dopamine-beta-hydroxylase conjugated to saporin, to selectively destroy C1 neurons in the RVLM. Expression of tyrosine hydroxylase immunoreactive neurons in the RVLM was reduced by 57 % in the toxin injected RVLM compared to the contralateral RVLM. In contrast, densitometric analysis of autoradiographic images of 125I-sarcosine1, isoleucine8 Ang II binding to AT1 receptors of the injected side RVLM revealed a small (10%) reduction in AT1 receptor expression compared to the contralateral RVLM. These results suggest that the majority of AT1 receptors in the rat RVLM are located on non-C1 neurons or glia. PMID:26138553

  20. BMP type II receptor deficiency confers resistance to growth inhibition by TGF-β in pulmonary artery smooth muscle cells: role of proinflammatory cytokines.

    PubMed

    Davies, Rachel J; Holmes, Alan M; Deighton, John; Long, Lu; Yang, Xudong; Barker, Lucy; Walker, Christoph; Budd, David C; Upton, Paul D; Morrell, Nicholas W

    2012-03-15

    Mutations in the bone morphogenetic protein (BMP) type II receptor (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (HPAH) and a significant proportion of sporadic cases. Pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) not only exhibit attenuated growth suppression by BMPs, but an abnormal mitogenic response to transforming growth factor (TGF)-β1. We sought to define the mechanism underlying this loss of the antiproliferative effects of TGF-β1 in BMPR-II-deficient PASMCs. The effect of TGF-β1 on PASMC proliferation was characterized in three different models of BMPR-II dysfunction: 1) HPAH PASMCs, 2) Bmpr2(+/-) mouse PASMCs, and 3) control human PASMCs transfected with BMPR-II small interfering RNA. BMPR-II reduction consistently conferred insensitivity to growth inhibition by TGF-β1. This was not associated with altered canonical TGF-β1/Smad signaling but was associated with a secreted factor. Microarray analysis revealed that the transcriptional responses to TGF-β1 differed between control and HPAH PASMCs, particularly regarding genes associated with interleukins and inflammation. HPAH PASMCs exhibited enhanced IL-6 and IL-8 induction by TGF-β1, an effect reversed by NF-κB inhibition. Moreover, neutralizing antibodies to IL-6 or IL-8 restored the antiproliferative effect of TGF-β1 in HPAH PASMCs. This study establishes that BMPR-II deficiency leads to failed growth suppression by TGF-β1 in PASMCs. This effect is Smad-independent but is associated with inappropriately altered NF-κB signaling and enhanced induction of IL-6 and IL-8 expression. Our study provides a rationale to test anti-interleukin therapies as an intervention to neutralize this inappropriate response and restore the antiproliferative response to TGF-β1.

  1. BMP type II receptor deficiency confers resistance to growth inhibition by TGF-β in pulmonary artery smooth muscle cells: role of proinflammatory cytokines

    PubMed Central

    Davies, Rachel J.; Holmes, Alan M.; Deighton, John; Long, Lu; Yang, Xudong; Barker, Lucy; Walker, Christoph; Budd, David C.; Upton, Paul D.

    2012-01-01

    Mutations in the bone morphogenetic protein (BMP) type II receptor (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (HPAH) and a significant proportion of sporadic cases. Pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) not only exhibit attenuated growth suppression by BMPs, but an abnormal mitogenic response to transforming growth factor (TGF)-β1. We sought to define the mechanism underlying this loss of the antiproliferative effects of TGF-β1 in BMPR-II-deficient PASMCs. The effect of TGF-β1 on PASMC proliferation was characterized in three different models of BMPR-II dysfunction: 1) HPAH PASMCs, 2) Bmpr2+/− mouse PASMCs, and 3) control human PASMCs transfected with BMPR-II small interfering RNA. BMPR-II reduction consistently conferred insensitivity to growth inhibition by TGF-β1. This was not associated with altered canonical TGF-β1/Smad signaling but was associated with a secreted factor. Microarray analysis revealed that the transcriptional responses to TGF-β1 differed between control and HPAH PASMCs, particularly regarding genes associated with interleukins and inflammation. HPAH PASMCs exhibited enhanced IL-6 and IL-8 induction by TGF-β1, an effect reversed by NF-κB inhibition. Moreover, neutralizing antibodies to IL-6 or IL-8 restored the antiproliferative effect of TGF-β1 in HPAH PASMCs. This study establishes that BMPR-II deficiency leads to failed growth suppression by TGF-β1 in PASMCs. This effect is Smad-independent but is associated with inappropriately altered NF-κB signaling and enhanced induction of IL-6 and IL-8 expression. Our study provides a rationale to test anti-interleukin therapies as an intervention to neutralize this inappropriate response and restore the antiproliferative response to TGF-β1. PMID:22227206

  2. Redistribution of NMDA Receptors in Estrogen-Receptor-β-Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure

    PubMed Central

    Marques-Lopes, Jose; Tesfaye, Ephrath; Israilov, Sigal; Van Kempen, Tracey A.; Wang, Gang; Glass, Michael J.; Pickel, Virginia M.; Iadecola, Costantino; Waters, Elizabeth M.; Milner, Teresa A.

    2017-01-01

    Hypertension in male and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have a significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic injection of 4-vinylcyclohexane diepoxide mimics the estrogen fluctuations seen in human menopause including the perimenopause transition (peri-AOF) and postmenopause (post-AOF). Thus, we used the mouse AOF model to determine the impact of slow-pressor angiotensin II (AngII) administration on blood pressure and on the subcellular distribution of obligatory N-methyl-D-aspartate (NMDA) receptor GluN1 subunits in the paraventricular hypothalamic nucleus (PVN), a key estrogen-responsive cardiovascular regulatory area. Estrogen-sensitive neuronal profiles were identified in mice expressing enhanced green fluorescent protein under the promoter for estrogen receptor (ER) β, a major ER in the PVN. Slow-pressor AngII increased arterial blood pressure in mice at peri- and post-AOF time points. In control oil-injected (nonhypertensive) mice, AngII decreased the total number of GluN1 in ERβ-containing PVN dendrites. In contrast, AngII resulted in a reapportionment of GluN1 from the cytoplasm to the plasma membrane of ERβ-containing PVN dendrites in peri-AOF mice. Moreover, in post-AOF mice, AngII increased total GluN1, dendritic size and radical production in ERβ-containing neurons. These results indicate that unique patterns of hypothalamic glutamate receptor plasticity and dendritic structure accompany the elevated blood pressure in peri- and post-AOF time points. Our findings suggest the possibility that distinct neurobiological processes are associated with the increased blood pressure during perimenopausal and postmenopausal periods. PMID:27078860

  3. Ammonia upregulates kynurenine aminotransferase II mRNA expression in rat brain: a role for astrocytic NMDA receptors?

    PubMed

    Obara-Michlewska, Marta; Tuszyńska, Paulina; Albrecht, Jan

    2013-06-01

    Kynurenine aminotransferase II (KAT-II) is the astrocytic enzyme catalyzing the synthesis of kynurenic acid (KYNA), an endogenous inhibitor of the α7-nicotinic receptor and the NMDA receptor (NMDAr). A previous study demonstrated an increase of KYNA synthesis in the brain of rats with thioacetamide (TAA)-induced acute liver failure. Here we show that TAA administration increases KAT-II expression in the rat cerebral cortex and the effect is mimicked in cerebral cortical astrocytes in culture treated with high (5 mM) concentration of ammonia. KAT-II expression in control and TAA-treated rats was increased by NMDAr antagonist memantine, and the effects of TAA and memantine appeared additive. In astrocytes, the NMDAr antagonist MK-801 raised KAT-II expression as well, while NMDA added alone had no effect. Glutamate decreased KAT-II mRNA level, which was attenuated by MK-801. The results suggest that stimulation of KAT-II expression during hepatic encephalopathy may be associated with a partial inactivation of astrocytic NMDAr by ammonia.

  4. Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection

    PubMed Central

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    G protein coupled receptors and tropomyosin-related kinase (Trk) receptors have distinct structure and transducing mechanisms; therefore, cross-talk among them was unexpected. Evidence has, however, accumulated showing that tonic adenosine A2A receptor activity is a required step to allow synaptic actions of neurotrophic factors, namely upon synaptic transmission at both pre- and post-synaptic level as well as upon synaptic plasticity. An enhancement of A2A receptor tonus upon ageing may partially compensate the loss of TrkB receptors, rescuing to certain degree the facilitatory action of brain derived neurotrophic factor in aged animals, which might prove particularly relevant in the prevention of neurodegeneration upon ageing. A2A receptors also trigger synaptic actions of other neurotrophic factors, such as glial derived neurotrophic factor at dopaminergic striatal nerve endings. The growing evidence that tonic adenosine A2A receptor activity is a crucial step to allow actions of neurotrophic factors in neurones will be reviewed and discussed in the light of therapeutic strategies for neurodegenerative diseases. PMID:19508402

  5. Augmented anti-tumor activity of NK-92 cells expressing chimeric receptors of TGF-βR II and NKG2D.

    PubMed

    Wang, Zhongjuan; Guo, Linghua; Song, Yuan; Zhang, Yinsheng; Lin, Dandan; Hu, Bo; Mei, Yu; Sandikin, Dedy; Liu, Haiyan

    2017-04-01

    The capacity of natural killer (NK) cells to kill tumor cells without specific antigen recognition provides an advantage over T cells and makes them potential effectors for tumor immunotherapy. However, the efficacy of NK cell adoptive therapy can be limited by the immunosuppressive tumor microenvironment. Transforming growth factor-β (TGF-β) is a potent immunosuppressive cytokine that can suppress NK cell function. To convert the suppressive signal induced by TGF-β to an activating signal, we genetically modified NK-92 cells to express a chimeric receptor with TGF-β type II receptor extracellular and transmembrane domains and the intracellular domain of NK cell-activating receptor NKG2D (TN chimeric receptor). NK-92 cells expressing TN receptors were resistant to TGF-β-induced suppressive signaling and did not down-regulate NKG2D. These modified NK-92 cells had higher killing capacity and interferon γ (IFN-γ) production against tumor cells compared with the control cells and their cytotoxicity could be further enhanced by TGF-β. More interestingly, the NK-92 cells expressing TN receptors were better chemo-attracted to the tumor cells expressing TGF-β. The presence of these modified NK-92 cells significantly inhibited the differentiation of human naïve CD4(+) T cells to regulatory T cells. NK-92-TN cells could also inhibit tumor growth in vivo in a hepatocellular carcinoma xenograft tumor model. Therefore, TN chimeric receptors can be a novel strategy to augment anti-tumor efficacy in NK cell adoptive therapy.

  6. Intratumoral Heterogeneity for Expression of Tyrosine Kinase Growth Factor Receptors in Human Colon Cancer Surgical Specimens and Orthotopic Tumors

    PubMed Central

    Kuwai, Toshio; Nakamura, Toru; Kim, Sun-Jin; Sasaki, Takamitsu; Kitadai, Yasuhiko; Langley, Robert R.; Fan, Dominic; Hamilton, Stanley R.; Fidler, Isaiah J.

    2008-01-01

    The design of targeted therapy, particularly patient-specific targeted therapy, requires knowledge of the presence and intratumoral distribution of tyrosine kinase receptors. To determine whether the expression of such receptors is constant or varies between and within individual colon cancer neoplasms, we examined the pattern of expression of the ligands, epidermal growth factor, vascular endothelial growth factor, and platelet-derived growth factor-B as well as their respective receptors in human colon cancer surgical specimens and orthotopic human colon cancers growing in the cecal wall of nude mice. The expression of the epidermal growth factor receptor and the vascular endothelial growth factor receptor on tumor cells and stromal cells, including tumor-associated endothelial cells, was heterogeneous in surgical specimens and orthotopic tumors. In some tumors, the receptor was expressed on both tumor cells and stromal cells, and in other tumors the receptor was expressed only on tumor cells or only on stromal cells. In contrast, the platelet-derived growth factor receptor was expressed only on stromal cells in both surgical specimens and orthotopic tumors. Examination of receptor expression in both individual surgical specimens and orthotopic tumors revealed that the platelet-derived growth factor receptor was expressed only on stromal cells and that the patterns of epidermal growth factor receptor and vascular endothelial growth factor receptor 2 expression differed between tumor cells. This heterogeneity in receptor expression among different tumor cells suggests that targeting a single tyrosine kinase may not yield eradication of the disease. PMID:18202197

  7. Genetics Home Reference: tumor necrosis factor receptor-associated periodic syndrome

    MedlinePlus

    ... 1 link) University College London: National Amyloidosis Center (UK) General Information from MedlinePlus (5 links) Diagnostic Tests ... of Hereditary Periodic Fever Syndromes NHS Foundation Trust (UK) Orphanet: Tumor necrosis factor receptor 1 associated periodic ...

  8. Modulation of Photofrin II accumulation in C6 glioma cells by stimulation of beta-adrenergic receptors

    NASA Astrophysics Data System (ADS)

    Croce, Anna C.; Mares, V.; Lisa, V.; Krajci, D.; Bottiroli, Giovanni F.

    1997-12-01

    The influence of drugs acting as (beta) -receptors agonists or antagonists on the uptake of Photofrin II in C6 glioma cultured cells was studied by microspectrofluorometric analysis. The pharmacological effect was evaluated on the semiconfluently grown cells, characterized by a long lasting uptake process and higher values of fluorescence intensity with respect to the solitary ones. Isoproterenol treatments resulted in a significant enhancement (by 50%) of the intracellular fluorescence signal of Photofrin II. This effect was hindered by contemporary treatments with equimolar alprenolol or propranolol, two (beta) -receptor antagonists, indicating a specific effect of isoproterenol. Both pharmacological activation of vesicular transport and changes in the membrane physical-chemico properties can explain the effects induced by drugs interacting with (beta) -receptor.

  9. Design, synthesis and evaluation of novel potent angiotensin II receptor 1 antagonists.

    PubMed

    Bao, Xiaolu; Zhu, Weibo; Yuan, Weidong; Zhu, Xingbo; Yan, Yijia; Tang, Hesheng; Chen, Zhilong

    2016-11-10

    A series of new angiotensin II (Ang II) receptor 1 antagonists were designed, synthesized and evaluated. All compounds showed nanomolar affinities for the angiotensin II type 1 receptor in radioligand binding assays and could reduce blood pressure significantly in spontaneously hypertensive rats(SHRs). From which, compound 2b displayed higher affinity binding to angiotensin II type 1 receptor at the same order of magnitude to irbesartan with an IC50 value of 1.26 ± 0.08 nM in radioligand binding assays. 2b showed an efficient and long-lasting effect in reducing blood pressure, the maximal reducing responses were 40.62 ± 4.08 mmHg of MBP at 15 mg/kg and 28.39 ± 2.09 mmHg at 10 mg/kg in SHRs, 39.56 ± 4.83 mmHg at 15 mg/kg and 29.05 ± 2.20 mmHg at 10 mg/kg in RHRs, the significant antihypertensive effect lasted beyond 12 h both in SHRs and in RHRs. In the single-dose pharmacokinetic experiments, compound 2b could be absorbed efficiently and metabolized smoothly in Wistar rats after oral administration. The values of Cmax, Tmax, AUC0-72 and MRT0-72 were 885.61 ± 432.7 ng/mL, 5.67 ± 1.51 h, 6110.28 ± 7398.33 ng/mL h and 7.87 ± 2.30 h at 10 mg/kg, 2945.55 ± 1543.67 ng/mL, 4.33 ± 0.82 h, 26473.62 ± 12217.16 ng/mL h and 10.24 ± 6.94 h at 15 mg/kg, 5759.03 ± 1331.75 ng/mL, 5 ± 1.10 h, 89488.44 ± 18413.15 ng/mL·h and 12.89 ± 2.0 h at 30 mg/kg respectively. The T1/2 values of the three groups were similar, about 9-10 h. Compound 2b was distributed into tissues rapidly and extensively after oral administration. The level of it was the highest in the liver, followed by in spleen, kidney, and the lowest in brain. The acute toxicity assays of 2b proved its low acute toxicity with an LD50 value of 1551.71 mg/kg, and no toxicity reaction appeared at dose of 1200.00 mg/kg. These encouraging results make compound 2b an effective, long-lasting and safe anti-hypertensive drug candidate and worthy of

  10. Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain

    SciTech Connect

    Sumners, C.; Wei Tang; Zelezna, B.; Raizada, M.K. )

    1991-09-01

    Both neurons and astrocytes contain specific receptors for angiotensin II (AII). The authors used selective ligands for the AT{sub 1} and AT{sub 2} types of AII receptors to investigate the expression of functional receptor subtypes in astrocyte cultures and neuron cultures from 1-day-old (neonatal) rat brain. In astrocyte cultures, competition of {sup 125}I-labeled AII ({sup 125}I-AII) specific binding with AT{sub 1} (DuP753) or AT{sub 2} {l brace}PD123177, CGP42112A, (Phe(p-NH{sub 2}){sup 6})AII{r brace} selective receptor ligands revealed a potency series of AII > DuP753 > > > CGP42112A > (Phe(p-NH{sub 2}){sup 6})AII > PD123177. These results suggest a predominance of the AT{sub 1} receptor subtype in neonatal astrocytes. {sup 125}I-AII specific binding to neonate neuronal cultures was reduced 73-84% by 1 {mu} MPD123177, and the residual {sup 125}I-AII specific binding was eliminated by DuP753. The results suggest that astrocyte cultures from neonatal rat brains contain predominantly AT{sub 1} receptors that are coupled to a stimulation of inositophospholipid hydrolysis. In contrast, neuron cultures from neonatal rat brain contain mostly AT{sub 2} receptors that are coupled to a reduction in basal cGMP levels, but a smaller population of AT{sub 1} receptors is also present in these neurons.

  11. TNF-α type 2 receptor mediates renal inflammatory response to chronic angiotensin II administration with high salt intake in mice.

    PubMed

    Singh, Purnima; Bahrami, Laleh; Castillo, Alexander; Majid, Dewan S A

    2013-04-01

    Tumor necrosis factor-alpha (TNF-α) has been implicated in salt-sensitive hypertension and renal injury (RI) induced by angiotensin II (ANG II). To determine the receptor type of TNF-α involved in this mechanism, we evaluated the responses to chronic ANG II infusion (25 ng/min by implanted minipump) given with high-salt diet (HS; 4% NaCl) for 2 wk in gene knockout mice for TNF-α receptor type 1 (TNFR1KO; n = 6) and type 2 (TNFR2KO; n = 6) and compared the responses with those in wild-type (WT; C57BL/6; n = 6) mice. Blood pressure in these mice was measured by implanted radiotelemetry as well as by tail-cuff plethysmography. RI responses were assessed by measuring macrophage cell infiltration (CD68(+) immunohistochemistry), glomerulosclerosis (PAS staining), and interstitial fibrosis (Gomori's trichrome staining) in renal tissues at the end of the treatment period. The increase in mean arterial pressure induced by ANG II + HS treatment was not different in these three groups of mice (TNFR1KO, 114 ± 1 to 161 ± 7 mmHg; TNFR2KO, 113 ± 1 to 161 ± 3 mmHg; WT, 110 ± 3 to 154 ± 3 mmHg). ANG II + HS-induced RI changes were similar in TNFR1KO mice but significantly less in TNFR2KO mice (macrophage infiltration, 0.02 ± 0.01 vs. 1.65 ± 0.45 cells/mm(2); glomerulosclerosis, 26.3 ± 2.6 vs. 35.7 ± 2.2% area; and interstitial fibrosis, 5.2 ± 0.6 vs. 8.1 ± 1.1% area) compared with the RI changes in WT mice. The results suggest that a direct activation of TNF-α receptors may not be required in inducing hypertensive response to chronic ANG II administration with HS intake, but the induction of inflammatory responses leading to renal injury are mainly mediated by TNF-α receptor type 2.

  12. Role of connective tissue growth factor in vascular and renal damage associated with hypertension in rats. Interactions with angiotensin II.

    PubMed

    de las Heras, Natalia; Ruiz-Ortega, Marta; Rupérez, Mónica; Sanz-Rosa, David; Miana, María; Aragoncillo, Paloma; Mezzano, Sergio; Lahera, Vicente; Egido, Jesus; Cachofeiro, Victoria

    2006-12-01

    We have evaluated the role of connective tissue growth factor (CTGF) in vascular and renal damage associated with hypertension and possible interactions with angiotensin II (Ang II). Spontaneously hypertensive rats (SHR) were treated with either the Ang II receptor antagonist candesartan (C;2 mg/Kg(-1)/day(-1)) or antihypertensive triple therapy (TT; in mg/Kg(-1)/day(-1);20 hydralazine +7 hydrochlorothiazide +0.15 reserpine) for 10 weeks. Wistar Kyoto rats were used as a normotensive control group. Hypertension was associated with an increase in aortic media area, media-to-lumen ratio and collagen density. Kidneys from SHR showed minimum renal alterations. Aorta and renal gene expression and immunostaining of CTGF were higher in SHR. Candesartan decreased arterial pressure, aortic media area, media-to-lumen ratio and collagen density. However, although arterial pressure decrease was comparable for both treatments, TT partially reduced these parameters. Candesartan-treated rats showed lower levels of vascular CTGF expression, aortic media area, media-to-lumen ratio and collagen density than TT-treated animals. Treatments improve renal damage and reduce renal gene expression and CTGF immunostaining in SHR in a similar manner. The results show that vascular and renal damage is associated with stimulation of CTGF gene and protein content. These results also might suggest that CTGF could be one downstream mediator of Ang II in hypertension-associated organ damage in SHR.

  13. Corticotropin Releasing Factor (CRF) Receptor Signaling in the Central Nervous System: New Molecular Targets

    PubMed Central

    Hauger, Richard L.; Risbrough, Victoria; Brauns, Olaf; Dautzenberg, Frank M.

    2007-01-01

    Corticotropin-releasing factor (CRF) and the related urocortin peptides mediate behavioral, cognitive, autonomic, neuroendocrine and immunologic responses to aversive stimuli by activating CRF1 or CRF2 receptors in the central nervous system and anterior pituitary. Markers of hyperactive central CRF systems, including CRF hypersecretion and abnormal hypothalamic-pituitary-adrenal axis functioning, have been identified in subpopulations of patients with anxiety, stress and depressive disorders. Because CRF receptors are rapidly desensitized in the presence of high agonist concentrations, CRF hypersecretion alone may be insufficient to account for the enhanced CRF neurotransmission observed in these patients. Concomitant dysregulation of mechanisms stringently controlling magnitude and duration of CRF receptor signaling also may contribute to this phenomenon. While it is well established that the CRF1 receptor mediates many anxiety- and depression-like behaviors as well as HPA axis stress responses, CRF2 receptor functions are not well understood at present. One hypothesis holds that CRF1 receptor activation initiates fear and anxiety-like responses, while CRF2 receptor activation re-establishes homeostasis by counteracting the aversive effects of CRF1 receptor signaling. An alternative hypothesis posits that CRF1 and CRF2 receptors contribute to opposite defensive modes, with CRF1 receptors mediating active defensive responses triggered by escapable stressors, and CRF2 receptors mediating anxiety- and depression-like responses induced by inescapable, uncontrollable stressors. CRF1 receptor antagonists are being developed as novel treatments for affective and stress disorders. If it is confirmed that the CRF2 receptor contributes importantly to anxiety and depression, the development of small molecule CRF2 receptor antagonists would be therapeutically useful. PMID:16918397

  14. Factors That Effect Signal Transduction by the Estrogen Receptor.

    DTIC Science & Technology

    1997-10-01

    Vivat , H. Gronemeyer, R. Losson, and P. Chambon. 1996. Ligand-dependent interaction of nuclear receptors with potential transcriptional... Academy of Sciences 0027-8424/97/9410132-6S2.00/0 PNAS is available online at http://www.pnas.org. inhibitors or CDIs), kinase function (5-8). Because

  15. Protection of protease-activated receptor 2 mediated vasodilatation against angiotensin II-induced vascular dysfunction in mice

    PubMed Central

    2011-01-01

    Background Under conditions of cardiovascular dysfunction, protease-activated receptor 2 (PAR2) agonists maintain vasodilatation activity, which has been attributed to increased cyclooxygenase-2, nitric oxide synthase and calcium-activated potassium channel (SK3.1) activities. Protease-activated receptor 2 agonist mediated vasodilatation is unknown under conditions of dysfunction caused by angiotensin II. The main purpose of our study was to determine whether PAR2-induced vasodilatation of resistance arteries was attenuated by prolonged angiotensin II treatment in mice. We compared the vasodilatation of resistance-type arteries (mesenteric) from angiotensin II-treated PAR2 wild-type mice (WT) induced by PAR2 agonist 2-furoyl-LIGRLO-amide (2fly) to the responses obtained in controls (saline treatment). We also investigated arterial vasodilatation in angiotensin II-treated PAR2 deficient (PAR2-/-) mice. Results 2fly-induced relaxations of untreated arteries from angiotensin II-treated WT were not different than saline-treated WT. Treatment of arteries with nitric oxide synthase inhibitor and SK3.1 inhibitor (L-NAME + TRAM-34) blocked 2fly in angiotensin II-treated WT. Protein and mRNA expression of cyclooxygenase-1 and -2 were increased, and cyclooxygenase activity increased the sensitivity of arteries to 2fly in only angiotensin II-treated WT. These protective vasodilatation mechanisms were selective for 2fly compared with acetylcholine- and nitroprusside-induced relaxations which were attenuated by angiotensin II; PAR2-/- were protected against this attenuation of nitroprusside. Conclusions PAR2-mediated vasodilatation of resistance type arteries is protected against the negative effects of angiotensin II-induced vascular dysfunction in mice. In conditions of endothelial dysfunction, angiotensin II induction of cyclooxygenases increases sensitivity to PAR2 agonist and the preserved vasodilatation mechanism involves activation of SK3.1. PMID:21955547

  16. Effect of hepatocyte growth factor and angiotensin II on rat cardiomyocyte hypertrophy

    PubMed Central

    Chen, Ai-Lan; Ou, Cai-Wen; He, Zhao-Chu; Liu, Qi-Cai; Dong, Qi; Chen, Min-Sheng

    2012-01-01

    Angiotensin II (Ang II) plays an important role in cardiomyocyte hypertrophy. The combined effect of hepatocyte growth factor (HGF) and Ang II on cardiomyocytes is unknown. The present study was designed to determine the effect of HGF on cardiomyocyte hypertrophy and to explore the combined effect of HGF and Ang II on cardiomyocyte hypertrophy. Primary cardiomyocytes were isolated from neonatal rat hearts and cultured in vitro. Cells were treated with Ang II (1 µM) alone, HGF (10 ng/mL) alone, and Ang II (1 µM) plus HGF (10 ng/mL) for 24, 48, and 72 h. The amount of [3H]-leucine incorporation was then measured to evaluate protein synthesis. The mRNA levels of β-myosin heavy chain and atrial natriuretic factor were determined by real-time PCR to evaluate the presence of fetal phenotypes of gene expression. The cell size of cardiomyocytes was also studied. Ang II (1 µM) increased cardiomyocyte hypertrophy. Similar to Ang II, treatment with 1 µM HGF promoted cardiomyocyte hypertrophy. Moreover, the combination of 1 µM Ang II and 10 ng/mL HGF clearly induced a combined pro-hypertrophy effect on cardiomyocytes. The present study demonstrates for the first time a novel, combined effect of HGF and Ang II in promoting cardiomyocyte hypertrophy. PMID:23044624

  17. Functional properties of an isolated. cap alpha beta. heterodimeric human placenta insulin-like growth factor 1 receptor complex

    SciTech Connect

    Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.; Pessin, J.E.

    1988-05-03

    Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.

  18. An angiotensin II receptor blocker-calcium channel blocker combination prevents cardiovascular events in elderly high-risk hypertensive patients with chronic kidney disease better than high-dose angiotensin II receptor blockade alone.

    PubMed

    Kim-Mitsuyama, Shokei; Ogawa, Hisao; Matsui, Kunihiko; Jinnouchi, Tomio; Jinnouchi, Hideaki; Arakawa, Kikuo

    2013-01-01

    The OSCAR study was a multicenter, prospective randomized open-label blinded end-point study of 1164 Japanese elderly hypertensive patients comparing the efficacy of angiotensin II receptor blocker (ARB) uptitration to an ARB plus calcium channel blocker (CCB) combination. In this prospective study, we performed prespecified subgroup analysis according to baseline estimated glomerular filtration rate (eGFR) with chronic kidney disease (CKD) defined as an eGFR <60 ml/min per 1.73 m(2). Blood pressure was lower in the combined therapy than in the high-dose ARB cohort in both groups with and without CKD. In patients with CKD, significantly more primary events (a composite of cardiovascular events and noncardiovascular death) occurred in the high-dose ARB group than in the combination group (30 vs. 16, respectively, hazard ratio 2.25). Significantly more cerebrovascular and more heart failure events occurred in the high-dose ARB group than in the combination group. In patients without CKD, however, the incidence of primary events was similar between the two treatments. The treatment-by-subgroup interaction was significant. Allocation to the high-dose ARB was a significant independent prognostic factor for primary events in patients with CKD. Thus, the ARB plus CCB combination conferred greater benefit in prevention of cardiovascular events in patients with CKD compared with high-dose ARB alone. Our findings provide new insight into the antihypertensive strategy for elderly hypertensive patients with CKD.

  19. Canakinumab reverses overexpression of inflammatory response genes in tumour necrosis factor receptor-associated periodic syndrome

    PubMed Central

    Torene, Rebecca; Nirmala, Nanguneri; Obici, Laura; Cattalini, Marco; Tormey, Vincent; Caorsi, Roberta; Starck-Schwertz, Sandrine; Letzkus, Martin; Hartmann, Nicole; Abrams, Ken; Lachmann, Helen; Gattorno, Marco

    2017-01-01

    Objective To explore whether gene expression profiling can identify a molecular mechanism for the clinical benefit of canakinumab treatment in patents with tumour necrosis factor receptor-associated periodic syndrome (TRAPS). Methods Blood samples were collected from 20 patients with active TRAPS who received canakinumab 150 mg every 4 weeks for 4 months in an open-label proof-of-concept phase II study, and from 20 aged-matched healthy volunteers. Gene expression levels were evaluated in whole blood samples by microarray analysis for arrays passing quality control checks. Results Patients with TRAPS exhibited a gene expression signature in blood that differed from that in healthy volunteers. Upon treatment with canakinumab, many genes relevant to disease pathogenesis moved towards levels seen in the healthy volunteers. Canakinumab downregulated the TRAPS-causing gene (TNF super family receptor 1A (TNFRSF1A)), the drug-target gene (interleukin (IL)-1B) and other inflammation-related genes (eg, MAPK14). In addition, several inflammation-related pathways were evident among the differentially expressed genes. Canakinumab treatment reduced neutrophil counts, but the observed expression differences remained after correction for this. Conclusions These gene expression data support a model in which canakinumab produces clinical benefit in TRAPS by increasing neutrophil apoptosis and reducing pro-inflammatory signals resulting from the inhibition of IL-1β. Notably, treatment normalised the overexpression of TNFRSF1A, suggesting that canakinumab has a direct impact on the main pathogenic mechanism in TRAPS. Trial registration number NCT01242813. PMID:27474763

  20. Factors Influencing College Selection by NCAA Division I, II, and III Lacrosse Players

    ERIC Educational Resources Information Center

    Pauline, Jeffrey

    2010-01-01

    The purpose of this investigation was to examine factors influencing college selection by NCAA Division I, II and III lacrosse players. The Influential Factors Survey for Student-Athletes-Revised was used to collect data from 792 male and female collegiate lacrosse players. Descriptive statistics showed the most influential factors were: career…

  1. Afr1p regulates the Saccharomyces cerevisiae alpha-factor receptor by a mechanism that is distinct from receptor phosphorylation and endocytosis.

    PubMed Central

    Davis, C; Dube, P; Konopka, J B

    1998-01-01

    The alpha-factor pheromone receptor activates a G protein signaling pathway that induces the conjugation of the yeast Saccharomyces cerevisiae. Our previous studies identified AFR1 as a gene that regulates this signaling pathway because overexpression of AFR1 promoted resistance to alpha-factor. AFR1 also showed an interesting genetic relationship with the alpha-factor receptor gene, STE2, suggesting that the receptor is regulated by Afr1p. To investigate the mechanism of this regulation, we tested AFR1 for a role in the two processes that are known to regulate receptor signaling: phosphorylation and down-regulation of ligand-bound receptors by endocytosis. AFR1 overexpression diminished signaling in a strain that lacks the C-terminal phosphorylation sites of the receptor, indicating that AFR1 acts independently of phosphorylation. The effects of AFR1 overexpression were weaker in strains that were defective in receptor endocytosis. However, AFR1 overexpression did not detectably influence receptor endocytosis or the stability of the receptor protein. Instead, gene dosage studies showed that the effects of AFR1 overexpression on signaling were inversely proportional to the number of receptors. These results indicate that AFR1 acts independently of endocytosis, and that the weaker effects of AFR1 in strains that are defective in receptor endocytosis were probably an indirect consequence of their increased receptor number caused by the failure of receptors to undergo ligand-stimulated endocytosis. Analysis of the ligand binding properties of the receptor showed that AFR1 overexpression did not alter the number of cell-surface receptors or the affinity for alpha-factor. Thus, Afr1p prevents alpha-factor receptors from activating G protein signaling by a mechanism that is distinct from other known pathways. PMID:9504911

  2. Epidermal growth factor receptor mutation enhances expression of vascular endothelial growth factor in lung cancer.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lin, Paul-Yann; Lung, Jr-Hau; Li, Ya-Chin; Lin, Yu-Ching; Yang, Cheng-Ta; Tsai, Ying-Huang

    2016-12-01

    Epidermal growth factor receptor (EGFR) activation has been demonstrated to have a critical role in tumor angiogenesis. In the present study, the correlation between EGFR mutations and vascular endothelial growth factor (VEGF) was investigated in lung cancer cell lines and non-small-cell lung cancer (NSCLC) tumor tissues. VEGF levels were significantly increased in culture medium of lung cancer cells and NSCLC tissues with EGFR mutations (H1650 vs. A549, P=0.0399; H1975 vs. A549, P<0.0001). Stable lung cancer cell lines expressing mutant (exon 19 deletion, E746-A750; exon 21 missense mutation, L858R) and wild-type EGFR genes were established. Significantly increased expression of VEGF and stronger inhibitory effects of gefitinib to VEGF expression were observed in exon 19 deletion stable lung cancer cells (exon 19 deletion vs. wild-type EGFR, P=0.0005). The results of the present study may provide an insight into the association of mutant EGFR and VEGF expression in lung cancer, and may assist with further development of targeted therapy for NSCLC in the future.

  3. Factor structure and construct validity of the Behavioral Dyscontrol Scale-II.

    PubMed

    Shura, Robert D; Rowland, Jared A; Yoash-Gantz, Ruth E

    2015-01-01

    The Behavioral Dyscontrol Scale-II (BDS-II) was developed as an improved scoring method to the original BDS, which was designed to evaluate the capacity for independent regulation of behavior and attention. The purpose of this study was to evaluate the factor structure and construct validity of the BDS-II, which had not been adequately re-examined since the development of the new scoring system. In a sample of 164 Veterans with a mean age of 35 years, exploratory factor analysis was used to evaluate BDS-II latent factor structure. Correlations and regressions were used to explore validity against 22 psychometrically sound neurocognitive measures across seven neurocognitive domains of sensation, motor output, processing speed, attention, visual-spatial reasoning, memory, and executive functions. Factor analysis found a two-factor solution for this sample which explained 41% of the variance in the model. Validity analyses found significant correlations among the BDS-II scores and all other cognitive domains except sensation and language (which was not evaluated). Hierarchical regressions revealed that PASAT performance was strongly associated with all three BDS-II scores; dominant hand Finger Tapping Test was also associated with the Total score and Factor 1, and CPT-II Commissions was also associated with Factor 2. These results suggest the BDS-II is both a general test of cerebral functioning, and a more specific test of working memory, motor output, and impulsivity. The BDS-II may therefore show utility with younger populations for measuring frontal lobe abilities and might be very sensitive to neurological injury.

  4. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    PubMed

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  5. Tumor necrosis factor receptor superfamily costimulation couples T cell receptor signal strength to thymic regulatory T cell differentiation

    PubMed Central

    Mahmud, Shawn A.; Manlove, Luke S.; Schmitz, Heather M.; Xing, Yan; Wang, Yanyan; Owen, David L.; Schenkel, Jason M.; Boomer, Jonathan S.; Green, Jonathan M.; Yagita, Hideo; Chi, Hongbo; Hogquist, Kristin A.; Farrar, Michael A.

    2014-01-01

    Regulatory T (Treg) cells express tumor necrosis factor receptor superfamily (TNFRSF) members, but their role in thymic Treg development is undefined. We demonstrate that Treg progenitors highly express the TNFRSF members GITR, OX40, and TNFR2. Expression of these receptors correlates directly with T cell receptor (TCR) signal strength, and requires CD28 and the kinase TAK1. Neutralizing TNFSF ligands markedly reduced Treg development. Conversely, TNFRSF agonists enhanced Treg differentiation by augmenting IL-2R/STAT5 responsiveness. GITR-ligand costimulation elicited a dose-dependent enrichment of lower-affinity cells within the Treg repertoire. In vivo, combined inhibition of GITR, OX40 and TNFR2 abrogated Treg development. Thus TNFRSF expression on Treg progenitors translates strong TCR signals into molecular parameters that specifically promote Treg differentiation and shape the Treg repertoire. PMID:24633226

  6. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research

    PubMed Central

    Wang, Zhixiang

    2016-01-01

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges. PMID:26771606

  7. Receptor-purified, Bolton-Hunter radioiodinated, recombinant, human epidermal growth factor: An improved radioligand for receptor studies

    SciTech Connect

    Kermode, J.C.; Tritton, T.R. )

    1990-01-01

    We report an assessment of the applicability of the Bolton-Hunter method to the radioiodination of epidermal growth factor (EGF). Recombinant human EGF (hEGF) could be radioiodinated successfully by this method, whereas murine EGF could not. Bolton-Hunter {sup 125}I-labeled hEGF was compared with commercial 125I-labeled hEGF prepared by the chloramine-T radioiodination method. Neither radioligand was sufficiently pure for a detailed characterization of the purportedly heterogeneous pattern of binding of EGF to its receptors. A procedure based on receptor adsorption was thus developed for repurification of the Bolton-Hunter 125I-labeled hEGF. This provided a much purer radioligand suitable for detailed studies of receptor-binding heterogeneity.

  8. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research.

    PubMed

    Wang, Zhixiang

    2016-01-12

    Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges.

  9. Insulin-Like Growth Factor 1 Receptor Is a Prognostic Factor in Classical Hodgkin Lymphoma

    PubMed Central

    Liang, Zheng; Diepstra, Arjan; Xu, Chuanhui; van Imhoff, Gustaaf; Plattel, Wouter; Van Den Berg, Anke; Visser, Lydia

    2014-01-01

    The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines. PMID:24489919

  10. Insulin-like growth factor 1 receptor is a prognostic factor in classical Hodgkin lymphoma.

    PubMed

    Liang, Zheng; Diepstra, Arjan; Xu, Chuanhui; van Imhoff, Gustaaf; Plattel, Wouter; Van Den Berg, Anke; Visser, Lydia

    2014-01-01

    The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines.

  11. Role of epidermal growth factor receptor in lung cancer and targeted therapies

    PubMed Central

    Liu, Tie-Cheng; Jin, Xin; Wang, Yan; Wang, Ke

    2017-01-01

    Lung cancer is the foremost cause of cancer-related deaths world-wide. Both, the major forms of lung cancer, Non-small cell lung cancer (NSCLC) and Small cell lung cancers (SCLC), have responded effectively to chemo-, radiation and adjuvant-therapies. Tumor removal through surgery also appeared as a good therapeutic strategy. However, these therapies demonstrated unfavourable side-effects, and hence novel drugs targeting lung cancer emerged essential. Activation of epidermal growth factor receptor (EGFR)-tyrosine kinases is a key reason for lung cancer progression. Two important strategies that have attenuated lung cancers were through treatments with EGFR-tyrosine kinase-inhibitors, erlotinib and gefitinib, or EGFR-neutralizing antibodies, cetuximab and bevacizumab. A major advantage with erlotinib and gefitinib was their role in second and third-line treatments following chemotherapies. Phase II/III clinical trials showed that combinatorial treatment of tyrosine kinase (TK)-inhibitors with chemotherapeutics, such as docetaxel and pemetrexed, caused significant improvements in progression-free survival and overall survival.Phase I and II clinical studies also revealed that combination of tyrosine kinase-inhibitors with the EGFR-targeted antibodies was an effective approach for treating lung cancer. However, patients having T790M-mutations within EGFR gene were resistant to erlotinib and gefitinib. Alternatively, another second-generation EGFR-tyrosine kinase-inhibitor, afatinib, that could circumvent the problem of drug resistance has been developed as lung cancer therapy. The current review focuses on the role of EGFR in lung cancer progression and apprises about the EGFR-targeted therapies. The review also informs on the adverse side-effects of these therapies and enlightens the need for safer therapeutic regimens to eradicate this dreaded disease. PMID:28337370

  12. Angiotensin II type 2 receptor correlates with therapeutic effects of losartan in rats with adjuvant-induced arthritis.

    PubMed

    Wang, Di; Hu, Shanshan; Zhu, Jie; Yuan, Jun; Wu, Jingjing; Zhou, Aiwu; Wu, Yujing; Zhao, Wendi; Huang, Qiong; Chang, Yan; Wang, Qingtong; Sun, Wuyi; Wei, Wei

    2013-12-01

    The angiotensin II type 1 receptor (AT1R) blocker losartan ameliorates rheumatoid arthritis (RA) in an experimental model. In RA, AT2R mainly opposes AT1R, but the mechanism by which this occurs still remains obscure. In the present study, we investigated the role of AT2R in the treatment of rats with adjuvant-induced arthritis (AIA) by losartan. Adjuvant-induced arthritis rats were treated with losartan (5, 10 and 15 mg/kg) and methotrexate (MTX; 0.5 mg/kg) in vivo from day 14 to day 28. Arthritis was evaluated by the arthritis index and histological examination. Angiotensin II, tumour necrosis factor-α, and VEGF levels were examined by ELISA. The expression of AT1R and AT2R was detected by western blot and immunohistochemistry analysis. After stimulation with interleukin-1β in vitro, the effects of the AT2R agonist CGP42112 (10(-8) -10(-5)  M) on the chemotaxis of monocytes induced by 10% foetal calf serum (FCS) were analysed by using Transwell assay. Subsequently, the therapeutic effects of CGP42112 (5, 10 and 20 μg/kg) were evaluated in vivo by intra-articular injection in AIA rats. After treatment with losartan, the down-regulation of AT1R expression and up-regulation of AT2R expression in the spleen and synovium of AIA rats correlated positively with reduction in the polyarthritis index. Treatment with CGP42112 inhibited the chemotaxis of AIA monocytes in vitro, possibly because of the up-regulation of AT2R expression. Intra-articular injection with CGP42112 (10 and 20 μg/kg) ameliorated the arthritis index and histological signs of arthritis. In summary, the present study strongly suggests that the up-regulation of AT2R might be an additional mechanism by which losartan exerts its therapeutic effects in AIA rats.

  13. The CXC Chemokine Receptor 4 Ligands Ubiquitin and Stromal Cell-derived Factor-1α Function through Distinct Receptor Interactions*

    PubMed Central

    Saini, Vikas; Staren, Daniel M.; Ziarek, Joshua J.; Nashaat, Zayd N.; Campbell, Edward M.; Volkman, Brian F.; Marchese, Adriano; Majetschak, Matthias

    2011-01-01

    Recently, we identified extracellular ubiquitin as an endogenous CXC chemokine receptor (CXCR) 4 agonist. However, the receptor selectivity and molecular basis of the CXCR4 agonist activity of ubiquitin are unknown, and functional consequences of CXCR4 activation with ubiquitin are poorly defined. Here, we provide evidence that ubiquitin and the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α do not share CXCR7 as a receptor. We further demonstrate that ubiquitin does not utilize the typical two-site binding mechanism of chemokine-receptor interactions, in which the receptor N terminus is important for ligand binding. CXCR4 activation with ubiquitin and SDF-1α lead to similar Gαi-responses and to a comparable magnitude of phosphorylation of ERK-1/2, p90 ribosomal S6 kinase-l and Akt, although phosphorylations occur more transiently after activation with ubiquitin. Despite the similarity of signal transduction events after activation of CXCR4 with both ligands, ubiquitin possesses weaker chemotactic activity than SDF-lα in cell migration assays and does not interfere with productive entry of HIV-1 into P4.R5 multinuclear activation of galactosidase indicator cells. Unlike SDF-1α, ubiquitin lacks interactions with an N-terminal CXCR4 peptide in NMR spectroscopy experiments. Binding and signaling studies in the presence of antibodies against the N terminus and extracellular loops 2/3 of CXCR4 confirm that the ubiquitin CXCR4 interaction is independent of the N-terminal receptor domain, whereas blockade of extracellular loops 2/3 prevents receptor binding and activation. Our findings define ubiquitin as a CXCR4 agonist, which does not interfere with productive cellular entry of HIV-1, and provide new mechanistic insights into interactions between CXCR4 and its natural ligands. PMID:21757744

  14. Cytosolic glucocorticoid receptor interaction with nuclear factor-kappa B proteins in rat liver cells.

    PubMed

    Widén, Christina; Gustafsson, Jan-Ake; Wikström, Ann-Charlotte

    2003-07-01

    The glucocorticoid receptor (GR) acts as an anti-inflammatory factor. To a large extent, this activity is exerted by the interference of pro-inflammatory nuclear factor kappa B (NF-kappa B) activity. In their respective inactive forms, both GR and NF-kappa B reside in the cytoplasm and translocate to the nucleus on relevant stimulation. Previously, p65, a component of the NF-kappa B complex, and GR have been shown to interact physically in vitro, and the interaction is assumed to take place in the nucleus of cells [McKay and Cidlowski (1999) Endocrine Rev. 20, 435-459]. We have studied the interaction between GR and NF-kappa B using in vivo -like conditions. Using immunoaffinity chromatography or immunoprecipitation, combined with Western blotting, we observed that, with endogenous protein levels in cytosolic extracts of rat liver and of H4-II-E-C3 hepatoma cells and in contrast with the current belief, p65, p50 and inhibitory kappa B alpha complex interact with GR, even in the absence of glucocorticoid or an inflammatory signal. The interaction between non-liganded/non-activated GR and p65/p50 has also been verified by both p65 and p50 co-immunoprecipitations. Intracellular localization studies, using Western blotting, revealed that glucocorticoids can decrease tumour necrosis factor alpha (TNFalpha)-induced nuclear entry of p65, whereas glucocorticoid-induced GR translocation was much less affected by TNFalpha. We were also able to demonstrate a nuclear interaction of GR and p65 and p50 using in vivo -like protein concentrations. Furthermore, nuclear GR interaction with heat-shock protein 90 was enhanced distinctly by TNFalpha treatment. In conclusion, our studies suggest a strong interconnectivity between the NF-kappa B and GR-signalling pathways where also, somewhat unexpectedly, a physical interaction in the cytosol constitutes an integral part of GR-NF-kappa B cross-talk.

  15. In vitro receptor autoradiography reveals angiotensin II (Ang II) binding associated with sensory and motor components of the vagus

    SciTech Connect

    Diz, D.I.; Barnes, K.L.; Ferrario, C.M.

    1986-03-05

    Specific, high affinity Ang II binding in the dog's dorsal medulla is concentrated in the area postrema, nucleus tractus solitarii (nTS) and dorsal motor nucleus of the vagus (dmnX). More recently Ang II binding sites were observed where bundles of vagal afferent fibers enter the dorsal medulla 6 mm rostral to obex and in the nodose ganglia and peripheral vagal nerves. Since Ang II binding in the nTS and dmnX overlies the distribution of vagal afferent fibers and efferent neurons, the effects of nodose ganglionectomy and cervical vagotomy on Ang II binding in the dorsal medulla were studied in rats and dogs using autoradiography after incubation of 14 ..mu..m coronal sections with 0.4 nM /sup 125/I-Ang II. Nonspecific binding was determined in the presence of 1 ..mu..M unlabeled Ang II. Two weeks after unilateral nodose ganglionectomy Ang II binding sites were absent ipsilaterally in the region where vagal afferent fibers enter the dorsal medulla. In the nTS and dmnX, binding near obex was reduced, while more rostrally these nuclei were almost completely devoid of Ang II binding on the denervated side. After cervical vagotomy, the loss of binding was restricted to the ipsilateral dmnX. These data are the first to reveal that Ang II binding in the dorsal medulla requires an intact vagal system.

  16. Receptor dimerization is not a factor in the signalling activity of a transforming variant epidermal growth factor receptor (EGFRvIII).

    PubMed Central

    Chu, C T; Everiss, K D; Wikstrand, C J; Batra, S K; Kung, H J; Bigner, D D

    1997-01-01

    The type-III deletion variant of the epidermal growth factor receptor (EGFRvIII) is frequently found in glioblastomas and other malignant human tumours. Although EGFRvIII confers ligand-independent oncogenic transformation of cell lines, the mechanism by which it promotes aberrant cellular proliferation is unknown. Using cell lines expressing comparable numbers of either wild-type receptor (EGFRwt) or EGFRvIII, we compared several parameters of receptor activation: dimerization, tyrosine phosphorylation and activation of intracellular signalling proteins. Like activated EGFRwt, EGFRvIII was phosphorylated and bound constitutively to the Shc adapter protein. Indeed, EGFRvIII-associated Shc had a higher phosphotyrosine content than Shc associated with stimulated EGFRwt. EGFRwt dimerized in response to either EGF or transforming growth factor alpha. Higher cross-linker concentrations and incubation at higher temperatures (37 degrees C) allowed detection of EGFRwt dimers even in the absence of exogenous ligand. In contrast, EGFRvIII failed to dimerize under any conditions studied. Moreover, neither mitogen-activated protein kinase nor phospholipase Cgamma were phosphorylated in EGFRvIII-expressing cells. We conclude that the deletion of 267 amino acids from the 621-amino-acid N-terminal domain of EGFR does not result simply in a constitutively activated receptor, but alters the spectrum of signalling cascades utilized. Furthermore the ligand-independent transforming activity of EGFRvIII is independent of receptor dimerization. PMID:9210410

  17. Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells.

    PubMed

    Yi, Jason; Wu, Xufeng S; Crites, Travis; Hammer, John A

    2012-03-01

    Actin retrograde flow and actomyosin II contraction have both been implicated in the inward movement of T cell receptor (TCR) microclusters and immunological synapse formation, but no study has integrated and quantified their relative contributions. Using Jurkat T cells expressing fluorescent myosin IIA heavy chain and F-tractin-a novel reporter for F-actin-we now provide direct evidence that the distal supramolecular activation cluster (dSMAC) and peripheral supramolecular activation cluster (pSMAC) correspond to lamellipodial (LP) and lamellar (LM) actin networks, respectively, as hypothesized previously. Our images reveal concentric and contracting actomyosin II arcs/rings at the LM/pSMAC. Moreover, the speeds of centripetally moving TCR microclusters correspond very closely to the rates of actin retrograde flow in the LP/dSMAC and actomyosin II arc contraction in the LM/pSMAC. Using cytochalasin D and jasplakinolide to selectively inhibit actin retrograde flow in the LP/dSMAC and blebbistatin to selectively inhibit actomyosin II arc contraction in the LM/pSMAC, we demonstrate that both forces are required for centripetal TCR microcluster transport. Finally, we show that leukocyte function-associated antigen 1 clusters accumulate over time at the inner aspect of the LM/pSMAC and that this accumulation depends on actomyosin II contraction. Thus actin retrograde flow and actomyosin II arc contraction coordinately drive receptor cluster dynamics at the immunological synapse.

  18. A(1) and A(3) adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Stefanelli, Angela; Fazzi, Debora; Varani, Katia; Borea, Pier Andrea

    2013-10-01

    Adenosine (Ado) exerts neuroprotective and anti-inflammatory functions by acting through four receptor subtypes A1, A2A, A2B and A3. Astrocytes are one of its targets in the central nervous system. Hypoxia-inducible factor-1 (HIF-1), a master regulator of oxygen homeostasis, is induced after hypoxia, ischemia and inflammation and plays an important role in brain injury. HIF-1 is expressed by astrocytes, however the regulatory role played by Ado on HIF-1α modulation induced by inflammatory and hypoxic conditions has not been investigated. Primary murine astrocytes were activated with lipopolysaccharide (LPS) with or without Ado, Ado receptor agonists, antagonists and receptor silencing, before exposure to normoxia or hypoxia. HIF-1α accumulation and downstream genes regulation were determined. Ado inhibited LPS-increased HIF-1α accumulation under both normoxic and hypoxic conditions, through activation of A1 and A3 receptors. In cells incubated with the blockers of p44/42 MAPK and Akt, LPS-induced HIF-1α accumulation was significantly decreased in normoxia and hypoxia, suggesting the involvement of p44/42 MAPK and Akt in this effect and Ado inhibited kinases phosphorylation. A series of angiogenesis and metabolism related genes were modulated by hypoxia in an HIF-1 dependent way, but not further increased by LPS, with the exception of GLUT-1 and hexochinase II that were elevated by LPS only in normoxia and inhibited by Ado receptors. Instead, genes involved in inflammation, like inducible nitric-oxide synthase (iNOS) and A2B receptors, were increased by LPS in normoxia, strongly stimulated by LPS in concert with hypoxia and inhibited by Ado, through A1 and A3 receptor subtypes. In conclusion A1 and A3 receptors reduce the LPS-mediated HIF-1α accumulation in murine astrocytes, resulting in a downregulation of genes involved in inflammation and hypoxic injury, like iNOS and A2B receptors, in both normoxic and hypoxic conditions.

  19. TGF beta receptor II interacting protein-1, an intracellular protein has an extracellular role as a modulator of matrix mineralization

    PubMed Central

    Ramachandran, Amsaveni; Ravindran, Sriram; Huang, Chun-Chieh; George, Anne

    2016-01-01

    Transforming growth factor beta receptor II interacting protein 1 (TRIP-1), a predominantly intracellular protein is localized in the ECM of bone. TRIP-1 lacks a signal peptide, therefore, in this study, we provide evidence that intracellular TRIP-1 can be packaged and exported to the ECM via exosomes. Overexpression of TRIP-1 in MC3T3-E1 cells resulted in increased matrix mineralization during differentiation and knockdown resulted in reduced effects. In vivo function of TRIP-1 was studied by an implantation assay performed using TRIP-1 overexpressing and knockdown cells cultured in a 3-dimmensional scaffold. After 4 weeks, the subcutaneous tissues from TRIP-1 overexpressing cells showed higher calcium and phosphate deposits, arranged collagen fibrils and increased expression of Runx2 and alkaline phosphatase. Nucleation studies on demineralized and deproteinized dentin wafer is a powerful tool to determine the functional role of noncollagenous proteins in matrix mineralization. Using this system, we provide evidence that TRIP-1 binds to Type-I collagen and can promote mineralization. Surface plasmon resonance analysis demonstrated that TRIP-1 binds to collagen with KD = 48 μM. SEM and TEM analysis showed that TRIP-1 promoted the nucleation and growth of calcium phosphate mineral aggregates. Taken together, we provide mechanistic insights of this intracellular protein in matrix mineralization. PMID:27883077

  20. Developmental decline in modulation of glutamatergic synapses in layer IV of the barrel cortex by group II metabotropic glutamate receptors.

    PubMed

    Mateo, Z; Porter, J T

    2015-04-02

    Previously, we demonstrated that group II metabotropic glutamate receptors (mGluRs) reduce glutamate release from thalamocortical synapses during early postnatal development (P7-11). To further examine the role of group II mGluRs in the modulation of somatosensory circuitry, we determined whether group II mGluRs continue to modulate thalamocortical synapses until adulthood and whether these receptors also modulate intra-cortical synapses in the barrel cortex. To address these issues, we examined the effect of the group II mGluR agonists on thalamocortical excitatory postsynaptic currents (EPSCs) and intra-barrel EPSCs in slices from animals of different ages (P7-53). We found that the depression of thalamocortical EPSCs by group II mGluRs rapidly declined after the second postnatal week. In contrast, adenosine continued to depress thalamocortical EPSCs via a presynaptic mechanism in young adult mice (P30-50). Activation of group II mGluRs also reduced intra-barrel EPSCs through a postsynaptic mechanism in young mice (P7-11). Similar to the thalamocortical synapses, the group II mGluR modulation of intra-barrel excitatory synapses declined with development. In young adult animals (P30-50), group II mGluR stimulation had little effect on intra-barrel EPSCs but did hyperpolarize the neurons. Together our results demonstrate that group II mGluRs modulate barrel cortex circuitry by presynaptic and postsynaptic mechanisms depending on the source of the synapse and that this modulation declines with development.

  1. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically.

    PubMed

    Danisman, Selahattin; van der Wal, Froukje; Dhondt, Stijn; Waites, Richard; de Folter, Stefan; Bimbo, Andrea; van Dijk, Aalt D J; Muino, Jose M; Cutri, Lucas; Dornelas, Marcelo C; Angenent, Gerco C; Immink, Richard G H

    2012-08-01

    TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway.

  2. Angiotensin II receptor blockade limits glomerular injury in rats with reduced renal mass.

    PubMed Central

    Lafayette, R A; Mayer, G; Park, S K; Meyer, T W

    1992-01-01

    The effects of angiotensin II (AII) blockade were compared with the effects of angiotensin converting enzyme inhibition in rats with reduced nephron number. Rats were subjected to five-sixths renal ablation and divided into four groups with similar values for blood pressure and serum creatinine after 2 wk. Group 1 then served as untreated controls, while group 2 received the AII receptor antagonist MK954 (which has previously been designated DuP753), group 3 received the converting enzyme inhibitor enalapril, and group 4 received a combination of reserpine, hydralazine, and hydrochlorothiazide. Micropuncture and morphologic studies were performed 10 wk later. Converting enzyme inhibition, AII receptor blockade, and the combination regimen were equally effective in reversing systemic hypertension (time-averaged systolic blood pressure: group 1, 185 +/- 5 mmHg; group 2, 125 +/- 2 mmHg; group 3, 127 +/- 2 mmHg; group 4, 117 +/- 4 mmHg). Micropuncture studies showed that glomerular transcapillary pressure was reduced significantly by converting enzyme inhibition and by AII blockade but not by the combination regimen (delta P: group 1, 49 +/- 1 mmHg; group 2, 42 +/- 1 mmHg; group 3, 40 +/- 2 mmHg, group 4, 47 +/- 1 mmHg). Reduction of systemic blood pressure was associated with the development of markedly less proteinuria and segmental glomerular sclerosis in rats receiving enalapril and MK954 but not in rats receiving the combination regimen (prevalence of glomerular sclerotic lesions: group 1, 41 +/- 4%; group 2, 9 +/- 1%; group 3, 9 +/- 1%; group 4, 33 +/- 6%). These results indicate that the effects of converting enzyme inhibition on remnant glomerular function and structure depend on reduction in AII activity and are not attributable simply to normalization of systemic blood pressure. PMID:1522231

  3. Regulated intramembrane proteolysis of the interleukin-1 receptor II by alpha-, beta-, and gamma-secretase.

    PubMed

    Kuhn, Peer-Hendrik; Marjaux, Els; Imhof, Axel; De Strooper, Bart; Haass, Christian; Lichtenthaler, Stefan F

    2007-04-20

    Ectodomain shedding and intramembrane proteolysis of the amyloid precursor protein (APP) by alpha-, beta- and gamma-secretase are involved in the pathogenesis of Alzheimer disease (AD). Increased proteolytic processing and secretion of another membrane protein, the interleukin-1 receptor II (IL-1R2), have also been linked to the pathogenesis of AD. IL-1R2 is a decoy receptor that may limit detrimental effects of IL-1 in the brain. At present, the proteolytic processing of IL-1R2 remains little understood. Here we show that IL-1R2 can be proteolytically processed in a manner similar to APP. IL-1R2 expressed in human embryonic kidney 293 cells first undergoes ectodomain shedding in an alpha-secretase-like manner, resulting in secretion of the IL-1R2 ectodomain and the generation of an IL-1R2 C-terminal fragment. This fragment undergoes further intramembrane proteolysis by gamma-secretase, leading to the generation of the soluble intracellular domain of IL-1R2. Intramembrane cleavage of IL-1R2 was abolished by a highly specific inhibitor of gamma-secretase and was absent in mouse embryonic fibroblasts deficient in gamma-secretase activity. Surprisingly, the beta-secretase BACE1 and its homolog BACE2 increased IL-1R2 secretion resulting in C-terminal fragments nearly identical to the ones generated by the alpha-secretase-like cleavage. This suggests that both proteases may act as alternative alpha-secretase-like proteases. Importantly, BACE1 and BACE2 did not cleave several other membrane proteins, demonstrating that both proteases do not contribute to general membrane protein turnover but only cleave specific proteins. This study reveals a similar proteolytic processing of IL-1R2 and APP and may provide an explanation for the increased IL-1R2 secretion observed in AD.

  4. Identification of PLXDC1 and PLXDC2 as the transmembrane receptors for the multifunctional factor PEDF

    PubMed Central

    Cheng, Guo; Zhong, Ming; Kawaguchi, Riki; Kassai, Miki; Al-Ubaidi, Muayyad; Deng, Jun; Ter-Stepanian, Mariam; Sun, Hui

    2014-01-01

    Pigment Epithelium Derived Factor (PEDF) is a secreted factor that has broad biological activities. It was first identified as a neurotrophic factor and later as the most potent natural antiangiogenic factor, a stem cell niche factor, and an inhibitor of cancer cell growth. Numerous animal models demonstrated its therapeutic value in treating blinding diseases and diverse cancer types. A long-standing challenge is to reveal how PEDF acts on its target cells and the identities of the cell-surface receptors responsible for its activities. Here we report the identification of transmembrane proteins PLXDC1 and PLXDC2 as cell-surface receptors for PEDF. Using distinct cellular models, we demonstrate their cell type-specific receptor activities through loss of function and gain of function studies. Our experiments suggest that PEDF receptors form homooligomers under basal conditions, and PEDF dissociates the homooligomer to activate the receptors. Mutations in the intracellular domain can have profound effects on receptor activities. DOI: http://dx.doi.org/10.7554/eLife.05401.001 PMID:25535841

  5. Inhibition of tumor necrosis factor-alpha-induced interleukin-6 expression by telmisartan through cross-talk of peroxisome proliferator-activated receptor-gamma with nuclear factor kappaB and CCAAT/enhancer-binding protein-beta.

    PubMed

    Tian, Qingping; Miyazaki, Ryohei; Ichiki, Toshihiro; Imayama, Ikuyo; Inanaga, Keita; Ohtsubo, Hideki; Yano, Kotaro; Takeda, Kotaro; Sunagawa, Kenji

    2009-05-01

    Telmisartan, an angiotensin II type 1 receptor antagonist, was reported to be a partial agonist of peroxisome proliferator-activated receptor-gamma. Although peroxisome proliferator-activated receptor-gamma activators have been shown to have an anti-inflammatory effect, such as inhibition of cytokine production, it has not been determined whether telmisartan has such effects. We examined whether telmisartan inhibits expression of interleukin-6 (IL-6), a proinflammatory cytokine, in vascular smooth muscle cells. Telmisartan, but not valsartan, attenuated IL-6 mRNA expression induced by tumor necrosis factor-alpha (TNF-alpha). Telmisartan decreased TNF-alpha-induced IL-6 mRNA and protein expression in a dose-dependent manner. Because suppression of IL-6 mRNA expression was prevented by pretreatment with GW9662, a specific peroxisome proliferator-activated receptor-gamma antagonist, peroxisome proliferator-activated receptor-gamma may be involved in the process. Telmisartan suppressed IL-6 gene promoter activity induced by TNF-alpha. Deletion analysis suggested that the DNA segment between -150 bp and -27 bp of the IL-6 gene promoter that contains nuclear factor kappaB and CCAAT/enhancer-binding protein-beta sites was responsible for telmisartan suppression. Telmisartan attenuated TNF-alpha-induced nuclear factor kappaB- and CCAAT/enhancer-binding protein-beta-dependent gene transcription and DNA binding. Telmisartan also attenuated serum IL-6 level in TNF-alpha-infused mice and IL-6 production from rat aorta stimulated with TNF-alpha ex vivo. These data suggest that telmisartan may attenuate inflammatory process induced by TNF-alpha in addition to the blockade of angiotensin II type 1 receptor. Because both TNF-alpha and angiotensin II play important roles in atherogenesis through enhancement of vascular inflammation, telmisartan may be beneficial for treatment of not only hypertension but also vascular inflammatory change.

  6. Postnatal expression of nerve growth factor receptors in the rat testis.

    PubMed

    Djakiew, D; Pflug, B; Dionne, C; Onoda, M

    1994-08-01

    Because nerve growth factor beta (NGF beta) and its corresponding receptors have been implicated in the paracrine regulation of spermatogenesis, we examined the postnatal developmental expression of the low- and high-affinity NGF receptors in the rat testis, and localized their expression to specific testicular cell types. The neurotropin receptors consist of a low-affinity p75 nerve growth factor receptor (LNGFR) and a family of high-affinity tyrosine receptor kinases (trk). Both the p75 LNGFR gene product and the trk receptor gene product were detected in immature rat testes, with maximal expression in 10- and 20-day-old rats. Expression of the testicular p75 LNGFR and the trk receptor progressively declined in older animals so that they were barely detectable in 90-day-old adult rats. The 75-kDa LNGFR was detected in membrane fractions of Sertoli cells, whereas the p75 LNGFR was not detected by Western blot in membrane fractions of round spermatids and primary spermatocytes. Interestingly, microsomal fractions of peritubular myoid cells were immunoreactive for a 65-kDa band on Western blots with the p75 LNGFR monoclonal antibody. Immunoblot analysis of the trk receptor in cell lysates of isolated cell types was inconclusive. Excess NGF beta and round spermatid protein, which is known to contain a NGF-like protein, were both capable of displacing the binding of 125I-NGF beta from the surface of Sertoli cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Altered (/sup 125/I)epidermal growth factor binding and receptor distribution in psoriasis

    SciTech Connect

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-03-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that (/sup 125/I)EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers.

  8. Evidence for modulation of pericryptal sheath myofibroblasts in rat descending colon by Transforming Growth Factor β and Angiotensin II.

    PubMed Central

    Thiagarajah, Jay R; Griffiths, Nina M; Pedley, Kevin C; Naftalin, Richard J

    2002-01-01

    Background Absorption of water and Na+ in descending colonic crypts is dependent on the barrier function of the surrounding myofibroblastic pericryptal sheath. Here the effects of high and low Na+ diets and exposure to whole body ionising radiation on the growth and activation of the descending colonic pericryptal myofibroblasts are evaluated. In addition the effect of a post-irradiation treatment with the angiotensin converting enzyme inhibitor Captopril was investigated. Methods The levels of Angiotensin II type 1 receptor (AT1), ACE, collagen type IV, transforming growth factor-β type 1 receptor (TGF-βR1), OB cadherin and α-smooth muscle actin in both descending colon and caecum were evaluated, using immunocytochemistry and confocal microscopy, in rats fed on high and low Na+ diets (LS). These parameters were also determined during 3 months post-irradiation with 8Gy from a 60Co source in the presence and absence of the angiotensin converting enzyme inhibitor, Captopril. Results Increases in AT1 receptor (135.6% ± 18.3, P < 0.001); ACE (70.1% ± 13.1, P < 0.001); collagen type IV (49.6% ± 15.3, P < 0.001); TGF-β1 receptors (291.0% ± 26.5, P < 0.001); OB-cadherin (26.3% ± 13.8, P < 0.05) and α-smooth muscle actin (82.5% ± 12.4, P < 0.001) were observed in the pericryptal myofibroblasts of the descending colon after LS diet. There are also increases in AT1 receptor and TGF-β1 receptor, smooth muscle actin and collagen type IV after irradiation. Captopril reduced all these effects of irradiation on the pericryptal sheath and also decreased the amount of collagen and smooth muscle actin in control rats (P < 0.001). Conclusions These results demonstrate an activation of descending colonic myofibroblasts to trophic stimuli, or irradiation, which can be attenuated by Captopril, indicative of local trophic control by angiotensin II and TGF-β release. PMID:11872151

  9. Enhancement of Memories by Systemic Administration of Insulin-Like Growth Factor II

    PubMed Central

    Stern, Sarah A; Kohtz, Amy S; Pollonini, Gabriella; Alberini, Cristina M

    2014-01-01

    To treat cognitive disorders in humans, new effective therapies that can be easily delivered systemically are needed. Previous studies showed that a bilateral injection of insulin-like growth factor II (IGF-II) into the dorsal hippocampus of rats or mice enhances fear memories and facilitates fear extinction. Here, we report that, in mice, systemic treatments with IGF-II given before training significantly enhance the retention and persistence of several types of working, short-term and long-term memories, including fear conditioning, object recognition, object placement, social recognition, and spatial reference memory. IGF-II-mediated memory enhancement does not alter memory flexibility or the ability for new learning and also occurs when IGF-II treatment is given in concert with memory retrieval. Thus IGF-II may represent a potentially important and effective treatment for enhancing human cognitive and executive functions. PMID:24642597

  10. Platelet-derived growth factor mimics phorbol diester action on epidermal growth factor receptor phosphorylation at threonine-654

    SciTech Connect

    Davis, R.J.; Czech, M.P.

    1985-06-01

    Addition of platelet-derived growth factor (PDGF) to quiescent WI-38 human fetal lung fibroblasts mimics the effect of tumor-promoting phorbol diesters to inhibit the high-affinity binding of SVI-labeled epidermal growth factor ( SVI-EGF). PDGF, like phorbol diesters, was found to increase the phosphorylation state of EGF receptors immunoprecipitated from intact fibroblasts that were labeled to equilibrium with (TSP)phosphate. Phosphoamino acid analysis of the EGF receptors indicated that both PDGF and phorbol diesters increased the level of (TSP)phosphoserine and (TSP)phosphothreonine. Phosphopeptide mapping of the EGF receptor demonstrated that PDGF increased the phosphorylation of several sites and induced the phosphorylation of a site that was not observed to be phosphorylated on EGF receptors isolated from control cells. This latter phosphorylation site on the EGF receptor was identified as threonine-654. These results are consistent with the hypothesis that increases in diacylglycerol and CaS levels caused by addition of PDGF to fibroblasts activate protein kinase C and that this kinase, at least in part, mediates the effect of PDGF on the phosphorylation of the EGF receptor. The data further suggest that protein kinase C may play an important role in the regulation of cellular metabolism and proliferation by PDGF.

  11. Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions

    PubMed Central

    Hildebrand, Joanne M.; Yi, Zuoan; Buchta, Claire M.; Poovassery, Jayakumar; Stunz, Laura L.; Bishop, Gail A.

    2011-01-01

    Summary A large and diverse group of receptors utilizes the family of cytoplasmic signaling proteins known as tumor necrosis factor receptor (TNFR)-associated factors (TRAFs). In recent years, there has been a resurgence of interest and exploration of the roles played by TRAF3 and TRAF5 in cellular regulation, particularly in cells of the immune system, the cell types of focus in this review. This work has revealed that TRAF3 and TRAF5 can play diverse roles for different receptors even in the same cell type, as well as distinct roles in different cell types. Evidence indicates that TRAF3 and TRAF5 play important roles beyond the TNFR-superfamily (SF) and viral mimics of its members, mediating certain innate immune receptor and cytokine receptor signals, and most recently, signals delivered by the T-cell receptor (TCR) signaling complex. Additionally, much research has demonstrated the importance of TRAF3-mediated cellular regulation via its cytoplasmic interactions with additional signaling proteins. In particular, we discuss below evidence for the participation by TRAF3 in a number of the regulatory post-translational modifications involving ubiquitin that are important in various signaling pathways. PMID:22017431

  12. Fn14 is regulated via the RhoA pathway and mediates nuclear factor-kappaB activation by Angiotensin II

    PubMed Central

    Li, Zhengwei; Shen, Zhida; Du, Lailing; He, Jialin; Chen, Shengyu; Zhang, Jiefang; Luan, Yi; Fu, Guosheng

    2016-01-01

    Angiotesin II (Ang II) plays an important role in cardiac remodeling. Fibroblast growth factor inducible-14 (Fn14) is the smallest member of the tumor necrosis factor superfamily of receptors. Currently, little is known about the functional role of Fn14 in the heart. Chiefly, we observe the up-regulation of extracellular matrix in in vivo model. We therefore assess the expression and regulation of Fn14 in cardiomyocytes and in vivo models induced by Ang II. In order to study the regulation of Fn14, cardiac remodeling was established in rats and neonatal cardiomyocytes were used in in vitro model. As well, Ang II is able to strongly induce Fn14 expression in in vivo and in vitro models. Fn14 is mediated via RhoA pathways, since siRNA against RhoA prevented the expression of Fn14 in cardiomyocytes. Pretreatment of cardiomyoctes with siRNA against NF-κB and IκBα also decreased Fn14 expression induced by Ang II. We here describe for the first time Ang II regulation of Fn14 in in vivo and in vitro models via RhoA, NF-κB and NF-κB driven gene signaling pathway. In conclusion, Fn14 may be important in regulating the process of cardiac remodeling induced by Ang II. PMID:28078010

  13. Transcription initiation factor IID-interactive histone chaperone CIA-II implicated in mammalian spermatogenesis.

    PubMed

    Umehara, Takashi; Horikoshi, Masami

    2003-09-12

    Histones are thought to have specific roles in mammalian spermatogenesis, because several subtypes of histones emerge that are post-translationally modified during spermatogenesis. Though regular assembly of nucleosome is guaranteed by histone chaperones, their involvement in spermatogenesis is yet to be characterized. Here we identified a histone chaperone-related factor, which we designated as CCG1-interacting factor A-II (CIA-II), through interaction with bromodomains of TAFII250/CCG1, which is the largest subunit of human transcription initiation factor IID (TFIID). We found that human CIA-II (hCIA-II) localizes in HeLa nuclei and is highly expressed in testis and other proliferating cell-containing tissues. Expression of mouse CIA-II (mCIA-II) does not occur in the germ cell-lacking testes of adult WBB6F1-W/Wv mutant mice, indicating its expression in testis to be specific to germ cells. Fractionation of testicular germ cells revealed that mCIA-II transcripts accumulate in pachytene spermatocytes but not in spermatids. In addition, the mCIA-II transcripts in testis were present as early as 4 days after birth and decreased at 56 days after birth. These findings indicate that mCIA-II expression in testis is restricted to premeiotic to meiotic stages during spermatogenesis. Also, we found that hCIA-II interacts with histone H3 in vivo and with histones H3/H4 in vitro and that it facilitates supercoiling of circular DNA when it is incubated with core histones and topoisomerase I in vitro. These data suggest that CIA-II is a histone chaperone and is implicated in the regulation of mammalian spermatogenesis.

  14. Assignment of the human angiotensin II type 2 receptor gene (AGTR2) to chromosome Xq22-q23 by fluorescence in situ hybridization

    SciTech Connect

    Chassagne, C.; Meloche, S.; Beatty, B.G.

    1995-01-20

    Angiotensin II (AII), the biologically active effector of the renin-angiotensin system, is a major regulator of blood pressure and electrolyte balance and a growth factor for diverse cell types. AII exerts its physiological effects by interacting with two pharmacologically distinct subtypes of receptors, designated AT{sub 1}, and AT{sub 2}. Most of the known responses to AII are mediated by the AT{sub 1} subtype, whereas the function of the AT{sub 2} receptor remains largely unknown. AT{sub 2} receptor expression is abundant in particular tissues such as adrenal medulla, specific brain regions, uterine myometrium, and ovarian granuloma cells. This specific localization in adult coupled to the demonstration that some actions of AII such as secretion of luteinizing hormone and prolactine, dilation of brain arterioles, or drinking response in rats can be inhibited in vitro by an AT{sub 2} receptor antagonist suggests that the AT{sub 2} subtype may play a role in neuronal and reproductive function. In addition, a growing amount of evidence indicates that the AT{sub 2} receptor may play a most important role in processes involving cellular growth and differentiation. It is abundantly and widely expressed in the mesenchymal tissues of the developing fetus and in the immature brain and is up-regulated in the heart and in vascular smooth muscle cells in the first days following birth. Moreover, AT{sub 2} receptor expression is enhanced in the adult in wound healing, in the neointima of injured vessels, and in pheochromocytoma. 12 refs., 1 fig.

  15. Mechanism of Hepatocyte Growth Factor Inhibition of Angiotensin II-induced Apoptosis in Primary Lung Cells

    DTIC Science & Technology

    2010-02-19

    her unwavering support, insights, patience…and of course, her zucchini chocolate cake! Gina, thank you for helping me grow as a scientist. You are...has 36 Renin Angiotensinogen Angiotensin I Angiotensin Converting Enzyme Liver Kidney Lung Angiotensin II Brain Vasopressin Water retention...The AT2 receptor is highly expressed in the fetal tissue, including skeletal system, brain , fetal aorta, adrenal medulla, heart, kidney, and lung but

  16. Functional Interaction between Angiotensin II Receptor Type 1 and Chemokine (C-C Motif) Receptor 2 with Implications for Chronic Kidney Disease

    PubMed Central

    Kelly, Robyn S.; See, Heng B.; Johnstone, Elizabeth K. M.; McCall, Elizabeth A.; Williams, James H.; Kelly, Darren J.; Pfleger, Kevin D. G.

    2015-01-01

    Understanding functional interactions between G protein-coupled receptors is of great physiological and pathophysiological importance. Heteromerization provides one important potential mechanism for such interaction between different signalling pathways via macromolecular complex formation. Previous studies suggested a functional interplay between angiotensin II receptor type 1 (AT1) and Chemokine (C-C motif) Receptor 2 (CCR2). However the molecular mechanisms are not understood. We investigated AT1-CCR2 functional interaction in vitro using bioluminescence resonance energy transfer in HEK293 cells and in vivo using subtotal-nephrectomized rats as a well-established model for chronic kidney disease. Our data revealed functional heteromers of these receptors resulting in CCR2-Gαi1 coupling being sensitive to AT1 activation, as well as apparent enhanced β-arrestin2 recruitment with agonist co-stimulation that is synergistically reversed by combined antagonist treatment. Moreover, we present in vivo findings where combined treatment with AT1- and CCR2-selective inhibitors was synergistically beneficial in terms of decreasing proteinuria, reducing podocyte loss and preventing renal injury independent of blood pressure in the subtotal-nephrectomized rat model. Our findings further support a role for G protein-coupled receptor functional heteromerization in pathophysiology and provide insights into previous observations indicating the importance of AT1-CCR2 functional interaction in inflammation, renal and hypertensive disorders. PMID:25807547

  17. Tannic acid, a potent inhibitor of epidermal growth factor receptor tyrosine kinase.

    PubMed

    Yang, Er Bin; Wei, Liu; Zhang, Kai; Chen, Yu Zong; Chen, Wei Ning

    2006-03-01

    Increasing evidence supports the hypothesis that tannic acid, a plant polyphenol, exerts anticarcinogenic activity in chemically induced cancers. In the present study, tannic acid was found to strongly inhibit tyrosine kinase activity of epidermal growth factor receptor (EGFr) in vitro (IC50 = 323 nM). In contrast, the inhibition by tannic acid of p60(c-src) tyrosine kinase (IC50 = 14 microM) and insulin receptor tyrosine kinase (IC50 = 5 microM) was much weaker. The inhibition of EGFr tyrosine kinase by tannic acid was competitive with respect to ATP and non-competitive with respect to peptide substrate. In cultured cells, growth factor-induced tyrosine phosphorylation of growth factor receptors, including EGFr, platelet-derived growth factor receptor, and basic fibroblast growth factor receptor, was inhibited by tannic acid. No inhibition of insulin-induced tyrosine phosphorylation of insulin receptor and insulin-receptor substrate-1 was observed. EGF-stimulated growth of HepG2 cells was inhibited in the presence of tannic acid. The inhibition of serine/threonine-specific protein kinases, including cAMP-dependent protein kinase, protein kinase C and mitogen-activated protein kinase, by tannic acid was only detected at relatively high concentration, IC50 being 3, 325 and 142 microM respectively. The molecular modeling study suggested that tannic acid could be docked into the ATP binding pockets of either EGFr or insulin receptor. These results demonstrate that tannic acid is an in vitro potent inhibitor of EGFr tyrosine kinase.

  18. Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism.

    PubMed

    Cisternas, Franco; Morales, María Gabriela; Meneses, Carla; Simon, Felipe; Brandan, Enrique; Abrigo, Johanna; Vazquez, Yaneisi; Cabello-Verrugio, Claudio

    2015-03-01

    Skeletal muscle atrophy is a pathological condition characterized by the loss of strength and muscle mass, an increase in myosin heavy chain (MHC) degradation and increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. Angiotensin II (AngII) induces muscle atrophy. Angiotensin-(1-7) [Ang-(1-7)], through its receptor Mas, produces the opposite effects than AngII. We assessed the effects of Ang-(1-7) on the skeletal muscle atrophy induced by AngII. Our results show that Ang-(1-7), through Mas, prevents the effects induced by AngII in muscle gastrocnemius: the decrease in the fibre diameter, muscle strength and MHC levels and the increase in atrogin-1 and MuRF-1. Ang-(1-7) also induces AKT phosphorylation. In addition, our analysis in vitro using C2C12 myotubes shows that Ang-(1-7), through a mechanism dependent on Mas, prevents the decrease in the levels of MHC and the increase in the expression of the atrogin-1 and MuRF-1, both induced by AngII. Ang-(1-7) induces AKT phosphorylation in myotubes; additionally, we demonstrated that the inhibition of AKT with MK-2206 decreases the anti-atrophic effects of Ang-(1-7). Thus, we demonstrate for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by AngII through a mechanism dependent on the Mas receptor, which involves AKT activity. Our study indicates that Ang-(1-7) is novel molecule with a potential therapeutical use to improve muscle wasting associated, at least, with pathologies that present high levels of AngII.

  19. Angiotensin II receptor 1 gene variants are associated with high-altitude pulmonary edema risk.

    PubMed

    Jin, Tianbo; Ren, Yongchao; Zhu, Xikai; Li, Xun; Ouyang, Yongri; He, Xue; Zhang, Zhiying; Zhang, Yuan; Kang, Longli; Yuan, Dongya

    2016-11-22

    Previous studies demonstrated that Angiotensin II Receptor 1 (AGTR1) may play an important role in the development of high-altitude pulmonary edema. We envisaged a role for AGTR1 gene variants in the pathogenesis of HAPE and investigated their potential associations with HAPE in a Han Chinese