Sample records for factor influences biofilm

  1. Factors Influencing Biofilm Formation in Streams: Bacterial Colonization, Detachment and Transport

    NASA Astrophysics Data System (ADS)

    Leff, L.

    2005-05-01

    Surfaces in aquatic systems develop biofilms containing microorganisms embedded in complex extracellular matrices. Properties of the surface, water, and colonizing organisms impact biofilm formation. Biofilm features, physical disturbance, and interactions between macro- and microscopic organisms, in turn, influence detachment. In spite of the importance of biofilms, much remains unknown about factors controlling biofilms in streams and other natural environments. Experiments were conducted in the laboratory and field to examine factors influencing surface colonization, and subsequent biofilm formation, and detachment. Microscopy methods, fluorescent in situ hybridization and confocal laser microscopy, were used to examine responses, including abundance of different taxa and biofilm depth. From these experiments, we determined that different taxa differ in their colonization ability based on properties like extracellular polysaccharide production and surface features, like hydrophobicity and that water chemistry, such as magnesium concentration, plays an important role. Moreover, detachment varies among taxa and with environmental conditions and may be enhanced by activities of macrofauna. Variation in detachment, in turn, influences bacterial transport and subsequent re-attachment. Overall, examination of attachment, detachment, and interactions in biofilms allows us to begin to understand how environmental conditions may impact the function of these communities in aquatic systems.

  2. Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation.

    PubMed

    Tan, Yulong; Leonhard, Matthias; Ma, Su; Schneider-Stickler, Berit

    2016-11-01

    Non-albicans Candida species have been isolated in increasing numbers in patients. Moreover, they are adept at forming biofilms. This study analyzed biofilm formation of clinically isolated non-albicans Candida, including Candida tropicalis, Candida krusei and Candida parapsilosis under the influence of different growth media (RPMI 1640, YPD and BHI) and several culture variables (inoculum concentration, incubation period and feeding conditions). The results showed that culture conditions strongly influenced non-albicans Candida species biofilm formation. YPD and BHI resulted in larger amount of biofilm formation with higher metabolic activity of biofilms. Furthermore, the growth media seems to have varying effects on adhesion and biofilm development. Growth conditions may also influence biofilm formation, which was enhanced when starting the culture with a larger inoculum, longer incubation period and using a fed-batch system. Therefore, the potential influences of external environmental factors should be considered when studying the non-albicans Candida biofilms in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Environmental factors that shape biofilm formation.

    PubMed

    Toyofuku, Masanori; Inaba, Tomohiro; Kiyokawa, Tatsunori; Obana, Nozomu; Yawata, Yutaka; Nomura, Nobuhiko

    2016-01-01

    Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.

  4. Influence of local climate and climate change on aeroterrestrial phototrophic biofilms.

    PubMed

    Gladis-Schmacka, Franziska; Glatzel, Stephan; Karsten, Ulf; Böttcher, Heidrun; Schumann, Rhena

    2014-01-01

    Aeroterrestrial phototrophic biofilms colonize natural and man-made surfaces and may damage the material they settle on. The occurrence of biofilms varies between regions with different climatic conditions. The aim of this study was to evaluate the influence of meteorological factors on the growth of aeroterrestrial phototrophs. Phototrophic biomass was recorded on roof tiles at six sites within Germany five times over a period of five years and compared to climatic parameters from neighboring weather stations. All correlating meteorological factors influenced water availability on the surface of the roof tiles. The results indicate that the frequency of rainy days and not the mean precipitation per season is more important for biofilm proliferation. It is also inferred that the macroclimate is more important than the microclimate. In conclusion, changed (regional) climatic conditions may determine where in central Europe global change will promote or inhibit phototrophic growth in the future.

  5. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    PubMed

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  6. Candida albicans biofilm heterogeneity does not influence denture stomatitis but strongly influences denture cleansing capacity.

    PubMed

    O'Donnell, Lindsay E; Alalwan, Hasanain K A; Kean, Ryan; Calvert, Gareth; Nile, Christopher J; Lappin, David F; Robertson, Douglas; Williams, Craig; Ramage, Gordon; Sherry, Leighann

    2017-01-01

    Approximately 20  % of the UK population wear some form of denture prosthesis, resulting in denture stomatitis in half of these individuals. Candida albicans is primarily attributed as the causative agent, due to its biofilm -forming ability. Recently, there has been increasing evidence of C. albicans biofilm heterogeneity and the negative impact it can have clinically; however, this phenomenon has yet to be studied in relation to denture isolates. The aims of this study were to evaluate C. albicans biofilm formation of clinical denture isolates in a denture environment and to assess antimicrobial activity of common denture cleansers against these tenacious communities. C. albicans isolated from dentures of healthy and diseased individuals was quantified using real-time PCR and biofilm biomass assessed using crystal violet. Biofilm development on the denture substratum poly(methyl methacrylate), Molloplast B and Ufi-gel was determined. Biofilm formation was assessed using metabolic and biomass stains, following treatment with denture hygiene products. Although C. albicans was detected in greater quantities in diseased individuals, it was not associated with increased biofilm biomass. Denture substrata were shown to influence biofilm biomass, with poly(methyl methacrylate) providing the most suitable environment for C. albicans to reside. Of all denture hygiene products tested, Milton had the most effective antimicrobial activity, reducing biofilm biomass and viability the greatest. Overall, our results highlight the complex nature of denture- related disease, and disease development cannot always be attributed to a sole cause. It is the distinct combination of various factors that ultimately determines the pathogenic outcome.

  7. Influence of Al(III) on biofilm and its extracellular polymeric substances in sequencing batch biofilm reactors.

    PubMed

    Hu, Xuewei; Yang, Lei; Lai, Xinke; Yao, Qi; Chen, Kai

    2017-10-03

    This paper presented the influence of Al(III) on biodegradability, micromorphology, composition and functional groups characteristics of the biofilm extracellular polymeric substances (EPS) during different growth phases. The sequencing batch biofilm reactors were developed to cultivate biofilms under different Al(III) dosages. The results elucidated that Al(III) affected biofilm development adversely at the beginning of biofilm growth, but promoted the biofilm mass and improved the biofilm activity with the growth of the biofilm. The micromorphological observation indicated that Al(III) led to a reduction of the filaments and promotion of the EPS secretion in growth phases of the biofilm, also Al(III) could promote microorganisms to form larger colonies for mature biofilm. Then, the analysis of EPS contents and components suggested that Al(III) could increase the protein (PN) of tightly bound EPS (TB-EPS) which alleviated the metal toxicity inhibition on the biofilm during the initial phases of biofilm growth. The biofilm could gradually adapt to the inhibition caused by Al(III) at the biofilm maturation moment. Finally, through the Fourier transform infrared spectroscopy, it was found that Al(III) was beneficial for the proliferation and secretion of TB-EPS functional groups, especially the functional groups of protein and polysaccharides.

  8. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components.

    PubMed

    Terraf, M C Leccese; Juárez Tomás, M S; Nader-Macías, M E F; Silva, C

    2012-12-01

    To assess the ability of vaginal lactobacilli to form biofilm under different culture conditions and to determine the relationship between their growth and the capability of biofilm formation by selected strains. Fifteen Lactobacillus strains from human vagina were tested for biofilm formation by crystal violet staining. Only Lactobacillus rhamnosus Centro de Referencia para Lactobacilos Culture Collection (CRL) 1332, Lact. reuteri CRL 1324 and Lact. delbrueckii CRL 1510 were able to grow and form biofilm in culture media without Tween 80. However, Lact. gasseri CRL 1263 (a non-biofilm-forming strain) did not grow in these media. Scanning electron microscopy showed that Lact. rhamnosus CRL 1332 and Lact. reuteri CRL 1324 formed a highly structured biofilm, but only Lact. reuteri CRL 1324 showed a high amount of extracellular material in medium without Tween. Biofilm formation was significantly influenced by the strain, culture medium, inoculum concentration, microbial growth and chemical nature of the support used for the assay. The results allow the selection of biofilm-forming vaginal Lactobacillus strains and the conditions and factors that affect this phenomenon. © 2012 The Society for Applied Microbiology.

  9. Factors Mediating Environmental Biofilm Formation by Legionella pneumophila.

    PubMed

    Abu Khweek, Arwa; Amer, Amal O

    2018-01-01

    Legionella pneumophila ( L. pneumophila ) is an opportunistic waterborne pathogen and the causative agent for Legionnaires' disease, which is transmitted to humans via inhalation of contaminated water droplets. The bacterium is able to colonize a variety of man-made water systems such as cooling towers, spas, and dental lines and is widely distributed in multiple niches, including several species of protozoa In addition to survival in planktonic phase, L. pneumophila is able to survive and persist within multi-species biofilms that cover surfaces within water systems. Biofilm formation by L. pneumophila is advantageous for the pathogen as it leads to persistence, spread, resistance to treatments and an increase in virulence of this bacterium. Furthermore, Legionellosis outbreaks have been associated with the presence of L. pneumophila in biofilms, even after the extensive chemical and physical treatments. In the microbial consortium-containing L. pneumophila among other organisms, several factors either positively or negatively regulate the presence and persistence of L. pneumophila in this bacterial community. Biofilm-forming L. pneumophila is of a major importance to public health and have impact on the medical and industrial sectors. Indeed, prevention and removal protocols of L. pneumophila as well as diagnosis and hospitalization of patients infected with this bacteria cost governments billions of dollars. Therefore, understanding the biological and environmental factors that contribute to persistence and physiological adaptation in biofilms can be detrimental to eradicate and prevent the transmission of L. pneumophila . In this review, we focus on various factors that contribute to persistence of L. pneumophila within the biofilm consortium, the advantages that the bacteria gain from surviving in biofilms, genes and gene regulation during biofilm formation and finally challenges related to biofilm resistance to biocides and anti-Legionella treatments.

  10. Evaluation of environmental and nutritional factors and sua gene on in vitro biofilm formation of Streptococcus uberis isolates.

    PubMed

    Moliva, Melina Vanesa; Cerioli, Florencia; Reinoso, Elina Beatriz

    2017-06-01

    The pathogenesis of Streptococcus uberis is attributed to a combination of extracellular factors and properties such as adherence and biofilm formation. The aim of this work was to evaluate the influence of different factors, additives and bovine milk compounds on S. uberis biofilm formation, as the presence of the sua gene by PCR. Additionally, extracellular DNA and the effect of DNaseI were evaluated in the biofilms yielded. Optimal biofilm development was observed when the pH was adjusted to 7.0 and 37 °C. Additives as glucose and lactose reduced biofilm formation as bovine milk compounds tested. PCR assay showed that not all the isolates yielded sua gene. Extrachromosomal ADN was found in cell-free supernatants, suggesting that DNA released spontaneously to the medium. The results contribute to a better understanding of the factors involved in biofilm production of this important pathogen associated with mastitis in order to promote the design of new therapeutic approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria.

    PubMed

    Critchley, M M; Cromar, N J; McClure, N C; Fallowfield, H J

    2003-01-01

    This study investigated the influence of water chemistry on copper solvation (cuprosolvency) by pure culture biofilms of heterotrophic bacteria isolated from copper plumbing. Heterotrophic bacteria isolated from copper plumbing biofilms including Acidovorax delafieldii, Flavobacterium sp., Corynebacterium sp., Pseudomonas sp. and Stenotrophomonas maltophilia were used in laboratory coupon experiments to assess their potential for cuprosolvency. Sterile copper coupons were exposed to pure cultures of bacteria to allow biofilm formation and suspended in drinking waters with different chemical compositions. Sterile coupons not exposed to bacteria were used as controls. After 5 days of incubation, copper release and biofilm accumulation was quantified. The results demonstrated that cuprosolvency in the control experiments was influenced by water pH, total organic carbon (TOC) and conductivity. Cuprosolvency in the presence of biofilms correlated with the chemical composition of the water supplies particularly pH, Langeliers Index, chloride, alkalinity, TOC and soluble phosphate concentrations. The results suggest water quality may influence cuprosolvency by biofilms present within copper plumbing pipes. The potential for water chemistry to influence cuprosolvency by biofilms may contribute to the sporadic nature of copper corrosion problems in distribution systems.

  12. Interactions between Candida albicans and Candida glabrata in biofilms: Influence of the strain type, culture medium and glucose supplementation.

    PubMed

    Hosida, Thayse Yumi; Cavazana, Thamires Priscila; Henriques, Mariana; Pessan, Juliano Pelim; Delbem, Alberto Carlos Botazzo; Monteiro, Douglas Roberto

    2018-04-01

    The relationship among Candida species may be influenced by several factors. Thus, this study evaluated the interactions between Candida albicans and Candida glabrata in biofilms, varying the strain type, culture medium and glucose supplementation. Biofilms were formed for 48 hours in Sabouraud dextrose broth (SDB) or RPMI 1640, supplemented with 0%, 1% or 5% glucose. Each strain of C. albicans was combined with two strains of C. glabrata, generating four biofilm associations, which were quantified by colony-forming units (CFUs), total biomass and metabolic activity. Data were analysed by ANOVA and Tukey's HSD test (α = 0.05). For CFUs, all associations were classified as indifferent for biofilms formed in RPMI 1640, while for SDB the interactions were antagonistic for C. albicans and indifferent for C. glabrata. The association of reference strains resulted in a dual-species biofilm with biomass significantly higher than that observed for each single biofilm developed in SDB. The metabolic activity of dual-species biofilms did not significantly differ from that found for single ones, except for co-culture of the reference strains. Glucose supplementation and culture media had a significant influence on all parameters. In conclusion, the strain type, culture medium and glucose supplementation influenced the interactions between C. albicans and C. glabrata. © 2017 Blackwell Verlag GmbH.

  13. Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formation.

    PubMed

    Barros, J; Grenho, L; Manuel, C M; Ferreira, C; Melo, L; Nunes, O C; Monteiro, F J; Ferraz, M P

    2014-05-01

    Nanohydroxyapatite (nanoHA), due to its chemical properties, has appeared as an exceptionally promising bioceramic to be used as bone regeneration material. Staphylococcus epidermidis have emerged as major nosocomial pathogens associated with infections of implanted medical devices. In this work, the purpose was to study the influence of the nanoHA surface characteristics on S. epidermidis RP62A biofilm formation. Therefore, two different initial inoculum concentrations (Ci) were used in order to check if these would affect the biofilm formed on the nanoHA surfaces. Biofilm formation was followed by the enumeration of cultivable cells and by scanning electron microscopy. Surface topography, contact angle, total surface area and porosimetry of the biomaterials were studied and correlated with the biofilm data. The surface of nanoHA sintered at 830 (nanoHA830) showed to be more resistant to S. epidermidis attachment and accumulation than that of nanoHA sintered at 1000 (nanoHA1000). The biofilm formed on nanoHA830 presented differences in terms of structure, surface coverage and EPS production when compared to the one formed on nanoHA1000 surface. It was observed that topography and surface area of nanoHA surfaces had influence on the bacterial attachment and accumulation. Ci influenced bacteria attachment and accumulation on nanoHA surfaces over time. The choice of the initial inoculum concentration was relevant proving to have an effect on the extent of adherence thus being a critical point for human health if these materials are used in implantable devices. This study showed that the initial inoculum concentration and surface material properties determine the rate of microbial attachment to substrata and consequently are related to biofilm-associated infections in biomaterials.

  14. Rapid depletion of dissolved oxygen in 96-well microtiter plate Staphylococcus epidermidis biofilm assays promotes biofilm development and is influenced by inoculum cell concentration.

    PubMed

    Cotter, John J; O'Gara, James P; Casey, Eoin

    2009-08-01

    Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96-well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96-well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model.

  15. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca

    2013-11-15

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimensmore » without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.« less

  16. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-12-01

    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

  17. Hydrophilicity of dentin bonding systems influences in vitro Streptococcus mutans biofilm formation

    PubMed Central

    Brambilla, Eugenio; Ionescu, Andrei; Mazzoni, Annalisa; Cadenaro, Milena; Gagliani, Massimo; Ferraroni, Monica; Tay, Franklin; Pashley, David; Breschi, Lorenzo

    2014-01-01

    Objectives To evaluate in vitro Streptococcus mutans (S. mutans) biofilm formation on the surface of five light-curing experimental dental bonding systems (DBS) with increasing hydrophilicity. The null hypothesis tested was that resin chemical composition and hydrophilicity does not affect S. mutans biofilm formation. Methods Five light-curing versions of experimental resin blends with increasing hydrophilicity were investigated (R1, R2, R3, R4 and R5). R1 and R2 contained ethoxylated BisGMA/TEGDMA or BisGMA/TEGDMA, respectively, and were very hydrophobic, were representative of pit-and-fissure bonding agents. R3 was representative of a typical two-step etch- and-rinse adhesive, while R4 and R5 were very hydrophilic resins analogous to self-etching adhesives. Twenty-eight disks were prepared for each resin blend. After a 24 h-incubation at 37 °C, a multilayer monospecific biofilm of S. mutans was obtained on the surface of each disk. The adherent biomass was determined using the MTT assay and evaluated morphologically with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Results R2 and R3 surfaces showed the highest biofilm formation while R1 and R4 showed a similar intermediate biofilm formation. R5 was more hydrophilic and acidic and was significantly less colonized than all the other resins. A significant quadratic relationship between biofilm formation and hydrophilicity of the resin blends was found. CLSM and SEM evaluation confirmed MTT assay results. Conclusions The null hypothesis was rejected since S. mutans biofilm formation was influenced by hydrophilicity, surface acidity and chemical composition of the experimental resins. Further studies using a bioreactor are needed to confirm the results and clarify the role of the single factors. PMID:24954666

  18. Bacterial interactions in dental biofilm development.

    PubMed

    Hojo, K; Nagaoka, S; Ohshima, T; Maeda, N

    2009-11-01

    Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.

  19. Proteomic regulation during Legionella pneumophila biofilm development: decrease of virulence factors and enhancement of response to oxidative stress.

    PubMed

    Khemiri, Arbia; Lecheheb, Sandra Ahmed; Chi Song, Philippe Chan; Jouenne, Thierry; Cosette, Pascal

    2014-06-01

    Legionella pneumophila (L. pneumophila) is a Gram-negative bacterium, which can be found worldwide in aquatic environments. It tends to persist because it is often protected within biofilms or amoebae. L. pneumophila biofilms have a major impact on water systems, making the understanding of the bacterial physiological adaptation in biofilms a fundamental step towards their eradication. In this study, we report for the first time the influence of the biofilm mode of growth on the proteome of L. pneumophila. We compared the protein patterns of microorganisms grown as suspensions, cultured as colonies on agar plates or recovered with biofilms formed on stainless steel coupons. Statistical analyses of the protein expression data set confirmed the biofilm phenotype specificity which had been previously observed. It also identified dozens of proteins whose abundance was modified in biofilms. Proteins corresponding to virulence factors (macrophage infectivity potentiator protein, secreted proteases) were largely repressed in adherent cells. In contrast, a peptidoglycan-associated lipoprotein (Lpg2043) and a peroxynitrite reductase (Lpg2965) were accumulated by biofilm cells. Remarkably, hypothetical proteins, that appear to be unique to the Legionella genus (Lpg0563, Lpg1111 and Lpg1809), were over-expressed by sessile bacteria.

  20. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response.

    PubMed

    de Carvalho Dias, Kassia; Barbugli, Paula Aboud; de Patto, Fernanda; Lordello, Virginia Barreto; de Aquino Penteado, Letícia; Medeiros, Alexandra Ivo; Vergani, Carlos Eduardo

    2017-06-30

    The objective of this study was to better understand the effects of soluble factors from biofilm of single- and mixed-species Candida albicans (C. albicans) and methicillin-sensitive Staphylococcus aureus (MSSA) cultures after 36 h in culture on keratinocytes (NOK-si and HaCaT) and macrophages (J774A.1). Soluble factors from biofilms of C. albicans and MSSA were collected and incubated with keratinocytes and macrophages, which were subsequently evaluated by cell viability assays (MTT). Lactate dehydrogenase (LDH) enzyme release was measured to assess cell membrane damage to keratinocytes. Cells were analysed by brightfield microscopy after 2 and 24 h of exposure to the soluble factors from biofilm. Cell death was detected by labelling apoptotic cells with annexin V and necrotic cells with propidium iodide (PI) and was visualized via fluorescence microscopy. Soluble factors from biofilm were incubated with J774A.1 cells for 24 h; the subsequent production of NO and the cytokines IL-6 and TNF-α was measured by ELISA. The cell viability assays showed that the soluble factors of single-species C. albicans cultures were as toxic as the soluble factors from biofilm of mixed cultures, whereas the soluble factors of MSSA cultures were less toxic than those of C. albicans or mixed cultures. The soluble factors from biofilm of mixed cultures were the most toxic to the NOK-si and HaCaT cells, as confirmed by analyses of PI labelling and cell morphology. Soluble factors from biofilm of single-species MSSA and mixed-species cultures induced the production of IL-6, NO and TNF-α by J744A.1 macrophages. The production of IL-6 and NO induced by the soluble factors from biofilm of mixed cultures was lower than that induced by the soluble factors from biofilm of single-species MSSA cultures, whereas the soluble factors from biofilm of C. albicans cultures induced only low levels of NO. Soluble factors from 36-h-old biofilm of C. albicans and MSSA cultures promoted cell death and

  1. [Influence of slime production and adhesion of Candida sp. on biofilm formation].

    PubMed

    Ciok-Pater, Emilia; Smolak, Przemysław; Wróblewska, Joanna; Gospodarek, Eugenia

    2011-01-01

    The increase of fungal infections in recent years is connected with the progress in medicine. The vast usage of biomaterials is an inseparable element of contemporary medicine but it also leads to development of infections. Yeast-like fungi Candida albicans are still the main pathogen of candidiasis. The ability to slime production and adhesion to polystyrene of Candida sp. on different surfaces can cause to form biofilm on surfaces of biomaterials used in production of catheters, drains and prosthesis. The aim of the study was to evaluate the influence of slime production and adhesion to polystyrene, of Candida sp. on biofilm formation on different biomaterials. 50 strains of Candida sp. were examined. They isolated from ill to Clinics of Anesthesiology and Intensive Therapy University Hospital No 1 of dr. A. Jurasza in Bydgoszcz. The ability to slime production was evaluated by Christensen method in modification Davenport and Branchini methods. The adhesion to polystyrene was evaluated by Richards et el method. The ability to produce biofilm biomaterials by the studied fungi was measured after 72 hours of incubation at 37 degrees C on different biomaterials. Yeast-like fungi Candida sp. fabricating slime and adhesion forming frequently biofilm on surface researched of biomaterials. Influence of chosen biological specificity ascertain on the ability to produce biofilm on surfaces of siliconized latex and polyvinylchloride.

  2. [The yeast biofilm in human medicine].

    PubMed

    Růzicka, Filip; Holá, Veronika; Votava, Miroslav

    2007-08-01

    In recent years, the role of Candida yeasts as causative agents of nosocomial infections has increased. One of the important virulence factors contributing to the development of such infections is biofilm production. This virulence factor enables yeast to colonize both native surfaces and artificial implants. The most common sources of infection are patients themselves, in particular the gastrointestinal tract and skin. The vectors of exogenous yeast infections are predominantly the hands of the health personnel and contaminated medical instruments. The adhesion of yeasts to the implant surfaces is determined both by implant surface and yeast characteristics. This is followed by proliferation and production of microcolonies and extracellular matrix. The final biofilm structure is also influenced by the production of hyphae and pseudohyphae. The entire process of biofilm production is controlled by numerous regulatory systems, with the key role being played by the quorum sensing system. Like the adhered bacterial cultures, candidas growing in the form of a biofilm are highly resistant to antimicrobial therapy. Resistance of yeast biofilms to antifungals is a complex process with multiple contributing factors. These are especially increased gene expression (e.g. genes encoding the so called multidrug efflux pumps), limited penetration of substances through the extracellular matrix, inhibited cell growth and altered microenvironment in deeper biofilm layers. The concentrations of antifungals able to effectively affect the biofilm cells exceed, by several orders of magnitude, the values of conventionally determined MICs. High biofilm resistance results in ineffective antifungal therapy of biofilm infections. Therefore, if possible, the colonized implant should be removed. Conservative therapy should involve antifungals with a proven effect on the biofilm (e.g. caspofungin). The most effective measure in fighting biofilm infections is prevention, especially adhering to

  3. Candida tropicalis biofilm and human epithelium invasion is highly influenced by environmental pH.

    PubMed

    Ferreira, Carina; Gonçalves, Bruna; Vilas Boas, Diana; Oliveira, Hugo; Henriques, Mariana; Azeredo, Joana; Silva, Sónia

    2016-11-01

    The main goal of this study was to investigate the role of pH on Candida tropicalis virulence determinants, namely the ability to form biofilms and to colonize/invade reconstituted human vaginal epithelia. Biofilm formation was evaluated by enumeration of cultivable cells, total biomass quantification and structural analysis by scanning electron microscopy and confocal laser scanning microscopy. Candida tropicalis human vaginal epithelium colonization and invasiveness were examined qualitatively by epifluorescence microscopy and quantitatively by a novel quantitative real-time PCR protocol for Candida quantification in tissues. The results revealed that environmental pH influences C. tropicalis biofilm formation as well as the colonization and potential to invade human epithelium with intensification at neutral and alkaline conditions compared to acidic conditions. For the first time, we have demonstrated that C. tropicalis biofilm formation and invasion is highly influenced by environmental pH. © Crown copyright 2016.

  4. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE PAGES

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.; ...

    2018-03-20

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  5. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    PubMed Central

    Moon, JiWon; Veach, Allison M.; Mosher, Jennifer J.; Wymore, Ann M.; van Nostrand, Joy D.; Zhou, Jizhong; Hazen, Terry C.; Arkin, Adam P.; Elias, Dwayne A.

    2018-01-01

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion of the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems. PMID:29558522

  6. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  7. The influence of Brazilian plant extracts on Streptococcus mutans biofilm.

    PubMed

    Barnabé, Michele; Saraceni, Cíntia Helena Coury; Dutra-Correa, Maristela; Suffredini, Ivana Barbosa

    2014-01-01

    Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry.

  8. The influence of Brazilian plant extracts on Streptococcus mutans biofilm

    PubMed Central

    BARNABÉ, Michele; SARACENI, Cíntia Helena Coury; DUTRA-CORREA, Maristela; SUFFREDINI, Ivana Barbosa

    2014-01-01

    Nineteen plant extracts obtained from plants from the Brazilian Amazon showed activity against planktonic Streptococcus mutans, an important bacterium involved in the first steps of biofilm formation and the subsequent initiation of several oral diseases. Objective Our goal was to verify whether plant extracts that showed activity against planktonic S. mutans could prevent the organization of or even disrupt a single-species biofilm made by the same bacteria. Material and Methods Plant extracts were tested on a single-bacteria biofilm prepared using the Zürich method. Each plant extract was tested at a concentration 5 times higher than its minimum inhibitory concentration (MIC). Discs of hydroxyapatite were submersed overnight in brain-heart infusion broth enriched with saccharose 5%, which provided sufficient time for biofilm formation. The discs were then submersed in extract solutions for one minute, three times per day, for two subsequent days. The discs were then washed with saline three times, at ten seconds each, after each treatment. Supports were allowed to remain in the enriched medium for one additional night. At the end of the process, the bacteria were removed from the discs by vortexing and were counted. Results Only two of 19 plant extracts showed activity in the present assay: EB1779, obtained from Dioscorea altissima, and EB1673, obtained from Annona hypoglauca. Although the antibacterial activity of the plant extracts was first observed against planktonic S. mutans, influence over biofilm formation was not necessarily observed in the biofilm model. The present results motivate us to find new natural products to be used in dentistry. PMID:25466471

  9. Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm

    NASA Astrophysics Data System (ADS)

    Volk, Elazar; Iden, Sascha C.; Furman, Alex; Durner, Wolfgang; Rosenzweig, Ravid

    2016-08-01

    Understanding the influence of attached microbial biomass on water flow in variably saturated soils is crucial for many engineered flow systems. So far, the investigation of the effects of microbial biomass has been mainly limited to water-saturated systems. We have assessed the influence of biofilms on the soil hydraulic properties under variably saturated conditions. A sandy soil was incubated with Pseudomonas Putida and the hydraulic properties of the incubated soil were determined by a combination of methods. Our results show a stronger soil water retention in the inoculated soil as compared to the control. The increase in volumetric water content reaches approximately 0.015 cm3 cm-3 but is only moderately correlated with the carbon deficit, a proxy for biofilm quantity, and less with the cell viable counts. The presence of biofilm reduced the saturated hydraulic conductivity of the soil by up to one order of magnitude. Under unsaturated conditions, the hydraulic conductivity was only reduced by a factor of four. This means that relative water conductance in biofilm-affected soils is higher compared to the clean soil at low water contents, and that the unsaturated hydraulic conductivity curve of biofilm-affected soil cannot be predicted by simply scaling the saturated hydraulic conductivity. A flexible parameterization of the soil hydraulic functions accounting for capillary and noncapillary flow was needed to adequately describe the observed properties over the entire wetness range. More research is needed to address the exact flow mechanisms in biofilm-affected, unsaturated soil and how they are related to effective system properties.

  10. Characterization of the effect of serum and chelating agents on Staphylococcus aureus biofilm formation; chelating agents augment biofilm formation through clumping factor B

    NASA Astrophysics Data System (ADS)

    Abraham, Nabil Mathew

    Staphylococcus aureus is the causative agent of a diverse array of acute and chronic infections, and some these infections, including infective endocarditis, joint infections, and medical device-associated bloodstream infections, depend upon its capacity to form tenacious biofilms on surfaces. Inserted medical devices such as intravenous catheters, pacemakers, and artificial heart valves save lives, but unfortunately, they can also serve as a substrate on which S. aureus can form a biofilm, attributing S. aureus as a leading cause of medical device-related infections. The major aim of this work was take compounds to which S. aureus would be exposed during infection and to investigate their effects on its capacity to form a biofilm. More specifically, the project investigated the effects of serum, and thereafter of catheter lock solutions on biofilm formation by S. aureus. Pre-coating polystyrene with serum is frequently used as a method to augment biofilm formation. The effect of pre-coating with serum is due to the deposition of extracellular matrix components onto the polystyrene, which are then recognized by MSCRAMMs. We therefore hypothesized that the major component of blood, serum, would induce biofilm formation. Surprisingly, serum actually inhibited biofilm formation. The inhibitory activity was due to a small molecular weight, heat-stable, non-proteinaceous component/s of serum. Serum-mediated inhibition of biofilm formation may represent a previously uncharacterized aspect of host innate immunity that targets the expression of a key bacterial virulence factor: the ability to establish a resistant biofilm. Metal ion chelators like sodium citrate are frequently chosen to lock intravenous catheters because they are regarded as potent inhibitors of bacterial biofilm formation and viability. We found that, while chelating compounds abolished biofilm formation in most strains of S. aureus, they actually augmented the phenotype in a subset of strains. We

  11. Integration host factor is important for biofilm formation by Salmonella enterica Enteritidis.

    PubMed

    Leite, Bruna; Werle, Catierine Hirsch; Carmo, Camila Pinheiro do; Nóbrega, Diego Borin; Milanez, Guilherme Paier; Culler, Hebert Fabricio; Sircili, Marcelo Palma; Alvarez-Martinez, Cristina E; Brocchi, Marcelo

    2017-08-31

    Salmonella enterica Enteritidis forms biofilms and survives in agricultural environments, infecting poultry and eggs. Bacteria in biofilms are difficult to eradicate compared to planktonic cells, causing serious problems in industry and public health. In this study, we evaluated the role of ihfA and ihfB in biofilm formation by S. enterica Enteritidis by employing different microbiology techniques. Our data indicate that ihf mutant strains are impaired in biofilm formation, showing a reduction in matrix formation and a decrease in viability and metabolic activity. Phenotypic analysis also showed that deletion of ihf causes a deficiency in curli fimbriae expression, cellulose production and pellicle formation. These results show that integration host factor has an important regulatory role in biofilm formation by S. enterica Enteritidis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva

    PubMed Central

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-01-01

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis. The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis. The low icorr and high Rt in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis. PMID:28772615

  13. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva.

    PubMed

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-03-03

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis . The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis . The low i corr and high R t in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis .

  14. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    PubMed

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  15. Influence of incubation temperature on biofilm formation and corrosion of carbon steel by Serratia marcescens

    NASA Astrophysics Data System (ADS)

    Harimawan, Ardiyan; Devianto, Hary; Kurniawan, Ignatius Chandra; Utomo, Josephine Christine

    2017-01-01

    Microbial induced corrosion (MIC) or biocorrosion is one type of corrosion, directly or indirectly influenced by microbial activities, by forming biofilm and adhering on the metal surface. When forming biofilm, the microorganisms can produce extracellular products which influence the cathodic and anodic reactions on metal surfaces. This will result in electrochemical changes in the interface between the biofilm and the metal surface, leading to corrosion and deterioration of the metal. MIC might be caused by various types of microorganism which leads to different corrosion mechanism and reaction kinetics. Furthermore, this process will also be influenced by various environmental conditions, such as pH and temperature. This research is aimed to determine the effect of incubation temperature on corrosion of carbon steel caused by Serratia marcescens in a mixture solution of synthetic seawater with Luria Bertani medium with a ratio of 4:1. The incubation was performed for 19 days with incubation temperature of 30, 37, and 50°C. The analyses of biofilm were conducted by total plate count (TPC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Biofilm was found to be evenly growth on the surface and increasing with increasing incubation temperature. It consists of functional group of alcohol, alkane, amine, nitro, sulfate, carboxylic acid, and polysulfide. The analyses of the corrosion were conducted by gravimetric and X-ray diffraction (XRD). Higher incubation temperature was found to increase the corrosion rate. However, the corrosion products were not detected by XRD analysis.

  16. Corrosion influencée par les micro-organismes : influence du biofilm sur la corrosion des aciers, techniques et résultats recents

    NASA Astrophysics Data System (ADS)

    Feugeas, F.; Magnin, J. P.; Cornet, A.; Rameau, J. J.

    1997-03-01

    Microbiologically Influenced Corrosion (M.I.C.) studied since the beginning of this century, is responsible for the degradation of many metallic equipments. This study is a review of results dealing with M.I.C. on several types of steels as: carbon steels, stainless steels, welded steels and covered steels. M.I.C. occurs only in presence of a biofilm. The first part of this study describes chemical and physical factors involved in its development, technical methods for studying biofilms, and its contribution in the corrosion process. The second part is devoted to the study of M.I.C. cases linked with metal nature and different aqueous environments and the last part reviews the mainly mecanisms of biocorrosion. La Corrosion Influencée par les Micro-organismes (C.I.M.) ou biocorrosion, phénomène étudié depuis le début du siècle, est responsable de la dégradation d'un grand nombre d'ouvrages métalliques. Cette étude a pour but de faire le point des connaissances sur la corrosion influencée microbiologiquement de divers types d'aciers au carbone, d'aciers inoxydables, d'assemblages soudés et d'aciers revêtus. La C.I.M. n'apparaît qu'en présence d'un biofilm. La première partie de cette étude décrit les facteurs physico-chimiques impliqués dans la formation du biofilm, ces moyens d'études ainsi que son action dans le processus de biocorrosion. La seconde partie est consacrée à la description des cas de biocorrosion classés en fonction de la nature des métaux et des milieux avec lesquels ils sont en contact. La dernière partie de ce document passe en revue les principaux mécanismes de biocorrosion décrits.

  17. Biofilm in endodontics: A review

    PubMed Central

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  18. Influence of phosphorus availability on the community structure and physiology of cultured biofilms.

    PubMed

    Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai

    2016-04-01

    Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6 mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water. Copyright © 2015. Published by Elsevier B.V.

  19. Biofilm formation of Francisella noatunensis subsp. orientalis

    USGS Publications Warehouse

    Soto, Esteban; Halliday-Wimmonds, Iona; Francis , Stewart; Kearney, Michael T.; Hansen, John D.

    2015-01-01

    Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen in both marine and fresh water environments. The bacterium is suspected to persist in the environment even without the presence of a suitable fish host. In the present study, the influence of different abiotic factors such as salinity and temperature were used to study the biofilm formation of different isolates of Fno including intracellular growth loci C (iglC)and pathogenicity determinant protein A (pdpA) knockout strains. Finally, we compared the susceptibility of planktonic and biofilm to three disinfectants used in the aquaculture and ornamental fish industry, namely Virkon®, bleach and hydrogen peroxide. The data indicates that Fno is capable of producing biofilms within 24 h where both salinity as well as temperature plays a role in the growth and biofilm formation of Fno. Mutations in theiglC or pdpA, both known virulence factors, do not appear to affect the capacity of Fno to produce biofilms, and the minimum inhibitory concentration, and minimum biocidal concentration for the three disinfectants were lower than the minimum biofilm eradication concentration values. This information needs to be taken into account if trying to eradicate the pathogen from aquaculture facilities or aquariums.

  20. Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea

    PubMed Central

    Orell, Alvaro; Peeters, Eveline; Vassen, Victoria; Jachlewski, Silke; Schalles, Sven; Siebers, Bettina; Albers, Sonja-Verena

    2013-01-01

    Like bacteria, archaea predominately exist as biofilms in nature. However, the environmental cues and the molecular mechanisms driving archaeal biofilm development are not characterized. Here we provide data suggesting that the transcriptional regulators belonging to the Lrs14-like protein family constitute a key regulatory factor during Sulfolobus biofilm development. Among the six lrs14-like genes encoded by Sulfolobus acidocaldarius, the deletion of three led to markedly altered biofilm phenotypes. Although Δsaci1223 and Δsaci1242 deletion mutants were impaired in biofilm formation, the Δsaci0446 deletion strain exhibited a highly increased extracellular polymeric substance (EPS) production, leading to a robust biofilm structure. Moreover, although the expression of the adhesive pili (aap) genes was upregulated, the genes of the motility structure, the archaellum (fla), were downregulated rendering the Δsaci0446 strain non-motile. Gel shift assays confirmed that Saci0446 bound to the promoter regions of fla and aap thus controlling the expression of both cell surface structures. In addition, genetic epistasis analysis using Δsaci0446 as background strain identified a gene cluster involved in the EPS biosynthetic pathway of S. acidocaldarius. These results provide insights into both the molecular mechanisms that govern biofilm formation in Crenarchaea and the functionality of the Lrs14-like proteins, an archaea-specific class of transcriptional regulators. PMID:23657363

  1. The influence of oral Veillonella species on biofilms formed by Streptococcus species.

    PubMed

    Mashima, Izumi; Nakazawa, Futoshi

    2014-08-01

    Oral Veillonella, Veillonella atypica, Veillonella denticariosi, Veillonella dispar, Veillonella parvula, Veillonella rogosae, and Veillonella tobetsuensis are known as early colonizers in oral biofilm formation. To investigate the role of oral Veillonella, biofilms formed by the co-culture of Streptococcus gordonii, Streptococcus mutans, Streptococcus salivarius, or Streptococcus sanguinis, with oral Veillonella were examined at the species level. The amount of biofilm formed by S. mutans, S. gordonii, and S. salivarius in the presence of the six Veillonella species was greater than that formed in the control experiments, with the exception of S. mutans with V. dispar. In contrast, in the case of biofilm formation by S. sanguinis, the presence of Veillonella species reduced the amount of the biofilm, with the exception of V. parvula and V. dispar. The time-dependent changes in the amount of biofilm and the number of planktonic cells were grouped into four patterns over the 24 combinations. Only that of S. gordonii with V. tobetsuensis showed a unique pattern. These results indicate that the mode of action of this combination differed from that of the other combinations with respect to biofilm formation. It is possible that there may be several factors involved in the interaction between Streptococcus and Veillonella species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm.

    PubMed

    Florez Salamanca, E J; Klein, M I

    2018-04-01

    Caries etiology is biofilm-diet-dependent. Biofilms are highly dynamic and structured microbial communities enmeshed in a three-dimensional extracellular matrix. The study evaluated the expression dynamics of Streptococcus mutans genes associated with exopolysaccharides (EPS) (gtfBCD, gbpB, dexA), lipoteichoic acids (LTA) (dltABCD, SMU_775c) and extracellular DNA (eDNA) (lytST, lrgAB, ccpA) during matrix development within a mixed-species biofilm of S. mutans, Actinomyces naeslundii and Streptococcus gordonii. Mixed-species biofilms using S. mutans strains UA159 or ΔgtfB formed on saliva-coated hydroxyapatite discs were submitted to a nutritional challenge (providing an abundance of sucrose and starch). Biofilms were removed at eight developmental stages for gene expression analysis by quantitative polymerase chain reaction. The pH of spent culture media remained acidic throughout the experimental periods, being lower after sucrose and starch exposure. All genes were expressed at all biofilm developmental phases. EPS- and LTA-associated genes had a similar expression profile for both biofilms, presenting lower levels of expression at 67, 91 and 115 hours and a peak of expression at 55 hours, but having distinct expression magnitudes, with lower values for ΔgtfB (eg, fold-difference of ~382 for gtfC and ~16 for dltB at 43 hours). The eDNA-associated genes presented different dynamics of expression between both strains. In UA159 biofilms lrgA and lrgB genes were highly expressed at 29 hours (which were ~13 and ~5.4 times vs ΔgtfB, respectively), whereas in ΔgtfB biofilms an inverse relationship between lytS and lrgA and lrgB expression was detected. Therefore, the deletion of gtfB influences dynamics and magnitude of expression of genes associated with matrix main components. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    NASA Astrophysics Data System (ADS)

    France, Danielle Cook

    2016-09-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  4. Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms.

    PubMed

    Dranguet, P; Le Faucheur, S; Cosio, C; Slaveykova, V I

    2017-01-25

    Mercury (Hg) is a pollutant of high concern for aquatic systems due to the biomagnification of its methylated form along the food chain. However, in contrast to other metals, gaining knowledge of its bioavailable forms for aquatic microorganisms remains challenging, making Hg risk assessment difficult. Ubiquitous and sessile freshwater biofilms are well known to accumulate and to transform Hg present in their ambient environment. The present study thus aims to evaluate whether non-extractable (proxy of intracellular) Hg accumulated by biofilms could be a good indicator of Hg bioavailability for microorganisms in freshwater. To that end, the link between Hg concentration and speciation, as well as biofilm composition (percentage of abiotic, biotic, chlorophyll and phycocyanin-fractions and abundance of dsrA, gcs, merA and hgcA bacterial genes) and biofilm Hg accumulation was examined. The studied biofilms were grown on artificial substrata in four reservoirs along the Olt River (Romania), which was contaminated by Hg coming from chlor-alkali plant effluents. The 0.45 μm-filterable Hg concentrations in ambient waters were measured and inorganic IHg speciation was modelled. Biofilms were analyzed for their non-extractable IHg and methylmercury (MeHg) contents as well as for their composition. The non-extractable IHg content was related, but not significantly, to the concentration of total IHg (r 2 = 0.88, p = 0.061) whereas a significant correlation was found with the predicted IHg concentration that is not bound to dissolved organic matter (r 2 = 0.95, p = 0.027), despite its extremely low concentrations (10 -25 M), showing a limitation of the thermodynamic Hg modelling to predict Hg bioavailability. The studied biofilms were different in biomass and composition and a principal component analysis showed that the non-extractable IHg content correlated with the abundance of the merA and hgcA genes, while MeHg accumulation was only linked with the abundance of the r

  5. Influence of the oscillation frequency of different side-to-side toothbrushes on noncontact biofilm removal.

    PubMed

    Schmidt, Julia C; Astasov-Frauenhoffer, Monika; Waltimo, Tuomas; Weiger, Roland; Walter, Clemens

    2018-01-22

    The objective of this study was to investigate the influence of different oscillation frequencies of three powered toothbrushes with side-to-side action for noncontact biofilm removal in an artificial interdental space model. A three-species biofilm (Porphyromonas gingivalis, Fusobacterium nucleatum and Streptococcus sanguinis) was formed in vitro on protein-coated titanium disks using a flow chamber system combined with a static biofilm growth model. The oscillation frequencies of three commercial side-to-side toothbrushes were evaluated by means of a dose response. The frequency was decreased in steps (100, 85, 70, 55, and 40%). Subsequently, the biofilm-coated substrates were exposed to the side-to-side toothbrushes. The biofilm volumes were measured using volumetric analyses (Imaris 8.1.2) with confocal laser scanning microscope images (Zeiss LSM700). Compared to maximum oscillation frequency (100%), lower oscillation frequencies (up to 40%) resulted in reduced median percentages of biofilm reduction (median biofilm reduction up to 53% for maximum oscillation frequency, and up to 13% for 40% oscillation frequency) (p ≥ 0.03). In addition, decreasing the oscillation frequencies of the side-to-side toothbrushes showed an enhanced variety in the results of repeated experiments. The oscillation frequency of the tested side-to-side toothbrushes affected the biofilm reduction in an interdental space model. Within a toothbrush, higher oscillation frequencies may lead to beneficial effects on interdental biofilm removal by noncontact brushing.

  6. Influence of substrate micropatterning on biofilm growth

    NASA Astrophysics Data System (ADS)

    Koehler, Stephan; Li, Yiwei; Liu, Bi-Feng Liu; Weitz, David

    2015-11-01

    We culture triple reporter Bacillus Subtilis biofilm on micropatterned agar substrates. We track the biofilm development in terms of size, thickness, shape, and phenotype expression. For a tiling composed of elevated rectangles, we observe the biofilm develops an oval shape or triangular shape depending on the rectangle's aspect ratio and orientation. The motile cells are primarily located in the valleys between the rectangles and the matrix producing cells are mostly located on the rectangles. Wrinkles form at the edges of the elevated surfaces, and upon merging form channels centered on the elevated surface. After a few days, the spore-forming cells appear at the periphery. Since biofilms in nature grow on irregular surfaces, our work may provide insight into the complex patterns observed.

  7. Periphyton biofilms influence net methylmercury production in an industrially contaminated system

    DOE PAGES

    Olsen, Todd Andrew; Brandt, Craig C.; Brooks, Scott C.

    2016-09-12

    Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from East Fork Poplar Creek, Tennessee, USA (EFPC) were measured during 2014-2015 using stable Hg isotopic rate assays. 201Hg II and MM 202Hg were added to intact periphyton samples and the formation of MM 201Hg and loss of MM 202Hg were monitored over time and used to calculate first-order rate constants for methylation and demethylation, respectively. The influence of location, temperature/season, light exposure and biofilm structure on methylation and demethylation were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven bymore » differences in the demethylation rate constant (k d). In contrast, the within-site seasonal difference in net methylation was driven by changes in the methylation rate constant (k m). Samples incubated in the dark had lower net methylation due to km values that were 60% less than those incubated in the light. Disrupting the biofilm structure decreased km by 50% and resulted in net demethylating conditions. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 27-85% of the MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.« less

  8. Neutrophil extracellular trap formation in supragingival biofilms.

    PubMed

    Hirschfeld, Josefine; Dommisch, Henrik; Skora, Philipp; Horvath, Gabor; Latz, Eicke; Hoerauf, Achim; Waller, Tobias; Kawai, Toshihisa; Jepsen, Søren; Deschner, James; Bekeredjian-Ding, Isabelle

    2015-01-01

    Oral biofilms are the causative agents of the highly prevalent oral diseases periodontitis and caries. Additionally, the host immune response is thought to play a critical role in disease onset. Neutrophils are known to be a key host response factor to bacterial challenge on host surfaces. Release of neutrophil extracellular traps (NETs) as a novel antimicrobial defense strategy has gained increasing attention in the past years. Here, we investigated the influx of neutrophils into the dental plaque and the ability of oral bacteria to trigger intra-biofilm release of NETs and intracellular proteins. Supragingival biofilms and whole saliva were sampled from systemically healthy subjects participating in an experimental gingivitis study. Biofilms were analysed by immunofluorescence followed by confocal and fluorescence microscopy. Moreover, concentrations of cytokines and immune-associated proteins in biofilm suspensions and saliva were assessed by ELISA. Neutrophils obtained from blood were stimulated with twelve bacterial species isolated from cultured biofilms or with lipopolysaccharide to monitor NET formation. Neutrophils, NETs, neutrophil-associated proteins (myeloperoxidase, elastase-2, cathepsin G, cathelicidin LL-37), interleukin-8, interleukin-1β and tumor necrosis factor were detected within plaque samples and saliva. All tested bacterial species as well as the polymicrobial samples isolated from the plaque of each donor induced release of NETs and interleukin-8. The degree of NET formation varied among different subjects and did not correlate with plaque scores or clinical signs of local inflammation. Our findings indicate that neutrophils are attracted towards dental biofilms, in which they become incorporated and where they are stimulated by microbes to release NETs and immunostimulatory proteins. Thus, neutrophils and NETs may be involved in host biofilm control, although their specific role needs to be further elucidated. Moreover, inter

  9. Microbial Activity Influences Electrical Conductivity of Biofilm Anode

    EPA Science Inventory

    This study assessed the conductivity of a Geobacter-enriched biofilm anode along with biofilm activity in a microbial electrochemical cell (MxC) equipped with two gold anodes (25 mM acetate medium), as different proton gradients were built throughout the biofilm. There was no pH ...

  10. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    NASA Astrophysics Data System (ADS)

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  11. Antimicrobial Tolerance in Biofilms

    PubMed Central

    Stewart, Philip S.

    2015-01-01

    The tolerance of microorganisms in biofilms to antimicrobial agents is examined through a meta-analysis of literature data. A numerical tolerance factor comparing the rates of killing in the planktonic and biofilm states is defined to provide a quantitative basis for the analysis. Tolerance factors for biocides and antibiotics range over three orders of magnitude. This variation is not explained by taking into account the molecular weight of the agent, the chemistry of the agent, the substratum material, or the speciation of the microorganisms. Tolerance factors do depend on the areal cell density of the biofilm at the time of treatment and on the age of the biofilm as grown in a particular experimental system. This suggests that there is something that happens during biofilm maturation, either physical or physiological, that is essential for full biofilm tolerance. Experimental measurements of antimicrobial penetration times in biofilms range over orders of magnitude, with slower penetration (>12 min) observed for reactive oxidants and cationic molecules. These agents are retarded through the interaction of reaction, sorption, and diffusion. The specific physiological status of microbial cells in a biofilm contributes to antimicrobial tolerance. A conceptual framework for categorizing physiological cell states is discussed in the context of antimicrobial susceptibility. It is likely that biofilms harbor cells in multiple states simultaneously (e.g., growing, stress-adapted, dormant, inactive) and that this physiological heterogeneity is an important factor in the tolerance of the biofilm state. PMID:26185072

  12. Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic.

    PubMed

    Monteiro, Douglas Roberto; Takamiya, Aline Satie; Feresin, Leonardo Perina; Gorup, Luiz Fernando; de Camargo, Emerson Rodrigues; Delbem, Alberto Carlos Botazzo; Henriques, Mariana; Barbosa, Debora Barros

    2014-08-01

    Our aim in this study was to evaluate how the chemical stability of silver nanoparticles (SNs) influences their efficacy against Candida albicans and C. glabrata biofilms. Several parameters of SN stability were tested, namely, temperature (50ºC, 70ºC, and 100ºC), pH (5.0 and 9.0), and time of contact (5 h and 24 h) with biofilms. The control was defined as SNs without temperature treatment, pH 7, and 24 h of contact. These colloidal suspensions at 54 mg/L were used to treat mature Candida biofilms (48 h) formed on acrylic. Their efficacy was determined by total biomass and colony-forming unit quantification. Data were analyzed using analysis of variance and the Bonferroni post hoc test (α = 0.05). The temperature and pH variations of SNs did not affect their efficacy against the viable cells of Candida biofilms (P > 0.05). Moreover, the treatment periods were not decisive in terms of the susceptibility of Candida biofilms to SNs. These findings provide an important advantage of SNs that may be useful in the treatment of Candida-associated denture stomatitis. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Periphyton Biofilms Influence Net Methylmercury Production in an Industrially Contaminated System.

    PubMed

    Olsen, Todd A; Brandt, Craig C; Brooks, Scott C

    2016-10-18

    Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from the industrially contaminated East Fork Poplar Creek, Tennessee (EFPC) were measured during 2014-2016 using stable Hg isotopic rate assays. 201 Hg II and MM 202 Hg were added to intact periphyton samples in ambient streamwater and the formation of MM 201 Hg and loss of MM 202 Hg were monitored over time and used to calculate first-order rate potentials for methylation and demethylation. The influences of location, temperature/season, light exposure and biofilm structure on methylation and demethylation potentials were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven by differences in the demethylation rate potential (k d ). In contrast, the within-site temperature-dependent difference in net methylation was driven by changes in the methylation rate potential (k m ). Samples incubated in the dark had lower net methylation due to lower k m values than those incubated in the light. Disrupting the biofilm structure decreased k m and resulted in lower net methylation. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 3.71-7.88 mg d -1 MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.

  14. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    PubMed Central

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-01-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm. PMID:26846970

  15. Phenazine-1-carboxylic acid influences biofilm development and turnover of rhizobacterial biomass in a soil moisture-dependent manner

    USDA-ARS?s Scientific Manuscript database

    Rhizobacterial biofilm development influences terrestrial carbon and nitrogen cycles with ramifications for crop and soil health. Phenazine-1-carboxylic acid (PCA) is a redox-active metabolite produced by rhizobacteria in dryland wheat fields of Washington and Oregon, USA. PCA promotes biofilm dev...

  16. Unravelling the core microbiome of biofilms in cooling tower systems.

    PubMed

    Di Gregorio, L; Tandoi, V; Congestri, R; Rossetti, S; Di Pippo, F

    2017-11-01

    In this study, next generation sequencing and catalyzed reporter deposition fluorescence in situ hybridization, combined with confocal microscopy, were used to provide insights into the biodiversity and structure of biofilms collected from four full-scale European cooling systems. Water samples were also analyzed to evaluate the impact of suspended microbes on biofilm formation. A common core microbiome, containing members of the families Sphingomonadaceae, Comamonadaceae and Hyphomicrobiaceae, was found in all four biofilms, despite the water of each coming from different sources (river and groundwater). This suggests that selection of the pioneer community was influenced by abiotic factors (temperature, pH) and tolerances to biocides. Members of the Sphingomonadaceae were assumed to play a key role in initial biofilm formation. Subsequent biofilm development was driven primarily by light availability, since biofilms were dominated by phototrophs in the two studied 'open' systems. Their interactions with other microbial populations then shaped the structure of the mature biofilm communities analyzed.

  17. Statistical analysis of the factors that influenced the mechanical properties improvement of cassava starch films

    NASA Astrophysics Data System (ADS)

    Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle

    2017-08-01

    In order to obtain cassava starch films with improved mechanical properties in relation to the synthetic polymer in the packaging production, a complete factorial design 23 was carried out in order to investigate which factor significantly influences the tensile strength of the biofilm. The factors to be investigated were cassava starch, glycerol and modified clay contents. Modified bentonite clay was used as a filling material of the biofilm. Glycerol was the plasticizer used to thermoplastify cassava starch. The factorial analysis suggested a regression model capable of predicting the optimal mechanical property of the cassava starch film from the maximization of the tensile strength. The reliability of the regression model was tested by the correlation established with the experimental data through the following statistical analyse: Pareto graph. The modified clay was the factor of greater statistical significance on the observed response variable, being the factor that contributed most to the improvement of the mechanical property of the starch film. The factorial experiments showed that the interaction of glycerol with both modified clay and cassava starch was significant for the reduction of biofilm ductility. Modified clay and cassava starch contributed to the maximization of biofilm ductility, while glycerol contributed to the minimization.

  18. Transported biofilms and their influence on subsequent macrofouling colonization.

    PubMed

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  19. Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production.

    PubMed

    Tseng, Boo Shan; Majerczyk, Charlotte D; Passos da Silva, Daniel; Chandler, Josephine R; Greenberg, E Peter; Parsek, Matthew R

    2016-10-01

    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for

  20. Influence of the Culture Medium in Dose-Response Effect of the Chlorhexidine on Streptococcus mutans Biofilms

    PubMed Central

    de Queiroz, Vanessa Salvadego; Ccahuana-Vásquez, Renzo Alberto; Tedesco, Alcides Fabiano; Lyra, Luzia; Cury, Jaime Aparecido; Schreiber, Angélica Zaninelli

    2016-01-01

    The aim of this study was to evaluate the influence of culture medium on dose-response effect of chlorhexidine (CHX) on Streptococcus mutans UA159 biofilm and validate the use of the cation-adjusted-Müller-Hinton broth (MH) for the evaluation of antibacterial activity. Ultrafiltered Tryptone-Yeast Extract Broth (UTYEB) was compared against MH and MH with blood supplementation (MHS). For each medium, six groups (n = 4) were assessed: two negative control groups (baseline 48 and 120 h) and four experimental groups (0.0001, 0.001, 0.012, and 0.12% CHX). S. mutans biofilm grew on glass slides of each media containing 1% sucrose. After 48 h of growth, biofilms of baseline 48 h were collected and the other groups were treated for 1 min, twice a day, for 3 days, with their respective treatments. The media were changed daily and pH was measured. After 120 h, biofilms were collected and dry weight and viable microorganisms were determined. Results showed CHX dose-response effect being observed in all media for all the variables. However, MH and MHS showed higher sensitivity than UTYEB (p < 0.05). We can conclude that the culture medium does influence dose-response effect of CHX on Streptococcus mutans biofilm and that MH can be used for antibacterial activity. PMID:27293967

  1. Influence of type-I fimbriae and fluid shear stress on bacterial behavior and multicellular architecture of early Escherichia coli biofilms at single-cell resolution.

    PubMed

    Wang, Liyun; Keatch, Robert; Zhao, Qi; Wright, John A; Bryant, Clare E; Redmann, Anna L; Terentjev, Eugene M

    2018-01-12

    Biofilm formation on abiotic surfaces in food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine cellular architecture of early biofilms and bacterial behavior of the constituent cells remains largely unknown. In this study we examine the specific role of type-I fimbriae in nascent stages of biofilm formation and the response of micro-colonies to environmental flow shear at single-cell resolution. The results show that type-I fimbriae are not required for reversible adhesion from plankton, but critical for irreversible adhesion of Escherichia coli ( E.coli ) MG1655 forming biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing a firm cell-surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E.coli on the surface. After application of shear stress, bacterial retention is dominated by the 3D architecture of colonies independent of the population and the multi-layered structure could protect the embedded cells from being insulted by fluid shear, while cell membrane permeability mainly depends on the biofilm population and the duration time of the shear stress. Importance Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level, thus little is known about how individual bacterial behavior within biofilms and multicellular architecture are influenced by bacterial appendages (e.g. pili/fimbriae) and environmental factors during early biofilm formation. We apply Confocal Laser Scanning Microscopy (CLSM) to visualize E.coli micro-colonies at single-cell resolution. Our findings suggest that type-I fimbriae are vital to the initiation of bacterial proliferation on surfaces and that the responses of biofilm architecture and cell membrane permeability of constituent bacteria to fluid shear stress are different, which are

  2. Lipase, protease, and biofilm as the major virulence factors in staphylococci isolated from acne lesions.

    PubMed

    Saising, Jongkon; Singdam, Sudarat; Ongsakul, Metta; Voravuthikunchai, Supayang Piyawan

    2012-08-01

    Staphylococci involve infections in association with a number of bacterial virulence factors. Extracellular enzymes play an important role in staphylococcal pathogenesis. In addition, biofilm is known to be associated with their virulence. In this study, 149 staphylococcal isolates from acne lesions were investigated for their virulence factors including lipase, protease, and biofilm formation. Coagulase-negative staphylococci were demonstrated to present lipase and protease activities more often than coagulase-positive staphylococci. A microtiter plate method (quantitative method) and a Congo red agar method (qualitative method) were comparatively employed to assess biofilm formation. In addition, biofilm forming ability was commonly detected in a coagulase-negative group (97.7%, microtiter plate method and 84.7%, Congo red agar method) more frequently than in coagulase-positive organisms (68.8%, microtiter plate method and 62.5%, Congo red agar method). This study clearly confirms an important role for biofilm in coagulasenegative staphylococci which is of serious concern as a considerable infectious agent in patients with acnes and implanted medical devices. The Congo red agar method proved to be an easy method to quickly detect biofilm producers. Sensitivity of the Congo red agar method was 85.54% and 68.18% and accuracy was 84.7% and 62.5% in coagulase-negative and coagulase-positive staphylococci, respectively, while specificity was 50% in both groups. The results clearly demonstrated that a higher percentage of coagulasenegative staphylococci isolated from acne lesions exhibited lipase and protease activities, as well as biofilm formation, than coagulase-positive staphylococci.

  3. Influence of l-amino acids on aggregation and biofilm formation in Azotobacter chroococcum and Trichoderma viride.

    PubMed

    Velmourougane, K; Prasanna, R

    2017-10-01

    The effects of l-amino acids on growth and biofilm formation in Azotobacter chroococcum (Az) and Trichoderma viride (Tv) as single (Az, Tv) and staggered inoculated cultures (Az-Tv, Tv-Az) were investigated. A preliminary study using a set of 20 l-amino acids, identified 6 amino acids (l-Glu, l-Gln, l-His, l-Ser, l-Thr and l-Trp) which significantly enhanced growth and biofilm formation. Supplementation of these amino acids at different concentrations revealed that 40 mmol l -1 was most effective. l-Glu and l-Gln favoured planktonic growth in both single and in staggered inoculated cultures, while l-Trp and l-Thr, enhanced aggregation and biofilm formation. Addition of l-Glu or l-Gln increased carbohydrate content and planktonic population. Principal component analysis revealed the significant role of proteins in growth and biofilm formation, particularly with supplementation of l-Trp, l-Thr and l-Ser. Azotobacter was found to function better as biofilm under staggered inoculated culture with Trichoderma. The results illustrate that amino acids play crucial roles in microbial biofilm formation, by influencing growth, aggregation and carbohydrates synthesized. The differential and specific roles of amino acids on biofilm formation are of significance for agriculturally important micro-organisms that grow as biofilms, colonize and benefit the plants more effectively. © 2017 The Society for Applied Microbiology.

  4. An ecological perspective of Listeria monocytogenes biofilms in food processing facilities.

    PubMed

    Valderrama, Wladir B; Cutter, Catherine N

    2013-01-01

    Listeria monocytogenes can enter the food chain at virtually any point. However, food processing environments seem to be of particular importance. From an ecological point of view, food processing facilities are microbial habitats that are constantly disturbed by cleaning and sanitizing procedures. Although L. monocytogenes is considered ubiquitous in nature, it is important to recognize that not all L. monocytogenes strains appear to be equally distributed; the distribution of the organism seems to be related to certain habitats. Currently, no direct evidence exists that L. monocytogenes-associated biofilms have played a role in food contamination or foodborne outbreaks, likely because biofilm isolation and identification are not part of an outbreak investigation, or the definition of biofilm is unclear. Because L. monocytogenes is known to colonize surfaces, we suggest that contamination patterns may be studied in the context of how biofilm formation is influenced by the environment within food processing facilities. In this review, direct and indirect epidemiological and phenotypic evidence of lineage-related biofilm formation capacity to specific ecological niches will be discussed. A critical view on the development of the biofilm concept, focused on the practical implications, strengths, and weaknesses of the current definitions also is discussed. The idea that biofilm formation may be an alternative surrogate for microbial fitness is proposed. Furthermore, current research on the influence of environmental factors on biofilm formation is discussed.

  5. Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli

    PubMed Central

    Jackson, Debra W.; Suzuki, Kazushi; Oakford, Lawrence; Simecka, Jerry W.; Hart, Mark E.; Romeo, Tony

    2002-01-01

    The predominant mode of growth of bacteria in the environment is within sessile, matrix-enclosed communities known as biofilms. Biofilms often complicate chronic and difficult-to-treat infections by protecting bacteria from the immune system, decreasing antibiotic efficacy, and dispersing planktonic cells to distant body sites. While the biology of bacterial biofilms has become a major focus of microbial research, the regulatory mechanisms of biofilm development remain poorly defined and those of dispersal are unknown. Here we establish that the RNA binding global regulatory protein CsrA (carbon storage regulator) of Escherichia coli K-12 serves as both a repressor of biofilm formation and an activator of biofilm dispersal under a variety of culture conditions. Ectopic expression of the E. coli K-12 csrA gene repressed biofilm formation by related bacterial pathogens. A csrA knockout mutation enhanced biofilm formation in E. coli strains that were defective for extracellular, surface, or regulatory factors previously implicated in biofilm formation. In contrast, this csrA mutation did not affect biofilm formation by a glgA (glycogen synthase) knockout mutant. Complementation studies with glg genes provided further genetic evidence that the effects of CsrA on biofilm formation are mediated largely through the regulation of intracellular glycogen biosynthesis and catabolism. Finally, the expression of a chromosomally encoded csrA′-′lacZ translational fusion was dynamically regulated during biofilm formation in a pattern consistent with its role as a repressor. We propose that global regulation of central carbon flux by CsrA is an extremely important feature of E. coli biofilm development. PMID:11741870

  6. Influence of Calcium in Extracellular DNA Mediated Bacterial Aggregation and Biofilm Formation

    PubMed Central

    Koop, Leena; Wong, Yie Kuan; Ahmed, Safia; Siddiqui, Khawar Sohail; Manefield, Mike

    2014-01-01

    Calcium (Ca2+) has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA) being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca2+ and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca2+ binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca2+ had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca2+ at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG) values in iTC data confirmed that the interaction between DNA and Ca2+ is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca2+ alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca2+ to eDNA thereby mediating bacterial aggregation and biofilm formation. PMID:24651318

  7. Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms.

    PubMed

    Ellepola, K; Liu, Y; Cao, T; Koo, H; Seneviratne, C J

    2017-09-01

    Streptococcus mutans is a biofilm-forming oral pathogen commonly associated with dental caries. Clinical studies have shown that S. mutans is often detected with Candida albicans in early childhood caries. Although the C. albicans presence has been shown to enhance bacterial accumulation in biofilms, the influence of S. mutans on fungal biology in this mixed-species relationship remains largely uncharacterized. Therefore, we aimed to investigate how the presence of S. mutans influences C. albicans biofilm development and coexistence. Using a newly established haploid biofilm model of C. albicans, we found that S. mutans augmented haploid C. albicans accumulation in mixed-species biofilms. Similarly, diploid C. albicans also showed enhanced biofilm formation in the presence of S. mutans. Surprisingly, the presence of S. mutans restored the biofilm-forming ability of C. albicans bcr1Δ mutant and bcr1Δ/Δ mutant, which is known to be severely defective in biofilm formation when grown as single species. Moreover, C. albicans hyphal growth factor HWP1 as well as ALS1 and ALS3, which are also involved in fungal biofilm formation, were upregulated in the presence of S. mutans. Subsequently, we found that S. mutans-derived glucosyltransferase B (GtfB) itself can promote C. albicans biofilm development. Interestingly, GtfB was able to increase the expression of HWP1, ALS1, and ALS3 genes in the C. albicans diploid wild-type SC5314 and bcr1Δ/Δ, leading to enhanced fungal biofilms. Hence, the present study demonstrates that a bacterial exoenzyme (GtfB) augments the C. albicans counterpart in mixed-species biofilms through a BCR1-independent mechanism. This novel finding may explain the mutualistic role of S. mutans and C. albicans in cariogenic biofilms.

  8. Mathematical modeling of hydrolysate diffusion and utilization in cellulolytic biofilms of the extreme thermophile Caldicellulosiruptor obsidiansis.

    PubMed

    Wang, Zhi-Wu; Hamilton-Brehm, Scott D; Lochner, Adriane; Elkins, James G; Morrell-Falvey, Jennifer L

    2011-02-01

    In this study, a hydrolysate diffusion and utilization model was developed to examine factors influencing cellulolytic biofilm morphology. Model simulations using Caldicellulosiruptor obsidiansis revealed that the cellulolytic biofilm needs to generate more hydrolysate than it consumes to establish a higher than bulk solution intra-biofilm substrate concentration to support its growth. This produces a hydrolysate surplus that diffuses through the thin biofilm structure into the bulk solution, which gives rise to a uniform growth rate and hence the homogeneous morphology of the cellulolytic biofilm. Model predictions were tested against experimental data from a cellulose-fermenting bioreactor and the results were consistent with the model prediction and indicated that only a small fraction (10-12%) of the soluble hydrolysis products are utilized by the biofilm. The factors determining the rate-limiting step of cellulolytic biofilm growth are also analyzed and discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Influence of methylene blue-mediated photodynamic therapy on the resistance to detachment of streptococcus mutans biofilms from titanium substrata

    NASA Astrophysics Data System (ADS)

    Sharab, Lina Y.

    In dental settings, as well as in other natural systems, plaque-forming microorganisms develop biofilms in which the microbes become protected via their own phenotypic changes and their polymeric exudates from disinfection by washes and antibiotics. Photodynamic Therapy (PDT) is variably effective against these microorganisms, depending on such factors as whether the bacteria are Gram positive or Gram negative, plaque age and thickness, and internal biofilm oxygen concentration. This investigation applied a novel combination of PDT and water-jet impingement techniques to Streptococcus mutans (ATCC strain 27351)-formed biofilms on commercially pure titanium (cpTi) starting with three different phases (ages) of the bacteria, to examine whether the detachment shear stress --as a signature for the work required for removal of the biofilms- would be affected by prior PDT treatment independently from microbial viability. Biofilms were grown with sucrose addition to Brain Heart Infusion media, producing visible thick films and nearly invisible thin films (within the same piece) having the same numbers of culturable microorganisms, the thicker films having greater susceptibility to detachment by water--jet impingement. Colony-forming-unit (CFU) counts routinely correlated well with results from a spectrophotometric Alamar Blue (AB) assay. Use of Methylene Blue (MB) as a photosensitizer (PS) for PDT of biofilms did not interfere with the AB assay, but did mask AB reduction spectral changes when employed with planktonic organisms. It was discovered in this work that PD-treated microbial biofilms, independently from starting or PS-influenced microorganism viability, were significantly (p<0.05) and differentially more easily delaminated and ultimately removed from their substrata biomaterials by the hydrodynamic forces of water-jet impingement. Control biofilms of varying thickness, not receiving PDT treatment, required between 144 and 228 dynes/cm2 of shear stress to

  10. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings.

    PubMed

    Abdoli, Leila; Suo, Xinkun; Li, Hua

    2016-09-01

    Formation of biofilm is usually essential for the development of biofouling and crucially impacts the corrosion of marine structures. Here we report the attachment behaviors of Bacillus sp. bacteria and subsequent formation of bacterial biofilm on stainless steel and thermal sprayed aluminum coatings in artificial seawater. The colonized bacteria accelerate the corrosion of the steel plates, and markedly enhance the anti-corrosion performances of the Al coatings in early growth stage of the bacterial biofilm. After 7days incubation, the biofilm formed on the steel is heterogeneous while exhibits homogeneous feature on the Al coating. Atomic force microscopy examination discloses inception of formation of local pitting on steel plates associated with significantly roughened surface. Electrochemical testing suggests that the impact of the bacterial biofilm on the corrosion behaviors of marine structures is not decided by the biofilm alone, it is instead attributed to synergistic influence by both the biofilm and physicochemical characteristics of the substratum materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A new biofilm-associated colicin with increased efficiency against biofilm bacteria

    PubMed Central

    Rendueles, Olaya; Beloin, Christophe; Latour-Lambert, Patricia; Ghigo, Jean-Marc

    2014-01-01

    Formation of bacterial biofilm communities leads to profound physiological modifications and increased physical and metabolic exchanges between bacteria. It was previously shown that bioactive molecules produced within the biofilm environment contribute to bacterial interactions. Here we describe new pore-forming colicin R, specifically produced in biofilms formed by the natural isolate Escherichia coli ROAR029 but that cannot be detected under planktonic culture conditions. We demonstrate that an increased SOS stress response within mature biofilms induces SOS-dependent colicin R expression. We provide evidence that colicin R displays increased activity against E. coli strains that have a reduced lipopolysaccharide length, such as the pathogenic enteroaggregative E. coli LF82 clinical isolate, therefore pointing to lipopolysaccharide size as an important determinant for resistance to colicins. We show that colicin R toxicity toward E. coli LF82 is increased under biofilm conditions compared with planktonic susceptibility and that release of colicin R confers a strong competitive advantage in mixed biofilms by rapidly outcompeting sensitive neighboring bacteria. This work identifies the first biofilm-associated colicin that preferentially targets biofilm bacteria. Furthermore, it indicates that the study of antagonistic molecules produced in biofilm and multispecies contexts could reveal unsuspected, ecologically relevant bacterial interactions influencing population dynamics in natural environments. PMID:24451204

  12. Virulence factors in Proteus bacteria from biofilm communities of catheter-associated urinary tract infections.

    PubMed

    Hola, Veronika; Peroutkova, Tereza; Ruzicka, Filip

    2012-07-01

    More than 40% of nosocomial infections are those of the urinary tract, most of these occurring in catheterized patients. Bacterial colonization of the urinary tract and catheters results not only in infection, but also various complications, such as blockage of catheters with crystalline deposits of bacterial origin, generation of gravels and pyelonephritis. The diversity of the biofilm microbial community increases with duration of catheter emplacement. One of the most important pathogens in this regard is Proteus mirabilis. The aims of this study were to identify and assess particular virulence factors present in catheter-associated urinary tract infection (CAUTI) isolates, their correlation and linkages: three types of motility (swarming, swimming and twitching), the ability to swarm over urinary catheters, biofilm production in two types of media, urease production and adherence of bacterial cells to various types of urinary tract catheters. We examined 102 CAUTI isolates and 50 isolates taken from stool samples of healthy people. Among the microorganisms isolated from urinary catheters, significant differences were found in biofilm-forming ability and the swarming motility. In comparison with the control group, the microorganisms isolated from urinary catheters showed a wider spectrum of virulence factors. The virulence factors (twitching motility, swimming motility, swarming over various types of catheters and biofilm formation) were also more intensively expressed. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Structural Analysis of Biofilm Formation by Rapidly and Slowly Growing Nontuberculous Mycobacteria▿

    PubMed Central

    Williams, Margaret M.; Yakrus, Mitchell A.; Arduino, Matthew J.; Cooksey, Robert C.; Crane, Christina B.; Banerjee, Shailen N.; Hilborn, Elizabeth D.; Donlan, Rodney M.

    2009-01-01

    Mycobacterium avium complex (MAC) and rapidly growing mycobacteria (RGM) such as M. abscessus, M. mucogenicum, M. chelonae, and M. fortuitum, implicated in health care-associated infections, are often isolated from potable water supplies as part of the microbial flora. To understand factors that influence growth in their environmental source, clinical RGM and slowly growing MAC isolates were grown as biofilm in a laboratory batch system. High and low nutrient levels were compared, as well as stainless steel and polycarbonate surfaces. Biofilm growth was measured after 72 h of incubation by enumeration of bacteria from disrupted biofilms and by direct quantitative image analysis of biofilm microcolony structure. RGM biofilm development was influenced more by nutrient level than by substrate material, though both affected biofilm growth for most of the isolates tested. Microcolony structure revealed that RGM develop several different biofilm structures under high-nutrient growth conditions, including pillars of various shapes (M. abscessus and M. fortuitum) and extensive cording (M. abscessus and M. chelonae). Although it is a slowly growing species in the laboratory, a clinical isolate of M. avium developed more culturable biofilm in potable water in 72 h than any of the 10 RGM examined. This indicates that M. avium is better adapted for growth in potable water systems than in laboratory incubation conditions and suggests some advantage that MAC has over RGM in low-nutrient environments. PMID:19201956

  14. Burkholderia Diffusible Signal Factor Signals to Francisella novicida To Disperse Biofilm and Increase Siderophore Production

    PubMed Central

    Dean, Scott N.; Chung, Myung-Chul

    2015-01-01

    In many bacteria, the ability to modulate biofilm production relies on specific signaling molecules that are either self-produced or made by neighboring microbes within the ecological niche. We analyzed the potential interspecies signaling effect of the Burkholderia diffusible signal factor (BDSF) on Francisella novicida, a model organism for Francisella tularensis, and demonstrated that BDSF both inhibits the formation and causes the dispersion of Francisella biofilm. Specificity was demonstrated for the cis versus the trans form of BDSF. Using transcriptome sequencing, quantitative reverse transcription-PCR, and activity assays, we found that BDSF altered the expression of many F. novicida genes, including genes involved in biofilm formation, such as chitinases. Using a chitinase inhibitor, the antibiofilm activity of BDSF was also shown to be chitinase dependent. In addition, BDSF caused an increase in RelA expression and increased levels of (p)ppGpp, leading to decreased biofilm production. These results support our observation that exposure of F. novicida to BDSF causes biofilm dispersal. Furthermore, BDSF upregulated the genes involved in iron acquisition (figABCD), increasing siderophore production. Thus, this study provides evidence for a potential role and mechanism of diffusible signal factor (DSF) signaling in the genus Francisella and suggests the possibility of interspecies signaling between Francisella and other bacteria. Overall, this study suggests that in response to the interspecies DSF signal, F. novicida can alter its gene expression and regulate its biofilm formation. PMID:26231649

  15. DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness

    PubMed Central

    Shemesh, Moshe; Tam, Avshalom; Kott-Gutkowski, Miriam; Feldman, Mark; Steinberg, Doron

    2008-01-01

    Background A biofilm is a complex community of microorganisms that develop on surfaces in diverse environments. The thickness of the biofilm plays a crucial role in the physiology of the immobilized bacteria. The most cariogenic bacteria, mutans streptococci, are common inhabitants of a dental biofilm community. In this study, DNA-microarray analysis was used to identify differentially expressed genes associated with the thickness of S. mutans biofilms. Results Comparative transcriptome analyses indicated that expression of 29 genes was differentially altered in 400- vs. 100-microns depth and 39 genes in 200- vs. 100-microns biofilms. Only 10 S. mutans genes showed differential expression in both 400- vs. 100-microns and 200- vs. 100-microns biofilms. All of these genes were upregulated. As sucrose is a predominant factor in oral biofilm development, its influence was evaluated on selected genes expression in the various depths of biofilms. The presence of sucrose did not noticeably change the regulation of these genes in 400- vs. 100-microns and/or 200- vs. 100-microns biofilms tested by real-time RT-PCR. Furthermore, we analyzed the expression profile of selected biofilm thickness associated genes in the luxS- mutant strain. The expression of those genes was not radically changed in the mutant strain compared to wild-type bacteria in planktonic condition. Only slight downregulation was recorded in SMU.2146c, SMU.574, SMU.609, and SMU.987 genes expression in luxS- bacteria in biofilm vs. planktonic environments. Conclusion These findings reveal genes associated with the thickness of biofilms of S. mutans. Expression of these genes is apparently not regulated directly by luxS and is not necessarily influenced by the presence of sucrose in the growth media. PMID:19114020

  16. Detection of Alpha-Toxin and Other Virulence Factors in Biofilms of Staphylococcus aureus on Polystyrene and a Human Epidermal Model.

    PubMed

    den Reijer, P M; Haisma, E M; Lemmens-den Toom, N A; Willemse, J; Koning, R I; Koning, R A; Demmers, J A A; Dekkers, D H W; Rijkers, E; El Ghalbzouri, A; Nibbering, P H; van Wamel, W

    2016-01-01

    The ability of Staphylococcus aureus to successfully colonize (a)biotic surfaces may be explained by biofilm formation and the actions of virulence factors. The aim of the present study was to establish the presence of 52 proteins, including virulence factors such as alpha-toxin, during biofilm formation of five different (methicillin resistant) S. aureus strains on Leiden human epidermal models (LEMs) and polystyrene surfaces (PS) using a competitive Luminex-based assay. All five S. aureus strains formed biofilms on PS, whereas only three out of five strains formed biofilms on LEMs. Out of the 52 tested proteins, six functionally diverse proteins (ClfB, glucosaminidase, IsdA, IsaA, SACOL0688 and nuclease) were detected in biofilms of all strains on both PS and LEMs. At the same time, four toxins (alpha-toxin, gamma-hemolysin B and leukocidins D and E), two immune modulators (formyl peptide receptor-like inhibitory protein and Staphylococcal superantigen-like protein 1), and two other proteins (lipase and LytM) were detectable in biofilms by all five S. aureus strains on LEMs, but not on PS. In contrast, fibronectin-binding protein B (FnbpB) was detectable in biofilms by all S. aureus biofilms on PS, but not on LEMs. These data were largely confirmed by the results from proteomic and transcriptomic analyses and in case of alpha-toxin additionally by GFP-reporter technology. Functionally diverse virulence factors of (methicillin-resistant) S. aureus are present during biofilm formation on LEMs and PS. These results could aid in identifying novel targets for future treatment strategies against biofilm-associated infections.

  17. Risk factors and biofilm detection on central venous catheters of patients attended at tertiary hospital.

    PubMed

    Pérez-Zárate, Pamela; Aragón-Piña, Antonio; Soria-Guerra, Ruth Elena; González-Amaro, Ana María; Pérez-Urizar, José; Pérez-González, Luis Fernando; Martinez-Gutierrez, Fidel

    2015-11-01

    To determinate the significance of risk factors with the presence of biofilm on catheters of patients attended at tertiary hospital cares. A total of 126 patients were included, data collection by observing the handling of the CVC, clinical history and microbiological isolation methods of CVCs tips (Roll-plate, sonication and scanning electron microscopy) were evaluated. Certain factors, such as the lack of proper hand washing, the use of primary barriers and preparing medications in the same hospital service, showed an important relationship between biofilm formation in CVCs. The sonication method presented that most of the samples had isolation of multispecies 29 samples (64%); in contrast with the roll-plate method, just one sample (3%) was isolated. The importance of the strict aseptic techniques of insertion and of the handlings of CVC was highlighted, the failure of both techniques was related to the biofilm formation and was evidenced using the scanning electron microscopy. Since this tool is not available in most hospitals, we present the correlation of those evidences with other standard microbiological methods and risk factors, which are necessary for the sensible detection of the different steps of the biofilm formation on CVC and their correct interpretation with clinical evidences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    NASA Astrophysics Data System (ADS)

    Kim, Minyoung Kevin; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-06-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  19. Filaments in curved flow: Rapid formation of Staphylococcus aureus biofilm streamers

    NASA Astrophysics Data System (ADS)

    Kim, Min Young; Drescher, Knut; Pak, On Shun; Bassler, Bonnie L.; Stone, Howard A.

    2014-03-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development in S. aureus.We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in curved flow to bridge the distances between corners, we developed a mathematical model based on resistive force theory and slender filaments. Understanding physical aspects of biofilm formation in S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen.

  20. The Influences of LuxX in "Escherichia Coli" Biofilm Formation and Improving Teacher Quality through the Bio-Bus Program

    ERIC Educational Resources Information Center

    Robbins, Chandan Morris

    2012-01-01

    The objectives of this work are: (1) to agarose-stabilize fragile biofilms for quantitative structure analysis; (2) to understand the influences of LuxS on biofilm formation; (3) to improve teacher quality by preparing Georgia's middle school science teachers to integrate inquiry-based, hands-on research modules in the classroom. Quantitative…

  1. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation

    PubMed Central

    Cai, Jian-Na; Jung, Ji-Eun; Dang, Minh-Huy; Kim, Mi-Ah; Yi, Ho-Keun; Jeon, Jae-Gyu

    2016-01-01

    Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v) sucrose. The adherence (in 4-hour biofilms) and biofilm composition (in 46-hour biofilms) of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS) content), and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs) of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship. PMID:27275603

  2. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation.

    PubMed

    Okshevsky, Mira; Louw, Matilde Greve; Lamela, Elena Otero; Nilsson, Martin; Tolker-Nielsen, Tim; Meyer, Rikke Louise

    2018-04-01

    Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 +  transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  3. Biofilm roughness determines Cryptosporidium parvum retention in environmental biofilms.

    PubMed

    DiCesare, E A Wolyniak; Hargreaves, B R; Jellison, K L

    2012-06-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms trap these pathogens and can contaminate water supplies through subsequent release. Biofilm microbial assemblages were collected seasonally from three streams in eastern Pennsylvania and used to grow biofilms in laboratory microcosms. Daily oocyst counts in the influx and efflux flow allowed the calculation of daily oocyst retention in the biofilm. Following the removal of oocysts from the influx water, oocyst attachment to the biofilm declined to an equilibrium state within 5 days that was sustained for at least 25 days. Varying the oocyst loading rate for the system showed that biofilm retention could be saturated, suggesting that discrete binding sites determined the maximum number of oocysts retained. Oocyst retention varied seasonally but was consistent across all three sites; however, seasonal oocyst retention was not consistent across years at the same site. No correlation between oocyst attachment and any measured water quality parameter was found. However, oocyst retention was strongly correlated with biofilm surface roughness and roughness varied among seasons and across years. We hypothesize that biofilm roughness and oocyst retention are dependent on environmentally driven changes in the biofilm community rather than directly on water quality conditions. It is important to understand oocyst transport dynamics to reduce risks of human infection. Better understanding of factors controlling biofilm retention of oocysts should improve our understanding of oocyst transport at different scales.

  4. Alternative sweeteners influence the biomass of oral biofilm.

    PubMed

    Abdul Razak, Fathilah; Baharuddin, Baizatul Amirah; Akbar, Elisya Farha Mohd; Norizan, Amira Hanim; Ibrahim, Nur Fazilah; Musa, Md Yusoff

    2017-08-01

    Compact-structured oral biofilm accumulates acids that upon prolonged exposure to tooth surface, causes demineralisation of enamel. This study aimed to assess the effect of alternative sweeteners Equal Stevia ® , Tropicana Slim ® , Pal Sweet ® and xylitol on the matrix-forming activity of plaque biofilm at both the early and established stages of formation. Saliva-coated glass beads (sGB) were used as substratum for the adhesion of a mixed-bacterial suspension of Streptococcus mutans, Streptococcus sanguinis and Streptococcus mitis. Biofilms formed on sGB at 3h and 24h represented the early and established-plaque models. The biofilms were exposed to three doses of the sweeteners (10%), introduced at three intervals to simulate the exposure of dental plaque to sugar during three consecutive food intakes. The treated sGB were (i) examined under the SEM and (ii) collected for turbidity reading. The absorbance indicated the amount of plaque mass produced. Analysis was performed comparative to sucrose as control. Higher rate of bacterial adherence was determined during the early compared to established phases of formation. Comparative to the sweeteners, sucrose showed a 40% increase in bacterial adherence and produced 70% more plaque-mass. Bacterial counts and SEM micrographs exhibited absence of matrix in all the sweetener-treated biofilms at the early phase of formation. At the established phase, presence of matrix was detected but at significantly lower degree compared to sucrose (p<0.05). Alternatives sweeteners promoted the formation of oral biofilm with lighter mass and lower bacterial adherence. Hence, suggesting alternative sweeteners as potential antiplaque agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface

    PubMed Central

    Xiao, Jin; Hara, Anderson T; Kim, Dongyeop; Zero, Domenick T; Koo, Hyun; Hwang, Geelsu

    2017-01-01

    To investigate how the biofilm three-dimensional (3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glucose plus 0.5% fructose. At specific time points, biofilms were exposed to a neutral pH buffer to mimic the buffering of saliva and subsequently pulsed with 1% glucose to induce re-acidification. Simultaneous 3D pH mapping and architecture of intact biofilms was performed using two-photon confocal microscopy. The enamel surface and mineral content characteristics were examined successively via optical profilometry and microradiography analyses. Sucrose-mediated biofilm formation created spatial heterogeneities manifested by complex networks of bacterial clusters (microcolonies). Acidic regions (pH<5.5) were found only in the interior of microcolonies, which impedes rapid neutralization (taking more than 120 min for neutralization). Glucose exposure rapidly re-created the acidic niches, indicating formation of diffusion barriers associated with microcolonies structure. Enamel demineralization (white spots), rougher surface, deeper lesion and more mineral loss appeared to be associated with the localization of these bacterial clusters at the biofilm-enamel interface. Similar 3D architecture was observed in plaque-biofilms formed in vivo in the presence of sucrose. The formation of complex 3D architectures creates spatially heterogeneous acidic microenvironments in close proximity of enamel surface, which might correlate with the localized pattern of the onset of carious lesions (white spot like) on teeth. PMID:28452377

  6. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors

    PubMed Central

    Ziuzina, Dana; Boehm, Daniela; Patil, Sonal; Cullen, P. J.; Bourke, Paula

    2015-01-01

    The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated ‘inpack’ using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the

  7. Influence of biofilm lubricity on shear-induced transmission of staphylococcal biofilms from stainless steel to silicone rubber.

    PubMed

    Gusnaniar, Niar; Sjollema, Jelmer; Jong, Ed D; Woudstra, Willem; de Vries, Joop; Nuryastuti, Titik; van der Mei, Henny C; Busscher, Henk J

    2017-11-01

    In real-life situations, bacteria are often transmitted from biofilms growing on donor surfaces to receiver ones. Bacterial transmission is more complex than adhesion, involving bacterial detachment from donor and subsequent adhesion to receiver surfaces. Here, we describe a new device to study shear-induced bacterial transmission from a (stainless steel) pipe to a (silicone rubber) tube and compare transmission of EPS-producing and non-EPS-producing staphylococci. Transmission of an entire biofilm from the donor to the receiver tube did not occur, indicative of cohesive failure in the biofilm rather than of adhesive failure at the donor-biofilm interface. Biofilm was gradually transmitted over an increasing length of receiver tube, occurring mostly to the first 50 cm of the receiver tube. Under high-shearing velocity, transmission of non-EPS-producing bacteria to the second half decreased non-linearly, likely due to rapid thinning of the lowly lubricious biofilm. Oppositely, transmission of EPS-producing strains to the second tube half was not affected by higher shearing velocity due to the high lubricity and stress relaxation of the EPS-rich biofilms, ensuring continued contact with the receiver. The non-linear decrease of ongoing bacterial transmission under high-shearing velocity is new and of relevance in for instance, high-speed food slicers and food packaging. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Light history modulates antioxidant and photosynthetic responses of biofilms to both natural (light) and chemical (herbicides) stressors.

    PubMed

    Bonnineau, Chloé; Sague, Irene Gallardo; Urrea, Gemma; Guasch, Helena

    2012-05-01

    In multiple stress situations, the co-occurrence of environmental and chemical factors can influence organisms' ability to cope with toxicity. In this context, the influence of light adaptation on the response of freshwater biofilms to sudden light changes or to herbicides exposure was investigated by determining various parameters: diatom community composition, photosynthetic parameters, chlorophyll a content, antioxidant enzyme activities. Biofilms were grown in microcosms under sub-optimal, saturating, and high light intensities and showed already described characteristics of shade/light adaptation (community structure, photosynthetic adaptation, etc.). Light history modulated antioxidant and photosynthetic responses of biofilms to the stress caused by short-term exposure to sudden light changes or to herbicides. First biofilms adapted to sub-optimal light intensity (shade-adapted) were found to be more sensitive to an increase in light intensity than high-light adapted ones to a reduction in light intensity. Second, while light history influenced biofilms' response to glyphosate, it had little influence on biofilms' response to copper and none on its response to oxyfluorfen. Indeed glyphosate exposure led to a stronger decrease in photosynthetic efficiency of shade-adapted biofilms (EC(50) = 11.7 mg L(-1)) than of high-light adapted communities (EC(50) = 35.6 mg L(-1)). Copper exposure led to an activation of ascorbate peroxidase (APX) in biofilms adapted to sub-optimal and saturating light intensity while the protein content decreased in all biofilms exposed to copper. Oxyfluorfen toxicity was independent of light history provoking an increase in APX activity. In conclusion this study showed that both previous exposure to contaminants and physical habitat characteristics might influence community tolerance to disturbances strongly.

  9. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors.

    PubMed

    Subramenium, Ganapathy Ashwinkumar; Vijayakumar, Karuppiah; Pandian, Shunmugiah Karutha

    2015-08-01

    The present study explores the efficacy of limonene, a cyclic terpene found in the rind of citrus fruits, for antibiofilm potential against species of the genus Streptococcus, which have been deeply studied worldwide owing to their multiple pathogenic efficacy. Limonene showed a concentration-dependent reduction in the biofilm formation of Streptococcus pyogenes (SF370), with minimal biofilm inhibitory concentration (MBIC) of 400 μg ml - 1. Limonene was found to possess about 75-95 % antibiofilm activity against all the pathogens tested, viz. Streptococcus pyogenes (SF370 and 5 clinical isolates), Streptococcus mutans (UA159) and Streptococcus mitis (ATCC 6249) at 400 μg ml - 1 concentration. Microscopic analysis of biofilm architecture revealed a quantitative breach in biofilm formation. Results of a surface-coating assay suggested that the possible mode of action of limonene could be by inhibiting bacterial adhesion to surfaces, thereby preventing the biofilm formation cascade. Susceptibility of limonene-treated Streptococcus pyogenes to healthy human blood goes in unison with gene expression studies in which the mga gene was found to be downregulated. Anti-cariogenic efficacy of limonene against Streptococcus mutans was confirmed, with inhibition of acid production and downregulation of the vicR gene. Downregulation of the covR, mga and vicR genes, which play a critical role in regulating surface-associated proteins in Streptococcus pyogenes and Streptococcus mutans, respectively, is yet further evidence to show that limonene targets surface-associated proteins. The results of physiological assays and gene expression studies clearly show that the surface-associated antagonistic mechanism of limonene also reduces surface-mediated virulence factors.

  10. On the influence of the culture conditions in bacterial antifouling bioassays and biofilm properties: Shewanella algae, a case study

    PubMed Central

    2014-01-01

    Background A variety of conditions (culture media, inocula, incubation temperatures) are employed in antifouling tests with marine bacteria. Shewanella algae was selected as model organism to evaluate the effect of these parameters on: bacterial growth, biofilm formation, the activity of model antifoulants, and the development and nanomechanical properties of the biofilms. The main objectives were: 1) To highlight and quantify the effect of these conditions on relevant parameters for antifouling studies: biofilm morphology, thickness, roughness, surface coverage, elasticity and adhesion forces. 2) To establish and characterise in detail a biofilm model with a relevant marine strain. Results Both the medium and the temperature significantly influenced the total cell densities and biofilm biomasses in 24-hour cultures. Likewise, the IC50 of three antifouling standards (TBTO, tralopyril and zinc pyrithione) was significantly affected by the medium and the initial cell density. Four media (Marine Broth, MB; 2% NaCl Mueller-Hinton Broth, MH2; Luria Marine Broth, LMB; and Supplemented Artificial Seawater, SASW) were selected to explore their effect on the morphological and nanomechanical properties of 24-h biofilms. Two biofilm growth patterns were observed: a clear trend to vertical development, with varying thickness and surface coverage in MB, LMB and SASW, and a horizontal, relatively thin film in MH2. The Atomic Force Microscopy analysis showed the lowest Young modulii for MB (0.16 ± 0.10 MPa), followed by SASW (0.19 ± 0.09 MPa), LMB (0.22 ± 0.13 MPa) and MH2 (0.34 ± 0.16 MPa). Adhesion forces followed an inverted trend, being higher in MB (1.33 ± 0.38 nN) and lower in MH2 (0.73 ± 0.29 nN). Conclusions All the parameters significantly affected the ability of S. algae to grow and form biofilms, as well as the activity of antifouling molecules. A detailed study has been carried out in order to establish a biofilm model for further assays. The morphology and

  11. Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature.

    PubMed

    Torvinen, Eila; Lehtola, Markku J; Martikainen, Pertti J; Miettinen, Ilkka T

    2007-10-01

    Mycobacterium avium is a potential pathogen occurring in drinking water systems. It is a slowly growing bacterium producing a thick cell wall containing mycolic acids, and it is known to resist chlorine better than many other microbes. Several studies have shown that pathogenic bacteria survive better in biofilms than in water. By using Propella biofilm reactors, we studied how factors generally influencing the growth of biofilms (flow rate, phosphorus concentration, and temperature) influence the survival of M. avium in drinking water biofilms. The growth of biofilms was followed by culture and DAPI (4',6'-diamidino-2-phenylindole) staining, and concentrations of M. avium were determined by culture and fluorescence in situ hybridization methods. The spiked M. avium survived in biofilms for the 4-week study period without a dramatic decline in concentration. The addition of phosphorus (10 microg/liter) increased the number of heterotrophic bacteria in biofilms but decreased the culturability of M. avium. The reason for this result is probably that phosphorus increased competition with other microbes. An increase in flow velocity had no effect on the survival of M. avium, although it increased the growth of biofilms. A higher temperature (20 degrees C versus 7 degrees C) increased both the number of heterotrophic bacteria and the survival of M. avium in biofilms. In conclusion, the results show that in terms of affecting the survival of slowly growing M. avium in biofilms, temperature is a more important factor than the availability of nutrients like phosphorus.

  12. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites.

    PubMed

    Ionescu, Andrei; Brambilla, Eugenio; Wastl, Daniel S; Giessibl, Franz J; Cazzaniga, Gloria; Schneider-Feyrer, Sibylle; Hahnel, Sebastian

    2015-01-01

    The aim of this study was to investigate the impact of resin matrix chemistry and filler fraction on biofilm formation on the surface of experimental resin-based composites (RBCs). Specimens were prepared from eight experimental RBC formulations differing in resin matrix blend (BisGMA/TEGDMA in a 7:3 wt% ratio or UDMA/aliphatic dimethacrylate in a 1:1 wt% ratio) and filler fraction (no fillers; 65 wt% dental glass with an average diameter of 7 or 0.7 µm or 65 wt% SiO2 with an average diameter of 20 nm). Surface roughness, surface free energy, and chemical surface composition were determined; surface topography was visualized using atomic force microscopy. Biofilm formation was simulated under continuous flow conditions for a 48 h period using a monospecies Streptococcus mutans and a multispecies biofilm model. In the monospecies biofilm model, the impact of the filler fraction overruled the influence of the resin matrix, indicating lowest biofilm formation on RBCs with nano-scaled filler particles and those manufactured from the neat resin blends. The multispecies model suggested a more pronounced effect of the resin matrix blend, as significantly higher biofilm formation was identified on RBCs with a UDMA/dimethacrylate matrix blend than on those including a BisGMA/TEGDMA matrix blend but analogous filler fractions. Although significant differences in surface properties between the various materials were identified, correlations between the surface properties and biofilm formation were poor, which highlights the relevance of surface topography and chemistry. These results may help to tailor novel RBC formulations which feature reduced biofilm formation on their surface.

  13. Biocorrosion: towards understanding interactions between biofilms and metals.

    PubMed

    Beech, Iwona B; Sunner, Jan

    2004-06-01

    The term microbially influenced corrosion, or biocorrosion, refers to the accelerated deterioration of metals owing to the presence of biofilms on their surfaces. The detailed mechanisms of biocorrosion are still poorly understood. Recent investigations into biocorrosion have focused on the influence of biomineralization processes taking place on metallic surfaces and the impact of extracellular enzymes, active within the biofilm matrix, on electrochemical reactions at the biofilm-metal interface.

  14. Released products of pathogenic bacteria stimulate biofilm formation by Escherichia coli K-12 strains.

    PubMed

    Vacheva, Anna; Ivanova, Radka; Paunova-Krasteva, Tsvetelina; Stoitsova, Stoyanka

    2012-06-01

    It has recently been shown that pathogens with a limited capacity for sessile growth (like some Escherichia coli O157 strains) can benefit from the presence of other bacteria and form mixed biofilms with companion strains. This study addresses the question whether pathogens may influence attached growth of E. coli non-pathogenic strains via secreted factors. We compared the biofilm-modulating effects of sterile stationary-phase culture media of a biofilm non-producing strain of E. coli O157:H, a laboratory biofilm-producing E. coli K-12 strain and a biofilm-forming strain of the pathogen Yersina enterocolitica O:3. Sessile growth was monitored as biomass (crystal violet assay), exopolysaccharide (ELLA) and morphology (scanning electron and confocal laser microscopy). With two of the E. coli K-12 strains stimulation of biofilm formation by all supernatants was achieved, but only the pathogens' secreted products induced biomass increase in some 'biofilm-deficient' K-12 strains. Lectin-peroxidase labeling indicated changes in colanic acid and poly-N-acetylglucosamine amounts in extracellular matrices. The contribution of indole, protein and polysaccharide to the biofilm-modulating activities of the supernatants was compared. Indole, in concentrations equal to those established in the supernatants, suppressed sessile growth in one K-12 strain. Proteinase K significantly reduced the stimulatory effects of all supernatants, indicating a prominent role of protein/peptide factor(s) in biofilm promotion. The amount of released polysaccharides (rPS) in the supernatants was quantitated then comparable quantities of isolated rPS were applied during biofilm growth. The three rPS had notable strain-specific effects with regard to both the strain-source of the rPS and the E. coli K-12 target strain.

  15. Phenazine-1-carboxylic acid and soil moisture influence biofilm development and turnover of rhizobacterial biomass on wheat root surfaces.

    PubMed

    LeTourneau, Melissa K; Marshall, Matthew J; Cliff, John B; Bonsall, Robert F; Dohnalkova, Alice C; Mavrodi, Dmitri V; Devi, S Indira; Mavrodi, Olga V; Harsh, James B; Weller, David M; Thomashow, Linda S

    2018-04-24

    Phenazine-1-carboxylic acid (PCA) is produced by rhizobacteria in dryland but not in irrigated wheat fields of the Pacific Northwest, USA. PCA promotes biofilm development in bacterial cultures and bacterial colonization of wheat rhizospheres. However, its impact upon biofilm development has not been demonstrated in the rhizosphere, where biofilms influence terrestrial carbon and nitrogen cycles with ramifications for crop and soil health. Furthermore, the relationships between soil moisture and the rates of PCA biosynthesis and degradation have not been established. In this study, expression of PCA biosynthesis genes was up-regulated relative to background transcription, and persistence of PCA was slightly decreased in dryland relative to irrigated wheat rhizospheres. Biofilms in dryland rhizospheres inoculated with the PCA-producing (PCA + ) strain Pseudomonas synxantha 2-79RN 10 were more robust than those in rhizospheres inoculated with an isogenic PCA-deficient (PCA - ) mutant strain. This trend was reversed in irrigated rhizospheres. In dryland PCA + rhizospheres, the turnover of 15 N-labelled rhizobacterial biomass was slower than in the PCA - and irrigated PCA + treatments, and incorporation of bacterial 15 N into root cell walls was observed in multiple treatments. These results indicate that PCA promotes biofilm development in dryland rhizospheres, and likely influences crop nutrition and soil health in dryland wheat fields. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Adaptation to copper stress influences biofilm formation in Alteromonas macleodii.

    PubMed

    Cusick, Kathleen D; Dale, Jason R; Fitzgerald, Lisa A; Little, Brenda J; Biffinger, Justin C

    2017-07-01

    An Alteromonas macleodii strain was isolated from copper-containing coupons incubated in surface seawater (Key West, FL, USA). In addition to the original isolate, a copper-adapted mutant was created and maintained with 0.78 mM Cu 2+ . Biofilm formation was compared between the two strains under copper-amended and low-nutrient conditions. Biofilm formation was significantly increased in the original isolate under copper amendment, while biofilm formation was significantly higher in the mutant under low-nutrient conditions. Biofilm expression profiles of diguanylate cyclase (DGC) genes, as well as genes involved in secretion, differed between the strains. Comparative genomic analysis demonstrated that both strains possessed a large number of gene attachment harboring cyclic di-GMP synthesis and/or degradation domains. One of the DGC genes, induced at very high levels in the mutant, possessed a degradation domain in the original isolate that was lacking in the mutant. The genetic and transcriptional mechanisms contributing to biofilm formation are discussed.

  17. Influence of elevated temperature, pCO2, and nutrients on larva-biofilm interaction: Elucidation with acorn barnacle, Balanus amphitrite Darwin (Cirripedia: Thoracica)

    NASA Astrophysics Data System (ADS)

    Baragi, Lalita V.; Anil, Arga Chandrashekar

    2017-02-01

    Selection of optimal habitat by larvae of sessile organism is influenced by cues offered by the biofilm. Ocean warming and acidification are likely to enforce changes in the biofilm community and inturn influence the settlement process. Hence, we evaluated the influence of biofilm (multispecies and unialgal) and diet-mediated changes on the settlement of Balanus amphitrite cyprids (presettlement non-feeding larval stage) under different combinations of temperature (28, 30, 32 and 34 °C), pCO2 (400, 750 and 1500 μatm) and nutrient (unenriched and f/2 enriched). Nutrient enrichment enhanced the diatom and bacterial abundance at ambient temperature (30 °C) and pCO2 (400 μatm), which inturn increased larval settlement. Elevated pCO2 (750 and 1500 μatm) had no direct effect but a variable cascading effect on the settlement via biofilm-mediated changes was observed, depending on the type of biofilm. In contrast, elevated temperature (32 and 34 °C), either individually or in combination with elevated pCO2 had direct negative effect on settlement. However, biofilm-mediated changes compensated this negative effect. The larval settlement was also influenced by changes in the larval diet. Under elevated temperature and pCO2, cyprids raised with a feed (Chaetoceros calcitrans) from ambient temperature and pCO2 were of poor quality (lower RNA:DNA ratio, lower protein synthetic capacity) and yielded lower settlement. However, cyprids raised with a feed from elevated temperature and pCO2 were of better quality (higher RNA:DNA ratio, higher protein synthetic capacity) and yielded higher settlement. Overall, the observations from the present study provide insights into the significance of biotic interactions on the coastal biofouling communities under future climatic scenario and emphasise the need for future experiments on these aspects.

  18. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    PubMed

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Influence of biofilm formation on corrosion and scaling in geothermal plants

    NASA Astrophysics Data System (ADS)

    Kleyböcker, Anne; Lerm, Stephanie; Monika, Kasina; Tobias, Lienen; Florian, Eichinger; Andrea, Seibt; Markus, Wolfgramm; Hilke, Würdemann

    2017-04-01

    Process failures may occur due to corrosion and scaling processes in open loop geothermal systems. Especially after heat extraction, sulfate reducing bacteria (SRB) contribute to corrosion processes due to a more favorable temperature for their growth. In biofilms containing FeS scales, corrosion processes are enhanced. Furthermore, scales can lead to reduced pipe profiles, to a diminished heat transfer and a decrease in the wellbore injectivity. Inhibitors are frequently applied to minimize scaling in technical systems. A prerequisite for the application of inhibitors in geothermal plants located in the Molasse basin is their degradability under reservoir conditions, e. g. in a reduced environment. In order to determine the effects of scale-inhibitors on the subsurface and microbial processes, laboratory experiments were performed focusing on the microbial inhibitor degradation. First results indicate that the inhibitor degradation under anaerobic conditions is possible. Besides the inhibitor application also other techniques are investigated to economically reduce corrosion and scaling in geothermal plants. In a mobile bypass system, the influence of biofilm formation on corrosion and scaling was investigated. The bypass system was tested at a geothermal heat store in the North German Basin. The plant is operated with highly saline fluid (salinity 130 g/L) and known to be affected by SRB. The SRB contributed to corrosion damages especially at the pump in the well on the cold side. Heat shocks were successfully used in the bypass system to reduce biofilm formation as well as corrosion and scaling processes.

  20. Influence of subinhibitory antibiotic concentration on Streptococcus pyogenes adherence and biofilm production.

    PubMed

    Šmitran, Aleksandra; Vuković, Dragana; Opavski, Nataša; Gajić, Ina; Marinković, Jelena; Božić, Ljiljana; Živanović, Irena; Kekić, Dušan; Popović, Sunčica; Ranin, Lazar

    2018-06-01

    In this study, the focus was on the effects of sub-MICs of the antibiotics on adherence, hydrophobicity, and biofilm formation by two groups of Streptococcus pyogenes strains, which were responsible for different clinical cases. The aim of this study was to explore the effects of sub-MICs of penicillin, ceftriaxone, erythromycin, and clindamycin on adherence, surface hydrophobicity, and biofilm biomass in two selected collections of group A streptococcus (GAS): strains isolated from carriers (CA) and strains isolated from patients with tonsillopharyngitis (TPh). Isolates were tested for hydrophobicity to xylene, adherence, and biofilm production in uncoated microtiter plates before and after treatment with 1/2 and 1/4 MICs of antibiotics. Penicillin reduced adherence and biofilm production in TPh strains, whereas ceftriaxone diminished adherence and biofilm formation in CA group. On the contrary, clindamycin enhanced adherence and biofilm production in both groups of strains. Erythromycin did not significantly alter adherence, but triggered biofilm production in both groups of isolates. Hydrophobicity of both groups of strains was significantly reduced after exposure to all antibiotics. Beta-lactams displayed anti-biofilm activity; penicillin diminished both adherence and biofilm production in TPh strains, whereas ceftriaxone reduced it in strains isolated from CA.

  1. Red fluorescent biofilm: the thick, the old, and the cariogenic

    PubMed Central

    Volgenant, Catherine M.C.; Hoogenkamp, Michel A.; Buijs, Mark J.; Zaura, Egija; ten Cate, Jacob (Bob) M.; van der Veen, Monique H.

    2016-01-01

    Background Some dental plaque fluoresces red. The factors involved in this fluorescence are yet unknown. Objective The aim of this study was to assess systematically the effect of age, thickness, and cariogenicity on the extent of red fluorescence produced by in vitro microcosm biofilms. Design The effects of biofilm age and thickness on red fluorescence were tested in a constant depth film fermentor (CDFF) by growing biofilms of variable thicknesses that received a constant supply of defined mucin medium (DMM) and eight pulses of sucrose/day. The influence of cariogenicity on red fluorescence was tested by growing biofilm on dentin disks receiving DMM, supplemented with three or eight pulses of sucrose/day. The biofilms were analyzed at different time points after inoculation, up to 24 days. Emission spectra were measured using a fluorescence spectrophotometer (λexc405 nm) and the biofilms were photographed with a fluorescence camera. The composition of the biofilms was assessed using 454-pyrosequecing of the 16S rDNA gene. Results From day 7 onward, the biofilms emitted increasing intensities of red fluorescence as evidenced by the combined red fluorescence peaks. The red fluorescence intensity correlated with biofilm thickness but not in a linear way. Biofilm fluorescence also correlated with the imposed cariogenicity, evidenced by the induced dentin mineral loss. Increasing the biofilm age or increasing the sucrose pulsing frequency led to a shift in the microbial composition. These shifts in composition were accompanied by an increase in red fluorescence. Conclusions The current study shows that a thicker, older, or more cariogenic biofilm results in a higher intensity of red fluorescence. PMID:27060056

  2. The influences of LuxX in Escherichia coli biofilm formation and improving teacher quality through the Bio-Bus Program

    NASA Astrophysics Data System (ADS)

    Robbins, Chandan Morris

    The objectives of this work are: (1) to agarose-stabilize fragile biofilms for quantitative structure analysis; (2) to understand the influences of LuxS on biofilm formation; (3) to improve teacher quality by preparing Georgia's middle school science teachers to integrate inquiry-based, hands-on research modules in the classroom. Quantitative digital image analysis demonstrated the effectiveness of the agarose stabilization technique for generating reproducible measurements of three dimensional biofilm structure. The described method will also benefit researchers who transport their flow cell-cultivated biofilms to a core facility for imaging. AI-2-dependent and independent effects of LuxS on biofilm-related phenotypes were revealed, suggesting that LuxS is a versatile enzyme, possessing multiple functions in E. coli ecology that could assist E. coli in adapting to diverse conditions. Overall, the work presented in this dissertation supported the concept that QS, biofilm formation, and cell adhesion are largely related. Additionally, through this project, teachers enhanced content knowledge and confidence levels, mastered innovative teaching strategies and integrated inquiry-based, inter-disciplinary, hands-on activities in the classroom. As a result, student learning was enhanced, and Georgia's students are better equipped to become tomorrow's leaders. INDEX WORDS: Biofilm, Escherichia coli, Quorum sensing, LuxS, Autoinducer-2, Microbial ecology

  3. Silver Nanoparticles Impact Biofilm Communities and Mussel Settlement

    PubMed Central

    Yang, Jin-Long; Li, Yi-Feng; Liang, Xiao; Guo, Xing-Pan; Ding, De-Wen; Zhang, Demin; Zhou, Shuxue; Bao, Wei-Yang; Bellou, Nikoleta; Dobretsov, Sergey

    2016-01-01

    Silver nanoparticles (AgNPs) demonstrating good antimicrobial activity are widely used in many fields. However, the impact of AgNPs on the community structures of marine biofilms that drive biogeochemical cycling processes and the recruitment of marine invertebrate larvae remains unknown. Here, we employed MiSeq sequencing technology to evaluate the bacterial communities of 28-day-old marine biofilms formed on glass, polydimethylsiloxane (PDMS), and PDMS filled with AgNPs and subsequently tested the influence of these marine biofilms on plantigrade settlement by the mussel Mytilus coruscus. AgNP-filled PDMS significantly reduced the dry weight and bacterial density of biofilms compared with the glass and PDMS controls. AgNP incorporation impacted bacterial communities by reducing the relative abundance of Flavobacteriaceae (phylum: Bacteroidetes) and increasing the relative abundance of Vibrionaceae (phylum: Proteobacteria) in 28-day-old biofilms compared to PDMS. The settlement rate of M. coruscus on 28-day-old biofilms developed on AgNPs was lower by >30% compared to settlement on control biofilms. Thus, the incorporation of AgNPs influences biofilm bacterial communities in the marine environment and subsequently inhibits mussel settlement. PMID:27869180

  4. Biofilms in 3D porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development.

    PubMed

    Carrel, Maxence; Morales, Verónica L; Beltran, Mario A; Derlon, Nicolas; Kaufmann, Rolf; Morgenroth, Eberhard; Holzner, Markus

    2018-05-01

    This study investigates the functional correspondence between porescale hydrodynamics, mass transfer, pore structure and biofilm morphology during progressive biofilm colonization of a porous medium. Hydrodynamics and the structure of both the porous medium and the biofilm are experimentally measured with 3D particle tracking velocimetry and micro X-ray Computed Tomography, respectively. The analysis focuses on data obtained in a clean porous medium after 36 h of biofilm growth. Registration of the particle tracking and X-ray data sets allows to delineate the interplay between porous medium geometry, hydrodynamic and mass transfer processes on the morphology of the developing biofilm. A local analysis revealed wide distributions of wall shear stresses and concentration boundary layer thicknesses. The spatial distribution of the biofilm patches uncovered that the wall shear stresses controlled the biofilm development. Neither external nor internal mass transfer limitations were noticeable in the considered system, consistent with the excess supply of nutrient and electron acceptors. The wall shear stress remained constant in the vicinity of the biofilm but increased substantially elsewhere. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Spatial and temporal analogies in microbial communities in natural drinking water biofilms.

    PubMed

    Douterelo, I; Jackson, M; Solomon, C; Boxall, J

    2017-03-01

    Biofilms are ubiquitous throughout drinking water distribution systems (DWDS), playing central roles in system performance and delivery of safe clean drinking water. However, little is known about how the interaction of abiotic and biotic factors influence the microbial communities of these biofilms in real systems. Results are presented here from a one-year study using in situ sampling devices installed in two operational systems supplied with different source waters. Independently of the characteristics of the incoming water and marked differences in hydraulic conditions between sites and over time, a core bacterial community was observed in all samples suggesting that internal factors (autogenic) are central in shaping biofilm formation and composition. From this it is apparent that future research and management strategies need to consider the specific microorganisms found to be able to colonise pipe surfaces and form biofilms, such that it might be possible to exclude these and hence protect the supply of safe clean drinking water. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Lactoferrin-derived peptides and Lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa.

    PubMed

    Xu, G; Xiong, W; Hu, Q; Zuo, P; Shao, B; Lan, F; Lu, X; Xu, Y; Xiong, S

    2010-10-01

    To investigate the bactericidal activity of lactoferrin-derived peptides and a new LF-derived peptides chimera (LFchimera) against P. aeruginosa and the influence on virulence factors of P. aeruginosa. Lactoferricin (LFcin) and lactoferrampin (LFampin) are highly bioactive peptides isolated from the N-terminal region of lactoferrin (LF) by pepsin digestion. In this study, we designed LFchimera containing LFcin amino acids 17-30 and LFampin amino acids 268-284. Pseudomonas aeruginosa cells were incubated in medium with peptides at different concentrations, and then the assays of viability, pyocyanin, elastase activity and biofilm formation of P. aeruginosa were performed. We found that the concentration-dependent antibactericidal activity and down-regulating pyocyanin, elastase and biofilm formation of LFchimera were significantly stronger than those of LF, LFcin, LFampin or LFcin plus LFampin. Our results indicated that LF, LFcin, LFampin and LFchimera were potential candidates to combat P. aeruginosa, and LFchimera was the most effective in them. The new LFchimera has better activity against P. aeruginosa than LF, LFcin and LFampin and may be a promising new compound for treatment of P. aeruginosa infection. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  7. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Tavallaie, Roya; Ibugo, Amaye I; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W S; Thomas, Shane R; Kumar, Naresh; Gooding, J Justin; Manefield, Mike

    2015-02-11

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation.

  8. Influence of Bacterial Biofilm Polysaccharide Structure on Interactions with Antimicrobial Peptides: A Study on Klebsiella pneumoniae.

    PubMed

    Bellich, Barbara; Lagatolla, Cristina; Tossi, Alessandro; Benincasa, Monica; Cescutti, Paola; Rizzo, Roberto

    2018-06-06

    Biofilms are complex systems produced by bacteria and constituted by macromolecular matrix embedding cells. They provide advantages to bacteria including protection against antimicrobials. The protection given by biofilms produced by Klebsiella pneumoniae strains towards antimicrobial peptides of the innate immune system was investigated. In particular, the role of matrix bacterial exopolysaccharides was explored. Three clinical strains producing exopolysaccharides with different chemistry were selected and the interaction of purified biofilm polysaccharides with two bovine cathelicidins was studied by circular dichroism spectroscopy and microbiological assays to establish their influence on the peptide’s antimicrobial activity. The spectroscopic data indicated a different extent of interaction with the two peptides, in a manner dependent on their sugar composition, and in particular the presence of rhamnose residues correlated with a lower interaction. The extent of interaction was then related to the protection towards antimicrobial peptides, conferred by the addition of the different exopolysaccharides, in minimum inhibitory concentration (MIC) assays against a reference Escherichia coli strain. Microbiological results were in very good agreement with spectroscopic data, confirming the active role of matrix polysaccharides in determining a biofilm’s protective capacity and indicating lower protection levels afforded by rhamnose containing exopolysaccharides.

  9. Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability.

    PubMed

    Nilsson, Martin; Chiang, Wen-Chi; Fazli, Mustafa; Gjermansen, Morten; Givskov, Michael; Tolker-Nielsen, Tim

    2011-05-01

    We report a study of the role of putative exopolysaccharide gene clusters in the formation and stability of Pseudomonas putida KT2440 biofilm. Two novel putative exopolysaccharide gene clusters, pea and peb, were identified, and evidence is provided that they encode products that stabilize P. putida KT2440 biofilm. The gene clusters alg and bcs, which code for proteins mediating alginate and cellulose biosynthesis, were found to play minor roles in P. putida KT2440 biofilm formation and stability under the conditions tested. A P. putida KT2440 derivative devoid of any identifiable exopolysaccharide genes was found to form biofilm with a structure similar to wild-type biofilm, but with a stability lower than that of wild-type biofilm. Based on our data, we suggest that the formation of structured P. putida KT2440 biofilm can occur in the absence of exopolysaccharides; however, exopolysaccharides play a role as structural stabilizers. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Evaluation of biofilm performance as a protective barrier against biocorrosion using an enzyme electrode.

    PubMed

    Soleimani, S; Ormeci, B; Isgor, O B; Papavinasam, S

    2011-01-01

    Sulfide is known to be an important factor in microbiologically influenced corrosion (MIC) of metals and concrete deterioration in wastewater treatment structures and sewer pipelines. A sulfide biosensor was used to determine the effectiveness of Escherichia coli DH5 alpha biofilm as a protective barrier against MIC. The biofilm was shown to be effective in protecting surfaces from sulfide and helping to reduce MIC using amperometric measurements. The results also indicated that the growth conditions of E. coli DH5 alpha may have an impact on the performance of the biofilm as a sulfide barrier. The simple method provided in this work enables the comparison of several microbial biofilms and selection of the ones with potential to prevent MIC in a relatively short time.

  11. Metabolism links bacterial biofilms and colon carcinogenesis

    PubMed Central

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  12. Metabolism links bacterial biofilms and colon carcinogenesis.

    PubMed

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1.

    PubMed

    Rajkumari, Jobina; Borkotoky, Subhomoi; Murali, Ayaluru; Suchiang, Kitlangki; Mohanty, Saswat Kumar; Busi, Siddhardha

    2018-04-21

    Anti-quorum sensing and anti-biofilm efficacy of Cinnamic acid against Pseudomonas aeruginosa was comparatively assessed with respect to potent quorum sensing inhibitor, Baicalein. At sub-lethal concentration, Cinnamic acid effectively inhibited both the production of the QS-dependent virulence factors and biofilm formation in P. aeruginosa without affecting the viability of the bacterium. The phytocompound interfered with the initial attachment of planktonic cells to the substratum thereby causing reduction in biofilm development. In addition, the in vivo study indicated that the test compound protected Caenorhabditis elegans from the virulence factors of P. aeruginosa leading to reduced mortality. The in silico analysis revealed that Cinnamic acid can act as a competitive inhibitor for the natural ligands towards the ligand binding domain of the transcriptional activators of the quorum sensing circuit in P. aeruginosa, LasR and RhlR. The findings suggest that Cinnamic acid may serve as a novel quorum sensing based anti-infective in controlling P. aeruginosa infections.

  14. [Influence of electromagnetic emission at the frequencies of molecular absorption and emission spectra of oxygen and nitrogen oxide on the adhesion and formation of Pseudomonas aeruginosa biofilm].

    PubMed

    Pronina, E A; Shvidenko, I G; Shub, G M; Shapoval, O G

    2011-01-01

    Evaluate the influence of electromagnetic emission (EME) at the frequencies of molecular absorption and emission spectra of atmospheric oxygen and nitrogen oxide (MAES 02 and MAES NO respectively) on the adhesion, population progress and biofilm formation of Pseudomonas aeruginosa. Adhesive activity was evaluated by mean adhesion index (MAI) of bacteria on human erythrocytes. Population growth dynamic was assessed by optical density index of broth cultures; biofilm formation--by values of optical density of the cells attached to the surface of polystyrol wells. P.aeruginosa bacteria had high adhesive properties that have increased under the influence of MAES 02 frequency emission and have not changed under the influence of MAES NO frequency. Exposure of bacteria to MAES NO frequency did not influence the population progress; exposure to MAES 02 frequency stimulated the biofilm formation ability of the bacteria, and MAES NO--decreased this ability. EME at MAES NO frequency can be used to suppress bacterial biofilm formation by pseudomonas.

  15. Salmonella Extracellular Matrix Components Influence Biofilm Formation and Gallbladder Colonization.

    PubMed

    Adcox, Haley E; Vasicek, Erin M; Dwivedi, Varun; Hoang, Ky V; Turner, Joanne; Gunn, John S

    2016-11-01

    Salmonella enterica serovar Typhi, the causative agent of typhoid fever in humans, forms biofilms encapsulated by an extracellular matrix (ECM). Biofilms facilitate colonization and persistent infection in gallbladders of humans and mouse models of chronic carriage. Individual roles of matrix components have not been completely elucidated in vitro or in vivo To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine model of S Typhi, in which various ECM genes were deleted or added, were created to examine biofilm formation, colonization, and persistence in the gallbladder. Studies show that curli contributes most significantly to biofilm formation. Expression of Vi antigen decreased biofilm formation in vitro and virulence and bacterial survival in vivo without altering the examined gallbladder pro- or anti-inflammatory cytokines. Oppositely, loss of all ECM components (ΔwcaM ΔcsgA ΔyihO ΔbcsE) increased virulence and bacterial survival in vivo and reduced gallbladder interleukin-10 (IL-10) levels. Colanic acid and curli mutants had the largest defects in biofilm-forming ability and contributed most significantly to the virulence increase of the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant strain. While the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant was not altered in resistance to complement or growth in macrophages, it attached and invaded macrophages better than the wild-type (WT) strain. These data suggest that ECM components have various levels of importance in biofilm formation and gallbladder colonization and that the ECM diminishes disseminated disease in our model, perhaps by reducing cell attachment/invasion and dampening inflammation by maintaining/inducing IL-10 production. Understanding how ECM components aid acute disease and persistence could lead to improvements in therapeutic treatment of typhoid fever patients. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Characterization of Pleurotus ostreatus biofilms by using the calgary biofilm device.

    PubMed

    Pesciaroli, Lorena; Petruccioli, Maurizio; Fedi, Stefano; Firrincieli, Andrea; Federici, Federico; D'Annibale, Alessandro

    2013-10-01

    The adequacy of the Calgary biofilm device, often referred to as the MBEC system, as a high-throughput approach to the production and subsequent characterization of Pleurotus ostreatus biofilms was assessed. The hydroxyapatite-coating of pegs was necessary to enable biofilm attachment, and the standardization of vegetative inocula ensured a uniform distribution of P. ostreatus biofilms, which is necessary for high-throughput evaluations of several antimicrobials and exposure conditions. Scanning electron microscopy showed surface-associated growth, the occurrence of a complex aggregated growth organized in multilayers or hyphal bundles, and the encasement of hyphae within an extracellular matrix (ECM), the extent of which increased with time. Chemical analyses showed that biofilms differed from free-floating cultures for their higher contents of total sugars (TS) and ECM, with the latter being mainly composed of TS and, to a lesser extent, protein. Confocal laser scanning microscopy analysis of 4-day-old biofilms showed the presence of interspersed interstitial voids and water channels in the mycelial network, the density and compactness of which increased after a 7-day incubation, with the novel occurrence of ECM aggregates with an α-glucan moiety. In 4- and 7-day-old biofilms, tolerance to cadmium was increased by factors of 3.2 and 11.1, respectively, compared to coeval free-floating counterparts.

  17. Impact of polymicrobial biofilms in catheter-associated urinary tract infections.

    PubMed

    Azevedo, Andreia S; Almeida, Carina; Melo, Luís F; Azevedo, Nuno F

    2017-08-01

    Recent reports have demonstrated that most biofilms involved in catheter-associated urinary tract infections are polymicrobial communities, with pathogenic microorganisms (e.g. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and uncommon microorganisms (e.g. Delftia tsuruhatensis, Achromobacter xylosoxidans) frequently co-inhabiting the same urinary catheter. However, little is known about the interactions that occur between different microorganisms and how they impact biofilm formation and infection outcome. This lack of knowledge affects CAUTIs management as uncommon bacteria action can, for instance, influence the rate at which pathogens adhere and grow, as well as affect the overall biofilm resistance to antibiotics. Another relevant aspect is the understanding of factors that drive a single pathogenic bacterium to become prevalent in a polymicrobial community and subsequently cause infection. In this review, a general overview about the IMDs-associated biofilm infections is provided, with an emphasis on the pathophysiology and the microbiome composition of CAUTIs. Based on the available literature, it is clear that more research about the microbiome interaction, mechanisms of biofilm formation and of antimicrobial tolerance of the polymicrobial consortium are required to better understand and treat these infections.

  18. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  19. Species-independent attraction to biofilms through electrical signaling

    PubMed Central

    Humphries, Jacqueline; Xiong, Liyang; Liu, Jintao; Prindle, Arthur; Yuan, Fang; Arjes, Heidi A.; Tsimring, Lev; Süel, Gürol M.

    2017-01-01

    Summary Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically-mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior, but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PMID:28086091

  20. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Lee, Jintae

    2014-12-01

    The opportunistic pathogen Pseudomonas aeruginosa produces a variety of virulence factors, and biofilms of this bacterium are much more resistant to antibiotics than planktonic cells. Thirty-six metal ions have been investigated to identify antivirulence and antibiofilm metal ions. Zinc ions and ZnO nanoparticles were found to markedly inhibit biofilm formation and the production of pyocyanin, Pseudomonas quinolone signal (PQS), pyochelin, and hemolytic activity of P. aeruginosa without affecting the growth of planktonic cells. Transcriptome analyses showed that ZnO nanoparticles induce the zinc cation efflux pump czc operon and several important transcriptional regulators (porin gene opdT and type III repressor ptrA), but repress the pyocyanin-related phz operon, which explains observed phenotypic changes. A mutant study showed that the effects of ZnO nanoparticles on the control of pyocyanin production and biofilm formation require the czc regulator CzcR. In addition, ZnO nanoparticles markedly increased the cellular hydrophilicity of P. aeruginosa cells. Our results support that ZnO nanoparticles are potential antivirulence materials against recalcitrant P. aeruginosa infections and possibly other important pathogens. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    PubMed

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a p rogrammed c ell l ysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  2. Factors affecting dental biofilm in patients wearing fixed orthodontic appliances.

    PubMed

    Mei, Li; Chieng, Joyce; Wong, Connie; Benic, Gareth; Farella, Mauro

    2017-12-01

    The aim of this study is to investigate the amount and the distribution of biofilm in patients wearing fixed appliances and its relation with age, gender, frequency of tooth brushing, and patient motivation. The sample comprised 52 patients (15.5 ± 3.6 years old, 30 females and 22 males) wearing fixed orthodontic appliances. Dental biofilm was assessed using a modified plaque index (PI). A questionnaire was used to collect patient's information, including gender, age, treatment motivation, and frequency of tooth brushing. Gingival (PI score = 0.9 ± 0.7), mesial (0.8 ± 0.6), and distal (0.8 ± 0.5) areas accumulated more biofilm than occlusal areas (0.3 ± 0.3) (P < 0.038). The maxillary lateral incisors (1.1 ± 0.8) and maxillary canines (1.0 ± 0.8) had more biofilm than other teeth (P < 0.05). The maxillary arch (0.8 ± 0.7) had significantly more biofilm than mandibular arch (0.6 ± 0.6) (P = 0.042). No significant difference was found between the right side (0.7 ± 0.7) and left side (0.7 ± 0.6) (P = 0.627). Less biofilm was found in females (0.6 ± 0.5), adults (0.3 ± 0.3), and "self-motivated" patients (0.3 ± 0.3), compared with males (0.9 ± 0.5), children (0.8 ± 0.6), and "family-motivated" patients (1.1 ± 0.5) (P < 0.001). The amount of biofilm was associated with self-report of the frequency of daily tooth brushing (P < 0.001). Patients wearing fixed orthodontic appliances have the highest biofilm accumulation on the maxillary lateral incisors and maxillary canines, particularly in the gingival area and areas behind arch wires. Less biofilm was observed in female and adult patients and in those who were self-motivated and brushed their teeth more often.

  3. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.

    PubMed

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A

    2017-02-01

    We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm 3 ). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.

  4. Naturally Ocurring Polyphosphate-accumulating Bacteria in Benthic Biofilms

    NASA Astrophysics Data System (ADS)

    Locke, N. A.; Saia, S. M.; Walter, M. T.; Carrick, H. J.; Buda, A. R.; Regan, J. M.

    2014-12-01

    Polyphosphate accumulating organisms (PAOs), known to store excess phosphorus (P) as polyphosphate (poly-P), influence P transport in the environment. Enhanced biological phosphorus removal (EBPR) from wastewater has long served as a basis to study bacterial PAOs, yet little research has genetically identified similar organisms in natural settings. Aerobic/anaerobic cycles, used to select for PAOs in EBPR, can result from changing environmental conditions such as night/day cycles for benthic biofilms. Benthic biofilms from eight Pennsylvanian streams were studied for naturally-occurring bacterial PAOs similar to those typically found in EBPR systems. PAOs were confirmed in the benthic biofilms by a characteristic yellow fluorescent emission from DAPI staining. Cells containing yellow fluorescence were separated from the rest of the sample using a flow cytometer, resulting in a physically enriched culture of PAOs from the benthic biofilms. Amplicon-based metagenomic sequencing will reveal the phylogeny of bacteria responsible for poly-P accumulation in these benthic biofilms. Sequencing data will be used to develop fluorescent in-situ hybridization (FISH) probes, and hybridizations will be performed on DAPI-stained cells to confirm poly-P accumulation by targeted phylotypes. Identifying PAOs in natural settings is a critical step towards studying environments that support high concentrations of PAOs, serving as significant factors in the P cycle. PAOs can then be connected to P transport models to help understand and mitigate P pollution in agricultural watersheds.

  5. Enhanced drug transport through alginate biofilms using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    McGill, Shayna L.; Cuylear, Carla; Adolphi, Natalie L.; Osinski, Marek; Smyth, Hugh

    2009-02-01

    The development of microbiological biofilms greatly reduces the efficacy of antibiotic therapies and is a serious problem in chronic infection and for implantable medical devices. We investigated the potential of superparamagnetic nanoparticles to increase transport through in vitro models of alginate biofilms. An in vitro alginate biofilm model was developed to mimic the composition of in vivo samples of P. aeruginosa infections. Transport through this model biofilm was performed using both bulk diffusion methods and single particle tracking techniques in the presence and absence of an external magnetic field. Bulk diffusion of nanoparticles through the biofilm was significantly enhanced in the presence of a magnetic field, both visually and quantitatively. Nanoparticle trajectories also showed transport increases were significantly higher when magnetic fields were applied. We also showed that surface chemistry (cationic, anioni, or neutral) of the nanoparticles significantly influenced transport rates. Finally, nanoparticle size also influenced the transport rates and variability of transport rates through the biofilm. In these first studies using magnetic nanoparticles in bacterial biofilms, we demonstrate that transport enhancement can be achieved and further studies are warranted.

  6. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus.

    PubMed

    Figueiredo, Agnes Marie Sá; Ferreira, Fabienne Antunes; Beltrame, Cristiana Ossaille; Côrtes, Marina Farrel

    2017-09-01

    Staphylococcus aureus biofilms represent a unique micro-environment that directly contribute to the bacterial fitness within hospital settings. The accumulation of this structure on implanted medical devices has frequently caused the development of persistent and chronic S. aureus-associated infections, which represent an important social and economic burden worldwide. ica-independent biofilms are composed of an assortment of bacterial products and modulated by a multifaceted and overlapping regulatory network; therefore, biofilm composition can vary among S. aureus strains. In the microniches formed by biofilms-produced by a number of bacterial species and composed by different structural components-drug refractory cell subpopulations with distinct physiological characteristics can emerge and result in therapeutic failures in patients with recalcitrant bacterial infections. In this review, we highlight the importance of biofilms in the development of persistence and chronicity in some S. aureus diseases, the main molecules associated with ica-independent biofilm development and the regulatory mechanisms that modulate ica-independent biofilm production, accumulation, and dispersion.

  7. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness.

    PubMed

    Lee, Keehoon; Yoon, Sang Sun

    2017-06-28

    A biofilm is a community of microbes that typically inhabit on surfaces and are encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environment and influence our lives tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients, including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicate the eradication of the biofilm infection, leading to the development of chronic infections. In this review, we discuss the history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms on their own or in association with other bacterial species ( i.e. , multispecies biofilms) are discussed in detail.

  8. Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces

    PubMed Central

    Bagge, Dorthe; Hjelm, Mette; Johansen, Charlotte; Huber, Ingrid; Gram, Lone

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25°C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 108 CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 102 CFU/cm2) than in a batch system (reaching 107 CFU/cm2), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4′,6′-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces. PMID:11319118

  9. Candida Biofilms: Threats, Challenges, and Promising Strategies.

    PubMed

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis , and Candida parapsilosis , highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  10. Candida Biofilms: Threats, Challenges, and Promising Strategies

    PubMed Central

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed. PMID:29487851

  11. Characterization of Pleurotus ostreatus Biofilms by Using the Calgary Biofilm Device

    PubMed Central

    Pesciaroli, Lorena; Petruccioli, Maurizio; Fedi, Stefano; Firrincieli, Andrea; Federici, Federico

    2013-01-01

    The adequacy of the Calgary biofilm device, often referred to as the MBEC system, as a high-throughput approach to the production and subsequent characterization of Pleurotus ostreatus biofilms was assessed. The hydroxyapatite-coating of pegs was necessary to enable biofilm attachment, and the standardization of vegetative inocula ensured a uniform distribution of P. ostreatus biofilms, which is necessary for high-throughput evaluations of several antimicrobials and exposure conditions. Scanning electron microscopy showed surface-associated growth, the occurrence of a complex aggregated growth organized in multilayers or hyphal bundles, and the encasement of hyphae within an extracellular matrix (ECM), the extent of which increased with time. Chemical analyses showed that biofilms differed from free-floating cultures for their higher contents of total sugars (TS) and ECM, with the latter being mainly composed of TS and, to a lesser extent, protein. Confocal laser scanning microscopy analysis of 4-day-old biofilms showed the presence of interspersed interstitial voids and water channels in the mycelial network, the density and compactness of which increased after a 7-day incubation, with the novel occurrence of ECM aggregates with an α-glucan moiety. In 4- and 7-day-old biofilms, tolerance to cadmium was increased by factors of 3.2 and 11.1, respectively, compared to coeval free-floating counterparts. PMID:23892744

  12. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy.

    PubMed

    Sharma, Shivani; Lavender, Stacey; Woo, JungReem; Guo, Lihong; Shi, Wenyuan; Kilpatrick-Liverman, LaTonya; Gimzewski, James K

    2014-07-01

    A major aetiological factor of dental caries is the pathology of the dental plaque biofilms. The amino acid L-arginine (Arg) is found naturally in saliva as a free molecule or as a part of salivary peptides and proteins. Plaque bacteria metabolize Arg to produce alkali and neutralize glycolytic acids, promoting a less cariogenous oral microbiome. Here, we explored an alternative and complementary mechanism of action of Arg using atomic force microscopy. The nanomechanical properties of Streptococcus mutans biofilm extracellular matrix were characterized under physiological buffer conditions. We report the effect of Arg on the adhesive behaviour and structural properties of extracellular polysaccharides in S. mutans biofilms. High-resolution imaging of biofilm surfaces can reveal additional structural information on bacterial cells embedded within the surrounding extracellular matrix. A dense extracellular matrix was observed in biofilms without Arg compared to those grown in the presence of Arg. S. mutans biofilms grown in the presence of Arg could influence the production and/or composition of extracellular membrane glucans and thereby affect their adhesion properties. Our results suggest that the presence of Arg in the oral cavity could influence the adhesion properties of S. mutans to the tooth surface. © 2014 The Authors.

  13. The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity.

    PubMed

    Mudrak, Benjamin; Tamayo, Rita

    2012-05-01

    Vibrio cholerae is the causative agent of the deadly diarrheal disease cholera. As part of its life cycle, V. cholerae persists in marine environments, where it forms surface-attached communities commonly described as biofilms. Evidence indicates that these biofilms constitute the infectious form of the pathogen during outbreaks. Previous work has shown that biofilm-derived V. cholerae cells, even when fully dispersed from the biofilm matrix, are vastly more infectious than planktonic (free-living) cells. Here, we sought to identify factors that contribute to biofilm-induced hyperinfectivity in V. cholerae, and we present evidence for one aspect of the molecular basis of this phenotype. We identified proteins upregulated during growth in biofilms and determined their contributions to the hyperinfectivity phenotype. We found that PstS2, the periplasmic component of the Pst2 phosphate uptake system, was enriched in biofilms. Another gene in the pst2 locus was transcriptionally upregulated in biofilms. Using the infant mouse model, we found that mutation of two pst2 components resulted in impaired colonization. Importantly, deletion of the Pst2 inner membrane complex caused a greater colonization defect after growth in a biofilm compared to shaking culture. Based on these data, we propose that V. cholerae cells in biofilms upregulate the Pst2 system and therefore gain an advantage upon entry into the host. Further characterization of factors contributing to biofilm-induced hyperinfectivity in V. cholerae will improve our understanding of the transmission of the bacteria from natural aquatic habitats to the human host.

  14. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome.

    PubMed

    Garcia, S S; Blackledge, M S; Michalek, S; Su, L; Ptacek, T; Eipers, P; Morrow, C; Lefkowitz, E J; Melander, C; Wu, H

    2017-07-01

    Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.

  15. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms.

    PubMed

    Gu, Huan; Hou, Shuyu; Yongyat, Chanokpon; De Tore, Suzanne; Ren, Dacheng

    2013-09-03

    Bacterial biofilms are ubiquitous and are the major cause of chronic infections in humans and persistent biofouling in industry. Despite the significance of bacterial biofilms, the mechanism of biofilm formation and associated drug tolerance is still not fully understood. A major challenge in biofilm research is the intrinsic heterogeneity in the biofilm structure, which leads to temporal and spatial variation in cell density and gene expression. To understand and control such structural heterogeneity, surfaces with patterned functional alkanthiols were used in this study to obtain Escherichia coli cell clusters with systematically varied cluster size and distance between clusters. The results from quantitative imaging analysis revealed an interesting phenomenon in which multicellular connections can be formed between cell clusters depending on the size of interacting clusters and the distance between them. In addition, significant differences in patterned biofilm formation were observed between wild-type E. coli RP437 and some of its isogenic mutants, indicating that certain cellular and genetic factors are involved in interactions among cell clusters. In particular, autoinducer-2-mediated quorum sensing was found to be important. Collectively, these results provide missing information that links cell-to-cell signaling and interaction among cell clusters to the structural organization of bacterial biofilms.

  16. Novel model for multispecies biofilms that uses rigid gas-permeable lenses.

    PubMed

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Ebersole, Jeffrey L; Novak, Karen F

    2011-05-01

    Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues.

  17. OmpA influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA two-component system.

    PubMed

    Ma, Qun; Wood, Thomas K

    2009-10-01

    Previously we discovered that OmpA of Escherichia coli increases biofilm formation on polystyrene surfaces (González Barrios et al., Biotechnol Bioeng, 93:188-200, 2006a). Here we show OmpA influences biofilm formation differently on hydrophobic and hydrophilic surfaces since it represses cellulose production which is hydrophilic. OmpA increased biofilm formation on polystyrene, polypropylene, and polyvinyl surfaces while it decreased biofilm formation on glass surfaces. Sand column assays corroborated that OmpA decreases attachment to hydrophilic surfaces. The ompA mutant formed sticky colonies, and the extracellular polysaccharide that caused stickiness was identified as cellulose. A whole-transcriptome study revealed that OmpA induces the CpxRA two-component signal transduction pathway that responds to membrane stress. CpxA phosphorylates CpxR and results in reduced csgD expression. Reduced CsgD production represses adrA expression and results in reduced cellulose production since CsgD and AdrA are responsible for 3,5-cyclic diguanylic acid and cellulose synthesis. Real-time polymerase chain reaction confirmed csgD and adrA are repressed by OmpA. Biofilm and cellulose assays with double deletion mutants adrA ompA, csgB ompA, and cpxR ompA confirmed OmpA decreased cellulose production and increased biofilm formation on polystyrene surfaces through CpxR and AdrA. Further evidence of the link between OmpA and the CpxRA system was that overproduction of OmpA disrupted the membrane and led to cell lysis. Therefore, OmpA inhibits cellulose production through the CpxRA stress response system, and this reduction in cellulose increases biofilm formation on hydrophobic surfaces.

  18. Evaluating the use of Spectral Induced Conductivity to Detect Biofilm Development within Porous Media

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Atekwana, E. A.; Price, A.; Sharma, S.; Patrauchan, M.

    2015-12-01

    Microbial biomass accumulation in subsurface sediments dynamically alters porosity/permeability; factors critical to contaminant transport and management of bioremediation efforts. Current methodologies (i.e. plate counts, tracer/slug tests) offer some understanding of biofilm effect on subsurface hydrology, yet do not provide real-time information regarding biofilm development. Due to these limitations there is interest in assessing the near surface geophysical technique Spectral Induced Polarization (SIP), to measure biofilm formation. Our study assesses the influence of cell density and biofilm production on SIP response. Laboratory experiments monitored changes in SIP, measured colony forming units (CFU), and cellular protein levels on sand packed columns inoculated with either Pseudomonas aeruginosa PAO1 (non-mucoid strain) or Pseudomonas aeruginosa FRD1 (biofilm-overproducing mucoid strain) cells over one month. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to confirm the presence of biofilm. Our results indicate that phase and imaginary conductivity remained stable in PAO1 treatments as cell densities and cellular protein levels remained low (1.7x105 CFUml-1; 111 μg ml-1). However, we observed a significant decrease in both phase (0.5 to -0.20 mrad) and imaginary conductivity (0.0 to -3.0x10-5 S m-1) when both cell densities and cellular protein levels increased. In FRD1 treatments we observed an immediate decrease in phase (0.1 mrad) and imaginary conductivity (-2.0x10-6 S m-1) as cell densities were an order of magnitude greater then PAO1 treatments and cellular protein levels surpassed 500 μg ml-1. CLSM and SEM analysis confirmed the presence of biofilm and cells within both PAO1 and FRD1 treatments. Our findings suggest that the ratio of cells to cellular protein production is an important factor influencing both phase and imaginary conductivity response. However, our results are not in agreement with

  19. A trait-based approach to bacterial biofilms in soil.

    PubMed

    Lennon, Jay T; Lehmkuhl, Brent K

    2016-09-01

    A trait-based approach focuses on attributes of taxa that influence the structure and function of communities. Biofilm production is a common trait among microorganisms in a wide range of environmental, engineered, and host-associated ecosystems. Here, we used Pseudomonas aeruginosa to link biofilm production to moisture availability, a common stressor for microorganisms in soil. First, we demonstrate that biofilm production is a response trait that influences the desiccation phenotype by increasing survivorship, shifting the niche space, and reducing the minimum water potential needed to sustain a net-positive growth rate (Ψ*). Although the allocation of resources to biofilms is thought to be costly, we found no evidence for a trade-off between fitness and biofilm production along a soil moisture gradient. Second, we demonstrated that biofilm production is an effect trait. Specifically, biofilm production increased water retention in soils that were exposed to a series of drying and rewetting cycles. Although this form of niche construction should affect species interactions, we found no evidence that the benefits of biofilm production were extended to another co-occurring soil bacterium. Together, our results support the view that biofilm production is an important trait that may contribute to the distribution, abundance, and functioning of microorganisms in soils. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Biofilm formation in geometries with different surface curvature and oxygen availability

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Fragkopoulos, Alexandros A.; Marquez, Samantha M.; Kim, Harold D.; Angelini, Thomas E.; Fernández-Nieves, Alberto

    2015-03-01

    Bacteria in the natural environment exist as interface-associated colonies known as biofilms . Complex mechanisms are often involved in biofilm formation and development. Despite the understanding of the molecular mechanisms involved in biofilm formation, it remains unclear how physical effects in standing cultures influence biofilm development. The topology of the solid interface has been suggested as one of the physical cues influencing bacteria-surface interactions and biofilm development. Using the model organism Bacillus subtilis, we study the transformation of swimming bacteria in liquid culture into robust biofilms in a range of confinement geometries (planar, spherical and toroidal) and interfaces (air/water, silicone/water, and silicone elastomer/water). We find that B. subtilis form submerged biofilms at both solid and liquid interfaces in addition to air-water pellicles. When confined, bacteria grow on curved surfaces of both positive and negative Gaussian curvature. However, the confinement geometry does affect the resulting biofilm roughness and relative coverage. We also find that the biofilm location is governed by oxygen availability as well as by gravitational effects; these compete with each other in some situations. Overall, our results demonstrate that confinement geometry is an effective way to control oxygen availability and subsequently biofilm growth.

  1. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization

    PubMed Central

    Chavez-Dozal, Alba; Hogan, David; Gorman, Clayton; Quintanal-Villalonga, Alvaro; Nishiguchi, Michele K.

    2012-01-01

    Biofilms are increasingly recognized as the predominant form for survival in the environment for most bacteria. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica, involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. In the present investigation, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. Results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships. PMID:22486781

  2. Biofilms in shower hoses.

    PubMed

    Proctor, Caitlin R; Reimann, Mauro; Vriens, Bas; Hammes, Frederik

    2017-12-14

    Shower hoses offer an excellent bacterial growth environment in close proximity to a critical end-user exposure route within building drinking water plumbing. However, the health risks associated with and processes underlying the development of biofilms in shower hoses are poorly studied. In a global survey, biofilms from 78 shower hoses from 11 countries were characterized in terms of cell concentration (4.1 × 10 4 -5.8 × 10 8  cells/cm 2 ), metal accumulation (including iron, lead, and copper), and microbiome composition (including presence of potential opportunistic pathogens). In countries using disinfectant, biofilms had on average lower cell concentrations and diversity. Metal accumulation (up to 5 μg-Fe/cm 2 , 75 ng-Pb/cm 2 , and 460 ng-Cu/cm 2 ) seemed to be partially responsible for discoloration in biofilms, and likely originated from other pipes upstream in the building. While some genera that may contain potential opportunistic pathogens (Legionella, detected in 21/78 shower hoses) were positively correlated with biofilm cell concentration, others (Mycobacterium, Pseudomonas) had surprisingly non-existent or negative correlations with biofilm cell concentrations. In a controlled study, 15 identical shower hoses were installed for the same time period in the same country, and both stagnant and flowing water samples were collected. Ecological theory of dispersal and selection helped to explain microbiome composition and diversity of different sample types. Shower hose age was related to metal accumulation but not biofilm cell concentration, while frequency of use appeared to influence biofilm cell concentration. This study shows that shower hose biofilms are clearly a critical element of building drinking water plumbing, and a potential target for building drinking water plumbing monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Disarming Fungal Pathogens: Bacillus safensis Inhibits Virulence Factor Production and Biofilm Formation by Cryptococcus neoformans and Candida albicans

    PubMed Central

    2017-01-01

    ABSTRACT Bacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium, Bacillus safensis, which potently blocked several key Cryptococcus neoformans virulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibited de novo cryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria. B. safensis also had anti-virulence factor activity against another major human-associated fungal pathogen, Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibited C. albicans filamentation and biofilm formation. In particular, B. safensis physically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect of B. safensis. PMID:28974618

  4. The ecology and biogeochemistry of stream biofilms.

    PubMed

    Battin, Tom J; Besemer, Katharina; Bengtsson, Mia M; Romani, Anna M; Packmann, Aaron I

    2016-04-01

    Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems.

  5. Three-dimensional biofilm structure quantification.

    PubMed

    Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary

    2004-12-01

    Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.

  6. Biofilm on dental implants: a review of the literature.

    PubMed

    Subramani, Karthikeyan; Jung, Ronald E; Molenberg, Aart; Hammerle, Christoph H F

    2009-01-01

    The aim of this article was to review the current literature with regard to biofilm formation on dental implants and the influence of surface characteristics (chemistry, surface free energy, and roughness) of dental implant and abutment materials and their design features on biofilm formation and its sequelae. An electronic MEDLINE literature search was conducted of studies published between 1966 and June 2007. The following search terms were used: biofilm and dental implants, biofilm formation/plaque bacterial adhesion and implants, plaque/biofilm and surface characteristics/roughness/surface free energy of titanium dental implants, implant-abutment interface and plaque/biofilm, biofilm and supragingival/subgingival plaque microbiology, biofilm/plaque and implant infection, antibacterial/bacteriostatic titanium, titanium nanocoating/nanopatterning, antimicrobial drug/titanium implant. Both in vitro and in vivo studies were included in this review. Fifty-three articles were identified in this review process. The articles were categorized with respect to their context on biofilm formation on teeth and dental implant surfaces and with regard to the influence of surface characteristics of implant biomaterials (especially titanium) and design features of implant and abutment components on biofilm formation. The current state of literature is more descriptive, rather than providing strong data that could be analyzed through meta-analysis. Basic research articles on surface modification of titanium were also included in the review to analyze the applications of such studies on the fabrication of implant surfaces that could possibly decrease early bacterial colonization and biofilm formation. Increase in surface roughness and surface free energy facilitates biofilm formation on dental implant and abutment surfaces, although this conclusion is derived from largely descriptive literature. Surface chemistry and the design features of the implant-abutment configuration also

  7. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm.

    PubMed

    Zhang, Peiyu; Xu, Dake; Li, Yingchao; Yang, Ke; Gu, Tingyue

    2015-02-01

    In the microbiologically influenced corrosion (MIC) caused by sulfate reducing bacteria (SRB), iron oxidation happens outside sessile cells while the utilization of the electrons released by the oxidation process for sulfate reduction occurs in the SRB cytoplasm. Thus, cross-cell wall electron transfer is needed. It can only be achieved by electrogenic biofilms. This work hypothesized that the electron transfer is a bottleneck in MIC by SRB. To prove this, MIC tests were carried out using 304 stainless steel coupons covered with the Desulfovibrio vulgaris (ATCC 7757) biofilm in the ATCC 1249 medium. It was found that both riboflavin and flavin adenine dinucleotide (FAD), two common electron mediators that enhance electron transfer, accelerated pitting corrosion and weight loss on the coupons when 10ppm (w/w) of either of them was added to the culture medium in 7-day anaerobic lab tests. This finding has important implications in MIC forensics and biofilm synergy in MIC that causes billions of dollars of damages to the US industry each year. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Plant Biofilm Inhibitors to Discover Biofilm Genes

    DTIC Science & Technology

    2011-04-08

    REPORT Final Report for Plant Biofilm Inhibitors to Discover Biofilm Genes 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: To control biofilms , we have...synthesized the natural biofilm inhibitor (5Z)-4-bromo-5-(bromomethylene) -3-butyl-2(5H)-furanone from the red alga Delisea pulchra and determined that...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS biofilms , biofilm inhibitors Thomas K. Wood Texas Engineering

  9. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms

    PubMed Central

    Bygvraa Svenningsen, Nanna; Rybtke, Morten; de Bruijn, Irene; Raaijmakers, Jos M.; Tolker-Nielsen, Tim; Nybroe, Ole

    2015-01-01

    Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in Pseudomonas fluorescens SBW25 biofilm formation, architecture and dispersal, and to relate viscA gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25ΔviscA in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25ΔviscA. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that viscA expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25ΔviscA developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25ΔviscA biofilms after 3 h and, importantly, carbon starvation strongly induced viscA expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms. PMID:26419730

  10. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms.

    PubMed

    Bonnichsen, Lise; Bygvraa Svenningsen, Nanna; Rybtke, Morten; de Bruijn, Irene; Raaijmakers, Jos M; Tolker-Nielsen, Tim; Nybroe, Ole

    2015-12-01

    Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in Pseudomonas fluorescens SBW25 biofilm formation, architecture and dispersal, and to relate viscA gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25ΔviscA in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25ΔviscA. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that viscA expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25ΔviscA developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25ΔviscA biofilms after 3 h and, importantly, carbon starvation strongly induced viscA expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms.

  11. Novel Model for Multispecies Biofilms That Uses Rigid Gas-Permeable Lenses ▿

    PubMed Central

    Peyyala, Rebecca; Kirakodu, Sreenatha S.; Ebersole, Jeffrey L.; Novak, Karen F.

    2011-01-01

    Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues. PMID:21421785

  12. Biofilm formation by designed co-cultures of Caldicellulosiruptor species as a means to improve hydrogen productivity.

    PubMed

    Pawar, Sudhanshu S; Vongkumpeang, Thitiwut; Grey, Carl; van Niel, Ed Wj

    2015-01-01

    Caldicellulosiruptor species have gained a reputation as being among the best microorganisms to produce hydrogen (H2) due to possession of a combination of appropriate features. However, due to their low volumetric H2 productivities (Q H2), Caldicellulosiruptor species cannot be considered for any viable biohydrogen production process yet. In this study, we evaluate biofilm forming potential of pure and co-cultures of Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor owensensis in continuously stirred tank reactors (CSTR) and up-flow anaerobic (UA) reactors. We also evaluate biofilms as a means to retain biomass in the reactor and its influence on Q H2. Moreover, we explore the factors influencing the formation of biofilm. Co-cultures of C. saccharolyticus and C. owensensis form substantially more biofilm than formed by C. owensensis alone. Biofilms improved substrate conversion in both of the reactor systems, but improved the Q H2 only in the UA reactor. When grown in the presence of each other's culture supernatant, both C. saccharolyticus and C. owensensis were positively influenced on their individual growth and H2 production. Unlike the CSTR, UA reactors allowed retention of C. saccharolyticus and C. owensensis when subjected to very high substrate loading rates. In the UA reactor, maximum Q H2 (approximately 20 mmol · L(-1)  · h(-1)) was obtained only with granular sludge as the carrier material. In the CSTR, stirring negatively affected biofilm formation. Whereas, a clear correlation was observed between elevated (>40 μM) intracellular levels of the secondary messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and biofilm formation. In co-cultures C. saccharolyticus fortified the trade of biofilm formation by C. owensensis, which was mediated by elevated levels of c-di-GMP in C. owensensis. These biofilms were effective in retaining biomass of both species in the reactor and improving Q H2 in a UA reactor using

  13. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity.

    PubMed

    Spiers, Andrew J; Rainey, Paul B

    2005-09-01

    The wrinkly spreader (WS) isolate of Pseudomonas fluorescens SBW25 forms a substantial biofilm at the air-liquid interface. The biofilm is composed of an extracellular partially acetylated cellulose-fibre matrix, and previous mutagenesis of WS with mini-Tn5 had identified both the regulatory and cellulose-biosynthetic operons. One uncharacterized WS mutant, WS-5, still expressed cellulose but produced very weak biofilms. In this work, the mini-Tn5 insertion site in WS-5 has been identified as being immediately upstream of the tol-pal operon. Like Tol-Pal mutants of other Gram-negative bacteria, WS-5 showed a "leaky-membrane" phenotype, including the serendipitous ability to utilize sucrose, increased uptake of the hydrophilic dye propidium iodide, and the loss of lipopolysaccharide (LPS) expression. WS-5 cells were altered in relative hydrophobicity, and showed poorer recruitment and maintenance in the biofilm than WS. The WS-5 biofilm was also less sensitive to chemical interference during development. However, growth rate, cellulose expression and attachment were not significantly different between WS and WS-5. Finally, WS-5 biofilms could be partially complemented with WS-4, a biofilm- and attachment-deficient mutant that expressed LPS, resulting in a mixed biofilm with significantly increased strength. These findings show that a major component of the WS air-liquid biofilm strength results from the interactions between LPS and the cellulose matrix of the biofilm--and that in the WS biofilm, cellulose fibres, attachment factor and LPS are required for biofilm development, strength and integrity.

  14. Biofilms.

    PubMed

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-07-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. Using these bacteria as examples, we discuss the key features of biofilms as well as mechanisms by which extracellular signals trigger biofilm formation.

  15. Candida albicans biofilms: development, regulation, and molecular mechanisms

    PubMed Central

    Gulati, Megha; Nobile, Clarissa J.

    2016-01-01

    A major virulence attribute of Candida albicans is its ability to form biofilms, densely packed communities of cells adhered to a surface. These biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental factors, making biofilm-associated infections a significant clinical challenge. Here, we review current knowledge on the development, regulation, and molecular mechanisms of C. albicans biofilms. PMID:26806384

  16. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer.

    PubMed

    Babauta, Jerome T; Nguyen, Hung Duc; Harrington, Timothy D; Renslow, Ryan; Beyenal, Haluk

    2012-10-01

    The limitation of pH inside electrode-respiring biofilms is a well-known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode-respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the microelectrode was allowed to acclimatize inside the biofilm. Copyright © 2012 Wiley Periodicals, Inc.

  17. In vitro biofilm formation on resin-based composites after different finishing and polishing procedures.

    PubMed

    Cazzaniga, Gloria; Ottobelli, Marco; Ionescu, Andrei C; Paolone, Gaetano; Gherlone, Enrico; Ferracane, Jack L; Brambilla, Eugenio

    2017-12-01

    To evaluate the influence of surface treatments of different resin-based composites (RBCs) on S. mutans biofilm formation. 4 RBCs (microhybrid, nanohybrid, nanofilled, bulk-filled) and 6 finishing-polishing (F/P) procedures (open-air light-curing, light-curing against Mylar strip, aluminum oxide discs, one-step rubber point, diamond bur, multi-blade carbide bur) were evaluated. Surface roughness (SR) (n=5/group), gloss (n=5/group), scanning electron microscopy morphological analysis (SEM), energy-dispersive X-ray spectrometry (EDS) (n=3/group), and S. mutans biofilm formation (n=16/group) were assessed. EDS analysis was repeated after the biofilm assay. A morphological evaluation of S. mutans biofilm was also performed using confocal laser-scanning microscopy (CLSM) (n=2/group). The data were analyzed using Wilcoxon (SR, gloss) and two-way ANOVA with Tukey as post-hoc tests (EDS, biofilm formation). F/P procedures as well as RBCs significantly influenced SR and gloss. While F/P procedures did not significantly influence S. mutans biofilm formation, a significant influence of RBCs on the same parameter was found. Different RBCs showed different surface elemental composition. Both F/P procedures and S. mutans biofilm formation significantly modified this parameter. The tested F/P procedures significantly influenced RBCs surface properties but did not significantly affect S. mutans biofilm formation. The significant influence of the different RBCs tested on S. mutans biofilm formation suggests that material characteristics and composition play a greater role than SR. F/P procedures of RBCs may unexpectedly play a minor role compared to that of the restoration material itself in bacterial colonization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Innovative strategies to overcome biofilm resistance.

    PubMed

    Taraszkiewicz, Aleksandra; Fila, Grzegorz; Grinholc, Mariusz; Nakonieczna, Joanna

    2013-01-01

    We review the recent literature concerning the efficiency of antimicrobial photodynamic inactivation toward various microbial species in planktonic and biofilm cultures. The review is mainly focused on biofilm-growing microrganisms because this form of growth poses a threat to chronically infected or immunocompromised patients and is difficult to eradicate from medical devices. We discuss the biofilm formation process and mechanisms of its increased resistance to various antimicrobials. We present, based on data in the literature, strategies for overcoming the problem of biofilm resistance. Factors that have potential for use in increasing the efficiency of the killing of biofilm-forming bacteria include plant extracts, enzymes that disturb the biofilm structure, and other nonenzymatic molecules. We propose combining antimicrobial photodynamic therapy with various antimicrobial and antibiofilm approaches to obtain a synergistic effect to permit efficient microbial growth control at low photosensitizer doses.

  19. The Effectiveness of Voriconazole in Therapy of Candida glabrata's Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression.

    PubMed

    Rodrigues, Célia F; Gonçalves, Bruna; Rodrigues, Maria Elisa; Silva, Sónia; Azeredo, Joana; Henriques, Mariana

    2017-08-01

    Candida glabrata is one of most prevalent yeast in fungal infections, especially in immunocompromised patients. Its azole resistance results in a low therapeutic response, particularly when associated with biofilms. The main goal of this work was to study the effectiveness of voriconazole (Vcz) against C. glabrata biofilms oral pathologies, as esophageal or oropharyngeal candidiasis. Antifungal susceptibilities were determined in pre-formed 24-h-biofilms and ERG genes expression was determined by qRT-PCR. Protein quantification was performed using BCA ® Kit, carbohydrate was estimated according to the Dubois assay and β-1,3 glucans concentration were determined using Glucatell ® kit. Finally, ergosterol, Vcz, and fluconazole (Flu) concentrations within the biofilm matrices were determined by RP-HPLC. Results showed that C. glabrata biofilms were more susceptible to Vcz than to Flu and that ERG genes expression evidenced an overexpression of the three ERG genes in the presence of both azoles. The matrix content presented a remarked decrease in proteins and an increase in carbohydrates, namely β-1,3 glucans. Ergosterol was successfully detected and quantified in the biofilm matrices, with no differences in all the considered conditions. Vcz demonstrated better diffusion through the biofilms and better cell penetration capacities, than Flu, indicating that the structure of the drug molecule fully influences its dissemination through the biofilm matrices. This work showed that Vcz is notably more effective than Flu for the treatment of resistant C. glabrata oral biofilms, which demonstrates a clinical relevance in its future use for the treatment of oropharyngeal/esophageal candidiasis caused by this species.

  20. Focus on the physics of biofilms

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Stocker, Roman; Rusconi, Roberto

    2015-03-01

    Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists’ territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments.

  1. Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems.

    PubMed

    Douterelo, I; Husband, S; Loza, V; Boxall, J

    2016-07-15

    The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. Copyright © 2016 Douterelo et al.

  2. Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems

    PubMed Central

    Husband, S.; Loza, V.; Boxall, J.

    2016-01-01

    ABSTRACT The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. IMPORTANCE This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. PMID:27208119

  3. Plasticity of Candida albicans Biofilms

    PubMed Central

    Daniels, Karla J.

    2016-01-01

    SUMMARY Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal. PMID:27250770

  4. Visualizing the Effects of Sputum on Biofilm Development Using a Chambered Coverglass Model.

    PubMed

    Beaudoin, Trevor; Kennedy, Sarah; Yau, Yvonne; Waters, Valerie

    2016-12-14

    Biofilms consist of groups of bacteria encased in a self-secreted matrix. They play an important role in industrial contamination as well as in the development and persistence of many health related infections. One of the most well described and studied biofilms in human disease occurs in chronic pulmonary infection of cystic fibrosis patients. When studying biofilms in the context of the host, many factors can impact biofilm formation and development. In order to identify how host factors may affect biofilm formation and development, we used a static chambered coverglass method to grow biofilms in the presence of host-derived factors in the form of sputum supernatants. Bacteria are seeded into chambers and exposed to sputum filtrates. Following 48 hr of growth, biofilms are stained with a commercial biofilm viability kit prior to confocal microscopy and analysis. Following image acquisition, biofilm properties can be assessed using different software platforms. This method allows us to visualize key properties of biofilm growth in presence of different substances including antibiotics.

  5. A general description of detachment for multidimensional modelling of biofilms.

    PubMed

    Xavier, Joao de Bivar; Picioreanu, Cristian; van Loosdrecht, Mark C M

    2005-09-20

    A general method for describing biomass detachment in multidimensional biofilm modelling is introduced. Biomass losses from processes acting on the entire surface of the biofilm, such as erosion, are modelled using a continuous detachment speed function F(det). Discrete detachment events, i.e. sloughing, are implicitly derived from simulations. The method is flexible to allow F(det) to take several forms, including expressions dependent on any state variables such as the local biofilm density. This methodology for biomass detachment was integrated with multidimensional (2D and 3D) particle-based multispecies biofilm models by using a novel application of the level set method. Application of the method is illustrated by trends in the dynamics of biofilms structure and activity derived from simulations performed on a simple model considering uniform biomass (case study I) and a model discriminating biomass composition in heterotrophic active mass, extracellular polymeric substances (EPS) and inert mass (case study II). Results from case study I demonstrate the effect of applied detachment forces as a fundamental factor influencing steady-state biofilm activity and structure. Trends from experimental observations reported in literature were correctly described. For example, simulation results indicated that biomass sloughing is reduced when erosion forces are increased. Case study II illustrates the application of the detachment methodology to systems with non-uniform biomass composition. Simulations carried out at different bulk concentrations of substrate show changes in biofilm structure (in terms of shape, density and spatial distribution of biomass components) and activity (in terms of oxygen and substrate consumption) as a consequence of either oxygen-limited or substrate-limited growth. (c) 2005 Wiley Periodicals, Inc.

  6. Influence of Helicobacter pylori culture supernatant on the ecological balance of a dual-species oral biofilm.

    PubMed

    Zhang, Wenling; Deng, Xiaohong; Zhou, Xuedong; Hao, Yuqing; Li, Yuqing

    2018-01-01

    Dental caries is a chronic progressive disease occurring in the tooth hard tissue due to multiple factors, in which bacteria are the initial cause. Both Streptococcus mutans and Streptococcus sanguinis are main members of oral biofilm. Helicobacter pylori may also be detected in dental plaque, playing an important role in the development of dental caries. The aim of this study was to investigate the effect of H. pylori culture supernatant on S. mutans and S. sanguinis dual-species biofilm and to evaluate its potential ability on affecting dental health. The effect of H. pylori supernatant on single-species and dual-species biofilm was measured by colony forming units counting and fluorescence in situ hybridization (FISH) assay, respectively. The effect of H. pylori supernatant on S. mutans and S. sanguinis extracellular polysaccharides (EPS) production was measured by both confocal laser scanning microscopy observation and anthrone-sulfuric acid method. The effect of H. pylori supernatant on S. mutans gene expression was measured by quantitative real-time PCR (qRT-PCR) assays. H. pylori supernatant could inhibit both S. mutans and S. sanguinis biofilm formation and EPS production. S. sanguinis inhibition rate was significantly higher than that of S. mutans. Finally, S. mutans bacteriocin and acidogenicity related genes expression were affected by H. pylori culture supernatant. Our results showed that H. pylori could destroy the balance between S. mutans and S. sanguinis in oral biofilm, creating an advantageous environment for S. mutans, which became the dominant bacteria, promoting the formation and development of dental caries.

  7. Influence of Helicobacter pylori culture supernatant on the ecological balance of a dual-species oral biofilm

    PubMed Central

    Zhang, Wenling; Deng, Xiaohong; Zhou, Xuedong; Hao, Yuqing; Li, Yuqing

    2018-01-01

    Abstract Dental caries is a chronic progressive disease occurring in the tooth hard tissue due to multiple factors, in which bacteria are the initial cause. Both Streptococcus mutans and Streptococcus sanguinis are main members of oral biofilm. Helicobacter pylori may also be detected in dental plaque, playing an important role in the development of dental caries. Objective The aim of this study was to investigate the effect of H. pylori culture supernatant on S. mutans and S. sanguinis dual-species biofilm and to evaluate its potential ability on affecting dental health. Material and methods The effect of H. pylori supernatant on single-species and dual-species biofilm was measured by colony forming units counting and fluorescence in situ hybridization (FISH) assay, respectively. The effect of H. pylori supernatant on S. mutans and S. sanguinis extracellular polysaccharides (EPS) production was measured by both confocal laser scanning microscopy observation and anthrone-sulfuric acid method. The effect of H. pylori supernatant on S. mutans gene expression was measured by quantitative real-time PCR (qRT-PCR) assays. Results H. pylori supernatant could inhibit both S. mutans and S. sanguinis biofilm formation and EPS production. S. sanguinis inhibition rate was significantly higher than that of S. mutans. Finally, S. mutans bacteriocin and acidogenicity related genes expression were affected by H. pylori culture supernatant. Conclusion Our results showed that H. pylori could destroy the balance between S. mutans and S. sanguinis in oral biofilm, creating an advantageous environment for S. mutans, which became the dominant bacteria, promoting the formation and development of dental caries. PMID:29489935

  8. Influence of trophic conditions on exopolysaccharide production: bacterial biofilm susceptibility to chlorine and monochloramine.

    PubMed

    Samrakandi, M M; Roques, C; Michel, G

    1997-08-01

    This study examines the controversial efficacy of chlorine and monochloramine against biofilms that differ in their extracellular polysaccharide (EPS) content. The results point out a net variability of bacterial biofilm susceptibility according to the nutrients present. Chlorine and monochloramine showed an equal biocidal activity on lactose medium-grown E. coli ATCC 10536 and glycerol-ammonium nitrate medium-grown nonmucoid Pseudomonas aeruginosa biofilms. In contrast, the effect of monochloramine is greater compared with that of chlorine on E. coli and mucoid P. aeruginosa biofilms grown in sucrose and glycerol-ammonium nitrate media, respectively. In these culture conditions, treatment with 25 mg monochloramine/L for 2 h reduced culturable cells by 4.5 logs (99.997%) for E. coli and about 3 logs (99.87%) for mucoid P. aeruginosa while the similar treatment with chlorine reduced culturable cells in these biofilms by 2.2 logs (99.4%) and 1 log (10%), respectively. The decrease of chlorine disinfection efficacy on sucrose and glycerol-ammonium nitrate medium-grown biofilms is postulated to be linked to the higher polysaccharide production observed in these media. It seems likely that monochloramine produces a high leakage of material absorbing at 260 nm from sucrose medium-grown E. coli biofilm, which could indicate its better penetration into biofilms.

  9. Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hung D.; Cao, Bin; Mishra, Bhoopesh

    2012-01-01

    The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000more » μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state.« less

  10. Soluble Factors from Biofilms of Wound Pathogens Modulate Human Bone Marrow-derived Stromal Cell Differentiation, Migration, Angiogenesis, and Cytokine Secretion

    DTIC Science & Technology

    2015-03-28

    Becerra, Christopher R Rathbone and Joseph C Wenke Abstract Background: Chronic, non- healing wounds are often characterized by the persistence of bacteria...within biofilms - aggregations of cells encased within a self -produced polysaccharide matrix. Biofilm bacteria exhibit unique characteristics from...modulation of host-immune responses by secreting factors that promote wound healing . While these characteristics make MSCs an attractive therapeutic

  11. Spatiotemporal evolution of bacterial biofilm colonies

    NASA Astrophysics Data System (ADS)

    Wilking, James; Koehler, Stephan; Sinha, Naveen; Seminara, Agnese; Brenner, Michael; Weitz, David

    2014-03-01

    Many bacteria on earth live in surface-attached communities known as biofilms. Gene expression in a biofilm is typically varied, resulting in a variety of phenotypes within a single film. These phenotypes play a critical role in biofilm physiology and development. We use time-resolved, wide-field fluorescence microscopy to image triple-labeled fluorescent Bacillus Subtilis colonies grown on agar to determine in a non-invasive fashion the evolving phenotypes. We infer their transition rates from the resulting spatiotemporal maps of gene expression. Moreover, we correlate these transition rates with local measurements of nutrient concentration to determine the influence of extracellular signals on gene expression.

  12. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa.

    PubMed

    Harrison, Joe J; Turner, Raymond J; Ceri, Howard

    2005-07-01

    In this study, we examined Pseudomonas aeruginosa ATCC 27853 biofilm and planktonic cell susceptibility to metal cations. The minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC) required to eradicate 100% of the planktonic population (MBC 100), and the minimum biofilm eradication concentration (MBEC) were determined using the MBEC trade mark-high throughput assay. Six metals - Co(2+), Ni(2+), Cu(2+), Zn(2+), Al(3+) and Pb(2+)- were each tested at 2, 4, 6, 8, 10 and 27 h of exposure to biofilm and planktonic cultures grown in rich or minimal media. With 2 or 4 h of exposure, biofilms were approximately 2-25 times more tolerant to killing by metal cations than the corresponding planktonic cultures. However, by 27 h of exposure, biofilm and planktonic bacteria were eradicated at approximately the same concentration in every instance. Viable cell counts evaluated at 2 and 27 h of exposure revealed that at high concentrations, most of the metals assayed had killed greater than 99.9% of biofilm and planktonic cell populations. The surviving cells were propogated in vitro and gave rise to biofilm and planktonic cultures with normal sensitivity to metals. Further, retention of copper by the biofilm matrix was investigated using the chelator sodium diethlydithiocarbamate. Formation of visible brown metal-chelates in biofilms treated with Cu(2+) suggests that the biofilm matrix may coordinate and sequester metal cations from the aqueous surroundings. Overall, our data suggest that both metal sequestration in the biofilm matrix and the presence of a small population of 'persister' cells may be contributing factors in the time-dependent tolerance of both planktonic cells and biofilms to high concentrations of metal cations.

  13. Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms

    NASA Astrophysics Data System (ADS)

    Strom, Matthew James

    Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled

  14. Staphopains Modulate Staphylococcus aureus Biofilm Integrity

    PubMed Central

    Mootz, Joe M.; Malone, Cheryl L.; Shaw, Lindsey N.

    2013-01-01

    Staphylococcus aureus is a known cause of chronic biofilm infections that can reside on medical implants or host tissue. Recent studies have demonstrated an important role for proteinaceous material in the biofilm structure. The S. aureus genome encodes many secreted proteases, and there is growing evidence that these enzymes have self-cleavage properties that alter biofilm integrity. However, the specific contribution of each protease and mechanism of biofilm modulation is not clear. To address this issue, we utilized a sigma factor B (ΔsigB) mutant where protease activity results in a biofilm-negative phenotype, thereby creating a condition where the protease(s) responsible for the phenotype could be identified. Using a plasma-coated microtiter assay, biofilm formation was restored to the ΔsigB mutant through the addition of the cysteine protease inhibitor E-64 or by using Staphostatin inhibitors that specifically target the extracellular cysteine proteases SspB and ScpA (called Staphopains). Through construction of gene deletion mutants, we determined that an sspB scpA double mutant restored ΔsigB biofilm formation, and this recovery could be replicated in plasma-coated flow cell biofilms. Staphopain levels were also found to be decreased under biofilm-forming conditions, possibly allowing biofilm establishment. The treatment of S. aureus biofilms with purified SspB or ScpA enzyme inhibited their formation, and ScpA was also able to disperse an established biofilm. The antibiofilm properties of ScpA were conserved across S. aureus strain lineages. These findings suggest an underappreciated role of the SspB and ScpA cysteine proteases in modulating S. aureus biofilm architecture. PMID:23798534

  15. Implications of Antimicrobial Combinations in Complex Wound Biofilms Containing Fungi.

    PubMed

    Townsend, Eleanor M; Sherry, Leighann; Kean, Ryan; Hansom, Donald; Mackay, William G; Williams, Craig; Butcher, John; Ramage, Gordon

    2017-09-01

    Diabetic foot ulcer treatment currently focuses on targeting bacterial biofilms, while dismissing fungi. To investigate this, we used an in vitro biofilm model containing bacteria and fungi, reflective of the wound environment, to test the impact of antimicrobials. Here we showed that while monotreatment approaches influenced biofilm composition, this had no discernible effect on overall quantity. Only by combining bacterium- and fungus-specific antibiotics were we able to decrease the biofilm bioburden, irrespective of composition. Copyright © 2017 American Society for Microbiology.

  16. The Role of Sucrose in Cariogenic Dental Biofilm Formation—New Insight

    PubMed Central

    Leme, A.F. Paes; Koo, H.; Bellato, C.M.; Bedi, G.; Cury, J.A.

    2008-01-01

    Dental caries is a biofilm-dependent oral disease, and fermentable dietary carbohydrates are the key environmental factors involved in its initiation and development. However, among the carbohydrates, sucrose is considered the most cariogenic, because, in addition to being fermented by oral bacteria, it is a substrate for the synthesis of extracellular (EPS) and intracellular (IPS) polysaccharides. Therefore, while the low pH environment triggers the shift of the resident plaque microflora to a more cariogenic one, EPS promote changes in the composition of the biofilms’ matrix. Furthermore, it has recently been shown that the biofilm formed in the presence of sucrose presents low concentrations of Ca, Pi, and F, which are critical ions involved in de- and remineralization of enamel and dentin in the oral environment. Thus, the aim of this review is to explore the broad role of sucrose in the cariogenicity of biofilms, and to present a new insight into its influence on the pathogenesis of dental caries. PMID:16998125

  17. The Influence of Shuttle-Shape Emodin Nanoparticles on the Streptococcus suis Biofilm.

    PubMed

    Ding, Wenya; Sun, Jin; Lian, He; Xu, Changgeng; Liu, Xin; Zheng, Sidi; Zhang, Dong; Han, Xiaopeng; Liu, Yanyan; Chen, Xueying; God Spower, Bello O; Li, Yanhua

    2018-01-01

    Biofilm is one of the most important physiological protective barriers of the Streptococcus suis ( S. suis ), and it is also one of the primary causes of hindrance to drug infiltration, reduction of bactericidal effects, and the development of antibiotic resistance. In order to intervene or eliminate S. suis biofilm, shuttle-shape emodin-loaded nanoparticles were developed in our study. The emodin nanoparticles were prepared by emodin and gelatin-cyclodextrin which was synthesized as drug carrier, and the nanoparticles were 174 nm in size, -4.64 mv in zeta potential, and exhibited a sustained emodin release. Moreover, the delivery kinetics of nanoparticles were also explored in our study. The confocal laser scanning microscopy and colony forming unit enumeration experiment indicated that nanoparticles could increase drug infiltration and uptake by biofilm. The flow cytometry system analysis showed that nanoparticles could be up taken by 99% of the bacteria cells. TCP assay and scanning electron microscopy showed that the nanoparticles had better effect on biofilm inhibition and elimination when compared with emodin solution. These results revealed that the emodin nanoparticles had a better therapeutic effect on the S. suis biofilm in vitro .

  18. Net growth rate of continuum heterogeneous biofilms with inhibition kinetics.

    PubMed

    Gonzo, Elio Emilio; Wuertz, Stefan; Rajal, Veronica B

    2018-01-01

    Biofilm systems can be modeled using a variety of analytical and numerical approaches, usually by making simplifying assumptions regarding biofilm heterogeneity and activity as well as effective diffusivity. Inhibition kinetics, albeit common in experimental systems, are rarely considered and analytical approaches are either lacking or consider effective diffusivity of the substrate and the biofilm density to remain constant. To address this obvious knowledge gap an analytical procedure to estimate the effectiveness factor (dimensionless substrate mass flux at the biofilm-fluid interface) was developed for a continuum heterogeneous biofilm with multiple limiting-substrate Monod kinetics to different types of inhibition kinetics. The simple perturbation technique, previously validated to quantify biofilm activity, was applied to systems where either the substrate or the inhibitor is the limiting component, and cases where the inhibitor is a reaction product or the substrate also acts as the inhibitor. Explicit analytical equations are presented for the effectiveness factor estimation and, therefore, the calculation of biomass growth rate or limiting substrate/inhibitor consumption rate, for a given biofilm thickness. The robustness of the new biofilm model was tested using kinetic parameters experimentally determined for the growth of Pseudomonas putida CCRC 14365 on phenol. Several additional cases have been analyzed, including examples where the effectiveness factor can reach values greater than unity, characteristic of systems with inhibition kinetics. Criteria to establish when the effectiveness factor can reach values greater than unity in each of the cases studied are also presented.

  19. How Staphylococcus aureus biofilms develop their characteristic structure

    PubMed Central

    Periasamy, Saravanan; Joo, Hwang-Soo; Duong, Anthony C.; Bach, Thanh-Huy L.; Tan, Vee Y.; Chatterjee, Som S.; Cheung, Gordon Y. C.; Otto, Michael

    2012-01-01

    Biofilms cause significant problems in the environment and during the treatment of infections. However, the molecular mechanisms underlying biofilm formation are poorly understood. There is a particular lack of knowledge about biofilm maturation processes, such as biofilm structuring and detachment, which are deemed crucial for the maintenance of biofilm viability and the dissemination of cells from a biofilm. Here, we identify the phenol-soluble modulin (PSM) surfactant peptides as key biofilm structuring factors in the premier biofilm-forming pathogen Staphylococcus aureus. We provide evidence that all known PSM classes participate in structuring and detachment processes. Specifically, absence of PSMs in isogenic S. aureus psm deletion mutants led to strongly impaired formation of biofilm channels, abolishment of the characteristic waves of biofilm detachment and regrowth, and loss of control of biofilm expansion. In contrast, induced expression of psm loci in preformed biofilms promoted those processes. Furthermore, PSMs facilitated dissemination from an infected catheter in a mouse model of biofilm-associated infection. Moreover, formation of the biofilm structure was linked to strongly variable, quorum sensing-controlled PSM expression in biofilm microenvironments, whereas overall PSM production remained constant to ascertain biofilm homeostasis. Our study describes a mechanism of biofilm structuring in molecular detail, and the general principle (i.e., quorum-sensing controlled expression of surfactants) seems to be conserved in several bacteria, despite the divergence of the respective biofilm-structuring surfactants. These findings provide a deeper understanding of biofilm development processes, which represents an important basis for strategies to interfere with biofilm formation in the environment and human disease. PMID:22232686

  20. Effect of anti-biofilm glass-ionomer cement on Streptococcus mutans biofilms.

    PubMed

    Wang, Su-Ping; Ge, Yang; Zhou, Xue-Dong; Xu, Hockin Hk; Weir, Michael D; Zhang, Ke-Ke; Wang, Hao-Hao; Hannig, Matthias; Rupf, Stefan; Li, Qian; Cheng, Lei

    2016-06-30

    Dental restorative materials with antimicrobial properties can inhibit bacterial colonization, which may result in a reduction of caries at tooth-filling interaction zones. This study aimed to develop antibacterial glass-ionomer cements (GIC) containing a quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and to investigate their effect on material performance and antibacterial properties. Different mass fractions (0, 1.1% and 2.2%) of DMADDM were incorporated into the GIC. The flexure strength, surface charge density, surface roughness and fluoride release were tested. A Streptococcus mutans biofilm model was used. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm matrix. In addition, biofilm metabolic activity, lactic acid metabolism and the expression of glucosyltransferase genes gtfB, gtfC and gtfD were measured. GIC containing 1.1% and 2.2% DMADDM had flexural strengths matching those of the commercial control (P>0.1). DMADDM was able to increase the surface charge density but reduced surface roughness (P<0.05). The incorporation of 1.1% and 2.2% DMADDM elevated the release of fluoride by the GIC in the first 2 days (P<0.05). The novel DMADDM-modified GIC significantly reduced biofilm metabolic activity (P<0.05) and decreased lactic acid production (P<0.05). The quantitative polymerase chain reaction (qPCR) results showed that the expression of gtfB, gtfC and gtfD decreased when mass fractions of DMADDM increased (P<0.05). EPS staining showed that both the bacteria and EPS in biofilm decreased in the DMADDM groups. The incorporation of DMADDM could modify the properties of GIC to influence the development of S. mutans biofilms. In this study, we investigated the interface properties of antibacterial materials for the first time. GIC containing DMADDM can improve material performance and antibacterial properties and may contribute to the better management of secondary caries.

  1. The influence of dissolved oxygen level and medium on biofilm formation by Campylobacter jejuni.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2017-02-01

    Campylobacter jejuni survival in aerobic environments has been suggested to be mediated by biofilm formation. Biofilm formation by eight C. jejuni strains under both aerobic and microaerobic conditions in different broths (Mueller-Hinton (MH), Bolton and Brucella) was quantified. The dissolved oxygen (DO) content of the broths under both incubation atmospheres was determined. Biofilm formation for all strains was highest in MH broth under both incubation atmospheres. Four strains had lower biofilm formation in MH under aerobic as compared to microaerobic incubation, while biofilm formation by the other four strains did not differ under the 2 atm. Two strains had higher biofilm formation under aerobic as compared to microaerobic atmospheres in Bolton broth. Biofilm formation by all other strains in Bolton, and all strains in Brucella broth, did not differ under the 2 atm. Under aerobic incubation DO levels in MH > Brucella > Bolton broth. Under microaerobic conditions levels in MH = Brucella > Bolton broth. Levels of DO in MH and Brucella broth were lower under microaerobic conditions but those of Bolton did not differ under the 2 atm. Experimental conditions and especially the DO of broth media confound previous conclusions drawn about aerobic biofilm formation by C. jejuni. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water.

    PubMed

    Gião, M S; Wilks, S A; Keevil, C W

    2015-04-01

    Legionella pneumophila is a waterborne pathogen that can cause Legionnaires' disease, a fatal pneumonia, or Pontiac fever, a mild form of disease. Copper is an antimicrobial material used for thousands of years. Its incorporation in several surface materials to control the transmission of pathogens has been gaining importance in the past decade. In this work, the ability of copper to control the survival of L. pneumophila in biofilms was studied. For that, the incorporation of L. pneumophila in polymicrobial drinking water biofilms formed on copper, PVC and PEX, and L. pneumophila mono-species biofilms formed on copper and uPVC were studied by comparing cultivable and total numbers (quantified by peptide nucleic acid (PNA) hybridisation). L. pneumophila was never recovered by culture from heterotrophic biofilms; however, PNA-positive numbers were slightly higher in biofilms formed on copper (5.9 × 10(5) cells cm(-2)) than on PVC (2.8 × 10(5) cells cm(-2)) and PEX (1.7 × 10(5) cells cm(-2)). L. pneumophila mono-species biofilms grown on copper gave 6.9 × 10(5) cells cm(-2) for PNA-positive cells and 4.8 × 10(5) CFU cm(-2) for cultivable numbers, showing that copper is not directly effective in killing L. pneumophila. Therefore previous published studies showing inactivation of L. pneumophila by copper surfaces in potable water polymicrobial species biofilms must be carefully interpreted.

  3. Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium.

    PubMed

    Nguyen, Hung Duc; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk

    2012-01-01

    The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000 μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility.

    PubMed

    Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo

    2012-03-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl(2). The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures.

  5. Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility

    PubMed Central

    Cruz, Luisa F.; Cobine, Paul A.

    2012-01-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures. PMID:22194297

  6. The effect of inoculum source and fluid shear force on the development of in vitro oral multispecies biofilms.

    PubMed

    Fernández, C E; Aspiras, M B; Dodds, M W; González-Cabezas, C; Rickard, A H

    2017-03-01

    Saliva has been previously used as an inoculum for in vitro oral biofilm studies. However, the microbial community profile of saliva is markedly different from hard- and soft-tissue-associated oral biofilms. Here, we investigated the changes in the biofilm architecture and microbial diversity of in vitro oral biofilms developed from saliva, tongue or plaque-derived inocula under different salivary shear forces. Four inoculum types (saliva, bacteria harvested from the tongue, toothbrush and curette-harvested plaque) were collected and pooled. Biofilms (n ≥ 15) were grown for 20 h in cell-free human saliva flowing at three different shear forces. Stained biofilms were imaged using a confocal laser scanning microscope. Biomass, thickness and roughness were determined by image analysis and bacterial community composition analysed using Ion Torrent. All developed biofilms showed a significant reduction in observed diversity compared with their respective original inoculum. Shear force altered biofilm architecture of saliva and curette-collected plaque and community composition of saliva, tongue and curette-harvested plaque. Different intraoral inocula served as precursors of in vitro oral polymicrobial biofilms which can be influenced by shear. Inoculum selection and shear force are key factors to consider when developing multispecies biofilms within in vitro models. © 2016 The Society for Applied Microbiology.

  7. Effects of biofilm on river-bed scour.

    PubMed

    Piqué, Gemma; Vericat, Damià; Sabater, Sergi; Batalla, Ramon J

    2016-12-01

    Biofilm acts stabilising river-bed sediments, interfering with particle entrainment and, consequently, preventing bed disturbance. In this paper we present the results of a series of experiments carried out in indoor channels, aimed to understand biofilm alteration of bed material motion and topographic changes in stream channels. We analysed the erosion patterns and bedload rates in non-cohesive sediments in channels colonised by biofilms and compared them to biofilm-free others. All the channels had the same conditions of light irradiance, temperature, slope, and particle size (sand). Discharge and water surface slope were modified to create a range of hydraulic conditions, with pairs of colonised and non-colonised channels subjected to the same flows. We observed that biofilm slightly modified bed roughness and flow hydraulics, but that highly influenced bed disturbance. Biofilm caused bed scour to occur in patches unevenly distributed along the channel length, as a result of localised weaknesses of the biofilm. Once biofilm was ripped up it was transported in chunks, and sand grains were observed attached to these chunks. In non-colonised sediments the erosion was more homogeneous and the formation and movement of bedforms were observed. On average, bedload rates were 5 times lower when biofilm was present. Overall, the protective effect of the biofilm prevented generalised erosion of the channel and delayed the entrainment and transport of sand grains. Results emphasised the important role of biofilm in the incipient motion of bed-material in stream channels; this role may affect the magnitude and frequency of subsequent river bed processes, notably the onset of bedload and associated channel morpho-dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  9. Variability in biofilm formation correlates with hydrophobicity and quorum sensing among Vibrio parahaemolyticus isolates from food contact surfaces and the distribution of the genes involved in biofilm formation.

    PubMed

    Mizan, Md Furkanur Rahaman; Jahid, Iqbal Kabir; Kim, Minhui; Lee, Ki-Hoon; Kim, Tae Jo; Ha, Sang-Do

    2016-01-01

    Vibrio parahaemolyticus is one of the leading foodborne pathogens causing seafood contamination. Here, 22 V. parahaemolyticus strains were analyzed for biofilm formation to determine whether there is a correlation between biofilm formation and quorum sensing (QS), swimming motility, or hydrophobicity. The results indicate that the biofilm formation ability of V. parahaemolyticus is positively correlated with cell surface hydrophobicity, autoinducer (AI-2) production, and protease activity. Field emission scanning electron microscopy (FESEM) showed that strong-biofilm-forming strains established thick 3-D structures, whereas poor-biofilm-forming strains produced thin inconsistent biofilms. In addition, the distribution of the genes encoding pandemic clone factors, type VI secretion systems (T6SS), biofilm functions, and the type I pilus in the V. parahaemolyticus seafood isolates were examined. Biofilm-associated genes were present in almost all the strains, irrespective of other phenotypes. These results indicate that biofilm formation on/in seafood may constitute a major factor in the dissemination of V. parahaemolyticus and the ensuing diseases.

  10. Biofilm development during the start-up period of anaerobic biofilm reactors: the biofilm Archaea community is highly dependent on the support material

    PubMed Central

    Habouzit, Frédéric; Hamelin, Jérôme; Santa-Catalina, Gaëlle; Steyer, Jean-P; Bernet, Nicolas

    2014-01-01

    To evaluate the impact of the nature of the support material on its colonization by a methanogenic consortium, four substrata made of different materials: polyvinyl chloride, 2 polyethylene and polypropylene were tested during the start-up of lab-scale fixed-film reactors. The reactor performances were evaluated and compared together with the analysis of the biofilms. Biofilm growth was quantified and the structure of bacterial and archaeal communities were characterized by molecular fingerprinting profiles (capillary electrophoresis-single strand conformation polymorphism). The composition of the inoculum was shown to have a major impact on the bacterial composition of the biofilm, whatever the nature of the support material or the organic loading rate applied to the reactors during the start-up period. In contrast, the biofilm archaeal populations were independent of the inoculum used but highly dependent on the support material. Supports favouring Archaea colonization, the limiting factor in the overall process, should be preferred. PMID:24612643

  11. Influence of glyphosate in planktonic and biofilm growth of Pseudomonas aeruginosa

    PubMed Central

    Lima, Ilana Schneider; Baumeier, Nicole Carmo; Rosa, Rosimeire Takaki; Campelo, Patrícia Maria Stuelp; Rosa, Edvaldo Antonio Ribeiro

    2014-01-01

    This study evaluated the impact of different concentrations of glyphosate (Rondup®) on planktonic and biofilm growth of P. aeruginosa. Aerobic and anaerobic cultures of P. aeruginosa ATCC®15442 inoculated in MHB + glyphosate (0.845 ppm, 1.690 ppm, 8.45 ppm, 16.90 ppm, 84.50 ppm, 169 ppm, 845 ppm, and 1690 ppm) and cultured in normoxia and anoxia, following their OD560nm every hour for 24 h. Biofilms of adapted cells were formed in the presence of glyphosate (0.845 to 1690 ppm) in normoxia and anoxia for 36 h. Glyphosate at concentrations higher than 84.5 ppm reduces the cell density of planktonic aerobic cultures (p < 0.05). However, these same concentrations favor the planktonic anaerobic growth (p < 0.05). On the other hand, the herbicide favors a slight growth of biofilms in a concentration-dependent manner up to 84.5 ppm (p > 0.05), and more pronounced over 169 ppm. Anaerobic biofilms have their growth more readily favored (p < 0.05), regardless of concentration. In a concentration-dependent manner, glyphosate interferes with the growth ability of P. aeruginosa ATCC®15442. PMID:25477933

  12. Acoustic vibration can enhance bacterial biofilm formation.

    PubMed

    Murphy, Mark F; Edwards, Thomas; Hobbs, Glyn; Shepherd, Joanna; Bezombes, Frederic

    2016-12-01

    This paper explores the use of low-frequency-low-amplitude acoustic vibration on biofilm formation. Biofilm development is thought to be governed by a diverse range of environmental signals and much effort has gone into researching the effects of environmental factors including; nutrient availability, pH and temperature on the growth of biofilms. Many biofilm-forming organisms have evolved to thrive in mechanically challenging environments, for example soil yet, the effects of the physical environment on biofilm formation has been largely ignored. Exposure of Pseudomonas aeruginosa to vibration at 100, 800 and 1600 Hz for 48 h, resulted in a significant increase in biofilm formation compared with the control, with the greatest growth seen at 800 Hz vibration. The results also show that this increase in biofilm formation is accompanied with an increase in P. aeruginosa cell number. Acoustic vibration was also found to regulate the spatial distribution of biofilm formation in a frequency-dependent manner. Exposure of Staphylococcus aureus to acoustic vibration also resulted in enhanced biofilm formation with the greatest level of biofilm being formed following 48 h exposure at 1600 Hz. These results show that acoustic vibration can be used to control biofilm formation and therefore presents a novel and potentially cost effective means to manipulate the development and yield of biofilms in a range of important industrial and medical processes. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Relevant Role of Fibronectin-Binding Proteins in Staphylococcus aureus Biofilm-Associated Foreign-Body Infections▿ †

    PubMed Central

    Vergara-Irigaray, Marta; Valle, Jaione; Merino, Nekane; Latasa, Cristina; García, Begoña; Ruiz de los Mozos, Igor; Solano, Cristina; Toledo-Arana, Alejandro; Penadés, José R.; Lasa, Iñigo

    2009-01-01

    Staphylococcus aureus can establish chronic infections on implanted medical devices due to its capacity to form biofilms. Analysis of the factors that assemble cells into a biofilm has revealed the occurrence of strains that produce either a polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG) exopolysaccharide- or a protein-dependent biofilm. Examination of the influence of matrix nature on the biofilm capacities of embedded bacteria has remained elusive, because a natural strain that readily converts between a polysaccharide- and a protein-based biofilm has not been studied. Here, we have investigated the clinical methicillin (meticillin)-resistant Staphylococcus aureus strain 132, which is able to alternate between a proteinaceous and an exopolysaccharidic biofilm matrix, depending on environmental conditions. Systematic disruption of each member of the LPXTG surface protein family identified fibronectin-binding proteins (FnBPs) as components of a proteinaceous biofilm formed in Trypticase soy broth-glucose, whereas a PIA/PNAG-dependent biofilm was produced under osmotic stress conditions. The induction of FnBP levels due to a spontaneous agr deficiency present in strain 132 and the activation of a LexA-dependent SOS response or FnBP overexpression from a multicopy plasmid enhanced biofilm development, suggesting a direct relationship between the FnBP levels and the strength of the multicellular phenotype. Scanning electron microscopy revealed that cells growing in the FnBP-mediated biofilm formed highly dense aggregates without any detectable extracellular matrix, whereas cells in a PIA/PNAG-dependent biofilm were embedded in an abundant extracellular material. Finally, studies of the contribution of each type of biofilm matrix to subcutaneous catheter colonization revealed that an FnBP mutant displayed a significantly lower capacity to develop biofilm on implanted catheters than the isogenic PIA/PNAG-deficient mutant. PMID:19581398

  14. Current and future trends for biofilm reactors for fermentation processes.

    PubMed

    Ercan, Duygu; Demirci, Ali

    2015-03-01

    Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.

  15. Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation.

    PubMed

    Mowat, Eilidh; Rajendran, Ranjith; Williams, Craig; McCulloch, Elaine; Jones, Brian; Lang, Sue; Ramage, Gordon

    2010-12-01

    Aspergillus fumigatus is often isolated from the lungs of cystic fibrosis (CF) patients, but unlike in severely immunocompromised individuals, the mortality rates are low. This suggests that competition from bacteria within the CF lung may be inhibitory. The purpose of this study was to investigate how Pseudomonas aeruginosa influences A. fumigatus conidial germination and biofilm formation. Aspergillus fumigatus biofilm formation was inhibited by direct contact with P. aeruginosa, but had no effect on preformed biofilm. A secreted heat-stable soluble factor was also shown to exhibit biofilm inhibition. Coculture of P. aeruginosa quorum-sensing mutants (PAO1:ΔLasI, PAO1:ΔLasR) did not significantly inhibit A. fumigatus biofilms (52.6-58.8%) to the same extent as that of the PA01 wild type (22.9-30.1%), both by direct and by indirect interaction (P<0.001). Planktonic and sessile inhibition assays with a series of short carbon chain molecules (decanol, decanoic acid and dodecanol) demonstrated that these molecules could both inhibit and disrupt biofilms in a concentration-dependent manner. Overall, this suggests that small diffusible and heat-stable molecules may be responsible for the competitive inhibition of filamentous fungal growth in polymicrobial environments such as the CF lung. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    PubMed Central

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1) Furnishing of sufficiently effective antibacterial factors, (2) intimate interaction with biofilm bacteria over extended periods, (3) associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4) a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not. PMID:26371010

  17. Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions.

    PubMed

    Iliadis, Ioannis; Daskalopoulou, Aikaterini; Simões, Manuel; Giaouris, Efstathios

    2018-05-01

    Salmonella enterica is a major foodborne bacterial pathogen. This forms biofilms on surfaces and persists, depending on the strain and the environment. The integrative interaction of temperature (T; 13-39 °C), pH (5-8) and sodium chloride (NaCl) concentration (0.5-8.5%) on biofilm formation by two S. enterica strains (ser. Enteritidis and Typhimurium) was here evaluated under low nutrient conditions. This was achieved using response surface methodology to model the combined effect of each factor on the response, through mathematical quadratic fitting of the outcomes of a sequence of designed experiments. These last were executed by incubating stainless steel coupons carrying sessile bacteria, for 24 h, in 1:10 diluted tryptone soya broth, under 15 different combinations of three independent factors (T, pH and NaCl). For each strain, a second order polynomial model, describing the relationship between biofilm formation (log CFU/cm 2 ) and the factors (T, pH and NaCl), was developed using least square regression analysis. Both derived models predicted the combined influences of these factors on biofilm formation, with agreement between predictions and experimental observations (R 2  ≥ 0.96, P ≤ 0.0001). For both strains, the increase of NaCl content restricted their sessile growth, while under low salinity conditions (NaCl < 4%) biofilm formation was favored as pH increased, regardless of T. Interestingly, under low salt content, and depending on the strain, biofilm formation was either favored or hindered by increasing T. Thus, 34.5 and 13 °C were the T predicted to maximize biofilm formation by strains Enteritidis and Typhimurium, respectively, something which was also experimentally verified. To sum, these models can predict the interactive influences of crucial food-related factors on biofilm growth of a significant foodborne pathogen towards the efforts to limit its persistence in food industry. Copyright © 2018 Elsevier Ltd. All rights

  18. Biofilms in Endodontics-Current Status and Future Directions.

    PubMed

    Neelakantan, Prasanna; Romero, Monica; Vera, Jorge; Daood, Umer; Khan, Asad U; Yan, Aixin; Cheung, Gary Shun Pan

    2017-08-11

    Microbiota are found in highly organized and complex entities, known as biofilms, the characteristics of which are fundamentally different from microbes in planktonic suspensions. Root canal infections are biofilm mediated. The complexity and variability of the root canal system, together with the multi-species nature of biofilms, make disinfection of this system extremely challenging. Microbial persistence appears to be the most important factor for failure of root canal treatment and this could further have an impact on pain and quality of life. Biofilm removal is accomplished by a chemo-mechanical process, using specific instruments and disinfecting chemicals in the form of irrigants and/or intracanal medicaments. Endodontic research has focused on the characterization of root canal biofilms and the clinical methods to disrupt the biofilms in addition to achieving microbial killing. In this narrative review, we discuss the role of microbial biofilms in endodontics and review the literature on the role of root canal disinfectants and disinfectant-activating methods on biofilm removal.

  19. Biofilms in Endodontics—Current Status and Future Directions

    PubMed Central

    Neelakantan, Prasanna; Romero, Monica; Vera, Jorge; Daood, Umer; Khan, Asad U.; Yan, Aixin; Cheung, Gary Shun Pan

    2017-01-01

    Microbiota are found in highly organized and complex entities, known as biofilms, the characteristics of which are fundamentally different from microbes in planktonic suspensions. Root canal infections are biofilm mediated. The complexity and variability of the root canal system, together with the multi-species nature of biofilms, make disinfection of this system extremely challenging. Microbial persistence appears to be the most important factor for failure of root canal treatment and this could further have an impact on pain and quality of life. Biofilm removal is accomplished by a chemo-mechanical process, using specific instruments and disinfecting chemicals in the form of irrigants and/or intracanal medicaments. Endodontic research has focused on the characterization of root canal biofilms and the clinical methods to disrupt the biofilms in addition to achieving microbial killing. In this narrative review, we discuss the role of microbial biofilms in endodontics and review the literature on the role of root canal disinfectants and disinfectant-activating methods on biofilm removal. PMID:28800075

  20. Clinical Infectious Outcomes Associated with Biofilm-related Infections: a Retrospective Chart Review

    DTIC Science & Technology

    2015-06-07

    Chronic infections, Risk factors, Trauma-related infections, Burn Background The ability of microorganisms to form biofilms, a sessile mode of growth...patients [8]. With the present study, clinical information recovered from chart review was able to differentiate colonizing from infecting organisms...potential influences. Utilization of a randomly selected sample had conse- quences in microorganism representation as well as demographics. Species were

  1. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation

    PubMed Central

    Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs

    2017-01-01

    ABSTRACT The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms leading to similar phenotypes. Here, we establish the importance of the balance between these two factors for accurate regulation of the transition between the planktonic and sessile lifestyles. This balance is achieved by negative-feedback regulation of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria but also regulates the expression of diguanylate cyclases and phosphodiesterases. This expression modulation influences the synthesis and degradation of c-di-GMP, while this signaling metabolite has a negative influence in bolA mRNA transcription. Finally, we present evidence of the dominant role of BolA in biofilm, showing that, even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the absence of BolA. C-di-GMP is one of the most important bacterial second messengers involved in several cellular processes, including virulence, cell cycle regulation, biofilm formation, and flagellar synthesis. In this study, we unravelled a direct connection between the bolA morphogene and the c-di-GMP signaling molecule. We show the important cross-talk that occurs between these two molecular regulators during the transition between the motile/planktonic and adhesive/sessile lifestyles in Escherichia coli. This work provides important clues that can be helpful in the development of new strategies, and the results can be applied to other organisms with relevance for human health. PMID:28928205

  2. Biofilms inducing ultra-low friction on titanium.

    PubMed

    Souza, J C M; Henriques, M; Oliveira, R; Teughels, W; Celis, J-P; Rocha, L A

    2010-12-01

    Biofilm formation is widely reported in the literature as a problem in the healthcare, environmental, and industrial sectors. However, the role of biofilms in sliding contacts remains unclear. Friction during sliding was analyzed for titanium covered with mixed biofilms consisting of Streptococcus mutans and Candida albicans. The morphology of biofilms on titanium surfaces was evaluated before, during, and after sliding tests. Very low friction was recorded on titanium immersed in artificial saliva and sliding against alumina in the presence of biofilms. The complex structure of biofilms, which consist of microbial cells and their hydrated exopolymeric matrix, acts like a lubricant. A low friction in sliding contacts may have major significance in the medical field. The composition and structure of biofilms are shown to be key factors for an understanding of friction behavior of dental implant connections and prosthetic joints. For instance, a loss of mechanical integrity of dental implant internal connections may occur as a consequence of the decrease in friction caused by biofilm formation. Consequently, the study of the exopolymeric matrix can be important for the development of high-performance novel joint-based systems for medical and other engineering applications.

  3. Influence of isolate origin and presence of various genes on biofilm formation by Enterococcus faecium.

    PubMed

    Almohamad, Sam; Somarajan, Sudha R; Singh, Kavindra V; Nallapareddy, Sreedhar R; Murray, Barbara E

    2014-04-01

    Enterococcus faecium, a major cause of nosocomial infections, is often isolated from conditions where biofilm is considered to be important in the establishment of infections. We investigated biofilm formation among E. faecium isolates from diverse sources and found that the occurrence and amount of biofilm formation were significantly greater in clinical isolates than fecal isolates from community volunteers. We also found that the presence of the empfm (E. faecium pilus) operon was associated with the amount of biofilm formation. Furthermore, we analyzed the possible association between the distribution of 16 putative virulence genes and the occurrence of biofilm production. Even though the prevalence of these virulence genes was significantly higher in clinical isolates, we did not observe any correlation with the occurrence of biofilm formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Biofilm architecture in a novel pressurized biofilm reactor.

    PubMed

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  5. Calcium-Phosphate-Osteopontin Particles Reduce Biofilm Formation and pH Drops in in situ Grown Dental Biofilms.

    PubMed

    Schlafer, Sebastian; Ibsen, Casper J S; Birkedal, Henrik; Nyvad, Bente

    2017-01-01

    This 2-period crossover study investigated the effect of calcium-phosphate-osteopontin particles on biofilm formation and pH in 48-h biofilms grown in situ. Bovine milk osteopontin is a highly phosphorylated glycoprotein that has been shown to interfere with bacterial adhesion to salivary-coated surfaces. Calcium-phosphate-osteopontin particles have been shown to reduce biofilm formation and pH drops in a 5-species laboratory model of dental biofilm without affecting bacterial viability. Here, smooth surface biofilms from 10 individuals were treated ex vivo 6 times/day for 30 min with either calcium-phosphate-osteopontin particles or sterile saline. After growth, the amount of biofilm formed was determined by confocal microscopy, and pH drops upon exposure to glucose were monitored using confocal-microscopy-based pH ratiometry. A total of 160 biofilms were analysed. No adverse effects of repeated ex vivo treatment with calcium-phosphate-osteopontin particles were observed. Particle treatment resulted in a 32% lower amount of biofilm formed (p < 0.05), but large inter-individual differences could be observed. Biofilm pH was significantly higher upon particle treatment, both shortly after the addition of glucose and after 30 min of incubation with glucose (p < 0.05). Calcium-phosphate-osteopontin particles may represent a new therapeutic approach to caries control and aim at directly targeting virulence factors involved in the caries process. Further studies are required to determine the effect of particle treatment on more acidogenic/aciduric biofilms as well as the remineralizing potential of the particles. © 2016 S. Karger AG, Basel.

  6. Gallibacterium elongation factor-Tu possesses amyloid-like protein characteristics, participates in cell adhesion, and is present in biofilms.

    PubMed

    López-Ochoa, Jaqueline; Montes-García, J Fernando; Vázquez, Candelario; Sánchez-Alonso, Patricia; Pérez-Márquez, Victor M; Blackall, Patrick J; Vaca, Sergio; Negrete-Abascal, Erasmo

    2017-09-01

    Gallibacterium, which is a bacterial pathogen in chickens, can form biofilms. Amyloid proteins present in biofilms bind Congo red dye. The aim of this study was to characterize the cell-surface amyloid-like protein expressed in biofilms formed by Gallibacterium strains and determine the relationship between this protein and curli, which is an amyloid protein that is commonly expressed by members of the Enterobacteriaceae family. The presence of amyloid-like proteins in outer membrane protein samples from three strains of G. anatis and one strain of Gallibacterium genomospecies 2 was evaluated. A protein identified as elongation factor-Tu (EF-Tu) by mass spectrometric analysis and in silico analysis was obtained from the G. anatis strain F149 T . This protein bound Congo red dye, cross-reacted with anti-curli polyclonal serum, exhibited polymerizing properties and was present in biofilms. This protein also reacted with pooled serum from chickens that were experimentally infected with G. anatis, indicating the in vivo immunogenicity of this protein. The recombinant EF-Tu purified protein, which was prepared from G. anatis 12656-12, polymerizes under in vitro conditions, forms filaments and interacts with fibronectin and fibrinogen, all of which suggest that this protein functions as an adhesin. In summary, EF-Tu from G. anatis presents amyloid characteristics, is present in biofilms and could be relevant for the pathogenesis of G. anatis.

  7. A simple 2D biofilm model yields a variety of morphological features.

    PubMed

    Hermanowicz, S W

    2001-01-01

    A two-dimensional biofilm model was developed based on the concept of cellular automata. Three simple, generic processes were included in the model: cell growth, internal and external mass transport and cell detachment (erosion). The model generated a diverse range of biofilm morphologies (from dense layers to open, mushroom-like forms) similar to those observed in real biofilm systems. Bulk nutrient concentration and external mass transfer resistance had a large influence on the biofilm structure.

  8. Development of an aptamer-ampicillin conjugate for treating biofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lijuan, Cheng; Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208; Xing, Yan

    Biofilm formation involves the development of extracellular matrix and initially depends on adherence and tropism by flagellar movement. With the widespread development of antibiotic resistance and tolerance of biofilms, there is a growing need for novel anti-infective strategies. No currently approved medications specifically target biofilms. Aptamers are single-stranded nucleic acid molecules that may bind to their targets with high affinity and affect the target functions. We developed a bifunctional conjugate by linking an aptamer targeting bacterial flagella with ampicillin. We investigated its influence on biofilm prevention and dissolution by ultraviolet–visible spectrophotometry, inverted microscopy, and atomic force microscopy. This conjugate hadmore » distinctive antibacterial activity. Notably, the conjugate was more active than either component, and thus had a synergistic effect against biofilms.« less

  9. Targeting microbial biofilms: current and prospective therapeutic strategies

    PubMed Central

    Koo, Hyun; Allan, Raymond N; Howlin, Robert P; Hall-Stoodley, Luanne; Stoodley, Paul

    2017-01-01

    Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections. The multifactorial nature of biofilm development and drug tolerance imposes great challenges for the use of conventional antimicrobials, and indicates the need for multi-targeted or combinatorial therapies. In this review, we focus on current therapeutic strategies and those that are under development that target vital structural and functional traits of microbial biofilms and drug tolerance mechanisms, including the extracellular matrix and dormant cells. We emphasize strategies that are supported by in vivo or ex vivo studies, highlight emerging biofilm-targeting technologies, and provide a rationale for multi-targeted therapies that are aimed at disrupting the complex biofilm microenvironment. PMID:28944770

  10. Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metallic brackets

    PubMed Central

    ANDRUCIOLI, Marcela Cristina Damião; FARIA, Gisele; NELSON-FILHO, Paulo; ROMANO, Fábio Lourenço; MATSUMOTO, Mírian Aiko Nakane

    2017-01-01

    Abstract Decalcification of enamel during fixed orthodontic appliance treatment remains a problem. White spot lesions are observed in nearly 50% of patients undergoing orthodontic treatment. The use of fluoride-containing orthodontic materials has shown inconclusive results on their ability to reduce decalcification. The aims of this investigation were to compare the levels of Streptococcus mutans (SM) in saliva and biofilm adjacent to orthodontic brackets retained with a resin-modified glass ionomer cement (RMGIC) (Fuji ORTHO LC) and a light cured composite resin (Transbond XT), and to analyze the influence of topical application of the 1.23% acidulated phosphate fluoride (APF) on SM counts. In a parallel study design, two groups (n=14/15) were used with random allocation and high salivary SM counts before treatment. Biofilm was collected from areas adjacent to the brackets on teeth 13, 22, 33, and 41. Both saliva and biofilm were collected on the 7th, 21st, 35th, and 49th days after appliance placement. Topical fluoride application was carried out on the 35th day. Bonding with RMGIC did not alter SM counts in saliva or biofilm adjacent to the brackets. On the other hand, the biofilm adjacent to brackets retained with composite resin showed a significant increase in SM counts along the trial period. Topical application of 1.23% APF did not reduce salivary or biofilm SM counts regardless of the bonding material. In conclusion, fluoride topical application did not show efficacy in reducing SM. The use of RMGIC as bonding materials allowed a better control of SM cfu counts in dental biofilm hindering the significant increase of these microorganisms along the trial period, which was observed in the biofilm adjacent to the composite material. PMID:28403360

  11. Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metallic brackets.

    PubMed

    Andrucioli, Marcela Cristina Damião; Faria, Gisele; Nelson-Filho, Paulo; Romano, Fábio Lourenço; Matsumoto, Mírian Aiko Nakane

    2017-01-01

    Decalcification of enamel during fixed orthodontic appliance treatment remains a problem. White spot lesions are observed in nearly 50% of patients undergoing orthodontic treatment. The use of fluoride-containing orthodontic materials has shown inconclusive results on their ability to reduce decalcification. The aims of this investigation were to compare the levels of Streptococcus mutans (SM) in saliva and biofilm adjacent to orthodontic brackets retained with a resin-modified glass ionomer cement (RMGIC) (Fuji ORTHO LC) and a light cured composite resin (Transbond XT), and to analyze the influence of topical application of the 1.23% acidulated phosphate fluoride (APF) on SM counts. In a parallel study design, two groups (n=14/15) were used with random allocation and high salivary SM counts before treatment. Biofilm was collected from areas adjacent to the brackets on teeth 13, 22, 33, and 41. Both saliva and biofilm were collected on the 7th, 21st, 35th, and 49th days after appliance placement. Topical fluoride application was carried out on the 35th day. Bonding with RMGIC did not alter SM counts in saliva or biofilm adjacent to the brackets. On the other hand, the biofilm adjacent to brackets retained with composite resin showed a significant increase in SM counts along the trial period. Topical application of 1.23% APF did not reduce salivary or biofilm SM counts regardless of the bonding material. In conclusion, fluoride topical application did not show efficacy in reducing SM. The use of RMGIC as bonding materials allowed a better control of SM cfu counts in dental biofilm hindering the significant increase of these microorganisms along the trial period, which was observed in the biofilm adjacent to the composite material.

  12. Determination of the profile of DO and its mass transferring coefficient in a biofilm reactor packed with semi-suspended bio-carriers.

    PubMed

    Tang, Bing; Song, Haoliang; Bin, Liying; Huang, Shaosong; Zhang, Wenxiang; Fu, Fenglian; Zhao, Yiliang; Chen, Qianyu

    2017-10-01

    The work aims at illustrating the profile of DO and its mass transferring process in a biofilm reactor packed with a novel semi-suspended bio-carrier, and further revealing the main factors that influence the mass transferring coefficient of DO within the biofilm. Results showed that the biofilm was very easy to attach and grow on the semi-suspended bio-carrier, which obviously changed the DO profile inside and outside the biofilm. The semi-suspended bio-carrier caused three different mass transfer zones occurring in the bioreactor, including the zones of bulk solution, boundary layer and biofilm, in which, the boundary layer zone had an obvious higher mass transfer resistance. Increasing the aeration rate might improve the hydrodynamic conditions in the bioreactor and accelerate the mass transfer of DO, but it also detached the biofilm from the surface of bio-carrier, which reduced the consumption of DO, and accordingly, decreased the DO gradient in the bioreactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Influence of Culture Media on Biofilm Formation by Candida Species and Response of Sessile Cells to Antifungals and Oxidative Stress

    PubMed Central

    Serrano-Fujarte, Isela; Reyna-López, Georgina Elena; Martínez-Gámez, Ma. Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient. PMID:25705688

  14. Influence of culture media on biofilm formation by Candida species and response of sessile cells to antifungals and oxidative stress.

    PubMed

    Serrano-Fujarte, Isela; López-Romero, Everardo; Reyna-López, Georgina Elena; Martínez-Gámez, Ma Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.

  15. Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation

    PubMed Central

    Prüß, Birgit M.; Verma, Karan; Samanta, Priyankar; Sule, Preeti; Kumar, Sunil; Wu, Jianfei; Christianson, David; Horne, Shelley M.; Stafslien, Shane J.; Wolfe, Alan J.; Denton, Anne

    2010-01-01

    Biofilms are communities of bacteria whose formation on surfaces requires a large portion of the bacteria’s transcriptional network. To identify environmental conditions and transcriptional regulators that contribute to sensing these conditions, we used a high-throughput approach to monitor biofilm biomass produced by an isogenic set of Escherichia coli K-12 strains grown under combinations of environmental conditions. Of the environmental combinationsd, growth in tryptic soy broth at 37°C supported the most biofilm production. To analyze the complex relationships between the diverse cell surface organelles, transcriptional regulators, and metabolic enzymes represented by the tested mutant set, we used a novel vector-item pattern-mining algorithm. The algorithm related biofilm amounts to the functional annotations of each mutated protein. The pattern with the best statistical significance was the gene ontology ‘pyruvate catabolic process,’ which is associated with enzymes of acetate metabolism. Phenotype microarray experiments illustrated that carbon sources that are metabolized to acetyl-coenzyme A, acetyl phosphate, and acetate are particularly supportive of biofilm formation. Scanning electron microscopy revealed structural differences between mutants that lack acetate metabolism enzymes and their parent and confirmed the quantitative differences. We conclude that acetate metabolism functions as a metabolic sensor, transmitting changes in environmental conditions to biofilm biomass and structure. PMID:20559621

  16. Biofilm adaptation to iron availability in the presence of biotite and consequences for chemical weathering.

    PubMed

    Grant, M R; Tymon, L S; Helms, G L; Thomashow, L S; Kent Keller, C; Harsh, J B

    2016-11-01

    Bacteria in nature often live within biofilms, exopolymeric matrices that provide a favorable environment that can differ markedly from their surroundings. Biofilms have been found growing on mineral surfaces and are expected to play a role in weathering those surfaces, but a clear understanding of how environmental factors, such as trace-nutrient limitation, influence this role is lacking. Here, we examine biofilm development by Pseudomonas putida in media either deficient or sufficient in Fe during growth on biotite, an Fe rich mineral, or on glass. We hypothesized that the bacteria would respond to Fe deficiency by enhancing biotite dissolution and by the formation of binding sites to inhibit Fe leaching from the system. Glass coupons acted as a no-Fe control to investigate whether biofilm response depended on the presence of Fe in the supporting solid. Biofilms grown on biotite, as compared to glass, had significantly greater biofilm biomass, specific numbers of viable cells (SNVC), and biofilm cation concentrations of K, Mg, and Fe, and these differences were greater when Fe was deficient in the medium. Scanning electron microscopy (SEM) confirmed that biofilm growth altered the biotite surface, smoothing the rough, jagged edges of channels scratched by hand on the biotite, and dissolving away small, easy-to-access particles scattered across the planar surface. High-resolution magic angle spinning proton nuclear magnetic resonance (HRMAS 1 H NMR) spectroscopy showed that, in the Fe-deficient medium, the relative amount of polysaccharide nearly doubled relative to that in biofilms grown in the medium amended with Fe. The results imply that the bacteria responded to the Fe deficiency by obtaining Fe from biotite and used the biofilm matrix to enhance weathering and as a sink for released cation nutrients. These results demonstrate one mechanism by which biofilms may help soil microbes overcome nutrient deficiencies in oligotrophic systems. © 2016 John Wiley

  17. Candida albicans Biofilms and Human Disease

    PubMed Central

    Nobile, Clarissa J.; Johnson, Alexander D.

    2016-01-01

    In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species. PMID:26488273

  18. Static biofilm removal around ultrasonic tips in vitro.

    PubMed

    Thurnheer, Thomas; Rohrer, Elodie; Belibasakis, Georgios N; Attin, Thomas; Schmidlin, Patrick R

    2014-09-01

    This study aims to investigate the biofilm removal capacity of two ultrasonic tips under standardized conditions using a multi-species biofilm model. Six-species biofilms were grown on hydroxyapatite discs for 64.5 h and were treated for 15 s with a standardized load of 40 g with a piezoelectric or magnetostrictive device. Tips were applied either with the tip end or with the side facing downwards. Detached bacteria were determined in the supernatant and colony-forming units (CFUs) counted after 72 h of incubation. Untreated specimens served as controls. Moreover, the biofilms remaining on the hydroxyapatite surface after treatment were stained using the Live/Dead stain, and the pattern of their detachment was assessed by confocal laser scanning microscopy (CLSM). As compared to the untreated control, it was found that only a side application of the magnetostrictive device was able to remove efficiently the biofilm. In contrast, its tip application as well as both applications of the piezoelectric device removed significantly less bacteria from the biofilm structure. These findings were corroborated by CLSM observation. Both ultrasonic tips under investigations led to bacterial detachment, but the action mode as well as the tip configuration and adaptation appeared to be influenced by the biofilm removal effectiveness. Biofilm removal remains a main goal of ultrasonic debridement. This should be reflected in respective laboratory investigations. The presented combination of methods applied on a multi-species biofilm model in vitro allows the evaluation of the effectiveness of different ultrasonic scaler applications.

  19. Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater.

    PubMed

    Trueba, Alfredo; García, Sergio; Otero, Félix M; Vega, Luis M; Madariaga, Ernesto

    2015-01-01

    The influence of flow velocity (FV) on the heat transfer process in tubes made from AISI 316L stainless steel in a heat exchanger-condenser cooled by seawater was evaluated based on the characteristics of the resulting biofilm that adhered to the internal surface of the tubes at velocities of 1, 1.2, 1.6, and 3 m s(-1). The results demonstrated that at a higher FV, despite being more compact and consistent, the biofilm was thinner with a lower concentration of solids, and smoother, which favoured the heat transfer process within the equipment. However, higher velocities increase the initial cost of the refrigerating water-pumping equipment and its energy consumption cost to compensate for the greater pressure drops produced in the tube. The velocity of 1.6 m s(-1) represented the equilibrium between the advantages and disadvantages of the variables analysed for the test conditions in this study.

  20. Extracellular Polymeric Substance Production and Aggregated Bacteria Colonization Influence the Competition of Microbes in Biofilms.

    PubMed

    Jayathilake, Pahala G; Jana, Saikat; Rushton, Steve; Swailes, David; Bridgens, Ben; Curtis, Tom; Chen, Jinju

    2017-01-01

    The production of extracellular polymeric substance (EPS) is important for the survival of biofilms. However, EPS production is costly for bacteria and the bacterial strains that produce EPS (EPS+) grow in the same environment as non-producers (EPS-) leading to competition between these strains for nutrients and space. The outcome of this competition is likely to be dependent on factors such as initial attachment, EPS production rate, ambient nutrient levels and quorum sensing. We use an Individual-based Model (IbM) to study the competition between EPS+ and EPS- strains by varying the nature of initial colonizers which can either be in the form of single cells or multicellular aggregates. The microbes with EPS+ characteristics obtain a competitive advantage if they initially colonize the surface as smaller aggregates and are widely spread-out between the cells of EPS-, when both are deposited on the substratum. Furthermore, the results show that quorum sensing-regulated EPS production may significantly reduce the fitness of EPS producers when they initially deposit as aggregates. The results provide insights into how the distribution of bacterial aggregates during initial colonization could be a deciding factor in the competition among different strains in biofilms.

  1. Influence of Nutrient Availability and Quorum Sensing on the Formation of Metabolically Inactive Microcolonies Within Structurally Heterogeneous Bacterial Biofilms: An Individual-Based 3D Cellular Automata Model.

    PubMed

    Machineni, Lakshmi; Rajapantul, Anil; Nandamuri, Vandana; Pawar, Parag D

    2017-03-01

    The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.

  2. The ecological significance of biofilm formation by plant-associated bacteria.

    PubMed

    Morris, Cindy E; Monier, Jean-Michel

    2003-01-01

    Bacteria associated with plants have been observed frequently to form assemblages referred to as aggregates, microcolonies, symplasmata, or biofilms on leaves and on root surfaces and within intercellular spaces of plant tissues. In a wide range of habitats, biofilms are purported to be microniches of conditions markedly different from those of the ambient environment and drive microbial cells to effect functions not possible alone or outside of biofilms. This review constructs a portrait of how biofilms associated with leaves, roots and within intercellular spaces influence the ecology of the bacteria they harbor and the relationship of bacteria with plants. We also consider how biofilms may enhance airborne dissemination, ubiquity and diversification of plant-associated bacteria and may influence strategies for biological control of plant disease and for assuring food safety. Trapped by a nexus, coordinates uncertain Ever expanding or contracting Cannibalistic and scavenging sorties Excavations through signs of past alliances Consensus signals sound revelry Then time warped by viscosity Genomes showing codependence A virtual microbial beach party With no curfew and no time-out A few estranged cells seeking exit options, Looking for another menagerie. David Sands, Montana State University, Bozeman, February 2003

  3. Salmonella enterica isolates from layer farm environments are able to form biofilm on eggshell surfaces.

    PubMed

    Pande, Vivek V; McWhorter, Andrea R; Chousalkar, Kapil K

    2016-08-01

    This study examined the eggshell biofilm forming ability of Salmonella enterica isolates recovered from egg farms. Multicellular behaviour and biofilm production were examined at 22 and 37°C by Congo red morphology and the crystal violet staining assay. The results indicated that the biofilm forming behaviour of Salmonella isolates was dependent on temperature and associated with serovars. Significantly greater biofilm production was observed at 22°C compared with 37°C. The number of viable biofilm cells attached to eggshells after incubation for 48 h at 22°C was significantly influenced by serovar. Scanning electron microscopic examination revealed firm attachment of bacterial cells to the eggshell surface. The relative expression of csgD and adrA gene was significantly higher in eggshell biofilm cells of S. Mbandaka and S. Oranienburg. These findings demonstrate that Salmonella isolates are capable of forming biofilm on the eggshell surface and that this behaviour is influenced by temperature and serovar.

  4. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces.

    PubMed

    Bellenberg, Sören; Díaz, Mauricio; Noël, Nanni; Sand, Wolfgang; Poetsch, Ansgar; Guiliani, Nicolas; Vera, Mario

    2014-11-01

    Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system.

    PubMed

    Stoodley, P; Dodds, I; De Beer, D; Scott, H Lappin; Boyle, J D

    2005-01-01

    Fluid flow has been shown to be important in influencing biofilm morphology and causing biofilms to flow over surfaces in flow cell experiments. However, it is not known whether similar effects may occur in porous media. Generally, it is assumed that the primary transport mechanism for biomass in porous media is through convection, as suspended particulates (cells and flocs) carried by fluid flowing through the interstices. However, the flow of biofilms over the surfaces of soils and sediment particles, may represent an important flux of biomass, and subsequently affect both biological activity and permeability. Mixed species bacterial biofilms were grown in glass flow cells packed with 1 mm diameter glass beads, under laminar or turbulent flow (porous media Reynolds number = 20 and 200 respectively). The morphology and dynamic behavior reflected those of biofilms grown in the open flow cells. The laminar biofilm was relatively uniform and after 23 d had inundated the majority of the pore spaces. Under turbulent flow the biofilm accumulated primarily in protected regions at contact points between the beads and formed streamers that trailed from the leeward face. Both biofilms caused a 2 to 3-fold increase in friction factor and in both cases there were sudden reductions in friction factor followed by rapid recovery, suggesting periodic sloughing and regrowth events. Time-lapse microscopy revealed that under both laminar and turbulent conditions biofilms flowed over the surface of the porous media. In some instances ripple structures formed. The velocity of biofilm flow was on the order of 10 mum h(-1) in the turbulent flow cell and 1.0 mum h(-1) in the laminar flow cell.

  6. Impact of Medium and Substrate on Growth of Pseudomonas Fluorescens Biofilms on Polyurethane Paint

    DTIC Science & Technology

    2011-02-01

    biofilm formation on polyurethane (PU) coatings, and to define how those parameters contribute to polyurethane biodegradation. We used a batch flow system...determine which factors best support the growth and persistence of Pseudomonas fluorescens biofilms . Factors that enhance biofilm formation and...AFRL-RX-WP-TP-2011-4131 IMPACT OF MEDIUM AND SUBSTRATE ON GROWTH OF PSEUDOMONAS FLUORESCENS BIOFILMS ON POLYURETHANE PAINT Wendy L. Goodson

  7. Rotation Disk Process to Assess the Influence of Metals and Voltage on the Growth of Biofilm

    PubMed Central

    Barry, Dana M.; McGrath, Paul B.

    2016-01-01

    Biofilms consist of not only bacteria but also extracellular polymer substrates (EPS). They are groups of microorganisms that adhere to each other on a surface, especially as a result of exposure to water and bacteria. They can pose health risks to humans as they grow in hospital settings that include medical supplies and devices. In a previous study, the researchers discovered that bacteria/biofilm grew well on wetted external latex, male catheters. These results concerned the investigators and encouraged them to find ways for prohibiting the growth of bacteria/biofilm on the male catheters (which are made of natural rubber). They carried out a new study to assess the influence of metals and voltage for the growth of bacteria on these latex samples. For this purpose, a unique Rotation Disk Reactor was used to accelerate biofilm formation on external male catheter samples. This setup included a dip tank containing water and a rotating wheel with the attached latex samples (some of which had single electrodes while others had paired electrodes with applied voltage). The process allowed the samples to become wetted and also exposed them to microorganisms in the ambient air during each revolution of the wheel. The results (as viewed from SEM images) showed that when compared to the control sample, the presence of metals (brass, stainless steel, and silver) was generally effective in preventing bacterial growth. Also the use of voltage (9.5 volt battery) essentially eliminated the appearance of rod shaped bacteria in some of the samples. It can be concluded that the presence of metals significantly reduced bacterial growth on latex and the application of voltage was able to essentially eliminate bacteria, providing appropriate electrode combinations were used. PMID:28773689

  8. High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms

    NASA Astrophysics Data System (ADS)

    Wagner, Karoline; Bengtsson, Mia M.; Findlay, Robert H.; Battin, Tom J.; Ulseth, Amber J.

    2017-07-01

    Changes in the riparian vegetation along stream channels, diurnal light availability, and longitudinal fluctuations in the local light regime in streams influence primary production and carbon (C) cycling in benthic stream biofilms. To investigate the influence of light availability on the uptake dynamics of autochthonous and allochthonous dissolved organic carbon (DOC) in benthic biofilms, we experimentally added 13C-labeled allochthonous DOC to biofilms grown under light intensities ranging from 5 to 152 μmol photons m-2 s-1. We calculated the net C flux, which showed that benthic biofilms released autochthonous DOC across the entire light gradient. Light availability and diurnal light patterns influenced C uptake by benthic biofilms. More allochthonous DOC was respired under low light availability and at night, whereas under high light availability and during the day mainly autochthonous C was respired by the benthic biofilm community. Furthermore, phenol oxidase activity (indicative of allochthonous DOC uptake) was more elevated under low light availability, whereas beta-glucosidase activity (indicative of autochthonous DOC use) increased with light intensity. Collectively, our results suggest that biofilms exposed to high light inputs preferentially used autochthonous DOC, whereas biofilms incubated at attenuated levels showed greater use of allochthonous DOC. This has implications for the spatial dynamics of DOC uptake in streams and speaks against the occurrence of priming effects in algal-dominated stream biofilms.

  9. Inhibitory Effects of Chrysanthemum boreale Essential Oil on Biofilm Formation and Virulence Factor Expression of Streptococcus mutans

    PubMed Central

    Kim, Beom-Su; Park, Sun-Ju; Kim, Myung-Kon; Kim, Young-Hoi; Lee, Sang-Bong; Lee, Kwang-Hee; Lee, Young-Rae; Lee, Young-Eun; You, Yong-Ouk

    2015-01-01

    The aim of the study was to evaluate the antibacterial activity of essential oil extracted from Chrysanthemum boreale (C. boreale) on Streptococcus mutans (S. mutans). To investigate anticariogenic properties, and bacterial growth, acid production, biofilm formation, bacterial adherence of S. mutans were evaluated. Then gene expression of several virulence factors was also evaluated. C. boreale essential oil exhibited significant inhibition of bacterial growth, adherence capacity, and acid production of S. mutans at concentrations 0.1–0.5 mg/mL and 0.25–0.5 mg/mL, respectively. The safranin staining and scanning electron microscopy results showed that the biofilm formation was also inhibited. The result of live/dead staining showed the bactericidal effect. Furthermore, real-time PCR analysis showed that the gene expression of some virulence factors such as gtfB, gtfC, gtfD, gbpB, spaP, brpA, relA, and vicR of S. mutans was significantly decreased in a dose dependent manner. In GC and GC-MS analysis, seventy-two compounds were identified in the oil, representing 85.42% of the total oil. The major components were camphor (20.89%), β-caryophyllene (5.71%), α-thujone (5.46%), piperitone (5.27%), epi-sesquiphellandrene (5.16%), α-pinene (4.97%), 1,8-cineole (4.52%), β-pinene (4.45%), and camphene (4.19%). These results suggest that C. boreale essential oil may inhibit growth, adhesion, acid tolerance, and biofilm formation of S. mutans through the partial inhibition of several of these virulence factors. PMID:25763094

  10. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems.

    PubMed

    Liu, Sanly; Gunawan, Cindy; Barraud, Nicolas; Rice, Scott A; Harry, Elizabeth J; Amal, Rose

    2016-09-06

    In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now

  11. Nutrient Composition Promotes Switching between Pellicle and Bottom Biofilm in Salmonella.

    PubMed

    Paytubi, Sonia; Cansado, Cintia; Madrid, Cristina; Balsalobre, Carlos

    2017-01-01

    Salmonella is one of the most frequently reported causes of foodborne illness worldwide. Non-typhoidal serovars cause gastroenteritis in humans. Salmonella can grow on surfaces forming biofilms, contributing to its persistence since biofilms are difficult to eradicate due to the high resistance to antimicrobials and disinfectants. It has been described that there are two crucial biofilm promoting factors in Salmonella : curli and cellulose. The expression of both factors is coordinately regulated by the transcriptional regulator CsgD. Most biofilm studies of Salmonella have been performed by growing bacteria in low osmolarity rich medium and low temperature (25°C). In such conditions, the biofilm is formed at the air-liquid interface (pellicle biofilm). Remarkably, when Salmonella grow in minimal medium, biofilm formation switches from the air-liquid interface to the solid-liquid interface (bottom biofilm). In this report, the switching between pellicle and bottom biofilm has been characterized. Our data indicate that curli, but not cellulose, is crucial for the formation of both kinds of biofilms. In minimal medium, conditions promoting formation of bottom biofilm, a high transcriptional expression of csgD and consequently of the genes involved in the synthesis of curli and cellulose was detected. The nutritional status of the cells seems to be pivotal for the spatial distribution of the biofilms formed. When bacteria is growing in minimal medium the addition of amino acids downregulates the expression of csgB and causes the switch between bottom and pellicle biofilm. The crosstalk between general metabolism and biofilm formation is also highlighted by the fact that the metabolic sensor cAMP modulates the type of biofilm generated by Salmonella . Moreover, cAMP regulates transcriptional expression of csgD and stimulates pellicle biofilm formation, suggesting that the physiological conditions define the type of biofilm formed by Salmonella . The consequences of

  12. Nutrient Composition Promotes Switching between Pellicle and Bottom Biofilm in Salmonella

    PubMed Central

    Paytubi, Sonia; Cansado, Cintia; Madrid, Cristina; Balsalobre, Carlos

    2017-01-01

    Salmonella is one of the most frequently reported causes of foodborne illness worldwide. Non-typhoidal serovars cause gastroenteritis in humans. Salmonella can grow on surfaces forming biofilms, contributing to its persistence since biofilms are difficult to eradicate due to the high resistance to antimicrobials and disinfectants. It has been described that there are two crucial biofilm promoting factors in Salmonella: curli and cellulose. The expression of both factors is coordinately regulated by the transcriptional regulator CsgD. Most biofilm studies of Salmonella have been performed by growing bacteria in low osmolarity rich medium and low temperature (25°C). In such conditions, the biofilm is formed at the air–liquid interface (pellicle biofilm). Remarkably, when Salmonella grow in minimal medium, biofilm formation switches from the air–liquid interface to the solid–liquid interface (bottom biofilm). In this report, the switching between pellicle and bottom biofilm has been characterized. Our data indicate that curli, but not cellulose, is crucial for the formation of both kinds of biofilms. In minimal medium, conditions promoting formation of bottom biofilm, a high transcriptional expression of csgD and consequently of the genes involved in the synthesis of curli and cellulose was detected. The nutritional status of the cells seems to be pivotal for the spatial distribution of the biofilms formed. When bacteria is growing in minimal medium the addition of amino acids downregulates the expression of csgB and causes the switch between bottom and pellicle biofilm. The crosstalk between general metabolism and biofilm formation is also highlighted by the fact that the metabolic sensor cAMP modulates the type of biofilm generated by Salmonella. Moreover, cAMP regulates transcriptional expression of csgD and stimulates pellicle biofilm formation, suggesting that the physiological conditions define the type of biofilm formed by Salmonella. The consequences of

  13. Phenotypic and genotypic characterization of biofilm formation in Staphylococcus haemolyticus.

    PubMed

    Barros, Elaine M; Lemos, Moara; Souto-Padrón, Thais; Giambiagi-deMarval, Marcia

    2015-06-01

    Staphylococcus haemolyticus is one of the most frequently isolated coagulase-negative staphylococci. The ability to produce biofilm has contributed to its emergence as a nosocomial pathogen. In this study, some growth conditions were tested to determine their influence on biofilm formation. Brain-heart infusion (BHI) broth containing glucose was used to screen 64 clinical strains. A strong biofilm producer strain showed cells surrounded by a thick layer of extracellular matrix. The presence of atlE, fbp, bap, and icaA genes was analyzed. We concluded that S. haemolyticus biofilm production can be increased with cells grown in BHI, and highlighted that it could be an ica-independent process.

  14. Predation Response of Vibrio fischeri Biofilms to Bacterivorus Protists

    PubMed Central

    Chavez-Dozal, Alba; Gorman, Clayton; Erken, Martina; Steinberg, Peter D.; McDougald, Diane

    2013-01-01

    Vibrio fischeri proliferates in a sessile, stable community known as a biofilm, which is one alternative survival strategy of its life cycle. Although this survival strategy provides adequate protection from abiotic factors, marine biofilms are still susceptible to grazing by bacteria-consuming protozoa. Subsequently, grazing pressure can be controlled by certain defense mechanisms that confer higher biofilm antipredator fitness. In the present work, we hypothesized that V. fischeri exhibits an antipredator fitness behavior while forming biofilms. Different predators representing commonly found species in aquatic populations were examined, including the flagellates Rhynchomonas nasuta and Neobodo designis (early biofilm feeders) and the ciliate Tetrahymena pyriformis (late biofilm grazer). V. fischeri biofilms included isolates from both seawater and squid hosts (Euprymna and Sepiola species). Our results demonstrate inhibition of predation by biofilms, specifically, isolates from seawater. Additionally, antiprotozoan behavior was observed to be higher in late biofilms, particularly toward the ciliate T. pyriformis; however, inhibitory effects were found to be widespread among all isolates tested. These results provide an alternative explanation for the adaptive advantage and persistence of V. fischeri biofilms and provide an important contribution to the understanding of defensive mechanisms that exist in the out-of-host environment. PMID:23144127

  15. Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation

    PubMed Central

    Hibbing, Michael E.; Xu, Jing; Natarajan, Ramya; Buechlein, Aaron M.

    2015-01-01

    ABSTRACT Transition metals such as iron and manganese are crucial trace nutrients for the growth of most bacteria, functioning as catalytic cofactors for many essential enzymes. Dedicated uptake and regulatory systems have evolved to ensure their acquisition for growth, while preventing toxicity. Transcriptomic analysis of the iron- and manganese-responsive regulons of Agrobacterium tumefaciens revealed that there are discrete regulatory networks that respond to changes in iron and manganese levels. Complementing earlier studies, the iron-responsive gene network is quite large and includes many aspects of iron-dependent metabolism and the iron-sparing response. In contrast, the manganese-responsive network is restricted to a limited number of genes, many of which can be linked to transport and utilization of the transition metal. Several of the target genes predicted to drive manganese uptake are required for growth under manganese-limited conditions, and an A. tumefaciens mutant with a manganese transport deficiency is attenuated for plant virulence. Iron and manganese limitation independently inhibit biofilm formation by A. tumefaciens, and several candidate genes that could impact biofilm formation were identified in each regulon. The biofilm-inhibitory effects of iron and manganese do not rely on recognized metal-responsive transcriptional regulators, suggesting alternate mechanisms influencing biofilm formation. However, under low-manganese conditions the dcpA operon is upregulated, encoding a system that controls levels of the cyclic di-GMP second messenger. Mutation of this regulatory pathway dampens the effect of manganese limitation. IMPORTANCE Responses to changes in transition metal levels, such as those of manganese and iron, are important for normal metabolism and growth in bacteria. Our study used global gene expression profiling to understand the response of the plant pathogen Agrobacterium tumefaciens to changes of transition metal availability

  16. Metamorphosis of a Scleractinian Coral in Response to Microbial Biofilms

    PubMed Central

    Webster, Nicole S.; Smith, Luke D.; Heyward, Andrew J.; Watts, Joy E. M.; Webb, Richard I.; Blackall, Linda L.; Negri, Andrew P.

    2004-01-01

    Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no

  17. The presence of biofilm forming microorganisms on hydrotherapy equipment and facilities.

    PubMed

    Jarząb, Natalia; Walczak, Maciej

    2017-10-01

    Hydrotherapy equipment provides a perfect environment for the formation and growth of microbial biofilms. Biofilms may reduce the microbiological cleanliness of hydrotherapy equipment and harbour opportunistic pathogens and pathogenic bacteria. The aims of this study were to investigate the ability of microorganisms that colonize hydrotherapy equipment to form biofilms, and to assess the influence of temperature and nutrients on the rate of biofilm formation. Surface swab samples were collected from the whirlpool baths, inhalation equipment and submerged surfaces of a brine pool at the spa center in Ciechocinek, Poland. We isolated and identified microorganisms from the swab samples and measured their ability to form biofilms. Biofilm formation was observed at a range of temperatures, in both nutrient-deficient and nutrient-rich environments. We isolated and identified microorganisms which are known to form biofilms on medical devices (e.g. Stenotrophomonas maltophilia). All isolates were classified as opportunistic pathogens, which can cause infections in humans with weakened immunity systems. All isolates showed the ability to form biofilms in the laboratory conditions. The potential for biofilm formation was higher in the presence of added nutrients. In addition, the hydrolytic activity of the biofilm was connected with the presence of nutrients.

  18. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions.

    PubMed

    Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries.

  19. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila.

    PubMed

    Jahid, Iqbal Kabir; Lee, Na-Young; Kim, Anna; Ha, Sang-Do

    2013-02-01

    Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.

  20. Introduction to the IWA task group on biofilm modeling.

    PubMed

    Noguera, D R; Morgenroth, E

    2004-01-01

    An International Water Association (IWA) Task Group on Biofilm Modeling was created with the purpose of comparatively evaluating different biofilm modeling approaches. The task group developed three benchmark problems for this comparison, and used a diversity of modeling techniques that included analytical, pseudo-analytical, and numerical solutions to the biofilm problems. Models in one, two, and three dimensional domains were also compared. The first benchmark problem (BM1) described a monospecies biofilm growing in a completely mixed reactor environment and had the purpose of comparing the ability of the models to predict substrate fluxes and concentrations for a biofilm system of fixed total biomass and fixed biomass density. The second problem (BM2) represented a situation in which substrate mass transport by convection was influenced by the hydrodynamic conditions of the liquid in contact with the biofilm. The third problem (BM3) was designed to compare the ability of the models to simulate multispecies and multisubstrate biofilms. These three benchmark problems allowed identification of the specific advantages and disadvantages of each modeling approach. A detailed presentation of the comparative analyses for each problem is provided elsewhere in these proceedings.

  1. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome.

    PubMed

    Klare, William; Das, Theerthankar; Ibugo, Amaye; Buckle, Edwina; Manefield, Mike; Manos, Jim

    2016-08-01

    Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome

    PubMed Central

    Das, Theerthankar; Ibugo, Amaye; Buckle, Edwina; Manefield, Mike; Manos, Jim

    2016-01-01

    Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies. PMID:27161630

  3. Short communication: Effects of lactose and milk on the expression of biofilm-associated genes in Staphylococcus aureus strains isolated from a dairy cow with mastitis.

    PubMed

    Xue, Ting; Chen, Xiaolin; Shang, Fei

    2014-10-01

    Staphylococcus aureus is the main etiological organism responsible for bovine mastitis. The ability of S. aureus to form biofilms plays an important role in the pathogenesis of mastitis. Biofilm formation in S. aureus is associated with the production of polysaccharide intercellular adhesin (PIA) protein and several other proteins. Several environmental factors, including glucose, osmolarity, oleic acid, temperature, and anaerobiosis, have been reported to affect biofilm formation in S. aureus. This study investigated the influence of lactose and milk on the biofilm formation capacity of 2 clinical bovine isolates of S. aureus. We found that lactose increased biofilm formation predominantly by inducing PIA production, whereas milk increased biofilm formation through PIA as well as by increasing the production of other biofilm-associated proteins, which might be mediated by the transcriptional regulators intercellular adhesion regulator (icaR) and repressor of biofilm (rbf). Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  5. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry.

    PubMed

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed.

  6. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator.

    PubMed

    Salli, K M; Forssten, S D; Lahtinen, S J; Ouwehand, A C

    2016-10-01

    In vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator. A simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR. Compared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p<0.0001) whereas 2% xylitol decreased it (p<0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p<0.05). Increasing the concentration (2%-5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose. The continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A short history of microbial biofilms and biofilm infections.

    PubMed

    Høiby, Niels

    2017-04-01

    The observation of aggregated microbes surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is old since both Leeuwenhoek and Pasteur have described the phenomenon. In environmental and technical microbiology, biofilms, 80-90 years ago, were already shown to be important for biofouling on submerged surfaces, for example, ships. The concept of biofilm infections and their importance in medicine was, however, initiated in the early 1970s by the observation of heaps of Pseudomonas aeruginosa cells in sputum and lung tissue from chronically infected cystic fibrosis patients. The term biofilm was introduced into medicine in 1985 by J. W. Costerton. During the following decades, the number of published biofilm articles and methods for studying biofilms increased rapidly and it was shown that adhering and nonadhering biofilm infections are widespread in medicine. The medical importance of biofilm infections is now generally accepted and guidelines for prophylaxis, diagnosis, and treatment have been published. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  8. Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters.

    PubMed

    Xue, Zheng; Lee, Woo Hyoung; Coburn, Kimberly M; Seo, Youngwoo

    2014-04-01

    The efficiency of monochloramine disinfection was dependent on the quantity and composition of extracellular polymeric substances (EPS) in biofilms, as monochloramine has a selective reactivity with proteins over polysaccharides. Biofilms with protein-based (Pseudomonas putida) and polysaccharide based EPS (Pseudomonas aeruginosa), as well as biofilms with varied amount of polysaccharide EPS (wild-type and mutant P. aeruginosa), were compared. The different reactivity of EPS components with monochloramine influenced disinfectant penetration, biofilm inactivation, as well as the viability of detached clusters. Monochloramine transport profiling measured by a chloramine-sensitive microelectrode revealed a broader diffusion boundary layer between bulk and biofilm surface in the P. putida biofilm compared to those of P. aeruginosa biofilms. The reaction with proteins in P. putida EPS multiplied both the time and the monochloramine mass required to achieve a full biofilm penetration. Cell viability in biofilms was also spatially influenced by monochloramine diffusion and reaction within biofilms, showing a lower survival in the surface section and a higher persistence in the middle section of the P. putida biofilm compared to the P. aeruginosa biofilms. While polysaccharide EPS promoted biofilm cell viability by obstructing monochloramine reactive sites on bacterial cells, protein EPS hindered monochloramine penetration by reacting with monochloramine and reduced its concentration within biofilms. Furthermore, the persistence of bacterial cells detached from biofilm (over 70% for P. putida and ∼40% for polysaccharide producing P. aeruginosa) suggested that currently recommended monochloramine residual levels may underestimate the risk of water quality deterioration caused by biofilm detachment.

  9. Biofilm effect on flow structure over a permeable bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, Farzan; Blois, Gianluca; Aybar, Marcelo; Perez-Calleja, Patricia; Nerenberg, Robert; Sinha, Sumit; Hardy, Richard; Best, James; Sambrook Smith, Gregory; Christensen, Kenneth

    2017-11-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction. Funded by UK Natural Environment Research Council.

  10. Biofilm Effect on Flow Structure over a Permeable Bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Aybar, M.; Perez-Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.

    2017-12-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.

  11. Diffusion and sorption of organic micropollutants in biofilms with varying thicknesses.

    PubMed

    Torresi, Elena; Polesel, Fabio; Bester, Kai; Christensson, Magnus; Smets, Barth F; Trapp, Stefan; Andersen, Henrik R; Plósz, Benedek Gy

    2017-10-15

    Solid-liquid partitioning is one of the main fate processes determining the removal of micropollutants in wastewater. Little is known on the sorption of micropollutants in biofilms, where molecular diffusion may significantly influence partitioning kinetics. In this study, the diffusion and the sorption of 23 micropollutants were investigated in novel moving bed biofilm reactor (MBBR) carriers with controlled biofilm thickness (50, 200 and 500 μm) using targeted batch experiments (initial concentration = 1 μg L -1 , for X-ray contrast media 15 μg L -1 ) and mathematical modelling. We assessed the influence of biofilm thickness and density on the dimensionless effective diffusivity coefficient f (equal to the biofilm-to-aqueous diffusivity ratio) and the distribution coefficient K d,eq (L g -1 ). Sorption was significant only for eight positively charged micropollutants (atenolol, metoprolol, propranolol, citalopram, venlafaxine, erythromycin, clarithromycin and roxithromycin), revealing the importance of electrostatic interactions with solids. Sorption equilibria were likely not reached within the duration of batch experiments (4 h), particularly for the thickest biofilm, requiring the calculation of the distribution coefficient K d,eq based on the approximation of the asymptotic equilibrium concentration (t > 4 h). K d,eq values increased with increasing biofilm thickness for all sorptive micropollutants (except atenolol), possibly due to higher porosity and accessible surface area in the thickest biofilm. Positive correlations between K d,eq and micropollutant properties (polarity and molecular size descriptors) were identified but not for all biofilm thicknesses, thus confirming the challenge of improving predictive sorption models for positively charged compounds. A diffusion-sorption model was developed and calibrated against experimental data, and estimated f values also increased with increasing biofilm thickness. This indicates that

  12. Fluid dynamic effects on staphylococci bacteria biofilms

    NASA Astrophysics Data System (ADS)

    Sherman, Erica; Bayles, Kenneth; Endres, Jennifer; Wei, Timothy

    2016-11-01

    Staphylococcus aureus bacteria are able to form biofilms and distinctive tower structures that facilitate their ability to tolerate treatment and to spread within the human body. The formation of towers, which break off, get carried downstream and serve to initiate biofilms in other parts of the body are of particular interest here. It is known that flow conditions play a role in the development, dispersion and propagation of biofilms in general. The influence of flow on tower formation, however, is not at all understood. This work is focused on the effect of applied shear on tower development. The hypothesis being examined is that tower structures form within a specific range of shear stresses and that there is an as yet ill defined fluid dynamic phenomenon that occurs hours before a tower forms. In this study, a range of shear stresses is examined that brackets 0.6 dynes/cm2, the nominal shear stress where towers seem most likely to form. This talk will include µPTV measurements and cell density data indicating variations in flow and biofilm evolution as a function of the applied shear. Causal relations between flow and biofilm development will be discussed.

  13. Inhibition strategies of Listeria monocytogenes biofilms-current knowledge and future outlooks.

    PubMed

    Oloketuyi, Sandra F; Khan, Fazlurrahman

    2017-09-01

    There is an increasing trend in the food industry on the Listeria monocytogenes biofilm formation and inhibition. This is attributed to its easy survival on contact surfaces, resistance to disinfectants or antibiotics and growth under the stringent condition used for food processing and preservation thereby leading to food contamination products by direct or indirect exposure. Though, there is a lack of conclusive evidences about the mechanism of biofilm formation, in this review, the concept of biofilm formation and various chemical, physical, and green technology approaches to prevent or control the biofilm formed is discussed. State-of-the-art approaches ranging from the application of natural to synthetic molecules with high effectiveness and non-toxicity targeted at the different steps of biofilm formation could positively influence the biofilm inhibition in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Influence of Amphibian Antimicrobial Peptides and Short Lipopeptides on Bacterial Biofilms Formed on Contact Lenses

    PubMed Central

    Maciejewska, Magdalena; Bauer, Marta; Neubauer, Damian; Kamysz, Wojciech; Dawgul, Malgorzata

    2016-01-01

    The widespread use of contact lenses is associated with several complications, including ocular biofilm-related infections. They are very difficult to manage with standard antimicrobial therapies, because bacterial growth in a biofilm is associated with an increased antibiotic resistance. The principal aim of this study was to evaluate the efficacy of antimicrobial peptides (AMPs) in eradication of bacterial biofilms formed on commercially available contact lenses. AMPs were synthesized according to Fmoc/tBu chemistry using the solid-phase method. Minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) of the compounds were determined. Anti-biofilm activity of the antimicrobial peptides determined at different temperatures (25 °C and 37 °C) were compared with the effectiveness of commercially available contact lens solutions. All of the tested compounds exhibited stronger anti-biofilm properties as compared to those of the tested lens solutions. The strongest activity of AMPs was noticed against Gram-positive strains at a temperature of 25 °C. Conclusions: The results of our experiments encourage us toward further studies on AMPs and their potential application in the prophylaxis of contact lens-related eye infections. PMID:28773992

  15. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    PubMed

    Wang, Zhejun; de la Fuente-Núñez, Cesar; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2015-01-01

    Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM), peptide 1018 was able to significantly (p<0.05) prevent biofilm formation over 3 days. The activity of the peptide on preformed biofilms was found to be concentration-dependent since more than 60% of the total plaque biofilm cell population was killed by 10 μg/ml of peptide 1018 in 3 days, while at 5 μg/ml 50% of cells were dead and at 1 μg/ml the peptide triggered cell death in around 30% of the total bacterial population, as revealed by confocal microscopy. The presence of saliva did not affect peptide activity, since no statistically significant difference was found in the ability of peptide 1018 to kill oral biofilms using either saliva coated and non-saliva coated hydroxyapatite surfaces. Scanning electron microscopy experiments indicated that peptide 1018 induced cell lysis in plaque biofilms. Furthermore, combined treatment using peptide 1018 and chlorhexidine (CHX) increased the anti-biofilm activity of each compound compared to when these were used alone, resulting in >50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  16. Permeabilizing biofilms

    DOEpatents

    Soukos, Nikolaos S [Revere, MA; Lee, Shun [Arlington, VA; Doukas, Apostolos G [Belmont, MA

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  17. Impact of Ferrous Iron on Microbial Community of the Biofilm in Microbial Fuel Cells.

    PubMed

    Liu, Qian; Liu, Bingfeng; Li, Wei; Zhao, Xin; Zuo, Wenjing; Xing, Defeng

    2017-01-01

    The performance of microbial electrochemical cells depends upon microbial community structure and metabolic activity of the electrode biofilms. Iron as a signal affects biofilm development and enrichment of exoelectrogenic bacteria. In this study, the effect of ferrous iron on microbial communities of the electrode biofilms in microbial fuel cells (MFCs) was investigated. Voltage production showed that ferrous iron of 100 μM facilitated MFC start-up compared to 150 μM, 200 μM, and without supplement of ferrous iron. However, higher concentration of ferrous iron had an inhibitive influence on current generation after 30 days of operation. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that ferrous iron substantially changed microbial community structures of both anode and cathode biofilms. Principal component analysis showed that the response of microbial communities of the anode biofilms to higher concentration of ferrous iron was more sensitive. The majority of predominant populations of the anode biofilms in MFCs belonged to Geobacter , which was different from the populations of the cathode biofilms. An obvious shift of community structures of the cathode biofilms occurred after ferrous iron addition. This study implied that ferrous iron influenced the power output and microbial community of MFCs.

  18. Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella Typhimurium strains of different origin in high and low nutrient medium.

    PubMed

    Castelijn, Greetje A A; van der Veen, Stijn; Zwietering, Marcel H; Moezelaar, Roy; Abee, Tjakko

    2012-01-01

    The biofilm forming behavior of 51 Salmonella Typhimurium strains was determined in Tryptone Soya Broth (TSB) and 20 times diluted TSB (1/20TSB) at 25°C and 37°C. The results indicated that biofilm forming behavior is influenced by environmental conditions and associated with the origin of the strains. Clinical, outbreak-associated and retail product isolates showed dense biofilm formation in both media at 25°C, and in TSB also at 37°C. However, industrial isolates only showed dense biofilm formation in 1/20TSB at 25°C. By enumeration of biofilm cells, LIVE/DEAD staining and SEM analysis of biofilms it was found that the ratio of cells and extracellular matrix is affected by environmental conditions. Indeed, the genes involved in curli fimbriae and cellulose production are highly induced during biofilm formation at 25°C in 1/20TSB. This indicates that these are important matrix components during biofilm formation in 1/20TSB at 25°C and that other factors contribute to biofilm formation of clinical, outbreak-associated and retail product isolates at 37°C and/or nutrient-rich conditions.

  19. Biofilm Matrix Proteins.

    PubMed

    Fong, Jiunn N C; Yildiz, Fitnat H

    2015-04-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.

  20. Agriculturally important microbial biofilms: Present status and future prospects.

    PubMed

    Velmourougane, Kulandaivelu; Prasanna, Radha; Saxena, Anil Kumar

    2017-07-01

    Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Biophysics of biofilm infection.

    PubMed

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Biophysics of Biofilm Infection

    PubMed Central

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could: 1) allow prevailing hydrodynamic shear to remove biofilm, 2) increase the efficacy of designed interventions for removing biofilms, 3) enable phagocytic engulfment of softened biofilm aggregates, and 4) improve phagocyte mobility and access to biofilm. PMID:24376149

  3. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry

    PubMed Central

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed. PMID:27375566

  4. In vitro effect of subminimal inhibitory concentrations of antibiotics on the biofilm formation ability of Acinetobacter baumannii clinical isolates.

    PubMed

    Bogdan, Maja; Drenjancevic, Domagoj; Harsanji Drenjancevic, Ivana; Bedenic, Branka; Zujic Atalic, Vlasta; Talapko, Jasminka; Vukovic, Dubravka

    2018-02-01

    The ability of A cinetobacter baumannii strains to form biofilm is one of the most important virulence factor which enables bacterial survival in a harsh environment and decreases antibiotic concentration as well. Subminimal inhibitory concentrations (subMICs) of antibiotics may change bacterial ultrastructure or have an influence on some different molecular mechanisms resulting in morphological or physiological changes in bacteria itself. The aim of this study was to determine effects of 1/2, 1/4, 1/8 and 1/16 minimal inhibitory concentrationsof imipenem, ampicillin-sulbactam, azithromycin, rifampicin and colistin on biofilm formation ability of 22 biofilm non-producing and 46 biofilm producing A. baumannii strains (30 weak producing strains and 16 moderate producing strains). Results of this study indicate that 1/2-1/16 MICs of imipenem, azithromycin, and rifampicin can reduce bacterial biofilm formation ability in moderate producing strains (p < 0.05), whereas 1/16 MIC of imipenem and 1/4-1/8 MICs of rifampicin reduce the biofilm formation in weak producing strains (p < 0.05). Statisticaly significant effect was detected among biofilm non-producing strains after their exposure to 1/16 MIC of azithromycin (p = 0.039). SubMICs of ampicillin-sulbactam and colistin did not have any significant effect on biofilm formation among tested A. baumannii strains.

  5. A Framework for Understanding the Evasion of Host Immunity by Candida Biofilms

    PubMed Central

    Garcia-Perez, Josselyn E.; Mathé, Lotte; Humblet-Baron, Stephanie; Braem, Annabel; Lagrou, Katrien; Van Dijck, Patrick; Liston, Adrian

    2018-01-01

    Candida biofilms are a major cause of nosocomial morbidity and mortality. The mechanism by which Candida biofilms evade the immune system remains unknown. In this perspective, we develop a theoretical framework of the three, not mutually exclusive, models, which could explain biofilm evasion of host immunity. First, biofilms may exhibit properties of immunological silence, preventing immune activation. Second, biofilms may produce immune-deviating factors, converting effective immunity into ineffective immunity. Third, biofilms may resist host immunity, which would otherwise be effective. Using a murine subcutaneous biofilm model, we found that mice infected with biofilms developed sterilizing immunity effective when challenged with yeast form Candida. Despite the induction of effective anti-Candida immunity, no spontaneous clearance of the biofilm was observed. These results support the immune resistance model of biofilm immune evasion and demonstrate an asymmetric relationship between the host and biofilms, with biofilms eliciting effective immune responses yet being resistant to immunological clearance. PMID:29616035

  6. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    PubMed

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Intercellular adhesion and biocide resistance in nontypeable Haemophilus influenzae biofilms

    PubMed Central

    Izano, Era A.; Shah, Suhagi M.; Kaplan, Jeffrey B.

    2009-01-01

    Respiratory infections caused by nontypeable Haemophilus influenzae (NTHi) are a major medical problem. Evidence suggests that the ability to form biofilms on mucosal surfaces may play a role in NTHi pathogenesis. However, the factors that contribute to NTHi biofilm cohesion remain largely unknown. In this study we investigated the biofilm growth and detachment phenotypes of eight NTHi clinical strains in vitro. We found that the majority of strains produced biofilms within 6 hours when cultured statically in tubes. Biofilm formation was inhibited when culture medium was supplemented with proteinase K or DNase I. Both enzymes also caused significant detachment of pre-formed NTHi biofilms. These findings indicate that both proteinaceous adhesins and extracellular DNA contribute to NTHi biofilm cohesion. Treatment of NTHi biofilms cultured in centrifugal filter devices with DNase I, but not with proteinase K, caused a significant decrease in fluid convection through the biofilms. These results suggest that extracellular DNA is the major volumetric component of the NTHi biofilm matrix. Mechanical or enzymatic disruption of NTHi biofilms cultured in microtiter plates significantly increased their sensitivity to killing by SDS, cetylpyridinium chloride, chlorhexidine gluconate, povidone iodine and sodium hypochlorite. These findings indicate that biocide resistance in NTHi biofilms is mediated to a large part by the cohesive and protective properties of the biofilm matrix. Understanding the mechanisms of biofilm cohesion and biocide resistance in NTHi biofilms may lead to new methods for treating NTHi-associated infections. PMID:19490830

  8. Time to "go large" on biofilm research: advantages of an omics approach.

    PubMed

    Azevedo, Nuno F; Lopes, Susana P; Keevil, Charles W; Pereira, Maria O; Vieira, Maria J

    2009-04-01

    In nature, the biofilm mode of life is of great importance in the cell cycle for many microorganisms. Perhaps because of biofilm complexity and variability, the characterization of a given microbial system, in terms of biofilm formation potential, structure and associated physiological activity, in a large-scale, standardized and systematic manner has been hindered by the absence of high-throughput methods. This outlook is now starting to change as new methods involving the utilization of microtiter-plates and automated spectrophotometry and microscopy systems are being developed to perform large-scale testing of microbial biofilms. Here, we evaluate if the time is ripe to start an integrated omics approach, i.e., the generation and interrogation of large datasets, to biofilms--"biofomics". This omics approach would bring much needed insight into how biofilm formation ability is affected by a number of environmental, physiological and mutational factors and how these factors interplay between themselves in a standardized manner. This could then lead to the creation of a database where biofilm signatures are identified and interrogated. Nevertheless, and before embarking on such an enterprise, the selection of a versatile, robust, high-throughput biofilm growing device and of appropriate methods for biofilm analysis will have to be performed. Whether such device and analytical methods are already available, particularly for complex heterotrophic biofilms is, however, very debatable.

  9. Development of an in vitro Assay, Based on the BioFilm Ring Test®, for Rapid Profiling of Biofilm-Growing Bacteria

    PubMed Central

    Di Domenico, Enea G.; Toma, Luigi; Provot, Christian; Ascenzioni, Fiorentina; Sperduti, Isabella; Prignano, Grazia; Gallo, Maria T.; Pimpinelli, Fulvia; Bordignon, Valentina; Bernardi, Thierry; Ensoli, Fabrizio

    2016-01-01

    Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting. The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT) technology. The procedure developed for clinical testing (cBRT) can provide an accurate and timely (5 h) measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV) staining test, according to the κ coefficient test (κ = 0.623). However, the cBRT assay showed higher levels of specificity (92.2%) and accuracy (88.1%) as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology. PMID:27708625

  10. Non-Tuberculous Mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model.

    PubMed

    Rodríguez-Sevilla, Graciela; García-Coca, Marta; Romera-García, David; Aguilera-Correa, John Jairo; Mahíllo-Fernández, Ignacio; Esteban, Jaime; Pérez-Jorge, Concepción

    2018-04-01

    Lung disease in cystic fibrosis (CF) is characterized by the progressive colonization of the respiratory tract by different bacteria, which develop polymicrobial biofilms. In the past decades, there has been an increase in the number of CF patients infected with Non-Tuberculous Mycobacteria (NTM). Although Mycobacterium abscessus is the main NTM isolated globally, little is known about M. abscessus multispecies biofilm formation. In the present study we developed an in vitro model to study the phenotypic characteristics of biofilms formed by M. abscessus and Pseudomonas aeruginosa, a major pathogen in CF. For that purpose, dual species biofilms were grown on polycarbonate membranes with a fixed concentration of P. aeruginosa and different inoculums of M. abscessus. The biofilms were sampled at 24, 48, and 72 h and bacteria were quantified in specific media. The results revealed that the increasing initial concentration of M. abscessus in dual species biofilms had an effect on its population only at 24 and 48 h, whereas P. aeruginosa was not affected by the different concentrations used of M. abscessus. Time elapsed increased biofilm formation of both species, specially between 24 and 48 h. According to the results, the conditions to produce a mature dual species biofilm in which the relative species distribution remained stable were 72 h growth of the mixed microbial culture at a 1:1 ratio. A significant decrease in mycobacterial population in dual compared to single species biofilms was found, suggesting that P. aeruginosa has a negative influence on M. abscessus. Finally, in a proof of concept experiment, young and mature dual species biofilms were exposed to clarithromycin. Copyright © 2018 Elsevier GmbH. All rights reserved.

  11. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    PubMed

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  12. Matrix exopolysaccharides; the sticky side of biofilm formation.

    PubMed

    Maunders, Eve; Welch, Martin

    2017-07-06

    The Gram-negative pathogen Pseudomonas aeruginosa is found ubiquitously within the environment and is recognised as an opportunistic human pathogen that commonly infects burn wounds and immunocompromised individuals, or patients suffering from the autosomal recessive disorder cystic fibrosis (CF). During chronic infection, P. aeruginosa is thought to form structured aggregates known as biofilms characterised by a self-produced matrix which encases the bacteria, protecting them from antimicrobial attack and the host immune response. In many cases, antibiotics are ineffective at eradicating P. aeruginosa from chronically infected CF airways. Cyclic-di-GMP has been identified as a key regulator of biofilm formation; however, the way in which its effector proteins elicit a change in biofilm formation remains unclear. Identifying regulators of biofilm formation is a key theme of current research and understanding the factors that activate biofilm formation may help to expose potential new drug targets that slow the onset of chronic infection. This minireview outlines the contribution made by exopolysaccharides to biofilm formation, and describes the current understanding of biofilm regulation in P. aeruginosa with a particular focus on CF airway-associated infections. © FEMS 2017.

  13. Dental plaque biofilm in oral health and disease.

    PubMed

    Seneviratne, Chaminda Jayampath; Zhang, Cheng Fei; Samaranayake, Lakshman Perera

    2011-01-01

    Dental plaque is an archetypical biofilm composed of a complex microbial community. It is the aetiological agent for major dental diseases such as dental caries and periodontal disease. The clinical picture of these dental diseases is a net result of the cross-talk between the pathogenic dental plaque biofilm and the host tissue response. In the healthy state, both plaque biofilm and adjacent tissues maintain a delicate balance, establishing a harmonious relationship between the two. However, changes occur during the disease process that transform this 'healthy' dental plaque into a 'pathogenic' biofilm. Recent advances in molecular microbiology have improved the understanding of dental plaque biofilm and produced numerous clinical benefits. Therefore, it is imperative that clinicians keep abreast with these new developments in the field of dentistry. Better understanding of the molecular mechanisms behind dental diseases will facilitate the development of novel therapeutic strategies to establish a 'healthy dental plaque biofilm' by modulating both host and microbial factors. In this review, the present authors aim to summarise the current knowledge on dental plaque as a microbial biofilm and its properties in oral health and disease.

  14. Response of Muddy Sediments and Benthic Diatom-based Biofilms to Repeated Erosion Events

    NASA Astrophysics Data System (ADS)

    Valentine, K.; Mariotti, G.; Fagherazzi, S.

    2016-02-01

    Benthic biofilms, microbes aggregated within a matrix of Extracellular Polymeric Substances (EPS), are commonly found in shallow coastal areas and intertidal environments. Biofilms have the potential to stabilize sediments, hence reducing erosion and possibly mitigating land loss. The purpose of this study is to determine how repeated flow events that rework the bed affect biofilm growth and its ability to stabilize cohesive sediments. Natural mud devoid of grazers was used to create placed beds in four annular flumes; biofilms were allowed to grow on the sediment surface. Each flume was eroded at different time intervals (1 or 12 days) to allow for varied levels of biofilm growth and adjustment following erosion. In addition, experiments with abiotic mud were performed by adding bleach to the tank. Each erosion test consisted of step-wise increases in flow that were used to measured erodibility. In the experiments where the bed was eroded every day both the abiotic and biotic flumes exhibited a decrease in erodibility with time, likely due to consolidation, but the decrease in erodibility was greater in the flume with a biofilm. Specifically the presence of biofilm reduced bed erosion at low shear stresses ( 0.1 Pa). We attribute this progressive decrease in erodibility to the accumulation of EPS over time: even though the biofilm was eroded during each erosion event, the EPS was retained within the flume, mixed with the eroded sediment and eventually settled. Less frequent erosion allowed the growth of a stronger biofilm that decreased bed erosion at higher shear stresses ( 0.4 Pa). We conclude that the time between destructive flow events influences the ability of biofilms to stabilize sediments. This influence will likely be affected by biofilm growth conditions such as light, temperature, nutrients, salinity, and the microbial community.

  15. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    PubMed

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  16. Comparative transcriptional profiling reveals differential expression of pathways directly and indirectly influencing biofilm formation in Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Introduction: Escherichia coli O157:H7 (O157) is a frequent cause of foodborne disease outbreaks. O157 encodes virulence factors for colonizing and survival in reservoir animals and the environment. For example, genetic factors promoting biofilm formation are linked to survival of O157 in and outsid...

  17. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    PubMed Central

    Husain, Fohad M.; Ahmad, Iqbal; Al-thubiani, Abdullah S.; Abulreesh, Hussein H.; AlHazza, Ibrahim M.; Aqil, Farrukh

    2017-01-01

    Quorum sensing (QS) is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango) has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML) extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC) and gas chromatography–mass spectrometry (GC-MS) analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%), total protease (56%), pyocyanin (89%), chitinase (55%), exopolysaccharide production (58%) and swarming motility (74%) in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82%) over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy. PMID:28484444

  18. Resistance of non-typeable Haemophilus influenzae biofilms is independent of biofilm size

    PubMed Central

    Reimche, Jennifer L.; Kirse, Daniel J.; Whigham, Amy S.; Swords, W. Edward

    2016-01-01

    Abstract The inflammatory middle ear disease known as otitis media can become chronic or recurrent in some cases due to failure of the antibiotic treatment to clear the bacterial etiological agent. Biofilms are known culprits of antibiotic-resistant infections; however, the mechanisms of resistance for non-typeable Haemophilus influenzae biofilms have not been completely elucidated. In this study, we utilized in vitro static biofilm assays to characterize clinical strain biofilms and addressed the hypothesis that biofilms with greater biomass and/or thickness would be more resistant to antimicrobial-mediated eradication than thinner and/or lower biomass biofilms. Consistent with previous studies, antibiotic concentrations required to eliminate biofilm bacteria tended to be drastically higher than concentrations required to kill planktonic bacteria. The size characterizations of the biofilms formed by the clinical isolates were compared to their minimum biofilm eradication concentrations for four antibiotics. This revealed no correlation between biofilm thickness or biomass and the ability to resist eradication by antibiotics. Therefore, we concluded that biofilm size does not play a role in antibiotic resistance, suggesting that reduction of antibiotic penetration may not be a significant mechanism for antibiotic resistance for this bacterial opportunist. PMID:27956464

  19. Investigating electrochemical removal of bacterial biofilms from stainless steel substrates.

    PubMed

    Dargahi, Mahdi; Hosseinidoust, Zeinab; Tufenkji, Nathalie; Omanovic, Sasha

    2014-05-01

    Electrochemical removal of biofilms deserves attention because of its ease of use and environmentally friendly nature. We investigated the influence of electrode potential and treatment time on the removal of a 10-day old Pseudomonas aeruginosa biofilm formed on stainless steel 316 L substrates. At electrode potentials more positive than -1.5 V vs. Ag/AgCl, lower removal rates were observed and only partial removal of the biofilm was achieved during a 1-min time interval. Electrostatic repulsion between the film and electrode surface is believed to drive biofilm detachment under these conditions. However, when the biofilm-coated substrates were treated at potentials negative of -1.5 V vs. Ag/AgCl, complete removal of a biofilm was achieved within seconds. Under these conditions, vigorous evolution of hydrogen gas is believed to be responsible for the film removal, mechanically detaching the bacteria and extracellular polymeric matrix from the substrate. Stainless steel substrates were also subjected to repeated cycles of biofilm formation and electrochemical removal. High removal efficiencies were maintained throughout this process suggesting the potential of the proposed technology for application on conductive surfaces in various industrial settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities.

    PubMed

    Larrosa-Guerrero, Amor; Scott, Keith; Katuri, Krishna P; Godinez, Carlos; Head, Ian M; Curtis, Thomas

    2010-08-01

    The influence of various carbon anodes; graphite, sponge, paper, cloth, felt, fiber, foam and reticulated vitreous carbon (RVC); on microbial fuel cell (MFC) performance is reported. The feed was brewery wastewater diluted in domestic wastewater. Biofilms were grown at open circuit or under an external load. Microbial diversity was analysed as a function of current and anode material. The bacterial community formed at open circuit was influenced by the anode material. However at closed circuit its role in determining the bacterial consortia formed was less important than the passage of current. The rate and extent of organic matter removal were similar for all materials: over 95% under closed circuit. The biofilm in MFCs working at open circuit and in the control reactors, increased COD removal by up to a factor of nine compared with that for baseline reactors. The average voltage output was 0.6 V at closed circuit, with an external resistor of 300 kOmega and 0.75 V at open circuit for all materials except RVC. The poor performance of this material might be related to the surface area available and concentration polarizations caused by the morphology of the material and the structure of the biofilm. Peak power varied from 1.3 mW m(-2) for RVC to 568 mW m(-2) for graphite with biofilm grown at closed circuit.

  1. Use of microbial activity measurements for monitoring RBC biofilms.

    PubMed

    Coello, M Dolores; Rodríguez-Barroso, M R; Aragón, C A; Quiroga, J M

    2010-10-01

    Fixed biomass technologies, such as rotating biological contactors or biodiscs, have been applied for wastewater depuration both in large and medium-small-sized agglomerations. Biofilm's composition and microorganism activity are essential parameters for the successful operation and control of these systems. Biofilm's thickness and total dry weight have been widely used for biofilm's characterization but, actually, are not sufficient to describe biofilm activity. In fact, biofilm's activity is not proportional to the quantity of fixed biomass, but increases with the thickness of biofilm up to a determined level called the "active thickness". Above this level, the diffusion of nutrients through the film becomes a limiting factor. A stable, thin, and active biofilm thus offers numerous advantages in water and wastewater treatment. Different parameters have been used to evaluate biofilm's activity. The specific oxygen uptake rate, INT-dehydrogenase activity, and the ratio active/total cells have been applied for that purpose. These methods are not only simple and rapid but also sensitive, precise, and representative. The results obtained confirm the potential of the microbial activity measurements studied for an accurate biofilm's characterization and biomass activity estimation in fundamental research and for the practical operation and control of fixed biomass depuration systems.

  2. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism.

    PubMed

    Lopes, F A; Morin, P; Oliveira, R; Melo, L F

    2006-11-01

    To study the influence of some metallic elements of stainless steel 304 (SS 304) on the development and activity of a sulfate-reducing bacterial biofilm, using as comparison a reference nonmetallic material polymethylmethacrylate (PMMA). Desulfovibrio desulfuricans biofilms were developed on SS 304 and on a reference nonmetallic material, PMMA, in a flow cell system. Steady-state biofilms were metabolically more active on SS 304 than on PMMA. Activity tests with bacteria from both biofilms at steady state also showed that the doubling time was lower for bacteria from SS 304 biofilms. The influence of chromium and nickel, elements of SS 304 composition, was also tested on a cellular suspension of Des. desulfuricans. Nickel decreased the bacterial doubling time, while chromium had no significant effect. The following mechanism is hypothesized: a Des. desulfuricans biofilm grown on a SS 304 surface in anaerobic conditions leads to the weakening of the metal passive layer and to the dissolution in the bulk phase of nickel ions that have a positive influence on the sulfate-reducing bacteria metabolism. This phenomenon may enhance the biocorrosion process. A better understanding of the interactions between metallic surfaces such as stainless steel and bacteria commonly implied in the corrosion phenomena which is primordial to fight biocorrosion.

  3. NMR investigation of water diffusion in different biofilm structures.

    PubMed

    Herrling, Maria P; Weisbrodt, Jessica; Kirkland, Catherine M; Williamson, Nathan H; Lackner, Susanne; Codd, Sarah L; Seymour, Joseph D; Guthausen, Gisela; Horn, Harald

    2017-12-01

    Mass transfer in biofilms is determined by diffusion. Different mostly invasive approaches have been used to measure diffusion coefficients in biofilms, however, data on heterogeneous biomass under realistic conditions is still missing. To non-invasively elucidate fluid-structure interactions in complex multispecies biofilms pulsed field gradient-nuclear magnetic resonance (PFG-NMR) was applied to measure the water diffusion in five different types of biomass aggregates: one type of sludge flocs, two types of biofilm, and two types of granules. Data analysis is an important issue when measuring heterogeneous systems and is shown to significantly influence the interpretation and understanding of water diffusion. With respect to numerical reproducibility and physico-chemical interpretation, different data processing methods were explored: (bi)-exponential data analysis and the Γ distribution model. Furthermore, the diffusion coefficient distribution in relation to relaxation was studied by D-T 2 maps obtained by 2D inverse Laplace transform (2D ILT). The results show that the effective diffusion coefficients for all biofilm samples ranged from 0.36 to 0.96 relative to that of water. NMR diffusion was linked to biofilm structure (e.g., biomass density, organic and inorganic matter) as observed by magnetic resonance imaging and to traditional biofilm parameters: diffusion was most restricted in granules with compact structures, and fast diffusion was found in heterotrophic biofilms with fluffy structures. The effective diffusion coefficients in the biomass were found to be broadly distributed because of internal biomass heterogeneities, such as gas bubbles, precipitates, and locally changing biofilm densities. Thus, estimations based on biofilm bulk properties in multispecies systems can be overestimated and mean diffusion coefficients might not be sufficiently informative to describe mass transport in biofilms and the near bulk. © 2017 Wiley Periodicals, Inc.

  4. Heterogeneity in Pseudomonas aeruginosa Biofilms Includes Expression of Ribosome Hibernation Factors in the Antibiotic-Tolerant Subpopulation and Hypoxia-Induced Stress Response in the Metabolically Active Population

    PubMed Central

    Williamson, Kerry S.; Richards, Lee A.; Perez-Osorio, Ailyn C.; Pitts, Betsey; McInnerney, Kathleen; Stewart, Philip S.

    2012-01-01

    Bacteria growing in biofilms are physiologically heterogeneous, due in part to their adaptation to local environmental conditions. Here, we characterized the local transcriptome responses of Pseudomonas aeruginosa growing in biofilms by using a microarray analysis of isolated biofilm subpopulations. The results demonstrated that cells at the top of the biofilms had high mRNA abundances for genes involved in general metabolic functions, while mRNA levels for these housekeeping genes were low in cells at the bottom of the biofilms. Selective green fluorescent protein (GFP) labeling showed that cells at the top of the biofilm were actively dividing. However, the dividing cells had high mRNA levels for genes regulated by the hypoxia-induced regulator Anr. Slow-growing cells deep in the biofilms had little expression of Anr-regulated genes and may have experienced long-term anoxia. Transcripts for ribosomal proteins were associated primarily with the metabolically active cell fraction, while ribosomal RNAs were abundant throughout the biofilms, indicating that ribosomes are stably maintained even in slowly growing cells. Consistent with these results was the identification of mRNAs for ribosome hibernation factors (the rmf and PA4463 genes) at the bottom of the biofilms. The dormant biofilm cells of a P. aeruginosa Δrmf strain had decreased membrane integrity, as shown by propidium iodide staining. Using selective GFP labeling and cell sorting, we show that the dividing cells are more susceptible to killing by tobramycin and ciprofloxacin. The results demonstrate that in thick P. aeruginosa biofilms, cells are physiologically distinct spatially, with cells deep in the biofilm in a viable but antibiotic-tolerant slow-growth state. PMID:22343293

  5. Dynamic Remodeling of Microbial Biofilms by Functionally Distinct Exopolysaccharides

    PubMed Central

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R. C.; Yang, Liang; Rice, Scott A.; Doyle, Patrick

    2014-01-01

    ABSTRACT Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. PMID:25096883

  6. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm.

    PubMed

    Lee, Kai Wei Kelvin; Periasamy, Saravanan; Mukherjee, Manisha; Xie, Chao; Kjelleberg, Staffan; Rice, Scott A

    2014-04-01

    Most studies of biofilm biology have taken a reductionist approach, where single-species biofilms have been extensively investigated. However, biofilms in nature mostly comprise multiple species, where interspecies interactions can shape the development, structure and function of these communities differently from biofilm populations. Hence, a reproducible mixed-species biofilm comprising Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was adapted to study how interspecies interactions affect biofilm development, structure and stress responses. Each species was fluorescently tagged to determine its abundance and spatial localization within the biofilm. The mixed-species biofilm exhibited distinct structures that were not observed in comparable single-species biofilms. In addition, development of the mixed-species biofilm was delayed 1-2 days compared with the single-species biofilms. Composition and spatial organization of the mixed-species biofilm also changed along the flow cell channel, where nutrient conditions and growth rate of each species could have a part in community assembly. Intriguingly, the mixed-species biofilm was more resistant to the antimicrobials sodium dodecyl sulfate and tobramycin than the single-species biofilms. Crucially, such community level resilience was found to be a protection offered by the resistant species to the whole community rather than selection for the resistant species. In contrast, community-level resilience was not observed for mixed-species planktonic cultures. These findings suggest that community-level interactions, such as sharing of public goods, are unique to the structured biofilm community, where the members are closely associated with each other.

  7. Implications of Biofilm Formation on Urological Devices

    NASA Astrophysics Data System (ADS)

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  8. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis

    PubMed Central

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak; Kumar, Ashwani

    2016-01-01

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD+/NADH and NADP+/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only ∼7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA, the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear. PMID:27109928

  9. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis.

    PubMed

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak; Kumar, Ashwani

    2016-04-25

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD(+)/NADH and NADP(+)/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only ∼7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA, the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear.

  10. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction-Corrosion and Friction Aspects.

    PubMed

    Mystkowska, Joanna; Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R; Bucki, Robert

    2018-03-06

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.

  11. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects

    PubMed Central

    Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R.; Bucki, Robert

    2018-01-01

    Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials. PMID:29509686

  12. Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms.

    PubMed

    Reddy, G Kiran Kumar; Nancharaiah, Y V; Venugopalan, V P

    2017-07-01

    Biofilm formation is problematic and hence undesirable in medical and industrial settings. In addition to bacteria, phototrophic organisms are an integral component of biofilms that develop on surfaces immersed in natural waters. 1-Alkyl-3-methyl imidazolium ionic liquids (IL) with varying alkyl chain length were evaluated for their influence on the formation of monospecies (Navicula sp.) and multispecies biofilms under phototrophic conditions. An IL with a long alkyl side chain, 1-hexadecyl-3-methylimidaazolium chloride ([C 16 (MIM)][Cl]) retarded growth, adhesion and biofilm formation of Navicula sp. at concentrations as low as 5μM. Interestingly, [C 16 (MIM)][Cl] was very effective in preventing multispecies phototrophic biofilms on fibre reinforced plastic surfaces immersed in natural waters (fresh and seawater). SYTOX ® Green staining and chlorophyll leakage assay confirmed that the biocidal activity of the IL was exerted through cell membrane disruption. The data show that [C 16 (MIM)][Cl] is a potent inhibitor of phototrophic biofilms at micromolar concentrations and a promising agent for biofilm control in re-circulating cooling water systems. This is the first report that ionic liquids inhibit biofilm formation by phototrophic organisms which are important members of biofilms in streams and cooling towers. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fungal Biofilms: In vivo models for discovery of anti-biofilm drugs

    PubMed Central

    Nett, Jeniel E.; Andes, David

    2015-01-01

    SUMMARY During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections, oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to development of new strategies for eradication of fungal biofilm infections. PMID:26397003

  14. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    PubMed

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  15. Resistance of non-typeable Haemophilus influenzae biofilms is independent of biofilm size.

    PubMed

    Reimche, Jennifer L; Kirse, Daniel J; Whigham, Amy S; Swords, W Edward

    2017-02-01

    The inflammatory middle ear disease known as otitis media can become chronic or recurrent in some cases due to failure of the antibiotic treatment to clear the bacterial etiological agent. Biofilms are known culprits of antibiotic-resistant infections; however, the mechanisms of resistance for non-typeable Haemophilus influenzae biofilms have not been completely elucidated. In this study, we utilized in vitro static biofilm assays to characterize clinical strain biofilms and addressed the hypothesis that biofilms with greater biomass and/or thickness would be more resistant to antimicrobial-mediated eradication than thinner and/or lower biomass biofilms. Consistent with previous studies, antibiotic concentrations required to eliminate biofilm bacteria tended to be drastically higher than concentrations required to kill planktonic bacteria. The size characterizations of the biofilms formed by the clinical isolates were compared to their minimum biofilm eradication concentrations for four antibiotics. This revealed no correlation between biofilm thickness or biomass and the ability to resist eradication by antibiotics. Therefore, we concluded that biofilm size does not play a role in antibiotic resistance, suggesting that reduction of antibiotic penetration may not be a significant mechanism for antibiotic resistance for this bacterial opportunist. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Investigating the link between imipenem resistance and biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Musafer, Hadeel K; Kuchma, Sherry L; Naimie, Amanda A; Schwartzman, Joseph D; Al-Mathkhury, Harith J Fahad; O'Toole, George A

    2014-07-01

    Pseudomonas aeruginosa, a ubiquitous environmental organism, is a difficult-to-treat opportunistic pathogen due to its broad-spectrum antibiotic resistance and its ability to form biofilms. In this study, we investigate the link between resistance to a clinically important antibiotic, imipenem, and biofilm formation. First, we observed that the laboratory strain P. aeruginosa PAO1 carrying a mutation in the oprD gene, which confers resistance to imipenem, showed a modest reduction in biofilm formation. We also observed an inverse relationship between imipenem resistance and biofilm formation for imipenem-resistant strains selected in vitro, as well as for clinical isolates. We identified two clinical isolates of P. aeruginosa from the sputum of cystic fibrosis patients that formed robust biofilms, but were sensitive to imipenem (MIC ≤ 2 μg/ml). To test the hypothesis that there is a general link between imipenem resistance and biofilm formation, we performed transposon mutagenesis of these two clinical strains to identify mutants defective in biofilm formation, and then tested these mutants for imipenem resistance. Analysis of the transposon mutants revealed a role for previously described biofilm factors in these clinical isolates of P. aeruginosa, including mutations in the pilY1, pilX, pilW, algC, and pslI genes, but none of the biofilm-deficient mutants became imipenem resistant (MIC ≥ 8 μg/ml), arguing against a general link between biofilm formation and resistance to imipenem. Thus, assessing biofilm formation capabilities of environmental isolates is unlikely to serve as a good predictor of imipenem resistance. We also discuss our findings in light of the limited literature addressing planktonic antibiotic resistance factors that impact biofilm formation.

  17. Presence of environmental coagulase-positive staphylococci, their clonal relationship, resistance factors and ability to form biofilm.

    PubMed

    Velázquez-Guadarrama, Norma; Olivares-Cervantes, Alma L; Salinas, Eva; Martínez, Leticia; Escorcia, Magdalena; Oropeza, Ricardo; Rosas, Irma

    Coagulase-positive staphylococci (CoPS) are opportunistic pathogens carrying various mechanisms of resistance that have a large number of virulence factors, and whose ability to induce illness is associated with the host. This study aimed to investigate the presence of environmental coagulase-positive staphylococci, their susceptibility profile, clonal relationship and ability to form biofilm. The 16S rRNA genes from CoPS isolates were analyzed, and their antibiotic susceptibility was evaluated using the agar dilution method in accordance with Clinical and Laboratory Standards Institute guidelines. The clonal profile was obtained by pulsed-field gel electrophoresis (PFGE) and biofilm formation was measured by a crystal violet retention assay. A total of 72 Staphylococcus spp. strains were isolated from air, metal surfaces, and nostrils from humans, dogs, cats, and birds. Three species were identified: Staphylococcus aureus (17%), Staphylococcus intermedius (63%), and Staphylococcus pseudintermedius (21%). Ninety three percent (93%) of the strains were resistant to at least one of 13 tested antibiotics. S. pseudintermedius strains were the only resistant ones to methicillin while most of these isolates were multidrug-resistant, had significantly higher ability to form biofilm and PFGE grouped into seven different patterns, without showing clonal dispersion among animals and environmental isolates. This study suggests that dogs, cat, and air are environmental sources potentially carrying multidrug-resistant S. pseudintermedius, which survives in different environments through biofilm formation and multidrug resistance, characteristics that can be transmitted horizontally to other bacteria and exacerbate the problem of antibiotic resistance in humans. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    PubMed

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-08-05

    Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical

  19. Effect of Infant Formula on Streptococcus Mutans Biofilm Formation.

    PubMed

    Hinds, Laura M; Moser, Elizabeth A S; Eckert, George; Gregory, Richard L

    when compared to the control than lactose and iron. The amount of iron in formula had a significant effect on biofilm formation only when comparing low iron formula to normal iron formula at the highest concentration (1:5). There was no significant difference in biofilm growth when iron was added to the low iron formula. The information obtained expands current knowledge regarding the influence of infant formula on the primary dentition and reinforces the importance of oral hygiene habits once the first tooth erupts.

  20. Experimental and Theoretical Investigation of Multispecies Oral Biofilm Resistance to Chlorhexidine Treatment

    NASA Astrophysics Data System (ADS)

    Shen, Ya; Zhao, Jia; de La Fuente-Núñez, César; Wang, Zhejun; Hancock, Robert E. W.; Roberts, Clive R.; Ma, Jingzhi; Li, Jun; Haapasalo, Markus; Wang, Qi

    2016-06-01

    We investigate recovery of multispecies oral biofilms following chlorhexidine gluconate (CHX) and CHX with surface modifiers (CHX-Plus) treatment. Specifically, we examine the percentage of viable bacteria in the biofilms following their exposure to CHX and CHX-Plus for 1, 3, and 10 minutes, respectively. Before antimicrobial treatment, the biofilms are allowed to grow for three weeks. We find that (a). CHX-Plus kills bacteria in biofilms more effectively than the regular 2% CHX does, (b). cell continues to be killed for up to one week after exposure to the CHX solutions, (c). the biofilms start to recover after two weeks, the percentage of the viable bacteria recovers in the 1 and 3 minutes treatment groups but not in the 10 minutes treatment group after five weeks, and the biofilms fully return to the pretreatment levels after eight weeks. To understand the mechanism, a mathematical model for multiple bacterial phenotypes is developed, adopting the notion that bacterial persisters exist in the biofilms together with regulatory quorum sensing molecules and growth factor proteins. The model reveals the crucial role played by the persisters, quorum sensing molecules, and growth factors in biofilm recovery, accurately predicting the viable bacterial population after CHX treatment.

  1. Experimental and Theoretical Investigation of Multispecies Oral Biofilm Resistance to Chlorhexidine Treatment

    PubMed Central

    Shen, Ya; Zhao, Jia; de la Fuente-Núñez, César; Wang, Zhejun; Hancock, Robert E. W.; Roberts, Clive R.; Ma, Jingzhi; Li, Jun; Haapasalo, Markus; Wang, Qi

    2016-01-01

    We investigate recovery of multispecies oral biofilms following chlorhexidine gluconate (CHX) and CHX with surface modifiers (CHX-Plus) treatment. Specifically, we examine the percentage of viable bacteria in the biofilms following their exposure to CHX and CHX-Plus for 1, 3, and 10 minutes, respectively. Before antimicrobial treatment, the biofilms are allowed to grow for three weeks. We find that (a). CHX-Plus kills bacteria in biofilms more effectively than the regular 2% CHX does, (b). cell continues to be killed for up to one week after exposure to the CHX solutions, (c). the biofilms start to recover after two weeks, the percentage of the viable bacteria recovers in the 1 and 3 minutes treatment groups but not in the 10 minutes treatment group after five weeks, and the biofilms fully return to the pretreatment levels after eight weeks. To understand the mechanism, a mathematical model for multiple bacterial phenotypes is developed, adopting the notion that bacterial persisters exist in the biofilms together with regulatory quorum sensing molecules and growth factor proteins. The model reveals the crucial role played by the persisters, quorum sensing molecules, and growth factors in biofilm recovery, accurately predicting the viable bacterial population after CHX treatment. PMID:27325010

  2. Pilus hijacking by a bacterial coaggregation factor critical for oral biofilm development.

    PubMed

    Reardon-Robinson, Melissa E; Wu, Chenggang; Mishra, Arunima; Chang, Chungyu; Bier, Naomi; Das, Asis; Ton-That, Hung

    2014-03-11

    The formation of dental plaque, a highly complex biofilm that causes gingivitis and periodontitis, requires specific adherence among many oral microbes, including the coaggregation of Actinomyces oris with Streptococcus oralis that helps to seed biofilm development. Here, we report the discovery of a key coaggregation factor for this process. This protein, which we named coaggregation factor A (CafA), is one of 14 cell surface proteins with the LPXTG motif predicted in A. oris MG1, whose function was hitherto unknown. By systematic mutagenesis of each of these genes and phenotypic characterization, we found that the Actinomyces/Streptococcus coaggregation is only abolished by deletion of cafA. Subsequent biochemical and cytological experiments revealed that CafA constitutes the tip of a unique form of the type 2 fimbria long known for its role in coaggregation. The direct and predominant role of CafA in adherence is evident from the fact that CafA or an antibody against CafA inhibits coaggregation, whereas the shaft protein FimA or a polyclonal antibody against FimA has no effect. Remarkably, FimA polymerization was blocked by deletion of genes for both CafA and FimB, the previously described tip protein of the type 2 fimbria. Together, these results indicate that some surface proteins not linked to a pilus gene cluster in Gram-positive bacteria may hijack the pilus. These unique tip proteins displayed on a common pilus shaft may serve distinct physiological functions. Furthermore, the pilus shaft assembly in Gram-positive bacteria may require a tip, as is true for certain Gram-negative bacterial pili.

  3. Do biofilms and clays alter the chemistry and fabric of a hyper-alklaine, saline, non-marine carbonate precipitate?

    NASA Astrophysics Data System (ADS)

    Rogerson, Michael; Saunders, Paul; Mercedes-Martin, Ramon; Brasier, Alex; Pedley, Martyn

    2015-04-01

    Non-marine carbonates comprise a hugely diverse family of deposits, which reflect a constellation of forcing factors from local hydraulics to regional climatology. However, the two dominant controls on precipitation are solution chemistry and benthic microbial biogeochemistry. Here, we present a unifying concept for understanding how these controls influence deposit characteristics, and re-emphasise the importance of biofilms. It is generally accepted that biofilms play an important part in the precipitation of authigenic minerals in a wide variety of settings. In carbonate settings, biofilms are recognised to increase the amount of calcite precipitation and alter the geometry and coarse scale petrography of the precipitate. They determine at what water marginal water chemistries calcite starts to precipitate and microbialites give way to chemical limestones. Biofilms also interact with ambient water, controlling chemical accumulation transport. New evidence, drawn from unique experimental approaches, is demonstrating that biofilm influence extends to control of calcite trace element composition, and crystal scale fabric. Under tightly controlled temperature and chemical conditions, fully replicated experiments show that Mg incorporation into tufa carbonate defies the expected thermodynamic control. However, there is a pronounced influence on (Mg/Ca)calcite from precipitation rate, so that rapidly forming precipitates develop with very low magnesium content indicating kinetic control on fractionation. Calcite precipitation rate in these experiments is controlled by biofilm growth rate and reflects kinetic fractionation arises from the electrochemical activity of extracellular organic acids. These effects are therefore likely to occur wherever these molecules occur, including stromatolites, soil and lake carbonates and (via colloidal organic acids) speleothems. The presence of Extracellular polymeric substances (EPS), even without the presence of cells, also alters

  4. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    PubMed

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  5. Surface Physicochemical Properties at the Micro and Nano Length Scales: Role on Bacterial Adhesion and Xylella fastidiosa Biofilm Development

    PubMed Central

    Lorite, Gabriela S.; Janissen, Richard; Clerici, João H.; Rodrigues, Carolina M.; Tomaz, Juarez P.; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A.; Cotta, Mônica A.

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant. PMID:24073256

  6. Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses.

    PubMed

    Garcia, Keila Carolina de Ornellas Dutka; Corrêa, Isadora Mainieri de Oliveira; Pereira, Larissa Quinto; Silva, Tarcísio Macedo; Mioni, Mateus de Souza Ribeiro; Izidoro, Ana Carolina de Moraes; Bastos, Igor Henrique Vellano; Gonçalves, Guilherme Augusto Marietto; Okamoto, Adriano Sakai; Andreatti Filho, Raphael Lucio

    2017-09-01

    Foodborne diseases represent a major risk to public health worldwide. Pathogenic bacteria can live in the form of biofilm within the food industry, providing a permanent source of contamination. The aim of this study was to evaluate the influence of the types of adhesion surfaces on Salmonella biofilm formation at eight different times, and analyze the action time of a bacteriophage pool on established biofilms. Most of the samples used were classified as weak biofilm producers, with serovars Enteritidis and Heidelberg showing the highest frequency of biofilm formation. Glass and stainless steel surfaces significantly favored biofilm formation at 60 and 36 h of incubation respectively, but the polyvinyl chloride surface did not favor biofilm production, suggesting that the type of material may interfere with production. The bacteriophage pool action period focused on 3 h, but treatment of 9 h on glass surface biofilms was superior to other treatments because it affected the largest number of samples. These results suggests that some surface types and Salmonella serotypes may promote biofilm formation and indicate bacteriophages as an alternative to control biofilms. But further studies are required to prove the effectiveness and safety of bacteriophage therapy as an alternative in the antimicrobial control in the processing plants. © 2017 Poultry Science Association Inc.

  7. Escherichia coli Removal in Biochar-Modified Biofilters: Effects of Biofilm

    PubMed Central

    Afrooz, A. R. M. Nabiul; Boehm, Alexandria B.

    2016-01-01

    The presence of microbial contaminants in urban stormwater is a significant concern for public health; however, their removal by traditional stormwater biofilters has been reported as inconsistent and inadequate. Recent work has explored the use of biochar to improve performance of stormwater biofilters under simplified conditions that do not consider potential effects of biofilm development on filter media. The present study investigates the role of biofilm on microbial contaminant removal performance of stormwater biofilters. Pseudomonas aeruginosa biofilms were formed in laboratory-scale sand and biochar-modified sand packed columns, which were then challenged with Escherichia coli laden synthetic stormwater containing natural organic matter. Results suggests that the presence of biofilm influences the removal of E. coli. However, the nature of the influence depends on the specific surface area and the relative hydrophobicity of filter media. The distribution of attached bacteria within the columns indicates that removal by filter media varies along the length of the column: the inlet was the primary removal zone regardless of experimental conditions. Findings from this research inform the design of field-scale biofilters for better and consistent performance in removing microbial contaminants from urban stormwater. PMID:27907127

  8. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.

    PubMed

    Li, Huabing; Xu, Dake; Li, Yingchao; Feng, Hao; Liu, Zhiyong; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2015-01-01

    Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.

  9. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris

    PubMed Central

    Li, Yingchao; Feng, Hao; Liu, Zhiyong; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2015-01-01

    Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry. PMID:26308855

  10. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms

    PubMed Central

    Grzywacz, Daria; Kamysz, Wojciech; Lourenço, Anália; Pereira, Maria Olívia

    2017-01-01

    Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP) and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST) combined with the AMP temporin A (TEMP-A), citropin 1.1 (CIT-1.1) and tachyplesin I linear analogue (TP-I-L) was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated. PMID:28355248

  11. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms.

    PubMed

    Jorge, Paula; Grzywacz, Daria; Kamysz, Wojciech; Lourenço, Anália; Pereira, Maria Olívia

    2017-01-01

    Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP) and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST) combined with the AMP temporin A (TEMP-A), citropin 1.1 (CIT-1.1) and tachyplesin I linear analogue (TP-I-L) was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated.

  12. Exopolymeric substances from drinking water biofilms: Dynamics of production and relation with disinfection by products.

    PubMed

    Lemus Pérez, M F; Rodríguez Susa, M

    2017-06-01

    Exopolymeric substances (EPS) as an external matrix of biofilm could react with disinfectants in drinking water networks forming disinfection by-products (DBP). Based on an experimental setup using two chlorine conditions-biofilm 1 (2.6 ± 0.8 mgCl/L) and biofilm 2 (0.7 ± 0.2 mg Cl/L)-samples of biofilms were recovered during 9 campaigns and EPS were extracted. Analyses of SUVA, fluorescence and amino acid (AA) content were carried out on the EPS to observe variation over time and correlations with DBP formation potential (DBP fp ) after chlorination. SUVA values were under 2 L/mgC*m showing that both EPS were hydrophilic. Slightly higher SUVA in biofilm 2 with low variation over time was observed. Fluorescence showed that aromatic proteins and fulvic like substances were the principal components and increased in biofilm 1 over time. AA decreased with time, and higher values of alanine, threonine, proline and isoleucine were observed in biofilm 2. Based on general associations, the SUVA of biofilm 2 correlated well with chloroform (CF) (r = 0.80). Generally, in both biofilms, tryptophan-like substances were negatively correlated with DBP while humic acid-like substances correlated positively, but with low indexes (r = 0.3-0.6). Correlations of data from individual sampling increased the indices (r over 0.8), suggesting a temporal influence of other factors on DBP fp such as inorganics, filtered water and the structural composition of EPS. In biofilm 1, Br-haloacetic acids (Br-HAA), dibromoacetonitrile and bromochloro acetonitrile were inversely associated with arginine and valine, as were di and trichloropropanone to arginine. On the contrary, in biofilm 2, the following amino acids correlated positively with DBP: alanine with Br-HAA, alanine with CF, alanine with N-DBP (chloropicrin, di and tri-chloro acetonitrile), and valine with CF. As this is the first report about the relation between temporal variation of EPS and DBP fp of biofilms in two

  13. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD +/NADH and NADP +/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only similar to 7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA,more » the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Lastly, our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear.« less

  14. The role of Proteus mirabilis cell wall features in biofilm formation.

    PubMed

    Czerwonka, Grzegorz; Guzy, Anna; Kałuża, Klaudia; Grosicka, Michalina; Dańczuk, Magdalena; Lechowicz, Łukasz; Gmiter, Dawid; Kowalczyk, Paweł; Kaca, Wiesław

    2016-11-01

    Biofilms formed by Proteus mirabilis strains are a serious medical problem, especially in the case of urinary tract infections. Early stages of biofilm formation, such as reversible and irreversible adhesion, are essential for bacteria to form biofilm and avoid eradication by antibiotic therapy. Adhesion to solid surfaces is a complex process where numerous factors play a role, where hydrophobic and electrostatic interactions with solid surface seem to be substantial. Cell surface hydrophobicity and electrokinetic potential of bacterial cells depend on their surface composition and structure, where lipopolysaccharide, in Gram-negative bacteria, is prevailing. Our studies focused on clinical and laboratory P. mirabilis strains, where laboratory strains have determined LPS structures. Adherence and biofilm formation tests revealed significant differences between strains adhered in early stages of biofilm formation. Amounts of formed biofilm were expressed by the absorption of crystal violet. Higher biofilm amounts were formed by the strains with more negative values of zeta potential. In contrast, high cell surface hydrophobicity correlated with low biofilm amount.

  15. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis

    DOE PAGES

    Trivedi, Abhishek; Mavi, Parminder Singh; Bhatt, Deepak; ...

    2016-04-25

    Mycobacterium tuberculosis (Mtb) forms biofilms harbouring antibiotic-tolerant bacilli in vitro, but the factors that induce biofilm formation and the nature of the extracellular material that holds the cells together are poorly understood. Here we show that intracellular thiol reductive stress (TRS) induces formation of Mtb biofilms in vitro, which harbour drug-tolerant but metabolically active bacteria with unchanged levels of ATP/ADP, NAD +/NADH and NADP +/NADPH. The development of these biofilms requires DNA, RNA and protein synthesis. Transcriptional analysis suggests that Mtb modulates only similar to 7% of its genes for survival in biofilms. In addition to proteins, lipids and DNA,more » the extracellular material in these biofilms is primarily composed of polysaccharides, with cellulose being a key component. Lastly, our results contribute to a better understanding of the mechanisms underlying Mtb biofilm formation, although the clinical relevance of Mtb biofilms in human tuberculosis remains unclear.« less

  16. Clotrimazole and econazole inhibit Streptococcus mutans biofilm and virulence in vitro.

    PubMed

    Qiu, Wei; Ren, Biao; Dai, Huanqin; Zhang, Lixin; Zhang, Qiong; Zhou, Xuedong; Li, Yuqing

    2017-01-01

    The aim of this study was to determine the inhibitory effect of eight antifungal drugs on S. mutans growth, biofilm formation and virulence factors. The actions of antifungal drugs on S. mutans were determined by recovery plates and survival kinetic curves. Biofilms were observed by scanning electron microscopy and the viable cells were recovered on BHI plates, meanwhile biofilms were stained by BacLight live/dead kit to investigate the biofilm viability. Bacteria/extracellular polysaccharides staining assays were performed to determine the EPS production of S. mutans biofilms. Acidogenicity and acidurity of S. mutans were determined using pH drop and acid tolerance assays, and the expression of ldh gene was evaluated using qPCR. We found that clotrimazole (CTR) and econazole (ECO) showed antibacterial activities on S. mutans UA159 and S. mutans clinical isolates at 12.5 and 25mg/L, respectively. CTR and ECO could also inhibit S. mutans biofilm formation and reduce the viability of preformed biofilm. CTR and ECO affected the live/dead ratio and the EPS/bacteria ratio of S. mutans biofilms. CTR and ECO also inhibited the pH drop, lactate acid production, and acid tolerance. The abilities of CTR and ECO to inhibit S. mutans ldh expression were also confirmed. We found that two antifungal azoles, CTR and ECO, had the abilities to inhibit the growth and biofilm formation of S. mutans and more importantly, they could also inhibit the virulence factors of S. mutans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Intraspecies Variability Affects Heterotypic Biofilms of Porphyromonas gingivalis and Prevotella intermedia: Evidences of Strain-Dependence Biofilm Modulation by Physical Contact and by Released Soluble Factors

    PubMed Central

    Barbosa, Graziela Murta; Colombo, Andrea Vieira; Rodrigues, Paulo Henrique; Simionato, Maria Regina Lorenzetti

    2015-01-01

    It is well known that strain and virulence diversity exist within the population structure of Porphyromonas gingivalis. In the present study we investigate intra- and inter-species variability in biofilm formation of Porphyromonas gingivalis and partners Prevotella intermedia and Prevotella nigrescens. All strains tested showed similar hydrophobicity, except for P. gingivalis W83 which has roughly half of the hydrophobicity of P. gingivalis ATCC33277. An intraspecies variability in coaggregation of P. gingivalis with P. intermedia was also found. The association P. gingivalis W83/P. intermedia 17 produced the thickest biofilm and strain 17 was prevalent. In a two-compartment system P. gingivalis W83 stimulates an increase in biomass of strain 17 and the latter did not stimulate the growth of P. gingivalis W83. In addition, P. gingivalis W83 also stimulates the growth of P. intermedia ATCC25611 although strain W83 was prevalent in the association with P. intermedia ATCC25611. P. gingivalis ATCC33277 was prevalent in both associations with P. intermedia and both strains of P. intermedia stimulate the growth of P. gingivalis ATCC33277. FISH images also showed variability in biofilm structure. Thus, the outcome of the association P. gingivalis/P. intermedia seems to be strain-dependent, and both soluble factors and physical contact are relevant. The association P. gingivalis-P. nigrescens ATCC33563 produced larger biomass than each monotypic biofilm, and P. gingivalis was favored in consortia, while no differences were found in the two-compartment system. Therefore, in consortia P. gingivalis-P. nigrescens physical contact seems to favor P. gingivalis growth. The intraspecies variability found in our study suggests strain-dependence in ability of microorganisms to recognize molecules in other bacteria which may further elucidate the dysbiosis event during periodontitis development giving additional explanation for periodontal bacteria, such as P. gingivalis and P

  18. Intraspecies Variability Affects Heterotypic Biofilms of Porphyromonas gingivalis and Prevotella intermedia: Evidences of Strain-Dependence Biofilm Modulation by Physical Contact and by Released Soluble Factors.

    PubMed

    Barbosa, Graziela Murta; Colombo, Andrea Vieira; Rodrigues, Paulo Henrique; Simionato, Maria Regina Lorenzetti

    2015-01-01

    It is well known that strain and virulence diversity exist within the population structure of Porphyromonas gingivalis. In the present study we investigate intra- and inter-species variability in biofilm formation of Porphyromonas gingivalis and partners Prevotella intermedia and Prevotella nigrescens. All strains tested showed similar hydrophobicity, except for P. gingivalis W83 which has roughly half of the hydrophobicity of P. gingivalis ATCC33277. An intraspecies variability in coaggregation of P. gingivalis with P. intermedia was also found. The association P. gingivalis W83/P. intermedia 17 produced the thickest biofilm and strain 17 was prevalent. In a two-compartment system P. gingivalis W83 stimulates an increase in biomass of strain 17 and the latter did not stimulate the growth of P. gingivalis W83. In addition, P. gingivalis W83 also stimulates the growth of P. intermedia ATCC25611 although strain W83 was prevalent in the association with P. intermedia ATCC25611. P. gingivalis ATCC33277 was prevalent in both associations with P. intermedia and both strains of P. intermedia stimulate the growth of P. gingivalis ATCC33277. FISH images also showed variability in biofilm structure. Thus, the outcome of the association P. gingivalis/P. intermedia seems to be strain-dependent, and both soluble factors and physical contact are relevant. The association P. gingivalis-P. nigrescens ATCC33563 produced larger biomass than each monotypic biofilm, and P. gingivalis was favored in consortia, while no differences were found in the two-compartment system. Therefore, in consortia P. gingivalis-P. nigrescens physical contact seems to favor P. gingivalis growth. The intraspecies variability found in our study suggests strain-dependence in ability of microorganisms to recognize molecules in other bacteria which may further elucidate the dysbiosis event during periodontitis development giving additional explanation for periodontal bacteria, such as P. gingivalis and P

  19. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms.

    PubMed

    Ma, Luyan; Wang, Shiwei; Wang, Di; Parsek, Matthew R; Wozniak, Daniel J

    2012-07-01

    The opportunistic pathogen Pseudomonas aeruginosa causes life-threatening, persistent infections in patients with cystic fibrosis (CF). Persistence is attributed to the ability of these bacteria to form structured communities (biofilms). Biofilms rely on an extracellular polymeric substances matrix to maintain structure. Psl exopolysaccharide is a key matrix component of nonmucoid biofilms, yet the role of Psl in mucoid biofilms is unknown. In this report, using a variety of mutants in a mucoid P. aeruginosa background, we found that deletion of Psl-encoding genes dramatically decreased their biofilm formation ability, indicating that Psl is also a critical matrix component of mucoid biofilms. Our data also suggest that the overproduction of alginate leads to mucoid biofilms, which occupy more space, whereas Psl-dependent biofilms are densely packed. These data suggest that Psl polysaccharide may have significant contributions in biofilm persistence in patients with CF and may be helpful for designing therapies for P. aeruginosa CF infection. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland.

    PubMed

    Badhe, Neha; Saha, Shaswati; Biswas, Rima; Nandy, Tapas

    2014-10-01

    The role of algal biofilm in a pilot-scale, free-surface, up-flow constructed wetland (CW), was studied for its effect on chemical oxygen demand (COD), ammonia and phosphate removal during three seasons-autumn, winter and early spring. Effect of hydraulic retention time (HRT) was also investigated in presence and absence of algal biofilm. Principal Component Analysis was used to identify the independent factors governing the performance of CW. The study showed algal biofilm significantly improved nutrient removal, especially phosphate. Ammonia removal varied with HRT, biofilm and ambient temperature. Increase in biofilm thickness affected ammonia removal efficiency adversely. Algal biofilm-assisted COD removal compensated for reduced macrophyte density during winter. Two-way ANOVA test and the coefficients of dependent factors derived through multiple linear regression model confirmed role of algal biofilm in improving nutrient removal in CW. The study suggests that algal biofilm can be a green solution for bio-augmenting COD and nutrient removal in CW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Bacteria, biofilm and honey: a study of the effects of honey on 'planktonic' and biofilm-embedded chronic wound bacteria.

    PubMed

    Merckoll, Patricia; Jonassen, Tom Øystein; Vad, Marie Elisabeth; Jeansson, Stig L; Melby, Kjetil K

    2009-01-01

    Chronically infected wounds are a costly source of suffering. An important factor in the failure of a sore to heal is the presence of multiple species of bacteria, living cooperatively in highly organized biofilms. The biofilm protects the bacteria from antibiotic therapy and the patient's immune response. Honey has been used as a wound treatment for millennia. The components responsible for its antibacterial properties are now being elucidated. The study aimed to determine the effects of different concentrations of 'Medihoney' therapeutic honey and Norwegian Forest Honey 1) on the real-time growth of typical chronic wound bacteria; 2) on biofilm formation; and 3) on the same bacteria already embedded in biofilm. Reference strains of MRSE, MRSA, ESBL Klebsiella pneumoniae and Pseudomonas aeruginosa were incubated with dilution series of the honeys in microtitre plates for 20 h. Growth of the bacteria was assessed by measuring optical density every 10 min. Growth curves, biofilm formation and minimum bactericidal concentrations are presented. Both honeys were bactericidal against all the strains of bacteria. Biofilm was penetrated by biocidal substances in honey. Reintroduction of honey as a conventional wound treatment may help improve individual wound care, prevent invasive infections, eliminate colonization, interrupt outbreaks and thereby preserve current antibiotic stocks.

  2. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

    PubMed

    Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

    2013-01-01

    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Diffusion of antimicrobials in multispecies biofilms evaluated in a new biofilm model.

    PubMed

    van der Waal, S V; de Almeida, J; Krom, B P; de Soet, J J; Crielaard, W

    2017-04-01

    To describe the application of a newly-developed in vitro model in which the diffusion of antimicrobials in oral biofilms can be studied. In a flow chamber consisting of three parallel feeding channels connected with each other by eight perpendicular side channels, multispecies biofilms were grown from saliva of a single donor for 48 h. The dimensions of the side channels were 100 μm × 100 μm × 5130 μm (H × W × L). When one or more side channels were filled with biofilm, the biofilms were stained with fluorescent stains. Then, one side-channel biofilm was selected and treated with phosphate buffered saline, 2% sodium hypochlorite (NaOCl), 17% ethylenediaminetetra-acetic acid (EDTA) or modified salt solution (MSS). Diffusion of the irrigants was observed by acquiring fluorescence images at 10× objective every 15 s for 30 min. It was possible to culture biofilms in the narrow (100 μm) channels. The biofilms varied in phenotype. In this model, no diffusion of NaOCl into the biofilms was seen after its application. Seventeen-percentage EDTA only diffused into the biofilm up to 200 μm in 30 min. MSS did diffuse in the biofilm over a distance of 450 μm within 2 min after a single application. This new model enables the investigation of the diffusion of antimicrobials in biofilms. Other applications to improve our understanding of the characteristics of biofilms are now possible. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Spore Formation and Toxin Production in Clostridium difficile Biofilms

    PubMed Central

    Semenyuk, Ekaterina G.; Laning, Michelle L.; Foley, Jennifer; Johnston, Pehga F.; Knight, Katherine L.; Gerding, Dale N.; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection. PMID:24498186

  5. Spore formation and toxin production in Clostridium difficile biofilms.

    PubMed

    Semenyuk, Ekaterina G; Laning, Michelle L; Foley, Jennifer; Johnston, Pehga F; Knight, Katherine L; Gerding, Dale N; Driks, Adam

    2014-01-01

    The ability to grow as a biofilm can facilitate survival of bacteria in the environment and promote infection. To better characterize biofilm formation in the pathogen Clostridium difficile, we established a colony biofilm culture method for this organism on a polycarbonate filter, and analyzed the matrix and the cells in biofilms from a variety of clinical isolates over several days of biofilm culture. We found that biofilms readily formed in all strains analyzed, and that spores were abundant within about 6 days. We also found that extracellular DNA (eDNA), polysaccharide and protein was readily detected in the matrix of all strains, including the major toxins A and/or B, in toxigenic strains. All the strains we analyzed formed spores. Apart from strains 630 and VPI10463, which sporulated in the biofilm at relatively low frequencies, the frequencies of biofilm sporulation varied between 46 and 65%, suggesting that variations in sporulation levels among strains is unlikely to be a major factor in variation in the severity of disease. Spores in biofilms also had reduced germination efficiency compared to spores obtained by a conventional sporulation protocol. Transmission electron microscopy revealed that in 3 day-old biofilms, the outermost structure of the spore is a lightly staining coat. However, after 6 days, material that resembles cell debris in the matrix surrounds the spore, and darkly staining granules are closely associated with the spores surface. In 14 day-old biofilms, relatively few spores are surrounded by the apparent cell debris, and the surface-associated granules are present at higher density at the coat surface. Finally, we showed that biofilm cells possess 100-fold greater resistance to the antibiotic metronidazole then do cells cultured in liquid media. Taken together, our data suggest that C. difficile cells and spores in biofilms have specialized properties that may facilitate infection.

  6. Influence of Silver-hydroxyapatite Nanocomposite Coating on Biofilm Formation of Joint Prosthesis and Its Mechanism.

    PubMed

    Zhao, L; Ashraf, M A

    2015-12-01

    The main reason for biomaterial related refractory infections is biofilm formation caused by bacterial adhesion on the surface of materials. Silver-hydroxyapatite (Ag/HA) nanocomposite coating can inhibit the formation of biofilm, but its mechanism is not clear. In order to clarify the mechanism, the amounts of biofilm on the Ag/HA composite coating and HA coating were determined, the release rates of silver nanoparticles in simulated body fluid (SBF) were detected by atomic absorption spectrometry, and the expression values of atlE , fbe , sap , iapB genes of Staphylococcus aureus were studied when they grew on Ag/HA composite coating and HA coating. The amount of the biofilm on the Ag/HA composite coating was significantly less than that on the HA coating, and the bacterial adhesion was decreased. The silver nanoparticles were released continuously in SBF and the release rate decreased gradually with time. The expression values of atlE , fbe and sap were high in the initial stage of adhesion and the expression value of iapB was high in the colonies-gathering stage in the control group, but they were all significantly inhibited in the presence of Ag. These results indicated that the main antibacterial effect of Ag/HA composite coating was achieved by the release of silver nanoparticles. The addition of Ag inhibited the expression of genes related to biofilm formation, which in turn inhibited the formation of biofilms. This provided theoretical support for the clinical application of Ag/HA composite coating.

  7. A Versatile Strategy for Characterization and Imaging of Drip Flow Microbial Biofilms.

    PubMed

    Li, Bin; Dunham, Sage J B; Ellis, Joseph F; Lange, Justin D; Smith, Justin R; Yang, Ning; King, Travis L; Amaya, Kensey R; Arnett, Clint M; Sweedler, Jonathan V

    2018-06-05

    The inherent architectural and chemical complexities of microbial biofilms mask our understanding of how these communities form, survive, propagate, and influence their surrounding environment. Here we describe a simple and versatile workflow for the cultivation and characterization of model flow-cell-based microbial ecosystems. A customized low-shear drip flow reactor was designed and employed to cultivate single and coculture flow-cell biofilms at the air-liquid interface of several metal surfaces. Pseudomonas putida F1 and Shewanella oneidensis MR-1 were selected as model organisms for this study. The utility and versatility of this platform was demonstrated via the application of several chemical and morphological imaging techniques-including matrix-assisted laser desorption/ionization mass spectrometry imaging, secondary ion mass spectrometry imaging, and scanning electron microscopy-and through the examination of model systems grown on iron substrates of varying compositions. Implementation of these techniques in combination with tandem mass spectrometry and a two-step imaging principal component analysis strategy resulted in the identification and characterization of 23 lipids and 3 oligosaccharides in P. putida F1 biofilms, the discovery of interaction-specific analytes, and the observation of several variations in cell and substrate morphology present during microbially influenced corrosion. The presented workflow is well-suited for examination of both single and multispecies drip flow biofilms and offers a platform for fundamental inquiries into biofilm formation, microbe-microbe interactions, and microbially influenced corrosion.

  8. Role of sediment size and biostratinomy on the development of biofilms in recent avian vertebrate remains

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph E.; Lenczewski, Melissa E.; Clawson, Steven R.; Warnock, Jonathan P.

    2017-04-01

    Microscopic soft tissues have been identified in fossil vertebrate remains collected from various lithologies. However, the diagenetic mechanisms to preserve such tissues have remained elusive. While previous studies have described infiltration of biofilms in Haversian and Volkmann’s canals, biostratinomic alteration (e.g., trampling), and iron derived from hemoglobin as playing roles in the preservation processes, the influence of sediment texture has not previously been investigated. This study uses a Kolmogorov Smirnov Goodness-of-Fit test to explore the influence of biostratinomic variability and burial media against the infiltration of biofilms in bone samples. Controlled columns of sediment with bone samples were used to simulate burial and subsequent groundwater flow. Sediments used in this study include clay-, silt-, and sand-sized particles modeled after various fluvial facies commonly associated with fossil vertebrates. Extant limb bone samples obtained from Gallus gallus domesticus (Domestic Chicken) buried in clay-rich sediment exhibit heavy biofilm infiltration, while bones buried in sands and silts exhibit moderate levels. Crushed bones exhibit significantly lower biofilm infiltration than whole bone samples. Strong interactions between biostratinomic alteration and sediment size are also identified with respect to biofilm development. Sediments modeling crevasse splay deposits exhibit considerable variability; whole-bone crevasse splay samples exhibit higher frequencies of high-level biofilm infiltration, and crushed-bone samples in modeled crevasse splay deposits display relatively high frequencies of low-level biofilm infiltration. These results suggest that sediment size, depositional setting, and biostratinomic condition play key roles in biofilm infiltration in vertebrate remains, and may influence soft tissue preservation in fossil vertebrates.

  9. [Involvement of the global regulators GrrS, RpoS, and SplIR in formation of biofilms in Serratia plymuthica].

    PubMed

    Zaĭtseva, Iu V; Voloshina, P V; Liu, X; Ovadis, M I; Berg, G; Chernin, L S; Khmel', I A

    2010-05-01

    Most bacteria exist in the natural environment as biofilms, multicellular communities attached to hard surfaces. Biofilms have a characteristic architecture and are enclosed in the exopolymer matrix. Bacterial cells in biofilms are extremely resistant to antibacterial factors. It was shown in this work that the GrrA/GrrS system of global regulators of gene expression and the sigma S subunit of RNA polymerase (RpoS) play a significant role in positive regulation of biofilm formation in the rhizospheric bacterium Serratia plymuthica IC1270. Inactivation of grrS and rpoS genes resulted in an up to six-to-sevenfold and four-to-fivefold reduction in biofilm formation, respectively. Mutations in the grrS gene decreased the capacity of the bacterium for swarming motility. The splIR Quorum Sensing (QS) system was shown to negatively influence the biofilm formation. Transfer of the recombinant plasmid containing cloned genes splI/splR of S. plymuthica HRO-C48 into S. plymuthica IC1270 cells led to a twofold decrease of their ability to form biofilms. Inactivation of the splI gene coding for the synthase of N-acyl-homoserine lactones in S. plymuthica HRO-C48 resulted in a 2-2.5-fold increase in the level of biofilm formation, whereas the inclusion of plasmid carrying the cloned splI/splR genes into these mutant cells restored the biofilm formation to the normal level. The results obtained demonstrate that the formation of biofilms in S. plymuthica is positively regulated by the GrrA/GrrS and RpoS global regulators and is negatively regulated by the SplIR QS system.

  10. More than just slippery: the impact of biofilm on the attachment of non-sessile freshwater mayfly larvae.

    PubMed

    Ditsche, Petra; Michels, Jan; Kovalev, Alexander; Koop, Jochen; Gorb, Stanislav

    2014-03-06

    While terrestrial insects can usually attach directly to a substrate, for aquatic insects the situation is more complicated owing to the presence of a biofilm on the primary substrates. This important fact has been neither the subject of investigation nor commonly taken into account in the interpretation of functional aspects of attachment in mobile freshwater animals. In this study, we investigate the impact of a biofilm on the attachment of living mayfly larvae. We performed in vivo attachment experiments in a flow channel using different substrates with defined surface roughness. Additionally, we measured friction forces directly generated by dissected tarsal claws on the same substrates. On substrates with smooth or slightly rough surfaces, which have little or no surface irregularities large enough for the claws to grasp, the presence of a biofilm significantly increases the friction force of claws. Consequently, larvae can endure higher flow velocities on these smooth substrates. The opposite effect takes place on rough substrates, where the friction force of claws decreases in the presence of a biofilm. Consequently, a biofilm is a critical ecological structure for these larvae, and other aquatic organisms, not only as a food source but also as a factor influencing attachment ability.

  11. Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection.

    PubMed

    Gil, Carmen; Solano, Cristina; Burgui, Saioa; Latasa, Cristina; García, Begoña; Toledo-Arana, Alejandro; Lasa, Iñigo; Valle, Jaione

    2014-03-01

    The Staphylococcus aureus biofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation of S. aureus biofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response against S. aureus infections. By using proteomic approaches, we characterized the exoproteomes of exopolysaccharide-based and protein-based biofilm matrices produced by two clinical S. aureus strains. Remarkably, results showed that independently of the nature of the biofilm matrix, a common core of secreted proteins is contained in both types of exoproteomes. Intradermal administration of an exoproteome extract of an exopolysaccharide-dependent biofilm induced a humoral immune response and elicited the production of interleukin 10 (IL-10) and IL-17 in mice. Antibodies against such an extract promoted opsonophagocytosis and killing of S. aureus. Immunization with the biofilm matrix exoproteome significantly reduced the number of bacterial cells inside a biofilm and on the surrounding tissue, using an in vivo model of mesh-associated biofilm infection. Furthermore, immunized mice also showed limited organ colonization by bacteria released from the matrix at the dispersive stage of the biofilm cycle. Altogether, these data illustrate the potential of biofilm matrix exoproteins as a promising candidate multivalent vaccine against S. aureus biofilm-associated infections.

  12. Inhibition and dispersal of Agrobacterium tumefaciens biofilms by a small diffusible Pseudomonas aeruginosa exoproduct(s).

    PubMed

    Hibbing, Michael E; Fuqua, Clay

    2012-06-01

    Environmental biofilms often contain mixed populations of different species. In these dense communities, competition between biofilm residents for limited nutrients such as iron can be fierce, leading to the evolution of competitive factors that affect the ability of competitors to grow or form biofilms. We have discovered a compound(s) present in the conditioned culture fluids of Pseudomonas aeruginosa that disperses and inhibits the formation of biofilms produced by the facultative plant pathogen Agrobacterium tumefaciens. The inhibitory activity is strongly induced when P. aeruginosa is cultivated in iron-limited conditions, but it does not function through iron sequestration. In addition, the production of the biofilm inhibitory activity is not regulated by the global iron regulatory protein Fur, the iron-responsive extracytoplasmic function σ factor PvdS, or three of the recognized P. aeruginosa quorum-sensing systems. In addition, the compound(s) responsible for the inhibition and dispersal of A. tumefaciens biofilm formation is likely distinct from the recently identified P. aeruginosa dispersal factor, cis-2-decenoic acid (CDA), as dialysis of the culture fluids showed that the inhibitory compound was larger than CDA and culture fluids that dispersed and inhibited biofilm formation by A. tumefaciens had no effect on biofilm formation by P. aeruginosa.

  13. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections

    PubMed Central

    Lebeaux, David; Chauhan, Ashwini; Rendueles, Olaya; Beloin, Christophe

    2013-01-01

    The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them. PMID:25437038

  14. Mineral Ecology: Surface Specific Colonization and Geochemical Drivers of Biofilm Accumulation, Composition, and Phylogeny

    PubMed Central

    Jones, Aaron A.; Bennett, Philip C.

    2017-01-01

    This study tests the hypothesis that surface composition influences microbial community structure and growth of biofilms. We used laboratory biofilm reactors (inoculated with a diverse subsurface community) to explore the phylogenetic and taxonomic variability in microbial communities as a function of surface type (carbonate, silicate, aluminosilicate), media pH, and carbon and phosphate availability. Using high-throughput pyrosequencing, we found that surface type significantly controlled ~70–90% of the variance in phylogenetic diversity regardless of environmental pressures. Consistent patterns also emerged in the taxonomy of specific guilds (sulfur-oxidizers/reducers, Gram-positives, acidophiles) due to variations in media chemistry. Media phosphate availability was a key property associated with variation in phylogeny and taxonomy of whole reactors and was negatively correlated with biofilm accumulation and α-diversity (species richness and evenness). However, mineral-bound phosphate limitations were correlated with less biofilm. Carbon added to the media was correlated with a significant increase in biofilm accumulation and overall α-diversity. Additionally, planktonic communities were phylogenetically distant from those in biofilms. All treatments harbored structurally (taxonomically and phylogenetically) distinct microbial communities. Selective advantages within each treatment encouraged growth and revealed the presence of hundreds of additional operational taxonomix units (OTU), representing distinct consortiums of microorganisms. Ultimately, these results provide evidence that mineral/rock composition significantly influences microbial community structure, diversity, membership, phylogenetic variability, and biofilm growth in subsurface communities. PMID:28400754

  15. Candida tropicalis biofilms: artificial urine, urinary catheters and flow model.

    PubMed

    Negri, Melyssa; Silva, Sónia; Henriques, Mariana; Azeredo, Joana; Svidzinski, Terezinha; Oliveira, Rosário

    2011-10-01

    Adhesion to medical devices and biofilm formation are considered important virulence factors of Candida tropicalis. This work aimed to use artificial urine (AU) and urinary catheters, under flow conditions, for studying C. tropicalis biofilms. Adhesion and biofilm formation on silicone and latex urinary catheters were quantified by crystal violet staining and determination of colony forming units. Candida surface hydrophobicity was also evaluated, as well as the biofilms' matrix content in terms of proteins and carbohydrates. Candida tropicalis was able to adhere and to form biofilms along the entire length of the catheters under flow conditions. It was found that the isolate U69 adhered significantly more to both types of catheters than did the reference strain. However, U69 biofilms contained significantly less cultivable cells and higher biofilm biomass than those of the reference strain. Detachment of cells from biofilms on latex catheter was lower compared to silicone catheter. This model using AU appeared to be suitable for studies mimicking the real body conditions. Additionally, C. tropicalis was in fact able to colonize urinary catheters in the presence of AU and to detach from these catheters, demonstrating their capacity to colonize distal sites.

  16. Rapid Dispersion of Polymicrobial Wound Biofilms with Depolymerase Enzymes

    DTIC Science & Technology

    2013-11-01

    selective precipitation of proteins. Biotechnol. Techniques, 1999. 13:391-393. Otto M: Bacterial evasion of antimicrobial peptides by biofilm...bacterial pathogenesis mechanisms, virulence factors, and antimicrobial resistance vary greatly between pathogens associated with war wounds, one...bacteria from antimicrobials , antibodies, and circulating immune cells (figure, stage 5). Thus, approaches that disrupt or dissolve the biofilm

  17. Violacein and biofilm production in Janthinobacterium lividum.

    PubMed

    Pantanella, F; Berlutti, F; Passariello, C; Sarli, S; Morea, C; Schippa, S

    2007-04-01

    To analyse the environmental stimuli modulating violacein and biofilm production in Janthinobacterium lividum. Violacein and biofilm production by J. lividum DSM1522(T) was assayed in different growth conditions. Our data suggest that violacein and biofilm production is controlled by the carbon source, being inhibited by glucose and enhanced by glycerol. J. lividum produced violacein also in the presence of different sub-inhibitory concentrations of ampicillin. As opposite, the production of N-acylhomoserine lactone(s), quorum sensing regulators was shown to be positively regulated by glucose. Moreover, violacein-producing cultures of J. lividum showed higher CFU counts than violacein-nonproducing ones. Taken together, our results suggest that violacein and biofilm production could be regulated by a common metabolic pathway and that violacein as well as biofilm could represent a response to environmental stresses and a key factor in the survival mechanisms of J. lividum. Although several recent studies disclosed a number of interesting biological properties of violacein, few data are reported on the physiologic function of violacein in J. lividum. This paper adds new information on the complex mechanisms allowing and regulating bacterial life in hostile environments.

  18. Determination of the external mass transfer coefficient and influence of mixing intensity in moving bed biofilm reactors for wastewater treatment.

    PubMed

    Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C

    2015-09-01

    In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cyclosporine A decreases the fluconazole minimum inhibitory concentration of Candida albicans clinical isolates but not biofilm formation and cell growth.

    PubMed

    Wibawa, T; Nurrokhman; Baly, I; Daeli, P R; Kartasasmita, G; Wijayanti, N

    2015-03-01

    Among the genus Candida, Candida albicans is the most abundant species in humans. One of the virulent factors of C. albicans is its ability to develop biofilm. Biofilm forming microbes are characterized by decreasing of its susceptibility to antibiotics and antifungal. The fungicidal effect of fluconazole may be enhanced by cyclosporine A in laboratory engineered C. albicans strains. The aim of this work is to analyze the synergistic effect of cyclosporine A with fluconazole in C. albicans clinical isolates and the effect of cycolsporine A alone in the biofilm formation. Six fluconazole resistant and six sensitive C. albicans clinical isolates were analyzed for its minimum inhibitory concentration (MICs), biofilm formation, and cell growths. A semi-quantitative XTT [2,3-bis(2-methoxy-4-nitro-5- sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay was conducted to measure the biofilm formation. Cyclosporine A has synergistic effect with fluconazole that was shown by decreasing MICs of both fluconazole resistant and sensitive C. albicans clinical isolates. However, cyclosporine A alone did not influence the biofilm formation and cell growth of both fluconazole resistant and sensitive C. albicans clinical isolates. These results indicated that cyclosporine A might be a promising candidate of adjuvant therapy for fluconazole against both fluconazole resistant and sensitive C. albicans clinical isolates.

  20. Catheter-Associated Urinary Tract Infection by Pseudomonas aeruginosa Is Mediated by Exopolysaccharide-Independent Biofilms

    PubMed Central

    Cole, Stephanie J.; Records, Angela R.; Orr, Mona W.; Linden, Sara B.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that is especially adept at forming surface-associated biofilms. P. aeruginosa causes catheter-associated urinary tract infections (CAUTIs) through biofilm formation on the surface of indwelling catheters. P. aeruginosa encodes three extracellular polysaccharides, PEL, PSL, and alginate, and utilizes the PEL and PSL polysaccharides to form biofilms in vitro; however, the requirement of these polysaccharides during in vivo infections is not well understood. Here we show in a murine model of CAUTI that PAO1, a strain harboring pel, psl, and alg genes, and PA14, a strain harboring pel and alg genes, form biofilms on the implanted catheters. To determine the requirement of exopolysaccharide during in vivo biofilm infections, we tested isogenic mutants lacking the pel, psl, and alg operons and showed that PA14 mutants lacking these operons can successfully form biofilms on catheters in the CAUTI model. To determine the host factor(s) that induces the ΔpelD mutant to form biofilm, we tested mouse, human, and artificial urine and show that urine can induce biofilm formation by the PA14 ΔpelD mutant. By testing the major constituents of urine, we show that urea can induce a pel-, psl-, and alg-independent biofilm. These pel-, psl-, and alg-independent biofilms are mediated by the release of extracellular DNA. Treatment of biofilms formed in urea with DNase I reduced the biofilm, indicating that extracellular DNA supports biofilm formation. Our results indicate that the opportunistic pathogen P. aeruginosa utilizes a distinct program to form biofilms that are independent of exopolysaccharides during CAUTI. PMID:24595142

  1. Brief ultrasonication improves detection of biofilm-formative bacteria around a metal implant.

    PubMed

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Fujishiro, Takaaki; Procop, Gary W

    2007-04-01

    Biofilms are complex microenvironments produced by microorganisms on surfaces. Ultrasonication disrupts biofilms and may make the microorganism or its DNA available for detection. We determined whether ultrasonication could affect our ability to detect bacteria adherent to a metal substrate. A biofilm-formative Staphylococcus aureus strain was used for an in vitro implant infection model (biofilm-formative condition). We used quantitative culture and real time-polymerase chain reaction to determine the influence of different durations of ultrasound on bacterial adherence and viability. Sonication for 1 minute increased the yield of bacteria. Sonication longer than 5 minutes led to fewer bacterial colonies by conventional culture but not by polymerase chain reaction. This suggests short periods of sonication help release bacteria from the metal substrate by disrupting the biofilm, but longer periods of sonication lyse bacteria prohibiting their detection in microbiologic cultures. A relatively short duration of sonication may be desirable for maximizing detection of biofilm-formative bacteria around implants by culture or polymerase chain reaction.

  2. Influence of Silver-hydroxyapatite Nanocomposite Coating on Biofilm Formation of Joint Prosthesis and Its Mechanism

    PubMed Central

    Zhao, L; Ashraf, MA

    2015-01-01

    ABSTRACT Background: The main reason for biomaterial related refractory infections is biofilm formation caused by bacterial adhesion on the surface of materials. Silver-hydroxyapatite (Ag/HA) nanocomposite coating can inhibit the formation of biofilm, but its mechanism is not clear. Material and Method: In order to clarify the mechanism, the amounts of biofilm on the Ag/HA composite coating and HA coating were determined, the release rates of silver nanoparticles in simulated body fluid (SBF) were detected by atomic absorption spectrometry, and the expression values of atlE, fbe, sap, iapB genes of Staphylococcus aureus were studied when they grew on Ag/HA composite coating and HA coating. Results: The amount of the biofilm on the Ag/HA composite coating was significantly less than that on the HA coating, and the bacterial adhesion was decreased. The silver nanoparticles were released continuously in SBF and the release rate decreased gradually with time. The expression values of atlE, fbe and sap were high in the initial stage of adhesion and the expression value of iapB was high in the colonies-gathering stage in the control group, but they were all significantly inhibited in the presence of Ag. Conclusion: These results indicated that the main antibacterial effect of Ag/HA composite coating was achieved by the release of silver nanoparticles. The addition of Ag inhibited the expression of genes related to biofilm formation, which in turn inhibited the formation of biofilms. This provided theoretical support for the clinical application of Ag/HA composite coating. PMID:27400164

  3. Discrete nanoparticles induce loss of Legionella pneumophila biofilms from surfaces.

    PubMed

    Raftery, Tara D; Kerscher, Petra; Hart, Ashley E; Saville, Steven L; Qi, Bin; Kitchens, Christopher L; Mefford, Olin Thompson; McNealy, Tamara L

    2014-08-01

    Nanoparticles (NPs) have been shown to induce dispersal events in microbial biofilms but the mechanism of the dispersal is unknown. Biofilms contaminate many man-made aquatic systems such as cooling towers, spas and dental lines. Within these biofilms, Legionella pneumophila is a primary pathogen, leading to these environments serving as sources for disease outbreaks. Here we show a reduction in biofilm bio-volume upon treatment with citrate-coated 6-nm platinum NPs, polyethylene glycol (PEG)-coated 11-nm gold NPs, and PEG-coated 8-nm iron oxide NPs. Treatment with citrate-coated 8-nm silver NPs, however, did not reduce biomass. The synthesis of NPs that remain dispersed and resist irreversible aggregation in the exposure media appears to be a key factor in the ability of NPs to induce biofilm dispersal.

  4. Dynamics of Streptococcus mutans Transcriptome in Response to Starch and Sucrose during Biofilm Development

    PubMed Central

    Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lee, Herbert; Xie, Gary; Lin, Amy H.-M.; Hamaker, Bruce R.; Lemos, José A.; Koo, Hyun

    2010-01-01

    The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates

  5. Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor.

    PubMed

    Li, Xiaoning; Kong, Hao; Mout, Rubul; Saha, Krishnendu; Moyano, Daniel F; Robinson, Sandra M; Rana, Subinoy; Zhang, Xinrong; Riley, Margaret A; Rotello, Vincent M

    2014-12-23

    Identification of infectious bacteria responsible for biofilm-associated infections is challenging due to the complex and heterogeneous biofilm matrix. To address this issue and minimize the impact of heterogeneity on biofilm identification, we developed a gold nanoparticle (AuNP)-based multichannel sensor to detect and identify biofilms based on their physicochemical properties. Our results showed that the sensor can discriminate six bacterial biofilms including two composed of uropathogenic bacteria. The capability of the sensor was further demonstrated through discrimination of biofilms in a mixed bacteria/mammalian cell in vitro wound model.

  6. An individual-based model for biofilm formation at liquid surfaces

    NASA Astrophysics Data System (ADS)

    Ardré, Maxime; Henry, Hervé; Douarche, Carine; Plapp, Mathis

    2015-12-01

    The bacterium Bacillus subtilis frequently forms biofilms at the interface between the culture medium and the air. We present a mathematical model that couples a description of bacteria as individual discrete objects to the standard advection-diffusion equations for the environment. The model takes into account two different bacterial phenotypes. In the motile state, bacteria swim and perform a run-and-tumble motion that is biased toward regions of high oxygen concentration (aerotaxis). In the matrix-producer state they excrete extracellular polymers, which allows them to connect to other bacteria and to form a biofilm. Bacteria are also advected by the fluid, and can trigger bioconvection. Numerical simulations of the model reproduce all the stages of biofilm formation observed in laboratory experiments. Finally, we study the influence of various model parameters on the dynamics and morphology of biofilms.

  7. Elucidating Mechanisms by which Invertebrate Larval Settlement is Affected by Biofilm Ciliates

    NASA Astrophysics Data System (ADS)

    Shimeta, J.; Watson, M. G.; Zalizniak, L.; Scardino, A. J.

    2016-02-01

    Despite extensive studies of benthic invertebrate larvae responding to settlement cues from bacteria and microalgae in biofilms, the roles of protozoa have been largely ignored. We recently showed that an assemblage of biofilm ciliates affected larval settlement and survival rates among two polychaetes, a mussel, and a bryozoan, being inhibitory to some and facilitative to others. Here we investigated settlement inhibition further for the serpulid worm, Galeolaria caespitosa, and the mussel, Mytilus galloprovincialis. Single species of ciliates were capable of inhibiting settlement by up to 68%. The effects were density dependent, with the strength of inhibition being directly related to ciliate abundance. The strength of inhibition also differed significantly among ciliate species, suggesting that both the abundance and makeup of ciliate assemblages could be an important variable determining settlement rates in the field. We studied the mechanisms of inhibition further with G. caespitosa and the ciliate, Euplotes minuta. Filtrate from ciliate cultures failed to inhibit settlement, indicating that dissolved chemicals were not the inhibiting factor. Physical presence of ciliates was inhibitory, as demonstrated by video analysis of larval search behavior. Following contact with a ciliate, larval swimming was disrupted, including retreat from the substratum and significant changes in swimming angles. Ciliates may also have influenced settlement indirectly by altering cues from biofilm bacteria. Although bacterial densities were unaffected by ciliate grazing during the assays, bacterial distributions were significantly more clumped in the presence of ciliates, which could perhaps affect the suitability of the biofilm for larvae. These organism-scale interactions at the biofilm boundary could produce significant constraints on larval recruitment patterns and suggest that further studies are needed on the roles of protozoans in boundary layer processes.

  8. Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms

    PubMed Central

    Luo, Xia; Jedlicka, Sabrina

    2016-01-01

    ABSTRACT Cryptosporidium parvum oocysts are able to infect a wide range of mammals, including humans, via fecal-oral transmission. The remobilization of biofilm-associated C. parvum oocysts back into the water column by biofilm sloughing or bulk erosion poses a threat to public health and may be responsible for waterborne outbreaks; thus, the investigation of C. parvum attachment mechanisms to biofilms, particularly the physical and chemical factors controlling oocyst attachment to biofilms, is essential to predict the behavior of oocysts in the environment. In our study, biofilms were grown in rotating annular bioreactors using prefiltered stream water (0.2-μm retention) and rock biofilms (6-μm retention) until the mean biofilm thickness reached steady state. Oocyst deposition followed a calcium-mediated pseudo-second-order kinetic model. Kinetic parameters (i.e., initial oocyst deposition rate constant and total number of oocysts adhered to biofilms at equilibrium) from the model were then used to evaluate the impact of water conductivity on the attachment of oocysts to biofilms. Oocyst deposition was independent of solution ionic strength; instead, the presence of calcium enhanced oocyst attachment, as demonstrated by deposition tests. Calcium was identified as the predominant factor that bridges the carboxylic functional groups on biofilm and oocyst surfaces to cause attachment. The pseudo-second-order kinetic profile fit all experimental conditions, regardless of water chemistry and/or lighting conditions. IMPORTANCE The cation bridging model in our study provides new insights into the impact of calcium on the attachment of C. parvum oocysts to environmental biofilms. The kinetic parameters derived from the model could be further analyzed to elucidate the behavior of oocysts in commonly encountered complex aquatic systems, which will enable future innovations in parasite detection and treatment technologies to protect public health. PMID:27793825

  9. Pseudo-Second-Order Calcium-Mediated Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.

    PubMed

    Luo, Xia; Jedlicka, Sabrina; Jellison, Kristen

    2017-01-01

    Cryptosporidium parvum oocysts are able to infect a wide range of mammals, including humans, via fecal-oral transmission. The remobilization of biofilm-associated C. parvum oocysts back into the water column by biofilm sloughing or bulk erosion poses a threat to public health and may be responsible for waterborne outbreaks; thus, the investigation of C. parvum attachment mechanisms to biofilms, particularly the physical and chemical factors controlling oocyst attachment to biofilms, is essential to predict the behavior of oocysts in the environment. In our study, biofilms were grown in rotating annular bioreactors using prefiltered stream water (0.2-μm retention) and rock biofilms (6-μm retention) until the mean biofilm thickness reached steady state. Oocyst deposition followed a calcium-mediated pseudo-second-order kinetic model. Kinetic parameters (i.e., initial oocyst deposition rate constant and total number of oocysts adhered to biofilms at equilibrium) from the model were then used to evaluate the impact of water conductivity on the attachment of oocysts to biofilms. Oocyst deposition was independent of solution ionic strength; instead, the presence of calcium enhanced oocyst attachment, as demonstrated by deposition tests. Calcium was identified as the predominant factor that bridges the carboxylic functional groups on biofilm and oocyst surfaces to cause attachment. The pseudo-second-order kinetic profile fit all experimental conditions, regardless of water chemistry and/or lighting conditions. The cation bridging model in our study provides new insights into the impact of calcium on the attachment of C. parvum oocysts to environmental biofilms. The kinetic parameters derived from the model could be further analyzed to elucidate the behavior of oocysts in commonly encountered complex aquatic systems, which will enable future innovations in parasite detection and treatment technologies to protect public health. Copyright © 2016 American Society for

  10. Effect of different antibiotics on biofilm produced by uropathogenic Escherichia coli isolated from children with urinary tract infection.

    PubMed

    González, María José; Robino, Luciana; Iribarnegaray, Victoria; Zunino, Pablo; Scavone, Paola

    2017-06-01

    Recurrent urinary tract infections (UTIs) occur frequently in children and women. Intracellular bacterial communities (IBCs) and biofilm formation by Escherichia coli are risk factors for recurrence. The aim of this study was to evaluate the effect of different antibiotics on biofilms by E. coli strains isolated from children with UTI and to correlate virulence factors and IBCs with biofilm formation. A total of 116 E. coli strains were tested for biofilm formation using the crystal violet microplate technique. 58.6% of the strains did not produce biofilm, while 16.4%, 18.1% and 6.8% formed weak, moderate and strong biofilms, respectively. No correlation was found between the ability to form biofilms and the presence of IBCs. Biofilm formation was significantly associated with pili P codifying genes, whereas other virulence factors were not statistically associated. Antibiotics, including ampicillin, cephalothin, ceftriaxone, ceftazidime, amikacin and ciprofloxacin, were evaluated at different concentrations after 48 h of biofilm formation. Except ampicillin, the other antibiotics tested induced a significant reduction of biofilm biomass. In the case of recurrent UTIs potentially associated with the presence of biofilm, the use of third-generation cephalosporin, fluoroquinolones and aminoglycosides could be recommended. These antibiotics demonstrated to reduce biofilm biomass produced even by resistant strains. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Biofilms and Wounds: An Identification Algorithm and Potential Treatment Options

    PubMed Central

    Percival, Steven L.; Vuotto, Claudia; Donelli, Gianfranco; Lipsky, Benjamin A.

    2015-01-01

    Significance: The presence of a “pathogenic” or “highly virulent” biofilm is a fundamental risk factor that prevents a chronic wound from healing and increases the risk of the wound becoming clinically infected. There is presently no unequivocal gold standard method available for clinicians to confirm the presence of biofilms in a wound. Thus, to help support clinician practice, we devised an algorithm intended to demonstrate evidence of the presence of a biofilm in a wound to assist with wound management. Recent Advances: A variety of histological and microscopic methods applied to tissue biopsies are currently the most informative techniques available for demonstrating the presence of generic (not classified as pathogenic or commensal) biofilms and the effect they are having in promoting inflammation and downregulating cellular functions. Critical Issues: Even as we rely on microscopic techniques to visualize biofilms, they are entities which are patchy and dispersed rather than confluent, particularly on biotic surfaces. Consequently, detection of biofilms by microscopic techniques alone can lead to frequent false-negative results. Furthermore, visual identification using the naked eye of a pathogenic biofilm on a macroscopic level on the wound will not be possible, unlike with biofilms on abiotic surfaces. Future Direction: Lacking specific biomarkers to demonstrate microscopic, nonconfluent, virulent biofilms in wounds, the present focus on biofilm research should be placed on changing clinical practice. This is best done by utilizing an anti-biofilm toolbox approach, rather than speculating on unscientific approaches to identifying biofilms, with or without staining, in wounds with the naked eye. The approach to controlling biofilm should include initial wound cleansing, periodic debridement, followed by the application of appropriate antimicrobial wound dressings. This approach appears to be effective in removing pathogenic biofilms. PMID:26155381

  12. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly.

    PubMed

    Stewart, Elizabeth J; Ganesan, Mahesh; Younger, John G; Solomon, Michael J

    2015-08-14

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism.

  13. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    PubMed Central

    Stewart, Elizabeth J.; Ganesan, Mahesh; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism. PMID:26272750

  14. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.

    PubMed

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P; Cleary, Ian A; Henriques, Mariana; Lopez-Ribot, José L; Oliveira, Rosário

    2010-05-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

  15. [Detection of biofilm formation by selected pathogens relevant to the food industry].

    PubMed

    Šilhová-Hrušková, L; Moťková, P; Šilha, D; Vytřasová, J

    2015-09-01

    Detection of biofilm formation by microbial pathogens relevant to the food industry and comparison of biofilm formation under different conditions of culture. The following microorganisms were selected for the study: Staphylococcus aureus, Listeria innocua, Listeria ivanovii, Cronobacter sakazakii, Cronobacter muytjensii, Arcobacter butzleri, Arcobacter cryaerophilus, Campylobacter jejuni, and Campylobacter coli. To detect biofilm formation the microtiter plate assay, as described by Christensen and culture on stainless steel coupons were used. The biofilm forming capacity was confirmed in all microorganisms tested, both on the microtiter plates and stainless steel coupons. Biofilm formation was influenced by the culture medium, material used, and culture duration as well as by the test microorganism. It was found that different species and strains of the same genus differ in biofilm formation. Differences were also found between the collection strains and isolates from the environment. Some bacteria tended to form biofilm more readily on the surface of the polyethylene microtiter plates and less readily on stainless steel coupons while others appeared to have an opposite tendency. Some pathogens were able to increase the planktonic cell density in the initial suspension even by three orders of magnitude within 72 hours while producing plenty of biofilm. The study of biofilm formation by high risk pathogens is of utmost importance, not only to the food industry. From the obtained results, it is evident that bacterial biofilms form rapidly (within 24 hours in the present study). Due to their architecture, these biofilms are difficult to eradicate, and therefore, it is crucial to prevent biofilm formation.

  16. Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility.

    PubMed

    Vigneron, Adrien; Alsop, Eric B; Chambers, Brian; Lomans, Bartholomeus P; Head, Ian M; Tsesmetzis, Nicolas

    2016-04-01

    Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility

    PubMed Central

    Alsop, Eric B.; Chambers, Brian; Lomans, Bartholomeus P.; Head, Ian M.; Tsesmetzis, Nicolas

    2016-01-01

    Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. PMID:26896143

  18. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly

    PubMed Central

    Pepe-Ranney, Charles; Hall, Edward K.

    2015-01-01

    The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. PMID:26236289

  19. Biofilms produced by Burkholderia cenocepacia: influence of media and solid supports on composition of matrix exopolysaccharides.

    PubMed

    Pellizzoni, Elena; Ravalico, Fabio; Scaini, Denis; Delneri, Ambra; Rizzo, Roberto; Cescutti, Paola

    2016-02-01

    Bacteria usually grow forming biofilms, which are communities of cells embedded in a self-produced dynamic polymeric matrix, characterized by a complex three-dimensional structure. The matrix holds cells together and above a surface, and eventually releases them, resulting in colonization of other surfaces. Although exopolysaccharides (EPOLs) are important components of the matrix, determination of their structure is usually performed on samples produced in non-biofilm conditions, or indirectly through genetic studies. Among the Burkholderia cepacia complex species, Burkholderia cenocepacia is an important pathogen in cystic fibrosis (CF) patients and is generally more aggressive than other species. In the present investigation, B. cenocepacia strain BTS2, a CF isolate, was grown in biofilm mode on glass slides and cellulose membranes, using five growth media, one of which mimics the nutritional content of CF sputum. The structure of the matrix EPOLs was determined by 1H-NMR spectroscopy, while visualization of the biofilms on glass slides was obtained by means of confocal laser microscopy, phase-contrast microscopy and atomic force microscopy. The results confirmed that the type of EPOLs biosynthesized depends both on the medium used and on the type of support, and showed that mucoid conditions do not always lead to significant biofilm production, while bacteria in a non-mucoid state can still form biofilm containing EPOLs.

  20. Discrimination of Four Marine Biofilm-Forming Bacteria by LC-MS Metabolomics and Influence of Culture Parameters.

    PubMed

    Favre, Laurie; Ortalo-Magné, Annick; Greff, Stéphane; Pérez, Thierry; Thomas, Olivier P; Martin, Jean-Charles; Culioli, Gérald

    2017-05-05

    Most marine bacteria can form biofilms, and they are the main components of biofilms observed on marine surfaces. Biofilms constitute a widespread life strategy, as growing in such structures offers many important biological benefits. The molecular compounds expressed in biofilms and, more generally, the metabolomes of marine bacteria remain poorly studied. In this context, a nontargeted LC-MS metabolomics approach of marine biofilm-forming bacterial strains was developed. Four marine bacteria, Persicivirga (Nonlabens) mediterranea TC4 and TC7, Pseudoalteromonas lipolytica TC8, and Shewanella sp. TC11, were used as model organisms. The main objective was to search for some strain-specific bacterial metabolites and to determine how culture parameters (culture medium, growth phase, and mode of culture) may affect the cellular metabolism of each strain and thus the global interstrain metabolic discrimination. LC-MS profiling and statistical partial least-squares discriminant analyses showed that the four strains could be differentiated at the species level whatever the medium, the growth phase, or the mode of culture (planktonic vs biofilm). A MS/MS molecular network was subsequently built and allowed the identification of putative bacterial biomarkers. TC8 was discriminated by a series of ornithine lipids, while the P. mediterranea strains produced hydroxylated ornithine and glycine lipids. Among the P. mediterranea strains, TC7 extracts were distinguished by the occurrence of diamine derivatives, such as putrescine amides.

  1. Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus.

    PubMed

    Taj, Yasmeen; Essa, Farhan; Aziz, Faisal; Kazmi, Shahana Urooj

    2012-05-14

    The purpose of this study was to observe the formation of biofilm, an important virulence factor, by isolates of Staphylococcus aureus (S. aureus) in Pakistan by different conventional methods and through electron microscopy. We screened 115 strains of S. aureus isolated from different clinical specimens by tube method (TM), air-liquid interface coverslip assay method, Congo red agar (CRA) method, and scanning electron microscopy (SEM). Out of 115 S. aureus isolates, 63 (54.78%) showed biofilm formation by tube method. Biofilm forming bacteria were further categorized as high producers (n = 23, 20%) and moderate producers (n = 40, 34.78%). TM coordinated well with the coverslip assay for strong biofilm-producing strains in 19 (16.5%) isolates. By coverslip method, weak producers were difficult to differentiate from biofilm negative isolates. Screening on CRA showed biofilm formation only in four (3.47%) strains. Scanning electron micrographs showed the biofilm-forming strains of S. aureus arranged in a matrix on the propylene surface and correlated well with the TM. Biofilm production is a marker of virulence for clinically relevant staphylococcal infections. It can be studied by various methods but screening on CRA is not recommended for investigation of biofilm formation in Staphylococcus aureus. Electron micrograph images correlate well with the biofilm production as observed by TM.

  2. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation

    PubMed Central

    Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan

    2011-01-01

    Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623

  3. Uranium speciation in biofilms studied by laser fluorescence techniques.

    PubMed

    Arnold, Thuro; Grossmann, Kay; Baumann, Nils

    2010-03-01

    Biofilms may immobilize toxic heavy metals in the environment and thereby influence their migration behaviour. The mechanisms of these processes are currently not understood, because the complexity of such biofilms creates many discrete geochemical microenvironments which may differ from the surrounding bulk solution in their bacterial diversity, their prevailing geochemical properties, e.g. pH and dissolved oxygen concentration, the presence of organic molecules, e.g. metabolites, and many more, all of which may affect metal speciation. To obtain such information, which is necessary for performance assessment studies or the development of new cost-effective strategies for cleaning waste waters, it is very important to develop new non-invasive methods applicable to study the interactions of metals within biofilm systems. Laser fluorescence techniques have some superior features, above all very high sensitivity for fluorescent heavy metals. An approach combining confocal laser scanning microscopy and laser-induced fluorescence spectroscopy for study of the interactions of biofilms with uranium is presented. It was found that coupling these techniques furnishes a promising tool for in-situ non-invasive study of fluorescent heavy metals within biofilm systems. Information on uranium speciation and uranium redox states can be obtained.

  4. Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms.

    PubMed

    Cordeiro, Rossana de Aguiar; Serpa, Rosana; Marques, Francisca Jakelyne de Farias; de Melo, Charlline Vládia Silva; Evangelista, Antonio José de Jesus; Mota, Valquíria Ferreira; Brilhante, Raimunda Sâmia Nogueira; Bandeira, Tereza de Jesus Pinheiro Gomes; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2015-11-01

    In recent years, the search for drugs to treat systemic and opportunistic mycoses has attracted great interest from the scientific community. This study evaluated the in vitro inhibitory effect of the antituberculosis drugs isoniazid and ethionamide alone and combined with itraconazole and fluconazole against biofilms of Cryptococcus neoformans and Cryptococcus gattii. Antimicrobials were tested at defined concentrations after susceptibility assays with Cryptococcus planktonic cells. In addition, we investigated the synergistic interaction of antituberculosis drugs and azole derivatives against Cryptococcus planktonic cells, as well as the influence of isoniazid and ethionamide on ergosterol content and cell membrane permeability. Isoniazid and ethionamide inhibited both biofilm formation and viability of mature biofilms. Combinations formed by antituberculosis drugs and azoles proved synergic against both planktonic and sessile cells, showing an ability to reduce Cryptococcus biofilms by approximately 50%. Furthermore, isoniazid and ethionamide reduced the content of ergosterol in Cryptococcus spp. planktonic cells and destabilized or permeabilized the fungal cell membrane, leading to leakage of macromolecules. Owing to the paucity of drugs able to inhibit Cryptococcus biofilms, we believe that the results presented here might be of interest in the designing of new antifungal compounds.

  5. The Catabolite Repressor Protein-Cyclic AMP Complex Regulates csgD and Biofilm Formation in Uropathogenic Escherichia coli.

    PubMed

    Hufnagel, David A; Evans, Margery L; Greene, Sarah E; Pinkner, Jerome S; Hultgren, Scott J; Chapman, Matthew R

    2016-12-15

    The extracellular matrix protects Escherichia coli from immune cells, oxidative stress, predation, and other environmental stresses. Production of the E. coli extracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenic E. coli (UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms through csgD The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion of cyaA resulted in reduced extracellular matrix production and biofilm formation. The catabolite repressor protein (CRP) positively regulated csgD transcription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaA and Δcrp did not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within the csgD-csgB intergenic region, and purified CRP could gel shift the csgD-csgB intergenic region. Additionally, we found that CRP binded upstream of kpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influence E. coli biofilms through transcriptional regulation of csgD IMPORTANCE The catabolite repressor protein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on the Escherichia coli chromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874-5893, 2004, https://dx.doi.org/10.1093/nar/gkh908). Glucose inhibits E. coli biofilm formation, and ΔcyaA and Δcrp mutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406-3410, 2002, https://dx.doi.org/10.1128/JB.184.12.3406-3410.2002). We determined that the c

  6. Staphylococcus aureus Biofilms Induce Macrophage Dysfunction Through Leukocidin AB and Alpha-Toxin

    PubMed Central

    Scherr, Tyler D.; Hanke, Mark L.; Huang, Ouwen; James, David B. A.; Horswill, Alexander R.; Bayles, Kenneth W.; Fey, Paul D.; Torres, Victor J.

    2015-01-01

    ABSTRACT The macrophage response to planktonic Staphylococcus aureus involves the induction of proinflammatory microbicidal activity. However, S. aureus biofilms can interfere with these responses in part by polarizing macrophages toward an anti-inflammatory profibrotic phenotype. Here we demonstrate that conditioned medium from mature S. aureus biofilms inhibited macrophage phagocytosis and induced cytotoxicity, suggesting the involvement of a secreted factor(s). Iterative testing found the active factor(s) to be proteinaceous and partially agr-dependent. Quantitative mass spectrometry identified alpha-toxin (Hla) and leukocidin AB (LukAB) as critical molecules secreted by S. aureus biofilms that inhibit murine macrophage phagocytosis and promote cytotoxicity. A role for Hla and LukAB was confirmed by using hla and lukAB mutants, and synergy between the two toxins was demonstrated with a lukAB hla double mutant and verified by complementation. Independent confirmation of the effects of Hla and LukAB on macrophage dysfunction was demonstrated by using an isogenic strain in which Hla was constitutively expressed, an Hla antibody to block toxin activity, and purified LukAB peptide. The importance of Hla and LukAB during S. aureus biofilm formation in vivo was assessed by using a murine orthopedic implant biofilm infection model in which the lukAB hla double mutant displayed significantly lower bacterial burdens and more macrophage infiltrates than each single mutant. Collectively, these findings reveal a critical synergistic role for Hla and LukAB in promoting macrophage dysfunction and facilitating S. aureus biofilm development in vivo. PMID:26307164

  7. Influence of an oyster reef on development of the microbial heterotrophic community of an estuarine biofilm.

    PubMed

    Nocker, Andreas; Lepo, Joe E; Snyder, Richard A

    2004-11-01

    We characterized microbial biofilm communities developed over two very closely located but distinct benthic habitats in the Pensacola Bay estuary using two complementary cultivation-independent molecular techniques. Biofilms were grown for 7 days on glass slides held in racks 10 to 15 cm over an oyster reef and an adjacent muddy sand bottom. Total biomass and optical densities of dried biofilms showed dramatic differences for oyster reef versus non-oyster reef biofilms. This study assessed whether the observed spatial variation was reflected in the heterotrophic prokaryotic species composition. Genomic biofilm DNA from both locations was isolated and served as a template to amplify 16S rRNA genes with universal eubacterial primers. Fluorescently labeled PCR products were analyzed by terminal restriction fragment length polymorphism, creating a genetic fingerprint of the composition of the microbial communities. Unlabeled PCR products were cloned in order to construct a clone library of 16S rRNA genes. Amplified ribosomal DNA restriction analysis was used to screen and define ribotypes. Partial sequences from unique ribotypes were compared with existing database entries to identify species and to construct phylogenetic trees representative of community structures. A pronounced difference in species richness and evenness was observed at the two sites. The biofilm community structure from the oyster reef setting had greater evenness and species richness than the one from the muddy sand bottom. The vast majority of the bacteria in the oyster reef biofilm were related to members of the gamma- and delta-subdivisions of Proteobacteria, the Cytophaga-Flavobacterium -Bacteroides cluster, and the phyla Planctomyces and Holophaga-Acidobacterium. The same groups were also present in the biofilm harvested at the muddy sand bottom, with the difference that nearly half of the community consisted of representatives of the Planctomyces phylum. Total species richness was estimated

  8. Studies of Pseudomonas aeruginosa Mutants Indicate Pyoverdine as the Central Factor in Inhibition of Aspergillus fumigatus Biofilm.

    PubMed

    Sass, Gabriele; Nazik, Hasan; Penner, John; Shah, Hemi; Ansari, Shajia Rahman; Clemons, Karl V; Groleau, Marie-Christine; Dietl, Anna-Maria; Visca, Paolo; Haas, Hubertus; Déziel, Eric; Stevens, David A

    2018-01-01

    Pseudomonas aeruginosa and Aspergillus fumigatus are common opportunistic bacterial and fungal pathogens, respectively. They often coexist in airways of immunocompromised patients and individuals with cystic fibrosis, where they form biofilms and cause acute and chronic illnesses. Hence, the interactions between them have long been of interest and it is known that P. aeruginosa can inhibit A. fumigatus in vitro We have approached the definition of the inhibitory P. aeruginosa molecules by studying 24 P. aeruginosa mutants with various virulence genes deleted for the ability to inhibit A. fumigatus biofilms. The ability of P. aeruginosa cells or their extracellular products produced during planktonic or biofilm growth to affect A. fumigatus biofilm metabolism or planktonic A. fumigatus growth was studied in agar and liquid assays using conidia or hyphae. Four mutants, the pvdD pchE , pvdD , lasR rhlR , and lasR mutants, were shown to be defective in various assays. This suggested the P. aeruginosa siderophore pyoverdine as the key inhibitory molecule, although additional quorum sensing-regulated factors likely contribute to the deficiency of the latter two mutants. Studies of pure pyoverdine substantiated these conclusions and included the restoration of inhibition by the pyoverdine deletion mutants. A correlation between the concentration of pyoverdine produced and antifungal activity was also observed in clinical P. aeruginosa isolates derived from lungs of cystic fibrosis patients. The key inhibitory mechanism of pyoverdine was chelation of iron and denial of iron to A. fumigatus IMPORTANCE Interactions between human pathogens found in the same body locale are of vast interest. These interactions could result in exacerbation or amelioration of diseases. The bacterium Pseudomonas aeruginosa affects the growth of the fungus Aspergillus fumigatus Both pathogens form biofilms that are resistant to therapeutic drugs and host immunity. P. aeruginosa and A. fumigatus

  9. Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems

    PubMed Central

    Ezeuko, C C; Sen, A; Gates, I D

    2013-01-01

    Biofilm growth in subsurface porous media, and its treatment with biocides (antimicrobial agents), involves a complex interaction of biogeochemical processes which provide non-trivial mathematical modelling challenges. Although there are literature reports of mathematical models to evaluate biofilm tolerance to biocides, none of these models have investigated biocide treatment of biofilms growing in interconnected porous media with flow. In this paper, we present a numerical investigation using a pore network model of biofilm growth, formation damage and biocide treatment. The model includes three phases (aqueous, adsorbed biofilm, and solid matrix), a single growth-limiting nutrient and a single biocide dissolved in the water. Biofilm is assumed to contain a single species of microbe, in which each cell can be a viable persister, a viable non-persister, or non-viable (dead). Persisters describe small subpopulation of cells which are tolerant to biocide treatment. Biofilm tolerance to biocide treatment is regulated by persister cells and includes ‘innate’ and ‘biocide-induced’ factors. Simulations demonstrate that biofilm tolerance to biocides can increase with biofilm maturity, and that biocide treatment alone does not reverse biofilm-induced formation damage. Also, a successful application of biological permeability conformance treatment involving geologic layers with flow communication is more complicated than simply engineering the attachment of biofilm-forming cells at desired sites. PMID:23164434

  10. Biofilm formation by Staphylococcus haemolyticus.

    PubMed

    Fredheim, Elizabeth Gladys Aarag; Klingenberg, Claus; Rohde, Holger; Frankenberger, Stephanie; Gaustad, Peter; Flaegstad, Trond; Sollid, Johanna Ericson

    2009-04-01

    Infections due to coagulase-negative staphylococci (CoNS) most frequently occur after the implantation of medical devices and are attributed to the biofilm-forming potential of CoNS. Staphylococcus haemolyticus is the second most frequently isolated CoNS from patients with hospital-acquired infections. There is only limited knowledge of the nature of S. haemolyticus biofilms. The aim of this study was to characterize S. haemolyticus biofilm formation. We analyzed the biofilm-forming capacities of 72 clinical S. haemolyticus isolates. A detachment assay with NaIO(4), proteinase K, or DNase was used to determine the main biofilm components. Biofilm-associated genes, including the ica operon, were analyzed by PCR, and the gene products were sequenced. Confocal laser scanning microscopy (CLSM) was used to elucidate the biofilm structure. Fifty-three isolates (74%) produced biofilms after growth in Trypticase soy broth (TSB) with glucose, but only 22 (31%) produced biofilms after growth in TSB with NaCl. It was necessary to dissolve the biofilm in ethanol-acetone to measure the optical density of the full biofilm mass. DNase, proteinase K, and NaIO(4) caused biofilm detachment for 100%, 98%, and 38% of the isolates, respectively. icaRADBC and polysaccharide intercellular adhesin (PIA) production were found in only two isolates. CLSM indicated that the biofilm structure of S. haemolyticus clearly differs from that of S. epidermidis. We conclude that biofilm formation is a common phenotype in clinical S. haemolyticus isolates. In contrast to S. epidermidis, proteins and extracellular DNA are of functional relevance for biofilm accumulation, whereas PIA plays only a minor role. The induction of biofilm formation and determination of the biofilm mass also needed to be optimized for S. haemolyticus.

  11. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect.

    PubMed

    Kim, Soo-Kyoung; Park, Ha-Young; Lee, Joon-Hee

    2015-04-01

    Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix.

    PubMed

    Yu, Shan; Su, Tiantian; Wu, Huijun; Liu, Shiheng; Wang, Di; Zhao, Tianhu; Jin, Zengjun; Du, Wenbin; Zhu, Mei-Jun; Chua, Song Lin; Yang, Liang; Zhu, Deyu; Gu, Lichuan; Ma, Luyan Z

    2015-12-01

    Biofilms are surface-associated communities of microorganism embedded in extracellular matrix. Exopolysaccharide is a critical component in the extracellular matrix that maintains biofilm architecture and protects resident biofilm bacteria from antimicrobials and host immune attack. However, self-produced factors that target the matrix exopolysaccharides, are still poorly understood. Here, we show that PslG, a protein involved in the synthesis of a key biofilm matrix exopolysaccharide Psl in Pseudomonas aeruginosa, prevents biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. The crystal structure of PslG indicates the typical features of an endoglycosidase. PslG mainly disrupts the Psl matrix to disperse bacteria from biofilms. PslG treatment markedly enhances biofilm sensitivity to antibiotics and macrophage cells, resulting in improved biofilm clearance in a mouse implant infection model. Furthermore, PslG shows biofilm inhibition and disassembly activity against a wide range of Pseudomonas species, indicating its great potential in combating biofilm-related complications.

  13. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies.

    PubMed

    Taylor, Patrick K; Yeung, Amy T Y; Hancock, Robert E W

    2014-12-10

    The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Capillary isoelectric focusing--useful tool for detection of the biofilm formation in Staphylococcus epidermidis.

    PubMed

    Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav

    2007-03-01

    The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains.

  15. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis.

    PubMed

    Jung, Ji-Eun; Cai, Jian-Na; Cho, Sung-Dae; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-10-01

    Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.

  16. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  17. Optimization of factors to obtain cassava starch films with improved mechanical properties

    NASA Astrophysics Data System (ADS)

    Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle

    2017-08-01

    In this study, was investigated the optimization of the factors that significantly influenced the mechanical property improvement of cassava starch films through complete factorial design 23. The factors to be analyzed were cassava starch, glycerol and modified clay contents. A regression model was proposed by the factorial analysis, aiming to estimate the condition of the individual factors investigated in the optimum state of the mechanical properties of the biofilm, using the following statistical tool: desirability function and response surface. The response variable that delimits the improvement of the mechanical property of the biofilm is the tensile strength, such improvement is obtained by maximizing the response variable. The factorial analysis showed that the best combination of factor configurations to reach the best response was found to be: with 5g of cassava starch, 10% of glycerol and 5% of modified clay, both percentages in relation to the dry mass of starch used. In addition, the starch biofilm showing the lowest response contained 2g of cassava starch, 0% of modified clay and 30% of glycerol, and was consequently considered the worst biofilm.

  18. Efficacy of citric acid denture cleanser on the Candida albicans biofilm formed on poly(methyl methacrylate): effects on residual biofilm and recolonization process

    PubMed Central

    2014-01-01

    Background It is well known that the use of denture cleansers can reduce Candida albicans biofilm accumulation; however, the efficacy of citric acid denture cleansers is uncertain. In addition, the long-term efficacy of this denture cleanser is not well established, and their effect on residual biofilms is unknown. This in vitro study evaluated the efficacy of citric acid denture cleanser treatment on C. albicans biofilm recolonization on poly(methyl methacrylate) (PMMA) surface. Methods C. albicans biofilms were developed for 72 h on PMMA resin specimens (n = 168), which were randomly assigned to 1 of 3 cleansing treatments (CTs) overnight (8 h). CTs included purified water as a control (CTC) and two experimental groups that used either a 1:5 dilution of citric acid denture cleanser (CT5) or a 1:8 dilution of citric acid denture cleanser (CT8). Residual biofilms adhering to the specimens were collected and quantified at two time points: immediately after CTs (ICT) and after cleaning and residual biofilm recolonization (RT). Residual biofilms were analyzed by quantifying the viable cells (CFU/mL), and biofilm architecture was evaluated by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Denture cleanser treatments and evaluation periods were considered study factors. Data were analyzed using two-way ANOVA and Tukey’s Honestly Significant Difference (HSD) test (α = 0.05). Results Immediately after treatments, citric acid denture cleansing solutions (CT5 and CT8) reduced the number of viable cells as compared with the control (p < 0.01). However, after 48 h, both CT groups (CT5 and CT8) showed biofilm recolonization (p < 0.01). Residual biofilm recolonization was also detected by CLSM and SEM analysis, which revealed a higher biomass and average biofilm thickness for the CT8 group (p < 0.01). Conclusion Citric acid denture cleansers can reduce C. albicans biofilm accumulation and cell viability. However, this

  19. Efficacy of citric acid denture cleanser on the Candida albicans biofilm formed on poly(methyl methacrylate): effects on residual biofilm and recolonization process.

    PubMed

    Faot, Fernanda; Cavalcanti, Yuri Wanderley; Mendonça e Bertolini, Martinna de; Pinto, Luciana de Rezende; da Silva, Wander José; Cury, Altair Antoninha Del Bel

    2014-06-23

    It is well known that the use of denture cleansers can reduce Candida albicans biofilm accumulation; however, the efficacy of citric acid denture cleansers is uncertain. In addition, the long-term efficacy of this denture cleanser is not well established, and their effect on residual biofilms is unknown. This in vitro study evaluated the efficacy of citric acid denture cleanser treatment on C. albicans biofilm recolonization on poly(methyl methacrylate) (PMMA) surface. C. albicans biofilms were developed for 72 h on PMMA resin specimens (n = 168), which were randomly assigned to 1 of 3 cleansing treatments (CTs) overnight (8 h). CTs included purified water as a control (CTC) and two experimental groups that used either a 1:5 dilution of citric acid denture cleanser (CT5) or a 1:8 dilution of citric acid denture cleanser (CT8). Residual biofilms adhering to the specimens were collected and quantified at two time points: immediately after CTs (ICT) and after cleaning and residual biofilm recolonization (RT). Residual biofilms were analyzed by quantifying the viable cells (CFU/mL), and biofilm architecture was evaluated by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Denture cleanser treatments and evaluation periods were considered study factors. Data were analyzed using two-way ANOVA and Tukey's Honestly Significant Difference (HSD) test (α = 0.05). Immediately after treatments, citric acid denture cleansing solutions (CT5 and CT8) reduced the number of viable cells as compared with the control (p < 0.01). However, after 48 h, both CT groups (CT5 and CT8) showed biofilm recolonization (p < 0.01). Residual biofilm recolonization was also detected by CLSM and SEM analysis, which revealed a higher biomass and average biofilm thickness for the CT8 group (p < 0.01). Citric acid denture cleansers can reduce C. albicans biofilm accumulation and cell viability. However, this CT did not prevent biofilm recolonization.

  20. Embedded biofilm, a new biofilm model based on the embedded growth of bacteria.

    PubMed

    Jung, Yong-Gyun; Choi, Jungil; Kim, Soo-Kyoung; Lee, Joon-Hee; Kwon, Sunghoon

    2015-01-01

    A variety of systems have been developed to study biofilm formation. However, most systems are based on the surface-attached growth of microbes under shear stress. In this study, we designed a microfluidic channel device, called a microfluidic agarose channel (MAC), and found that microbial cells in the MAC system formed an embedded cell aggregative structure (ECAS). ECASs were generated from the embedded growth of bacterial cells in an agarose matrix and better mimicked the clinical environment of biofilms formed within mucus or host tissue under shear-free conditions. ECASs were developed with the production of extracellular polymeric substances (EPS), the most important feature of biofilms, and eventually burst to release planktonic cells, which resembles the full developmental cycle of biofilms. Chemical and genetic effects have also confirmed that ECASs are a type of biofilm. Unlike the conventional biofilms formed in the flow cell model system, this embedded-type biofilm completes the developmental cycle in only 9 to 12 h and can easily be observed with ordinary microscopes. We suggest that ECASs are a type of biofilm and that the MAC is a system for observing biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Effects of biofilm on flow over and through a permeable bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, Farzan; Blois, Gianluca; Aybar, Marcelo; Perez-Calleja, Patricia; Nerenberg, Robert; Sinha, Sumit; Hardy, Richard; Best, James; Sambrook-Smith, Gregory; Christensen, Kenneth

    2016-11-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the interface of fluids and solids, such as riverbeds. Biofilms are permeable, heterogeneous, and deformable structures that can influence the flow and mass/momentum transport, yet their interaction with flow is not fully understood in part due to technical obstacles impeding quantitative experimental investigations. The porosity of river beds results in the generation of a diverse mosaic of 'suction' and 'ejection' events that are far removed from typical assumptions of turbulent flow structure over an impermeable bed. In this work, the effect of biofilm on bed permeability is studied. Experiments are conducted in a closed water channel equipped with 4-cm-deep permeable bed models consisting of horizontal cylinders normal to the bulk flow direction, forming an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent biofilm reactor to initiate and control the biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.

  2. Effects of biofilm on flow over and through a permeable bed

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Aybar, M.; Perez Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.

    2016-12-01

    Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces, such as riverbeds. Biofilms are permeable, heterogeneous, and deformable structures that can influence the flow and mass/momentum transport, yet their interaction with flow is not fully understood in part due to technical obstacles impeding quantitative experimental investigations. The porosity of river beds results in the generation of a diverse mosaic of `suction' and `ejection' events that are far removed from typical assumptions of turbulent flow structure over an impermeable bed. In this work, the effect of biofilm on bed permeability is studied. Experiments are conducted in a closed water channel equipped with 4-cm-deep permeable bed models consisting of horizontal cylinders normal to the bulk flow direction, forming an idealized two-dimensional permeable bed (Figure 1). Prior to conducting flow experiments, the models are placed within an independent biofilm reactor to initiate and accurately control the biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.

  3. Biofilms' contribution to organic carbon in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Valentine, K.; Quirk, T. E.; Mariotti, G.; Hotard, A.

    2017-12-01

    Coastal salt marshes are productive environments with high potential for carbon (C) accumulation. Organic C in salt marsh sediment is typically attributed to plant biomass. Recent field measurements, however, suggest that biofilms - mainly composed of benthic diatoms and their secretion - also contribute to basal C in these environments and can be important contributors to marsh productivity, C cycling, and potentially, C sequestration. The potential for biofilms to soil organic C and the influence of mineral sedimentation of biofilm-based C accumulation is unknown. We conducted controlled laboratory experiments to test (1) whether biofilms add measurable amounts of organic C to the sediment and (2) the effect of mineral sedimentation rate on the amount of biofilm-based C accumulation. Settled beds of pure bentonite mud were created in 10-cm-wide cylinders. Each cylinder was inoculated with biofilms collected from a marsh in Louisiana. A small amount of mud was added weekly for 11 weeks. Control experiments without biofilms were also performed. Biofilms were grown with a 12/12 hours cycle, with a gentle mixing of the water column that did not cause sediment resuspension, with a nutrient-rich medium that was exchanged weekly, and in the absence of metazoan grazing. At the end of the experiment, the sediment columns were analyzed for depth-integrated chl-a, loss on ignition (LOI), and total organic carbon (TOC). Chl-a values ranged from 26-113 mg/cm2, LOI values ranged from 86-456 g/m2/yr, and TOC values ranged from 31-211 g/m2/yr. All three of these metrics (chl-a, LOI, and TOC) increased with the rate of mineral sedimentation. These results show that biofilms, in the absence of erosion and grazing, can significantly contribute to C accumulation in salt marshes, especially with high rates of mineral sedimentation. Given the short time scale of the experiment, the increase in organic C accumulation with the rate of sedimentation is attributed to stimulated biofilm

  4. Vesicle formation as a result of interaction between polymorphonuclear neutrophils and Staphylococcus aureus biofilm.

    PubMed

    Chebotar, Igor' V; Konchakova, Evgenia D; Maianskii, Andrey N

    2013-08-01

    Staphylococcus aureus, a major opportunistic pathogen, is a leading cause of biofilm-related infections in clinical practice. Staphylococcal biofilms are highly resistant to antibacterial medicines and immune effector cells. The main result of our work is the discovery of nano-vesicles in the supernatant of the human neutrophil-S. aureus biofilm system. We also found that phospholipase C treatment causes complete destruction of these vesicles. While the addition of proteinase K led to a partial structural disorganization of the vesicles, DNase treatment did not influence the vesicle structure. These observations allowed us to conclude that phospholipids and proteins play a structure-forming role in the formation of these nano-vesicles. The vesicles demonstrated anti-biofilm activities when tested against Staphylococcus epidermidis (strains 178M and 328/5) biofilms, but were ineffective for S. aureus (strains 5983/2, 5663 and 18A) biofilms.

  5. Candida glabrata Biofilms: How Far Have We Come?

    PubMed Central

    Rodrigues, Célia F.; Rodrigues, Maria Elisa; Silva, Sónia; Henriques, Mariana

    2017-01-01

    Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata’s biofilms are emerging. In this article, the knowledge available on C. glabrata’s resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them. PMID:29371530

  6. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade—A Review

    PubMed Central

    Liu, Xinning; Wang, Decai; Yu, Cuixiang; Li, Tao; Liu, Jianqiao; Sun, Shujuan

    2016-01-01

    Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation. PMID:27999568

  7. Biofilm monitoring using complex permittivity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, Susan Jeanne; McGrath, Lucas K.; Dolan, Patricia L.

    2008-10-01

    There is strong interest in the detection and monitoring of bio-fouling. Bio-fouling problems are common in numerous water treatments systems, medical and dental apparatus and food processing equipment. Current bio-fouling control protocols are time consuming and costly. New early detection techniques to monitor bio-forming contaminates are means to enhanced efficiency. Understanding the unique dielectric properties of biofilm development, colony forming bacteria and nutrient background will provide a basis to the effectiveness of controlling or preventing biofilm growth. Dielectric spectroscopy measurements provide values of complex permittivity, {var_epsilon}*, of biofilm formation by applying a weak alternating electric field at various frequencies. Themore » dielectric characteristic of the biofilm, {var_epsilon}{prime}, is the real component of {var_epsilon}* and measures the biofilm's unique ability to store energy. Graphically observed dependencies of {var_epsilon}{prime} to frequency indicate dielectric relaxation or dielectric dispersion behaviors that mark the particular stage of progression during the development of biofilms. In contrast, any frequency dependency of the imaginary component, {var_epsilon}{double_prime} the loss factor, is expressed as dielectric losses from the biofilm due to dipole relaxation. The tangent angle of these two component vectors is the ratio of the imaginary component to the real component, {var_epsilon}{double_prime}/{var_epsilon}{prime} and is referred to as the loss angle tangent (tan {delta}) or dielectric loss. Changes in tan {delta} are characteristic of changes in dielectric losses during various developmental stages of the films. Permittivity scans in the above figure are of biofilm growth from P. Fluorescens (10e7 CFU's at the start). Three trends are apparent from these scans, the first being a small drop in the imaginary permittivity over a 7 hours period, best seen in the Cole-Cole plot (a). The second trend is

  8. Transcriptomic analysis of Propionibacterium acnes biofilms in vitro.

    PubMed

    Jahns, Anika C; Eilers, Hinnerk; Alexeyev, Oleg A

    2016-12-01

    Propionibacterium acnes is a well-known commensal of the human skin connected to acne vulgaris and joint infections. It is extensively studied in planktonic cultures in the laboratory settings but occurs naturally in biofilms. In this study we have developed an in vitro biofilm model of P. acnes and studied growth features, matrix composition, matrix penetration by fluorescent-labeled antibiotics as well as gene expression. Antibiotic susceptibility of biofilms was studied and could be enhanced by increased glucose concentrations. Biofilm cells were characterized by up-regulated stress-induced genes and up-regulation of genes coding for the potential virulence-associated CAMP factors. P. acnes can generate persister cells showing a reversible tolerance to 50 fold MIC of common antibiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of Voriconazole on Candida tropicalis Biofilms: Relation with ERG Genes Expression.

    PubMed

    Fernandes, Tânia; Silva, Sónia; Henriques, Mariana

    2016-10-01

    Candida tropicalis has emerged as the third most prevalent fungal pathogens and its ability to form biofilms has been considered one of the most important virulence factors, since biofilms represent high tolerance to antifungal agents. However, the mechanisms of C. tropicalis biofilm resistance to antifungals remain poorly understood. Thus, the main aim of this work was to infer about the effect of voriconazole on the formation and control of C. tropicalis biofilms and disclose its relationship with ERG genes' expression. Planktonic cells tolerance of several C. tropicalis clinical isolates to voriconazole was determined through of antifungal susceptibility test, and the effect of this azole against C. tropicalis biofilm formation and pre-formed biofilms was evaluated by cultivable cells determination and total biomass quantification. ERG genes expression was analyzed by quantitative real-time polymerase chain reaction. This work showed that C. tropicalis resistance to voriconazole is strain dependent and that voriconazole was able to partially control biofilm formation, but was unable to eradicate C. tropicalis pre-formed biofilms. Moreover, C. tropicalis biofilms resistance to voriconazole seems to be associated with alterations of sterol content in the cell membrane, resulting in ERG genes overexpression. Voriconazole is unable to control C. tropicalis biofilms, and the overexpression of ERG genes is a possible mechanism of biofilm resistance.

  10. Relative Abundances of Candida albicans and Candida glabrata in In Vitro Coculture Biofilms Impact Biofilm Structure and Formation.

    PubMed

    Olson, Michelle L; Jayaraman, Arul; Kao, Katy C

    2018-04-15

    Candida is a member of the normal human microbiota and often resides on mucosal surfaces such as the oral cavity or the gastrointestinal tract. In addition to their commensality, Candida species can opportunistically become pathogenic if the host microbiota is disrupted or if the host immune system becomes compromised. An important factor for Candida pathogenesis is its ability to form biofilm communities. The two most medically important species- Candida albicans and Candida glabrata -are often coisolated from infection sites, suggesting the importance of Candida coculture biofilms. In this work, we report that biofilm formation of the coculture population depends on the relative ratio of starting cell concentrations of C. albicans and C. glabrata When using a starting ratio of C. albicans to C. glabrata of 1:3, ∼6.5- and ∼2.5-fold increases in biofilm biomass were observed relative to those of a C. albicans monoculture and a C. albicans / C. glabrata ratio of 1:1, respectively. Confocal microscopy analysis revealed the heterogeneity and complex structures composed of long C. albicans hyphae and C. glabrata cell clusters in the coculture biofilms, and reverse transcription-quantitative PCR (qRT-PCR) studies showed increases in the relative expression of the HWP1 and ALS3 adhesion genes in the C. albicans / C. glabrata 1:3 biofilm compared to that in the C. albicans monoculture biofilm. Additionally, only the 1:3 C. albicans / C. glabrata biofilm demonstrated an increased resistance to the antifungal drug caspofungin. Overall, the results suggest that interspecific interactions between these two fungal pathogens increase biofilm formation and virulence-related gene expression in a coculture composition-dependent manner. IMPORTANCE Candida albicans and Candida glabrata are often coisolated during infection, and the occurrence of coisolation increases with increasing inflammation, suggesting possible synergistic interactions between the two Candida species in

  11. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility in Saccharomyces cerevisiae.

    PubMed

    Vandenbosch, Davy; De Canck, Evelien; Dhondt, Inne; Rigole, Petra; Nelis, Hans J; Coenye, Tom

    2013-12-01

    Infections related to fungal biofilms are difficult to treat due to the reduced susceptibility of sessile cells to most antifungal agents. Previous research has shown that 1-10% of sessile Candida cells survive treatment with high doses of miconazole (a fungicidal imidazole). The aim of this study was to identify genes involved in fungal biofilm formation and to unravel the mechanisms of resistance of these biofilms to miconazole. To this end, a screening of a Saccharomyces cerevisiae deletion mutant bank was carried out. Our results revealed that genes involved in peroxisomal transport and the biogenesis of the respiratory chain complex IV play an essential role in biofilm formation. On the other hand, genes involved in transcription and peroxisomal and mitochondrial organization seem to highly influence the susceptibility to miconazole of yeast biofilms. Additionally, our data confirm previous findings on genes involved in biofilm formation and in general stress responses. Our data suggest the involvement of peroxisomes in biofilm formation and miconazole resistance in fungal biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Inhibition and dispersal of Agrobacterium tumefaciens biofilms by a small diffusible Pseudomonas aeruginosa exoproduct(s)

    PubMed Central

    Hibbing, Michael E.; Fuqua, Clay

    2013-01-01

    Environmental biofilms often contain mixed populations of different species. In these dense communities, competition between biofilm residents for limited nutrients such as iron, can be fierce, leading to the evolution of competitive factors that affect the ability of competitors to grow or form biofilms. We have discovered a compound(s) present in the conditioned culture fluids of Pseudomonas aeruginosa that disperses and inhibits the formation of biofilms produced by the facultative plant pathogen Agrobacterium tumefaciens. The inhibitory activity is strongly induced when P. aeruginosa is cultivated in iron-limited conditions, but it does not function through iron sequestration. In addition, the production of the inhibitory activity is not regulated by the global iron regulatory protein Fur, the iron-responsive extra-cytoplasmic function (ECF) σ factor PvdS, or three of the recognized P. aeruginosa quorum sensing systems. In addition, the compound(s) responsible for the inhibition and dispersal of A. tumefaciens biofilm formation is likely distinct from the recently identified P. aeruginosa dispersal factor, cis-2-decenoic acid (CDA), as dialysis of the culture fluids showed that the inhibitory compound was larger than CDA and culture fluids that dispersed and inhibited biofilm formation by A. tumefaciens had no effect on biofilm formation by P. aeruginosa. PMID:22105093

  13. Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation.

    PubMed

    Kouzel, Nadzeya; Oldewurtel, Enno R; Maier, Berenike

    2015-07-01

    Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal transfer of antibiotic resistance genes between cocultured strains, each carrying a single resistance, occurred efficiently in early biofilms. The efficiency of gene transfer was higher in early biofilms than between planktonic cells. It was strongly reduced after 24 h and independent of biofilm density. Pilin antigenic variation caused a high fraction of nonpiliated bacteria but was not responsible for the reduced gene transfer at later stages. When selective pressure was applied to dense biofilms using antibiotics at their MIC, the double-resistant bacteria did not show a significant growth advantage. In loosely connected biofilms, the spreading of double-resistant clones was prominent. We conclude that multidrug resistance readily develops in early gonococcal biofilms through horizontal gene transfer. However, selection and spreading of the multiresistant clones are heavily suppressed in dense biofilms. Biofilms are considered ideal reaction chambers for horizontal gene transfer and development of multidrug resistances. The rate at which genes are exchanged within biofilms is unknown. Here, we quantified the acquisition of double-drug resistance by gene transfer between gonococci with single resistances. At early biofilm stages, the transfer efficiency was higher than for planktonic cells but then decreased with biofilm age. The surface topography affected the architecture of the biofilm. While the efficiency of gene transfer was independent of the architecture, spreading of

  14. Variation of the characteristics of biofilm on the semi-suspended bio-carrier produced by a 3D printing technique: Investigation of a whole growing cycle.

    PubMed

    Tang, Bing; Zhao, Yiliang; Bin, Liying; Huang, Shaosong; Fu, Fenglian

    2017-11-01

    The presented investigation focused on exploring the characteristics of the biofilm formed on a novel semi-suspended bio-carrier and revealing their variation during the whole growing cycle. This used semi-suspended bio-carrier was designed to be a spindle shape, and then fabricated by using a 3D printing technique. Results indicated the bio-carrier provided a suitable environment for the attachment of diverse microorganisms. During the experimental period lasted for 45days, the biofilm quickly attached on the surface of the bio-carrier and grew to maturity, but its characteristics, including the chemical compositions, adhesion force, surface roughness, structure of microbial communities, varied continuously along with the operational time, which greatly influenced the performance of the bioreactor. The shape and structure of bio-carrier, and the shearing force caused by the aeration are important factors that influence the microbial community and its structure, and also heavily affect the formation and growth of biofilm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Biofilm Quantification on Nasolacrimal Silastic Stents After Dacryocystorhinostomy.

    PubMed

    Murphy, Jae; Ali, Mohammed Javed; Psaltis, Alkis James

    2015-01-01

    Biofilms are now recognized as potential factors in the pathogenesis of chronic inflammatory and infective diseases. The aim of this study was to examine the presence of biofilms and quantify their biomass on silastic nasolacrimal duct stents inserted after dacryocystorhinostomy (DCR). A prospective study was performed on a series of patients undergoing DCR with O'Donoghue stent insertion. After removal, the stents were subjected to biofilm analysis using standard protocols of confocal laser scanning microscopy (CLSM) and scanning electron microscopy. These stents were compared against negative controls and positive in vitro ones established using Staphylococcus aureus strain ATCC 25923. Biofilm quantification was performed using the COMSTAT2 software and the total biofilm biomass was calculated. A total of nine consecutive patient samples were included in this prospective study. None of the patients had any evidence of postoperative infection. All the stents demonstrated evidence of biofilm formation using both imaging modalities. The presence of various different sized organisms within a common exopolysaccharide matrix on CLSM suggested the existence of polymicrobial communities. The mean biomass of patient samples was 0.9385 μm³/μm² (range: 0.3901-1.9511 μm³/μm²). This is the first study to report the quantification of biomass on lacrimal stents. The presence of biofilms on lacrimal stents after DCR is a common finding but this need not necessarily translate to postoperative clinical infection.

  16. Biofilm density and detection of biofilm-producing genes in methicillin-resistant Staphylococcus aureus strains.

    PubMed

    Szczuka, Ewa; Urbańska, Katarzyna; Pietryka, Marta; Kaznowski, Adam

    2013-01-01

    Many serious diseases caused by Staphylococcus aureus appear to be associated with biofilms. Therefore, we investigated the biofilm-forming ability of the methicillin-resistant S. aureus (MRSA) isolates collected from hospitalized patients. As many as 96 % strains had the ability to form biofilm in vitro. The majority of S. aureus strains formed biofilm in ica-dependent mechanism. However, 23 % of MRSA isolates formed biofilm in ica-independent mechanism. Half of these strains carried fnbB genes encoding surface proteins fibronectin-binding protein B involved in intercellular accumulation and biofilm development in S. aureus strains. The biofilm structures were examined via confocal laser scanning microscopy (CLSM) and three-dimensional structures were reconstructed. The images obtained in CLSM revealed that the biofilm created by ica-positive strains was different from biofilm formed by ica-negative strains. The MRSA population showed a large genetic diversity and we did not find a single clone that occurred preferentially in hospital environment. Our results demonstrated the variation in genes encoding adhesins for the host matrix proteins (elastin, laminin, collagen, fibronectin, and fibrinogen) and in the gene involved in biofilm formation (icaA) within the majority of S. aureus clones.

  17. Environmental Stress-Induced Bacterial Lysis and Extracellular DNA Release Contribute to Campylobacter jejuni Biofilm Formation.

    PubMed

    Feng, Jinsong; Ma, Lina; Nie, Jiatong; Konkel, Michael E; Lu, Xiaonan

    2018-03-01

    Campylobacter jejuni is a microaerophilic bacterium and is believed to persist in a biofilm to antagonize environmental stress. This study investigated the influence of environmental conditions on the formation of C. jejuni biofilm. We report an extracellular DNA (eDNA)-mediated mechanism of biofilm formation in response to aerobic and starvation stress. The eDNA was determined to represent a major form of constitutional material of C. jejuni biofilms and to be closely associated with bacterial lysis. Deletion mutation of the stress response genes spoT and recA enhanced the aerobic influence by stimulating lysis and increasing eDNA release. Flagella were also involved in biofilm formation but mainly contributed to attachment rather than induction of lysis. The addition of genomic DNA from either Campylobacter or Salmonella resulted in a concentration-dependent stimulation effect on biofilm formation, but the effect was not due to forming a precoating DNA layer. Enzymatic degradation of DNA by DNase I disrupted C. jejuni biofilm. In a dual-species biofilm, eDNA allocated Campylobacter and Salmonella at distinct spatial locations that protect Campylobacter from oxygen stress. Our findings demonstrated an essential role and multiple functions of eDNA in biofilm formation of C. jejuni , including facilitating initial attachment, establishing and maintaining biofilm, and allocating bacterial cells. IMPORTANCE Campylobacter jejuni is a major cause of foodborne illness worldwide. In the natural environment, the growth of C. jejuni is greatly inhibited by various forms of environmental stress, such as aerobic stress and starvation stress. Biofilm formation can facilitate the distribution of C. jejuni by enabling the survival of this fragile microorganism under unfavorable conditions. However, the mechanism of C. jejuni biofilm formation in response to environmental stress has been investigated only partially. The significance of our research is in identifying extracellular

  18. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans

    PubMed Central

    2013-01-01

    Background Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Results Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Conclusions Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S

  19. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans.

    PubMed

    Pammi, Mohan; Liang, Rong; Hicks, John; Mistretta, Toni-Ann; Versalovic, James

    2013-11-14

    Polymicrobial infections are responsible for significant mortality and morbidity in adults and children. Staphylococcus epidermidis and Candida albicans are the most frequent combination of organisms isolated from polymicrobial infections. Vascular indwelling catheters are sites for mixed species biofilm formation and pose a significant risk for polymicrobial infections. We hypothesized that enhancement of biofilms in a mixed species environment increases patient mortality and morbidity. Mixed species biofilms of S. epidermidis and C. albicans were evaluated in vitro and in a subcutaneous catheter infection model in vivo. Mixed species biofilms were enhanced compared to single species biofilms of either S. epidermidis or C. albicans. A mixed species environment increased catheter infection and increased dissemination of S. epidermidis in mice. Microarrays were used to explore differential gene expression of S. epidermidis in the mixed species biofilms. In mixed species biofilms, compared to single species S. epidermidis biofilms, 2.7% of S. epidermidis genes were upregulated and 6% were down regulated. Staphylococcal autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively. The role of biofilm extracellular DNA was investigated by quantitation and by evaluating the effects of DNAse in a concentration and time dependent manner. S. epidermidis specific eDNA was increased in mixed species biofilms and further confirmed by degradation with DNAse. Mixed-species biofilms are enhanced and associated with increased S. epidermidis-specific eDNA in vitro and greater systemic dissemination of S. epidermidis in vivo. Down regulation of the lrg operon, a repressor of autolysis, associated with increased eDNA suggests a possible role for bacterial autolysis in mixed species biofilms. Enhancement and systemic dissemination of S. epidermidis may explain adverse outcomes after clinical polymicrobial infections of S. epidermidis and C. albicans.

  20. Modulation of Staphylococcus aureus Biofilm Matrix by Subinhibitory Concentrations of Clindamycin.

    PubMed

    Schilcher, Katrin; Andreoni, Federica; Dengler Haunreiter, Vanina; Seidl, Kati; Hasse, Barbara; Zinkernagel, Annelies S

    2016-10-01

    Staphylococcus aureus biofilms are extremely difficult to treat. They provide a protected niche for the bacteria, rendering them highly recalcitrant toward host defenses as well as antibiotic treatment. Bacteria within a biofilm are shielded from the immune system by the formation of an extracellular polymeric matrix, composed of polysaccharides, extracellular DNA (eDNA), and proteins. Many antibiotics do not readily penetrate biofilms, resulting in the presence of subinhibitory concentrations of antibiotics. Here, we show that subinhibitory concentrations of clindamycin triggered a transcriptional stress response in S. aureus via the alternative sigma factor B (σ(B)) and upregulated the expression of the major biofilm-associated genes atlA, lrgA, agrA, the psm genes, fnbA, and fnbB Our data suggest that subinhibitory concentrations of clindamycin alter the ability of S. aureus to form biofilms and shift the composition of the biofilm matrix toward higher eDNA content. An understanding of the molecular mechanisms underlying biofilm assembly and dispersal in response to subinhibitory concentrations of clinically relevant antibiotics such as clindamycin is critical to further optimize antibiotic treatment strategies of biofilm-associated S. aureus infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces.

    PubMed

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José; Williams, David W

    2016-01-01

    Whilst Candida albicans occurs in peri-implant biofilms, its role in peri-implantitis remains unclear. This study therefore examined the virulence of C. albicans in mixed-species biofilms on titanium surfaces. Biofilms of C. albicans (Ca), C. albicans with streptococci (Streptococcus sanguinis, S. mutans) (Ca-Ss-Sm) and those incorporating Porphyromonas gingivalis (Ca-Pg and Ca-Ss-Sm-Pg) were developed. Expression of C. albicans genes associated with adhesion (ALS1, ALS3, HWP1) and hydrolytic enzymes (SAP2, SAP4, SAP6, PLD1) was measured and hyphal production by C. albicans quantified. Compared with Ca biofilms, significant (p<0.05) up-regulation of ALS3, HWP1, SAP2 and SAP6, and hyphal production occurred in biofilms containing streptococci (Ca-Ss-Sm). In Ca-Pg biofilms, down-regulation of HWP1 and SAP4 expression, with reduced hyphal production occurred. Ca-Ss-Sm-Pg biofilms had increased hyphal proportions and up-regulation of ALS3, SAP2 and SAP6. In conclusion, C. albicans expressed virulence factors in biofilms that could contribute to peri-implantitis, but this was dependent on associated bacterial species.

  2. Bacterial and fungal biofilm formation on anodized titanium alloys with fluorine.

    PubMed

    Perez-Jorge, Concepcion; Arenas, Maria-Angeles; Conde, Ana; Hernández-Lopez, Juan-Manuel; de Damborenea, Juan-Jose; Fisher, Steve; Hunt, Alessandra M Agostinho; Esteban, Jaime; James, Garth

    2017-01-01

    Orthopaedic device-related infections are closely linked to biofilm formation on the surfaces of these devices. Several modified titanium (Ti-6Al-4V) surfaces doped with fluorine were studied in order to evaluate the influence of these modifications on biofilm formation by Gram-positive and Gram-negative bacteria as well as a yeast. The biofilm studies were performed according to the standard test method approved by ASTM (Designation: E2196-12) using the Rotating Disk Reactor. Four types of Ti-6Al-4V samples were tested; chemically polished (CP), two types of nanostructures containing fluorine, nanoporous (NP) and nanotubular (NT), and non-nanostructured fluorine containing samples (fluoride barrier layers, FBL). Different species of Gram-positive cocci, (Staphylococcus aureus and epidermidis), Gram-negative rods (Escherichia coli, Pseudomonas aeruginosa), and a yeast (Candida albicans) were studied. For one of the Gram-positive (S. epidermidis) and one of the Gram-negative (E. coli) species a statistically-significant decrease in biofilm accumulation for NP and NT samples was found when compared with the biofilm accumulation on CP samples. The results suggest an effect of the modified materials on the biofilm formation.

  3. Microbial competition in porous environments can select against rapid biofilm growth

    PubMed Central

    Coyte, Katharine Z.; Tabuteau, Hervé; Gaffney, Eamonn A.; Durham, William M.

    2017-01-01

    Microbes often live in dense communities called biofilms, where competition between strains and species is fundamental to both evolution and community function. Although biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here, we use microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates, we couple a model of flow–biofilm interaction with a game theory analysis. This investigation revealed that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live. PMID:28007984

  4. Flash autoclave settings may influence eradication but not presence of well-established biofilms on orthopaedic implant material.

    PubMed

    Williams, Dustin L; Taylor, Nicholas B; Epperson, Richard T; Rothberg, David L

    2017-10-04

    Flash autoclaving is one of the most frequently utilized methods of sterilizing devices, implants or other materials. For a number of decades, it has been common practice for surgeons to remove implantable devices, flash autoclave and then reimplant them in a patient. Data have not yet indicated the potential for biofilms to survive or remain on the surface of orthopaedic-relevant materials following flash autoclave. In this study, monomicrobial and polymicrobial biofilms were grown on the surface of clinically relevant titanium materials and exposed to flash autoclave settings that included varying times and temperatures. Data indicated that when the sterilization and control temperatures of an autoclave were the same, biofilms were able to survive flash autoclaving that was performed for a short duration. Higher temperature and increased duration rendered biofilms non-viable, but none of the autoclave settings had the ability to remove or disperse the presence of biofilms from the titanium surfaces. These findings may be beneficial for facilities, clinics, or hospitals to consider if biofilms are suspected to be present on materials or devices, in particular implants that have had associated infection and are considered for re-implantation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants.

    PubMed

    Schlisselberg, Dov B; Kler, Edna; Kisluk, Guy; Shachar, Dina; Yaron, Sima

    2015-10-01

    Recent studies offer contradictory findings about the role of multidrug efflux pumps in bacterial biofilm development. Thus, the aim of this study was to investigate the involvement of the AcrAB efflux pump in biofilm formation by investigating the ability of AcrB and AcrAB null mutants of Salmonella enterica serovar Typhimurium to produce biofilms. Three models were used to compare the ability of S. Typhimurium wild-type and its mutants to form biofilms: formation of biofilm on polystyrene surfaces; production of biofilm (mat model) on the air/liquid interface; and expression of curli and cellulose on Congo red-supplemented agar plates. All three investigated genotypes formed biofilms with similar characteristics. However, upon exposure to chloramphenicol, formation of biofilms on solid surfaces as well as the production of curli were either reduced or were delayed more significantly in both mutants, whilst there was no visible effect on pellicle formation. It can be concluded that when no selective pressure is applied, S. Typhimurium is able to produce biofilms even when the AcrAB efflux pumps are inactivated, implying that the use of efflux pump inhibitors to prevent biofilm formation is not a general solution and that combined treatments might be more efficient. Other factors that affect the ability to produce biofilms depending on efflux pump activity are yet to be identified. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  6. Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules.

    PubMed

    Millhouse, Emma; Jose, Anto; Sherry, Leighann; Lappin, David F; Patel, Nisha; Middleton, Andrew M; Pratten, Jonathan; Culshaw, Shauna; Ramage, Gordon

    2014-06-28

    Inflammation within the oral cavity occurs due to dysregulation between microbial biofilms and the host response. Understanding how different oral hygiene products influence inflammatory properties is important for the development of new products. Therefore, creation of a robust host-pathogen biofilm platform capable of evaluating novel oral healthcare compounds is an attractive option. We therefore devised a multi-species biofilm co-culture model to evaluate the naturally derived polyphenol resveratrol (RSV) and gold standard chlorhexidine (CHX) with respect to anti-biofilm and anti-inflammatory properties. An in vitro multi-species biofilm containing S. mitis, F. nucleatum, P. gingivalis and A. actinomycetemcomitans was created to represent a disease-associated biofilm and the oral epithelial cell in OKF6-TERT2. Cytotoxicity studies were performed using RSV and CHX. Multi-species biofilms were either treated with either molecule, or alternatively epithelial cells were treated with these prior to biofilm co-culture. Biofilm composition was evaluated and inflammatory responses quantified at a transcriptional and protein level. CHX was toxic to epithelial cells and multi-species biofilms at concentrations ranging from 0.01-0.2%. RSV did not effect multi-species biofilm composition, but was toxic to epithelial cells at concentrations greater than 0.01%. In co-culture, CHX-treated biofilms resulted in down regulation of the inflammatory chemokine IL-8 at both mRNA and protein level. RSV-treated epithelial cells in co-culture were down-regulated in the release of IL-8 protein, but not mRNA. CHX possesses potent bactericidal properties, which may impact downstream inflammatory mediators. RSV does not appear to have bactericidal properties against multi-species biofilms, however it did appear to supress epithelial cells from releasing inflammatory mediators. This study demonstrates the potential to understand the mechanisms by which different oral hygiene products may

  7. Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, Ryan S.; Babauta, Jerome T.; Dohnalkova, Alice

    2013-06-01

    Certain bacteria are capable of transferring electrons derived from respiratory metabolism to solid extracellular electron-accepting materials1-4. This ability allows the organisms to use conductive substrata as their sole electron sink, generating electricity that is available for practical applications5-7. Geobacter is a biofilm-forming genus capable of this extracellular electron transfer8-11. Evidence in the literature suggests that Geobacter cells produce a conductive matrix to gain access to electron-accepting surfaces12,13. It has been hypothesized that cells that are more than tens of microns from the electron-accepting surface cannot respire because of electrical resistance in the matrix and thus remain metabolically inactive14-16. To testmore » this hypothesis, we sought to determine whether the entire biofilm remains metabolically active and able to respire on an electron-accepting surface as the biofilm thickness increases. We developed and used a novel electrochemical-nuclear magnetic resonance (EC-NMR) microimaging system capable of sustaining an electrochemically active biofilm on a polarized electrode inside a superconducting magnet, allowing for simultaneous NMR and electrochemical investigation of a biofilm for the first time. Here, we show that Geobacter biofilms can grow to several hundred microns thick while respiring on an electrode and that the top of the biofilm remains metabolically active. This is only possible if the cells near the top are able to transfer electrons through the initial biofilm matrix to the electrode. We used X-ray absorption spectroscopy to verify electron transfer to uranium ions by metabolically active cells near the top of the biofilm. Our results reveal that extracellular electron transfer is not prevented by electrical resistance, even when the biofilm is hundreds of microns thick. Furthermore, the electron donor may be the limiting factor for respiration and the base of the biofilm may be less active despite

  8. Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy.

    PubMed

    Gan, Tiansheng; Gong, Xiangjun; Schönherr, Holger; Zhang, Guangzhao

    2016-12-01

    Microrheology of growing biofilms provides insightful information about its structural evolution and properties. In this study, the authors have investigated the microrheology of Escherichia coli (strain HCB1) biofilms at different indentation depth (δ) by using magnetic force modulation atomic force microscopy as a function of disturbing frequency (f). As δ increases, the dynamic stiffness (k s ) for the biofilms in the early stage significantly increases. However, it levels off when the biofilms are matured. The facts indicate that the biofilms change from inhomogeneous to homogeneous in structure. Moreover, k s is scaled to f, which coincides with the rheology of soft glasses. The exponent increases with the incubation time, indicating the fluidization of biofilms. In contrast, the upper layer of the matured biofilms is solidlike in that the storage modulus is always larger than the loss modulus, and its viscoelasticity is slightly influenced by the shear stress.

  9. Measurements of drag and flow over biofilm

    NASA Astrophysics Data System (ADS)

    Hartenberger, Joel; Gose, James W.; Perlin, Marc; Ceccio, Steven L.

    2017-11-01

    Microbial `slime' biofilms detrimentally affect the performance of every day systems from medical devices to large ocean-going vessels. In flow applications, the presence of biofilm typically results in a drag increase and may alter the turbulence in the adjacent boundary layer. Recent studies emphasize the severity of the drag penalty associated with soft biofouling and suggest potential mechanisms underlying the increase; yet, fundamental questions remain-such as the role played by compliance and the contribution of form drag to the overall resistance experienced by a fouled system. Experiments conducted on live biofilm and 3D printed rigid replicas in the Skin-Friction Flow Facility at the University of Michigan seek to examine these factors. The hydrodynamic performance of the biofilms grown on test panels was evaluated through pressure drop measurements as well as conventional and microscale PIV. High-resolution, 3D rigid replicas of select cases were generated via additive manufacturing using surface profiles obtained from a laser scanning system. Drag and flow measurements will be presented along with details of the growth process and the surface profile characterization method.

  10. Biofilm inhibitory and eradicating activity of wound care products against Staphylococcus aureus and Staphylococcus epidermidis biofilms in an in vitro chronic wound model.

    PubMed

    Brackman, G; De Meyer, L; Nelis, H J; Coenye, T

    2013-06-01

    Although several factors contribute to wound healing, bacterial infections and the presence of biofilm can significantly affect healing. Despite that this clearly indicates that therapies should address biofilm in wounds, only few wound care products have been evaluated for their antibiofilm effect. For this reason, we developed a rapid quantification approach to investigate the efficacy of wound care products on wounds infected with Staphylococcus spp. An in vitro chronic wound infection model was used in which a fluorescent Staph. aureus strain was used to allow the rapid quantification of the bacterial burden after treatment. A good correlation was observed between the fluorescence signal and the bacterial counts. When evaluated in this model, several commonly used wound dressings and wound care products inhibited biofilm formation resulting in a decrease between one and seven log CFU per biofilm compared with biofilm formed in the absence of products. In contrast, most dressings only moderately affected mature biofilms. Our model allowed the rapid quantification of the bacterial burden after treatment. However, the efficacy of treatment varied between the different types of dressings and/or wound care products. Our model can be used to compare the efficacy of wound care products to inhibit biofilm formation and/or eradicate mature biofilms. In addition, the results indicate that treatment of infected wounds should be started as soon as possible and that novel products with more potent antibiofilm activity are needed. © 2013 The Society for Applied Microbiology.

  11. Linking biofilm growth to fouling and aeration performance of fine-pore diffuser in activated sludge.

    PubMed

    Garrido-Baserba, Manel; Asvapathanagul, Pitiporn; McCarthy, Graham W; Gocke, Thomas E; Olson, Betty H; Park, Hee-Deung; Al-Omari, Ahmed; Murthy, Sudhir; Bott, Charles B; Wett, Bernhard; Smeraldi, Joshua D; Shaw, Andrew R; Rosso, Diego

    2016-03-01

    Aeration is commonly identified as the largest contributor to process energy needs in the treatment of wastewater and therefore garners significant focus in reducing energy use. Fine-pore diffusers are the most common aeration system in municipal wastewater treatment. These diffusers are subject to fouling and scaling, resulting in loss in transfer efficiency as biofilms form and change material properties producing larger bubbles, hindering mass transfer and contributing to increased plant energy costs. This research establishes a direct correlation and apparent mechanistic link between biofilm DNA concentration and reduced aeration efficiency caused by biofilm fouling. Although the connection between biofilm growth and fouling has been implicit in discussions of diffuser fouling for many years, this research provides measured quantitative connection between the extent of biofouling and reduced diffuser efficiency. This was clearly established by studying systematically the deterioration of aeration diffusers efficiency during a 1.5 year period, concurrently with the microbiological study of the biofilm fouling in order to understand the major factors contributing to diffuser fouling. The six different diffuser technologies analyzed in this paper included four different materials which were ethylene-propylene-diene monomer (EPDM), polyurethane, silicone and ceramic. While all diffusers foul eventually, some novel materials exhibited fouling resistance. The material type played a major role in determining the biofilm characteristics (i.e., growth rate, composition, and microbial density) which directly affected the rate and intensity at what the diffusers were fouled, whereas diffuser geometry exerted little influence. Overall, a high correlation between the increase in biofilm DNA and the decrease in αF was evident (CV < 14.0 ± 2.0%). By linking bacterial growth with aeration efficiency, the research was able to show quantitatively the causal connection

  12. Study on the Curcumin dynamics and distribution through living biofilms

    NASA Astrophysics Data System (ADS)

    Carvalho, Mariana T.; Dovigo, Lívia N.; Rastelli, Alessandra N. S.; Bagnato, Vanderlei S.

    2013-03-01

    Human oral cavity is colonized by a wide range of microorganisms, often organized in biofilms. These biofilms are responsible for the pathogenesis of caries and most periodontal diseases. A possible alternative to reduce biofilms is the photodynamic inactivation (PDI). The success of the PDI depends on different factors. The time required by the PS to remain in contact with the target cells prior to illumination is determinant for the technique's efficacy. This study aimed to assess the interaction between the PS and the biofilm prior to the PDI. We used confocal microscopy and FLIM to evaluate the interaction between the PS and the biofilm's microorganism during the pre-irradiation time (PIT). The study of this dynamics can lead to the understanding of why only some PSs are effective and why is necessary a long PIT for some microorganisms. Our results showed that are differences for each PIT. These differences can be the determinate for the efficacy of the PDI. We observed that the microorganism needs time to concentrate and/or transport the PS within the biofilm. We presented preliminary results for biofilms of Candida albicans and Streptococcus mutans in the presence of Curcumin and compared it with the literature. We observed that the effectiveness of the PDI might be directly correlated to the position of the PS with the biofilm. Further analyses will be conducted in order to confirm the potential of FLIM to assess the PS dynamics within the biofilms.

  13. Bacterial dynamics in a microphytobenthic biofilm: A tidal mesocosm approach

    NASA Astrophysics Data System (ADS)

    Agogué, Hélène; Mallet, Clarisse; Orvain, Francis; De Crignis, Margot; Mornet, Françoise; Dupuy, Christine

    2014-09-01

    In intertidal mudflats, during low tide exposure, microphytobenthos (MPB) migrate vertically through the surface sediment and form, with the heterotrophic bacteria, a transient biofilm. Inside this biofilm, multiple interactions exist between MPB and bacteria. These micro-organisms secrete a wide range of extracellular polymeric substances (EPS), which are major components of the biofilm matrix. In this study, we used a tidal mesocosm experiment in order to decipher the interactions of the MPB-EPS-bacteria complex within the biofilm. We tried to determine if the EPS could control bacterial activities and/or production and/or richness according to the age of the biofilm and to the immersion/emersion period. The dynamics of biomasses of MPB and prokaryotes, the bacterial production, the hydrolysis of predominating organic constituents in the dissolved organic carbon (DOC) pool (i.e., carbohydrates and polypeptides), and the bacterial structure were studied in relation to the different EPS fractions (carbohydrates and proteins: colloidal and bound) dynamics during 8 days. Our experiment had emphasized the influence of the environmental conditions (light, immersion/emersion) on the interactions within the biofilm and also on the effects on biofilm aging. Bacterial production was always inhibited by the bound EPS-carbohydrate, especially during low tide. Our results suggest that the concentration and composition of EPS had a major role in the bacterial/MPB interactions: these interactions can be either positive or negative in order to regulate the productive phases of MPB and bacteria.

  14. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions

    PubMed Central

    Büttner, Henning; Mack, Dietrich; Rohde, Holger

    2015-01-01

    Staphylococcus epidermidis is a usually harmless commensal bacterium highly abundant on the human skin. Under defined predisposing conditions, most importantly implantation of a medical device, S. epidermidis, however, can switch from a colonizing to an invasive life style. The emergence of S. epidermidis as an opportunistic pathogen is closely linked to the biofilm forming capability of the species. During the past decades, tremendous advance regarding our understanding of molecular mechanisms contributing to surface colonization has been made, and detailed information is available for several factors active during the primary attachment, accumulative or dispersal phase of biofilm formation. A picture evolved in which distinct factors, though appearing to be redundantly organized, take over specific and exclusive functions during biofilm development. In this review, these mechanisms are described in molecular detail, with a highlight on recent insights into multi-functional S. epidermidis cell surface proteins contributing to surface adherence and intercellular adhesion. The integration of distinct biofilm-promoting factors into regulatory networks is summarized, with an emphasis on mechanism that could allow S. epidermidis to flexibly adapt to changing environmental conditions present during colonizing or invasive life-styles. PMID:25741476

  15. Biofilm structures (EPS and bacterial communities) in drinking water distribution systems are conditioned by hydraulics and influence discolouration.

    PubMed

    Fish, K; Osborn, A M; Boxall, J B

    2017-09-01

    High-quality drinking water from treatment works is degraded during transport to customer taps through the Drinking Water Distribution System (DWDS). Interactions occurring at the pipe wall-water interface are central to this degradation and are often dominated by complex microbial biofilms that are not well understood. This study uses novel application of confocal microscopy techniques to quantify the composition of extracellular polymeric substances (EPS) and cells of DWDS biofilms together with concurrent evaluation of the bacterial community. An internationally unique, full-scale, experimental DWDS facility was used to investigate the impact of three different hydraulic patterns upon biofilms and subsequently assess their response to increases in shear stress, linking biofilms to water quality impacts such as discolouration. Greater flow variation during growth was associated with increased cell quantity but was inversely related to EPS-to-cell volume ratios and bacterial diversity. Discolouration was caused and EPS was mobilised during flushing of all conditions. Ultimately, biofilms developed under low-varied flow conditions had lowest amounts of biomass, the greatest EPS volumes per cell and the lowest discolouration response. This research shows that the interactions between hydraulics and biofilm physical and community structures are complex but critical to managing biofilms within ageing DWDS infrastructure to limit water quality degradation and protect public health. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    ERIC Educational Resources Information Center

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  17. Biofilm-Forming Abilities of Shiga Toxin-Producing Escherichia coli Isolates Associated with Human Infections

    PubMed Central

    Vogeleer, Philippe; Tremblay, Yannick D. N.; Jubelin, Grégory; Jacques, Mario

    2015-01-01

    Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment. PMID:26712549

  18. Biofilm-Forming Abilities of Shiga Toxin-Producing Escherichia coli Isolates Associated with Human Infections.

    PubMed

    Vogeleer, Philippe; Tremblay, Yannick D N; Jubelin, Grégory; Jacques, Mario; Harel, Josée

    2015-12-28

    Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods.

    PubMed

    Kwiecińska-Piróg, Joanna; Bogiel, Tomasz; Gospodarek, Eugenia

    2013-10-01

    Proteus mirabilis rods are one of the most commonly isolated species of the Proteus genus from human infections, mainly those from the urinary tract and wounds. They are often related to biofilm structure formation. The bacterial cells of the biofilm are less susceptible to routinely used antimicrobials, making the treatment more difficult. The aim of this study was to evaluate quantitatively the influence of ceftazidime and ciprofloxacin on biofilm formation on the polyvinyl chloride surface by 42 P. mirabilis strains isolated from urine, purulence, wound swab and bedsore samples. It has been shown that ceftazidime and ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular Proteus spp. strains decrease their ability to form biofilms. Moreover, ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular P. mirabilis strains reduces biofilm formation more efficiently than ceftazidime at the corresponding concentration values.

  20. Chemorepulsion from the Quorum Signal Autoinducer-2 Promotes Helicobacter pylori Biofilm Dispersal

    PubMed Central

    Anderson, Jeneva K.; Huang, Julie Y.; Wreden, Christopher; Sweeney, Emily Goers; Goers, John; Remington, S. James

    2015-01-01

    ABSTRACT The gastric pathogen Helicobacter pylori forms biofilms on abiotic and biotic surfaces. We have shown previously that H. pylori perceives the quorum signal autoinducer-2 (AI-2) as a chemorepellent. We report here that H. pylori chemorepulsion from endogenous AI-2 influences the proportions and spatial organization of cells within biofilms. Strains that fail to produce AI-2 (∆luxS strains) or are defective for chemotaxis (∆cheA strains) formed more spatially homogenous biofilms with a greater proportion of adherent versus planktonic cells than wild-type biofilms. Reciprocally, a strain that overproduced AI-2 (luxSOP) formed biofilms with proportionally fewer adherent cells. Along with the known AI-2 chemoreceptor, TlpB, we identified AibA and AibB, two novel periplasmic binding proteins that are required for the AI-2 chemorepulsion response. Disruptions in any of the proteins required for AI-2 chemotaxis recapitulated the biofilm adherence and spatial organization phenotype of the ∆luxS mutant. Furthermore, exogenous administration of AI-2 was sufficient to decrease the proportion of adherent cells in biofilms and promote dispersal of cells from biofilms in a chemotaxis-dependent manner. Finally, we found that disruption of AI-2 production or AI-2 chemotaxis resulted in increased clustering of cells in microcolonies on cultured epithelial cells. We conclude that chemotaxis from AI-2 is a determinant of H. pylori biofilm spatial organization and dispersal. PMID:26152582

  1. Identification of individual biofilm-forming bacterial cells using Raman tweezers

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral "Raman fingerprints" obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  2. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.

    PubMed

    Song, F; Koo, H; Ren, D

    2015-08-01

    Adhesion of microbes, such as bacteria and fungi, to surfaces and the subsequent formation of biofilms cause multidrug-tolerant infections in humans and fouling of medical devices. To address these challenges, it is important to understand how material properties affect microbe-surface interactions and engineer better nonfouling materials. Here we review the recent progresses in this field and discuss the main challenges and opportunities. In particular, we focus on bacterial biofilms and review the effects of surface energy, charge, topography, and stiffness of substratum material on bacterial adhesion. We summarize how these surface properties influence oral biofilm formation, and we discuss the important findings from nondental systems that have potential applications in dental medicine. © International & American Associations for Dental Research 2015.

  3. Identification of individual biofilm-forming bacterial cells using Raman tweezers.

    PubMed

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmir; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, Veronika; Růžička, Filip

    2015-05-01

    A method for in vitro identification of individual bacterial cells is presented. The method is based on a combination of optical tweezers for spatial trapping of individual bacterial cells and Raman microspectroscopy for acquisition of spectral “Raman fingerprints” obtained from the trapped cell. Here, Raman spectra were taken from the biofilm-forming cells without the influence of an extracellular matrix and were compared with biofilm-negative cells. Results of principal component analyses of Raman spectra enabled us to distinguish between the two strains of Staphylococcus epidermidis. Thus, we propose that Raman tweezers can become the technique of choice for a clearer understanding of the processes involved in bacterial biofilms which constitute a highly privileged way of life for bacteria, protected from the external environment.

  4. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems.

    PubMed

    Risse-Buhl, Ute; Anlanger, Christine; Kalla, Katalin; Neu, Thomas R; Noss, Christian; Lorke, Andreas; Weitere, Markus

    2017-12-15

    Previous laboratory and on-site experiments have highlighted the importance of hydrodynamics in shaping biofilm composition and architecture. In how far responses to hydrodynamics can be found in natural flows under the complex interplay of environmental factors is still unknown. In this study we investigated the effect of near streambed turbulence in terms of turbulent kinetic energy (TKE) on the composition and architecture of biofilms matured in two mountainous streams differing in dissolved nutrient concentrations. Over both streams, TKE significantly explained 7% and 8% of the variability in biofilm composition and architecture, respectively. However, effects were more pronounced in the nutrient richer stream, where TKE significantly explained 12% and 3% of the variability in biofilm composition and architecture, respectively. While at lower nutrient concentrations seasonally varying factors such as stoichiometry of dissolved nutrients (N/P ratio) and light were more important and explained 41% and 6% of the variability in biofilm composition and architecture, respectively. Specific biofilm features such as elongated ripples and streamers, which were observed in response to the uniform and unidirectional flow in experimental settings, were not observed. Microbial biovolume and surface area covered by the biofilm canopy increased with TKE, while biofilm thickness and porosity where not affected or decreased. These findings indicate that under natural flows where near bed flow velocities and turbulence intensities fluctuate with time and space, biofilms became more compact. They spread uniformly on the mineral surface as a film of densely packed coccoid cells appearing like cobblestone pavement. The compact growth of biofilms seemed to be advantageous for resisting hydrodynamic shear forces in order to avoid displacement. Thus, near streambed turbulence can be considered as important factor shaping the composition and architecture of biofilms grown under natural

  5. Activity of Allyl Isothiocyanate and Its Synergy with Fluconazole against Candida albicans Biofilms.

    PubMed

    Raut, Jayant Shankar; Bansode, Bhagyashree Shridhar; Jadhav, Ashwini Khanderao; Karuppayil, Sankunny Mohan

    2017-04-28

    Candidiasis involving the biofilms of Candida albicans is a threat to immunocompromised patients. Candida biofilms are intrinsically resistant to the antifungal drugs and hence novel treatment strategies are desired. The study intended to evaluate the anti- Candida activity of allyl isothiocyanate (AITC) alone and with fluconazole (FLC), particularly against the biofilms. Results revealed the concentration-dependent activity of AITC against the planktonic growth and virulence factors of C. albicans . Significant ( p <0.05) inhibition of the biofilms was evident at < or =1 mg/ml concentrations of AITC. Notably, a combination of 0.004 mg/ml of FLC and 0.125 mg/ml of AITC prevented the biofilm formation. Similarly, the preformed biofilms were significantly ( p <0.05) inhibited by the AITC-FLC combination. The fractional inhibitory concentration indices ranging from 0.132 to 0.312 indicated the synergistic activity of AITC and FLC against the biofilm formation and the preformed biofilms. No hemolytic activity at the biofilm inhibitory concentrations of AITC and the AITC-FLC combination suggested the absence of cytotoxic effects. The recognizable synergy between AITC and FLC offers a potential therapeutic strategy against biofilm-associated Candida infections.

  6. Bacteriophages and Biofilms

    PubMed Central

    Harper, David R.; Parracho, Helena M. R. T.; Walker, James; Sharp, Richard; Hughes, Gavin; Werthén, Maria; Lehman, Susan; Morales, Sandra

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce) enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  7. Reliability of Haemophilus influenzae biofilm measurement via static method, and determinants of in vitro biofilm production.

    PubMed

    Obaid, Najla A; Tristram, Stephen; Narkowicz, Christian K; Jacobson, Glenn A

    2016-12-01

    Information is lacking regarding the precision of microtitre plate (MTP) assays used to measure biofilm. This study investigated the precision of an MTP assay to measure biofilm production by nontypeable Haemophilus influenzae (NTHi) and the effects of frozen storage and inoculation technique on biofilm production. The density of bacterial final growth was determined by absorbance after 18-20 h incubation, and biofilm production was then measured by absorbance after crystal violet staining. Biofilm formation was categorised as high and low for each strain. For the high biofilm producing strains of NTHi, interday reproducibility of NTHi biofilm formation measured using the MTP assay was excellent and met the acceptance criteria, but higher variability was observed in low biofilm producers. Method of inoculum preparation was a determinant of biofilm formation with inoculum prepared directly from solid media showing increased biofilm production for at least one of the high producing strains. In general, storage of NTHi cultures at -80 °C for up to 48 weeks did not have any major effect on their ability to produce biofilm.

  8. Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study.

    PubMed

    Shukla, Sudhir K; Rao, T Subba

    2013-03-01

    Bacterial adhesion is a threshold event in the formation of biofilms. Several studies on molecular and biochemical aspects have highlighted that the protein matrix of the biofilm is of interest in developing strategies to combat biofouling. The prevalent role of biofilm associated protein (Bap) of Staphylococcus aureus in early adhesion and the putative presence of Ca(2+) binding EF hand motif in Bap was the motivation for this study. Biofilm assays (S. aureus strains V329 and M556) were done in micro-titer plates and confocal laser scanning microscopy (CLSM) was used to study the biofilm architecture. The results showed that Ca(2+) did not influence planktonic growth of the cultures; however, it modulated the biofilm architecture of S. aureus V329 in a dose dependent manner. Strain M556 was found to be a weak biofilm former and showed no significant change in the presence of Ca(2+). When tested with increasing NaCl concentration, there was no reversal of the Bap-dependent Ca(2+) inhibition of S. aureus V329 biofilm. This indicates that the interaction of Bap and Ca(2+) is not mere electrostatic. CLSM images of V329 biofilm showed reduction in biofilm thickness as well as altered biofilm topography with varying Ca(2+) concentrations. The inhibition effect of Ca(2+) on strain V329 biofilm disappeared in the presence of chelating agent EDTA at a non-inhibiting concentration (0.15 mM). The paper elaborates the role of Ca(2+) in biofilm architecture of S. aureus. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Anti-biofilm activity of Marula - a study with the standardized bark extract.

    PubMed

    Sarkar, Ratul; Chaudhary, Sushil K; Sharma, Amrita; Yadav, Kirendra K; Nema, Neelesh K; Sekhoacha, Mamello; Karmakar, Sanmoy; Braga, Fernão C; Matsabisa, Motlalepula Gilbert; Mukherjee, Pulok K; Sen, Tuhinadri

    2014-05-28

    Marula (Sclerocarya birrea; family - Anacardiaceae) is an African plant, which enjoys wide socio-economic importance particularly in southern part of Africa. The fruits are consumed as food and also as alcoholic beverage (cream liquor). In different parts of Africa, the decoction of the bark is traditionally used for the treatment of dysentery, diarrhoea, and various other infectious conditions. The aim of the study was to investigate the anti-biofilm properties of the methanol extract of Marula bark (stem bark of Sclerocarya birrea), with a view towards combating the emergence of antimicrobial resistance often associated with bacterial biofilms. The standardized methanol extract was initially tested for its antimicrobial property. The crystal violet assay was used for evaluating anti-biofilm (biofilm formation by Pseudomonas aeuginosa) activity. Further in order to study the mechanism of anti-biofilm activity, the same was evaluated for understanding its role on various quorums sensing mediated phenomenon (swarming motility assay, protease and pyoverdin assay) that are known to be associated with the formation of biofilms and pathogenicity. The methanol extract showed no inhibition of bacterial growth up to a concentration of 200 µg/ml. Interestingly, the sample produced anti-biofilm activity (around 75% decrease; 100 µg/ml) at sub-lethal concentration. Further it also significantly reduced the QS mediated swarming motility. The release of various virulent factors (protease and pyoverdin) was found to be lowered when pre-treated with the extract. The present study illustrates the anti-biofilm property Sclerocarya birrea. The standardized extract significantly disrupted the quorum sensing mediated production of biofilm formation and also inhibited swarming ability of the cells. The extract displayed a regulatory role on the secretion of protease and pyoverdin, two QS dependent pathogenic factors found in Pseudomonas aeruginosa. This study also validates the

  10. Capsular Polysaccharide Interferes with Biofilm Formation by Pasteurella multocida Serogroup A

    PubMed Central

    Petruzzi, Briana; Briggs, Robert E.; Swords, W. Edward; De Castro, Cristina; Molinaro, Antonio

    2017-01-01

    ABSTRACT Pasteurella multocida is an important multihost animal and zoonotic pathogen that is capable of causing respiratory and multisystemic diseases, bacteremia, and bite wound infections. The glycosaminoglycan capsule of P. multocida is an essential virulence factor that protects the bacterium from host defenses. However, chronic infections (such as swine atrophic rhinitis and the carrier state in birds and other animals) may be associated with biofilm formation, which has not been characterized in P. multocida. Biofilm formation by clinical isolates was inversely related to capsule production and was confirmed with capsule-deficient mutants of highly encapsulated strains. Capsule-deficient mutants formed biofilms with a larger biomass that was thicker and smoother than the biofilm of encapsulated strains. Passage of a highly encapsulated, poor-biofilm-forming strain under conditions that favored biofilm formation resulted in the production of less capsular polysaccharide and a more robust biofilm, as did addition of hyaluronidase to the growth medium of all of the strains tested. The matrix material of the biofilm was composed predominately of a glycogen exopolysaccharide (EPS), as determined by gas chromatography-mass spectrometry, nuclear magnetic resonance, and enzymatic digestion. However, a putative glycogen synthesis locus was not differentially regulated when the bacteria were grown as a biofilm or planktonically, as determined by quantitative reverse transcriptase PCR. Therefore, the negatively charged capsule may interfere with biofilm formation by blocking adherence to a surface or by preventing the EPS matrix from encasing large numbers of bacterial cells. This is the first detailed description of biofilm formation and a glycogen EPS by P. multocida. PMID:29162713

  11. Contribution of Stress Responses to Antibiotic Tolerance in Pseudomonas aeruginosa Biofilms

    PubMed Central

    Franklin, Michael J.; Williamson, Kerry S.; Folsom, James P.; Boegli, Laura; James, Garth A.

    2015-01-01

    Enhanced tolerance of biofilm-associated bacteria to antibiotic treatments is likely due to a combination of factors, including changes in cell physiology as bacteria adapt to biofilm growth and the inherent physiological heterogeneity of biofilm bacteria. In this study, a transcriptomics approach was used to identify genes differentially expressed during biofilm growth of Pseudomonas aeruginosa. These genes were tested for statistically significant overlap, with independently compiled gene lists corresponding to stress responses and other putative antibiotic-protective mechanisms. Among the gene groups tested were those associated with biofilm response to tobramycin or ciprofloxacin, drug efflux pumps, acyl homoserine lactone quorum sensing, osmotic shock, heat shock, hypoxia stress, and stationary-phase growth. Regulons associated with Anr-mediated hypoxia stress, RpoS-regulated stationary-phase growth, and osmotic stress were significantly enriched in the set of genes induced in the biofilm. Mutant strains deficient in rpoS, relA and spoT, or anr were cultured in biofilms and challenged with ciprofloxacin and tobramycin. When challenged with ciprofloxacin, the mutant strain biofilms had 2.4- to 2.9-log reductions in viable cells compared to a 0.9-log reduction of the wild-type strain. Interestingly, none of the mutants exhibited a statistically significant alteration in tobramycin susceptibility compared to that with the wild-type biofilm. These results are consistent with a model in which multiple genes controlled by overlapping starvation or stress responses contribute to the protection of a P. aeruginosa biofilm from ciprofloxacin. A distinct and as yet undiscovered mechanism protects the biofilm bacteria from tobramycin. PMID:25870065

  12. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus

    PubMed Central

    Mashruwala, Ameya A; van de Guchte, Adriana; Boyd, Jeffrey M

    2017-01-01

    Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI: http://dx.doi.org/10.7554/eLife.23845.001 PMID:28221135

  13. D-Phenylalanine inhibits biofilm development of a marine microbe, Pseudoalteromonas sp. SC2014.

    PubMed

    Li, Ee; Wu, Jiajia; Wang, Peng; Zhang, Dun

    2016-09-01

    D-Amino acids have been reported to be able to inhibit biofilm formation or disperse existing biofilms of many microbes; in some cases this is due to growth inhibition as an unspecific effect. In this work, six different D-amino acids were tested for their inhibitory effects on biofilm development and bacterial growth of Pseudoalteromonas sp. SC2014, a marine microbe involved in microbiologically influenced corrosion (MIC). Experimental results indicated that D-phenylalanine (D-Phe) inhibited biofilm formation effectively at concentrations that did not affect cell growth, whereas the other D-amino acids either showed little effect or inhibited biofilm formation while inhibiting bacterial growth. Further studies found that D-Phe could inhibit bacterial accumulation on the surface of 316L stainless steel, and prevent bacteria from forming a multilayer biofilm. It was also suggested that D-Phe could promote the disassembly of an established multilayer biofilm but have little effect on the remaining monolayer adherent cells. For the first time, it was found that a D-amino acid could effectively inhibit biofilm formation of an MIC-involved microbe. This might supply a new insight into how MIC could be mitigated. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Estimation of spatial distribution of quorum sensing signaling in sequencing batch biofilm reactor (SBBR) biofilms.

    PubMed

    Wang, Jinfeng; Ding, Lili; Li, Kan; Huang, Hui; Hu, Haidong; Geng, Jinju; Xu, Ke; Ren, Hongqiang

    2018-01-15

    Quorum sensing (QS) signaling, plays a significant role in regulating formation of biofilms in the nature; however, little information about the occurrence and distribution of quorum sensing molecular in the biofilm of carriers has been reported. In this study, distribution of QS signaling molecules (the acylated homoserine lactones-AHLs, and AI-2), extracellular polymeric substances (EPS) and the mechanical properties in sequencing batch biofilm reactor (SBBR) biofilms have been investigated. Using increased centrifugal force, the biofilms were detached into different fractions. The AHLs ranged from 5.2ng/g to 98.3ng/g in different fractions of biofilms, and N-decanoyl-dl-homoserine lactone (C10-HSL) and N-dodecanoyl-dl-homoserine lactone (C12-HSL) in the biofilms obtained at various centrifugal forces displayed significant differences (p<0.01). Interspecies communication signal autoinducer-2(AI-2) in the biofilms ranged from 79.2ng/g to 98.3ng/g. Soluble EPS and loosely bound EPS content in the different fractions of biofilms displayed significant positive relationship with the distribution of C12-HSL (r=0.86, p<0.05). Furthermore, 49.62% of bacteria in the biofilms were positively related with AHLs with 22.76% was significantly positively (p<0.05) related with AHLs. Biofilm adhesion and compliance was the strongest in the tightly-bound biofilm, the weakest in the supernatant/surface biofilm, which was in accordance with the distribution of C12 HSL(r=0.77, p<0.05) and C10-HSL(r=0.75, p<0.05), respectively. This study addressed on better understanding of possible methods for the improvement of wastewater bio-treatment through biofilm application. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, Alexander K.; Pokroy, Boaz; Seminara, Agnese

    2011-09-28

    Most of the world's bacteria exist in robust, sessile communities known as biofilms, ubiquitously adherent to environmental surfaces from ocean floors to human teeth and notoriously resistant to antimicrobial agents. We report the surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids. The biofilm surface remains nonwetting against up to 80% ethanol as well as other organic solvents and commercial biocides across a large and clinically important concentration range. We show that this property limits the penetration of antimicrobial liquids into the biofilm, severelymore » compromising their efficacy. To highlight the mechanisms of this phenomenon, we performed experiments with mutant biofilms lacking ECM components and with functionalized polymeric replicas of biofilm microstructure. We show that the nonwetting properties are a synergistic result of ECM composition, multiscale roughness, reentrant topography, and possibly yet other factors related to the dynamic nature of the biofilm surface. Finally, we report the impenetrability of the biofilm surface by gases, implying defense capability against vapor-phase antimicrobials as well. These remarkable properties of B. subtilis biofilm, which may have evolved as a protection mechanism against native environmental threats, provide a new direction in both antimicrobial research and bioinspired liquid-repellent surface paradigms.« less

  16. Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping

    NASA Astrophysics Data System (ADS)

    Rajendran, Ranjith; May, Ali; Sherry, Leighann; Kean, Ryan; Williams, Craig; Jones, Brian L.; Burgess, Karl V.; Heringa, Jaap; Abeln, Sanne; Brandt, Bernd W.; Munro, Carol A.; Ramage, Gordon

    2016-10-01

    Candida albicans biofilm formation is an important virulence factor in the pathogenesis of disease, a characteristic which has been shown to be heterogeneous in clinical isolates. Using an unbiased computational approach we investigated the central metabolic pathways driving biofilm heterogeneity. Transcripts from high (HBF) and low (LBF) biofilm forming isolates were analysed by RNA sequencing, with 6312 genes identified to be expressed in these two phenotypes. With a dedicated computational approach we identified and validated a significantly differentially expressed subnetwork of genes associated with these biofilm phenotypes. Our analysis revealed amino acid metabolism, such as arginine, proline, aspartate and glutamate metabolism, were predominantly upregulated in the HBF phenotype. On the contrary, purine, starch and sucrose metabolism was generally upregulated in the LBF phenotype. The aspartate aminotransferase gene AAT1 was found to be a common member of these amino acid pathways and significantly upregulated in the HBF phenotype. Pharmacological inhibition of AAT1 enzyme activity significantly reduced biofilm formation in a dose-dependent manner. Collectively, these findings provide evidence that biofilm phenotype is associated with differential regulation of metabolic pathways. Understanding and targeting such pathways, such as amino acid metabolism, is potentially useful for developing diagnostics and new antifungals to treat biofilm-based infections.

  17. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties.

    PubMed

    Bozorg, Ali; Gates, Ian D; Sen, Arindom

    2015-02-01

    Biofilm formation in natural and engineered porous systems can significantly impact hydrodynamics by reducing porosity and permeability. To better understand and characterize how biofilms influence hydrodynamic properties in porous systems, the genetically engineered bioluminescent bacterial strain Pseudomonas fluorescens HK44 was used to quantify microbial population characteristics and biofilm properties in a translucent porous medium. Power law relationships were found to exist between bacterial bioluminescence and cell density, fraction of void space occupied by biofilm (i.e. biofilm saturation), and hydraulic conductivity. The simultaneous evaluation of biofilm saturation and porous medium hydraulic conductivity in real time using a non-destructive approach enabled the construction of relative hydraulic conductivity curves. Such information can facilitate simulation studies related to biological activity in porous structures, and support the development of new models to describe the dynamic behavior of biofilm and fluid flow in porous media. The bioluminescence based approach described here will allow for improved understanding and control of industrially relevant processes such as biofiltration and bioremediation. Copyright © 2014. Published by Elsevier B.V.

  18. Biofilm Formation and Immunomodulatory Activity of Proteus mirabilis Clinically Isolated Strains.

    PubMed

    Fusco, Alessandra; Coretti, Lorena; Savio, Vittoria; Buommino, Elisabetta; Lembo, Francesca; Donnarumma, Giovanna

    2017-02-15

    Urinary tract infections (UTIs) and catheter-associated UTIs (CAUTIs) are the principal hospital-acquired infections. Proteus mirabilis is characterized by several virulence factors able to promote adhesion and biofilm formation and ameliorate the colonization of urinary tract and the formation of crystalline biofilms on the abiotic surface of the urinary catheters. Since, to date, the role of P. mirabilis in the etiopathogenesis of different types of urinary tract infections is not well established, in this study we sought to characterize two different clinically isolated strains of P. mirabilis (PM1 and PM2) with distinctive phenotypes and analyzed various virulence factors possibly implicated in the ability to induce UTIs and CAUTIs. In particular, we analyzed motility, biofilm formation both on abiotic and biotic surfaces of PM1 and PM2 and paralleled these parameters with the ability to induce an inflammatory response in an epithelial cell model. Results showed that PM1 displayed major motility and a capacity to form biofilm and was associated with an anti-inflammatory response of host cells. Conversely, PM2 exhibited lack motility and a had slower organization in biofilm but promoted an increase of proinflammatory cytokine expression in infected epithelial cells. Our study provides data useful to start uncovering the pathologic basis of P. mirabilis -associated urinary infections. The evidence of different virulence factors expressed by PM1 and PM2 highlights the possibility to use precise and personalized therapies targeting specific virulence pathways.

  19. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.

    PubMed

    Moreira, Ricardo N; Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs; Arraiano, Cecília M

    2017-09-19

    The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms leading to similar phenotypes. Here, we establish the importance of the balance between these two factors for accurate regulation of the transition between the planktonic and sessile lifestyles. This balance is achieved by negative-feedback regulation of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria but also regulates the expression of diguanylate cyclases and phosphodiesterases. This expression modulation influences the synthesis and degradation of c-di-GMP, while this signaling metabolite has a negative influence in bolA mRNA transcription. Finally, we present evidence of the dominant role of BolA in biofilm, showing that, even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the absence of BolA. C-di-GMP is one of the most important bacterial second messengers involved in several cellular processes, including virulence, cell cycle regulation, biofilm formation, and flagellar synthesis. In this study, we unravelled a direct connection between the bolA morphogene and the c-di-GMP signaling molecule. We show the important cross-talk that occurs between these two molecular regulators during the transition between the motile/planktonic and adhesive/sessile lifestyles in Escherichia coli This work provides important clues that can be helpful in the development of new strategies, and the results can be applied to other organisms with relevance for human health. IMPORTANCE Bacterial cells have evolved several

  20. Biofilm formation and biocides sensitivity of Pseudomonas marginalis isolated from a maple sap collection system.

    PubMed

    Lagacé, L; Jacques, M; Mafu, A A; Roy, D

    2006-10-01

    The susceptibility of planktonic and biofilm cells of Pseudomonas marginalis toward four commonly used biocides at different temperatures (15 and 30 degrees C) and biofilm growth times (24 and 48 h) was assessed. Using the MBEC biofilm device, biofilm production in maple sap was shown to be highly reproducible for each set of conditions tested. Biofilm formation was influenced by growth temperature and time. A temperature of 15 degrees C and incubation time of 24 h yielded fewer CFU per peg and showed fewer adhered cells and typical biofilm structures, based on scanning electron microscopy observations as compared with other conditions. Minimal biofilm eradication concentration values for P. marginalis were significantly greater (P. < 0.001) than were MBCs for planktonic cells and for every biocide tested, with the exception of minimal biofilm eradication concentration values for peracetic acid at 15 degrees C and 24 h. Sodium hypochlorite and peracetic acid sanitizers were able to eliminate P. marginalis biofilms at lower concentrations as compared with hydrogen peroxide- and quaternary ammonium-based sanitizers (P < 0.001). According to the results obtained, sodium hypochlorite and peracetic acid sanitizers would be more appropriate for maple sap collection system sanitation.

  1. Microbial Biofilms and Chronic Wounds

    PubMed Central

    Omar, Amin; Wright, J. Barry; Schultz, Gregory; Burrell, Robert; Nadworny, Patricia

    2017-01-01

    Background is provided on biofilms, including their formation, tolerance mechanisms, structure, and morphology within the context of chronic wounds. The features of biofilms in chronic wounds are discussed in detail, as is the impact of biofilm on wound chronicity. Difficulties associated with the use of standard susceptibility tests (minimum inhibitory concentrations or MICs) to determine appropriate treatment regimens for, or develop new treatments for use in, chronic wounds are discussed, with alternate test methods specific to biofilms being recommended. Animal models appropriate for evaluating biofilm treatments are also described. Current and potential future therapies for treatment of biofilm-containing chronic wounds, including probiotic therapy, virulence attenuation, biofilm phenotype expression attenuation, immune response suppression, and aggressive debridement combined with antimicrobial dressings, are described. PMID:28272369

  2. Bioinspired, dynamic, structured surfaces for biofilm prevention

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  3. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology.

    PubMed

    Mangwani, Neelam; Kumari, Supriya; Das, Surajit

    Increased contamination of the environment with toxic pollutants has paved the way for efficient strategies which can be implemented for environmental restoration. The major problem with conventional methods used for cleaning of pollutants is inefficiency and high economic costs. Bioremediation is a growing technology having advanced potential of cleaning pollutants. Biofilm formed by various micro-organisms potentially provide a suitable microenvironment for efficient bioremediation processes. High cell density and stress resistance properties of the biofilm environment provide opportunities for efficient metabolism of number of hydrophobic and toxic compounds. Bacterial biofilm formation is often regulated by quorum sensing (QS) which is a population density-based cell-cell communication process via signaling molecules. Numerous signaling molecules such as acyl homoserine lactones, peptides, autoinducer-2, diffusion signaling factors, and α-hydroxyketones have been studied in bacteria. Genetic alteration of QS machinery can be useful to modulate vital characters valuable for environmental applications such as biofilm formation, biosurfactant production, exopolysaccharide synthesis, horizontal gene transfer, catabolic gene expression, motility, and chemotaxis. These qualities are imperative for bacteria during degradation or detoxification of any pollutant. QS signals can be used for the fabrication of engineered biofilms with enhanced degradation kinetics. This review discusses the connection between QS and biofilm formation by bacteria in relation to bioremediation technology.

  4. Evaluation of Salmonella biofilm cell transfer from contact surfaces to beef products

    USDA-ARS?s Scientific Manuscript database

    Introduction: Meat contamination by Salmonella enterica is a serious food safety concern. One common transmission route that leads to cross contamination in meat plants is bacteria transfer from biofilms on contact surfaces to meat products via direct contact. Many factors could affect biofilm tra...

  5. The use of desiccation to treat Staphylococcus aureus biofilm-infected wounds.

    PubMed

    Park, Eugene; Long, Sarah A; Seth, Akhil K; Geringer, Matthew; Xu, Wei; Chavez-Munoz, Claudia; Leung, Kai; Hong, Seok Jong; Galiano, Robert D; Mustoe, Thomas A

    2016-03-01

    Chronic wounds colonized with biofilm present a major burden to our healthcare system. While the current paradigm for wound healing is to maintain a moist environment, we sought to evaluate the effects of desiccation, and the ability of honey to desiccate wounds, on wound healing characteristics in Staphylococcus aureus biofilm wounds. In vivo biofilm wound healing after exposure to open-air desiccation, honey, molasses, and saline was analyzed using a rabbit ear model of S. aureus biofilm wounds previously developed by our group. Wound morphology was examined using scanning electron microscopy and granulation tissue deposition was measured using light microscopy with hematoxylin and eosin staining. Viable bacterial counts in rabbit ear biofilm wounds and scabs were measured using a drop dilution method. In vitro S. aureus growth curves were established using tryptic soy broth containing honey and glycerol. Gene expression analysis of rabbit ear wounds was performed using reverse transcription quantitative PCR. Rabbit ear S. aureus biofilm wounds exposed to open-air desiccation, honey, and molasses developed a dry scab, which displaced the majority of biofilm bacteria off of the wound bed. Wounds treated with open-air desiccation, honey, and molasses expressed lower levels of the inflammatory markers tumor necrosis factor-α and interleukin-1β at postoperative day 12 compared with wounds treated with saline, and had increased levels of granulation tissue formation. In vitro growth of S. aureus in tryptic soy broth was inhibited by the presence of honey to a greater extent than by the presence of osmolality-matched glycerol. Desiccation of chronic wounds colonized with biofilm via exposure to open air or honey leads to improved wound healing by decreasing bacterial burden and inflammation, and increasing granulation tissue formation. The ability of honey to help heal chronic wounds is at least in part due to its ability to desiccate bacterial biofilm, but other

  6. Biofilm-related infections in ophthalmology.

    PubMed

    Elder, M J; Stapleton, F; Evans, E; Dart, J K

    1995-01-01

    A biofilm is a functional consortium of microorganisms organised within an extensive exopolymer matrix. Organisms within a biofilm are difficult to eradicate by conventional antimicrobial therapy and can cause indolent infections. This paper reviews the pathophysiology of biofilms and their application of ophthalmology. Under certain environmental conditions such as nutrient limitation, some bacteria may secrete and reside in an exopolysaccharide glycocalyx polymer. This confers relative protection from humoral and cellular immunity, antibiotics and surfactants. Biofilms occur in natural aquatic ecosystems, on ship hulls, in pipelines and on the surface of biomaterials. They cause clinical infections of prosthetic hip joints, heart valves and catheters. Biofilm formation may occur rapidly on contact lenses and their cases and hence contribute to the pathogenesis of keratitis. Formation of biofilms is also implicated in delayed post-operative endophthalmitis and crystalline keratopathy. Bacteria within biofilms are 20-1000 times less sensitive to antibiotic than free-living planktonic organisms. Existing experimental methods for modifying biofilm include the use of macrolide antibiotics that specifically impair biofilm production, and the use of enzymes to digest it. These may have clinical applications, as potential adjunctive therapies to antibiotic treatment, for these resistant infections. In conclusion, biofilm is an important cause of infections associated with biomaterials. Novel strategies are needed to deal with these.

  7. The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently Regulate Biofilm Formation and Biofilm Drug Tolerance

    PubMed Central

    Dingemans, Jozef; Poudyal, Bandita

    2018-01-01

    ABSTRACT The formation of inherently drug-tolerant biofilms by the opportunistic pathogen Pseudomonas aeruginosa requires the sensor-regulator hybrid SagS, with ΔsagS biofilms being unstructured and exhibiting increased antimicrobial susceptibility. Recent findings indicated SagS to function as a switch to control biofilm formation and drug tolerance independently. Moreover, findings suggested the periplasmic sensory HmsP domain of SagS is likely to be the control point in the regulation of biofilm formation and biofilm cells transitioning to a drug-tolerant state. We thus asked whether specific amino acid residues present in the HmsP domain contribute to the switch function of SagS. HmsP domain residues were therefore subjected to alanine replacement mutagenesis to identify substitutions that block the sensory function(s) of SagS, which is apparent by attached cells being unable to develop mature biofilms and/or prevent transition to an antimicrobial-resistant state. Mutant analyses revealed 32 residues that only contribute to blocking one sensory function. Moreover, amino acid residues affecting attachment and subsequent biofilm formation but not biofilm tolerance also impaired histidine kinase signaling via BfiS. In contrast, residues affecting biofilm drug tolerance but not attachment and subsequent biofilm formation negatively impacted BrlR transcription factor levels. Structure prediction suggested the two sets of residues affecting sensory functions are located in distinct areas that were previously described as being involved in ligand binding interactions. Taken together, these studies identify the molecular basis for the dual regulatory function of SagS. IMPORTANCE The membrane-bound sensory protein SagS plays a pivotal role in P. aeruginosa biofilm formation and biofilm cells gaining their heightened resistance to antimicrobial agents, with SagS being the control point at which both pathways diverge. Here, we demonstrate for the first time that the two

  8. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater.

    PubMed

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-02-01

    Biofilm-based technologies, such as moving bed biofilm reactor (MBBR) systems, are widely used to treat wastewater. Biofilm development is important for MBBR systems as much of the microbial biomass is retained within reactors as biofilm on suspended carriers. Little is known about this process of biofilm development and the microorganisms upon which MBBRs rely. We documented successional changes in microbial communities as biofilms established in two full-scale MBBR systems treating municipal wastewater over two seasons. 16S rRNA gene-targeted pyrosequencing and clone libraries were used to describe microbial communities. These data indicate a successional process that commences with the establishment of an aerobic community dominated by Gammaproteobacteria (up to 52 % of sequences). Over time, this community shifts towards dominance by putatively anaerobic organisms including Deltaproteobacteria and Clostridiales. Significant differences were observed between the two wastewater treatment plants (WWTPs), mostly due to a large number of sequences (up to 55 %) representing Epsilonproteobacteria (mostly Arcobacter) at one site. Archaea in young biofilms included several lineages of Euryarchaeota and Crenarchaeota. In contrast, the mature biofilm consisted entirely of Methanosarcinaceae (Euryarchaeota). This study provides new insights into the community structure of developing biofilms at full-scale WWTPs and provides the basis for optimizing MBBR start-up and operational parameters.

  9. Biofilms Formed by Gram-Negative Bacteria Undergo Increased Lipid A Palmitoylation, Enhancing In Vivo Survival

    PubMed Central

    Chalabaev, Sabina; Chauhan, Ashwini; Novikov, Alexey; Iyer, Pavithra; Szczesny, Magdalena; Beloin, Christophe; Caroff, Martine

    2014-01-01

    ABSTRACT Bacterial biofilm communities are associated with profound physiological changes that lead to novel properties compared to the properties of individual (planktonic) bacteria. The study of biofilm-associated phenotypes is an essential step toward control of deleterious effects of pathogenic biofilms. Here we investigated lipopolysaccharide (LPS) structural modifications in Escherichia coli biofilm bacteria, and we showed that all tested commensal and pathogenic E. coli biofilm bacteria display LPS modifications corresponding to an increased level of incorporation of palmitate acyl chain (palmitoylation) into lipid A compared to planktonic bacteria. Genetic analysis showed that lipid A palmitoylation in biofilms is mediated by the PagP enzyme, which is regulated by the histone-like protein repressor H-NS and the SlyA regulator. While lipid A palmitoylation does not influence bacterial adhesion, it weakens inflammatory response and enhances resistance to some antimicrobial peptides. Moreover, we showed that lipid A palmitoylation increases in vivo survival of biofilm bacteria in a clinically relevant model of catheter infection, potentially contributing to biofilm tolerance to host immune defenses. The widespread occurrence of increased lipid A palmitoylation in biofilms formed by all tested bacteria suggests that it constitutes a new biofilm-associated phenotype in Gram-negative bacteria. PMID:25139899

  10. Sucrose substitutes affect the cariogenic potential of Streptococcus mutans biofilms.

    PubMed

    Durso, S C; Vieira, L M; Cruz, J N S; Azevedo, C S; Rodrigues, P H; Simionato, M R L

    2014-01-01

    Streptococcus mutans is considered the primary etiologic agent of dental caries and contributes significantly to the virulence of dental plaque, especially in the presence of sucrose. To avoid the role of sucrose on the virulence factors of S. mutans, sugar substitutes are commonly consumed because they lead to lower or no production of acids and interfere with biofilm formation. This study aimed to investigate the contribution of sugar substitutes in the cariogenic potential of S. mutans biofilms. Thus, in the presence of sucrose, glucose, sucralose and sorbitol, the biofilm mass was quantified up to 96 h, the pH of the spent culture media was measured, the expression of biofilm-related genes was determined, and demineralization challenge experiments were conduct in enamel fragments. The presence of sugars or sugar substitutes profoundly affected the expression of spaP, gtfB, gtfC, gbpB, ftf, vicR and vicX in either biofilm or planktonic cells. The substitution of sucrose induced a down-regulation of most genes involved in sucrose-dependent colonization in biofilm cells. When the ratio between the expression of biofilm and planktonic cells was considered, most of those genes were down-regulated in biofilm cells in the presence of sugars and up-regulated in the presence of sugar substitutes. However, sucralose but not sorbitol fulfilled the purpose of reducing the cariogenic potential of the diet since it induced the biofilm formation with the lowest biomass, did not change the pH of the medium and led to the lowest lesion depth in the cariogenic challenge.

  11. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm

    PubMed Central

    da Cunha, Marcos Guilherme; Galvão, Lívia Câmara de Carvalho; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250 μg/mL and 400 μg/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix. PMID:23843868

  12. Apolar Bioactive Fraction of Melipona scutellaris Geopropolis on Streptococcus mutans Biofilm.

    PubMed

    da Cunha, Marcos Guilherme; Franchin, Marcelo; Galvão, Lívia Câmara de Carvalho; Bueno-Silva, Bruno; Ikegaki, Masaharu; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2013-01-01

    The aim of this study was to evaluate the influence of the bioactive nonpolar fraction of geopropolis on Streptococcus mutans biofilm. The ethanolic extract of Melipona scutellaris geopropolis was subjected to a liquid-liquid partition, thus obtaining the bioactive hexane fraction (HF) possessing antimicrobial activity. The effects of HF on S. mutans UA159 biofilms generated on saliva-coated hydroxyapatite discs were analyzed by inhibition of formation, killing assay, and glycolytic pH-drop assays. Furthermore, biofilms treated with vehicle control and HF were analyzed by scanning electron microscopy (SEM). HF at 250  μ g/mL and 400  μ g/mL caused 38% and 53% reduction in the biomass of biofilm, respectively, when compared to vehicle control (P < 0.05) subsequently observed at SEM images, and this reduction was noticed in the amounts of extracellular alkali-soluble glucans, intracellular iodophilic polysaccharides, and proteins. In addition, the S. mutans viability (killing assay) and acid production by glycolytic pH drop were not affected (P > 0.05). In conclusion, the bioactive HF of geopropolis was promising to control the S. mutans biofilm formation, without affecting the microbial population but interfering with its structure by reducing the biochemical content of biofilm matrix.

  13. Emodin affects biofilm formation and expression of virulence factors in Streptococcus suis ATCC700794.

    PubMed

    Yang, Yan-Bei; Wang, Shuai; Wang, Chang; Huang, Quan-Yong; Bai, Jing-Wen; Chen, Jian-Qing; Chen, Xue-Ying; Li, Yan-Hua

    2015-12-01

    Streptococcus suis (S. suis) is a swine pathogen and also a zoonotic agent. In this study, the effects of subinhibitory concentrations (sub-MICs) of emodin on biofilm formation by S. suis ATCC700794 were evaluated. As quantified by crystal violet staining, biofilm formation by S. suis ATCC700794 was dose-dependently decreased after growth with 1/2 MIC, 1/4 MIC, or 1/8 MIC of emodin. By scanning electron microscopy, the structural architecture of the S. suis ATCC700794 biofilms was examined following growth in culture medium supplemented with 1/2 MIC, 1/4 MIC, 1/8 MIC, or 1/16 MIC of emodin. Scanning electron microscopy analysis revealed the potential effect of emodin on biofilm formation by S. suis ATCC700794. The expression of luxS gene and virulence genes in S. suis ATCC700794 was investigated by quantitative RT-PCR. It was found that sub-MICs of emodin significantly decreased the expression of gapdh, sly, fbps, ef, and luxS. However, it was found that sub-MICs of emodin significantly increased the expression of cps2J, mrp, and gdh. These findings showed that sub-MICs of emodin could cause the difference in the expression level of the virulence genes.

  14. Environmental bacteriophages active on biofilms and planktonic forms of toxigenic Vibrio cholerae: Potential relevance in cholera epidemiology.

    PubMed

    Naser, Iftekhar Bin; Hoque, M Mozammel; Abdullah, Ahmed; Bari, S M Nayeemul; Ghosh, Amar N; Faruque, Shah M

    2017-01-01

    Phages isolated from environmental waters in Bangladesh were tested for their host specificity towards V. cholerae O1 and O139, and the ability to disperse V. cholerae biofilms formed in the laboratory. Representative phages were further characterized by electron microscopy and whole genome sequencing. Selected phages were then introduced in various combinations to biofilms of toxigenic V. cholerae added to samples of river water, and the dispersion of biofilms as well as the growth kinetics of V. cholerae and the phages were monitored. A phage cocktail composed of three different phages isolated from surface waters in Bangladesh and designated as JSF7, JSF4, and JSF3 could significantly influence the distribution and concentration of the active planktonic form and biofilm associated form of toxigenic V. cholerae in water. While JSF7 showed a biofilm degrading activity and dispersed cells from both V. cholerae O1 and O139 derived biofilms thus increasing the concentration of planktonic V. cholerae in water, JSF4 and JSF3 showed strong bactericidal activity against V. cholerae O1 and O139 respectively. A mixture of all three phages could effectively reduce both biofilm-associated and planktonic V. cholerae in river water microcosms. Besides potential applicability in phage-mediated control of cholera, our results have relevance in appreciating possible intricate role of diverse environmental phages in the epidemiology of the disease, since both biofilms and phages influence the prevalence and infectivity of V. cholerae in a variety of ways.

  15. Effect of Human Milk and its Components on Streptococcus Mutans Biofilm Formation.

    PubMed

    Allison, L M; Walker, L A; Sanders, B J; Yang, Z; Eckert, G; Gregory, R L

    2015-01-01

    This study investigated the effects of human breast milk and its components on the nutritional aspect of the caries process due to Streptococcus mutans UA159 biofilm formation. Human breast milk was collected from 11 mothers during 3-9 months postpartum. To test for the effect on biofilm formation, a 16-hour culture of S. mutans was treated with dilutions of human breast milk and several major components of human breast milk, lactose, lactoferrin, IgA, and bovine casein in sterile 96-well flat bottom microtiter plates for 24 hours. The biofilms were fixed, washed, stained with crystal violet, and extracted. Absorbance was measured to evaluate biofilm growth mass. Dilutions 1:10-1:2,560 of the human breast milk samples increased biofilm formation by 1.5-3.8 fold compared to the control. Lactoferrin decreased biofilm formation significantly in all dilutions (average milk concentration of 3 mg/ml). Lactose had no effect at average breast milk concentrations (60 mg/ml) except at its lowest concentration (15 mg/ml) where it was increased. IgA significantly decreased biofilm formation at its highest concentration of 2,400 μg/ml (average milk concentration 600 μg/ml). Casein caused significantly increased biofilm formation at all concentrations tested above the average milk content (2.3 mg/ml). The results of this study demonstrate an increase in S. mutans biofilm formation by human breast milk 3-9 months post partum. Among its major components, only casein significantly increased biofilm formation among the concentrations analyzed. Lactose had no effect except at 15 mg/ml. Lactoferrin and IgA significantly decreased S. mutans biofilm formation at their highest concentrations. This information expands the current knowledge regarding the nutritional influence of breastfeeding and validates the necessity to begin an oral hygiene regimen once the first tooth erupts.

  16. Modeling sediment transport with an integrated view of the biofilm effects

    NASA Astrophysics Data System (ADS)

    Fang, H. W.; Lai, H. J.; Cheng, W.; Huang, L.; He, G. J.

    2017-09-01

    Most natural sediment is invariably covered by biofilms in reservoirs and lakes, which have significant influence on bed form dynamics and sediment transport, and also play a crucial role in natural river evolution, pollutant transport, and habitat changes. However, most models for sediment transport are based on experiments using clean sediments without biological materials. In this study, a three-dimensional mathematical model of hydrodynamics and sediment transport is presented with a comprehensive consideration of the biofilm effects. The changes of the bed resistance mainly due to the different bed form dynamics of the biofilm-coated sediment (biosediment), which affect the hydrodynamic characteristics, are considered. Moreover, the variations of parameters related to sediment transport after the biofilm growth are integrated, including the significant changes of the incipient velocity, settling velocity, reference concentration, and equilibrium bed load transport rate. The proposed model is applied to evaluate the effects of biofilms on the hydrodynamic characteristics and sediment transport in laboratory experiments. Results indicate that the mean velocity increases after the biofilm growth, and the turbulence intensity near the river bed decreases under the same flow condition. Meanwhile, biofilm inhibits sediment from moving independently. Thus, the moderate erosion is observed for biosediment resulting in smaller suspended sediment concentrations. The proposed model can reasonably reflect these sediment transport characteristics with biofilms, and the approach to integration of the biological impact could also be used in other modeling of sediment transport, which can be further applied to provide references for the integrated management of natural aqueous systems.

  17. Effect of Disinfectant Exposure on Legionella pneumophila Associated with Simulated Drinking Water Biofilms: Release, Inactivation, and Infectivity.

    PubMed

    Shen, Yun; Huang, Conghui; Lin, Jie; Wu, Wenjing; Ashbolt, Nicholas J; Liu, Wen-Tso; Nguyen, Thanh H

    2017-02-21

    Legionella pneumophila, the most commonly identified causative agent in drinking water associated with disease outbreaks, can be harbored by and released from drinking water biofilms. In this study, the release of biofilm-associated L. pneumophila under simulated drinking water flow containing a disinfectant residual was examined. Meanwhile, the inactivation and infectivity (to amoebae) of the released L. pneumophila were studied. To simulate drinking water system conditions, biofilms were prepared under either disinfectant exposure (predisinfected biofilms) or disinfectant-free (untreated biofilms) conditions, respectively. For experiments with water flow containing a disinfectant to release the biofilm-associated L. pneumophila from these two types of biofilms, the L. pneumophila release kinetics values from predisinfected and untreated biofilms under flow condition were not statistically different (one-way ANOVA, p > 0.05). However, inactivation of the L. pneumophila released from predisinfected biofilms was 1-2 times higher and amoeba infectivity was 2-29 times lower than that from untreated biofilms. The higher disinfectant resistance of L. pneumophila released from untreated biofilms was presumably influenced by the detachment of a larger amount of biofilm material (determined by 16S rRNA qPCR) surrounding the released L. pneumophila. This study highlights the interaction among disinfectant residual, biofilms, and L. pneumophila, which provides guidelines to assess and control pathogen risk.

  18. Evaluation of the impact of dissolved oxygen concentration on biofilm microbial community in sequencing batch biofilm reactor.

    PubMed

    Wang, Jingyin; Rong, Hongwei; Zhang, Chaosheng

    2018-05-01

    The effect of dissolved oxygen concentration (DO) during simultaneous nitrification and denitrification (SND) was investigated in a sequencing batch biofilm reactor (SBBR). In addition, the removal rates of nitrogen and bacterial communities were investigated under different concentrations of DO (1.5, 3.5, and 4.5 mg/L). When the SND rate was 95.22%, the chemical oxygen demand and nitrogen removal was 92.22% and 84.15%, respectively, at 2.5 mg/L DO. The denitrification was inhibited by the increase of oxygen concentration. Microelectrode measurements showed that the thickness of oxygen penetration increased from 1.0 mm to 2.7 mm when the DO concentration increased from 1.5 mg/L to 5.5 mg/L. The current location of the aerobic and anaerobic layers in the biofilm was determined for analysis of the microbial community. High-throughput sequencing analysis revealed the communities of the biofilm approached similar structure and composition. Uliginosibacterium species, biofilm-forming bacteria Zoogloea species and Acinetobacter species were dominant. In the aerobic layer, phyla Betaproteobacteria and Saprospirae were predominant, the major phyla were shifted from Proteobacteria followed by Firmicutes and Bacteroidetes, which comprised 82% of the total sequences during the SND period. Anaerolineae was dominated in the anaerobic layer. The high abundance of Nitrospira in the aerobic biofilm provides evidence of the SND system performing better at ammonia oxidization. In addition, real-time PCR indicated that the amount of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) matched the Nitrospirales and Nitrosomonadales abundance well. Collectively, this study demonstrated the dynamics of key bacterial communities in the SND system were highly influenced by the DO concentration. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin

    PubMed Central

    Bernier, Steve P.; Lebeaux, David; DeFrancesco, Alicia S.; Valomon, Amandine; Soubigou, Guillaume; Coppée, Jean-Yves; Ghigo, Jean-Marc; Beloin, Christophe

    2013-01-01

    High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin. PMID:23300476

  20. [The bacterial biofilm and the possibilities of chemical plaque control. Literature review].

    PubMed

    Gera, István

    2008-06-01

    Most microorganisms in the oral cavity attach to surfaces and form matrix-embedded biofilms. Biofilms are structured and spatially organized, composed of consortia of interacting microorganisms. The properties of the mass of biofilm are different from that of the simple sum of the component species. The older the plaque (biofilm) is the more structurally organized and become more resistant to environmental attacks. The bacterial community favors the growth of obligatory anaerobic microorganisms. The most effective means of the elimination of matured biofilm is the mechanical disruption of the interbacterial protective matrix and removal of bacterial colonies. The antiseptic agents are primarily effective in the prevention of biofilm formation and anticipation of the maturation of the bacterial plaque. Bacteria in matured biofilms are less susceptible to antimicrobial agents because several physical and biological factors protect the bacterial consortia. To kill bacteria in a matured, well organized biofilm, significantly higher concentration and longer exposition are required. Antiseptic mouthrinses in a conventional dose and time can only reach the superficial bacteria while the bacteria in the depth of the biofilm remains intact. Therefore, the efficacy of any antiseptic mouthwash depends not just on its microbicidal properties demonstrated in vitro, but also on its ability to penetrate the organized biofilm on the teeth. Recent studies have demonstrated that both bisbiguanid compounds and essential oils are capable of penetrating the biofilm, and reduce established plaque and gingivitis. The essential oils showed high penetrability and were more effective on organized biofilm than stannous fluorides or triclosan copolymer antiplaque agents.

  1. Sequential UV- and chlorine-based disinfection to mitigate Escherichia coli in drinking water biofilms.

    PubMed

    Murphy, H M; Payne, S J; Gagnon, G A

    2008-04-01

    This study was designed to examine the potential downstream benefits of sequential disinfection to control the persistence of Escherichia coli under conditions relevant to drinking water distribution systems. Eight annular reactors (four polycarbonate and four cast iron) were setup in parallel to address various factors that could influence biofilm growth in distribution systems. Eight reactors were treated with chlorine, chlorine dioxide and monochloramine alone or in combination with UV to examine the effects on Escherichia coli growth and persistence in both the effluent and biofilm. In general, UV-treated systems in combination with chlorine or chlorine dioxide and monochloramine achieved greater log reductions in both effluent and biofilm than systems treated with chlorine-based disinfectants alone. However, during UV-low chlorine disinfection, E. coli was found to persist at low levels, suggesting that the UV treatment had instigated an adaptive mutation. During UV-chlorine-dioxide treatment, the E. coli that was initially below the detection limit reappeared during a low level of disinfection (0.2 mg/L) in the cast iron systems. Chloramine was shown to be effective in disinfecting suspended E. coli in the effluent but was unable to reduce biofilm counts to below the detection limit. Issues such as repair mechanism of E. coli and nitrification could help explain some of these aberrations. Improved understanding of the ability of chlorine-based disinfectant in combination with UV to provide sufficient disinfection will ultimately effect in improved management and safety of drinking water.

  2. Difference in initial dental biofilm accumulation between night and day.

    PubMed

    Dige, Irene; Schlafer, Sebastian; Nyvad, Bente

    2012-12-01

    The study of initial microbial colonization on dental surfaces is a field of intensive research because of the aetiological role of biofilms in oral diseases. Most previous studies of de novo accumulation and composition of dental biofilms in vivo do not differentiate between biofilms formed during day and night. This study hypothesized that there is a diurnal variation in the rate of accumulation of bacteria on solid surfaces in the oral cavity. In situ biofilm from healthy individuals was collected for 12 h during day and night, respectively, subjected to fluorescent in situ hybridization and visualized using confocal laser scanning microscopy. Analysis of the biofilms using stereological methods and digital image analysis revealed a consistent statistically significant difference between both the total number of bacteria and the biovolume in the two 12-h groups (p = 0.012), with the highest accumulation of bacteria during daytime (a factor of 8.8 and 6.1 higher, respectively). Hybridization with probes specific for streptococci and Actinomyces naeslundii indicated a higher proportion of streptococci in biofilms grown during daytime as compared to night-time. No differences could be observed for A. naeslundii. The degree of microbial coverage and the bacterial composition varied considerably between different individuals. The data provide firm evidence that initial biofilm formation decreases during the night, which may reflect differences in the availability of salivary nutrients. This finding is of significant importance when studying population dynamics during experimental dental biofilm formation.

  3. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    PubMed

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (<50% of control) to polystyrene. Treatment of established 72h biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with <25% biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Periphyton and abiotic factors influencing arsenic speciation in aquatic environments: Periphyton alters arsenic speciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Adeline R.; Silva, Silmara Costa; Webb, Samuel M.

    Benthic periphytic biofilms are important food sources at the base of aquatic ecosystems. These biofilms also sit at the interface of oxic waters and hypoxic sediments, and can be influenced by or influence trace element speciation. In the present study, we compared arsenic (As) enrichment in periphyton exposed to arsenate (As[V]) or arsenite (As[III]) (20 μg/L, static renewal, 7 d), and we found similar accumulation patterns of total As (101 ± 27 and 88 ± 22mgkg -1 dry wt, respectively). Periphyton As was 6281- and 6684-fold higher than their aqueous exposures and occurred primarily as As(V). When these biofilms weremore » fed to larval mayflies, similar total As tissue concentrations (13.9 and 14.6mgkg -1 dry wt, respectively) were observed, revealing significant biodilution (~10% of their dietary concentrations). Finally, we investigated the influence of aeration and periphyton presence on As speciation in solutions and solid phases treated with As(III). Predominantly As(III) solutions were slowly oxidized over a 7-d time period, in the absence of periphyton, and aeration did not strongly affect oxidation rates. However, in the presence of periphyton, solution and solid-phase analyses (by microscale x-ray absorption spectroscopy) showed rapid As(III) oxidation to As(V) and an increasing proportion of organo-As forming over time. Thus periphyton plays several roles in As environmental behavior: 1) decreasing total dissolved As concentrations via abiotic and biotic accumulation, 2) rapidly oxidizing As(III) to As(V), 3) effluxing organo-As forms into solution, and 4) limiting trophic transfer to aquatic grazers.« less

  5. Periphyton and abiotic factors influencing arsenic speciation in aquatic environments: Periphyton alters arsenic speciation

    DOE PAGES

    Lopez, Adeline R.; Silva, Silmara Costa; Webb, Samuel M.; ...

    2017-11-02

    Benthic periphytic biofilms are important food sources at the base of aquatic ecosystems. These biofilms also sit at the interface of oxic waters and hypoxic sediments, and can be influenced by or influence trace element speciation. In the present study, we compared arsenic (As) enrichment in periphyton exposed to arsenate (As[V]) or arsenite (As[III]) (20 μg/L, static renewal, 7 d), and we found similar accumulation patterns of total As (101 ± 27 and 88 ± 22mgkg -1 dry wt, respectively). Periphyton As was 6281- and 6684-fold higher than their aqueous exposures and occurred primarily as As(V). When these biofilms weremore » fed to larval mayflies, similar total As tissue concentrations (13.9 and 14.6mgkg -1 dry wt, respectively) were observed, revealing significant biodilution (~10% of their dietary concentrations). Finally, we investigated the influence of aeration and periphyton presence on As speciation in solutions and solid phases treated with As(III). Predominantly As(III) solutions were slowly oxidized over a 7-d time period, in the absence of periphyton, and aeration did not strongly affect oxidation rates. However, in the presence of periphyton, solution and solid-phase analyses (by microscale x-ray absorption spectroscopy) showed rapid As(III) oxidation to As(V) and an increasing proportion of organo-As forming over time. Thus periphyton plays several roles in As environmental behavior: 1) decreasing total dissolved As concentrations via abiotic and biotic accumulation, 2) rapidly oxidizing As(III) to As(V), 3) effluxing organo-As forms into solution, and 4) limiting trophic transfer to aquatic grazers.« less

  6. Glucose & sodium chloride induced biofilm production & ica operon in clinical isolates of staphylococci.

    PubMed

    Agarwal, Astha; Jain, Amita

    2013-01-01

    All colonizing and invasive staphylococcal isolates may not produce biofilm but may turn biofilm producers in certain situations due to change in environmental factors. This study was done to test the hypothesis that non biofilm producing clinical staphylococci isolates turn biofilm producers in presence of sodium chloride (isotonic) and high concentration of glucose, irrespective of presence or absence of ica operon. Clinical isolates of 100 invasive, 50 colonizing and 50 commensal staphylococci were tested for biofilm production by microtiter plate method in different culture media (trypticase soy broth alone or supplemented with 0.9% NaCl/ 5 or 10% glucose). All isolates were tested for the presence of ica ADBC genes by PCR. Biofilm production significantly increased in the presence of glucose and saline, most, when both glucose and saline were used together. All the ica positive staphylococcal isolates and some ica negative isolates turned biofilm producer in at least one of the tested culture conditions. Those remained biofilm negative in different culture conditions were all ica negative. The present results showed that the use of glucose or NaCl or combination of both enhanced biofilm producing capacity of staphylococcal isolates irrespective of presence or absence of ica operon.

  7. Multiparameter Assessments To Determine the Effects of Sugars and Antimicrobials on a Polymicrobial Oral Biofilm

    PubMed Central

    Yang, Ying; Sreenivasan, Prem K.; Subramanyam, Ravi; Cummins, Diane

    2006-01-01

    Clinical studies indicate relationships between dental plaque, a naturally formed biofilm, and oral diseases. The crucial role of nonmicrobial biofilm constituents in maintaining biofilm structure and biofilm-specific attributes, such as resistance to shear and viscoelasticity, is increasingly recognized. Concurrent analyses of the diverse nonmicrobial biofilm components for multiparameter assessments formed the focus of this investigation. Comparable numbers of Actinomyces viscosus, Streptococcus sanguinis, Streptococcus mutans, Neisseria subflava, and Actinobacillus actinomycetemcomitans cells were seeded into multiple wells of 96-well polystyrene plates for biofilm formation. Quantitative fluorescence and confocal laser scanning microscopy (CLSM) examined the influences of dietary sugars, incubation conditions, ingredients in oral hygiene formulations, and antibiotics on biofilm components. Biofilm extracellular polymeric substances (EPS) were examined with an optimized mixture of fluorescent lectins, with biofilm proteins, lipids, and nucleic acids detected with specific fluorescent stains. Anaerobic incubation of biofilms resulted in significantly more biofilm EPS and extractable carbohydrates than those formed under aerobic conditions (P < 0.05). Sucrose significantly enhanced biofilm EPS in comparison to fructose, galactose, glucose, and lactose (P < 0.05). CLSM demonstrated thicker biofilms under sucrose-replete conditions, along with significant increases in biofilm EPS, proteins, lipids, and nucleic acids, than under conditions of sucrose deficiency (P < 0.05). Agents in oral hygiene formulations (chlorhexidine, ethanol, and sodium lauryl sulfate), a mucolytic agent (N-acetyl-l-cysteine), and antibiotics with different modes of action (amoxicillin, doxycycline, erythromycin, metronidazole, and vancomycin) inhibited biofilm components (P < 0.05). Multiparameter analysis indicated a dose-dependent inhibition of biofilm EPS and protein by chlorhexidine and

  8. Inhibition of Staphylococcus aureus biofilm by Lactobacillus isolated from fine cocoa.

    PubMed

    Melo, Tauá Alves; Dos Santos, Thalis Ferreira; de Almeida, Milena Evangelista; Junior, Luiz Alberto Gusmão Fontes; Andrade, Ewerton Ferraz; Rezende, Rachel Passos; Marques, Lucas Miranda; Romano, Carla Cristina

    2016-10-28

    Biofilm production represents an important virulence and pathogenesis factor for Staphylococcus aureus. The formation of biofilms on medical devices is a major concern in hospital environments, as they can become a constant source of infection. Probiotic bacteria, such as Lactobacillus fermentum and L. plantarum, have been found to inhibit biofilm formation; however little is known about the underlying mechanism. In this study, we tested the activity of supernatants produced by L. fermentum TCUESC01 and L. plantarum TCUESC02, isolated during the fermentation of fine cocoa, against S. aureus CCMB262 biofilm production. We measured inhibition of biofilm formation in vitro and analyzed biofilm structure by confocal and electronic microscopy. Additionally, we quantified the expression of S. aureus genes icaA and icaR involved in the synthesis of the biofilm matrix by real-time PCR. Both Lactobacillus supernatants inhibited S. aureus growth. However, only L. fermentum TCUESC01 significantly reduced the thickness of the biofilm, from 14 μm to 2.83 μm (at 18 mg∙mL -1 , 90 % of the minimum inhibitory concentration, MIC), 3.12 μm (at 14 mg∙mL -1 , 70 % of the MIC), and 5.21 μm (at 10 mg∙mL -1 , 50 % of the MIC). Additionally, L. fermentum TCUESC01 supernatant modulated the expression of icaA and icaR. L. fermentum TCUESC01 reduces the formation of S. aureus biofilm under subinhibitory conditions. Inhibition of biofilm production probably depends on modulation of the ica operon.

  9. Characterization of biofilms in biliary stents and potential factors involved in occlusion.

    PubMed

    Vaishnavi, Chetana; Samanta, Jayanta; Kochhar, Rakesh

    2018-01-07

    To quantify the components in biofilms and analyze the predisposing factors involved in occlusion of biliary stents. In a prospective study conducted from April 2011 to March 2014 at a tertiary care hospital, all consecutive patients who required endoscopic biliary stent exchange/removal were included. Etiology of the biliary disease was diagnosed by imaging, cytology and on follow-up. Clinical details of patients with biliary stent retrieval were noted. All extracted stents were collected in sterile containers and immediately processed for quantification of biofilm proteins and polysaccharides. Molecular identification of commonly known and unknown bacteria was performed by polymerase chain reaction and density gradient gel electrophoresis methods. Eighty one patients (41 males) with age range of 20-86 years were studied. The underlying causes for stent insertion were bile duct stones ( n = 46; 56.8%) benign stricture ( n = 29; 35.8%) and malignancy ( n = 6; 7.4%) with cholangitis in 50 (61.7%) patients. The retrieved stent sizes were 7 Fr ( n = 62; 76.5%) and 10 Fr ( n = 19; 23.5%) with 65 days median insertion duration. Polybacterial consortia were detected in 90.1% of the stents. The most common bacteria identified by polymerase chain reaction alone and/or sequencing were Pseudomonas ( n = 38), Citrobacter ( n = 23), Klebsiella ( n = 22), Staphylococcus ( n = 20), Serratia ( n = 16), Escherichia coli ( n = 14), Streptococcus ( n = 13), Enterococcus ( n = 13), Aeromonas ( n = 12), Proteus ( n = 10) and Enterobacter ( n = 9). Protein concentration according to gender (0.547 ± 0.242 mg/mL vs 0.458 ± 0.259 mg/mL; P = 0.115) as well as age > 60 years and < 60 years (0.468 ± 0.295 mg/mL vs 0.386 ± 0.238 mg/mL; P = 0.205) was non-significant. However, polysaccharide concentration was significant both according to gender (0.052 ± 0.021 mg/mL vs 0.049 ± 0.016 mg/mL; P < 0.0001) and age (0.051 ± 0.026 mg/mL vs 0.038 ± 0.016 mg/mL; P < 0.011). Protein

  10. Characterization of biofilms in biliary stents and potential factors involved in occlusion

    PubMed Central

    Vaishnavi, Chetana; Samanta, Jayanta; Kochhar, Rakesh

    2018-01-01

    AIM To quantify the components in biofilms and analyze the predisposing factors involved in occlusion of biliary stents. METHODS In a prospective study conducted from April 2011 to March 2014 at a tertiary care hospital, all consecutive patients who required endoscopic biliary stent exchange/removal were included. Etiology of the biliary disease was diagnosed by imaging, cytology and on follow-up. Clinical details of patients with biliary stent retrieval were noted. All extracted stents were collected in sterile containers and immediately processed for quantification of biofilm proteins and polysaccharides. Molecular identification of commonly known and unknown bacteria was performed by polymerase chain reaction and density gradient gel electrophoresis methods. RESULTS Eighty one patients (41 males) with age range of 20-86 years were studied. The underlying causes for stent insertion were bile duct stones (n = 46; 56.8%) benign stricture (n = 29; 35.8%) and malignancy (n = 6; 7.4%) with cholangitis in 50 (61.7%) patients. The retrieved stent sizes were 7 Fr (n = 62; 76.5%) and 10 Fr (n = 19; 23.5%) with 65 days median insertion duration. Polybacterial consortia were detected in 90.1% of the stents. The most common bacteria identified by polymerase chain reaction alone and/or sequencing were Pseudomonas (n = 38), Citrobacter (n = 23), Klebsiella (n = 22), Staphylococcus (n = 20), Serratia (n = 16), Escherichia coli (n = 14), Streptococcus (n = 13), Enterococcus (n = 13), Aeromonas (n = 12), Proteus (n = 10) and Enterobacter (n = 9). Protein concentration according to gender (0.547 ± 0.242 mg/mL vs 0.458 ± 0.259 mg/mL; P = 0.115) as well as age > 60 years and < 60 years (0.468 ± 0.295 mg/mL vs 0.386 ± 0.238 mg/mL; P = 0.205) was non-significant. However, polysaccharide concentration was significant both according to gender (0.052 ± 0.021 mg/mL vs 0.049 ± 0.016 mg/mL; P < 0.0001) and age (0.051 ± 0.026 mg/mL vs 0.038 ± 0.016 mg/mL; P < 0.011). Protein

  11. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    PubMed Central

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2012-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass because of faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research. PMID:21656713

  12. Towards the identification of the common features of bacterial biofilm development.

    PubMed

    Lasa, Iñigo

    2006-03-01

    Microorganisms can live and proliferate as individual cells swimming freely in the environment, or they can grow as highly organized, multicellular communities encased in a self-produced polymeric matrix in close association with surfaces and interfaces. This microbial lifestyle is referred to as biofilms. The intense search over the last few years for factors involved in biofilm development has revealed that distantly related bacterial species recurrently make use of the same elements to produce biofilms. These common elements include a group of proteins containing GGDEF/EAL domains, surface proteins homologous to Bap of Staphylococcus aureus, and some types of exopolysaccharides, such as cellulose and the poly-beta-1,6-N-acetylglucosamine. This review summarizes current knowledge about these three common elements and their role in biofilm development.

  13. Microbial biofilms in intertidal systems: an overview

    NASA Astrophysics Data System (ADS)

    Decho, Alan W.

    2000-07-01

    extracellular enzyme activities of bacteria, and hence contribute to the efficient biomineralization of organics. At larger spatial scales, the copious secretion of specific types of EPS by diatoms on the surfaces of intertidal mudflats may stabilize sediments against resuspension. Biofilms exert important roles in environmental- and public health processes occurring within intertidal systems. The sorptive properties of EPS effectively chelate toxic metals and other contaminants, which then act as an efficient trophic-transfer vehicle for the entry of contaminants into food webs. In the water column, biofilm microenvironments in suspended flocs may form a stabilizing refugia that enhances the survival and propagation of pathogenic (i.e., disease-causing) bacteria entering coastal waters from terrestrial and freshwater sources. The EPS matrix affords microbial cells a tremendous potential for resiliency during periods of stress, and may enhance the overall physiological activities of bacteria. It is emphasized here that the influences of small-scale microbial biofilms must be addressed in understanding larger-scale processes within intertidal systems.

  14. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    within biofilms considering the influence of hydrodynamics and biofilm density. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Experimental evolution in biofilm populations

    PubMed Central

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  16. Experimental evolution in biofilm populations.

    PubMed

    Steenackers, Hans P; Parijs, Ilse; Dubey, Akanksha; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. © FEMS 2016.

  17. Limitations for current production in Geobacter sulfurreducens biofilms.

    PubMed

    Bonanni, P Sebastian; Bradley, Dan F; Schrott, Germán D; Busalmen, Juan Pablo

    2013-04-01

    Devices that exploit electricity produced by electroactive bacteria such as Geobacter sulfurreducens have not yet been demonstrated beyond the laboratory scale. The current densities are far from the maximum that the bacteria can produce because fundamental properties such as the mechanism of extracellular electron transport and factors limiting cell respiration remain unclear. In this work, a strategy for the investigation of electroactive biofilms is presented. Numerical modeling of the response of G. sulfurreducens biofilms cultured on a rotating disk electrode has allowed for the discrimination of different limiting steps in the process of current production within a biofilm. The model outputs reveal that extracellular electron transport limits the respiration rate of the cells furthest from the electrode to the extent that cell division is not possible. The mathematical model also demonstrates that recent findings such as the existence of a redox gradient in actively respiring biofilms can be explained by an electron hopping mechanism but not when considering metallic-like conductivities. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Biofilm development in fixed bed biofilm reactors: experiments and simple models for engineering design purposes.

    PubMed

    Szilágyi, N; Kovács, R; Kenyeres, I; Csikor, Zs

    2013-01-01

    Biofilm development in a fixed bed biofilm reactor system performing municipal wastewater treatment was monitored aiming at accumulating colonization and maximum biofilm mass data usable in engineering practice for process design purposes. Initially a 6 month experimental period was selected for investigations where the biofilm formation and the performance of the reactors were monitored. The results were analyzed by two methods: for simple, steady-state process design purposes the maximum biofilm mass on carriers versus influent load and a time constant of the biofilm growth were determined, whereas for design approaches using dynamic models a simple biofilm mass prediction model including attachment and detachment mechanisms was selected and fitted to the experimental data. According to a detailed statistical analysis, the collected data have not allowed us to determine both the time constant of biofilm growth and the maximum biofilm mass on carriers at the same time. The observed maximum biofilm mass could be determined with a reasonable error and ranged between 438 gTS/m(2) carrier surface and 843 gTS/m(2), depending on influent load, and hydrodynamic conditions. The parallel analysis of the attachment-detachment model showed that the experimental data set allowed us to determine the attachment rate coefficient which was in the range of 0.05-0.4 m d(-1) depending on influent load and hydrodynamic conditions.

  19. Determination of biofilm production by Candida tropicalis isolated from hospitalized patients and its relation to cellular surface hydrophobicity, plastic adherence and filamentation ability.

    PubMed

    Galán-Ladero, M A; Blanco-Blanco, M T; Hurtado, C; Pérez-Giraldo, C; Blanco, M T; Gómez-García, A C

    2013-09-01

    Candida tropicalis is an emerging virulent species. The aim of this study is to determine the biofilm-forming ability of 29 strains of C. tropicalis isolated from inpatients, and to examine its relation with other virulence factors such as cellular surface hydrophobicity (CSH), immediate (15 min, IA) and late (24 h, LA) plastic adherence and filamentation ability. The study was performed in parallel using two incubation temperatures - 37 and 22 °C - to determine the effect of growth temperature variations on these pathogenic attributes of C. tropicalis. Biofilm formation (BF) was measured by optical density (OD) and by XTT reduction (XTT); Slime index (SI), which includes growth as a correction factor in BF, was calculated in both methods. All strains were hydrophobic and adherent - at 15 min and 24 h - at both temperatures, with higher values for 22 °C; the adhered basal yeast layer appears to be necessary to achieve subsequent development of biofilm. Filamentation ability varied from 76.2% of strains at 37 °C to 26.6% at 22 °C. All C. tropicalis strains were biofilm producers, with similar results obtained using OD determination and XTT measurement to evaluation methods; SI is useful when good growth is not presented. BF at 37 °C was similar at 24 h and 96 h incubation; conversely, at 22 °C, the highest number of biofilm-producing strains was detected at 96 h. CSH is an important pathogenic factor which is involved in adherence, is influenced by the filamentation of yeast, and plays a critical role in BF. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Experimental Model of Biofilm Implant-Related Osteomyelitis To Test Combination Biomaterials Using Biofilms as Initial Inocula

    PubMed Central

    Williams, Dustin L.; Haymond, Bryan S.; Woodbury, Kassie L.; Beck, J. Peter; Moore, David E.; Epperson, R. Tyler; Bloebaum, Roy D.

    2012-01-01

    Currently, the majority of animal models that are used to study biofilm-related infections utilize planktonic bacterial cells as initial inocula to produce positive signals of infection in biomaterials studies. However, the use of planktonic cells has potentially led to inconsistent results in infection outcomes. In this study, well-established biofilms of methicillin-resistant Staphylococcus aureus (MRSA) were grown and used as initial inocula in an animal model of a Type IIIB open fracture. The goal of the work was to establish, for the first time, a repeatable model of biofilm implant-related osteomyelitis wherein biofilms were used as initial inocula to test combination biomaterials. Results showed that 100% of animals that were treated with biofilms developed osteomyelitis, whereas 0% of animals not treated with biofilm developed infection. The development of this experimental model may lead to an important shift in biofilm and biomaterials research by showing that when biofilms are used as initial inocula, they may provide additional insights into how biofilm-related infections in the clinic develop and how they can be treated with combination biomaterials to eradicate and/or prevent biofilm formation. PMID:22492534

  1. Experimental model of biofilm implant-related osteomyelitis to test combination biomaterials using biofilms as initial inocula.

    PubMed

    Williams, Dustin L; Haymond, Bryan S; Woodbury, Kassie L; Beck, J Peter; Moore, David E; Epperson, R Tyler; Bloebaum, Roy D

    2012-07-01

    Currently, the majority of animal models that are used to study biofilm-related infections use planktonic bacterial cells as initial inocula to produce positive signals of infection in biomaterials studies. However, the use of planktonic cells has potentially led to inconsistent results in infection outcomes. In this study, well-established biofilms of methicillin-resistant Staphylococcus aureus were grown and used as initial inocula in an animal model of a Type IIIB open fracture. The goal of the work was to establish, for the first time, a repeatable model of biofilm implant-related osteomyelitis, wherein biofilms were used as initial inocula to test combination biomaterials. Results showed that 100% of animals that were treated with biofilms developed osteomyelitis, whereas 0% of animals not treated with biofilm developed infection. The development of this experimental model may lead to an important shift in biofilm and biomaterials research by showing that when biofilms are used as initial inocula, they may provide additional insights into how biofilm-related infections in the clinic develop and how they can be treated with combination biomaterials to eradicate and/or prevent biofilm formation. Copyright © 2012 Wiley Periodicals, Inc.

  2. Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans

    PubMed Central

    Chauhan, Nitin M; Shinde, Ravikumar B; Karuppayil, S. Mohan

    2013-01-01

    In this study we report the potential of alcohols as morphogenetic regulators in Candida albicans. All the alcohols tested influenced various modes of growth like planktonic as well as biofilm forms. Viability was affected at high concentrations. Among the alcohols, the response of C. albicans to amyl alcohol (pentanol) was noteworthy. Amyl alcohol at a concentration 0.5% which was not inhibitory to growth and viability specifically inhibited morphogenetic switching from yeast to hyphal forms. It also inhibited normal biofilm development favoring yeast dominated biofilms. Based on this study we hypothesize that alcohols produced under anaerobic conditions may not favor biofilm development and support dissemination of yeast cells. Since anaerobic conditions are not found to favor production of quorum sensing molecules like farnesol, the alcohols may play a role in morphogenetic regulation. PMID:24688528

  3. Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans.

    PubMed

    Chauhan, Nitin M; Shinde, Ravikumar B; Karuppayil, S Mohan

    2013-12-01

    In this study we report the potential of alcohols as morphogenetic regulators in Candida albicans. All the alcohols tested influenced various modes of growth like planktonic as well as biofilm forms. Viability was affected at high concentrations. Among the alcohols, the response of C. albicans to amyl alcohol (pentanol) was noteworthy. Amyl alcohol at a concentration 0.5% which was not inhibitory to growth and viability specifically inhibited morphogenetic switching from yeast to hyphal forms. It also inhibited normal biofilm development favoring yeast dominated biofilms. Based on this study we hypothesize that alcohols produced under anaerobic conditions may not favor biofilm development and support dissemination of yeast cells. Since anaerobic conditions are not found to favor production of quorum sensing molecules like farnesol, the alcohols may play a role in morphogenetic regulation.

  4. Influence of biofilm formation on the optical properties of novel bioactive glass-containing composites

    PubMed Central

    Hyun, Hong-Keun; Ferracane, Jack L.

    2016-01-01

    Objective Bioactive glass (BAG) has been suggested as a possible additive for dental restorative materials because of its antimicrobial effect and potential for promoting apatite formation in body fluids. The purpose of this study was to investigate the effects of bacterial biofilm on the change of colorimetric value and translucency of novel BAG-containing composites having different initial surface roughness. Methods Composites with 72 wt% total filler load were prepared by replacing 15% of the silanized Sr glass with BAG (65 mole% Si; 4% P; 31% Ca), BAG-F (61% Si; 31% Ca; 4% P; 3% F; 1% B), or silanized silica. Light-cured discs of 2-mm thickness (n=10/group) were divided into 4 different surface roughness subgroups produced by wet polishing with 600 and then up to 1200, 2400, or 4000 grit SiC. CIE L*a*b* were measured and the color difference and translucency parameter (TP) were calculated before and after incubating in media with or without a S. mutans (UA 159) biofilm for 2 wks (no agitation). Results were analyzed using ANOVA/Tukey's test (α = 0.05). Results All the color differences for BAG and BAG-F composite showed significant decreases with bacterial biofilm compared to media-only. The mean TP (SD) of BAG and BAG-F composite before aging [10.0 (2.8) and 8.5 (1.4)] was higher than that of the control composite [4.9 (0.8)], while the change in TP with aging was greater compared to the control with or without bacteria. BAG-F composites with the smoothest surfaces showed a greater decrease in TP under bacterial biofilm compared to the BAG composite. Significance Highly polished dental composites containing bioactive glass additives may become slightly rougher and show reduced translucency when exposed to bacterial biofilms, but do not discolor any more than control composites that do not contain the BAG. PMID:27394086

  5. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    PubMed

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  6. Microtubules are reversibly depolymerized in response to changing gaseous microenvironments within Aspergillus nidulans biofilms

    PubMed Central

    Shukla, Nandini; Osmani, Aysha H.; Osmani, Stephen A.

    2017-01-01

    How microtubules (MTs) are regulated during fungal biofilm formation is unknown. By tracking MT +end–binding proteins (+TIPS) in Aspergillus nidulans, we find that MTs are regulated to depolymerize within forming fungal biofilms. During this process, EB1, dynein, and ClipA form transient fibrous and then bar-like structures, novel configurations for +TIPS. Cells also respond in an autonomous manner, with cells separated by a septum able to maintain different MT dynamics. Surprisingly, all cells with depolymerized MTs rapidly repolymerize their MTs after air exchange above the static culture medium of biofilms. Although the specific gasotransmitter for this biofilm response is not known, we find that addition of hydrogen sulfide gas to growing cells recapitulates all aspects of reversible MT depolymerization and transient formation of +TIPs bars. However, as biofilms mature, physical removal of part of the biofilm is required to promote MT repolymerization, which occurs at the new biofilm edge. We further show MT depolymerization within biofilms is regulated by the SrbA hypoxic transcription factor and that without SrbA, MTs are maintained as biofilms form. This reveals a new mode of MT regulation in response to changing gaseous biofilm microenvironments, which could contribute to the unique characteristics of fungal biofilms in medical and industrial settings. PMID:28057761

  7. Leaf-litter leachate concentration promotes heterotrophy in freshwater biofilms: Understanding consequences of water scarcity.

    PubMed

    Martínez, Aingeru; Kominoski, John Stephen; Larrañaga, Aitor

    2017-12-01

    Climate change is increasing overall temporal variability in precipitation resulting in a seasonal water availability, both increasing periods of flooding and water scarcity. During low water availability periods, the concentration of leachates from riparian vegetation increases, subsequently increasing dissolved organic matter (DOM). Moreover, shifts in riparian vegetation by land use changes impact the quantity and quality of DOM. Our objective was to test effects of increasing DOM concentrations from Eucalyptus grandis (one of the most cultivated tree species in the world) leachates on the metabolism (respiration, R; gross primary productivity, GPP) and extracellular enzyme activities (EEAs) of freshwater biofilms. To test effects of DOM concentrations on freshwater biofilm functions, we incubated commercial cellulose sponges in a freshwater pond to allow biofilm colonization, and then exposed biofilms to five different concentrations of leaf-litter leachates of E. grandis for five days. To test if responses to DOM concentrations varied with colonization stage of biofilms, we measured treatment effects on biofilms colonizing standard substrates after one, two, three and four weeks of colonization. Increases in leachates concentrations enhanced biofilm heterotrophy, increasing R rates and decreasing GPP. Leachate concentrations did not affect biofilm EEAs, and changes in biofilm metabolism were not explained by treatment-induced changes in biofilm biomass or stoichiometry. We detected the lowest production:respiration ratios, i.e. more heterotrophic assemblages, with the most concentrated leachate solution and the most advanced biofilm colonization stages. Shifts in quantity of dissolved organic matter in freshwaters may further influence ecosystem metabolism and carbon processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm.

    PubMed

    Koo, H; Falsetta, M L; Klein, M I

    2013-12-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.

  9. Complex conductivity response to microbial growth and biofilm formation on phenanthrene spiked medium

    NASA Astrophysics Data System (ADS)

    Albrecht, Remy; Gourry, Jean Christophe; Simonnot, Marie-Odile; Leyval, Corinne

    2011-11-01

    Several laboratory studies have recently demonstrated the utility of geophysical methods for the investigation of microbial-induced changes over contaminated sites. However, it remains difficult to distinguish the effects due to the new physical properties imparted by microbial processes, to bacterial growth, or to the development of bacterial biofilm. We chose to study the influence of biofilm formation on geophysical response using complex conductivity measurements (0.1-1000 Hz) in phenanthrene-contaminated media. Biotic assays were conducted with two phenanthrene (PHE) degrading bacterial strains: Burkholderia sp (NAH1), which produced biofilm and Stenophomonas maltophilia (MATE10), which did not, and an abiotic control. Results showed that bacterial densities for NAH1 and MATE10 strains continuously increased at the same rate during the experiment. However, the complex conductivity signature showed noticeable differences between the two bacteria, with a phase shift of 50 mrad at 4 Hz for NAH1, which produced biofilm. Biofilm volume was quantified by Scanning Confocal Laser Microscopy (SCLM). Significant correlations were established between phase shift decrease and biofilm volume for NAH1 assays. Results suggest that complex conductivity measurements, specifically phase shift, can be a useful indicator of biofilm formation inside the overall signal of microbial activity on contaminated sites.

  10. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae

    PubMed Central

    Brown, Lindsey R.; Caulkins, Rachel C.; Schartel, Tyler E.; Rosch, Jason W.; Honsa, Erin S.; Schultz-Cherry, Stacey; Meliopoulos, Victoria A.; Cherry, Sean; Thornton, Justin A.

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H2O2. Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms. PMID:28638805

  11. Interspecific diversity reduces and functionally substitutes for intraspecific variation in biofilm communities

    PubMed Central

    Kelvin Lee, Kai Wei; Hoong Yam, Joey Kuok; Mukherjee, Manisha; Periasamy, Saravanan; Steinberg, Peter D; Kjelleberg, Staffan; Rice, Scott A

    2016-01-01

    Diversity has a key role in the dynamics and resilience of communities and both interspecific (species) and intraspecific (genotypic) diversity can have important effects on community structure and function. However, a critical and unresolved question for understanding the ecology of a community is to what extent these two levels of diversity are functionally substitutable? Here we show, for a mixed-species biofilm community composed of Pseudomonas aeruginosa, P. protegens and Klebsiella pneumoniae, that increased interspecific diversity reduces and functionally substitutes for intraspecific diversity in mediating tolerance to stress. Biofilm populations generated high percentages of genotypic variants, which were largely absent in biofilm communities. Biofilms with either high intra- or interspecific diversity were more tolerant to SDS stress than biofilms with no or low diversity. Unexpectedly, genotypic variants decreased the tolerance of biofilm communities when experimentally introduced into the communities. For example, substituting P. protegens wild type with its genotypic variant within biofilm communities decreased SDS tolerance by twofold, apparently due to perturbation of interspecific interactions. A decrease in variant frequency was also observed when biofilm populations were exposed to cell-free effluents from another species, suggesting that extracellular factors have a role in selection against the appearance of intraspecific variants. This work demonstrates the functional substitution of inter- and intraspecific diversity for an emergent property of biofilms. It also provides a potential explanation for a long-standing paradox in microbiology, in which morphotypic variants are common in laboratory grown biofilm populations, but are rare in diverse, environmental biofilm communities. PMID:26405829

  12. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae.

    PubMed

    Brown, Lindsey R; Caulkins, Rachel C; Schartel, Tyler E; Rosch, Jason W; Honsa, Erin S; Schultz-Cherry, Stacey; Meliopoulos, Victoria A; Cherry, Sean; Thornton, Justin A

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H 2 O 2 . Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.

  13. Evaluation of intraspecies interactions in biofilm formation by Methylobacterium species isolated from pink-pigmented household biofilms.

    PubMed

    Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

    2014-01-01

    Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms.

  14. Evaluation of Intraspecies Interactions in Biofilm Formation by Methylobacterium Species Isolated from Pink-Pigmented Household Biofilms

    PubMed Central

    Xu, Fang-Fang; Morohoshi, Tomohiro; Wang, Wen-Zhao; Yamaguchi, Yuka; Liang, Yan; Ikeda, Tsukasa

    2014-01-01

    Concern regarding household biofilms has grown due to their widespread existence and potential to threaten human health by serving as pathogen reservoirs. Previous studies identified Methylobacterium as one of the dominant genera found in household biofilms. In the present study, we examined the mechanisms underlying biofilm formation by using the bacterial consortium found in household pink slime. A clone library analysis revealed that Methylobacterium was the predominant genus in household pink slime. In addition, 16 out of 21 pink-pigmented bacterial isolates were assigned to the genus Methylobacterium. Although all of the Methylobacterium isolates formed low-level biofilms, the amount of the biofilms formed by Methylobacterium sp. P-1M and P-18S was significantly increased by co-culturing with other Methylobacterium strains that belonged to a specific phylogenetic group. The single-species biofilm was easily washed from the glass surface, whereas the dual-species biofilm strongly adhered after washing. A confocal laser scanning microscopy analysis showed that the dual-species biofilms were significantly thicker and tighter than the single-species biofilms. PMID:25381715

  15. Methodologies for Studying B. subtilis Biofilms as a Model for Characterizing Small Molecule Biofilm Inhibitors.

    PubMed

    Bucher, Tabitha; Kartvelishvily, Elena; Kolodkin-Gal, Ilana

    2016-10-09

    This work assesses different methodologies to study the impact of small molecule biofilm inhibitors, such as D-amino acids, on the development and resilience of Bacillus subtilis biofilms. First, methods are presented that select for small molecule inhibitors with biofilm-specific targets in order to separate the effect of the small molecule inhibitors on planktonic growth from their effect on biofilm formation. Next, we focus on how inoculation conditions affect the sensitivity of multicellular, floating B. subtilis cultures to small molecule inhibitors. The results suggest that discrepancies in the reported effects of such inhibitors such as D-amino acids are due to inconsistent pre-culture conditions. Furthermore, a recently developed protocol is described for evaluating the contribution of small molecule treatments towards biofilm resistance to antibacterial substances. Lastly, scanning electron microscopy (SEM) techniques are presented to analyze the three-dimensional spatial arrangement of cells and their surrounding extracellular matrix in a B. subtilis biofilm. SEM facilitates insight into the three-dimensional biofilm architecture and the matrix texture. A combination of the methods described here can greatly assist the study of biofilm development in the presence and absence of biofilm inhibitors, and shed light on the mechanism of action of these inhibitors.

  16. Micro-scale intermixing: a requisite for stable and synergistic co-establishment in a four-species biofilm.

    PubMed

    Liu, Wenzheng; Russel, Jakob; Burmølle, Mette; Sørensen, Søren J; Madsen, Jonas S

    2018-04-18

    Microorganisms frequently coexist in complex multispecies communities, where they distribute non-randomly, reflective of the social interactions that occur. It is therefore important to understand how social interactions and local spatial organization influences multispecies biofilm succession. Here the localization of species pairs was analyzed in three dimensions in a reproducible four-species biofilm model, to study the impact of spatial positioning of individual species on the temporal development of the community. We found, that as the biofilms developed, species pairs exhibited distinct intermixing patterns unique to the four-member biofilms. Higher biomass and more intermixing were found in four-species biofilms compared to biofilms with fewer species. Intriguingly, in local regions within the four member biofilms where Microbacterium oxydans was scant, both biomass and intermixing of all species were lowered, compared to regions where M. oxydans was present at typical densities. Our data suggest that Xanthomonas retroflexus and M. oxydans, both low abundant biofilm-members, intermixed continuously during the development of the four-species biofilm, hereby facilitating their own establishment. In turn, this seems to have promoted distinct spatial organization of Stenotrophomonas rhizophila and Paenibacillus amylolyticus enabling enhanced growth of all four species. Here local intermixing of bacteria advanced the temporal development of a multi-species biofilm.

  17. A new method to measure and model dynamic oxygen microdistributions in moving biofilms.

    PubMed

    Wang, Jian-Hui; Chen, You-Peng; Dong, Yang; Wang, Xi-Xi; Guo, Jin-Song; Shen, Yu; Yan, Peng; Ma, Teng-Fei; Sun, Xiu-Qian; Fang, Fang; Wang, Jing

    2017-10-01

    Biofilms in natural environments offer a superior solution to mitigate water pollution. Artificially intensified biofilm reactors represented by rotating biological contactors (RBCs) are widely applied and studied. Understanding the oxygen transfer process in biofilms is an important aspect of these studies, and describing this process in moving biofilms (such as biofilms in RBCs) is a particular challenge. Oxygen transfer in RBCs behaves differently than in other biological reactors due to the special oxygen supply mode that results from alternate exposure of the biofilm to wastewater and air. The study of oxygen transfer in biofilms is indispensable for understanding biodegradation in RBCs. However, the mechanisms are still not well known due to a lack of effective tools to dynamically analyze oxygen diffusion, reaction, and microdistribution in biofilms. A new experimental device, the Oxygen Transfer Modeling Device (OTMD), was designed and manufactured for this purpose, and a mathematical model was developed to model oxygen transfer in biofilm produced by an RBC. This device allowed the simulation of the local environment around the biofilm during normal RBC operation, and oxygen concentrations varying with time and depth in biofilm were measured using an oxygen microelectrode. The experimental data conformed well to the model description, indicating that the OTMD and the model were stable and reliable. Moreover, the OTMD offered a flexible approach to study the impact of a single-factor on oxygen transfer in moving biofilms. In situ environment of biofilm in an RBC was simulated, and dynamic oxygen microdistributions in the biofilm were measured and well fitted to the built model description. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm.

    PubMed

    Martins, Carlos Henrique Gomes; Pires, Regina Helena; Cunha, Aline Oliveira; Pereira, Cristiane Aparecida Martins; Singulani, Junya de Lacorte; Abrão, Fariza; Moraes, Thais de; Mendes-Giannini, Maria José Soares

    2016-04-01

    Denture liners have physical properties that favour plaque accumulation and colonization by Candida species, irritating oral tissues and causing denture stomatitis. To isolate and determine the incidence of oral Candida species in dental prostheses, oral swabs were collected from the dental prostheses of 66 patients. All the strains were screened for their ability to form biofilms; both monospecies and dual-species combinations were tested. Candida albicans (63 %) was the most frequently isolated microorganism; Candida tropicalis (14 %), Candida glabrata (13 %), Candida rugosa (5 %), Candida parapsilosis (3 %), and Candida krusei (2 %) were also detected. The XTT assay showed that C. albicans SC5314 possessed a biofilm-forming ability significantly higher (p < 0.001) than non-albicans Candida strains, after 6 h 37 °C. The total C. albicans CFU from a dual-species biofilm was less than the total CFU of a monospecies C. albicans biofilm. In contrast to the profuse hyphae verified in monospecies C. albicans biofilms, micrographies showed that the C. albicans/non-albicans Candida biofilms consisted of sparse yeast forms and profuse budding yeast cells that generated a network. These results suggested that C. albicans and the tested Candida species could co-exist in biofilms displaying apparent antagonism. The study provide the first description of C. albicans/C. rugosa mixed biofilm. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Bacterial Biofilms in Chronic Rhinosinusitis and Their Implications for Clinical Management.

    PubMed

    Karunasagar, Abhilasha; Garag, Santosh S; Appannavar, Suma B; Kulkarni, Raghavendra D; Naik, Ashok S

    2018-03-01

    To study the microbiological profile in patients with chronic rhino-sinusitis. To correlate disease severity with the presence of biofilms and host risk factors. To assess outcome of Sinus Surgery 2 weeks post operatively in terms of presence of bacteria and their ability to form biofilm. Prospective study. 50 cases of chronic rhino-sinusitis requiring Functional Endoscopic Sinus Surgery admitted in SDM Hospital, Dharwad, Karnataka were studied using intra-operative mucosal samples for microbiological analysis. The organisms isolated were tested for biofilm forming ability using three in vitro tests. Severity of disease was assessed using SNOT 22 scoring system. Of 50 cases studied, 66% showed presence of chronic rhino-sinusitis with polyposis and had higher SNOT scores compared to those without polyps. Bacterial isolates were obtained from only 17 samples. Staphylococcus species was isolated from 16 samples and Klebsiella pneumoniae from one. 11 Staph spp. isolates showed biofilm forming ability in vitro. Postoperative events in 3 cases yielded biofilm-forming Staphylococcus. Staphylococcus was the most dominant organism isolated and 11 isolates were biofilm formers. Thus the detection of biofilm forming organisms can be considered as a negative prognostic indicator and should forewarn the surgeon about the risk of recurrence.

  20. Influence of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires

    NASA Astrophysics Data System (ADS)

    Asiry, Moshabab A.; AlShahrani, Ibrahim; Almoammar, Salem; Durgesh, Bangalore H.; Kheraif, Abdulaziz A. Al; Hashem, Mohamed I.

    2018-02-01

    Aim. To investigate the effect of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires Methods. Three different coated (Epoxy, polytetrafluoroethylene (PTFE) and rhodium) and one uncoated Ni-Ti archwires were evaluated in the present study. Surface roughness (Ra) was assessed using a non-contact surface profilometer. The mechanical properties (nano-hardness and elastic modulus) were measured using a nanoindenter. Bacterial adhesion assays were performed using Streptococcus mutans (MS) and streptococcus sobrinus (SS) in an in-vitro set up. The data obtained were analyzed using analyses of variance, Tukey’s post hoc test and Pearson’s correlation coefficient test. Result. The highest Ra values (1.29 ± 0.49) were obtained for epoxy coated wires and lowest Ra values (0.29 ± 0.16) were obtained for the uncoated wires. No significant differences in the Ra values were observed between the rhodium coated and uncoated archwires (P > 0.05). The highest nano-hardness (3.72 ± 0.24) and elastic modulus values (61.15 ± 2.59) were obtained for uncoated archwires and the lowest nano-hardness (0.18 ± 0.10) and elastic modulus values (4.84 ± 0.65) were observed for epoxy coated archwires. No significant differences in nano-hardness and elastic modulus values were observed between the coated archwires (P > 0.05). The adhesion of Streptococcus mutans (MS) to the wires was significantly greater than that of streptococcus sobrinus (SS). The epoxy coated wires demonstrated an increased adhesion of MS and SS and the uncoated wires demonstrated decreased biofilm adhesion. The Spearman correlation test showed that MS and SS adhesion was positively correlated with the surface roughness of the wires. Conclusion. The different surface coatings significantly influence the roughness, nano-mechanical properties and biofilm adhesion parameters of the archwires. The