Sample records for factor interferon regulatory

  1. Expression Profile of Interferon Regulatory Factor 1 in Chronic Hepatitis B Virus-Infected Liver Transplant Patients.

    PubMed

    Janfeshan, Sahar; Yaghobi, Ramin; Eidi, Akram; Karimi, Mohammad Hossein; Geramizadeh, Bita; Malekhosseini, Seyed Ali; Kafilzadeh, Farshid

    2017-12-01

    Hepatitis B virus, which mainly affects normal liver function, leads to severe acute and chronic hepatitis, resulting in cirrhosis and hepatocellular carcinoma, but can be safely treated after liver transplant. Evaluation of determinative biomarkers may facilitate more effective treatment of posttransplant rejection. Therefore, we investigated interferon regulatory factor 1 expression in hepatitis B virus-infected liver transplant patients with and without previous rejection compared with controls. Hepatitis B virus-infected liver recipients were divided into those with (20 patients) and without a rejection (26 patients), confirmed by pathologic analyses in those who had a rejection. In addition, a healthy control group composed of 13 individuals was included. Expression levels of interferon regulatory factor 1 were evaluated during 3 follow-ups after transplant using an in-house comparative SYBR green real-time polymerase chain reaction method. Statistical analyses were performed with SPSS software (SPSS: An IBM Company, version 16.0, IBM Corporation, Armonk, NY, USA). Modifications of interferon regulatory factor 1 gene expression levels in patient groups with and without rejection were not significant between days 1, 4, and 7 after liver transplant. Interferon regulatory factor 1 mRNA expression levels were down-regulated in patients without rejection versus patients with rejection, although not significantly at day 1 (P = .234) and day 4 (P = .302) but significantly at day 7 (P = .004) after liver transplant. Down-regulation of interferon regulatory factor 1 gene expression in hepatitis B virus patients without rejection emphasized counteraction between hepatitis B virus replication and interferon regulatory factor 1 production. On the other hand, interferon regulatory factor 1 gene overexpression in patients with rejection may result in inflammatory reactions and ischemic-reperfusion injury. Therefore, a better understanding of the association between

  2. Interferon regulatory factors: A key to tumour immunity.

    PubMed

    Chen, Yan-Jie; Li, Jing; Lu, Nan; Shen, Xi-Zhong

    2017-08-01

    Interferon regulatory factors (IRFs), which have 10 members, belong to the transcription factor family and were named because of the regulation of interferon expression. They play important roles in the immune regulation, cell differentiation, cell apoptosis, and cell cycle regulation. This article will review the functional characteristics and immune activity of the family members, especially in the role of cell differentiation and autoimmune diseases. Intensive studies will help uncover the pathogenesis of the disease in a more comprehensive view, and provide novel targets for disease treatment. But the most important problems yet to solve is IRFs function in the development processes of tumour, and whether IRFs can be an important regulator in tumour immune treatment. Copyright © 2017. Published by Elsevier B.V.

  3. Interferon regulatory factor 5 gene polymorphism in Egyptian children with systemic lupus erythematosus.

    PubMed

    Hammad, A; Mossad, Y M; Nasef, N; Eid, R

    2017-07-01

    Background Increased expression of interferon-inducible genes is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Interferon regulatory factor 5 (IRF5) is one of the transcription factors regulating interferon and was proved to be implicated in the pathogenesis of SLE in different populations. Objectives The objective of this study was to investigate the correlation between polymorphisms of the IRF5 gene and SLE susceptibility in a cohort of Egyptian children and to investigate their association with clinico-pathological features, especially lupus nephritis. Subjects and methods Typing of interferon regulatory factor 5 rs10954213, rs2004640 and rs2280714 polymorphisms were done using polymerase chain reaction-restriction fragment length polymorphism for 100 children with SLE and 100 matched healthy controls. Results Children with SLE had more frequent T allele and TT genotype of rs2004640 ( P c  = 0.003 and 0.024, respectively) compared to controls. Patients with nephritis had more frequent T allele of rs2004640 compared to controls ( P c  = 0.003). However the allele and genotype frequencies of the three studied polymorphisms did not show any difference in patients with nephritis in comparison to those without nephritis. Haplotype GTA of rs10954213, rs2004640 and rs2280714, respectively, was more frequent in lupus patients in comparison to controls ( p = 0.01) while the haplotype GGG was more frequent in controls than lupus patients ( p = 0.011). Conclusion The rs2004640 T allele and TT genotype and GTA haplotype of rs rs10954213, rs2004640, and rs2280714, respectively, can be considered as risk factors for the development of SLE. The presence of the rs2004640 T allele increases the risk of nephritis development in Egyptian children with SLE.

  4. Essential Cell-Autonomous Role for Interferon (IFN) Regulatory Factor 1 in IFN-γ-Mediated Inhibition of Norovirus Replication in Macrophages

    PubMed Central

    Maloney, Nicole S.; Thackray, Larissa B.; Goel, Gautam; Hwang, Seungmin; Duan, Erning; Vachharajani, Punit; Xavier, Ramnik

    2012-01-01

    Noroviruses (NVs) cause the majority of cases of epidemic nonbacterial gastroenteritis worldwide and contribute to endemic enteric disease. However, the molecular mechanisms responsible for immune control of their replication are not completely understood. Here we report that the transcription factor interferon regulatory factor 1 (IRF-1) is required for control of murine NV (MNV) replication and pathogenesis in vivo. This led us to studies documenting a cell-autonomous role for IRF-1 in gamma interferon (IFN-γ)-mediated inhibition of MNV replication in primary macrophages. This role of IRF-1 in the inhibition of MNV replication by IFN-γ is independent of IFN-αβ signaling. While the signal transducer and activator of transcription STAT-1 was also required for IFN-γ-mediated inhibition of MNV replication in vitro, class II transactivator (CIITA), interferon regulatory factor 3 (IRF-3), and interferon regulatory factor 7 (IRF-7) were not required. We therefore hypothesized that there must be a subset of IFN-stimulated genes (ISGs) regulated by IFN-γ in a manner dependent only on STAT-1 and IRF-1. Analysis of transcriptional profiles of macrophages lacking various transcription factors confirmed this hypothesis. These studies identify a key role for IRF-1 in IFN-γ-dependent control of norovirus infection in mice and macrophages. PMID:22973039

  5. Targeting Interferon Regulatory Factor for Cardiometabolic Diseases: Opportunities and Challenges.

    PubMed

    Zhang, Yaxing; Zhang, Xiao-Jing; Li, Hongliang

    2017-01-01

    The pathological activation of innate immune system may contribute to the development of cardiometabolic diseases. The interferon regulatory factor (IRF) family members, which are the major transcription factors in innate immune signaling, are implicated in cardiometabolic diseases. The aim of this review is to summary the current knowledge of the biological functions of IRFs in innate immune responses and immune cell development, and highlight our contemporary understanding of the functions and molecular mechanisms of IRFs in metabolic diseases, cardiovascular remodeling, and stroke. IRFs are the essential regulators of cardiometabolic diseases via immune-dependent and - independent manners. IRFs signaling is the promising target to manage the initiation and progression of cardiometabolic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Pestivirus Npro Directly Interacts with Interferon Regulatory Factor 3 Monomer and Dimer

    PubMed Central

    Holthauzen, Luis Marcelo F.; Ruggli, Nicolas

    2016-01-01

    ABSTRACT Interferon regulatory factor 3 (IRF3) is a transcription factor involved in the activation of type I alpha/beta interferon (IFN-α/β) in response to viral infection. Upon viral infection, the IRF3 monomer is activated into a phosphorylated dimer, which induces the transcription of interferon genes in the nucleus. Viruses have evolved several ways to target IRF3 in order to subvert the innate immune response. Pestiviruses, such as classical swine fever virus (CSFV), target IRF3 for ubiquitination and subsequent proteasomal degradation. This is mediated by the viral protein Npro that interacts with IRF3, but the molecular details for this interaction are largely unknown. We used recombinant Npro and IRF3 proteins and show that Npro interacts with IRF3 directly without additional proteins and forms a soluble 1:1 complex. The full-length IRF3 but not merely either of the individual domains is required for this interaction. The interaction between Npro and IRF3 is not dependent on the activation state of IRF3, since Npro binds to a constitutively active form of IRF3 in the presence of its transcriptional coactivator, CREB-binding protein (CBP). The results indicate that the Npro-binding site on IRF3 encompasses a region that is unperturbed by the phosphorylation and subsequent activation of IRF3 and thus excludes the dimer interface and CBP-binding site. IMPORTANCE The pestivirus N-terminal protease, Npro, is essential for evading the host's immune system by facilitating the degradation of interferon regulatory factor 3 (IRF3). However, the nature of the Npro interaction with IRF3, including the IRF3 species (inactive monomer versus activated dimer) that Npro targets for degradation, is largely unknown. We show that classical swine fever virus Npro and porcine IRF3 directly interact in solution and that full-length IRF3 is required for interaction with Npro. Additionally, Npro interacts with a constitutively active form of IRF3 bound to its transcriptional

  7. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  8. Important role of interferon regulatory factor (IRF)-3 in the interferon response of mouse macrophages upon infection by Newcastle disease virus.

    PubMed

    Wilden, Holger; Schirrmacher, Volker; Fournier, Philippe

    2011-08-01

    Newcastle disease virus (NDV) is an interesting agent for activating innate immune activity in macrophages including secretion of TNF-α and IFN-α, upregulation of TRAIL and activation of NF-κB and iNOS. However, the molecular mechanism of such cellular activities remains largely unknown. Tumor selectivity of replication of NDV has been described to be linked to deviations in tumor cells of the type I interferon response. We therefore focused on the interferon response to NDV of macrophages as part of innate anti-viral and anti-tumor activity. In particular, we investigated the functional significance of the interferon regulatory factor genes (IRF)-3 and IRF-7. Deletion of the IRF-3 or IRF-7 gene was found to increase susceptibility of mouse macrophages to virus infection. Surprisingly, NDV replicated better in IRF-3 KO than in IRF-7 KO macrophages. Further analysis showed that IRF-3 KO macrophages have a lower basal and NDV-induced RIG-I expression in comparison to IRF-7 KO macrophages. This might explain why, in IRF-3 KO macrophages, the secretion of type I interferons after NDV infection is delayed, when compared to IRF-7 KO and wild-type macrophages. In addition, IRF-3 KO cells showed reduced NDV-induced levels of IRF-7. This effect could be prevented by priming the cells first by interferon-α. Further results indicated that an early production of type I interferon rather than high maximal levels at later time points are important for resistance to infection by NDV. In conclusion, these results demonstrate an important role of IRF-3 for the innate anti-viral response to NDV of mouse macrophages.

  9. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2.

    PubMed

    Yu, Tao; Yang, Yanyan; Kwak, Yi-Seong; Song, Gwan Gyu; Kim, Mi-Yeon; Rhee, Man Hee; Cho, Jae Youl

    2017-04-01

    Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng , a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis factor-α/interferon-γ-treated synovial cells, and HEK293 cells transfected with various inducers of inflammation. G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis factor-α and interleukin-1β. G-Rc also markedly suppressed the activation of TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling.

  10. Inhibition of Interferon Regulatory Factor 3 Activation by Paramyxovirus V Protein

    PubMed Central

    Irie, Takashi; Kiyotani, Katsuhiro; Igarashi, Tomoki; Yoshida, Asuka

    2012-01-01

    The V protein of Sendai virus (SeV) suppresses innate immunity, resulting in enhancement of viral growth in mouse lungs and viral pathogenicity. The innate immunity restricted by the V protein is induced through activation of interferon regulatory factor 3 (IRF3). The V protein has been shown to interact with melanoma differentiation-associated gene 5 (MDA5) and to inhibit beta interferon production. In the present study, we infected MDA5-knockout mice with V-deficient SeV and found that MDA5 was largely unrelated to the innate immunity that the V protein suppresses in vivo. We therefore investigated the target of the SeV V protein. We previously reported interaction of the V protein with IRF3. Here we extended the observation and showed that the V protein appeared to inhibit translocation of IRF3 into the nucleus. We also found that the V protein inhibited IRF3 activation when induced by a constitutive active form of IRF3. The V proteins of measles virus and Newcastle disease virus inhibited IRF3 transcriptional activation, as did the V protein of SeV, while the V proteins of mumps virus and Nipah virus did not, and inhibition by these proteins correlated with interaction of each V protein with IRF3. These results indicate that IRF3 is important as an alternative target of paramyxovirus V proteins. PMID:22532687

  11. Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3.

    PubMed

    Chang, Ruey-Yi; Hsu, Ta-Wen; Chen, Yen-Lin; Liu, Shu-Fan; Tsai, Yi-Jer; Lin, Yun-Tong; Chen, Yi-Shiuan; Fan, Yi-Hsin

    2013-09-27

    Noncoding RNA (ncRNA) plays a critical role in modulating a broad range of diseases. All arthropod-borne flaviviruses produce short fragment ncRNA (sfRNA) collinear with highly conserved regions of the 3'-untranslated region (UTR) in the viral genome. We show that the molar ratio of sfRNA to genomic RNA in Japanese encephalitis virus (JEV) persistently infected cells is greater than that in acutely infected cells, indicating an sfRNA role in establishing persistent infection. Transfecting excess quantities of sfRNA into JEV-infected cells reduced interferon-β (IFN-β) promoter activity by 57% and IFN-β mRNA levels by 52%, compared to mock-transfected cells. Transfection of sfRNA into JEV-infected cells also reduced phosphorylation of interferon regulatory factor-3 (IRF-3), the IFN-β upstream regulator, and blocked roughly 30% of IRF-3 nuclear localization. Furthermore, JEV-infected sfRNA transfected cells produced 23% less IFN-β-stimulated apoptosis than mock-transfected groups did. Taken together, these results suggest that sfRNA plays a role against host-cell antiviral responses, prevents cells from undergoing apoptosis, and thus contributes to viral persistence. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Interferons and Interferon Regulatory Factors in Malaria

    PubMed Central

    Claser, Carla; Tan, Kevin Shyong Wei; Rénia, Laurent

    2014-01-01

    Malaria is one of the most serious infectious diseases in humans and responsible for approximately 500 million clinical cases and 500 thousand deaths annually. Acquired adaptive immune responses control parasite replication and infection-induced pathologies. Most infections are clinically silent which reflects on the ability of adaptive immune mechanisms to prevent the disease. However, a minority of these can become severe and life-threatening, manifesting a range of overlapping syndromes of complex origins which could be induced by uncontrolled immune responses. Major players of the innate and adaptive responses are interferons. Here, we review their roles and the signaling pathways involved in their production and protection against infection and induced immunopathologies. PMID:25157202

  13. Association of a common interferon regulatory factor 5 (IRF5) variant with increased risk of systemic lupus erythematosus (SLE).

    PubMed

    Demirci, F Y K; Manzi, S; Ramsey-Goldman, R; Minster, R L; Kenney, M; Shaw, P S; Dunlop-Thomas, C M; Kao, A H; Rhew, E; Bontempo, F; Kammerer, C; Kamboh, M I

    2007-05-01

    Interferon regulatory factor 5 (IRF5) belongs to a family of transcription factors that control the transactivation of type I interferon system-related genes, as well as the expression of several other genes involved in immune response, cell signalling, cell cycle control and apoptosis. Two recent studies reported a significant association between the IRF5/rs2004640 T allele and systemic lupus erythematosus (SLE). The purpose of this study was to determine whether the reported rs2004640 T allele association could be replicated in our independent SLE case-control sample. We genotyped DNA samples from 370 white SLE-affected female subjects and 462 white healthy female controls using the TaqMan Assay-on-Demand for rs2004640, and performed a case-control genetic association analysis. Frequency of the rs2004640 T allele was significantly higher in cases than in controls (56.5% vs. 50%; P= 0.008). The odds ratio for T allele carriers was 1.68 (95% CI: 1.20 - 2.34; P= 0.003). Our results in an independent case-control sample confirm the robust association of the IRF5/rs2004640 T allele with SLE risk, and further support the relevance of the type I interferon system in the pathogenesis of SLE and autoimmunity.

  14. Ikkepsilon regulates viral-induced interferon regulatory factor-3 activation via a redox-sensitive pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indukuri, Hemalatha; Castro, Shawn M.; Liao, S.-M.

    2006-09-15

    Respiratory syncytial virus (RSV)-induced chemokine gene expression occurs through the activation of a subset of transcription factors, including Interferon Regulatory Factor (IRF)-3. In this study, we have investigated the signaling pathway leading to RSV-induced IRF-3 activation and whether it is mediated by intracellular reactive oxygen species (ROS) generation. Our results show that RSV infection induces expression and catalytic activity of IKK{epsilon}, a noncanonical IKK-like kinase. Expression of a kinase-inactive IKK{epsilon} blocks RSV-induced IRF-3 serine phosphorylation, nuclear translocation and DNA-binding, leading to inhibition of RANTES gene transcription, mRNA expression and protein synthesis. Treatment of alveolar epithelial cells with antioxidants or withmore » NAD(P)H oxidase inhibitors abrogates RSV-induced chemokine secretion, IRF-3 phosphorylation and IKK{epsilon} induction, indicating that ROS generation plays a fundamental role in the signaling pathway leading to IRF-3 activation, therefore, identifying a novel molecular target for the development of strategies aimed to modify the inflammatory response associated with RSV infection of the lung.« less

  15. Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation.

    PubMed

    Polak, Marta E; Ung, Chuin Ying; Masapust, Joanna; Freeman, Tom C; Ardern-Jones, Michael R

    2017-04-06

    Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-γ production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses.

  16. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression.

    PubMed

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-08-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP‑1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP‑1 cells were differentiated to macrophages by phorbol 12‑myristate 13‑acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon‑γ (IFN‑γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription‑quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme‑linked immunosorbent assay. IRF5 protein and nuclei co‑localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN‑γ stimulation‑induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels.

  17. Antiviral Activity of Porcine Interferon Regulatory Factor 1 against Swine Viruses in Cell Culture.

    PubMed

    Li, Yongtao; Chang, Hongtao; Yang, Xia; Zhao, Yongxiang; Chen, Lu; Wang, Xinwei; Liu, Hongying; Wang, Chuanqing; Zhao, Jun

    2015-11-17

    Interferon regulatory factor 1 (IRF1), as an important transcription factor, is abundantly induced upon virus infections and participates in host antiviral immune responses. However, the roles of porcine IRF1 (poIRF1) in host antiviral defense remain poorly understood. In this study, we determined that poIRF1 was upregulated upon infection with viruses and distributed in nucleus in porcine PK-15 cells. Subsequently, we tested the antiviral activities of poIRF1 against several swine viruses in cells. Overexpression of poIRF1 can efficiently suppress the replication of viruses, and knockdown of poIRF1 promotes moderately viral replication. Interestingly, overexpression of poIRF1 enhances dsRNA-induced IFN-β and IFN-stimulated response element (ISRE) promoter activation, whereas knockdown of poIRF1 cannot significantly affect the activation of IFN-β promoter induced by RNA viruses. This study suggests that poIRF1 plays a significant role in cellular antiviral response against swine viruses, but might be dispensable for IFN-β induction triggered by RNA viruses in PK-15 cells. Given these results, poIRF1 plays potential roles in cellular antiviral responses against swine viruses.

  18. Differential Delivery of Genomic Double-Stranded RNA Causes Reovirus Strain-Specific Differences in Interferon Regulatory Factor 3 Activation.

    PubMed

    Stuart, Johnasha D; Holm, Geoffrey H; Boehme, Karl W

    2018-05-01

    Serotype 3 (T3) reoviruses induce substantially more type 1 interferon (IFN-I) secretion than serotype 1 (T1) strains. However, the mechanisms underlying differences in IFN-I production between T1 and T3 reoviruses remain undefined. Here, we found that differences in IFN-I production between T1 and T3 reoviruses correlate with activation of interferon regulatory factor 3 (IRF3), a key transcription factor for the production of IFN-I. T3 strain rsT3D activated IRF3 more rapidly and to a greater extent than the T1 strain rsT1L, in simian virus 40 (SV40) immortalized endothelial cells (SVECs). Differences in IRF3 activation between rsT1L and rsT3D were observed in the first hours of infection and were independent of de novo viral RNA and protein synthesis. NF-κB activation mirrored IRF3 activation, with rsT3D inducing more NF-κB activity than rsT1L. We also found that IRF3 and NF-κB are activated in a mitochondrial antiviral-signaling protein (MAVS)-dependent manner. rsT1L does not suppress IRF3 activation, as IRF3 phosphorylation could be induced in rsT1L-infected cells. Transfected rsT1L and rsT3D RNA induced IRF3 phosphorylation, indicating that genomic RNA from both strains has the capacity to activate IRF3. Finally, bypassing the normal route of reovirus entry by transfecting in vitro -generated viral cores revealed that rsT1L and rsT3D core particles induced equivalent IRF3 activation. Taken together, our findings indicate that entry-related events that occur after outer capsid disassembly, but prior to deposition of viral cores into the cytoplasm, influence the efficiency of IFN-I responses to reovirus. This work provides further insight into mechanisms by which nonenveloped viruses activate innate immune responses. IMPORTANCE Detection of viral nucleic acids by the host cell triggers type 1 interferon (IFN-I) responses, which are critical for containing and clearing viral infections. Viral RNA is sensed in the cytoplasm by cellular receptors that initiate

  19. 3C Protease of Enterovirus D68 Inhibits Cellular Defense Mediated by Interferon Regulatory Factor 7

    PubMed Central

    Xiang, Zichun; Liu, Lulu; Lei, Xiaobo; Zhou, Zhuo

    2015-01-01

    ABSTRACT Human enterovirus 68 (EV-D68) is a member of the EV-D species, which belongs to the EV genus of the Picornaviridae family. Over the past several years, clusters of EV-D68 infections have occurred worldwide. A recent outbreak in the United States is the largest one associated with severe respiratory illness and neurological complication. Although clinical symptoms are recognized, the virus remains poorly understood. Here we report that EV-D68 inhibits innate antiviral immunity by downregulation of interferon regulatory factor 7 (IRF7), an immune factor with a pivotal role in viral pathogenesis. This process depends on 3Cpro, an EV-D68-encoded protease, to mediate IRF7 cleavage. When expressed in host cells, 3Cpro targets Q167 and Q189 within the constitutive activation domain, resulting in cleavage of IRF7. Accordingly, wild-type IRF7 is fully active. However, IRF7 cleavage abrogated its capacity to activate type I interferon expression and limit replication of EV-D68. Notably, IRF7 cleavage strictly requires the protease activity of 3Cpro. Together, these results suggest that a dynamic interplay between 3Cpro and IRF7 may determine the outcome of EV-D68 infection. IMPORTANCE EV-D68 is a globally emerging pathogen, but the molecular basis of EV-D68 pathogenesis is unclear. Here we report that EV-D68 inhibits innate immune responses by targeting an immune factor, IRF7. This involves the 3C protease encoded by EV-D68, which mediates the cleavage of IRF7. These observations suggest that the 3Cpro-IRF7 interaction may represent an interface that dictates EV-D68 infection. PMID:26608321

  20. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dang; Fang, Liurong; Luo, Rui

    2010-08-13

    Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reductionmore » of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.« less

  1. Interferon regulatory factor 5 genetic variants are associated with cardiovascular disease in patients with rheumatoid arthritis

    PubMed Central

    2014-01-01

    Introduction Rheumatoid arthritis (RA) is a complex polygenic inflammatory disease associated with accelerated atherosclerosis and increased cardiovascular (CV) disease risk. Interferon regulatory factor 5 (IRF5) is a regulator of type I interferon induction. Recently, researchers have described an association between multiple single-nucleotide polymorphisms of the IRF5 gene and some rheumatic disorders. In this study, we aimed to evaluate whether three different haplotype blocks within the IRF5 locus which have been shown to alter the protein function are involved in the risk of CV events occurring in Spanish RA patients. Methods Three IRF5 polymorphisms (rs2004640, rs2070197 and rs10954213) representative of each haplotype group were genotyped by performing TaqMan assays using a 7900HT Fast Real-Time PCR System with tissue from a total of 2,137 Spanish patients diagnosed with RA. Among them, 390 (18.2%) had experienced CV events. The relationship of IRF5 genotypes and haplotypes to CV events was tested using Cox regression. Results Male sex, age at RA diagnosis and most traditional risk factors (hypertension, dyslipidemia and smoking habit) were associated with increased risk for CV events in the RA population. Interestingly, a protective effect of both IRF5 rs2004640 GG and IRF5 rs10954213 GG genotypes against the risk for CV events after adjusting the results for sex, age at RA diagnosis and traditional CV disease risk factors was observed (hazard ratio (HR) = 0.6, 95% confidence interval (CI) = 0.38 to 0.92, P = 0.02; and HR = 0.58, 95% CI = 0.36 to 0.95, P = 0.03, respectively). Moreover, we detected a protective effect of the GTG haplotype against the risk for CV events after adjusting the results for potential confounding factors (HR = 0.72, 95% CI = 0.56 to 0.93, P = 0.012). Conclusions Our results reveal that IRF5 gene variants are associated with risk of CV events in patients with RA. PMID:25011482

  2. Interferon Regulatory Factor 7 Functions as a Novel Negative Regulator of Pathological Cardiac Hypertrophy

    PubMed Central

    Jiang, Ding-Sheng; Liu, Yu; Zhou, Heng; Zhang, Yan; Zhang, Xiao-Dong; Zhang, Xiao-Fei; Chen, Ke; Gao, Lu; Peng, Juan; Gong, Hui; Chen, Yingjie; Yang, Qinglin; Liu, Peter P.; Fan, Guo-Chang; Zou, Yunzeng; Li, Hongliang

    2017-01-01

    Cardiac hypertrophy is a complex pathological process that involves multiple factors including inflammation and apoptosis. Interferon regulatory factor 7 (IRF7) is a multifunctional regulator that participates in immune regulation, cell differentiation, apoptosis, and oncogenesis. However, the role of IRF7 in cardiac hypertrophy remains unclear. We performed aortic banding in cardiac-specific IRF7 transgenic mice, IRF7 knockout mice, and the wild-type littermates of these mice. Our results demonstrated that IRF7 was downregulated in aortic banding–induced animal hearts and cardiomyocytes that had been treated with angiotensin II or phenylephrine for 48 hours. Accordingly, heart-specific overexpression of IRF7 significantly attenuated pressure overload–induced cardiac hypertrophy, fibrosis, and dysfunction, whereas loss of IRF7 led to opposite effects. Moreover, IRF7 protected against angiotensin II–induced cardiomyocyte hypertrophy in vitro. Mechanistically, we identified that IRF7-dependent cardioprotection was mediated through IRF7 binding to inhibitor of κB kinase-β, and subsequent nuclear factor-κB inactivation. In fact, blocking nuclear factor-κB signaling with cardiac-specific inhibitors of κBαS32A/S36A super-repressor transgene counteracted the adverse effect of IRF7 deficiency. Conversely, activation of nuclear factor-κB signaling via a cardiac-specific conditional inhibitor of κB kinase-βS177E/S181E (constitutively active) transgene negated the antihypertrophic effect of IRF7 overexpression. Our data demonstrate that IRF7 acts as a novel negative regulator of pathological cardiac hypertrophy by inhibiting nuclear factor-κB signaling and may constitute a potential therapeutic target for pathological cardiac hypertrophy. PMID:24396025

  3. The Jak-STAT pathway stimulated by interferon alpha or interferon beta.

    PubMed

    Horvath, Curt M

    2004-11-23

    Type I interferons, such as interferon alpha and interferon beta (IFN-alpha and beta), signal through a Janus kinase (Jak) to signal transduction and activator of transcription (STAT) pathway to stimulate gene expression. In response to ligand binding, the receptors dimerize, Jaks phosphorylate STAT1 and STAT2, which then dimerize and interact with a third transcriptional regulator IFN regulatory factor 9 (IRF9) to stimulate gene expression. IFN-alpha is the main innate antiviral cytokine and is essential for effective immune response to viral infection. The animation shows activation of STAT-responsive gene expression in response to type I IFNs.

  4. The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3.

    PubMed

    Seago, Julian; Hilton, Louise; Reid, Elizabeth; Doceul, Virginie; Jeyatheesan, Janan; Moganeradj, Kartykayan; McCauley, John; Charleston, Bryan; Goodbourn, Stephen

    2007-11-01

    Classical swine fever virus (CSFV) is a member of the genus Pestivirus in the family Flaviviridae. The N(pro) product of CSFV targets the host's innate immune response and can prevent the production of type I interferon (IFN). The mechanism by which CSFV orchestrates this inhibition was investigated and it is shown that, like the related pestivirus bovine viral diarrhea virus (BVDV), this involves the N(pro) protein targeting interferon regulatory factor-3 (IRF-3) for degradation by proteasomes and thus preventing IRF-3 from activating transcription from the IFN-beta promoter. Like BVDV, the steady-state levels of IRF-3 mRNA are not reduced markedly by CSFV infection or N(pro) overexpression. Moreover, IFN-alpha stimulation of CSFV-infected cells induces the antiviral protein MxA, indicating that, as in BVDV-infected cells, the JAK/STAT pathway is not targeted for inhibition.

  5. Cooperative Regulation of the Interferon Regulatory Factor-1 Tumor Suppressor Protein by Core Components of the Molecular Chaperone Machinery*

    PubMed Central

    Narayan, Vikram; Eckert, Mirjam; Zylicz, Alicja; Zylicz, Maciej; Ball, Kathryn L.

    2009-01-01

    Our understanding of the post-translational processes involved in regulating the interferon regulatory factor-1 (IRF-1) tumor suppressor protein is limited. The introduction of mutations within the C-terminal Mf1 domain (amino acids 301–325) impacts on IRF-1-mediated gene repression and growth suppression as well as the rate of IRF-1 degradation. However, nothing is known about the proteins that interact with this region to modulate IRF-1 function. A biochemical screen for Mf1-interacting proteins has identified an LXXLL motif that is required for binding of Hsp70 family members and cooperation with Hsp90 to regulate IRF-1 turnover and activity. These conclusions are supported by the finding that Hsp90 inhibitors suppress IRF-1-dependent transcription shortly after treatment, although at later time points inhibition of Hsp90 leads to an Hsp70-dependent depletion of nuclear IRF-1. Conversely, the half-life of IRF-1 is increased by Hsp90 in an ATPase-dependent manner leading to the accumulation of nuclear but not cytoplasmic IRF-1. This study begins to elucidate the role of the Mf1 domain of IRF-1 in orchestrating the recruitment of regulatory factors that can impact on both its turnover and transcriptional activity. PMID:19502235

  6. Preferential association of interferon regulatory factor 5 gene variants with seronegative rheumatoid arthritis in 2 Swedish case-control studies.

    PubMed

    Wang, Chuan; Kokkonen, Heidi; Sandling, Johanna K; Johansson, Martin; Seddighzadeh, Maria; Padyukov, Leonid; Rantapää-Dahlqvist, Solbritt; Syvänen, Ann-Christine

    2011-10-01

    Two interferon regulatory factor 5 (IRF5) gene variants were examined for association with rheumatoid arthritis (RA). A total of 2300 patients with RA and 1836 controls were recruited from 2 independent RA studies in Sweden. One insertion-deletion polymorphism (CGGGG indel) and one single-nucleotide polymorphism (rs10488631) in the IRF5 gene were genotyped and analyzed within RA subgroups stratified by rheumatoid factor (RF) and anticitrullinated peptide antibodies (ACPA). The CGGGG indel was preferentially associated with the RF-negative (OR 1.29, p = 7.9 × 10(-5)) and ACPA-negative (OR 1.27, p = 7.3 × 10(-5)) RA subgroups compared to the seropositive counterparts. rs10488631 was exclusively associated within the seronegative RA subgroups (RF-negative: OR 1.24, p = 0.016; ACPA-negative: OR 1.27, p = 4.1 × 10(-3)). Both the CGGGG indel and rs10488631 are relevant for RA susceptibility, especially for seronegative RA.

  7. Interferon Regulatory Factor 6 Has a Protective Role in the Host Response to Endotoxic Shock

    PubMed Central

    Volk, Paige; Moreland, Jessica G.; Dunnwald, Martine

    2016-01-01

    Interferon Regulatory Factor (IRF) 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line. However, a function for Irf6 in innate immune cells was not previously reported. In the present study, we investigated the expression and function of Irf6 in bone marrow-derived neutrophils and macrophages. We show here, using a conditional knockout of Irf6 in lysosymeM expressing cells, that Irf6 is required for resistance to LPS-induced endotoxic shock. In addition, Irf6-deficient bone marrow-derived neutrophils exhibited increased chemotactic index and velocity compared with wild-type cells in vitro. TLR4-specific KC and IL6 secretions were upregulated in Irf6-deficient bone marrow-derived macrophages in vitro. These cells also exhibited an increased level of phosphorylated IkBa. Collectively, our findings suggest a role for Irf6 in the resistance to endotoxic shock due to NFk-B-mediated alteration of cytokine production. PMID:27035130

  8. Ancient duplications and functional divergence in the interferon regulatory factors of vertebrates provide insights into the evolution of vertebrate immune systems.

    PubMed

    Du, Kang; Zhong, Zaixuan; Fang, Chengchi; Dai, Wei; Shen, Yanjun; Gan, Xiaoni; He, Shunping

    2018-04-01

    Interferon regulatory factors (IRFs) were first discovered as transcription factors that regulate the transcription of human interferon (IFN)-β. Increasing evidence shows that they might be important players involved in Adaptive immune system (AIS) evolution. Although numbers of IRFs have been identified in chordates, the evolutionary history and functional diversity of this gene family during the early evolution of vertebrates have remained obscure. Using IRF HMM profile and HMMER searches, we identified 148 IRFs in 11 vertebrates and 4 protochordates. For them, we reconstructed the phylogenetic relationships, determined the synteny conservation, investigated the profile of natural selection, and analyzed the expression patterns in four "living fossil" vertebrates: lamprey, elephant shark, coelacanth and bichir. The results from phylogeny and synteny analysis imply that vertebrate IRFs evolved from three predecessors, instead of four as suggested in a previous study, as results from an ancient duplication followed by special expansions and lost during the vertebrate evolution. The profile of natural selection and expression reveals functional dynamics during the process. Together, they suggest that the 2nd whole-genome duplication (2WGD) provided raw materials for innovation in the IRF family, and that the birth of type-I IFN might be an important factor inducing the establishment of IRF-mediated immune networks. As a member involved in the AIS evolution, IRF provide insights into the process and mechanism involved in the complexity and novelties of vertebrate immune systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Interferon regulatory factor 3 (IRF-3) in Japanese flounder, Paralichthys olivaceus: sequencing, limited tissue distribution, inducible expression and induction of fish type I interferon promoter.

    PubMed

    Hu, Guobin; Yin, Xiangyan; Lou, Huimin; Xia, Jun; Dong, Xianzhi; Zhang, Jianyie; Liu, Qiuming

    2011-02-01

    Two cDNAs with different 3'-untranslated region (UTR) encoding an interferon regulatory factor 3 (IRF-3) were cloned from head kidney of Japanese flounder, Paralichthys olivaceus, by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. Sequence analysis reveals that they were generated by alternative polyadenylation. The predicted protein consists of 467 amino acid residues which shares the highest identity of 50.7-57.6% to fish IRF-3 and possesses a DNA-binding domain (DBD), an IRF association domain (IAD) and a serine-rich domain (SRD) of vertebrate IRF-3. The presence of these domains along with phylogenetic analysis places it into the IRF-3 group of the IRF-3 subfamily. RT-PCR analysis revealed that flounder IRF-3 was expressed constitutively in limited tissue types including head kidney, spleen, kidney, heart, gill, intestine and liver. A quantitative real time PCR assay was employed to monitor expression of IRF-3, type I interferon (IFN) and Mx in flounder head kidney and gill. All three genes were up-regulated by polyinosinic:polycytidylic acid (polyI:C) and lymphocystis disease virus (LCDV) with an earlier but slight and less persistent increase in transcription levels seen for the IRF-3. Finally, flounder IRF-3 was proved to induce fish type I IFN promoter in FG9307 cells, a flounder gill cell line, by a luciferase assay. These results provide insights into the roles of fish IRF-3 in the antiviral immunity. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Smad7 Protein Induces Interferon Regulatory Factor 1-dependent Transcriptional Activation of Caspase 8 to Restore Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Apoptosis

    PubMed Central

    Hong, Suntaek; Kim, Hye-Youn; Kim, Jooyoung; Ha, Huyen Trang; Kim, Young-Mi; Bae, Eunjin; Kim, Tae Hyung; Lee, Kang Choon; Kim, Seong-Jin

    2013-01-01

    Smad7 has been known as a negative regulator for the transforming growth factor-β (TGF-β) signaling pathway through feedback regulation. However, Smad7 has been suspected to have other biological roles through the regulation of gene transcription. By screening differentially regulated genes, we found that the caspase 8 gene was highly up-regulated in Smad7-expressing cells. Smad7 was able to activate the caspase 8 promoter through recruitment of the interferon regulatory factor 1 (IRF1) transcription factor to the interferon-stimulated response element (ISRE) site. Interaction of Smad7 on the caspase 8 promoter was confirmed with electrophoretic mobility shift assay and chromatin immunoprecipitation experiment. Interestingly, Smad7 did not directly interact with the ISRE site, but it increased the binding activity of IRF1 with ISRE. These results support that Smad7 recruits IRF1 protein on the caspase 8 promoter and functions as a transcriptional coactivator. To confirm the biological significance of caspase 8 up-regulation, we tested tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated cell death assay in breast cancer cells. Smad7 in apoptosis-resistant MCF7 cells markedly sensitized the cells to TRAIL-induced cell death by restoring the caspase cascade. Furthermore, restoration of caspase 8-mediated apoptosis pathway repressed the tumor growth in the xenograft model. In conclusion, we suggest a novel role for Smad7 as a transcriptional coactivator for caspase 8 through the interaction with IRF1 in regulation of the cell death pathway. PMID:23255602

  11. Impairment of interferon regulatory factor-3 activation by hepatitis C virus core protein basic amino acid region 1.

    PubMed

    Inoue, Kazuaki; Tsukiyama-Kohara, Kyoko; Matsuda, Chiho; Yoneyama, Mitsutoshi; Fujita, Takashi; Kuge, Shusuke; Yoshiba, Makoto; Kohara, Michinori

    2012-11-30

    Interferon regulatory factor-3 (IRF-3), a key transcriptional factor in the type I interferon system, is frequently impaired by hepatitis C virus (HCV), in order to establish persistent infection. However, the exact mechanism by which the virus establishes persistent infection has not been fully understood yet. The present study aimed to investigate the effects of various HCV proteins on IRF-3 activation, and elucidate the underlying mechanisms. To achieve this, full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into HepG2 cells. IFN-β induction, plaque formation, and IRF-3 dimerization were elicited by Newcastle disease virus (NDV) infection. The expressions of IRF-3 homodimer and its monomer, Ser386-phosphorylated IRF-3, and HCV core protein were detected by immunofluorescence and western blotting. IFN-β mRNA expression was quantified by real-time PCR (RT-PCR), and IRF-3 activity was measured by the levels of IRF-3 dimerization and phosphorylation, induced by NDV infection or polyriboinosinic:polyribocytidylic acid [poly(I:C)]. Switching of the expression of the complete HCV genome as well as the core proteins, E1, E2, and NS2, suppressed IFN-β mRNA levels and IRF-3 dimerization, induced by NDV infection. Our study revealed a crucial region of the HCV core protein, basic amino acid region 1 (BR1), to inhibit IRF-3 dimerization as well as its phosphorylation induced by NDV infection and poly (I:C), thus interfering with IRF-3 activation. Therefore, our study suggests that rescue of the IRF-3 pathway impairment may be an effective treatment for HCV infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Role of interferon regulatory factor-1 in lipopolysaccharide-induced mitochondrial damage and oxidative stress responses in macrophages

    PubMed Central

    Deng, Song-Yun; Zhang, Le-Meng; Ai, Yu-hang; Pan, Pin-Hua; Zhao, Shuang-Ping; Su, Xiao-Li; Wu, Dong-Dong; Tan, Hong-Yi; Zhang, Li-Na; Tsung, Allan

    2017-01-01

    Sepsis causes many early deaths; both macrophage mitochondrial damage and oxidative stress responses are key factors in its pathogenesis. Although the exact mechanisms responsible for sepsis-induced mitochondrial damage are unknown, the nuclear transcription factor, interferon regulatory factor-1 (IRF-1) has been reported to cause mitochondrial damage in several diseases. Previously, we reported that in addition to promoting systemic inflammation, IRF-1 promoted the apoptosis of and inhibited autophagy in macrophages. In the present study, we hypothesized that lipopolysaccharide (LPS)-induced IRF-1 activation in macrophages may promote mitochondrial damage and oxidative stress. In vitro, LPS was found to promote IRF-1 activation, reactive oxygen species (ROS) production, adenosine triphosphate (ATP) depletion, superoxide dismutase (SOD) consumption, malondialdehyde (MDA) accumulation and mitochondrial depolarization in macrophages in a time- and dose-dependent manner. These effects were abrogated in cells in which IRF-1 was knocked down. Furthermore, IRF-1 overexpression increased LPS-induced oxidative stress responses and mitochondrial damage. In vivo, peritoneal macrophages obtained from IRF-1 knockout (KO) mice produced less ROS and had less mitochondrial depolarization and damage following the administration of LPS, when compared to their wild-type (WT) counterparts. In addition, IRF-1 KO mice exhibited a decreased release of mitochondrial DNA (mtDNA) following the administration of LPS. Thus, IRF-1 may be a critical factor in augmenting LPS-induced oxidative stress and mitochondrial damage in macrophages. PMID:28849179

  13. MicroRNA-302a suppresses influenza A virus-stimulated interferon regulatory factor-5 expression and cytokine storm induction.

    PubMed

    Chen, Xueyuan; Zhou, Li; Peng, Nanfang; Yu, Haisheng; Li, Mengqi; Cao, Zhongying; Lin, Yong; Wang, Xueyu; Li, Qian; Wang, Jun; She, Yinglong; Zhu, Chengliang; Lu, Mengji; Zhu, Ying; Liu, Shi

    2017-12-29

    During influenza A virus (IAV) infection, cytokine storms play a vital and critical role in clinical outcomes. We have previously reported that microRNA (miR)-302c regulates IAV-induced IFN expression by targeting the 3'-UTR of nuclear factor κB (NF-κB)-inducing kinase. In the current study, we found that miR-302a, another member of the miR-302 cluster, controls the IAV-induced cytokine storm. According to results from cell-based and knockout mouse models, IAV induces a cytokine storm via interferon regulatory factor-5 (IRF-5). We also found that IAV infection up-regulates IRF-5 expression and that IRF-5 in turn promotes IAV replication. Furthermore, we observed that IRF-5 is a direct target of miR-302a, which down-regulated IRF-5 expression by binding its 3'-UTR. Moreover, IAV increased IRF-5 expression by down-regulating miR-302a expression. Interestingly, miR-302a inhibited IAV replication. In IAV-infected patients, miR-302a expression was down-regulated, whereas IRF-5 expression was up-regulated. Taken together, our work uncovers and defines a signaling pathway implicated in an IAV-induced cytokine storm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Leishmania major Infection Activates NF-κB and Interferon Regulatory Factors 1 and 8 in Human Dendritic Cells▿

    PubMed Central

    Jayakumar, Asha; Donovan, Michael J.; Tripathi, Vinita; Ramalho-Ortigao, Marcelo; McDowell, Mary Ann

    2008-01-01

    The salient feature of dendritic cells (DC) is the initiation of appropriate adaptive immune responses by discriminating between pathogens. Using a prototypic model of intracellular infection, we previously showed that Leishmania major parasites prime human DC for efficient interleukin-12 (IL-12) secretion. L. major infection is associated with self-limiting cutaneous disease and powerful immunity. In stark contrast, the causative agent of visceral leishmaniasis, Leishmania donovani, does not prime human DC for IL-12 production. Here, we report that DC priming by L. major infection results in the early activation of NF-κB transcription factors and the up-regulation and nuclear translocation of interferon regulatory factor 1 (IRF-1) and IRF-8. The inhibition of NF-κB activation by the pretreatment of DC with caffeic acid phenethyl ester blocks L. major-induced IRF-1 and IRF-8 activation and IL-12 expression. We further demonstrate that IRF-1 and IRF-8 obtained from L. major-infected human DC specifically bind to their consensus binding sites on the IL-12p35 promoter, indicating that L. major infection either directly stimulates a signaling cascade or induces an autocrine pathway that activates IRF-1 and IRF-8, ultimately resulting in IL-12 transcription. PMID:18316378

  15. Molecular cloning and characterization of interferon regulatory factor 7 (IRF-7) in Japanese flounder, Paralichthys olivaceus.

    PubMed

    Hu, Guobin; Yin, Xiangyan; Xia, Jun; Dong, Xianzhi; Zhang, Jianyie; Liu, Qiuming

    2010-12-01

    Interferon regulatory factor (IRF) 7 in mammals is known to be a key player in regulating the type I interferon (IFN) response to viral infection as a transcription activator of IFNs and IFN-stimulated genes (ISGs). In this study, a full-length cDNA of Japanese flounder, Paralichthys olivaceus, (Po)IRF-7 was cloned and characterized. PoIRF-7 is 2032 bp in length, with an open reading frame (ORF) of 1293 bp that encodes 430 amino acid residues. The putative amino acid sequence shows the highest homology to fish IRF-7 with 51.5-76.3% identity and possesses a DNA-binding domain (DBD), an IRF association domain (IAD) and a serine-rich domain of vertebrate IRF-7. In addition, the tryptophan cluster of PoIRF-7 DBD consists of only four tryptophans, which is a characteristic unique to all fish IRF-7 members. The PoIRF-7 was expressed constitutively in all tested tissues of healthy flounders, with high levels in head kidney, spleen, gill, intestine and skin, and moderately expressed in FG9307 cells, a flounder gill epithelial cell line. Using a luciferase assay, PoIRF-7 was proved to be capable of activating fish type I IFN promoter in FG9307 cells. A quantitative real time PCR assay was employed to monitor the gene expression of PoIRF-7 and Mx in FG9307 cells and flounder head kidney and gill. Both genes were up-regulated by polyinosinic:polycytidylic acid (poly I:C) and lymphocystis disease virus (LCDV) though to a much lesser extent in FG9307 cells. Further, their transcription kinetics were similar in fish organs but different in FG9307 cells. These data provide insights into the functions of PoIRF-7 and imply a difference in PoIRF-7-related signaling pathways in antiviral response between cultured cells and live fish. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Interferon regulatory factor 4 attenuates Notch signaling to suppress the development of chronic lymphocytic leukemia

    PubMed Central

    Shukla, Vipul; Shukla, Ashima; Joshi, Shantaram S.

    2016-01-01

    Molecular pathogenesis of Chronic Lymphocytic Leukemia (CLL) is not fully elucidated. Genome wide association studies have linked Interferon Regulatory Factor 4 (IRF4) to the development of CLL. We recently established a causal relationship between low levels of IRF4 and development of CLL. However, the molecular mechanism through which IRF4 suppresses CLL development remains unclear. Deregulation of Notch signaling pathway has been identified as one of the most recurrent molecular anomalies in the pathogenesis of CLL. Yet, the role of Notch signaling as well as its regulation during CLL development remains poorly understood. Previously, we demonstrated that IRF4 deficient mice expressing immunoglobulin heavy chain Vh11 (IRF4−/−Vh11) developed spontaneous CLL with complete penetrance. In this study, we show that elevated Notch2 expression and the resulting hyperactivation of Notch signaling are common features of IRF4−/−Vh11 CLL cells. Our studies further reveal that Notch signaling is indispensable for CLL development in the IRF4−/−Vh11 mice. Moreover, we identify E3 ubiquitin ligase Nedd4, which targets Notch for degradation, as a direct target of IRF4 in CLL cells and their precursors. Collectively, our studies provide the first in vivo evidence for an essential role of Notch signaling in the development of CLL and establish IRF4 as a critical regulator of Notch signaling during CLL development. PMID:27232759

  17. Activation of interferon regulatory factor-3 via toll-like receptor 3 and immunomodulatory functions detected in A549 lung epithelial cells exposed to misplaced U1-snRNA.

    PubMed

    Sadik, Christian D; Bachmann, Malte; Pfeilschifter, Josef; Mühl, Heiko

    2009-08-01

    U1-snRNA is an integral part of the U1 ribonucleoprotein pivotal for pre-mRNA splicing. Toll-like receptor (TLR) signaling has recently been associated with immunoregulatory capacities of U1-snRNA. Using lung A549 epithelial/carcinoma cells, we report for the first time on interferon regulatory factor (IRF)-3 activation initiated by endosomally delivered U1-snRNA. This was associated with expression of the IRF3-inducible genes interferon-beta (IFN-beta), CXCL10/IP-10 and indoleamine 2,3-dioxygenase. Mutational analysis of the U1-snRNA-activated IFN-beta promoter confirmed the crucial role of the PRDIII element, previously proven pivotal for promoter activation by IRF3. Notably, expression of these parameters was suppressed by bafilomycin A(1), an inhibitor of endosomal acidification, implicating endosomal TLR activation. Since resiquimod, an agonist of TLR7/8, failed to stimulate A549 cells, data suggest TLR3 to be of prime relevance for cellular activation. To assess the overall regulatory potential of U1-snRNA-activated epithelial cells on cytokine production, co-cultivation with peripheral blood mononuclear cells (PBMC) was performed. Interestingly, A549 cells activated by U1-snRNA reinforced phytohemagglutinin-induced interleukin-10 release by PBMC but suppressed that of tumor necrosis factor-alpha, indicating an anti-inflammatory potential of U1-snRNA. Since U1-snRNA is enriched in apoptotic bodies and epithelial cells are capable of performing efferocytosis, the present data in particular connect to immunobiological aspects of apoptosis at host/environment interfaces.

  18. A mutation in the interferon regulatory element of HBV may influence the response of interferon treatment in chronic hepatitis B patients.

    PubMed

    Lu, Jia-Jie; Chen, En-Qiang; Yang, Jia-Hong; Zhou, Tao-You; Liu, Li; Tang, Hong

    2012-01-10

    A functional interferon regulatory element (IRE) has been found in the EnhI/X promoter region of hepatitis B virus (HBV) genome. The purpose of this study is to compare the gene order of responder and non-responder to interferon therapy in patients with chronic hepatitis B (CHB), so as to evaluate the relationship between IRE mutation and the response to interferon treatment for CHB patients. Synthetic therapeutic effect is divided into complete response (CR), partial response (PR) and non-response (NR). Among the 62 cases included in this study, 40 cases (64.5%) were in the response group (CR and PR) and 22 (35.5%) cases were in the NR group. Wild type sequence of HBV IRE TTTCACTTTC were found in 35 cases (56.5%), and five different IRE gene sequences. included TTTtACTTTC, TTTCAtTTTC, TTTtAtTTTC, TTTtACTTTt and cTTtACcTTC, were found in 22 cases (35.5%), 1 case (1.6%), 1 case (1.6%), 2 cases (3.2%) and 1 case (1.6%) respectively. There were 41.9%cases (26/62) with forth base C→T mutation, consisted of 32.5% (13/40) cases in response group and 59.1% (13/22) cases in NR group. Among the 35 cases with IRE sequences, there were 67.5% (27/40) cases in response group and 36.4% (8/22) in NR group, and the difference in IRE sequences between two groups was statistic significantly (P = 0.027). The result suggested that there is likely relationship between the forth base mutation (C→T) of IRE region and the response of HBV to Interferon therapy, and this mutation may partially decrease the inhibition effect of interferon on HBV. The forth base C→T mutation in IRE element of HBV may partially influence the response of Interferon treatment in CHB patients.

  19. The POU Transcription Factor Oct-1 Represses Virus-Induced Interferon A Gene Expression

    PubMed Central

    Mesplède, Thibault; Island, Marie-Laure; Christeff, Nicolas; Petek, Fahrettin; Doly, Janine; Navarro, Sébastien

    2005-01-01

    Alpha interferon (IFN-α) and IFN-β are able to interfere with viral infection. They exert a vast array of biologic functions, including growth arrest, cell differentiation, and immune system regulation. This regulation extends from innate immunity to cellular and humoral adaptive immune responses. A strict control of expression is needed to prevent detrimental effects of unregulated IFN. Multiple IFN-A subtypes are coordinately induced in human and mouse cells infected by virus and exhibit differences in expression of their individual mRNAs. We demonstrated that the weakly expressed IFN-A11 gene is negatively regulated after viral infection, due to a distal negative regulatory element, binding homeoprotein pituitary homeobox 1 (Pitx1). Here we show that the POU protein Oct-1 binds in vitro and in vivo to the IFN-A11 promoter and represses IFN-A expression upon interferon regulatory factor overexpression. Furthermore, we show that Oct-1-deficient MEFs exhibit increased in vivo IFN-A gene expression and increased antiviral activity. Finally, the IFN-A expression pattern is modified in Oct-1-deficient MEFs. The broad representation of effective and potent octamer-like sequences within IFN-A promoters suggests an important role for Oct-1 in IFN-A regulation. PMID:16166650

  20. Pro-apoptotic signaling induced by Retinoic acid and dsRNA is under the control of Interferon Regulatory Factor-3 in breast cancer cells.

    PubMed

    Bernardo, Ana R; Cosgaya, José M; Aranda, Ana; Jiménez-Lara, Ana M

    2017-07-01

    Breast cancer is one of the most lethal malignancies for women. Retinoic acid (RA) and double-stranded RNA (dsRNA) are considered signaling molecules with potential anticancer activity. RA, co-administered with the dsRNA mimic polyinosinic-polycytidylic acid (poly(I:C)), synergizes to induce a TRAIL (Tumor-Necrosis-Factor Related Apoptosis-Inducing Ligand)- dependent apoptotic program in breast cancer cells. Here, we report that RA/poly(I:C) co-treatment, synergically, induce the activation of Interferon Regulatory Factor-3 (IRF3) in breast cancer cells. IRF3 activation is mediated by a member of the pathogen recognition receptors, Toll-like receptor-3 (TLR3), since its depletion abrogates IRF3 activation by RA/poly(I:C) co-treatment. Besides induction of TRAIL, apoptosis induced by RA/poly(I:C) correlates with the increased expression of pro-apoptotic TRAIL receptors, TRAIL-R1/2, and the inhibition of the antagonistic receptors TRAIL-R3/4. IRF3 plays an important role in RA/poly(I:C)-induced apoptosis since IRF3 depletion suppresses caspase-8 and caspase-3 activation, TRAIL expression upregulation and apoptosis. Interestingly, RA/poly(I:C) combination synergizes to induce a bioactive autocrine/paracrine loop of type-I Interferons (IFNs) which is ultimately responsible for TRAIL and TRAIL-R1/2 expression upregulation, while inhibition of TRAIL-R3/4 expression is type-I IFN-independent. Our results highlight the importance of IRF3 and type-I IFNs signaling for the pro-apoptotic effects induced by RA and synthetic dsRNA in breast cancer cells.

  1. Human Interferon Regulatory Factor 2 Gene Expression is Induced in Chronic Hepatitis C Virus Infection—A Possible Mode of Viral Persistence

    PubMed Central

    Mukherjee, Rathindra M; Bansode, Budhapriyavilas; Gangwal, Puja; Jakkampudi, Aparna; Reddy, Panyala B; Rao, Padaki N; Gupta, Rajesh; Reddy, D Nageshwar

    2012-01-01

    Background The interferon regulatory factors (IRFs) are a family of transcription factors known to be involved in the modulation of cellular responses to interferons (IFNs) and viral infection. While IRF-1 acts as a positive regulator, IRF-2 is known to repress IFN-mediated gene expression. The increase in the IRF-1/IRF-2 ratio is considered as an important event in the transcriptional activation of IFN-α gene toward development of the cellular antiviral response. Objective This study was performed to assess the expression of IRF mRNAs along with the expression level of IFN-α, its receptor (IFNAR-1), and the signal transduction factor (STAT-1) in treatment naive hepatitis C virus (HCV)-infected subjects. Materials Thirty-five chronically infected (CHC) patients and 39 voluntary blood donors as controls were included in the study. Quantification of HCV-RNA (ribonucleic acid) and genotyping were done by real-time polymerase chain reaction (PCR) and hybridization assays, respectively, using patient's serum/plasma. In both controls and patients, the serum level of IFN-α and IFN-α was measured by flow cytometry. Target gene expressions were studied by retro-transcription of respective mRNAs extracted from peripheral blood mononuclear cells (PBMCs) followed by PCR amplification and densitometry. Minus-strand HCV-RNA as a marker of viral replication in PBMCs was detected by an inhouse PCR assay. Results Both IRF-1 and IRF-2 genes were significantly enhanced in CHC than in control subjects (P < 0.001). A significant positive correlation (r2 = 0.386, P <0.01) was obtained between higher IRF-2 gene expression and increasing level of HCV-RNA. Chronically infected subjects (13%) harboring replicating HCV in PBMCs showed no significant differences in gene expressions than the subjects without HCV in PBMCs. Conclusion Our findings indicate that HCV modulates host immunity by inducing IRF-2 gene to counteract IRF-1-mediated IFN-α gene expression. Since the IRF-2 gene is

  2. Interferon regulatory factor-1 binds c-Cbl, enhances mitogen activated protein kinase signaling and promotes retinoic acid-induced differentiation of HL-60 human myelo-monoblastic leukemia cells.

    PubMed

    Shen, Miaoqing; Bunaciu, Rodica P; Congleton, Johanna; Jensen, Holly A; Sayam, Lavanya G; Varner, Jeffrey D; Yen, Andrew

    2011-12-01

    All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.

  3. Inhibition by antioxidants of nitric oxide synthase expression in murine macrophages: role of nuclear factor kappa B and interferon regulatory factor 1.

    PubMed Central

    Hecker, M.; Preiss, C.; Klemm, P.; Busse, R.

    1996-01-01

    1. In view of the potential deleterious effects of high amounts of nitric oxide (NO) produced by the inducible isoform of NO synthase (iNOS) in inflammation, the prevention of the expression of this enzyme represents an important therapeutic goal. In cytokine-stimulated cells, activation of nuclear factor kappa B (NF-kappa B) is crucial for the increase in iNOS gene expression. Since NF-kappa B activation appears to involve a redox-sensitive step, we have investigated whether three structurally unrelated antioxidants, 5,7-dihydroxyflavone (chrysin), 3,4-dichloroisocoumarin (DCI) and N-acetyl 5-hydroxytryptamine (N-acetylserotonin, NAS), affect iNOS expression in cultured RAW 264.7 monocyte/macrophages stimulated with bacterial lipopolysaccharide (LPS, 140 ng ml-1) and interferon-gamma (IFN gamma, 5 u ml-1). 2. During a 6 h incubation period neither LPS nor IFN gamma alone exerted a significant effect but when combined, caused a prominent increase in nitrite formation, iNOS mRNA and protein abundance. Co-incubation with chrysin (50 microM), DCI (50 microM) or NAS (1 mM) markedly attenuated this increase in iNOS gene expression. 3. DCI, but not chrysin or NAS, prevented the activation of NF-kappa B in cells exposed to LPS plus IFN gamma for 30 min. In contrast, all three antioxidants significantly blunted the DNA-binding activity of interferon regulatory factor 1 (IRF-1), which mediates the synergistic effect of IFN gamma on iNOS gene expression in cells treated for 2 h with LPS plus IFN gamma. 4. DCI thus appears to inhibit iNOS gene expression at the transcriptional level by preventing the activation of both NF-kappa B and IRF-1. The inhibitory effect of DCI on NF-kappa B activation, however, does not seem to be related to its antioxidative properties, since DCI, unlike chrysin or NAS, is a potent serine protease inhibitor which stabilizes the inactive NF-kappa B complex by protecting the inhibitory I kappa B-alpha subunit from proteolytic degradation. 5. The

  4. Interferon Regulatory Factors IRF5 and IRF7 Inhibit Growth and Induce Senescence in Immortal Li-Fraumeni Fibroblasts

    PubMed Central

    Li, Qunfang; Tang, Lin; Roberts, Paul Christopher; Kraniak, Janice M.; Fridman, Aviva Levine; Kulaeva, Olga I.; Tehrani, Omid S.; Tainsky, Michael A.

    2013-01-01

    Cellular immortalization is one of the prerequisite steps in carcinogenesis. By gene expression profiling, we have found that genes in the interferon (IFN) pathway were dysregulated during the spontaneous cellular immortalization of fibroblasts from Li-Fraumeni syndrome (LFS) patients with germ-line mutations in p53. IFN signaling pathway genes were down-regulated by epigenetic silencing during immortalization, and some of these same IFN-regulated genes were activated during replicative senescence. Bisulfite sequencing of the promoter regions of two IFN regulatory transcription factors (IRF5 and IRF7) revealed that IRF7, but not IRF5, was epigenetically silenced by methylation of CpG islands in immortal LFS cells. The induction of IRF7 gene by IFNα in immortal LFS cells was potentiated by pretreatment with the demethylation agent 5-aza-2′-deoxycytidine. Overexpression of IRF5 and IRF7 revealed that they can act either alone or in tandem to activate other IFN-regulated genes. In addition, they serve to inhibit the proliferation rate and induce a senescence-related phenotype in immortal LFS cells. Furthermore, polyinosinic:polycytidylic acid treatment of the IRF-overexpressing cells showed a more rapid induction of several IFN-regulated genes. We conclude that the epigenetic inactivation of the IFN pathway plays a critical role in cellular immortalization, and the reactivation of IFN-regulated genes by transcription factors IRF5 and/or IRF7 is sufficient to induce cellular senescence. The IFN pathway may provide valuable molecular targets for therapeutic interventions at early stages of cancer development. PMID:18505922

  5. Interferon regulatory factors IRF5 and IRF7 inhibit growth and induce senescence in immortal Li-Fraumeni fibroblasts.

    PubMed

    Li, Qunfang; Tang, Lin; Roberts, Paul Christopher; Kraniak, Janice M; Fridman, Aviva Levine; Kulaeva, Olga I; Tehrani, Omid S; Tainsky, Michael A

    2008-05-01

    Cellular immortalization is one of the prerequisite steps in carcinogenesis. By gene expression profiling, we have found that genes in the interferon (IFN) pathway were dysregulated during the spontaneous cellular immortalization of fibroblasts from Li-Fraumeni syndrome (LFS) patients with germ-line mutations in p53. IFN signaling pathway genes were down-regulated by epigenetic silencing during immortalization, and some of these same IFN-regulated genes were activated during replicative senescence. Bisulfite sequencing of the promoter regions of two IFN regulatory transcription factors (IRF5 and IRF7) revealed that IRF7, but not IRF5, was epigenetically silenced by methylation of CpG islands in immortal LFS cells. The induction of IRF7 gene by IFNalpha in immortal LFS cells was potentiated by pretreatment with the demethylation agent 5-aza-2'-deoxycytidine. Overexpression of IRF5 and IRF7 revealed that they can act either alone or in tandem to activate other IFN-regulated genes. In addition, they serve to inhibit the proliferation rate and induce a senescence-related phenotype in immortal LFS cells. Furthermore, polyinosinic:polycytidylic acid treatment of the IRF-overexpressing cells showed a more rapid induction of several IFN-regulated genes. We conclude that the epigenetic inactivation of the IFN pathway plays a critical role in cellular immortalization, and the reactivation of IFN-regulated genes by transcription factors IRF5 and/or IRF7 is sufficient to induce cellular senescence. The IFN pathway may provide valuable molecular targets for therapeutic interventions at early stages of cancer development.

  6. Growth Arrest of Epithelial Cells during Measles Virus Infection Is Caused by Upregulation of Interferon Regulatory Factor 1

    PubMed Central

    Yokota, Shin-ichi; Okabayashi, Tamaki; Yokosawa, Noriko; Fujii, Nobuhiro

    2004-01-01

    Natural infection with measles virus (MeV) is initiated when the virus reaches epithelial cells in the respiratory tract, oropharynx, or conjunctivae. Human epithelial cells infected with MeV frequently show growth suppression. In this study, we investigated the possible mechanisms for this suppression. The bronchiolar epithelial cell A549 showed growth arrest in G0/G1 following MeV infection or treatment with gamma interferon (IFN-γ). IFN regulatory factor-1 (IRF-1) was upregulated during MeV infection, although A549 did not produce IFN-γ. Cells of the cervical squamous cell line SiHa persistently infected with various strains of MeV displayed slower growth than uninfected SiHa cells, although the growth rates varied depending on the MeV strain. Transfection of antisense-oriented IRF-1 cDNA released the MeV-infected SiHa cells from growth suppression. Although these infected cells did not produce IFN-γ and suppressed IFN-α/β-induced Jak1 phosphorylation, Jak1 was constitutively phosphorylated. The growth rates negatively correlated with levels of both IRF-1 expression and constitutively phosphorylated Jak1. These results indicate that MeV upregulates IRF-1 in a manner that is independent of IFN but dependent on the JAK/STAT pathway. This induction of IRF-1 appears to suppress cell growth, although the extent seems to vary among MeV strains. PMID:15078941

  7. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus

    PubMed Central

    Leung, Yiu Tak; Shi, Lihua; Maurer, Kelly; Song, Li; Zhang, Zhe; Petri, Michelle; Sullivan, Kathleen E

    2015-01-01

    Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1. PMID

  8. Identification of orange-spotted grouper (Epinephelus coioides) interferon regulatory factor 3 involved in antiviral immune response against fish RNA virus.

    PubMed

    Huang, Youhua; Huang, Xiaohong; Cai, Jia; OuYang, Zhengliang; Wei, Shina; Wei, Jingguang; Qin, Qiwei

    2015-02-01

    Interferon regulatory factor 3 (IRF3) is an important transcription factor which regulates the expression of interferon (IFN) and IFN-stimulated genes (ISGs) following virus recognition. In this study, a novel IRF3 gene was cloned from grouper Epinephelus coioides (EcIRF3) and its effects against Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) was investigated. The full-length of EcIRF3 cDNA was composed of 2513 bp and encoded a polypeptide of 458 amino acids which shared 82% identity with European seabass (Dicentrarchus labrax). EcIRF3 contained three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain. Expression profile analysis revealed that EcIRF3 was abundant in head kidney, kidney, spleen and gill. Upon different stimuli in vitro, the transcript of EcIRF3 was significantly up-regulated after RGNNV infection or treatment with polyinosin-polycytidylic acid (poly I:C). During SGIV infection, the increase of the EcIRF3 transcription was only detected at the late stage, suggesting that EcIRF3 was differently regulated by different stimuli. Immune fluorescence assay indicated that the fluorescence signal of EcIRF3 was increased significantly after infection with RGNNV or treatment with poly I:C, but moderately at the late stage of SGIV infection. Reporter gene assay showed that EcIRF3 activated zebrafish type I IFN and type III IFN promoter in vitro. The viral gene transcription and virus production of RGNNV were significantly decreased in EcIRF3 overexpressing cells. However, the ectopic expression of EcIRF3 did not affect the gene transcription and virus production of SGIV. Moreover, the mRNA expression levels of type I IFN and IFN-inducible genes (MxI, ISG15 and ISG56) were increased in RGNNV infected EcIRF3 overexpressing cells compared to empty vector transfected cells. Together, our results demonstrated that IFN immune response mediated by grouper IRF3 was

  9. Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice.

    PubMed

    Zhao, Shou-Cai; Wang, Chun; Xu, Heng; Wu, Wen-Qian; Chu, Zhao-Hu; Ma, Ling-Song; Zhang, Ying-Dong; Liu, Fudong

    2017-11-01

    Stroke is a disease that mainly affects the elderly. Since the age-related differences in stroke have not been well studied, modeling stroke in aged animals is clinically more relevant. The inflammatory responses to stroke are a fundamental pathological procedure, in which microglial activation plays an important role. Interferon regulatory factor-5 (IRF5) and IRF4 regulate M1 and M2 activation of macrophages, respectively, in peripheral inflammation; but it is unknown whether IRF5/IRF4 are also involved in cerebral inflammatory responses to stroke and whether age-related differences of the IRF5/IRF4 signaling exist in ischemic brain. Here, we investigated the influences of aging on IRF5/IRF4 signaling and post-stroke inflammation in mice. Both young (9-12 weeks) and aged (18 months) male mice were subjected to middle cerebral artery occlusion (MCAO). Morphological and biochemical changes in the ischemic brains and behavior deficits were assessed on 1, 3, and 7 d post-stroke. After MCAO, the aged mice showed smaller infarct sizes but higher neurological deficits and corner test scores than young mice. Young mice had higher levels of IRF4 and CD206 microglia in the ischemic brains, whereas the aged mice expressed more IRF5 and MHCII microglia. After MCAO, serum pro-inflammatory cytokines (TNF-α, iNOS, IL-6) were more prominently up-regulated in aged mice, whereas serum anti-inflammatory cytokines (TGF-β, IL-4, IL-10) were more prominently up-regulated in young mice. Our results demonstrate that aging has a significant influence on stroke outcomes in mice, which is probably mediated by age-specific inflammatory responses.

  10. The Third Intron of the Interferon Regulatory Factor-8 Is an Initiator of Repressed Chromatin Restricting Its Expression in Non-Immune Cells

    PubMed Central

    Barnea-Yizhar, Ofer; Ram, Sigal; Kovalev, Ekaterina; Azriel, Aviva; Rand, Ulfert; Nakayama, Manabu; Hauser, Hansjörg; Gepstein, Lior; Levi, Ben-Zion

    2016-01-01

    Interferon Regulatory Factor-8 (IRF-8) serves as a key factor in the hierarchical differentiation towards monocyte/dendritic cell lineages. While much insight has been accumulated into the mechanisms essential for its hematopoietic specific expression, the mode of restricting IRF-8 expression in non-hematopoietic cells is still unknown. Here we show that the repression of IRF-8 expression in restrictive cells is mediated by its 3rd intron. Removal of this intron alleviates the repression of Bacterial Artificial Chromosome (BAC) IRF-8 reporter gene in these cells. Fine deletion analysis points to conserved regions within this intron mediating its restricted expression. Further, the intron alone selectively initiates gene silencing only in expression-restrictive cells. Characterization of this intron’s properties points to its role as an initiator of sustainable gene silencing inducing chromatin condensation with suppressive histone modifications. This intronic element cannot silence episomal transgene expression underlining a strict chromatin-dependent silencing mechanism. We validated this chromatin-state specificity of IRF-8 intron upon in-vitro differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. Taken together, the IRF-8 3rd intron is sufficient and necessary to initiate gene silencing in non-hematopoietic cells, highlighting its role as a nucleation core for repressed chromatin during differentiation. PMID:27257682

  11. Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis.

    PubMed

    Rocca, Stefano; Schiavoni, Giovanna; Sali, Michela; Anfossi, Antonio Giovanni; Abalsamo, Laura; Palucci, Ivana; Mattei, Fabrizio; Sanchez, Massimo; Giagu, Anna; Antuofermo, Elisabetta; Fadda, Giovanni; Belardelli, Filippo; Delogu, Giovanni; Gabriele, Lucia

    2013-01-01

    Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8⁻/⁻) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8⁻/⁻ mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8⁻/⁻, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8⁻/⁻ mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions.

  12. Interferon Regulatory Factor 8-Deficiency Determines Massive Neutrophil Recruitment but T Cell Defect in Fast Growing Granulomas during Tuberculosis

    PubMed Central

    Sali, Michela; Anfossi, Antonio Giovanni; Abalsamo, Laura; Palucci, Ivana; Mattei, Fabrizio; Sanchez, Massimo; Giagu, Anna; Antuofermo, Elisabetta; Fadda, Giovanni; Belardelli, Filippo; Delogu, Giovanni; Gabriele, Lucia

    2013-01-01

    Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions. PMID:23717393

  13. Characteristics of the interferon regulatory factor 5 (IRF5) and its expression in response to LCDV and poly I:C challenges in Japanese flounder, Paralichthys olivaceus.

    PubMed

    Hu, Guo-Bin; Lou, Hui-Min; Dong, Xian-Zhi; Liu, Qiu-Ming; Zhang, Shi-Cui

    2012-10-01

    Interferon regulatory factor 5 (IRF5) has been identified as a key transcriptional mediator regulating expression of both type I interferons (IFNs) and proinflammatory cytokines. In this study, the cDNA and genomic sequences of IRF5 were isolated from Japanese flounder, Paralichthys olivaceus. The gene of Japanese flounder (Jf)IRF5 is 7326 bp long, contains 9 exons and 8 introns and encodes a putative protein of 472 amino acids. The predicted protein sequence shares 61.1-81.9% identity to fish IRF5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) conserved in all known IRF5s. Phylogenetic analysis clustered it into the teleost IRF5 subgroup within vertebrate IRF5 group. JfIRF5 mRNA was constitutively expressed in all tissues examined, with higher levels observed in the gills and head kidney. Gene expression of JfIRF5 was analyzed over a 7-day time course in the gills, head kidney, spleen and muscle of Japanese flounders challenged with lymphocystis disease virus (LCDV) and polyinosinic:polycytidylic acid (poly I:C). The data showed that JfIRF5 expression was slightly up-regulated by LCDV, but its induction time was clearly moved up; in contrast, the induction upon poly I:C challenge started not earlier than day 2 post-injection and was stronger and more persistent with a later peak time in all four organs. The late and long-lasting inductive expression of JfIRF5 following poly I:C challenge suggests that it might be an interferon stimulated gene (ISG), the induction of which is driven by poly I:C-induced type I IFNs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function.

    PubMed

    Nam, Sorim; Kang, Kyeongah; Cha, Jae Seon; Kim, Jung Woo; Lee, Hee Gu; Kim, Yonghwan; Yang, Young; Lee, Myeong-Sok; Lim, Jong-Seok

    2016-12-01

    Myeloid-derived suppressor cells (MDSCs) are immature cells that do not differentiate into mature myeloid cells. Two major populations of PMN-MDSCs (Ly6G high Ly6C low Gr1 high CD11b + ) and MO-MDSCs (Ly6G - Ly6C high Gr-1 int CD11b + ) have an immune suppressive function. Interferon regulatory factor 4 (IRF4) has a role in the negative regulation of TLR signaling and is associated with lymphoid cell development. However, the roles of IRF4 in myeloid cell differentiation are unclear. In this study, we found that IRF4 expression was remarkably suppressed during the development of MDSCs in the tumor microenvironment. Both the mRNA and protein levels of IRF4 in MDSCs were gradually reduced, depending on the development of tumors in the 4T1 model. siRNA-mediated knockdown of IRF4 in bone marrow cells promoted the differentiation of PMN-MDSCs. Similarly, IRF4 inhibition in bone marrow cells using simvastatin, which has been known to inhibit IRF4 expression, increased PMN-MDSC numbers. In contrast, IRF4 overexpression in bone marrow cells inhibited the total numbers of MDSCs, especially PMN-MDSCs. Notably, treatment with IL-4, an upstream regulator of IRF4, induced IRF4 expression in the bone marrow cells, and consequently, IL-4-induced IRF4 expression resulted in a decrease in PMN-MDSC numbers. Finally, we confirmed that IRF4 expression in MDSCs can modulate their activity to inhibit T cell proliferation through IL-10 production and ROS generation, and myeloid-specific deletion of IRF4 leads to the increase of MDSC differentiation. Our present findings indicate that IRF4 reduction induced by tumor formation can increase the number of MDSCs, and increases in the IRF4 expression in MDSCs may infringe on the immune-suppressive function of MDSCs. © Society for Leukocyte Biology.

  15. Predictive Factors for Beneficial Response to Interferon-alfa Therapy in Chronic Hepatitis C

    PubMed Central

    Yoon, Seung-Kew; Kim, Sung Soo; Park, Young Min; Shim, Kyu Sik; Lee, Chang Don; Sun, Hee Sik; Park, Doo Ho; Kim, Boo Sung; Ryu, Wang Shick; Cho, Joong Myung

    1995-01-01

    Objectives: Interferon is the only established teatment for chronic hepatitis C but the host-dependent or virus-related factors affecting the response rate to interferon therapy are not yet dear. The purpose of this study was to investigate the factors predictive of response to interferon-alfa therapy in chronic hepatitis C. Methods: Twenty-five consecutive patients with chronic hepatitis C were randomized to three regimens of interferon-alfa: group A (n=7, 3MU every day for 3 months), group B (n=8, 3MU every other day for 3 months) and group C (n=10, 3MU every other day for 6 months), We quantified serum HC RNA levels by competitive reverse transcription-polymerase chain reaction (RT-PCR)and performed HCV genotyping using type-specific primers deduced from the NS5 region of the HCV genome. We also attempted to identify which demographic, biochemical and histologic factors in addition to virus-related factors would significantly predict beneficial response to interferon by multivariate analysis. Results: Sustained responders were 8 (36.4%), nonsustained responders were 2 (9.1%) and nonresponders were 12 (54.5%) of 22 patients who had received complete therapy. The initial HCV RNA level (logarithmic transformed copy numbers per ml of serum)in sustained responders (5.75±0.39) was significantly lower than that of nonsustained responders (6.80±0.71)and nonresponders (6.70±0.52) (p<0.05). In multivariate multiple logistic regression analysis, the serum HCV RNA level before therapy was only the independent predictor of a sustained response to interferon-alfa therapy (p=0.001). Conclusions: Serum HCV RNA level before therapy was the most useful predictor of a sustained response to interferon-alfa therapy for chronic hepatitis C. PMID:7495780

  16. Inhibition of Interferon-beta Responses in Multiple Sclerosis Immune Cells Associated With High-Dose Statins

    PubMed Central

    Feng, Xuan; Han, Diana; Kilaru, Bharat K.; Franek, Beverly S.; Niewold, Timothy B.; Reder, Anthony T.

    2014-01-01

    Objective To determine whether statins affect type 1 interferon responses in relapsing-remitting multiple sclerosis (RRMS). Design Study effects of atorvastatin on type 1 interferon responses in Jurkat cells, mononuclear cells (MNCs) from therapy-naive patients with RRMS in vitro, and MNCs from interferon-treated RRMS patients in vivo in 4 conditions: no drug, statin only, interferon-beta only, and statin added on to interferon-beta therapy. Patients The study examined clinically stable patients with RRMS: 21 therapy-naive patients and 14 patients receiving interferon-beta with a statin. Interventions Statin effects on in vitro and in vivo interferon-beta–induced STAT1 transcription factor activation, expression of interferon-stimulated proteins in MNCs, and serum type 1 interferon activity. Results In vitro, atorvastatin dose dependently inhibited expression of interferon-stimulated P-Y-STAT1 by 44% (P< .001), interferon regulatory factor 1 protein by 30% (P= .006), and myxovirus resistance 1 protein by 32% (P=.004) compared with no-statin control in MNCs from therapy-naive RRMS patients. In vivo, 9 of 10 patients who received high-dose statins (80 mg) had a significant reduction in interferon-beta therapy–induced serum interferon-α/β activity, whereas only 2 of 4 patients who received medium-dose statins (40 mg) had reductions. High-dose add-on statin therapy significantly blocked interferon-beta function, with less P-Y-STAT1 transcription factor activation, and reduced myxovirus resistance 1 protein and viperin protein production. Medium doses of statins did not change STAT1 activation. Conclusions High-dose add-on statin therapy significantly reduces interferon-beta function and type 1 interferon responses in RRMS patients. These data provide a putative mechanism for how statins could counteract the beneficial effects of interferon-beta and worsen disease. PMID:22801747

  17. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution

    PubMed Central

    Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M.; Imumorin, Ikhide G.; Peters, Sunday O.; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats’ populations. Fu and Li tests were significantly positive but Tajima’s D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat

  18. Genetic Variation of Goat Interferon Regulatory Factor 3 Gene and Its Implication in Goat Evolution.

    PubMed

    Okpeku, Moses; Esmailizadeh, Ali; Adeola, Adeniyi C; Shu, Liping; Zhang, Yesheng; Wang, Yangzi; Sanni, Timothy M; Imumorin, Ikhide G; Peters, Sunday O; Zhang, Jiajin; Dong, Yang; Wang, Wen

    2016-01-01

    The immune systems are fundamentally vital for evolution and survival of species; as such, selection patterns in innate immune loci are of special interest in molecular evolutionary research. The interferon regulatory factor (IRF) gene family control many different aspects of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known to take active part in very many biological processes. We assembled and evaluated 1356 base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethiopia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across the goats' populations. Fu and Li tests were significantly positive but Tajima's D test was significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3 gene in domesticated goats, wild goat and sheep showed that all domesticated goats have a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene showed that different domesticated goats share a common ancestor and suggest single origin. Four unique haplotypes were observed across all the sequences, of which, one was particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave a ω0 (dN/dS) value of 0.067 with LnL value of -6900.3 for the first Model (M1) while ω2 = 1.667 in model M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic empirical combination (MEC) model for evaluating adaptive selection pressure on particular codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat IRF3

  19. Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations

    PubMed Central

    Kristjansdottir, G; Sandling, J K; Bonetti, A; Roos, I M; Milani, L; Wang, C; Gustafsdottir, S M; Sigurdsson, S; Lundmark, A; Tienari, P J; Koivisto, K; Elovaara, I; Pirttilä, T; Reunanen, M; Peltonen, L; Saarela, J; Hillert, J; Olsson, T; Landegren, U; Alcina, A; Fernández, O; Leyva, L; Guerrero, M; Lucas, M; Izquierdo, G; Matesanz, F; Syvänen, A-C

    2008-01-01

    Background: IRF5 is a transcription factor involved both in the type I interferon and the toll-like receptor signalling pathways. Previously, IRF5 has been found to be associated with systemic lupus erythematosus, rheumatoid arthritis and inflammatory bowel diseases. Here we investigated whether polymorphisms in the IRF5 gene would be associated with yet another disease with features of autoimmunity, multiple sclerosis (MS). Methods: We genotyped nine single nucleotide polymorphisms and one insertion-deletion polymorphism in the IRF5 gene in a collection of 2337 patients with MS and 2813 controls from three populations: two case–control cohorts from Spain and Sweden, and a set of MS trio families from Finland. Results: Two single nucleotide polymorphism (SNPs) (rs4728142, rs3807306), and a 5 bp insertion-deletion polymorphism located in the promoter and first intron of the IRF5 gene, showed association signals with values of p<0.001 when the data from all cohorts were combined. The predisposing alleles were present on the same common haplotype in all populations. Using electrophoretic mobility shift assays we observed allele specific differences in protein binding for the SNP rs4728142 and the 5 bp indel, and by a proximity ligation assay we demonstrated increased binding of the transcription factor SP1 to the risk allele of the 5 bp indel. Conclusion: These findings add IRF5 to the short list of genes shown to be associated with MS in more than one population. Our study adds to the evidence that there might be genes or pathways that are common in multiple autoimmune diseases, and that the type I interferon system is likely to be involved in the development of these diseases. PMID:18285424

  20. An interferon regulatory factor binding site in the U5 region of the bovine leukemia virus long terminal repeat stimulates Tax-independent gene expression.

    PubMed

    Kiermer, V; Van Lint, C; Briclet, D; Vanhulle, C; Kettmann, R; Verdin, E; Burny, A; Droogmans, L

    1998-07-01

    Bovine leukemia virus (BLV) replication is controlled by both cis- and trans-acting elements. The virus-encoded transactivator, Tax, is necessary for efficient transcription from the BLV promoter, although it is not present during the early stages of infection. Therefore, sequences that control Tax-independent transcription must play an important role in the initiation of viral gene expression. This study demonstrates that the R-U5 sequence of BLV stimulates Tax-independent reporter gene expression directed by the BLV promoter. R-U5 was also stimulatory when inserted immediately downstream from the transcription initiation site of a heterologous promoter. Progressive deletion analysis of this region revealed that a 46-bp element corresponding to the 5' half of U5 is principally responsible for the stimulation. This element exhibited enhancer activity when inserted upstream or downstream from the herpes simplex virus thymidine kinase promoter. This enhancer contains a binding site for the interferon regulatory factors IRF-1 and IRF-2. A 3-bp mutation that destroys the IRF recognition site caused a twofold decrease in Tax-independent BLV long terminal repeat-driven gene expression. These observations suggest that the IRF binding site in the U5 region of BLV plays a role in the initiation of virus replication.

  1. Epstein-Barr Virus Latent Membrane Protein 1 Regulates the Function of Interferon Regulatory Factor 7 by Inducing Its Sumoylation

    PubMed Central

    Bentz, Gretchen L.; Shackelford, Julia

    2012-01-01

    Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) induces multiple signal transduction pathways during latent EBV infection via its C-terminal activating region 1 (CTAR1), CTAR2, and the less-studied CTAR3. One mechanism by which LMP1 regulates cellular activation is through the induction of protein posttranslational modifications, including phosphorylation and ubiquitination. We recently documented that LMP1 induces a third major protein modification by physically interacting with the SUMO-conjugating enzyme Ubc9 through CTAR3 and inducing the sumoylation of cellular proteins in latently infected cells. We have now identified a specific target of LMP1-induced sumoylation, interferon regulatory factor 7 (IRF7). We hypothesize that during EBV latency, LMP1 induces the sumoylation of IRF7, limiting its transcriptional activity and modulating the activation of innate immune responses. Our data show that endogenously sumoylated IRF7 is detected in latently infected EBV lymphoblastoid cell lines. LMP1 expression coincided with increased sumoylation of IRF7 in a CTAR3-dependent manner. Additional experiments show that LMP1 CTAR3-induced sumoylation regulates the expression and function of IRF7 by decreasing its turnover, increasing its nuclear retention, decreasing its DNA binding, and limiting its transcriptional activation. Finally, we identified that IRF7 is sumoylated at lysine 452. These data demonstrate that LMP1 CTAR3 does in fact function in intracellular signaling, leading to biologic effects. We propose that CTAR3 is an important signaling region of LMP1 that regulates protein function by sumoylation. We have shown specifically that LMP1 CTAR3, in cooperation with CTAR2, can limit the ability of IRF7 to induce innate immune responses by inducing the sumoylation of IRF7. PMID:22951831

  2. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    PubMed

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-07

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  3. Inhibitory effect of 10-hydroxydecanoic acid on lipopolysaccharide-induced nitric oxide production via translational downregulation of interferon regulatory factor-1 in RAW264 murine macrophages.

    PubMed

    Takahashi, Keita; Sugiyama, Tsuyoshi; Tokoro, Shunji; Neri, Paol; Mori, Hiroshi

    2013-08-01

    Toll-like receptors (TLRs) play a critical role in innate immunity by recognizing pathogen-associated molecular patterns. Various environmental materials including lipids may affect TLR signaling and modulate innate immune responses. We previously reported that 10-hydroxy-trans-2-decenoic acid (10H2DA) inhibits lipopolysaccharide (LPS)-induced interleukin (IL)-6 and nitric oxide (NO) production via inhibiting NF-κB activation. In this study, we investigated the effect of 10-hydroxydecanoic acid (10HDA), a saturated fatty acid of 10H2DA, on LPS-induced cytokines/chemokines and NO production. 10HDA inhibited LPS-induced NO production, but not tumor necrosis factor-α or IL-6 production. LPS-induced activation of interferon (IFN)-stimulated response element, but not NF-κB, was inhibited by 10HDA. Phosphorylation of STAT1 and STAT2 was not affected, but IFN-regulatory factor (IRF)-1 production was significantly reduced by 10HDA. The LPS-induced increase of IRF-1 mRNA, however, was not affected by 10HDA. We found that IRF-1 mRNA level in the polysomal fraction was significantly decreased by 10HDA. Further, LPS-induced phosphorylation of Akt and 4E-BP1, which control mRNA translation, was markedly decreased. These results suggest that 10HDA inhibited LPS-induced NO production through inhibiting IRF-1 translation. These findings elucidate a novel mechanism for anti-inflammatory activity of medium-chain fatty acid 10HDA.

  4. Adenoviral mediated interferon-alpha 2b gene therapy suppresses the pro-angiogenic effect of vascular endothelial growth factor in superficial bladder cancer.

    PubMed

    Adam, Liana; Black, Peter C; Kassouf, Wassim; Eve, Beryl; McConkey, David; Munsell, Mark F; Benedict, William F; Dinney, Colin P N

    2007-05-01

    Intravesical adenovirus mediated interferon-alpha gene transfer has a potent therapeutic effect against superficial human bladder carcinoma xenografts growing in the bladder of athymic nude mice. We determined whether the inhibition of angiogenesis might contribute to the antitumor effect. We treated several human urothelial carcinoma cells with adenovirus mediated interferon-alpha 2b and monitored its effects on the production of angiogenic factors using real-time reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemical analysis and a gel shift based transcription factor array. To assess the role of adenovirus mediated interferon 2b in angiogenic activity we used in vitro invasion assays and evaluated the anti-angiogenic effects of adenovirus mediated interferon gene therapy in an orthotopic murine model of human superficial bladder cancer. In adenovirus mediated interferon-alpha infected 253J B-V cells vascular endothelial growth factor was decreased and anti-angiogenic interferon-gamma inducible protein 10 was up-regulated. In contrast, the addition of as much as 100,000 IU recombinant interferon had no apparent effect on vascular endothelial growth factor production. Conditioned medium derived from adenovirus mediated interferon 2b infected 253J B-V cells greatly decreased the invasive potential of human endothelial cells and down-regulated their matrix metalloproteinase 2 expression compared to controls. Furthermore, adenovirus mediated interferon 2b blocked pro-angiogenic nuclear signals, such as the transcription factors activating protein-1 and 2, stimulating protein-1, nuclear factor kappaB and c-myb. In vivo experiments revealed significant vascular endothelial growth factor down-regulation and decreased tumor vessel density in the adenovirus mediated interferon 2b treated group compared to controls. Treatment with adenovirus mediated interferon 2b increases the angiostatic activity of the bladder cancer microenvironment

  5. Evasion of interferon responses by Ebola and Marburg viruses.

    PubMed

    Basler, Christopher F; Amarasinghe, Gaya K

    2009-09-01

    The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), cause frequently lethal viral hemorrhagic fever. These infections induce potent cytokine production, yet these host responses fail to prevent systemic virus replication. Consistent with this, filoviruses have been found to encode proteins VP35 and VP24 that block host interferon (IFN)-alpha/beta production and inhibit signaling downstream of the IFN-alpha/beta and the IFN-gamma receptors, respectively. VP35, which is a component of the viral nucleocapsid complex and plays an essential role in viral RNA synthesis, acts as a pseudosubstrate for the cellular kinases IKK-epsilon and TBK-1, which phosphorylate and activate interferon regulatory factor 3 (IRF-3) and interferon regulatory factor 7 (IRF-7). VP35 also promotes SUMOylation of IRF-7, repressing IFN gene transcription. In addition, VP35 is a dsRNA-binding protein, and mutations that disrupt dsRNA binding impair VP35 IFN-antagonist activity while leaving its RNA replication functions intact. The phenotypes of recombinant EBOV bearing mutant VP35s unable to inhibit IFN-alpha/beta demonstrate that VP35 IFN-antagonist activity is critical for full virulence of these lethal pathogens. The structure of the VP35 dsRNA-binding domain, which has recently become available, is expected to provide insight into how VP35 IFN-antagonist and dsRNA-binding functions are related. The EBOV VP24 protein inhibits IFN signaling through an interaction with select host cell karyopherin-alpha proteins, preventing the nuclear import of otherwise activated STAT1. It remains to be determined to what extent VP24 may also modulate the nuclear import of other host cell factors and to what extent this may influence the outcome of infection. Notably, the Marburg virus VP24 protein does not detectably block STAT1 nuclear import, and, unlike EBOV, MARV infection inhibits STAT1 and STAT2 phosphorylation. Thus, despite their similarities, there are fundamental differences by which

  6. Regulatory T cells and other lymphocyte subpopulations in patients with melanoma developing interferon-induced thyroiditis during high-dose interferon-α2b treatment.

    PubMed

    Soldevila, Berta; Alonso, Núria; Martínez-Arconada, Maria J; Granada, Maria L; Boada, Aram; Vallejos, Virginia; Fraile, Manuel; Fernández-Sanmartín, Marco A; Pujol-Borrell, Ricardo; Puig-Domingo, Manel; Sanmartí, Anna; Martínez-Cáceres, Eva M

    2013-04-01

    One of the side effects of interferon-alpha therapy is interferon-induced thyroiditis (IIT). The role of lymphocyte subpopulations in IIT melanoma patients remains to be defined. Our objective was to assess different peripheral blood lymphocyte subpopulations, mainly regulatory T cells (Tregs), in melanoma patients who developed IIT. From 30 melanoma patients receiving high-dose interferon (HDI)-alpha 2b (IFN-α2b) treatment, those who developed IIT (IIT patients) were selected and compared with patients who did not develop IIT (Co-MM) and healthy controls (Co-H). Peripheral blood mononuclear cells were obtained before treatment (BT), mid-treatment (MT), end of treatment (ET), 24 weeks post-treatment and at appearance of IIT (TT). Nine patients developed IIT (30%): four Hashimoto's thyroiditis and five destructive thyroiditis. An increase in Tregs was observed in both melanoma groups during HDI treatment. A decrease in CD3(+) , NKT lymphocyte subpopulations and Bcl2 expression on B cells was also observed in both groups. However, no changes were observed in the percentage of CD4(+) , CD8(+) , CD3(+) γδ(+) , CD19(+) , transitional B cells (CD24(high) CD38(high) CD19(+) CD27(-) ), natural killer (NK), invariant NKT (iNKT) lymphocytes and Th1/Th2 balance when BT was compared with ET. At TT, IIT patients had a higher Tregs percentage than Co-MM (P = 0·012) and Co-H (P = 0·004), a higher iNKT percentage than Co-MM (P = 0·011), a higher transitional B cells percentage than Co-H (P = 0·015), a lower CD3(+) percentage than Co-H (P = 0·001) and a lower Bcl2 expression on B cells than Co-H (P < 0·001). Our results point to the immunomodulatory effects of IFN-α on different lymphocyte subpopulations and a possible role of Tregs in melanoma patients who developed IIT. © 2012 Blackwell Publishing Ltd.

  7. Critical Role for Interferon Regulatory Factor 3 (IRF-3) and IRF-7 in Type I Interferon-Mediated Control of Murine Norovirus Replication

    PubMed Central

    Thackray, Larissa B.; Duan, Erning; Lazear, Helen M.; Kambal, Amal; Schreiber, Robert D.; Diamond, Michael S.

    2012-01-01

    Human noroviruses (HuNoV) are the major cause of epidemic, nonbacterial gastroenteritis in the world. The short course of HuNoV-induced symptoms has implicated innate immunity in control of norovirus (NoV) infection. Studies using murine norovirus (MNV) confirm the importance of innate immune responses during NoV infection. Type I alpha and beta interferons (IFN-α/β) limit HuNoV replicon function, restrict MNV replication in cultured cells, and control MNV replication in vivo. Therefore, the cell types and transcription factors involved in antiviral immune responses and IFN-α/β-mediated control of NoV infection are important to define. We used mice with floxed alleles of the IFNAR1 chain of the IFN-α/β receptor to identify cells expressing lysozyme M or CD11c as cells that respond to IFN-α/β to restrict MNV replication in vivo. Furthermore, we show that the transcription factors IRF-3 and IRF-7 work in concert to initiate unique and overlapping antiviral responses to restrict MNV replication in vivo. IRF-3 and IRF-7 restrict MNV replication in both cultured macrophages and dendritic cells, are required for induction of IFN-α/β in macrophages but not dendritic cells, and are dispensable for the antiviral effects of IFN-α/β that block MNV replication. These studies suggest that expression of the IFN-α/β receptor on macrophages/neutrophils and dendritic cells, as well as of IRF-3 and IRF-7, is critical for innate immune responses to NoV infection. PMID:23035219

  8. Contradictory results in interferon research

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1984-01-01

    Several reports on immunologically related interferon research, both in the areas of basic science and clinical research, are briefly reviewed, and it is noted that in many cases the results obtained are contradictory. It is argued, however, that the contradictory results are not surprising since interferon is a biological response modifier and has been known to produce opposite results even when the same interferon prepartion is used. It is emphasized that dosage, timing, route, and other experimental conditions are essential factors in planning immunological studies with interferon. Careful planning of future experiments with interferon should be required to prevent the possible generation of effects that are opposite to those expected.

  9. Interferon regulatory factor 1 and a variant of heterogeneous nuclear ribonucleoprotein L coordinately silence the gene for adhesion protein CEACAM1.

    PubMed

    Dery, Kenneth J; Silver, Craig; Yang, Lu; Shively, John E

    2018-06-15

    The adhesion protein carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is widely expressed in epithelial cells as a short cytoplasmic isoform (S-iso) and in leukocytes as a long cytoplasmic isoform (L-iso) and is frequently silenced in cancer by unknown mechanisms. Previously, we reported that interferon response factor 1 (IRF1) biases alternative splicing (AS) to include the variable exon 7 (E7) in CEACAM1, generating long cytoplasmic isoforms. We now show that IRF1 and a variant of heterogeneous nuclear ribonucleoprotein L (Lv1) coordinately silence the CEACAM1 gene. RNAi-mediated Lv1 depletion in IRF1-treated HeLa and melanoma cells induced significant CEACAM1 protein expression, reversed by ectopic Lv1 expression. The Lv1-mediated CEACAM1 repression resided in residues Gly 71 -Gly 89 and Ala 38 -Gly 89 in Lv1's N-terminal extension. ChIP analysis of IRF1- and FLAG-tagged Lv1-treated HeLa cells and global treatment with the global epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A indicated that IRF1 and Lv1 together induce chromatin remodeling, restricting IRF1 access to the CEACAM1 promoter. In interferon γ-treated HeLa cells, the transcription factor SP1 did not associate with the CEACAM1 promoter, but binding by upstream transcription factor 1 (USF1), a known CEACAM1 regulator, was greatly enhanced. ChIP-sequencing revealed that Lv1 overexpression in IRF1-treated cells induces transcriptional silencing across many genes, including DCC ( d eleted in c olorectal c arcinoma), associated with CEACAM5 in colon cancer. Notably, IRF1, but not IRF3 and IRF7, affected CEACAM1 expression via translational repression. We conclude that IRF1 and Lv1 coordinately regulate CEACAM1 transcription, alternative splicing, and translation and may significantly contribute to CEACAM1 silencing in cancer. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Histone Deacetylase-1 Is Enriched at the Platelet-derived Growth Factor-D Promoter in Response to Interleukin-1β and Forms a Cytokine-inducible Gene-silencing Complex with NF-κB p65 and Interferon Regulatory Factor-1*

    PubMed Central

    Liu, Mary Y.; Khachigian, Levon M.

    2009-01-01

    Understanding the mechanisms governing cytokine control of growth factor expression in smooth muscle cells would provide invaluable insight into the molecular regulation of vascular phenotypes and create future opportunities for therapeutic intervention. Here, we report that the proinflammatory cytokine interleukin (IL)-1β suppresses platelet-derived growth factor (PDGF)-D promoter activity and mRNA and protein expression in smooth muscle cells. NF-κB p65, induced by IL-1β, interacts with a novel element in the PDGF-D promoter and inhibits PDGF-D transcription. Interferon regulatory factor-1 (IRF-1) is also induced by IL-1β and binds to a different element upstream in the promoter. Immunoprecipitation and chromatin immunoprecipitation experiments showed that IL-1β stimulates p65 interaction with IRF-1 and the accumulation of both factors at the PDGF-D promoter. Mutation of the IRF-1 and p65 DNA-binding elements relieved the promoter from IL-1β-mediated repression. PDGF-D repression by IL-1β involves histone deacetylation and interaction of HDAC-1 with IRF-1 and p65. HDAC-1 small interfering RNA ablates complex formation with IRF-1 and p65 and abrogates IRF-1 and p65 occupancy of the PDGF-D promoter. Thus, HDAC-1 is enriched at the PDGF-D promoter in cells exposed to IL-1β and forms a cytokine-inducible gene-silencing complex with p65 and IRF-1. PMID:19843519

  11. Interferon regulatory factor 5-dependent immune responses in the draining lymph node protect against West Nile virus infection.

    PubMed

    Thackray, Larissa B; Shrestha, Bimmi; Richner, Justin M; Miner, Jonathan J; Pinto, Amelia K; Lazear, Helen M; Gale, Michael; Diamond, Michael S

    2014-10-01

    Upon activation of Toll-like and RIG-I-like receptor signaling pathways, the transcription factor IRF5 translocates to the nucleus and induces antiviral immune programs. The recent discovery of a homozygous mutation in the immunoregulatory gene guanine exchange factor dedicator of cytokinesis 2 (Dock2mu/mu) in several Irf5-/- mouse colonies has complicated interpretation of immune functions previously ascribed to IRF5. To define the antiviral functions of IRF5 in vivo, we infected backcrossed Irf5-/-×Dock2wt/wt mice (here called Irf5-/- mice) and independently generated CMV-Cre Irf5fl/fl mice with West Nile virus (WNV), a pathogenic neurotropic flavivirus. Compared to congenic wild-type animals, Irf5-/- and CMV-Cre Irf5fl/fl mice were more vulnerable to WNV infection, and this phenotype was associated with increased infection in peripheral organs, which resulted in higher virus titers in the central nervous system. The loss of IRF5, however, was associated with only small differences in the type I interferon response systemically and in the draining lymph node during WNV infection. Instead, lower levels of several other proinflammatory cytokines and chemokines, as well as fewer and less activated immune cells, were detected in the draining lymph node 2 days after WNV infection. WNV-specific antibody responses in Irf5-/- mice also were blunted in the context of live or inactivated virus infection and this was associated with fewer antigen-specific memory B cells and long-lived plasma cells. Our results with Irf5-/- mice establish a key role for IRF5 in shaping the early innate immune response in the draining lymph node, which impacts the spread of virus infection, optimal B cell immunity, and disease pathogenesis. Although the roles of IRF3 and IRF7 in orchestrating innate and adaptive immunity after viral infection are established, the function of the related transcription factor IRF5 remains less certain. Prior studies in Irf5-/- mice reported conflicting results

  12. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites.

    PubMed

    Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong

    2015-01-01

    Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5-20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  13. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 genome editing enhances antiviral response in porcine cells

    USDA-ARS?s Scientific Manuscript database

    Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...

  14. Role of interferon in resistance and immunity to protozoa

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Degee, A. L. W.; Mansfield, J. M.; Newsome, A. L.; Arnold, R. R.

    1985-01-01

    Production of interferon (I) in response to protozoan infection, and the interferon-mediated inhibition of parasite replication were studied in order to determine if these effects may be related to immunologic-mediated resistance of the hosts. Two extracellular parasites-Trypanosoma brucei rhodesiense and Naegleria fowlei were used. Upon infection with the trypanosome, only resistant strains of mice produced I. An early peak of alpha/beta I is followed by appearance of gamma I, which coincided with antibody production and a drop in parasitemia. In case of the amoeba, pretreatment of its suspension with alpha/beta I inhibits its replication in vitro, and appears to protect mice from the infection and the disease. It is proposed that production of interferon, with its regulatory effect on the immune responses, may play a major role in regulating the processes of protozoan-caused diseases.

  15. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1

    PubMed Central

    Cho, Jae Youl

    2018-01-01

    Interferon regulatory factor (IRF)-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN). Thymoquinone (TQ) is a compound derived from black cumin (Nigella sativa L.) and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I) luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1), an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities. PMID:29751576

  16. Sequence and Expression Analysis of Interferon Regulatory Factor 10 (IRF10) in Three Diverse Teleost Fish Reveals Its Role in Antiviral Defense.

    PubMed

    Xu, Qiaoqing; Jiang, Yousheng; Wangkahart, Eakapol; Zou, Jun; Chang, Mingxian; Yang, Daiqin; Secombes, Chris J; Nie, Pin; Wang, Tiehui

    2016-01-01

    Interferon regulatory factor (IRF) 10 was first found in birds and is present in the genome of other tetrapods (but not humans and mice), as well as in teleost fish. The functional role of IRF10 in vertebrate immunity is relatively unknown compared to IRF1-9. The target of this research was to clone and characterize the IRF10 genes in three economically important fish species that will facilitate future evaluation of this molecule in fish innate and adaptive immunity. In the present study, a single IRF10 gene was cloned in grass carp Ctenopharyngodon idella and Asian swamp eel Monopterus albus, and two, named IRF10a and IRF10b, in rainbow trout Oncorhynchus mykiss. The fish IRF10 molecules share highest identities to other vertebrate IRF10s, and have a well conserved DNA binding domain, IRF-associated domain, and an 8 exon/7 intron structure with conserved intron phase. The presence of an upstream ATG or open reading frame (ORF) in the 5'-untranslated region of different fish IRF10 cDNA sequences suggests potential regulation at the translational level, and this has been verified by in vitro transcription/translation experiments of the trout IRF10a cDNA, but would still need to be validated in fish cells. Both trout IRF10 paralogues are highly expressed in thymus, blood and spleen but are relatively low in head kidney and caudal kidney. Trout IRF10b expression is significantly higher than IRF10a in integumentary tissues i.e. gills, scales, skin, intestine, adipose fin and tail fins, suggesting that IRF10b may be more important in mucosal immunity. The expression of both trout IRF10 paralogues is up-regulated by recombinant IFN-γ. The expression of the IRF10 genes is highly induced by Poly I:C in vitro and in vivo, and by viral infection, but is less responsive to peptidoglycan and bacterial infection, suggesting an important role of fish IRF10 in antiviral defense.

  17. Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor.

    PubMed Central

    Grau, G E; Heremans, H; Piguet, P F; Pointaire, P; Lambert, P H; Billiau, A; Vassalli, P

    1989-01-01

    Experimental cerebral malaria (ECM), a lethal hyperacute neurological syndrome associated with high blood levels of tumor necrosis factor, develops in genetically susceptible (CBA/Ca) mice 7 days after infection with Plasmodium berghei ANKA strain. Injections of neutralizing monoclonal antibody against recombinant murine interferon gamma, not later than 4 days after infection, markedly reduced the incidence of ECM and the elevation in serum levels of tumor necrosis factor. This treatment prevented the cerebral lesions (plugging of brain vessels by monocytes, lymphocytes, and parasitized erythrocytes). In contrast, the extent of macrophage infiltration in lymphoid organs (which is a characteristic feature of mice developing ECM), as well as the course of infection, remained unaffected by the antibody treatment. Protected mice died at a later time of severe anemia and overwhelming parasitemia, the usual outcome of P. berghei infection in mice that are not susceptible to ECM. The present data indicate that interferon gamma constitutes an important link in the cytokine network that leads to brain vessel inflammation in experimental malaria. It is proposed that interferon gamma released by activated CD4+ T cells acts by augmenting both production and action of tumor necrosis factor. PMID:2501793

  18. Repression of Virus-Induced Interferon A Promoters by Homeodomain Transcription Factor Ptx1

    PubMed Central

    Lopez, Sébastien; Island, Marie-Laure; Drouin, Jacques; Bandu, Marie-Thérese; Christeff, Nicolas; Darracq, Nicole; Barbey, Régine; Doly, Janine; Thomas, Dominique; Navarro, Sébastien

    2000-01-01

    Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by substitutions in the proximal positive virus responsive element A (VRE-A) of their promoters and by the presence or absence of a distal negative regulatory element (DNRE). The functional feature of the DNRE is to specifically act by repression of VRE-A activity. With the use of the yeast one-hybrid system, we describe here the identification of a specific DNRE-binding protein, the pituitary homeobox 1 (Ptx1 or Pitx1). Ptx1 is detectable in different cell types that differentially express IFN-A genes, and the endogenous Ptx1 protein binds specifically to the DNRE. Upon virus induction, Ptx1 negatively regulates the transcription of DNRE-containing IFN-A promoters, and the C-terminal region, as well as the homeodomain of the Ptx1 protein, is required for this repression. After virus induction, the expression of the Ptx1 antisense RNA leads to a significant increase of endogenous IFN-A gene transcription and is able to modify the pattern of differential expression of individual IFN-A genes. These studies suggest that Ptx1 contributes to the differential transcriptional strength of the promoters of different IFN-A genes and that these genes may provide new targets for transcriptional regulation by a homeodomain transcription factor. PMID:11003649

  19. A Multiprotein Binding Interface in an Intrinsically Disordered Region of the Tumor Suppressor Protein Interferon Regulatory Factor-1*

    PubMed Central

    Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R.; Vojtesek, Borivoj; Ball, Kathryn L.

    2011-01-01

    The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106–140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs. PMID:21245151

  20. A multiprotein binding interface in an intrinsically disordered region of the tumor suppressor protein interferon regulatory factor-1.

    PubMed

    Narayan, Vikram; Halada, Petr; Hernychová, Lenka; Chong, Yuh Ping; Žáková, Jitka; Hupp, Ted R; Vojtesek, Borivoj; Ball, Kathryn L

    2011-04-22

    The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.

  1. Human endogenous retrovirus expression is inversely related with the up-regulation of interferon-inducible genes in the skin of patients with lichen planus.

    PubMed

    Nogueira, Marcelle Almeida de Sousa; Gavioli, Camila Fátima Biancardi; Pereira, Nátalli Zanete; de Carvalho, Gabriel Costa; Domingues, Rosana; Aoki, Valéria; Sato, Maria Notomi

    2015-04-01

    Lichen planus (LP) is a common inflammatory skin disease of unknown etiology. Reports of a common transactivation of quiescent human endogenous retroviruses (HERVs) support the connection of viruses to the disease. HERVs are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancer and autoimmune diseases. We explored the transcriptional activity of HERV sequences as well as the antiviral restriction factor and interferon-inducible genes in the skin from LP patients and healthy control (HC) donors. The study included 13 skin biopsies from patients with LP and 12 controls. Real-time PCR assay identified significant decrease in the HERV-K gag and env mRNA expression levels in LP subjects, when compared to control group. The expressions of HERV-K18 and HERV-W env were also inhibited in the skin of LP patients. We observed a strong correlation between HERV-K gag with other HERV sequences, regardless the down-modulation of transcripts levels in LP group. In contrast, a significant up-regulation of the cytidine deaminase APOBEC 3G (apolipoprotein B mRNA-editing), and the GTPase MxA (Myxovirus resistance A) mRNA expression level was identified in the LP skin specimens. Other transcript expressions, such as the master regulator of type I interferon-dependent immune responses, STING (stimulator of interferon genes) and IRF-7 (interferon regulatory factor 7), IFN-β and the inflammassome NALP3, had increased levels in LP, when compared to HC group. Our study suggests that interferon-inducible factors, in addition to their role in innate immunity against exogenous pathogens, contribute to the immune control of HERVs. Evaluation of the balance between HERV and interferon-inducible factor expression could possibly contribute to surveillance of inflammatory/malignant status of skin diseases.

  2. Interferon in lyssavirus infection.

    PubMed

    Rieder, Martina; Finke, Stefan; Conzelmann, Karl-Klaus

    2012-01-01

    Rabies is a zoonosis still claiming more than 50 000 human deaths per year. Typically, human cases are due to infection with rabies virus, the prototype of the Lyssavirus genus, but sporadic cases of rabies-like encephalitis caused by other lyssaviruses have been reported. In contrast to rabies virus, which has an extremely broad host range including many terrestrial warm-blooded animals, rabies-related viruses are associated predominantly with bats and rarely infect terrestrial species. In spite of a very close genetic relationship of rabies and rabies-related viruses, the factors determining the limited host range of rabies-related viruses are not clear. In the past years the importance of viral countermeasures against the host type I interferon system for establishment of an infection became evident. The rabies virus phosphoprotein (P) has emerged as a critical factor required for paralysing the signalling cascades leading to transcriptional activation of interferon genes as well as interferon signalling pathways, thereby limiting expression of antiviral and immune stimulatory genes. Comparative studies would be of interest in order to determine whether differential abilities of the lyssavirus P proteins contribute to the restricted host range of lyssaviruses.

  3. Results of space experiment program "Interferon". II. Influence of spaceflight conditions on the activity of interferon preparations and interferon inducers ("Interferon II").

    PubMed

    Tálas, M; Bátkai, L; Stöger, I; Nagy, K; Hiros, L; Konstantinova, I; Kozharinov, V

    1983-01-01

    The influence of spaceflight conditions on the biological activity of HuIFN-alpha preparations (lyophilized, in solution and in ointment) and interferon inducers was studied. In antiviral activity no difference was observed between the samples kept aboard the spaceship and the controls kept under ground conditions. The interferon inducers poly I:C, poly G:C and gossipol placed in the space laboratory for 7 days maintained their interferon-inducing capacity. The circulating interferon level in mice was the same irrespective of the induction being performed with flight or ground-control samples of inducers.

  4. Characterization of common carp (Cyprinus carpio L.) interferon regulatory factor 5 (IRF5) and its expression in response to viral and bacterial challenges.

    PubMed

    Zhu, Yaoyao; Qi, Chenchen; Shan, Shijuan; Zhang, Fumiao; Li, Hua; An, Liguo; Yang, Guiwen

    2016-06-27

    Common carp (Cyprinus carpio L.), one of the most economically valuable commercial farming fish species in China, is often infected by a variety of viruses. As the first line of defence against microbial pathogens, the innate immune system plays a crucial role in teleost fish, which are lower vertebrates. Interferon (IFN) regulatory factor 5 (IRF5) is a key molecule in antiviral immunity that regulating the expression of IFN and other pro-inflammatory cytokines. It is necessary to gain more insight into the common carp IFN system and the function of fish IRF5 in the antiviral and antibacterial response. In the present study, we characterized the cDNA and genomic sequence of the IRF5 gene in common carp, and analysed tissue distribution and expression profile of this gene in response to polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharides (LPS) treatment. The common carp IRF5 (ccIRF5) gene is 5790 bp in length and is composed of 9 exons and 8 introns. The open reading frame (ORF) of ccIRF5 is 1554 bp, and encodes 517 amino acid protein. The putative ccIRF5 protein shares identity (65.4-90.0 %) with other fish IRF5s and contains a DNA binding domain (DBD), a middle region (MR), an IRF-associated domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) similar to those found in vertebrate IRF5. Phylogenetic analysis clustered ccIRF5 into the IRF5 subfamily with other vertebrate IRF5 and IRF6 genes. Real-time PCR analysis revealed that ccIRF5 mRNA was expressed in all examined tissues of healthy carps, with high levels observed in the gills and the brain. After poly I:C challenge, expression levels of ccIRF5, tumour-necrosis factor α (ccTNFα) and two IFN stimulated genes [ISGs (ccISG5 and ccPKR)] were up-regulated in seven immune-related tissues (liver, spleen, head kidney, foregut, hindgut, skin and gills). Furthermore, all four genes were up-regulated in vitro upon poly I:C and LPS challenges. Our findings suggest

  5. Sequence and Expression Analysis of Interferon Regulatory Factor 10 (IRF10) in Three Diverse Teleost Fish Reveals Its Role in Antiviral Defense

    PubMed Central

    Xu, Qiaoqing; Jiang, Yousheng; Wangkahart, Eakapol; Zou, Jun; Chang, Mingxian; Yang, Daiqin; Secombes, Chris J.; Nie, Pin; Wang, Tiehui

    2016-01-01

    Background Interferon regulatory factor (IRF) 10 was first found in birds and is present in the genome of other tetrapods (but not humans and mice), as well as in teleost fish. The functional role of IRF10 in vertebrate immunity is relatively unknown compared to IRF1-9. The target of this research was to clone and characterize the IRF10 genes in three economically important fish species that will facilitate future evaluation of this molecule in fish innate and adaptive immunity. Molecular Characterization of IRF10 in Three Fish Species In the present study, a single IRF10 gene was cloned in grass carp Ctenopharyngodon idella and Asian swamp eel Monopterus albus, and two, named IRF10a and IRF10b, in rainbow trout Oncorhynchus mykiss. The fish IRF10 molecules share highest identities to other vertebrate IRF10s, and have a well conserved DNA binding domain, IRF-associated domain, and an 8 exon/7 intron structure with conserved intron phase. The presence of an upstream ATG or open reading frame (ORF) in the 5’-untranslated region of different fish IRF10 cDNA sequences suggests potential regulation at the translational level, and this has been verified by in vitro transcription/translation experiments of the trout IRF10a cDNA, but would still need to be validated in fish cells. Expression Analysis of IRF10 In Vivo and In Vitro Both trout IRF10 paralogues are highly expressed in thymus, blood and spleen but are relatively low in head kidney and caudal kidney. Trout IRF10b expression is significantly higher than IRF10a in integumentary tissues i.e. gills, scales, skin, intestine, adipose fin and tail fins, suggesting that IRF10b may be more important in mucosal immunity. The expression of both trout IRF10 paralogues is up-regulated by recombinant IFN-γ. The expression of the IRF10 genes is highly induced by Poly I:C in vitro and in vivo, and by viral infection, but is less responsive to peptidoglycan and bacterial infection, suggesting an important role of fish IRF10

  6. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.

    PubMed

    Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A

    2005-06-01

    Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.

  7. Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Activates Type I Interferon Signals in Lupus Nephritis.

    PubMed

    Xue, Leixi; Liu, Lei; Huang, Jun; Wen, Jian; Yang, Ru; Bo, Lin; Tang, Mei; Zhang, Yi; Liu, Zhichun

    2017-01-01

    Type I interferon (IFN) plays a central role in pathogenesis of systemic lupus erythematosus (SLE); tumor necrosis factor-like weak inducer of apoptosis (TWEAK) has been associated with a pathogenic role in lupus nephritis (LN). Thus we investigated whether TWEAK could induce the activation of type I IFN pathway in LN. We examined this in patient-derived peripheral blood mononuclear cells (PBMCs) as well as MRL/lpr mice, a murine LN model. Relative to the control cohorts, MRL/lpr mice showed severe histological changes, high index levels of renal damage, and elevated expression of type I IFN-inducible genes. After shRNA suppression of TWEAK, we observed that renal damage was significantly attenuated and expression of type I IFN-inducible genes was reduced in MRL/lpr mice. In parallel, siRNA of TWEAK also significantly reduced the expression of type I IFN-inducible genes in PBMCs relative to control transfections. In PBMCs, TWEAK stimulation also led to expression of type I IFN-inducible genes. Our results illustrate a novel regulatory role of TWEAK, in which its activity positively regulates type I IFN pathway in LN based on preclinical models. Our findings suggest TWEAK could act as a critical target in preventing renal damage in patients with LN.

  8. Late Multiple Organ Surge in Interferon-Regulated Target Genes Characterizes Staphylococcal Enterotoxin B Lethality

    PubMed Central

    Ferreyra, Gabriela A.; Elinoff, Jason M.; Demirkale, Cumhur Y.; Starost, Matthew F.; Buckley, Marilyn; Munson, Peter J.; Krakauer, Teresa; Danner, Robert L.

    2014-01-01

    Background Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB) challenge was investigated in six tissues. Results The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC), spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN)/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN)-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. Conclusion Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes. PMID:24551153

  9. Hepatitis A and hepatitis C viruses: divergent infection outcomes marked by similarities in induction and evasion of interferon responses.

    PubMed

    Qu, Lin; Lemon, Stanley M

    2010-11-01

    Hepatitis A and hepatitis C viruses (HAV and HCV) are both positive-strand ribonucleic acid (RNA) viruses with hepatotropic lifestyles. Despite several important differences, they share many biological and molecular features and similar genome replication schemes. Despite this, HAV infections are usually effectively controlled by the host with elimination of the virus, whereas HCV most often is able to establish lifelong persistent infection. The mechanisms underlying this difference are unknown. The cellular helicases RIG-I and MDA5, and Toll-like receptor 3, are pattern recognition receptors that sense virus-derived RNAs within hepatocytes in the liver. Activation of these receptors leads to their interaction with specific adaptor proteins, mitochondrial antiviral signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β (TRIF), respectively, which engage downstream kinases to activate two crucial transcription factors, nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). This results in the induction of interferons (IFNs) and IFN-stimulated genes that ultimately establish an antiviral state. These signaling pathways are central to host antiviral defense and thus frequent targets for viral interference. Both HAV and HCV express proteases that target signal transduction through these pathways and that block the induction of IFNs upon sensing of viral RNA by these receptors. An understanding of the differences and similarities in the early innate immune responses to these infections is likely to provide important insights into the mechanism underlying the long-term persistence of HCV. © Thieme Medical Publishers.

  10. Haplotype-based gene-gene interaction of bone morphogenetic protein 4 and interferon regulatory factor 6 in the etiology of non-syndromic cleft lip with or without cleft palate in a Chilean population.

    PubMed

    Blanco, Rafael; Colombo, Alicia; Pardo, Rosa; Suazo, José

    2017-04-01

    Non-syndromic cleft lip with or without cleft palate (NSCL/P) is the most common craniofacial birth defect in humans, the etiology of which can be dependent on the interactions of multiple genes. We previously reported haplotype associations for polymorphic variants of interferon regulatory factor 6 (IRF6), msh homeobox 1 (MSX1), bone morphogenetic protein 4 (BMP4), and transforming growth factor beta 3 (TGFB3) in Chile. Here, we analyzed the haplotype-based gene-gene interaction for markers of these genes and NSCL/P risk in the Chilean population. We genotyped 15 single nucleoptide polymorphisms (SNPs) in 152 Chilean patients and 164 controls. Linkage disequilibrium (LD) blocks were determined using the Haploview software, and phase reconstruction was performed by the Phase program. Haplotype-based interactions were evaluated using the multifactor dimensionality reduction (MDR) method. We detected two LD blocks composed of two SNPs from BMP4 (Block 1) and three SNPs from IRF6 (Block 2). Although MDR showed no statistical significance for the global interaction model involving these blocks, we found four combinations conferring a statistically significantly increased NSCL/P risk (Block 1-Block 2): T-T/T-G C-G-T/G-A-T; T-T/T-G C-G-C/C-G-C; T-T/T-G G-A-T/G-A-T; and T-T/C-G G-A-T/G-A-T. These findings may reflect the presence of a genomic region containing potential causal variants interacting in the etiology of NSCL/P and may contribute to disentangling the complex etiology of this birth defect. © 2017 Eur J Oral Sci.

  11. Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock

    PubMed Central

    Rudd, Penny A.; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T.; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A.

    2012-01-01

    Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7−/−) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7−/− mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7−/− mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364

  12. Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure.

    PubMed

    Gram, Anna M; Sun, Chenglong; Landman, Sanne L; Oosenbrug, Timo; Koppejan, Hester J; Kwakkenbos, Mark J; Hoeben, Rob C; Paludan, Søren R; Ressing, Maaike E

    2017-11-01

    Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion. Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. [Interferon. An overview of the state of basic research with special regard to interferon-gamma].

    PubMed

    Günther, G; Otto, B

    1993-02-01

    Interferons / An overview on the state of basic research with special regard to interferon-gamma Interferons are multifunctional glycoproteins with a broad range of antiviral, antiproliferative and immunoregulatory effects on the target cell. This review deals with the basics as well as with more recent developments in interferon research. A historic overview of 35 years of interferon research since the discovery of interferons by Isaacs and Lindenmann in 1957 introduces the most important milestones in this field and appreciates the work of the participating researchers. A brief description of the classification of interferons based on different tissue sources, different antigenic properties and different induction behaviour is made. The main part of this review focuses on human interferon-gamma. We discuss recent work on the structure-function relationship of interferon-gamma. The interferon-gamma receptor and its role in signal transduction is another part of this paper. The structure and length of the C-terminal region of interferon-gamma seems to be important for receptor binding and expression of biological activities. A conservative estimate is that the family of IFN-activated genes numbers 15-20 in most cells.

  14. The hematopoietic tumor suppressor interferon regulatory factor 8 (IRF8) is upregulated by the antimetabolite cytarabine in leukemic cells involving the zinc finger protein ZNF224, acting as a cofactor of the Wilms' tumor gene 1 (WT1) protein.

    PubMed

    Montano, Giorgia; Ullmark, Tove; Jernmark-Nilsson, Helena; Sodaro, Gaetano; Drott, Kristina; Costanzo, Paola; Vidovic, Karina; Gullberg, Urban

    2016-01-01

    The transcription factor interferon regulatory factor-8 (IRF8) is highly expressed in myeloid progenitors, while most myeloid leukemias show low or absent expression. Loss of IRF8 in mice leads to a myeloproliferative disorder, indicating a tumor-suppressive role of IRF8. The Wilms tumor gene 1 (WT1) protein represses the IRF8-promoter. The zinc finger protein ZNF224 can act as a transcriptional co-factor of WT1 and potentiate the cytotoxic response to the cytostatic drug cytarabine. We hypothesized that cytarabine upregulates IRF8 and that transcriptional control of IRF8 involves WT1 and ZNF224. Treatment of leukemic K562 cells with cytarabine upregulated IRF8 protein and mRNA, which was correlated to increased expression of ZNF224. Knock down of ZNF224 with shRNA suppressed both basal and cytarabine-induced IRF8 expression. While ZNF224 alone did not affect IRF8 promoter activity, ZNF224 partially reversed the suppressive effect of WT1 on the IRF8 promoter, as judged by luciferase reporter experiments. Coprecipitation revealed nuclear binding of WT1 and ZNF224, and by chromatin immunoprecipitation (ChIP) experiments it was demonstrated that WT1 recruits ZNF224 to the IRF8 promoter. We conclude that cytarabine-induced upregulation of the IRF8 in leukemic cells involves increased levels of ZNF224, which can counteract the repressive activity of WT1 on the IRF8-promoter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A systematic analysis of host factors reveals a Med23-interferonregulatory axis against herpes simplex virus type 1 replication.

    PubMed

    Griffiths, Samantha J; Koegl, Manfred; Boutell, Chris; Zenner, Helen L; Crump, Colin M; Pica, Francesca; Gonzalez, Orland; Friedel, Caroline C; Barry, Gerald; Martin, Kim; Craigon, Marie H; Chen, Rui; Kaza, Lakshmi N; Fossum, Even; Fazakerley, John K; Efstathiou, Stacey; Volpi, Antonio; Zimmer, Ralf; Ghazal, Peter; Haas, Jürgen

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to

  16. Interferon response factor 3 is essential for house dust mite-induced airway allergy.

    PubMed

    Marichal, Thomas; Bedoret, Denis; Mesnil, Claire; Pichavant, Muriel; Goriely, Stanislas; Trottein, François; Cataldo, Didier; Goldman, Michel; Lekeux, Pierre; Bureau, Fabrice; Desmet, Christophe J

    2010-10-01

    Pattern-recognition receptors (PRRs) are critically involved in the pathophysiology of airway allergy, yet most of the signaling pathways downstream of PRRs implicated in allergic airway sensitization remain unknown. We sought to study the effects of genetic depletion of interferon response factor (IRF) 3 and IRF7, important transcription factors downstream of various PRRs, in a murine model of house dust mite (HDM)-induced allergic asthma. We compared HDM-induced allergic immune responses in IRF3-deficient (IRF3(-/-)), IRF7(-/-), and wild-type mice. Parameters of airway allergy caused by HDM exposure were strongly attenuated in IRF3(-/-), but not IRF7(-/-), mice compared with those in wild-type mice. Indeed, in HDM-exposed IRF3(-/-) mice HDM-specific T(H)2 cell responses did not develop. This correlated with impaired maturation and migration of IRF3(-/-) lung dendritic cells (DCs) on HDM treatment. Furthermore, adoptive transfer of HDM-loaded DCs indicated that IRF3(-/-) DCs had an intrinsic defect rendering them unable to migrate and to prime HDM-specific T(H)2 responses. Intriguingly, we also show that DC function and allergic airway sensitization in response to HDM were independent of signaling by type I interferons, the main target genes of IRF3. Through its role in DC function, IRF3, mainly known as a central activator of antiviral immunity, is essential for the development of T(H)2-type responses to airway allergens. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  17. Oral administration of pentachlorophenol induces interferon signaling mRNAs in C57BL/6 male mouse liver.

    PubMed

    Kanno, Jun; Aisaki, Ken-ichi; Igarashi, Katsuhide; Kitajima, Satoshi; Matsuda, Nae; Morita, Koichi; Tsuji, Masaki; Moriyama, Noriko; Furukawa, Yusuke; Otsuka, Maki; Tachihara, Erika; Nakatsu, Noriyuki; Kodama, Yukio

    2013-01-01

    Pentachlorophenol (PCP) was monitored for transcriptome responses in adult mouse liver at 2, 4, 8 and 24 hr after a single oral administration at four dose levels, 0, 10, 30 and 100 mg/kg. The expression data obtained using Affymetrix GeneChip MOE430 2.0 were absolutized by the Percellome method and expressed as three dimensional (3D) surface graphs with axes of time, dose and copy numbers of mRNA per cell. We developed the programs RSort, for comprehensive screening of the 3D surface data and PercellomeExploror for cross-referencing and confirmed the significant responses by visual inspection. In the first 8 hr, approximately 100 probe sets (PSs) related to PXR/SXR and Cyp2a4 and other metabolic enzymes were induced whereas Fos and JunB were suppressed. At 24 hr, about 1,200 PSs were strongly induced. We cross-referenced the Percellome database consisting of 111 chemicals on the liver transcriptome and found that about half of the PSs belonged to the metabolic pathways including Nrf2-mediated oxidative stress response networks shared with some of the 111 chemicals. The other half of the induced genes were interferon signaling network genes (ISG) and their induction was unique to PCP. Toll like receptors and other pattern recognition receptors, interferon regulatory factors and interferon alpha itself were included but inflammatory cytokines were not induced. In summary, these data indicated that functional symptoms of PCP treatment, such as hyperthermia and profuse sweating might be mediated by the ISG rather than the previously documented mitochondrial uncoupling mechanism. PCP might become a hint for developing low molecular weight orally available interferon mimetic drugs following imiquimod and RO4948191 as agonists of toll-like receptor and interferon receptor.

  18. Interferon-gamma exerts its negative regulatory effect primarily on the earliest stages of murine erythroid progenitor cell development.

    PubMed

    Wang, C Q; Udupa, K B; Lipschitz, D A

    1995-01-01

    Interferon-gamma (INF-gamma) has been shown to suppress erythropoiesis and perhaps to contribute to the anemia of chronic disease. In this study we demonstrated that the concentration of INF gamma required to suppress murine burst forming unit-erythroid (BFU-E) growth was significantly less than that required to suppress colony forming unit-erythroid (CFU-E) growth. INF gamma acted at the most primitive step in erythroid progenitor cell differentiation and proliferation, as inhibition was maximal when added at the time of BFU-E culture initiation. Inhibition was progressively less if INF gamma addition was delayed after culture initiation. The effects of INF gamma on BFU-E did not require the presence of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor-alpha (TNF alpha), or granulocyte macrophage colony stimulating factor (GM-CSF), as its effects were not neutralized by monoclonal antibodies against IL-1 alpha, TNF alpha, or GM-CSF. This applied whether INF gamma was added to culture with individual antibodies or with a combination of all three antibodies. INF gamma was not required for IL-1 alpha- or TNF alpha-induced suppression of BFU-E, as their effects were not neutralized by a monoclonal anti-INF gamma antibody. In contrast, GM-CSF-induced suppression of BFU-E was negated by the simultaneous addition of anti-INF gamma. We have previously shown that the addition of TNF alpha does not suppress BFU-E growth in cultures from marrow depleted of macrophages. Suppression did occur, however, if a small concentration of INF gamma that does not inhibit and increasing concentration of TNF alpha were added to culture, suggesting a synergistic effect between INF-gamma and TNF alpha. These observations suggest that INF gamma is a potent direct inhibitor of erythroid colony growth in vitro. It exerts its negative regulatory effect primarily on the earliest stages of erythroid progenitor cell differentiation and proliferation, as much higher doses are required to

  19. Non-B-DNA structures on the interferon-beta promoter?

    PubMed

    Robbe, K; Bonnefoy, E

    1998-01-01

    The high mobility group (HMG) I protein intervenes as an essential factor during the virus induced expression of the interferon-beta (IFN-beta) gene. It is a non-histone chromatine associated protein that has the dual capacity of binding to a non-B-DNA structure such as cruciform-DNA as well as to AT rich B-DNA sequences. In this work we compare the binding affinity of HMGI for a synthetic cruciform-DNA to its binding affinity for the HMGI-binding-site present in the positive regulatory domain II (PRDII) of the IFN-beta promoter. Using gel retardation experiments, we show that HMGI protein binds with at least ten times more affinity to the synthetic cruciform-DNA structure than to the PRDII B-DNA sequence. DNA hairpin sequences are present in both the human and the murine PRDII-DNAs. We discuss in this work the presence of, yet putative, non-B-DNA structures in the IFN-beta promoter.

  20. An IRF-3-, IRF-5-, and IRF-7-Independent Pathway of Dengue Viral Resistance Utilizes IRF-1 to Stimulate Type I and II Interferon Responses.

    PubMed

    Carlin, Aaron F; Plummer, Emily M; Vizcarra, Edward A; Sheets, Nicholas; Joo, Yunichel; Tang, William; Day, Jeremy; Greenbaum, Jay; Glass, Christopher K; Diamond, Michael S; Shresta, Sujan

    2017-11-07

    Interferon-regulatory factors (IRFs) are a family of transcription factors (TFs) that translate viral recognition into antiviral responses, including type I interferon (IFN) production. Dengue virus (DENV) and other clinically important flaviviruses are suppressed by type I IFN. While mice lacking the type I IFN receptor (Ifnar1 -/- ) succumb to DENV infection, we found that mice deficient in three transcription factors controlling type I IFN production (Irf3 -/- Irf5 -/- Irf7 -/- triple knockout [TKO]) survive DENV challenge. DENV infection of TKO mice resulted in minimal type I IFN production but a robust type II IFN (IFN-γ) response. Using loss-of-function approaches for various molecules, we demonstrate that the IRF-3-, IRF-5-, IRF-7-independent pathway predominantly utilizes IFN-γ and, to a lesser degree, type I IFNs. This pathway signals via IRF-1 to stimulate interleukin-12 (IL-12) production and IFN-γ response. These results reveal a key antiviral role for IRF-1 by activating both type I and II IFN responses during DENV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. UV Light Potentiates STING (Stimulator of Interferon Genes)-dependent Innate Immune Signaling through Deregulation of ULK1 (Unc51-like Kinase 1)*

    PubMed Central

    Kemp, Michael G.; Lindsey-Boltz, Laura A.; Sancar, Aziz

    2015-01-01

    The mechanism by which ultraviolet (UV) wavelengths of sunlight trigger or exacerbate the symptoms of the autoimmune disorder lupus erythematosus is not known but may involve a role for the innate immune system. Here we show that UV radiation potentiates STING (stimulator of interferon genes)-dependent activation of the immune signaling transcription factor interferon regulatory factor 3 (IRF3) in response to cytosolic DNA and cyclic dinucleotides in keratinocytes and other human cells. Furthermore, we find that modulation of this innate immune response also occurs with UV-mimetic chemical carcinogens and in a manner that is independent of DNA repair and several DNA damage and cell stress response signaling pathways. Rather, we find that the stimulation of STING-dependent IRF3 activation by UV is due to apoptotic signaling-dependent disruption of ULK1 (Unc51-like kinase 1), a pro-autophagic protein that negatively regulates STING. Thus, deregulation of ULK1 signaling by UV-induced DNA damage may contribute to the negative effects of sunlight UV exposure in patients with autoimmune disorders. PMID:25792739

  2. Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels

    NASA Technical Reports Server (NTRS)

    Pierangeli, Silvia S.; Sonnenfeld, Gerald

    1989-01-01

    Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.

  3. Interferon modulation of c-myc expression in cloned Daudi cells: relationship to the phenotype of interferon resistance.

    PubMed

    Dron, M; Modjtahedi, N; Brison, O; Tovey, M G

    1986-05-01

    Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells.

  4. Antiproliferative Properties of Type I and Type II Interferon

    PubMed Central

    Bekisz, Joseph; Baron, Samuel; Balinsky, Corey; Morrow, Angel; Zoon, Kathryn C.

    2010-01-01

    The clinical possibilities of interferon (IFN) became apparent with early studies demonstrating that it was capable of inhibiting tumor cells in culture and in vivo using animal models. IFN gained the distinction of being the first recombinant cytokine to be licensed in the USA for the treatment of a malignancy in 1986, with the approval of IFN-α2a (Hoffman-La Roche) and IFN-α2b (Schering-Plough) for the treatment of Hairy Cell Leukemia. In addition to this application, other approved antitumor applications for IFN-α2a are AIDS-related Kaposi’s Sarcoma and Chronic Myelogenous Leukemia (CML) and other approved antitumor applications for IFN-α2b are Malignant Melanoma, Follicular Lymphoma, and AIDS-related Kapoisi’s Sarcoma. In the ensuing years, a considerable number of studies have been conducted to establish the mechanisms of the induction and action of IFN’s anti-tumor activity. These include identifying the role of Interferon Regulatory Factor 9 (IRF9) as a key factor in eliciting the antiproliferative effects of IFN-α as well as identifying genes induced by IFN that are involved in recognition of tumor cells. Recent studies also show that IFN-activated human monocytes can be used to achieve >95% eradication of select tumor cells. The signaling pathways by which IFN induces apoptosis can vary. IFN treatment induces the tumor suppressor gene p53, which plays a role in apoptosis for some tumors, but it is not essential for the apoptotic response. IFN-α also activates phosphatidylinositol 3-kinase (PI3K), which is associated with cell survival. Downstream of PI3K is the mammalian target of rapamycin (mTOR) which, in conjunction with PI3K, may act in signaling induced by growth factors after IFN treatment. This paper will explore the mechanisms by which IFN acts to elicit its antiproliferative effects and more closely examine the clinical applications for the anti-tumor potential of IFN. PMID:20664817

  5. IFP35 Is Involved in the Antiviral Function of Interferon by Association with the Viral Tas Transactivator of Bovine Foamy Virus▿

    PubMed Central

    Tan, Juan; Qiao, Wentao; Wang, Jian; Xu, Fengwen; Li, Yue; Zhou, Jun; Chen, Qimin; Geng, Yunqi

    2008-01-01

    Interferon-induced proteins (IFPs) exert multiple functions corresponding to diverse interferon signals. However, the intracellular functions of many IFPs are not fully characterized. Here, we report that IFP35, a member of the IFP family with a molecular mass of 35 kDa, can interact with the bovine Tas (BTas) regulatory protein of bovine foamy virus (BFV). The interaction involves NID2 (IFP35/Nmi homology domain) of IFP35 and the central domain of BTas. The overexpression of IFP35 disturbs the ability of BTas to activate viral-gene transcription and inhibits viral replication. The depletion of endogenous IFP35 by interfering RNA can promote the activation of BFV, suggesting an inhibitory function of IFP35 in viral-gene expression. In addition, IFP35 can interact with the homologous regulatory protein of prototype FV and arrest viral replication and repress viral transcription. Our study suggests that IFP35 may represent a novel pathway of interferon-mediated antiviral activity in host organisms that plays a role in the maintenance of FV latency. PMID:18305040

  6. Interferon modulation of c-myc expression in cloned Daudi cells: relationship to the phenotype of interferon resistance.

    PubMed Central

    Dron, M; Modjtahedi, N; Brison, O; Tovey, M G

    1986-01-01

    Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells. Images PMID:3785169

  7. Interferon regulatory factor 5 is a potential target of autoimmune response triggered by Epstein-barr virus and Mycobacterium avium subsp. paratuberculosis in rheumatoid arthritis: investigating a mechanism of molecular mimicry.

    PubMed

    Bo, Marco; Erre, Gian Luca; Niegowska, Magdalena; Piras, Marco; Taras, Loredana; Longu, Maria Giovanna; Passiu, Giuseppe; Sechi, Leonardo A

    2018-01-01

    Rheumatoid arthritis (RA) is a chronic disease characterised by a pro-inflammatory cytokines linked erosive joint damage and by humoral and cellular response against a broad range of self-peptides. Molecular mimicry between Epstein-Barr virus (EBV), Mycobacterium avium subsp. paratuberculosis (MAP) and host peptides has long been regarded as an RA pathogenetic mechanism. Using bioinformatic analysis we identified high sequence homology among interferon regulatory factor 5 (IRF5), EBV antigen BOLF1 and MAP antigen MAP_4027. Our objective was to evaluate the presence in sera of RA patients of antibodies (Abs) directed against human homologous IRF5 cross-reacting with BOLF1 and MAP_4027. Frequency of reactivity against IRF5424-434, BOLF1305-320 and MAP_402718-32 was tested by indirect ELISA in sera from 71 RA patients and 60 healthy controls (HCs). RA sera show a remarkable high frequency of reactivity against IRF5424-434 in comparison to HCs (69% vs. 8%; p<0.0001). Similarly, seroreactivity against BOLF1305-320 was more frequently detected in RA sera than in HCs counterpart (58% vs. 8%; p<0.0001). Frequency of Abs against MAP_402718-32 was 17% in RA sera vs. 5% in HCs with a p-value at the threshold level (p<0.051). Prevalence of Abs against at least one of the assessed epitopes reached 72% in RA patients and 15% among HCs. Levels of Abs in RA patients were significantly related to systemic inflammation. IRF5 is a potential autoimmune target of RA. Our results support the hypothesis that EBV and MAP infections may be involved in the pathogenesis of RA, igniting a secondary immune response that cross-reacts against RA self-peptides.

  8. RNA editing is induced by type I interferon in esophageal squamous cell carcinoma.

    PubMed

    Zhang, Jinyao; Chen, Zhaoli; Tang, Zefang; Huang, Jianbing; Hu, Xueda; He, Jie

    2017-07-01

    In recent years, abnormal RNA editing has been shown to play an important role in the development of esophageal squamous cell carcinoma, as such abnormal editing is catalyzed by ADAR (adenosine deaminases acting on RNA). However, the regulatory mechanism of ADAR1 in esophageal squamous cell carcinomas remains largely unknown. In this study, we investigated ADAR1 expression and its association with RNA editing in esophageal squamous cell carcinomas. RNA sequencing applied to esophageal squamous cell carcinoma clinical samples showed that ADAR1 expression was correlated with the expression of STAT1, STAT2, and IRF9. In vitro experiments showed that the abundance of ADAR1 protein was associated with the induced activation of the JAK/STAT pathway by type I interferon. RNA sequencing results showed that treatment with type I interferon caused an increase in the number and degree of RNA editing in esophageal squamous cell carcinoma cell lines. In conclusion, the activation of the JAK/STAT pathway is a regulatory mechanism of ADAR1 expression and causes abnormal RNA editing profile in esophageal squamous cell carcinoma. This mechanism may serve as a new target for esophageal squamous cell carcinoma therapy.

  9. Interferon Alfa-2b Injection

    MedlinePlus

    Interferon alfa-2b injection is used to treat a number of conditions.Interferon alfa-2b injection is used alone or in combination ... lymphoma (NHL; a slow-growing blood cancer). Interferon alfa-2b is in a class of medications called ...

  10. Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter.

    PubMed

    Jääskeläinen, Kirsi M; Kaukinen, Pasi; Minskaya, Ekaterina S; Plyusnina, Angelina; Vapalahti, Olli; Elliott, Richard M; Weber, Friedemann; Vaheri, Antti; Plyusnin, Alexander

    2007-10-01

    The S RNA genome segment of hantaviruses carried by Arvicolinae and Sigmodontinae rodents encodes the nucleocapsid (N) protein and has an overlapping (+1) open reading frame (ORF) for a putative nonstructural protein (NSs). The aim of this study was to determine whether the ORF is functional. A protein corresponding to the predicted size of Tula virus (TULV) NSs was detected using coupled in vitro transcription and translation from a cloned S segment cDNA, and a protein corresponding to the predicted size of Puumala virus (PUUV) NSs was detected in infected cells by Western blotting with an anti-peptide serum. The activities of the interferon beta (IFN-beta) promoter, and nuclear factor kappa B (NF-kappaB)- and interferon regulatory factor-3 (IRF-3) responsive promoters, were inhibited in COS-7 cells transiently expressing TULV or PUUV NSs. Also IFN-beta mRNA levels in IFN-competent MRC5 cells either infected with TULV or transiently expressing NSs were decreased. These data demonstrate that Tula and Puumala hantaviruses have a functional NSs ORF. The findings may explain why the NSs ORF has been preserved in the genome of most hantaviruses during their long evolution and why hantavirus-infected cells secrete relatively low levels of IFNs. (c) 2007 Wiley-Liss, Inc.

  11. Interferon-alpha and interferon-gamma modulate Fas-mediated apoptosis in mitomycin-C-resistant human Tenon's fibroblasts.

    PubMed

    Wang, Xiao Yang; Crowston, Jonathan G; White, Andrew J R; Zoellner, Hans; Healey, Paul R

    2014-08-01

    The aim of the study was to investigate, using a native mitomycin-C-resistant human Tenon's fibroblast cell line, the possibility that interferon-alpha and gamma could be used with Fas agonists as an alternative anti-fibrotic strategy to mitomycin-C in trabeculectomy. A clinically resistant and in vitro verified mitomycin-C-resistant human Tenon's fibroblast cell line was pretreated with interferon-alpha and interferon-gamma for 48 h before stimulation with an agonistic Fas antibody (CH11) for 2 days to induce cell death. Cell death assays were undertaken. Changes in apoptosis-related proteins were determined by flow cytometry and Western blot. Pretreatment with interferon-alpha or interferon-gamma for 48 h increased Fas, Fas-associated protein with death domain and caspase-8 expression. Protein expression was further increased by combined exposure to interferon-alpha and gamma. Pretreatment with cytokines had no effect on Fas-L and Bcl-2. Interferon-alpha alone did not change the rate of induced cell death. A combination of interferon-alpha and gamma synergistically increased the sensitivity of mitomycin-C-resistant human Tenon's fibroblast cell line to induced cell death. An antagonistic anti-Fas antibody (ZB4) completely blocked induced cell death. Broad caspase inhibitors specific for caspases-8 and -3 reduced induced deaths in interferon pretreated mitomycin-C-resistant human Tenon's fibroblast cell line in a dose-dependent manner. Interferon-alpha and interferon-gamma render mitomycin-C-resistant human Tenon's fibroblast cell line sensitive to Fas-mediated apoptosis. The mechanism involves increased death-inducing signalling complex formation by upregulation of Fas, Fas-associated protein with death domain and caspase-8 expression. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  12. Equine herpesvirus-1 infection disrupts interferon regulatory factor-3 (IRF-3) signaling pathways in equine endothelial cells.

    PubMed

    Sarkar, Sanjay; Balasuriya, Udeni B R; Horohov, David W; Chambers, Thomas M

    2016-05-01

    Equine herpesvirus-1 (EHV-1) is a major respiratory viral pathogen of horses, causing upper respiratory tract disease, abortion, neonatal death, and neurological disease that may lead to paralysis and death. EHV-1 replicates initially in the respiratory epithelium and then spreads systemically to endothelial cells lining the small blood vessels in the uterus and spinal cord leading to abortion and EHM in horses. Like other herpesviruses, EHV-1 employs a variety of mechanisms for immune evasion including suppression of type-I interferon (IFN) production in equine endothelial cells (EECs). Previously we have shown that the neuropathogenic T953 strain of EHV-1 inhibits type-I IFN production in EECs and this is mediated by a viral late gene product. But the mechanism of inhibition was not known. Here we show that T953 strain infection of EECs induced degradation of endogenous IRF-3 protein. This in turn interfered with the activation of IRF-3 signaling pathways. EHV-1 infection caused the activation of the NF-κB signaling pathways, suggesting that inhibition of type-I IFN production is probably due to interference in IRF-3 and not NF-κB signal transduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Epstein-Barr virus BRLF1 inhibits transcription of IRF3 and IRF7 and suppresses induction of interferon-{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentz, Gretchen L.; Liu Renshui; Hahn, Angela M.

    Activation of interferon regulatory factors (IRFs) 3 and 7 is essential for the induction of Type I interferons (IFN) and innate antiviral responses, and herpesviruses have evolved mechanisms to evade such responses. We previously reported that Epstein-Barr virus BZLF1, an immediate-early (IE) protein, inhibits the function of IRF7, but the role of BRLF1, the other IE transactivator, in IRF regulation has not been examined. We now show that BRLF1 expression decreased induction of IFN-{beta}, and reduced expression of IRF3 and IRF7; effects were dependent on N- and C-terminal regions of BRLF1 and its nuclear localization signal. Endogenous IRF3 and IRF7more » RNA and protein levels were also decreased during cytolytic EBV infection. Finally, production of IFN-{beta} was decreased during lytic EBV infection and was associated with increased susceptibility to superinfection with Sendai virus. These data suggest a new role for BRLF1 with the ability to evade host innate immune responses.« less

  14. Effects of interferon on antibody formation

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1984-01-01

    Studies of the effects of interferon on primary and secondary antibody responses and of the relationship of interferon to other cytokines, or cell products, are presented. Dosage- and timing-dependent immunoenhancing and immunosuppressive activities of interferon are documented for mouse spleen cell cultures and for mice infected with murine hepatitis virus (MHV-3). A possibility that altered interferon production might lead to immunopathological disorders, such as lupus erythematosus, AIDS, arthritis, etc., is discussed. Latest technological developments are presented that indicate that interferon does apparently play a major role in the regulation of antibody responses.

  15. Mink parvoviruses and interferons: in vitro studies.

    PubMed Central

    Wiedbrauk, D L; Bloom, M E; Lodmell, D L

    1986-01-01

    Although interferons can inhibit the replication of a number of viruses, little is known about their ability to inhibit parvovirus replication. Therefore, in vitro experiments were done to determine if Aleutian disease virus and mink enteritis virus, two autonomously replicating mink parvoviruses, induced interferon, were sensitive to the effects of interferon, or inhibited the production of interferon. The results indicated that these parvoviruses neither induced nor were sensitive to the effects of interferon. Furthermore, preexisting parvovirus infections did not inhibit poly(I).poly(C)-induced interferon production. This independence from the interferon system may, therefore, be a general property of the autonomously replicating parvoviruses. PMID:2431162

  16. The interferons.

    PubMed Central

    Toy, J L

    1983-01-01

    An overview of the interferons is presented. A description of something of what is known about them is given, including: their genes; their protein structures and characteristics; their mechanisms of actions; and their varied biological effects emphasising particularly their immunomodulatory actions. Finally, a brief summary is made of the current status of human clinical studies that have been conducted with interferons in the oncological and viral fields, mentioning also recent findings in patients who have the acquired immunodeficiency syndrome (AIDS). PMID:6193915

  17. Changes in serum hepatitis C virus RNA in interferon nonresponders retreated with interferon plus ribavirin: a preliminary report.

    PubMed

    Nyberg, L; Albrecht, J; Glue, P; Gianelli, G; Zambas, D; Elliot, M; Conrad, A; McHutchison, J

    1999-06-01

    Ribavirin, a nucleoside analogue, inhibits replication of RNA and DNA viruses and may control hepatitis C virus (HCV) infection through modulation of anti-inflammatory and antiviral actions. Ribavirin monotherapy has no effect on serum HCV RNA levels. In combination with interferon, this agent appears to enhance the efficacy of interferon. The aim of this study was to monitor serum HCV RNA levels early during therapy with interferon and ribavirin compared with that previously seen in the same patients during interferon monotherapy. Five patients who previously showed no response to therapy with interferon alfa 3 MU three times weekly for 6 months were retreated with the identical dose of interferon alfa 2b in combination with oral ribavirin 1,000 mg/day. Serum HCV RNA levels were monitored at baseline, week 4, week 8, and week 12 of therapy by a quantitative multicycle polymerase chain reaction assay. In the first 8 to 12 weeks, serum HCV RNA levels showed a greater decrease in all patients when retreated with combination therapy compared with interferon alone. Mean (+/- SEM) serum HCV RNA levels for interferon therapy alone were 3.3 +/- 0.95, 1.2 +/- 0.95, 1.6 +/- 1.2, and 2.3 +/- 1.2 x 10(6) copies/ml at week 0, 4, 8, and 12, respectively. This was compared with 3.3 +/- 0.83, 0.3 +/- 0.2, 0.03 +/- 0.02, and 0.15 +/- 0.14 x 10(6), respectively, for the interferon and ribavirin group (p < 0.07 at week 8). Two of five patients had undetectable serum HCV RNA during combination therapy. Combination therapy with interferon and ribavirin in prior interferon nonresponders reduces serum HCV RNA levels compared with interferon alone. This may suggest some additional antiviral effect of ribavirin when given with interferon.

  18. Interferon-γ Inhibits Ebola Virus Infection.

    PubMed

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  19. Responses to Cytokines and Interferons that Depend upon JAKs and STATs.

    PubMed

    Stark, George R; Cheon, HyeonJoo; Wang, Yuxin

    2018-01-02

    Many cytokines and all interferons activate members of a small family of kinases (the Janus kinases [JAKs]) and a slightly larger family of transcription factors (the signal transducers and activators of transcription [STATs]), which are essential components of pathways that induce the expression of specific sets of genes in susceptible cells. JAK-STAT pathways are required for many innate and acquired immune responses, and the activities of these pathways must be finely regulated to avoid major immune dysfunctions. Regulation is achieved through mechanisms that include the activation or induction of potent negative regulatory proteins, posttranslational modification of the STATs, and other modulatory effects that are cell-type specific. Mutations of JAKs and STATs can result in gains or losses of function and can predispose affected individuals to autoimmune disease, susceptibility to a variety of infections, or cancer. Here we review recent developments in the biochemistry, genetics, and biology of JAKs and STATs. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Peripubertal viral-like challenge and social isolation mediate overlapping but distinct effects on behaviour and brain interferon regulatory factor 7 expression in the adult Wistar rat.

    PubMed

    Lukasz, Bartlomiej; O'Sullivan, Niamh C; Loscher, Jennifer S; Pickering, Mark; Regan, Ciaran M; Murphy, Keith J

    2013-01-01

    A range of adverse, early life environmental influences such as viral infection and social deprivation are thought to increase risk of psychiatric illness later in life. Here, we used peripheral administration of the viral infection mimic polyriboinosinic-polyribocytidylic acid (polyI:C) to compare the consequences of peripubertal infection and isolation rearing. Isolation rearing induced deficits in sensorimotor gating and recognition memory while no changes in social interaction or spatial learning were observed. PolyI:C injection during the peripubertal period markedly increased expression of interferon-stimulated genes (Ifit2, Prkr, Mx2 and Irf7) in the hippocampal dentate gyrus demonstrating that peripheral administration of the viral mimic in the adolescent animal does have direct effects in the brain. Peripubertal infection mimicry induced a similar but later emerging behavioural deficit in prepulse inhibition implying the existence of a peripubertal window of opportunity for viral-mediated cytokine increases to impact brain development and function. PolyI:C treatment also impaired novel object recognition but did not alter spatial reference memory or social interaction. Combining the polyI:C challenge with social isolation did not exacerbate the behavioural deficits seen with isolation rearing alone. Using Irf7 as a marker, peripubertal viral infection mimicry, isolation rearing and a combination of both were all seen to produce a long-lasting molecular imprint on the interferon-associated signalling pathway in the principal neuron population of the hippocampal dentate gyrus. The data suggest that the sensitivity of brain structure and function to disruption by viral infection extends into the peripubertal period. Moreover, augmented interferon signalling in hippocampus may represent a common molecular imprint of environmental insults associated with neuropsychiatric illnesses like schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The interferon response circuit in antiviral host defense.

    PubMed

    Haller, O; Weber, F

    2009-01-01

    Viruses have learned to multiply in the face of a powerful innate and adaptive immune response of the host. They have evolved multiple strategies to evade the interferon (IFN) system which would otherwise limit virus growth at an early stage of infection. IFNs induce the synthesis of a range of antiviral proteins which serve as cell-autonomous intrinsic restriction factors. For example, the dynamin-like MxA GTPase inhibits the multiplication of influenza and bunyaviruses (such as La Crosse virus, Hantaan virus, Rift Valley Fever virus, and Crimean-Congo hemorrhagic fever virus) by binding and sequestering the nucleocapsid protein into large perinuclear complexes. To overcome such intracellular restrictions, virulent viruses either inhibit IFN synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, or disturb the action of IFN-induced antiviral proteins. Many viruses produce specialized proteins to disarm the danger signal or express virulence genes that target members of the IFN regulatory factor family (IRFs) or components of the JAK-STAT signaling pathway. An alternative evasion strategy is based on extreme viral replication speed which out-competes the IFN response. The identification of viral proteins with IFN antagonistic functions has great implications for disease prevention and therapy. Virus mutants lacking IFN antagonistic properties represent safe yet highly immunogenic candidate vaccines. Furthermore, novel drugs intercepting viral IFN-antagonists could be used to disarm the viral intruders.

  2. Activation of the Stimulator of Interferon Genes (STING) adaptor attenuates experimental autoimmune encephalitis

    PubMed Central

    Lemos, Henrique; Huang, Lei; Chandler, Phillip R.; Mohamed, Eslam; Souza, Guilherme R.; Li, Lingqian; Pacholczyk, Gabriela; Barber, Glen N.; Hayakawa, Yoshihiro; Munn, David H.; Mellor, Andrew L.

    2014-01-01

    Cytosolic DNA sensing activates the Stimulator of Interferon Genes (STING) adaptor to induce interferon type I (IFNαβ) production. Constitutive DNA sensing to induce sustained STING activation incites tolerance breakdown leading to autoimmunity. Here we show that systemic treatments with DNA nanoparticles (DNPs) induced potent immune regulatory responses via STING signaling that suppressed experimental autoimmune encephalitis (EAE) when administered to mice after immunization with myelin oligodendrocyte glycoprotein (MOG), at EAE onset, or at peak disease severity. DNP treatments attenuated infiltration of effector T cells into the central nervous system (CNS) and suppressed innate and adaptive immune responses to MOG immunization in spleen. Therapeutic responses were not observed in mice treated with cargo DNA or cationic polymers alone, indicating that DNP uptake and cargo DNA sensing by cells with regulatory functions was essential for therapeutic responses to manifest. Intact STING and IFNαβ receptor genes, but not IFNγ receptor genes, were essential for therapeutic responses to DNPs to manifest. Treatments with cyclic diguanylate monophosphate (c-diGMP) to activate STING also delayed EAE onset and reduced disease severity. Therapeutic responses to DNPs were critically dependent on indoleamine 2,3 dioxygenase (IDO) enzyme activity in hematopoietic cells. Thus DNPs and c-diGMP attenuate EAE by inducing dominant T cell regulatory responses via the STING-IFNαβ-IDO pathway that suppress CNS-specific autoimmunity. These findings reveal dichotomous roles for the STING-IFNαβ pathway in either stimulating or suppressing autoimmunity and identify STING activating reagents as a novel class of immune modulatory drugs. PMID:24799564

  3. No Love Lost Between Viruses and Interferons.

    PubMed

    Fensterl, Volker; Chattopadhyay, Saurabh; Sen, Ganes C

    2015-11-01

    The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.

  4. Topical delivery of liposomally encapsulated interferon evaluated in a cutaneous herpes guinea pig model.

    PubMed Central

    Weiner, N; Williams, N; Birch, G; Ramachandran, C; Shipman, C; Flynn, G

    1989-01-01

    The topical delivery of liposomally encapsulated interferon was evaluated in the cutaneous herpes simplex virus guinea pig model. Application of liposomally entrapped interferon caused a reduction of lesion scores, whereas application of interferon formulated as a solution or as an emulsion was ineffective. The method of liposomal preparation rather than the lipid composition of the bilayers appeared to be the most important factor for reducing lesion scores. Only liposomes prepared by the dehydration-rehydration method were effective. This finding implied that the dehydration and subsequent rehydration of the liposomes facilitate partitioning of the interferon into liposomal bilayers, where the drug is positioned for transfer into the lipid compartment of the stratum corneum. Liposomes do not appear to function as permeation enhancers but seem to provide the needed physicochemical environment for transfer of interferon into the skin. PMID:2802550

  5. [Alpha interferon induced hyperthyroidism: a case report and review of the literature].

    PubMed

    Maiga, I; Valdes-Socin, H; Thiry, A; Delwaide, J; Sidibe, A T; Beckers, A

    2015-01-01

    Treatment with alpha interferon in hepatitis C triggers a thyroid autoimmunity in a variable percentage of cases (2-8%). This complication raises some questions about its screening, the possibility to continue anti-viral therapy and thyroid treatment. Alpha interferon has an immunomodulatory effect on the thyroid, but also an inhibitory effect on thyroid hormone synthesis. This explains the occurrence of cases of thyroid dysfunction, which often remain undetected because of their latency. Factors predicting thyroid dysfunction with interferon use are: female sex, history of thyroid disease and previous autoimmunity. Several clinical aspects are encountered including hypothyroidism (the most frequent depending on the series) and hyperthyroidism related to Graves' disease. For their detection, a cooperation between general practionners, gastroenterologists and endocrinologists is mandatory thyroid function tests are requested before, during and after treatment,with alpha interferon. Therapeutic aspects of thyroid disorders range from simple monitoring to symptomatic treatment, such as thyroxine prescription in the presence of hypothyroidism. Antithyroid drugs radioactive iodine or thyroid surgery are used in cases of severe or persistent Graves' disease induced by alpha interferon.

  6. Loregic: A Method to Characterize the Cooperative Logic of Regulatory Factors

    PubMed Central

    Wang, Daifeng; Yan, Koon-Kiu; Sisu, Cristina; Cheng, Chao; Rozowsky, Joel; Meyerson, William; Gerstein, Mark B.

    2015-01-01

    The topology of the gene-regulatory network has been extensively analyzed. Now, given the large amount of available functional genomic data, it is possible to go beyond this and systematically study regulatory circuits in terms of logic elements. To this end, we present Loregic, a computational method integrating gene expression and regulatory network data, to characterize the cooperativity of regulatory factors. Loregic uses all 16 possible two-input-one-output logic gates (e.g. AND or XOR) to describe triplets of two factors regulating a common target. We attempt to find the gate that best matches each triplet’s observed gene expression pattern across many conditions. We make Loregic available as a general-purpose tool (github.com/gersteinlab/loregic). We validate it with known yeast transcription-factor knockout experiments. Next, using human ENCODE ChIP-Seq and TCGA RNA-Seq data, we are able to demonstrate how Loregic characterizes complex circuits involving both proximally and distally regulating transcription factors (TFs) and also miRNAs. Furthermore, we show that MYC, a well-known oncogenic driving TF, can be modeled as acting independently from other TFs (e.g., using OR gates) but antagonistically with repressing miRNAs. Finally, we inter-relate Loregic’s gate logic with other aspects of regulation, such as indirect binding via protein-protein interactions, feed-forward loop motifs and global regulatory hierarchy. PMID:25884877

  7. [Fish interferon response and its molecular regulation: a review].

    PubMed

    Zhang, Yibing; Gui, Jianfang

    2011-05-01

    Interferon response is the first line of host defense against virus infection. Recent years have witnessed tremendous progress in understanding of fish innate response to virus infection, especially in fish interferon antiviral response. A line of fish genes involved in interferon antiviral response have been identified and functional studies further reveal that fish possess an IFN antiviral system similar to mammals. However, fish virus-induced interferon genes contain introns similar to mammalian type III interferon genes although they encode proteins similar to type I interferons, which makes it hard to understand the evolution of vertebrate interferon genes directly resulting in a debate on nomenclature of fish interferon genes. Actually, fish display some unique mechanisms underlying interferon antiviral response. This review documents the recent progress on fish interferon response and its molecular mechanism.

  8. Inhibited interferon production after space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Gould, C. L.; Williams, J.; Mandel, A. D.

    1988-01-01

    Several studies have been performed in our laboratories indicating that interferon production may be impaired in rodents after space flight. Using an antiorthostatic suspension model that simulates some of the effects of microgravity seen during space flight, we have shown that interferon-alpha/beta production was inhibited. The inhibition was not due solely to the stress of suspension. The inhibited interferon production was transient, as suspended animals returned to normal caging recovered the ability to produce interferon. Antiorthostatic suspension of mice also resulted in a loss of resistance to infection with the diabetogenic strain of encephalomyocarditis virus, which correlated with the drop in interferon production. In rats flown in US Space Shuttle mission SL-3, interferon-gamma production was inhibited severely when spleen cells were challenged with concanavalin-A upon return to earth. In contrast, interleukin-3 production by these cells was normal. These results suggest that immune responses may be altered after antiorthostatic modeling or space flight, and the resistance to viral infections may be especially affected.

  9. Transcription factor trapping by RNA in gene regulatory elements.

    PubMed

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  10. Regulatory T cells in the actinic cheilitis.

    PubMed

    Gasparoto, Thaís Helena; de Souza Malaspina, Tatiana Salles; Damante, José Humberto; de Mello, Edgard Franco; Ikoma, Maura Rosane Valério; Garlet, Gustavo Pompermaier; Costa, Maria Renata Sales Nogueira; Cavassani, Karen Angélica; da Silva, João Santana; Campanelli, Ana Paula

    2014-11-01

    Actinic cheilitis (AC) is an oral potentially malignant lesion which is the counterpart of actinic keratosis of the skin and has potential to develop into squamous cell carcinoma. Regulatory T cells (Tregs) have a critical role in modulating the antitumor immune responses. The presence of regulatory T cells in potentially malignant lesions has not been described. We chose investigate the involvement of regulatory T cells in potentially malignant lesions. The frequency, phenotype, and activity of CD4+CD25+ T cells isolated from blood and lesion of AC patients were analyzed by flow cytometry. Cytokines were quantified by ELISA. Data were compared with samples from healthy subjects. The frequency and suppressor activity of circulating CD4+CD25+ T cells was similar in AC patients and control subjects. However, the frequencies of IL-10-positive Tregs were higher in AC patients, and these cells inhibited interferon-gamma (IFN-γ) and increased interleukin (IL)-10 productions in co-cultures. Furthermore, CD4+CD25+ T cells accumulate in AC lesions. Lesions-derived regulatory T cells suppressed lymphocyte proliferation and pro-inflammatory cytokine production. Moreover, high levels of IL-10 and transforming growth factor-β (TGF-β), and low IFN-γ were detected in the potentially malignant lesions. Therefore, our data show that Tregs accumulate in AC lesions, and these cells could be suppressing immune responses in a potentially malignant microenvironment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Heroin use is associated with lower levels of restriction factors and type I interferon expression and facilitates HIV-1 replication.

    PubMed

    Zhu, Jia-Wu; Liu, Feng-Liang; Mu, Dan; Deng, De-Yao; Zheng, Yong-Tang

    Heroin use is associated with increased incidence of infectious diseases such as HIV-1 infection, as a result of immunosuppression to a certain extent. Host restriction factors are recently identified cellular proteins with potent antiviral activities. Whether heroin use impacts on the in vivo expression of restriction factors that result in facilitating HIV-1 replication is poorly understood. Here we recruited 432 intravenous drug users (IDUs) and 164 non-IDUs at high-risk behaviors. Based on serological tests, significantly higher prevalence of HIV-1 infection was observed among IDUs compared with non-IDUs. We included those IDUs and non-IDUs without HIV-1 infection, and found IDUs had significantly lower levels of TRIM5α, TRIM22, APOBEC3G, and IFN-α, -β expression than did non-IDUs. We also directly examined plasma viral load in HIV-1 mono-infected IDUs and non-IDUs and found HIV-1 mono-infected IDUs had significantly higher plasma viral load than did non-IDUs. Moreover, intrinsically positive correlation between type I interferon and TRIM5α or TRIM22 was observed, however, which was dysregulated following heroin use. Collectively, heroin use benefits HIV-1 replication that may be partly due to suppression of host restriction factors and type I interferon expression. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Cross-Regulation of Two Type I Interferon Signaling Pathways in Plasmacytoid Dendritic Cells Controls Anti-malaria Immunity and Host Mortality.

    PubMed

    Yu, Xiao; Cai, Baowei; Wang, Mingjun; Tan, Peng; Ding, Xilai; Wu, Jian; Li, Jian; Li, Qingtian; Liu, Pinghua; Xing, Changsheng; Wang, Helen Y; Su, Xin-Zhuan; Wang, Rong-Fu

    2016-11-15

    Type I interferon (IFN) is critical for controlling pathogen infection; however, its regulatory mechanisms in plasmacytoid cells (pDCs) still remain unclear. Here, we have shown that nucleic acid sensors cGAS-, STING-, MDA5-, MAVS-, or transcription factor IRF3-deficient mice produced high amounts of type I IFN-α and IFN-β (IFN-α/β) in the serum and were resistant to lethal plasmodium yoelii YM infection. Robust IFN-α/β production was abolished when gene encoding nucleic acid sensor TLR7, signaling adaptor MyD88, or transcription factor IRF7 was ablated or pDCs were depleted. Further, we identified SOCS1 as a key negative regulator to inhibit MyD88-dependent type I IFN signaling in pDCs. Finally, we have demonstrated that pDCs, cDCs, and macrophages were required for generating IFN-α/β-induced subsequent protective immunity. Thus, our findings have identified a critical regulatory mechanism of type I IFN signaling in pDCs and stage-specific function of immune cells in generating potent immunity against lethal YM infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Combination alpha-interferon and lamivudine therapy for alpha-interferon-resistant chronic hepatitis B infection: results of a pilot study.

    PubMed

    Mutimer, D; Naoumov, N; Honkoop, P; Marinos, G; Ahmed, M; de Man, R; McPhillips, P; Johnson, M; Williams, R; Elias, E; Schalm, S

    1998-06-01

    Alpha-interferon achieves seroconversion in about one third of naive patients. Attempts to achieve seroconversion in patients who have previously failed alpha-interferon have proved disappointing. Combination chemotherapy (alpha-interferon with a nucleoside analogue) might provide a treatment alternative for these patients. We have undertaken a phase 2 study in 20 patients who had previously failed at least one course of alpha-interferon. The study was designed to assess the safety, tolerability and efficacy of the combination. All patients were treated for 16 weeks with alpha-interferon in combination with 12 or 16 weeks of Lamivudine (3'TC). Patients were followed for 16 weeks post-treatment. Pharmacokinetic studies were performed to identify/exclude significant pharmacokinetic drug interaction. The combination was well tolerated, and side-effects of the combination were indistinguishable from the recognised side-effects of alpha-interferon. Pharmacokinetic studies performed on days 1 and 29 did not show any significant interaction. All patients achieved HBV DNA clearance during treatment, but 19 relapsed at the end of treatment. HBeAg/anti-HBe seroconversion was observed for four patients, but was sustained for a single patient (who also had sustained DNA clearance). Combination therapy with alpha-interferon and lamivudine given for 16 weeks appears safe and is well tolerated. However, for this group of patients who had previously failed interferon monotherapy, the efficacy of combination interferon/lamivudine therapy appears disappointing, and other treatment strategies should be investigated.

  14. [Alpha-interferon and mental disorders].

    PubMed

    Debien, C; De Chouly De Lenclave, M B; Foutrein, P; Bailly, D

    2001-01-01

    cases of depressive problems is difficult to determine through lack of serious studies. So the incidence of depressive disorders usually varies from 5 to 15%. The depressive syndrome can settle as soon as the first week treatment, with a peak in the frequency during the first and third months. The seriousness and the incidence of this syndrome seem to be dose-dependent. The gravity of this complication lies in the suicidal risk, a risk all the more dreadful since there is not any identified risk factor. Suicides and suicidal behaviours. Serious complications, because they act directly on the vital prognosis. However fortunately, suicidal behaviours only represent a minority within all the side effects attributed to the interferon-alpha. These actions fit into three main clinical dimensions: complication of a severe depressive syndrome, confusional context and disorder of the impulses control. In practical terms, prevention proves to be difficult without identified predictive factors. Nevertheless, some authors point out the importance of aggravating comorbid disorders like alcoholism or the coinfection by the HIV. Manic syndrome. The appearance of a manic state under a chemotherapy treatment seems to be rare, given that there have been only a dozen cases published around the world. But these observations are interesting as far as both the study of imputability and the understanding of the toxicity mechanisms are concerned. Most of the cases deal with patients without a family or personal history of psychiatric disorders, and whose symptomatology disappears with the end of the treatment, which is an argument in favour of the imputation of the interferon in the appearance of manic disorders. In addition, some authors introduce the notion of tertiary mania: the appearance of an autoimmune hypothyroidism in relation with interferon and leading to athymic elation. Eventually, the appearance of manic problems at the end of the treatment makes it possible to speculate about

  15. Underlying pathways for interferon risk to type II diabetes mellitus.

    PubMed

    Abdel-Hamid, Nabil; Jubori, Taghreed Al; Farhan, Amaal; Mahrous, Mariam; Gouri, Adel; Awad, Ezzat; Breuss, Johannes

    2013-11-01

    It has been known that chronic liver treatments interfere with blood glucose metabolism. It was recognized that diabetes mellitus among chronic hepatitis C was greater in other types of chronic liver diseases. Hepatitis C directly promotes insulin resistance through the proteosomal degradation of insulin resistance substrate. It suppressed hepatocyte glucose uptake through down-regulation of surface expression of glucose transporter. Long-term exposure to cytokine over expression seems to be cytotoxic to both beta cells of the pancreas and to hepatocytes. Elevated tumor necrosis factor-a, or its neutralization, increased insulin sensitivity. Interferon-a may also elevate the serum level of interleukin-1 which is cytotoxic to pancreatic islet cells. Both diabetes mellitus and resistance to interferon-a therapy are abnormally mediated by over-expression of suppressor of cytokine signaling-1 in hepatocytes of chronic hepatitis C patients. These data suggest that interferon-a therapy should be administered with caution in patients showing any predisposition to Diabetes mellitus. Anti inflammatory therapy is critically recommended as a protector against disease development due to cytokine mediated Diabetes mellitus during hepatitis C therapy, since inflammation seems to be a main candidate to interferon suspected diabetogenesis.

  16. Suppression of interferon β gene transcription by inhibitors of bromodomain and extra-terminal (BET) family members.

    PubMed

    Malik, Nazma; Vollmer, Stefan; Nanda, Sambit Kumar; Lopez-Pelaez, Marta; Prescott, Alan; Gray, Nathanael; Cohen, Philip

    2015-06-15

    PLK (Polo-like kinase) inhibitors, such as BI-2536, have been reported to suppress IFNB (encoding IFNβ, interferon β) gene transcription induced by ligands that activate TLR3 (Toll-like receptor 3) and TLR4. In the present study, we found that BI-2536 is likely to exert this effect by preventing the interaction of the transcription factors IRF3 (interferon-regulatory factor 3) and c-Jun with the IFNB promoter, but without affecting the TBK1 {TANK [TRAF (tumour-necrosis-factor-receptor-associated factor)-associated nuclear factor κB activator]-binding kinase 1}-catalysed phosphorylation of IRF3 at Ser³⁹⁶, the dimerization and nuclear translocation of IRF3 or the phosphorylation of c-Jun and ATF2 (activating transcription factor 2). Although BI-2536 inhibits few other kinases tested, it interacts with BET (bromodomain and extra-terminal) family members and displaces them from acetylated lysine residues on histones. We found that BET inhibitors that do not inhibit PLKs phenocopied the effect of BI-2536 on IFNB gene transcription. Similarly, BET inhibitors blocked the interaction of IRF5 with the IFNB promoter and the secretion of IFNβ induced by TLR7 or TLR9 ligands in the human plasmacytoid dendritic cell line GEN2.2, but without affecting the nuclear translocation of IRF5. We found that the BET family member BRD4 (bromodomain-containing protein 4) was associated with the IFNB promoter and that this interaction was enhanced by TLR3- or TLR4-ligation and prevented by BI-2536 and other BET inhibitors. Our results establish that BET family members are essential for TLR-stimulated IFNB gene transcription by permitting transcription factors to interact with the IFNB promoter. They also show that the interaction of the IFNB promoter with BRD4 is regulated by TLR ligation and that BI-2536 is likely to suppress IFNB gene transcription by targeting BET family members. © 2015 The Author(s).

  17. Acute energy deprivation in man: effect on serum immunoglobulins antibody response, complement factors 3 and 4, acute phase reactants and interferon-producing capacity of blood lymphocytes.

    PubMed Central

    Palmblad, J; Cantell, K; Holm, G; Norberg, R; Strander, H; Sunblad, L

    1977-01-01

    The effects of 10 days of total energy deprivation on serum levels of immunoglobulins, antibodies acute phase reactants and on interferon production were evaluated in fourteen healthy, normal-weight males. A significant depression was noted of the serum levels of complement factor 3, haptoglobin and orosomucoid. The titres of mercaptoethanol-sensitive specific antibodies to flagellin were higher in the subjects inoculated at the end of the starvation period than in controls and those inoculated at the start of the period. The serum levels of IgG, IgM, IgA, IgE, alpha-1-antitrypsin and complement factor 4, and the interferon-producing capacity of blood lymphocytes, were not changed. Thus, 10 days of total energy deprivation depresses the serum levels of several acute phase reactants and re-feeding may enhance antibody production. PMID:606438

  18. Antifibrotic mechanism of deferoxamine in concanavalin A induced-liver fibrosis: Impact on interferon therapy.

    PubMed

    Darwish, Samar F; El-Bakly, Wesam M; El-Naga, Reem N; Awad, Azza S; El-Demerdash, Ebtehal

    2015-11-01

    Iron-overload is a well-known factor of hepatotoxicity and liver fibrosis, which found to be a common finding among hepatitis C virus patients and related to interferon resistance. We aimed to elucidate the potential antifibrotic effect of deferoxamine; the main iron chelator, and its additional usefulness to interferon-based therapy in concanavalin A-induced immunological model of liver fibrosis. Rats were treated with deferoxamine and/or pegylated interferon-α for 6 weeks. Hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. Concanavalin A induced a significant increase in hepatotoxicity indices and lipid peroxidation accompanied with a significant depletion of total antioxidant capacity, glutathione level and superoxide dismutase activity. Besides, it increased CD4(+) T-cells content and the downstream inflammatory cascades, including NF-κB, TNF-α, iNOS, COX-2, IL-6 and IFN-γ. Furthermore, α-SMA, TGF-β1 and hydroxyproline were increased markedly, which confirmed by histopathology. Treatment with either deferoxamine or pegylated interferon-α alone reduced liver fibrosis markers significantly and improved liver histology. However, some of the hepatotoxicity indices and oxidative stress markers did not improve upon pegylated interferon-α treatment alone, besides the remarkable increase in IL-6. Combination therapy of deferoxamine with pegylated interferon-α further improved all previous markers, ameliorated IL-6 elevation, as well as increased hepcidin expression. In conclusion, our study provides evidences for the potent antifibrotic effects of deferoxamine and the underlying mechanisms that involved attenuating oxidative stress and subsequent inflammatory cascade, as well as the production of profibrogenic factors. Addition of deferoxamine to interferon regimen for HCV patients may offer a promising adjuvant modality to enhance therapeutic response. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. [The expression of interferon-lambda1 in CHO cell].

    PubMed

    Yuan, Wu-Mei; Ma, Fen-Lian; Zhang, Qian; Zheng, Wen-Zhi; Zheng, Li-Shu

    2013-06-01

    To construct the eukaryotic expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which linked the enhancer SP163 with interferon lambda1. Then express the interferon lambda1 in CHO (dhfr-) cells. Using PCR method to introduce the restriction enzyme sites and through the fusion PCR binding the enhancer with the interferon Lambda1. After sequenced, lambda1 and SP163-lambda1 was inserted into PCI-dhfr forming the expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which was constructed successfully confirming by sequencing. Then the expressing vectors were transfected into CHO (dhfr-) cells using liposome transfection method and interferon lambda1 protein was assayed with indirect immunofluorescence and Western Blot. Using cytopathic effect inhibition evaluated the antiviral activity of interferon lambda1. Successfully constructing the eukaryotic expression vectors of interferon lambda and the vectors could express interferon lambda1. The result of immunofluorescence showed the enhancer developed the expression of interferon lambda1. Detecting the interferon lambda1 in CHO (dhfr-) cells after transfecting 48 hour using Western Blot. The cytopathic effect inhibition showed the expressed interferon lambda1 has the antiviral activity. Successfully expressed the interferon lambda1 in CHO (dhfr-) cells and the protein possesses antiviral activity, which may supply a valuable basis for building the stable cell line of interferon lambda1.

  20. Identification and regulatory analysis of rainbow trout tapasin and tapasin-related genes

    USGS Publications Warehouse

    Landis, E.D.; Palti, Y.; Dekoning, J.; Drew, R.; Phillips, R.B.; Hansen, J.D.

    2006-01-01

    Tapasin (TAPBP) is a key member of MHC class Ia antigen-loading complexes, bridging the class Ia molecule to the transporter associated with antigen presentation (TAP). As part of an ongoing study of MHC genomics in rainbow trout, we have identified two rainbow trout TAPBP genes (Onmy-TAPBP.a and .b) and a similar but distinct TAPBP-related gene (Onmy-TAPBP-R) that had previously only been described in mammals. Physical and genetic mapping indicate that Onmy-TAPBP.a is on chromosome 18 in the MHC class Ia region and that Onmy-TAPBP.b resides on chromosome 14 in the MHC class Ib region. There are also at least two copies of TAPBP-R, Onmy-TAPBP-R.a and Onmy-TAPBP-R.b, located on chromosomes 2 and 3, respectively. Due to the central role of TAPBP expression during acute viral infection, we have characterized the transcriptional profile and regulatory regions for both Onmy-TAPBP and Onmy-TAPBP-R. Transcription of both genes increased during acute infection with infectious hematapoeitic necrosis virus (IHNV) in a fashion indicative of interferon-mediated regulation. Promoter-reporter assays in STE-137 cells demonstrate that the trout TAPBP and TAPBP-R promoters respond to interferon regulatory factors, Onmy-IRF1 and Onmy-IRF2. Overall, TAPBP is expressed at higher levels than TAPBP-R in nai??ve tissues and TAPBP transcription is more responsive to viral infection and IRF1 and 2 binding. ?? Springer-Verlag 2006.

  1. Porcine Reproductive and Respiratory Syndrome Virus Nsp1β Inhibits Interferon-Activated JAK/STAT Signal Transduction by Inducing Karyopherin-α1 Degradation

    PubMed Central

    Wang, Rong; Nan, Yuchen; Yu, Ying

    2013-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) inhibits the interferon-mediated antiviral response. Type I interferons (IFNs) induce the expression of IFN-stimulated genes by activating phosphorylation of both signal transducer and activator of transcription 1 (STAT1) and STAT2, which form heterotrimers (interferon-stimulated gene factor 3 [ISGF3]) with interferon regulatory factor 9 (IRF9) and translocate to the nucleus. PRRSV Nsp1β blocks the nuclear translocation of the ISGF3 complex by an unknown mechanism. In this study, we discovered that Nsp1β induced the degradation of karyopherin-α1 (KPNA1, also called importin-α5), which is known to mediate the nuclear import of ISGF3. Overexpression of Nsp1β resulted in a reduction of KPNA1 levels in a dose-dependent manner, and treatment of the cells with the proteasome inhibitor MG132 restored KPNA1 levels. Furthermore, the presence of Nsp1β induced an elevation of KPNA1 ubiquitination and a shortening of its half-life. Our analysis of Nsp1β deletion constructs showed that the N-terminal domain of Nsp1β was involved in the ubiquitin-proteasomal degradation of KPNA1. A nucleotide substitution resulting in an amino acid change from valine to isoleucine at residue 19 of Nsp1β diminished its ability to induce KPNA1 degradation and to inhibit IFN-mediated signaling. Interestingly, infection of MARC-145 cells by PRRSV strains VR-2332 and VR-2385 also resulted in KPNA1 reduction, whereas infection by an avirulent strain, Ingelvac PRRS modified live virus (MLV), did not. MLV Nsp1β had no effect on KPNA1; however, a mutant with an amino acid change at residue 19 from isoleucine to valine induced KPNA1 degradation. These results indicate that Nsp1β blocks ISGF3 nuclear translocation by inducing KPNA1 degradation and that valine-19 in Nsp1β correlates with the inhibition. PMID:23449802

  2. Host Defense against Viral Infection Involves Interferon Mediated Down-Regulation of Sterol Biosynthesis

    PubMed Central

    Blanc, Mathieu; Hsieh, Wei Yuan; Robertson, Kevin A.; Watterson, Steven; Shui, Guanghou; Lacaze, Paul; Khondoker, Mizanur; Dickinson, Paul; Sing, Garwin; Rodríguez-Martín, Sara; Phelan, Peter; Forster, Thorsten; Strobl, Birgit; Müller, Matthias; Riemersma, Rudolph; Osborne, Timothy; Wenk, Markus R.; Angulo, Ana; Ghazal, Peter

    2011-01-01

    Little is known about the protective role of inflammatory processes in modulating lipid metabolism in infection. Here we report an intimate link between the innate immune response to infection and regulation of the sterol metabolic network characterized by down-regulation of sterol biosynthesis by an interferon regulatory loop mechanism. In time-series experiments profiling genome-wide lipid-associated gene expression of macrophages, we show a selective and coordinated negative regulation of the complete sterol pathway upon viral infection or cytokine treatment with IFNγ or β but not TNF, IL1β, or IL6. Quantitative analysis at the protein level of selected sterol metabolic enzymes upon infection shows a similar level of suppression. Experimental testing of sterol metabolite levels using lipidomic-based measurements shows a reduction in metabolic output. On the basis of pharmacologic and RNAi inhibition of the sterol pathway we show augmented protection against viral infection, and in combination with metabolite rescue experiments, we identify the requirement of the mevalonate-isoprenoid branch of the sterol metabolic network in the protective response upon statin or IFNβ treatment. Conditioned media experiments from infected cells support an involvement of secreted type 1 interferon(s) to be sufficient for reducing the sterol pathway upon infection. Moreover, we show that infection of primary macrophages containing a genetic knockout of the major type I interferon, IFNβ, leads to only a partial suppression of the sterol pathway, while genetic knockout of the receptor for all type I interferon family members, ifnar1, or associated signaling component, tyk2, completely abolishes the reduction of the sterol biosynthetic activity upon infection. Levels of the proteolytically cleaved nuclear forms of SREBP2, a key transcriptional regulator of sterol biosynthesis, are reduced upon infection and IFNβ treatment at both the protein and de novo transcription level. The

  3. A Simple Screening Approach To Prioritize Genes for Functional Analysis Identifies a Role for Interferon Regulatory Factor 7 in the Control of Respiratory Syncytial Virus Disease

    PubMed Central

    McDonald, Jacqueline U.; Kaforou, Myrsini; Clare, Simon; Hale, Christine; Ivanova, Maria; Huntley, Derek; Dorner, Marcus; Wright, Victoria J.; Levin, Michael; Martinon-Torres, Federico; Herberg, Jethro A.

    2016-01-01

    ABSTRACT Greater understanding of the functions of host gene products in response to infection is required. While many of these genes enable pathogen clearance, some enhance pathogen growth or contribute to disease symptoms. Many studies have profiled transcriptomic and proteomic responses to infection, generating large data sets, but selecting targets for further study is challenging. Here we propose a novel data-mining approach combining multiple heterogeneous data sets to prioritize genes for further study by using respiratory syncytial virus (RSV) infection as a model pathogen with a significant health care impact. The assumption was that the more frequently a gene is detected across multiple studies, the more important its role is. A literature search was performed to find data sets of genes and proteins that change after RSV infection. The data sets were standardized, collated into a single database, and then panned to determine which genes occurred in multiple data sets, generating a candidate gene list. This candidate gene list was validated by using both a clinical cohort and in vitro screening. We identified several genes that were frequently expressed following RSV infection with no assigned function in RSV control, including IFI27, IFIT3, IFI44L, GBP1, OAS3, IFI44, and IRF7. Drilling down into the function of these genes, we demonstrate a role in disease for the gene for interferon regulatory factor 7, which was highly ranked on the list, but not for IRF1, which was not. Thus, we have developed and validated an approach for collating published data sets into a manageable list of candidates, identifying novel targets for future analysis. IMPORTANCE Making the most of “big data” is one of the core challenges of current biology. There is a large array of heterogeneous data sets of host gene responses to infection, but these data sets do not inform us about gene function and require specialized skill sets and training for their utilization. Here we

  4. Rapid activation of the interferon system in vivo.

    PubMed Central

    Dianzani, F; Gullino, P; Baron, S

    1978-01-01

    Experiments were carried out to study the kinetics of local interferon production in the subcutaneous tissues of rats stimulated with Newcastle disease virus. Specifically, the interferon produced and released in the extracellular fluids was collected at various intervals of time in micropore chambers implanted into the subcutaneous tissue of rats. Interferon was detected at moderate titers 1 h after induction, and it was present at high titer at 2 h. The interferon levels remained remarkably high in the samples collected after 3, 5, and 24 h, and in some rats it was still detectable after 48 and 72 h. Since control experiments showed that it requires 2 to 3 h for interferon to penetrate the chambers, it may be concluded that high concentrations of interferon are present in the extracellular fluid within 1 h of induction. The evaluation of the kinetics of production and of the concentrations attained in the extracellular fluid suggests that in a solid tissue a cell infected by a potent interferon inducer may produce interferon early enough and in sufficient quantity to protect neighboring cells before the production of progeny virions. PMID:669799

  5. Meet the terminator: The phosphatase PP2A puts brakes on IRF-3 activation.

    PubMed

    Chattopadhyay, Saurabh; Sen, Ganes C

    2014-04-24

    Cellular interferon response to microbial infection is transient. In a recent paper in Immunity, Long et al. (2014) identify protein phosphatase 2A (PP2A) as a deactivator of phospho-interferon regulatory factor 3, the key transcription factor for interferon synthesis, thus providing one basis for the observed transiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3.

    PubMed

    Wong, Hui Hui; Fung, To Sing; Fang, Shouguo; Huang, Mei; Le, My Tra; Liu, Ding Xiang

    2018-02-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) is an inefficient inducer of interferon (IFN) response. It expresses various proteins that effectively circumvent IFN production at different levels via distinct mechanisms. Through the construction of recombinant IBV expressing proteins 8a, 8b and 8ab encoded by SARS-CoV ORF8, we demonstrate that expression of 8b and 8ab enables the corresponding recombinant viruses to partially overcome the inhibitory actions of IFN activation to achieve higher replication efficiencies in cells. We also found that proteins 8b and 8ab could physically interact with IRF3. Overexpression of 8b and 8ab resulted in the reduction of poly (I:C)-induced IRF3 dimerization and inhibition of the IFN-β signaling pathway. This counteracting effect was partially mediated by protein 8b/8ab-induced degradation of IRF3 in a ubiquitin-proteasome-dependent manner. Taken together, we propose that SARS-CoV may exploit the unique functions of proteins 8b and 8ab as novel mechanisms to overcome the effect of IFN response during virus infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon.

    PubMed

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K; Alcami, Antonio

    2010-05-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.

  8. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis.

    PubMed

    Conrad, Curdin; Di Domizio, Jeremy; Mylonas, Alessio; Belkhodja, Cyrine; Demaria, Olivier; Navarini, Alexander A; Lapointe, Anne-Karine; French, Lars E; Vernez, Maxime; Gilliet, Michel

    2018-01-02

    Although anti-tumor necrosis factor (TNF) agents are highly effective in the treatment of psoriasis, 2-5% of treated patients develop psoriasis-like skin lesions called paradoxical psoriasis. The pathogenesis of this side effect and its distinction from classical psoriasis remain unknown. Here we show that skin lesions from patients with paradoxical psoriasis are characterized by a selective overexpression of type I interferons, dermal accumulation of plasmacytoid dendritic cells (pDC), and reduced T-cell numbers, when compared to classical psoriasis. Anti-TNF treatment prolongs type I interferon production by pDCs through inhibition of their maturation. The resulting type I interferon overexpression is responsible for the skin phenotype of paradoxical psoriasis, which, unlike classical psoriasis, is independent of T cells. These findings indicate that paradoxical psoriasis represents an ongoing overactive innate inflammatory process, driven by pDC-derived type I interferon that does not lead to T-cell autoimmunity.

  9. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    PubMed Central

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  10. Endoplasmic Reticulum Stress-induced Hepatocellular Death Pathways Mediate Liver Injury and Fibrosis via Stimulator of Interferon Genes*

    PubMed Central

    Iracheta-Vellve, Arvin; Petrasek, Jan; Gyongyosi, Benedek; Satishchandran, Abhishek; Lowe, Patrick; Kodys, Karen; Catalano, Donna; Calenda, Charles D.; Kurt-Jones, Evelyn A.; Fitzgerald, Katherine A.; Szabo, Gyongyi

    2016-01-01

    Fibrosis, driven by inflammation, marks the transition from benign to progressive stages of chronic liver diseases. Although inflammation promotes fibrogenesis, it is not known whether other events, such as hepatocyte death, are required for the development of fibrosis. Interferon regulatory factor 3 (IRF3) regulates hepatocyte apoptosis and production of type I IFNs. In the liver, IRF3 is activated via Toll-like receptor 4 (TLR4) signaling or the endoplasmic reticulum (ER) adapter, stimulator of interferon genes (STING). We hypothesized that IRF3-mediated hepatocyte death is an independent determinant of chemically induced liver fibrogenesis. To test this, we performed acute or chronic CCl4 administration to WT and IRF3-, Toll/Interleukin-1R (TIR) domain-containing adapter-inducing interferon-β (TRIF)-, TRIF-related adaptor molecule (TRAM)-, and STING-deficient mice. We report that acute CCl4 administration to WT mice resulted in early ER stress, activation of IRF3, and type I IFNs, followed by hepatocyte apoptosis and liver injury, accompanied by liver fibrosis upon repeated administration of CCl4. Deficiency of IRF3 or STING prevented hepatocyte death and fibrosis both in acute or chronic CCl4. In contrast, mice deficient in type I IFN receptors or in TLR4 signaling adaptors, TRAM or TRIF, upstream of IRF3, were not protected from hepatocyte death and/or fibrosis, suggesting that the pro-apoptotic role of IRF3 is independent of TLR signaling in fibrosis. Hepatocyte death is required for liver fibrosis with causal involvement of STING and IRF3. Thus, our results identify that IRF3, by its association with STING in the presence of ER stress, couples hepatocyte apoptosis with liver fibrosis and indicate that innate immune signaling regulates outcomes of liver fibrosis via modulation of hepatocyte death in the liver. PMID:27810900

  11. Using Interferon Alfa Before Tyrosine Kinase Inhibitors May Increase Survival in Patients With Metastatic Renal Cell Carcinoma: A Turkish Oncology Group (TOG) Study.

    PubMed

    Artaç, Mehmet; Çoşkun, Hasan Şenol; Korkmaz, Levent; Koçer, Murat; Turhal, Nazım Serdar; Engin, Hüseyin; Dede, İsa; Paydaş, Semra; Öksüzoğlu, Berna; Bozcuk, Hakan; Demirkazık, Ahmet

    2016-08-01

    We aimed to investigate the outcomes of interferon alfa and sequencing tyrosine kinase inhibitors (TKIs) in patients with metastatic renal cell carcinoma. This multicenter study assessing the efficacy of TKIs after interferon alfa therapy in the first-line setting in patients with metastatic renal cell carcinoma. Patients (n = 104) from 8 centers in Turkey, who had been treated with interferon alfa in the first-line setting, were included in the study. Prognostic factors were evaluated for progression-free survival (PFS). The median age of the patients was 57 years. The median PFS of the patients treated with interferon alfa in the first-line was 3.6 months. A total of 61 patients received TKIs (sunitinib, n = 58; sorafenib, n = 3) after progression while on interferon alfa. The median PFS among the TKI-treated patients was 13.2 months. In the univariate analysis for interferon alfa treatment, neutrophil and hemoglobin level, platelet count, and Karnofsky performance status were the significant factors associated with PFS. In the univariate analysis for TKI treatment, neutrophil and hemoglobin levels were the significant factors for PFS. The median total PFS of the patients who had been treated with first-line interferon alfa and second-line TKIs was 24.9 months. This study showed that first-line interferon alfa treatment before TKIs may improve the total PFS in patients with metastatic renal cell carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Hepatic inclusions during interferon therapy in chronic viral hepatitis.

    PubMed

    Schaff, Z; Hoofnagle, J H; Grimley, P M

    1986-01-01

    Two types of cytomembranous abnormalities were identified for the first time in liver biopsies from patients with chronic active type B hepatitis during treatment with recombinant alpha-interferon. Tubuloreticular inclusions were present in the hepatic endothelial cells, Kupffer cells and perisinusoidal cells of liver biopsies from both patients, and they were absent in liver biopsies obtained before treatment. Cylindrical confronting lamellae, having "test tube" or "ring-shape" forms were observed in the cytoplasm both of Kupffer cells and macrophages in the second liver biopsy of one of the patients. The findings suggest that interferon can be involved in the pathogenesis of both cytomembranous abnormalities, but that additional biological factors may play a role in formation of the cylindrical confronting lamellae.

  13. Regulation of human intestinal T-cell responses by type 1 interferon-STAT1 signaling is disrupted in inflammatory bowel disease.

    PubMed

    Giles, E M; Sanders, T J; McCarthy, N E; Lung, J; Pathak, M; MacDonald, T T; Lindsay, J O; Stagg, A J

    2017-01-01

    Type 1 interferon (IFN-1) promotes regulatory T-cell function to suppress inflammation in the mouse intestine, but little is known about IFN-1 in the human gut. We therefore assessed the influence of IFN-1 on CD4+ T-cells isolated from human colon tissue obtained from healthy controls or patients with inflammatory bowel disease (IBD). Immunofluorescent imaging revealed constitutive expression of IFNβ in human intestinal tissue, and colonic T-cells were responsive to exogenous IFN-1 as assessed by phosphorylation of signal transduction and activator of transcription 1 (pSTAT1) and induction of interferon stimulated genes (ISGs). Unlike their blood counterparts, intestinal T-cells from non-inflamed regions of IBD colon displayed enhanced responsiveness to IFN-1, increased frequency of pSTAT1+ cells, and greater induction of ISGs upon IFN-1 exposure in vitro. In healthy tissue, antibody neutralization of IFNβ selectively reduced T-cell production of the pro-regulatory cytokine interleukin-10 (IL-10) and increased IFNγ synthesis. In contrast, neutralization of IFNβ in IBD tissue cultures increased the frequency of T-cells producing inflammatory cytokines but did not alter IL-10 expression. These data support a role for endogenous IFN-1 as a context-dependent modulator of T-cell function that promotes regulatory activity in healthy human intestine, but indicate that the IFN-1/STAT1 pathway is dysregulated in inflammatory bowel disease.

  14. Arabidopsis ensemble reverse-engineered gene regulatory network discloses interconnected transcription factors in oxidative stress.

    PubMed

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-12-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. © 2014 American Society of Plant Biologists. All rights reserved.

  15. [Interferon alpha-2b modified with polyethylene glycol].

    PubMed

    Wu, Yingxin; Zhai, Yanqin; Lei, Jiandu; Ma, Guanghui; Su, Zhiguo

    2008-09-01

    In order to obtain a more stable PEGylated interferon alpha-2b, and prolong its half life, interferon alpha-2b (IFN alpha-2b) was modified with monomethoxy polyethylene glycol propionaldehyde (mPEG-ALD) 20000. It was found that the optimized reaction condition for the maximum bioactivity and highest PEGylation degree of the mono PEGylated interferon alpha-2b was as follows: in 20 mmol/L, pH 6.5, citric acid and sodium dihydrogen phosphate buffer, the concentration of IFN alpha-2b was 4 mg/mL, and the molar ratio of PEG/IFN alpha-2b was 8:1, and the reaction time was 20 h at 4 degrees C. Under the optimized reaction condition, the mono PEGylation degree reached to 55%. Ion exchange chromatography was used to separate and purify mono PEGylated interferon alpha-2b from the reaction mixture. The purity of mono PEGylated interferon alpha-2b was higher than 97% characterized by HPLC. The bioactivity of the mono PEGylated interferon alpha-2b was 13.4% of the native IFN alpha-2b, while its half life in SD rat is much longer than the native IFN alpha-2b. The mono PEGylated interferon alpha-2b is also stable in aqueous.

  16. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com; Morzunov, Sergey P.; Boichuk, Sergei V.

    2013-09-01

    Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirusmore » triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.« less

  17. E3 Ubiquitin Ligase VHL Regulates Hypoxia-Inducible Factor-1α to Maintain Regulatory T Cell Stability and Suppressive Capacity.

    PubMed

    Lee, Jee H; Elly, Chris; Park, Yoon; Liu, Yun-Cai

    2015-06-16

    Foxp3(+) regulatory T (Treg) cells play a critical role in immune homeostasis; however, the mechanisms to maintain their function remain unclear. Here, we report that the E3 ubiquitin ligase VHL is essential for Treg cell function. Mice with Foxp3-restricted VHL deletion displayed massive inflammation associated with excessive Treg cell interferon-γ (IFN-γ) production. VHL-deficient Treg cells failed to prevent colitis induction, but converted into Th1-like effector T cells. VHL intrinsically orchestrated such conversion under both steady and inflammatory conditions followed by Foxp3 downregulation, which was reversed by IFN-γ deficiency. Augmented hypoxia-inducible factor 1α (HIF-1α)-induced glycolytic reprogramming was required for IFN-γ production. Furthermore, HIF-1α bound directly to the Ifng promoter. HIF-1α knockdown or knockout could reverse the increased IFN-γ by VHL-deficient Treg cells and restore their suppressive function in vivo. These findings indicate that regulation of HIF-1α pathway by VHL is crucial to maintain the stability and suppressive function of Foxp3(+) T cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Regulatory factors governing adenosine-to-inosine (A-to-I) RNA editing.

    PubMed

    Hong, HuiQi; Lin, Jaymie Siqi; Chen, Leilei

    2015-03-31

    Adenosine-to-inosine (A-to-I) RNA editing, the most prevalent mode of transcript modification in higher eukaryotes, is catalysed by the adenosine deaminases acting on RNA (ADARs). A-to-I editing imposes an additional layer of gene regulation as it dictates various aspects of RNA metabolism, including RNA folding, processing, localization and degradation. Furthermore, editing events in exonic regions contribute to proteome diversity as translational machinery decodes inosine as guanosine. Although it has been demonstrated that dysregulated A-to-I editing contributes to various diseases, the precise regulatory mechanisms governing this critical cellular process have yet to be fully elucidated. However, integration of previous studies revealed that regulation of A-to-I editing is multifaceted, weaving an intricate network of auto- and transregulations, including the involvement of virus-originated factors like adenovirus-associated RNA. Taken together, it is apparent that tipping of any regulatory components will have profound effects on A-to-I editing, which in turn contributes to both normal and aberrant physiological conditions. A complete understanding of this intricate regulatory network may ultimately be translated into new therapeutic strategies against diseases driven by perturbed RNA editing events. Herein, we review the current state of knowledge on the regulatory mechanisms governing A-to-I editing and propose the role of other co-factors that may be involved in this complex regulatory process.

  19. Interferon-based treatment of chronic hepatitis C.

    PubMed

    Souvignet, Claude; Lejeune, Olivier; Trepo, Christian

    2007-01-01

    The treatment of patients with chronic hepatitis C has rapidly evolved in the past 10 years centered on the use of interferon alpha 2 as an antiviral and immunomodulatory agent against hepatitis C virus. Firstly used as a monotherapy associated with a deceiving long-term efficacy, interferon alpha was then combined with ribavirin, a nucleoside analog with large antiviral properties. Combination of both drugs dramatically improved the efficacy of treatment with 50% of patients reaching a sustained viral response, characterized by the final eradication of the virus from the infected individual. Surprisingly, this synergistic effect remains greatly unexplained. The third step consisted in the use of pegylated interferon in order to adapt its pharmacokinetics and to allow a better efficacy with a more tolerable dosing schedule: once weekly subcutaneous injection instead of thrice weekly. Pegylated interferon combined with ribavirin during 24-48 weeks of treatment is the current standard of care with nearly 60% of sustained virologic response, overall. Development of new forms of interferon alpha are on the way with promising preliminary results.

  20. Stability of human interferon-beta 1: oligomeric human interferon-beta 1 is inactive but is reactivated by monomerization.

    PubMed

    Utsumi, J; Yamazaki, S; Kawaguchi, K; Kimura, S; Shimizu, H

    1989-10-05

    Human interferon-beta 1 is extremely stable is a low ionic strength solution of pH 2 such as 10 mM HCl at 37 degrees C. However, the presence of 0.15 M NaCl led to a remarkable loss of antiviral activity. The molecular-sieve high-performance liquid chromatography revealed that, whereas completely active human interferon-beta 1 eluted as a 25 kDa species (monomeric form), the inactivated preparation eluted primarily as a 90 kDa species (oligomeric form). The specific activity (units per mg protein) of the oligomeric form was approx. 10% of that of the monomeric form. This observation shows that oligomeric human interferon-beta 1 is apparently in an inactive form. When the oligomeric eluate was resolved by polyacrylamide gel containing sodium dodecyl sulphate (SDS), it appeared to be monomeric under non-reducing conditions. Monomerization of the oligomeric human interferon-beta 1 by treatment with 1% SDS, fully regenerated its antiviral activity. These results suggest that the inactivation of the human interferon-beta 1 preparation was caused by its oligomerization via hydrophobic interactions without the formation of intermolecular disulphide bonds. These oligomers can be dissociated by SDS to restore biological activity.

  1. Cell-Specific IRF-3 Responses Protect against West Nile Virus Infection by Interferon-Dependent and -Independent Mechanisms

    PubMed Central

    Daffis, Stephane; Samuel, Melanie A; Keller, Brian C; Gale, Michael; Diamond, Michael S

    2007-01-01

    Interferon regulatory factor (IRF)-3 is a master transcription factor that activates host antiviral defense programs. Although cell culture studies suggest that IRF-3 promotes antiviral control by inducing interferon (IFN)-β, near normal levels of IFN-α and IFN-β were observed in IRF-3−/− mice after infection by several RNA and DNA viruses. Thus, the specific mechanisms by which IRF-3 modulates viral infection remain controversial. Some of this disparity could reflect direct IRF-3-dependent antiviral responses in specific cell types to control infection. To address this and determine how IRF-3 coordinates an antiviral response, we infected IRF-3−/− mice and two primary cells relevant for West Nile virus (WNV) pathogenesis, macrophages and cortical neurons. IRF-3−/− mice were uniformly vulnerable to infection and developed elevated WNV burdens in peripheral and central nervous system tissues, though peripheral IFN responses were largely normal. Whereas wild-type macrophages basally expressed key host defense molecules, including RIG-I, MDA5, ISG54, and ISG56, and restricted WNV infection, IRF-3−/− macrophages lacked basal expression of these host defense genes and supported increased WNV infection and IFN-α and IFN-β production. In contrast, wild-type cortical neurons were highly permissive to WNV and did not basally express RIG-I, MDA5, ISG54, and ISG56. IRF-3−/− neurons lacked induction of host defense genes and had blunted IFN-α and IFN-β production, yet exhibited only modestly increased viral titers. Collectively, our data suggest that cell-specific IRF-3 responses protect against WNV infection through both IFN-dependent and -independent programs. PMID:17676997

  2. Interferon system in women with genital papillomavirus infection receiving immunomodulatory therapy.

    PubMed

    Rogovskaya, S I; Zhdanov, A V; Loginova, N S; Faizullin, L Z; Prilepskaya, V N; Van'ko, L V; Sukhikh, G T

    2002-11-01

    The interferon system was studied in women with genital papillomavirus infection. In most patients the interferon system was activated, while the ability of lymphocytes to respond to inductors decreased. Laserotherapy and immunomodulatory therapy with larifan, ridostin, and viferon for 1 month normalized blood interferon concentration (39.4% patients) and interferon-gamma production by lymphocytes in response to inductors (87.9% patients). After laser monotherapy these parameters returned to normal only in 13.2 and 7.6% patients, respectively. Correlation and regression analyses showed that changes in the interferon system were synchronized after immunomodulatory therapy. These data indicate that immunomodulatory therapy produces a complex effect on the interferon system. Measurements of blood interferon level can be used to predict the effect of further treatment with interferon-gamma inductors.

  3. The regulation of inflammation by interferons and their STATs.

    PubMed

    Rauch, Isabella; Müller, Mathias; Decker, Thomas

    2013-01-01

    Interferons (IFN) are subdivided into type I IFN (IFN-I, here synonymous with IFN-α/β), type II (IFN-γ) and type III IFN (IFN-III/IFN-λ) that reprogram nuclear gene expression through STATs 1 and 2 by forming STAT1 dimers (mainly IFN-γ) or the ISGF3 complex, a STAT1-STAT2-IRF9 heterotrimer (IFN-I and IFN-III). Dominant IFN activities in the immune system are to protect cells from viral replication and to activate macrophages for enhanced effector function. However, the impact of IFN and their STATs on the immune system stretches far beyond these activities and includes the control of inflammation. The goal of this review is to give an overview of the different facets of the inflammatory process that show regulatory input by IFN/STAT.

  4. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens

    PubMed Central

    Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-01-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523

  5. Treatment of three patients with systemic mastocytosis with interferon alpha-2b.

    PubMed

    Worobec, A S; Kirshenbaum, A S; Schwartz, L B; Metcalfe, D D

    1996-08-01

    It has been reported that the administration of interferon alpha-2b is of potential benefit in the treatment of mastocytosis based on a single patient study (NEJM, Feb 27, 1992, 326(9):619-623). Following this report, we administered interferon alpha-2b at a dose of 4 to 5 million units per square meter of body surface area for at least 12 months to one patient with mastocytosis with an associated hematologic disorder (patient 1), one patient with aggressive systemic mastocytosis (patient 2), and one patient with indolent mastocytosis (patient 3). Patients were monitored with the following clinical and laboratory parameters: serial bone marrow biopsies and aspirates, patient log of histamine release attacks, medication dependency, plasma tryptase levels, serum lactate dehydrogenase (LDH) levels, white blood cell counts and differentials, extent of urticaria pigmentosa lesions, bony involvement, and extent of gastrointestinal involvement and hepatomegaly. We also examined the ability of interferon alpha-2b to inhibit recombinant human stem cell factor (rhSCF)-dependent mast cell proliferation from CD34+ bone marrow-derived cells. All patients demonstrated continued progression of disease in one or more clinical criteria at one year of therapy. Similarly, interferon alpha-2b did not inhibit the culture of mast cells from CD34+ bone marrow-derived cells in the presence of SCF. Thus, in our study of three patients with systemic mastocytosis, treatment with interferon alpha-2b was found to be ineffective in controlling progression of disease.

  6. Association of IRF5 polymorphisms with activation of the interferon α pathway

    PubMed Central

    Rullo, Ornella J; Woo, Jennifer M P; Wu, Hui; Hoftman, Alice D C; Maranian, Paul; Brahn, Brittany A; McCurdy, Deborah; Cantor, Rita M; Tsao, Betty P

    2011-01-01

    Objective The genetic association of interferon regulatory factor 5 (IRF5) with systemic lupus erythematosus (SLE) susceptibility has been convincingly established. To gain understanding of the effect of IRF5 variation in individuals without SLE, a study was undertaken to examine whether such genetic variation predisposes to activation of the interferon α (IFNα) pathway. Methods Using a computer simulated approach, 14 single nucleotide polymorphisms (SNPs) and haplotypes of IRF5 were tested for association with mRNA expression levels of IRF5, IFNα and IFN-inducible genes and chemokines in lymphoblastoid cell lines (LCLs) from individuals of European (CEU), Han Chinese (CHB), Japanese (JPT) and Yoruba Nigerian (YRI) backgrounds. IFN-inducible gene expression was assessed in LCLs from children with SLE in the presence and absence of IFNα stimulation. Results The major alleles of IRF5 rs13242262 and rs2280714 were associated with increased IRF5 mRNA expression levels in the CEU, CHB+JPT and YRI samples. The minor allele of IRF5 rs10488631 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU (pc=0.0005, 0.01 and 0.04, respectively). A haplotype containing these risk alleles of rs13242262, rs10488631 and rs2280714 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU LCLs. In vitro studies showed specific activation of IFN-inducible genes in LCLs by IFNα. Conclusions SNPs of IRF5 in healthy individuals of a number of ethnic groups were associated with increased mRNA expression of IRF5. In European-derived individuals, an IRF5 haplotype was associated with increased IRF5, IFNα and IFN-inducible chemokine expression. Identifying individuals genetically predisposed to increased IFN-inducible gene and chemokine expression may allow early detection of risk for SLE. PMID:19854706

  7. What on "irf" is this gene 4? Irf4 transcription-factor-dependent dendritic cells are required for T helper 2 cell responses in murine skin.

    PubMed

    Flutter, Barry; Nestle, Frank O

    2013-10-17

    Interferon regulatory factors play an important role in the transcriptional regulation of immunity. In this issue of Immunity, Kumamoto et al. (2013) and Gao et al. (2013) identify an Irf4-dependent migratory dendritic cell subset required for T helper 2 cell polarization following cutaneous challenge. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Interferon-β induced in female genital epithelium by HIV-1 glycoprotein 120 via Toll-like-receptor 2 pathway acts to protect the mucosal barrier.

    PubMed

    Nazli, Aisha; Dizzell, Sara; Zahoor, Muhammad Atif; Ferreira, Victor H; Kafka, Jessica; Woods, Matthew William; Ouellet, Michel; Ashkar, Ali A; Tremblay, Michel J; Bowdish, Dawn Me; Kaushic, Charu

    2018-03-19

    More than 40% of HIV infections occur via female reproductive tract (FRT) through heterosexual transmission. Epithelial cells that line the female genital mucosa are the first line of defense against HIV-1 and other sexually transmitted pathogens. These sentient cells recognize and respond to external stimuli by induction of a range of carefully balanced innate immune responses. Previously, we have shown that in response to HIV-1 gp120, the genital epithelial cells (GECs) from upper reproductive tract induce an inflammatory response that may facilitate HIV-1 translocation and infection. In this study, we report that the endometrial and endocervical GECs simultaneously induce biologically active interferon-β (IFNβ) antiviral responses following exposure to HIV-1 that act to protect the epithelial tight junction barrier. The innate antiviral response was directly induced by HIV-1 envelope glycoprotein gp120 and addition of gp120 neutralizing antibody inhibited IFNβ production. Interferon-β was induced by gp120 in upper GECs through Toll-like receptor 2 signaling and required presence of heparan sulfate on epithelial cell surface. The induction of IFNβ was dependent upon activation of transcription factor IRF3 (interferon regulatory factor 3). The IFNβ was biologically active, had a protective effect on epithelial tight junction barrier and was able to inhibit HIV-1 infection in TZM-bl indicator cells and HIV-1 replication in T cells. This is the first report that recognition of HIV-1 by upper GECs leads to induction of innate antiviral pathways. This could explain the overall low infectivity of HIV-1 in the FRT and could be exploited for HIV-1 prophylaxis.Cellular and Molecular Immunology advance online publication, 19 March 2018; doi:10.1038/cmi.2017.168.

  9. Interferon-alpha in the treatment of multiple myeloma.

    PubMed

    Khoo, Teh Liane; Vangsted, Annette Juul; Joshua, Douglas; Gibson, John

    2011-03-01

    Interferons are soluble proteins produced naturally by cells in response to viruses. It has both anti-proliferative and immunomodulating properties and is one of the first examples of a biological response modifier use to treat the haematological malignancy multiple myeloma. Interferon has been used in this clinical practice for over thirty years. However, despite considerable efforts, numerous clinical trials and two large meta-analysis, its exact role in the management of multiple myeloma still remains unclear. Its role in the treatment of multiple myeloma has been as a single induction agent, a co-induction agent with other chemotherapy regimens, and as maintenance therapy after conventional chemotherapy or complete remission after autologous or allogeneic transplantation. Interferon as a single induction agent or co-induction agent with other chemotherapy agents appears only to have minimal benefit in myeloma. Its role as maintenance therapy in the plateau phase of myeloma also remains uncertain. More recently, the use of interferon must now compete with the "new drugs"--thalidomide, lenalidomide and bortezomib in myeloma treatment. Will there be a future role of interferon in the treatment of multiple myeloma or will interferon be resigned to the history books remains to be seen.

  10. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons.

    PubMed

    Sim, Chan Kyu; Cho, Yeon Sook; Kim, Byung Soo; Baek, In-Jeoung; Kim, Young-Joon; Lee, Myeong Sup

    2016-06-01

    Type I interferon (IFN-I) plays a critical role in antiviral and antitumor defense. In our previous studies, we showed that IFN-I-inducible 2'-5' oligoadenylate synthetase-like 1 (OASL1) negatively regulates IFN-I production upon viral infection by specifically inhibiting translation of the IFN-I-regulating master transcription factor, interferon regulatory factor 7 (IRF7). In this study, we investigated whether OASL1 plays a negative role in the anti-tumor immune response by using OASL1-deficient (Oasl1 (-/-)) mice and transplantable syngeneic tumor cell models. We found that Oasl1 (-/-) mice demonstrate enhanced resistance to lung metastatic tumors and subcutaneously implanted tumors compared to wild-type (WT) mice. Additionally, we found that cytotoxic effector cells such as CD8(+) T cells (including tumor antigen-specific CD8(+) T cells) and NK cells as well as CD8α(+) DCs (the major antigen cross-presenting cells) were much more frequent (>fivefold) in the Oasl1 (-/-) mouse tumors. Furthermore, the cytotoxic effector cells in Oasl1 (-/-) mouse tumors seemed to be more functionally active. However, the proportion of immunosuppressive myeloid-derived suppressor cells within hematopoietic cells and of regulatory T cells within CD4(+) T cells in Oasl1 (-/-) mouse tumors did not differ significantly from that of WT mice. Tumor-challenged Oasl1 (-/-) mice expressed increased levels of IFN-I and IRF7 protein in the growing tumor, indicating that the enhanced antitumor immune response observed in Oasl1 (-/-) mice was caused by higher IFN-I production in Oasl1 (-/-) mice. Collectively, these results show that OASL1 deficiency promotes the antitumor immune response, and thus, OASL1 could be a good therapeutic target for treating tumors.

  11. Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability

    PubMed Central

    Treviño-Quintanilla, Luis Gerardo; Freyre-González, Julio Augusto; Martínez-Flores, Irma

    2013-01-01

    In bacteria, transcriptional regulation is a key step in cellular gene expression. All bacteria contain a core RNA polymerase that is catalytically competent but requires an additional σ factor for specific promoter recognition and correct transcriptional initiation. The RNAP core is not able to selectively bind to a given σ factor. In contrast, different σ factors have different affinities for the RNAP core. As a consequence, the concentration of alternate σ factors requires strict regulation in order to properly control the delicate interplay among them, which favors the competence for the RNAP core. This control is archived by different σ/anti-σ controlling mechanisms that shape complex regulatory networks and cascades, and enable the response to sudden environmental cues, whose global understanding is a current challenge for systems biology. Although there have been a number of excellent studies on each of these σ/anti-σ post-transcriptional regulatory systems, no comprehensive comparison of these mechanisms in a single model organism has been conducted. Here, we survey all these systems in E. coli dissecting and analyzing their inner workings and highlightin their differences. Then, following an integral approach, we identify their commonalities and outline some of the principles exploited by the cell to effectively and globally reprogram the transcriptional machinery. These principles provide guidelines for developing biological synthetic circuits enabling an efficient and robust response to sudden stimuli. PMID:24396271

  12. Specificity, cross-talk and adaptation in Interferon signaling

    NASA Astrophysics Data System (ADS)

    Zilman, Anton

    Innate immune system is the first line of defense of higher organisms against pathogens. It coordinates the behavior of millions of cells of multiple types, achieved through numerous signaling molecules. This talk focuses on the signaling specificity of a major class of signaling molecules - Type I Interferons - which are also used therapeutically in the treatment of a number of diseases, such as Hepatitis C, multiple sclerosis and some cancers. Puzzlingly, different Interferons act through the same cell surface receptor but have different effects on the target cells. They also exhibit a strange pattern of temporal cross-talk resulting in a serious clinical problem - loss of response to Interferon therapy. We combined mathematical modeling with quantitative experiments to develop a quantitative model of specificity and adaptation in the Interferon signaling pathway. The model resolves several outstanding experimental puzzles and directly affects the clinical use of Type I Interferons in treatment of viral hepatitis and other diseases.

  13. Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress[W

    PubMed Central

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-01-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671

  14. Transfer of interferon alfa into human breast milk.

    PubMed

    Kumar, A R; Hale, T W; Mock, R E

    2000-08-01

    Originally assumed to be antiviral substances, the efficacy of interferons in a number of pathologies, including malignancies, multiple sclerosis, and other immune syndromes, is increasingly recognized. This study provides data on the transfer of interferon alfa (2B) into human milk of a patient receiving massive intravenous doses for the treatment of malignant melanoma. Following an intravenous dose of 30 million IU, the amount of interferon transferred into human milk was only slightly elevated (1551 IU/mL) when compared to control milk (1249 IU/mL). These data suggest that even following enormous doses, interferon is probably too large in molecular weight to transfer into human milk in clinically relevant amounts.

  15. The regulation of inflammation by interferons and their STATs

    PubMed Central

    Rauch, Isabella; Müller, Mathias; Decker, Thomas

    2013-01-01

    Interferons (IFN) are subdivided into type I IFN (IFN-I, here synonymous with IFN-α/β), type II (IFN-γ) and type III IFN (IFN-III/IFN-λ) that reprogram nuclear gene expression through STATs 1 and 2 by forming STAT1 dimers (mainly IFN-γ) or the ISGF3 complex, a STAT1-STAT2-IRF9 heterotrimer (IFN-I and IFN-III). Dominant IFN activities in the immune system are to protect cells from viral replication and to activate macrophages for enhanced effector function. However, the impact of IFN and their STATs on the immune system stretches far beyond these activities and includes the control of inflammation. The goal of this review is to give an overview of the different facets of the inflammatory process that show regulatory input by IFN/STAT. PMID:24058799

  16. Interferon Induced Transfer of Viral Resistance

    DTIC Science & Technology

    1981-02-01

    necseeary and Identify by block number) - Interferon, Cell Communication, Resistance Transfer, Viruses , Antibody Production, Polypeptide Hormones...lymphocytes and the foreign cells, but not mycoplasmas or endogenous viruses , appears to be required for induction. The kinetics of production of leukocyte...interferon by nonsensitized lymphocytes in response to foreign cells is similar to that induced by viruses . We have shown that a component probably of Vie

  17. Interferon Induced Transfer of Viral Resistance

    DTIC Science & Technology

    1982-02-01

    released from the cell membrane. We have also shown that CM’s activity is removed by a gelatin /sepharose affinity column which selectively binds...interferon preparation adsorbing to the WISH cells, interferon was subjected to gelatin /sepharose affinity chromatography to remove endogenous...caused an increase in the amount of H-.amnino acids incorporated into a gelatin binding protein, presumably fibronectin. This suggests that in addition to

  18. [Interferons--its method of administration and adverse effect related to pharmacokinetics ].

    PubMed

    Furue, H

    1984-02-01

    The potential role of interferons in the treatment of malignant diseases is currently being evaluated. This paper reviews experimental and clinical findings regarding pharmacokinetics, method of administration, and side reactions of interferons. Interferon in the blood is rapidly cleared from the circulation. Intramuscular injection of alpha-interferon causes low but stable interferon levels in the blood. However, in the case of beta-interferon, interferon is never detected consistently in the blood after intramuscular or subcutaneous administration. The studies with animal models suggest that doses higher than those given in current clinical trials will be necessary to obtain clearly beneficial effects in human. The maximum safely tolerated daily dose is appreciably higher than that used in most previous studies, although even at this level, considerable toxicity may be encountered. Adequate method of administration, route, dose and interval are not yet established at all. Exact mechanism of anticancer activity is not yet well defined. The most frequent side reaction is fever. However, the exact mechanism to cause these side reactions is also not yet clarified. Dose limiting central nervous system toxicities, hypotension, hypocalcaemia etc. are occasionally encountered in some instances. Antibody to interferon is demonstrated in some cases. Purification of interferon does not always causes reduction of side reactions. The treatment of cancer cases with interferon has just started and there are many problems to be solved. However, therapeutic beneficial may be achieved in the treatment of malignant tumors by appropriate combinations of interferon with conventional treatment. More laboratory studies as well as carefully controlled clinical observations are warranted.

  19. Three-dimensional crystal structure of recombinant murine interferon-beta.

    PubMed Central

    Senda, T; Shimazu, T; Matsuda, S; Kawano, G; Shimizu, H; Nakamura, K T; Mitsui, Y

    1992-01-01

    The crystal structure of recombinant murine interferon-beta (IFN-beta) has been solved by the multiple isomorphous replacement method and refined to an R-factor of 20.5% against 2.6 A X-ray diffraction data. The structure shows a variant of the alpha-helix bundle with a new chain-folding topology, which seems to represent a basic structural framework of all the IFN-alpha and IFN-beta molecules belonging to the type I family. Functionally important segments of the polypeptide chain, as implied through numerous gene manipulation studies carried out so far, are spatially clustered indicating the binding site(s) to the receptor(s). Comparison of the present structure with those of other alpha-helical cytokine proteins, including porcine growth hormone, interleukin 2 and interferon gamma, indicated either a topological similarity in chain folding or a similar spatial arrangement of the alpha-helices. Images PMID:1505514

  20. Beta-interferon inhibits cell infection by Trypanosoma cruzi

    NASA Technical Reports Server (NTRS)

    Kierszenbaum, F.; Sonnenfeld, G.

    1984-01-01

    Beta interferon has been shown to inhibit the capacity of bloodstream forms of the flagellate Trypanosoma cruzi, the causative agent of Chagas' disease, to associate with and infect mouse peritoneal macrophages and rat heart myoblasts. The inhibitory effect was abrogated in the presence of specific antibodies to the interferon. Pretreatment of the parasites with interferon reduced their infectivity for untreated host cells, whereas pretreament of either type of host cell did not affect the interaction. The effect of interferon on the trypanosomes was reversible; the extent of the inhibitory effect was significantly reduced afer 20 min, and was undetectable after 60 min when macrophages were used as host cells. For the myoblasts, 60 min elapsed before the inhibitory effect began to subside and 120 min elapsed before it became insignificant or undetectable.

  1. Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response.

    PubMed

    Kindler, E; Thiel, V; Weber, F

    2016-01-01

    Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the most severe coronavirus (CoV)-associated diseases in humans. The causative agents, SARS-CoV and MERS-CoV, are of zoonotic origin but may be transmitted to humans, causing severe and often fatal respiratory disease in their new host. The two coronaviruses are thought to encode an unusually large number of factors that allow them to thrive and replicate in the presence of efficient host defense mechanisms, especially the antiviral interferon system. Here, we review the recent progress in our understanding of the strategies that highly pathogenic coronaviruses employ to escape, dampen, or block the antiviral interferon response in human cells. © 2016 Elsevier Inc. All rights reserved.

  2. Post-treatment levels of α-fetoprotein predict incidence of hepatocellular carcinoma after interferon therapy.

    PubMed

    Oze, Tsugiko; Hiramatsu, Naoki; Yakushijin, Takayuki; Miyazaki, Masanori; Yamada, Akira; Oshita, Masahide; Hagiwara, Hideki; Mita, Eiji; Ito, Toshifumi; Fukui, Hiroyuki; Inui, Yoshiaki; Hijioka, Taizo; Inada, Masami; Katayama, Kazuhiro; Tamura, Shinji; Yoshihara, Harumasa; Inoue, Atsuo; Imai, Yasuharu; Hayashi, Eijiro; Kato, Michio; Miyagi, Takuya; Yoshida, Yuichi; Tatsumi, Tomohide; Kasahara, Akinori; Hamasaki, Toshimitsu; Hayashi, Norio; Takehara, Tetsuo

    2014-07-01

    In patients with chronic hepatitis C virus (HCV) infection, lack of sustained virologic response (SVR) 24 weeks after the end of interferon therapy is a significant risk factor for hepatocellular carcinoma (HCC). Although many pretreatment factors are known to affect HCC incidence, less is known about post-treatment factors-many change during the course of interferon therapy. We performed a prospective study, collecting data from 2659 patients with chronic hepatitis C without a history of HCC who had been treated with pegylated interferon (Peg-IFN) plus ribavirin from 2002 through 2008 at hospitals in Japan. Biopsy specimens were collected before treatment; all patients received Peg-IFN plus ribavirin for 48 to 72 weeks (HCV genotype 1) or 24 weeks (HCV genotype 2). Hematologic, biochemical, and virologic data were collected every 4 weeks during treatment and every 6 months after treatment. HCC was diagnosed based on angiography, computed tomography, and/or magnetic resonance imaging findings. HCC developed in 104 patients during a mean observation period of 40 months. Older age, male sex, lower platelet counts and higher levels of α-fetoprotein at baseline, and lack of an SVR were significant risk factors for HCC. The cumulative incidence of HCC was significantly lower in patients without SVRs who relapsed than those with no response to treatment. Levels of α-fetoprotein 24 weeks after the end of treatment (AFP24) were significantly lower than levels of α-fetoprotein at baseline in patients with SVRs and those who relapsed, but not in nonresponders. Post-treatment risk factors for HCC among patients with SVRs included higher AFP24 level and older age; among those without SVRs, risk factors included higher AFP24 level, integrated level of alanine aminotransferase, older age, and male sex. AFP24 (≥10 ng/mL, 10-5 ng/mL, and then <5 ng/mL) was a better predictor of HCC incidence than pretreatment level of AFP among patients with and without SVRs. In patients with

  3. Interferon for the treatment of genital warts: a systematic review

    PubMed Central

    2009-01-01

    Background Interferon has been widely used in the treatment of genital warts for its immunomodulatory, antiproliferative and antiviral properties. Currently, no evidence that interferon improves the complete response rate or reduces the recurrence rate of genital warts has been generally provided. The aim of this review is to assess, from randomized control trials (RCTs), the efficacy and safety of interferon in curing genital warts. Methods We searched Cochrane Sexually Transmitted Diseases Group's Trials Register (January, 2009), Cochrane Central Register of Controlled Trials (2009, issue 1), PubMed (1950-2009), EMBASE (1974-2009), Chinese Biomedical Literature Database (CBM) (1975-2009), China National Knowledge Infrastructure (CNKI) (1979-2009), VIP database (1989-2009), as well as reference lists of relevant studies. Two reviewers independently screened searched studies, extracted data and evaluated their methodological qualities. RevMan 4.2.8 software was used for meta-analysis Results 12 RCTs involving 1445 people were included. Among them, 7 studies demonstrated the complete response rate of locally-used interferon as compared to placebo for treating genital warts. Based on meta-analysis, the rate of Complete response of the two interventions differed significantly (locally-used interferon:44.4%; placebo:16.1%). The difference between the two groups had statistical significance (RR 2.68, 95% CI 1.79 to 4.02, P < 0.00001). 5 studies demonstrated the complete response rate of systemically-used interferon as compared to placebo for treating genital warts. Based on meta-analysis, the rate of Complete response of the two interventions had no perceivable discrepancy (systemically-used interferon:27.4%; placebo:26.4%). The difference between the two groups had no statistical significance (RR1.25, 95% CI 0.80 to 1.95, P > 0.05). 7 studies demonstrated the recurrence rate of interferon as compared to placebo for treating genital warts. Based on meta-analysis, the

  4. Interferon for the treatment of genital warts: a systematic review.

    PubMed

    Yang, Jin; Pu, Yu-Guo; Zeng, Zhong-Ming; Yu, Zhi-Jian; Huang, Na; Deng, Qi-Wen

    2009-09-21

    Interferon has been widely used in the treatment of genital warts for its immunomodulatory, antiproliferative and antiviral properties. Currently, no evidence that interferon improves the complete response rate or reduces the recurrence rate of genital warts has been generally provided. The aim of this review is to assess, from randomized control trials (RCTs), the efficacy and safety of interferon in curing genital warts. We searched Cochrane Sexually Transmitted Diseases Group's Trials Register (January, 2009), Cochrane Central Register of Controlled Trials (2009, issue 1), PubMed (1950-2009), EMBASE (1974-2009), Chinese Biomedical Literature Database (CBM) (1975-2009), China National Knowledge Infrastructure (CNKI) (1979-2009), VIP database (1989-2009), as well as reference lists of relevant studies. Two reviewers independently screened searched studies, extracted data and evaluated their methodological qualities. RevMan 4.2.8 software was used for meta-analysis 12 RCTs involving 1445 people were included. Among them, 7 studies demonstrated the complete response rate of locally-used interferon as compared to placebo for treating genital warts. Based on meta-analysis, the rate of Complete response of the two interventions differed significantly (locally-used interferon:44.4%; placebo:16.1%). The difference between the two groups had statistical significance (RR 2.68, 95% CI 1.79 to 4.02, P < 0.00001). 5 studies demonstrated the complete response rate of systemically-used interferon as compared to placebo for treating genital warts. Based on meta-analysis, the rate of Complete response of the two interventions had no perceivable discrepancy (systemically-used interferon:27.4%; placebo:26.4%). The difference between the two groups had no statistical significance (RR1.25, 95% CI 0.80 to 1.95, P > 0.05). 7 studies demonstrated the recurrence rate of interferon as compared to placebo for treating genital warts. Based on meta-analysis, the recurrence rate of the two

  5. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis

    PubMed Central

    Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E.; Balázsi, Gábor; Gennaro, Maria Laura

    2016-01-01

    Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics. PMID:27029515

  6. Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities

    PubMed Central

    2011-01-01

    Background Gene regulatory networks play essential roles in living organisms to control growth, keep internal metabolism running and respond to external environmental changes. Understanding the connections and the activity levels of regulators is important for the research of gene regulatory networks. While relevance score based algorithms that reconstruct gene regulatory networks from transcriptome data can infer genome-wide gene regulatory networks, they are unfortunately prone to false positive results. Transcription factor activities (TFAs) quantitatively reflect the ability of the transcription factor to regulate target genes. However, classic relevance score based gene regulatory network reconstruction algorithms use models do not include the TFA layer, thus missing a key regulatory element. Results This work integrates TFA prediction algorithms with relevance score based network reconstruction algorithms to reconstruct gene regulatory networks with improved accuracy over classic relevance score based algorithms. This method is called Gene expression and Transcription factor activity based Relevance Network (GTRNetwork). Different combinations of TFA prediction algorithms and relevance score functions have been applied to find the most efficient combination. When the integrated GTRNetwork method was applied to E. coli data, the reconstructed genome-wide gene regulatory network predicted 381 new regulatory links. This reconstructed gene regulatory network including the predicted new regulatory links show promising biological significances. Many of the new links are verified by known TF binding site information, and many other links can be verified from the literature and databases such as EcoCyc. The reconstructed gene regulatory network is applied to a recent transcriptome analysis of E. coli during isobutanol stress. In addition to the 16 significantly changed TFAs detected in the original paper, another 7 significantly changed TFAs have been detected by

  7. Enhanced antitumor reactivity of tumor-sensitized T cells by interferon alfa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vander Woude, D.L.; Wagner, P.D.; Shu, S.

    Tumor-draining lymph node cells from mice bearing the methylcholanthrene-induced MCA 106 tumors can be sensitized in vitro to acquire antitumor reactivity. We examined the effect of interferon alfa on the function of cells that underwent in vitro sensitization in adoptive immunotherapy. Interferon alfa increased the antitumor reactivity of in vitro sensitized cells in the treatment of MCA 106 pulmonary metastases. This effect was evident in irradiated mice, indicating that a host response to the interferon alfa was not required. Interferon alfa treatment increased class I major histocompatibility complex antigen expression on tumor cells and increased their susceptibility to lysis bymore » in vitro sensitized cells. These results suggest that interferon alfa enhancement of adoptive immunotherapy was mediated by its effect on tumor cells. Interferon alfa may be a useful adjunct to the adoptive immunotherapy of human cancer.« less

  8. Inactivation of human interferon by body fluids

    NASA Technical Reports Server (NTRS)

    Cesario, T. C.; Mandell, A.; Tilles, J. G.

    1973-01-01

    Description of the effects of human feces, bile, saliva, serum, and cerebrospinal fluid on interferon activity. It is shown that crude interferon is inactivated by at least 50% more than with the control medium used, when incubated for 4 hr in vitro in the presence of serum, saliva, or cerebrospinal liquid, and by close to 100% when incubated with stool extract or bile.

  9. Docking-dependent Ubiquitination of the Interferon Regulatory Factor-1 Tumor Suppressor Protein by the Ubiquitin Ligase CHIP*

    PubMed Central

    Narayan, Vikram; Pion, Emmanuelle; Landré, Vivien; Müller, Petr; Ball, Kathryn L.

    2011-01-01

    Characteristically for a regulatory protein, the IRF-1 tumor suppressor turns over rapidly with a half-life of between 20–40 min. This allows IRF-1 to reach new steady state protein levels swiftly in response to changing environmental conditions. Whereas CHIP (C terminus of Hsc70-interacting protein), appears to chaperone IRF-1 in unstressed cells, formation of a stable IRF-1·CHIP complex is seen under specific stress conditions. Complex formation, in heat- or heavy metal-treated cells, is accompanied by a decrease in IRF-1 steady state levels and an increase in IRF-1 ubiquitination. CHIP binds directly to an intrinsically disordered domain in the central region of IRF-1 (residues 106–140), and this site is sufficient to form a stable complex with CHIP in cells and to compete in trans with full-length IRF-1, leading to a reduction in its ubiquitination. The study reveals a complex relationship between CHIP and IRF-1 and highlights the role that direct binding or “docking” of CHIP to its substrate(s) can play in its mechanism of action as an E3 ligase. PMID:20947504

  10. Heartland virus NSs protein disrupts host defenses by blocking the TBK1 kinase-IRF3 transcription factor interaction and signaling required for interferon induction.

    PubMed

    Ning, Yun-Jia; Feng, Kuan; Min, Yuan-Qin; Deng, Fei; Hu, Zhihong; Wang, Hualin

    2017-10-06

    Heartland virus (HRTV) is a pathogenic phlebovirus related to the severe fever with thrombocytopenia syndrome virus (SFTSV), another phlebovirus causing life-threatening disease in humans. Previous findings have suggested that SFTSV can antagonize the host interferon (IFN) system via viral nonstructural protein (NSs)-mediated sequestration of antiviral signaling proteins into NSs-induced inclusion bodies. However, whether and how HRTV counteracts the host innate immunity is unknown. Here, we report that HRTV NSs (HNSs) also antagonizes IFN and cytokine induction and bolsters viral replication, although no noticeable inclusion body formation was observed in HNSs-expressing cells. Furthermore, HNSs inhibited the virus-triggered activation of IFN-β promoter by specifically targeting the IFN-stimulated response element but not the NF-κB response element. Consistently, HNSs blocked the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3, an IFN-stimulated response element-activating transcription factor). Reporter gene assays next showed that HNSs blockades the antiviral signaling mediated by RIG-I-like receptors likely at the level of TANK-binding kinase 1 (TBK1). Indeed, HNSs strongly interacts with TBK1 as indicated by confocal microscopy and pulldown analyses, and we also noted that the scaffold dimerization domain of TBK1 is required for the TBK1-HNSs interaction. Finally, pulldown assays demonstrated that HNSs expression dose-dependently diminishes a TBK1-IRF3 interaction, further explaining the mechanism for HNSs function. Collectively, these data suggest that HNSs, an antagonist of host innate immunity, interacts with TBK1 and thereby hinders the association of TBK1 with its substrate IRF3, thus blocking IRF3 activation and transcriptional induction of the cellular antiviral responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression.

    PubMed

    Ghiringhelli, Francois; Ménard, Cédric; Martin, Francois; Zitvogel, Laurence

    2006-12-01

    Tumor immunosurveillance relies on cognate immune effectors [lymphocytes and interferon-gamma (IFN-gamma)] and innate immunity [natural killer (NK) cells, natural killer group 2, member D (NKG2D) ligands, perforin/granzyme, and tumor necrosis factor-related apoptosis-inducing ligand]. In parallel, tumor cells promote the expansion of CD4(+)CD25(+) regulatory T cells (Tregs) that counteract T-cell-based anti-tumor immunity. Moreover, accumulating evidence points to a critical role for Tregs in dampening NK cell immune responses. This review summarizes the findings showing that Tregs suppress NK cell effector functions in vitro and in vivo, i.e. homeostatic proliferation, cytotoxicity, and interleukin-12-mediated IFN-gamma production. The molecular mechanism involve selective expression of membrane-bound transforming growth factor-beta on Tregs, which downregulate NKG2D expression on NK cells in vitro and in vivo. The regulatory events dictating NK cell suppression by Tregs have been studied and are discussed. The pathological relevance of the Treg-NK cell interaction has been brought up in tumor models and in patients with cancer. Consequently, inhibition of Tregs through pharmacological interventions should be considered during NK-cell-based immunotherapy of cancer.

  12. Hepatitis C Virus and Disrupted Interferon Signaling Promote Lymphoproliferation via Type II CD95 and Interleukins

    PubMed Central

    MACHIDA, KEIGO; TSUKIYAMA-KOHARA, KYOKO; SEKIGUCH, SATOSHI; SEIKE, EIJI; TÓNE, SHIGENOBU; HAYASHI, YUKIKO; TOBITA, YOSHIMI; KASAMA, YURI; SHIMIZU, MASUMI; TAKAHASHI, HIDEMI; TAYA, CHYOJI; YONEKAWA, HIROMICHI; TANAKA, NOBUYUKI; KOHARA, MICHINORI

    2014-01-01

    BACKGROUND & AIMS The molecular mechanisms of lymphoproliferation associated with the disruption of interferon (IFN) signaling and chronic hepatitis C virus (HCV) infection are poorly understood. Lymphomas are extrahepatic manifestations of HCV infection; we sought to clarify the molecular mechanisms of these processes. METHODS We established interferon regulatory factor-1– null (irf-1−/−) mice with inducible and persistent expression of HCV structural proteins (irf-1/CN2 mice). All the mice (n = 900) were observed for at least 600 days after Cre/loxP switching. Histologic analyses, as well as analyses of lymphoproliferation, sensitivity to Fas-induced apoptosis, colony formation, and cytokine production, were performed. Proteins associated with these processes were also assessed. RESULTS Irf-1/CN2 mice had extremely high incidences of lymphomas and lymphoproliferative disorders and displayed increased mortality. Disruption of irf-1 reduced the sensitivity to Fas-induced apoptosis and decreased the levels of caspases-3/7 and caspase-9 messenger RNA species and enzymatic activities. Furthermore, the irf-1/CN2 mice showed decreased activation of caspases-3/7 and caspase-9 and increased levels of interleukin (IL)-2, IL-10, and Bcl-2, as well as increased Bcl-2 expression, which promoted oncogenic transformation of lymphocytes. IL-2 and IL-10 were induced by the HCV core protein in splenocytes. CONCLUSIONS Disruption of IFN signaling resulted in development of lymphoma, indicating that differential signaling occurs in lymphocytes compared with liver. This mouse model, in which HCV expression and disruption of IFN signaling synergize to promote lymphoproliferation, will be an important tool for the development of therapeutic agents that target the lymphoproliferative pathway. PMID:19362089

  13. TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion

    PubMed Central

    Kandhaya-Pillai, Renuka; Miro-Mur, Francesc; Alijotas-Reig, Jaume; Tchkonia, Tamara; Kirkland, James L.; Schwartz, Simo

    2017-01-01

    Cellular senescence is a cell fate program that entails essentially irreversible proliferative arrest in response to damage signals. Tumor necrosis factor-alpha (TNFα), an important pro-inflammatory cytokine secreted by some types of senescent cells, can induce senescence in mouse and human cells. However, downstream signaling pathways linking TNFα-related inflammation to senescence are not fully characterized. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that TNFα induces permanent growth arrest and increases p21CIP1, p16INK4A, and SA-β-gal, accompanied by persistent DNA damage and ROS production. By gene expression profiling, we identified the crucial involvement of inflammatory and JAK/STAT pathways in TNFα-mediated senescence. We found that TNFα activates a STAT-dependent autocrine loop that sustains cytokine secretion and an interferon signature to lock cells into senescence. Furthermore, we show STAT1/3 activation is necessary for cytokine and ROS production during TNFα-induced senescence. However, inhibition of STAT1/3 did not rescue cells from proliferative arrest, but rather suppressed cell cycle regulatory genes and altered TNFα-induced senescence. Our findings suggest a positive feedback mechanism via the STAT pathway that sustains cytokine production and reveal a reciprocal regulatory role of JAK/STAT in TNFα-mediated senescence. PMID:29176033

  14. Interferon-related genetic markers of necroinflammatory activity in chronic hepatitis C.

    PubMed

    López-Rodríguez, Rosario; Hernández-Bartolomé, Ángel; Borque, María Jesús; Rodríguez-Muñoz, Yolanda; Martín-Vílchez, Samuel; García-Buey, Luisa; González-Moreno, Leticia; Real-Martínez, Yolanda; Muñoz de Rueda, Paloma; Salmerón, Javier; Vidal-Castiñeira, José Ramón; López-Larrea, Carlos; Rodrigo, Luis; Moreno-Otero, Ricardo; Sanz-Cameno, Paloma

    2017-01-01

    Chronic hepatitis C (CHC) is a major cause of liver disease worldwide which often leads to progressive liver inflammation, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). CHC displays heterogeneous progression depending on a broad set of factors, some of them intrinsic to each individual such as the patient's genetic profile. This study aims to evaluate the contribution of certain genetic variants of crucial interferon alpha and lambda signaling pathways to the hepatic necroinflammatory activity (NIA) grade of CHC patients. NIA was evaluated in 119 CHC patients by METAVIR scale and classified as low (NIA = 0-2, n = 80) or high grade (NIA = 3, n = 39). In a candidate gene approach, 64 SNPs located in 30 different genes related to interferon pathways (IL-28B, IFNAR1-2, JAK-STAT and OAS1-3, among others) were genotyped using the Illumina GoldenGate® Genotyping Assay. Statistical association was determined by logistic regression and expressed as OR and 95% CI. Those SNPs significantly associated were further adjusted by other covariates. Seven SNPs located in IL-28B (rs12979860), JAK1 (rs11576173 and rs1497056), TYK2 (rs280519), OAS1 (rs2057778), SOCS1 (rs33932899) and RNASEL (rs3738579) genes were significantly related to severe NIA grade (p<0.05). Regarding to clinical variables, elevated NIA was notably associated with aspartate aminotransferase (AST) serum levels >40 IU/L (p<0.05) but not with other clinical factors. Multivariate logistic regression analysis of these factors reflected that AST (>40 IU/L), TYK2 rs280519 (G allele) and RNASEL rs3738579 (G allele) were factors independently associated with elevated NIA (p<0.05). AST concentration showed a moderate AUC value (AUC = 0.63), similar to TYK2 (rs280519) and RNASEL (rs3738579) SNPs (AUC = 0.61, both) in the ROC_AUC analysis. Interestingly, the model including all significant variables reached a considerable predictive value (AUC = 0.74). The identified genetic variants in interferon signaling

  15. Enhanced actions of insulin-like growth factor-I and interferon-alpha co-administration in experimental cirrhosis.

    PubMed

    Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma

    2009-01-01

    Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.

  16. Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration.

    PubMed

    Liu, Xiaoguang; Liu, Yu; Zhao, Linlin; Zeng, Zhigang; Xiao, Weihua; Chen, Peijie

    2017-03-01

    Though macrophages are essential for skeletal muscle regeneration, which is a complex process, the roles and mechanisms of the macrophages in the process of muscle regeneration are still not fully understood. The objective of this study is to explore the roles of macrophages and the mechanisms involved in the regeneration of injured skeletal muscle. One hundred and twelve C57BL/6 mice were randomly divided into muscle contusion and macrophages depleted groups. Their gastrocnemius muscles were harvested at the time points of 12 h, 1, 3, 5, 7, 14 d post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (HE) stain. The gene expression was analyzed by real-time polymerase chain reaction. The data showed that CL-liposomes treatment did affect the expression of myogenic regulatory factors (MyoD, myogenin) after injury. In addition, CL-liposomes treatment decreased the expression of regulatory factors of muscle regeneration (HGF, uPA, COX-2, IGF-1, MGF, FGF6) and increased the expression of inflammatory cytokines (TGF-β1, TNF-α, IL-1β, RANTES) in the late stage of regeneration. Moreover, there were significant correlations between macrophages and some regulatory factors (such as HGF, uPA) for muscle regeneration. These results suggested that macrophages depletion impairs skeletal muscle regeneration and that the regulatory factors for muscle regeneration may play important roles in this process. © 2017 International Federation for Cell Biology.

  17. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors

    NASA Technical Reports Server (NTRS)

    Warren, Luigi A.; Rothenberg, Ellen V.

    2003-01-01

    During lymphopoiesis, precursor cells negotiate a complex regulatory space, defined by the levels of several competing and cross-regulating transcription factors, before arriving at stable states of commitment to the B-, T- and NK-specific developmental programs. Recent perturbation experiments provide evidence that this space has three major axes, corresponding to the PU.1 versus GATA-1 balance, the intensity of Notch signaling through the CSL pathway, and the ratio of E-box transcription factors to their Id protein antagonists.

  18. Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production.

    PubMed

    Nistal-Villán, Estanislao; Gack, Michaela U; Martínez-Delgado, Gustavo; Maharaj, Natalya P; Inn, Kyung-Soo; Yang, Heyi; Wang, Rong; Aggarwal, Aneel K; Jung, Jae U; García-Sastre, Adolfo

    2010-06-25

    RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.

  19. Interferon-gamma inhibits HIV-induced invasiveness of monocytes.

    PubMed

    Dhawan, S; Wahl, L M; Heredia, A; Zhang, Y; Epstein, J S; Meltzer, M S; Hewlett, I K

    1995-12-01

    HIV-infected monocytes form highly invasive network on basement membrane matrix and secrete high levels of 92-kd metalloproteinase (MMP-9), an enzyme that degrades basement membrane proteins. In the present study, using matrigel as a model basement membrane system, we demonstrate that treatment of human immunodeficiency virus (HIV)-infected monocytes with interferon-gamma at 50 U/ml inhibited the ability of infected monocytes to form an invasive network on matrigel and their invasion through the matrigel matrix. These effects were associated with a significant reduction in the levels of MMP-9 produced by HIV-infected monocytes treated with interferon-gamma 1 day prior to infection with HIV as compared with that of untreated HIV-infected monocytes. Monocytes treated with interferon-gamma 1 day after HIV infection showed the presence of integrated HIV sequences; however, the levels of MMP-9 were substantially lower than those produced by monocytes inoculated with live HIV, heat-inactivated HIV, or even the control uninfected monocytes. Exposure of monocytes to heat-inactivated HIV did not result in increased invasiveness or high MMP-9 production, suggesting that regulation of metalloproteinase by monocytes was independent of CD4-gp120 interactions and required active virus infection. Furthermore, addition of interferon-gamma to monocytes on day 10 after infection inhibited MMP-9 production by more than threefold with no significant reduction of virus replication. These results indicate that the mechanism of interferon-gamma-induced down-regulation of MMP-9 levels and reduced monocyte invasiveness may be mediated by a mechanism independent of antiviral activity of IFN-gamma in monocytes. Down-regulation of MMP-9 in HIV-infected monocytes by interferon-gamma may play an important role in the control of HIV pathogenesis.

  20. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors.

    PubMed

    Yokoyama, Katsushi; Ishijima, Sanae A; Clowney, Lester; Koike, Hideaki; Aramaki, Hironori; Tanaka, Chikako; Makino, Kozo; Suzuki, Masashi

    2006-01-01

    Feast/famine regulatory proteins comprise a diverse family of transcription factors, which have been referred to in various individual identifications, including Escherichia coli leucine-responsive regulatory protein and asparagine synthase C gene product. A full length feast/famine regulatory protein consists of the N-terminal DNA-binding domain and the C-domain, which is involved in dimerization and further assembly, thereby producing, for example, a disc or a chromatin-like cylinder. Various ligands of the size of amino acids bind at the interface between feast/famine regulatory protein dimers, thereby altering their assembly forms. Also, the combination of feast/famine regulatory protein subunits forming the same assembly is altered. In this way, a small number of feast/famine regulatory proteins are able to regulate a large number of genes in response to various environmental changes. Because feast/famine regulatory proteins are shared by archaea and eubacteria, the genome-wide regulation by feast/famine regulatory proteins is traceable back to their common ancestor, being the prototype of highly differentiated transcription regulatory mechanisms found in organisms nowadays.

  1. Treatment of Hepatitis C Infections with Interferon: A Historical Perspective

    DTIC Science & Technology

    2010-01-01

    infected AKR cells: a novel effect of interferon,” Proceedings of the National Academy of Sciences of the United States of America, vol. 71, no. 9, pp...Treatment of Hepatitis C Infections with Interferon: A Historical Perspective Robert M. Friedman and Sara Contente Department of Pathology, Uniformed...involve new anti-HCV agents that are currently under development. The antiviral activity of interferon (IFN), first described in 1957, was in a chick cell

  2. Variation in Inflammatory/Regulatory Cytokines in Secondary, Tertiary, and Quaternary Challenges with Dengue Virus

    PubMed Central

    Sierra, Beatriz; Pérez, Ana B.; Alvarez, Mayling; García, Gissel; Vogt, Katrin; Aguirre, Eglys; Schmolke, Kathrin; Volk, Hans-Dieter; Guzmán, María G.

    2012-01-01

    Secondary heterologous dengue infection is a risk factor for severe disease manifestations because of the immune-enhancement phenomenon. Succeeding clinical infections are seldom reported, and the clinical course of tertiary and quaternary dengue infections is not clear. Cuba represents a unique environment to study tertiary/quaternary dengue infections in a population with known clinical and serologic dengue markers and no dengue endemicity. We took advantage of this exceptional epidemiologic condition to study the effect of primary, secondary, tertiary, and quaternary dengue infection exposure on the expression of pro-inflammatory and regulatory cytokines, critical in dengue infection pathogenesis, by using a dengue infection ex vivo model. Whereas secondary exposure induced a high cytokine response, we found a significantly lower expression of tumor necrosis factor-α, interferon-γ, interleukin-10, and tumor growth factor-β after tertiary and quaternary infectious challenge. Significant differences in expression of the cytokines were seen between the dengue immune profiles, suggesting that the sequence in which the immune system encounters serotypes may be important in determining the nature of the immune response to subsequent infections. PMID:22802438

  3. Sequential multiple-assignment randomized trial design of neurobehavioral treatment for patients with metastatic malignant melanoma undergoing high-dose interferon-alpha therapy.

    PubMed

    Auyeung, S Freda; Long, Qi; Royster, Erica Bruce; Murthy, Smitha; McNutt, Marcia D; Lawson, David; Miller, Andrew; Manatunga, Amita; Musselman, Dominique L

    2009-10-01

    Interferon-alpha therapy, which is used to treat metastatic malignant melanoma, can cause patients to develop two distinct neurobehavioral symptom complexes: a mood syndrome and a neurovegetative syndrome. Interferon-alpha effects on serotonin metabolism appear to contribute to the mood and anxiety syndrome, while the neurovegetative syndrome appears to be related to interferon-alpha effects on dopamine. Our goal is to propose a design for utilizing a sequential, multiple assignment, randomized trial design for patients with malignant melanoma to test the relative efficacy of drugs that target serotonin versus dopamine metabolism during 4 weeks of intravenous, then 8 weeks of subcutaneous, interferon-alpha therapy. Patients will be offered participation in a double-blinded, randomized, controlled, 14-week trial involving two treatment phases. During the first month of intravenous interferon-alpha therapy, we will test the hypotheses that escitalopram will be more effective in reducing depressed mood, anxiety, and irritability, whereas methylphenidate will be more effective in diminishing interferon-alpha-induced neurovegetative symptoms, such as fatigue and psychomotor slowing. During the next 8 weeks of subcutaneous interferon therapy, participants whose symptoms do not improve significantly will be randomized to the alternate agent alone versus escitalopram and methylphenidate together. We present a prototype for a single-center, sequential, multiple assignment, randomized trial, which seeks to determine the efficacy of sequenced and targeted treatment for the two distinct symptom complexes suffered by patients treated with interferon-alpha. Because we cannot completely control for external factors, a relevant question is whether or not 'short-term' neuropsychiatric interventions can increase the number of interferon-alpha doses tolerated and improve long-term survival. This sequential, multiple assignment, randomized trial proposes a framework for developing

  4. Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma

    PubMed Central

    Sun, Jingchun; Gong, Xue; Purow, Benjamin; Zhao, Zhongming

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in humans. Recent studies revealed that patterns of microRNA (miRNA) expression in GBM tissue samples are different from those in normal brain tissues, suggesting that a number of miRNAs play critical roles in the pathogenesis of GBM. However, little is yet known about which miRNAs play central roles in the pathology of GBM and their regulatory mechanisms of action. To address this issue, in this study, we systematically explored the main regulation format (feed-forward loops, FFLs) consisting of miRNAs, transcription factors (TFs) and their impacting GBM-related genes, and developed a computational approach to construct a miRNA-TF regulatory network. First, we compiled GBM-related miRNAs, GBM-related genes, and known human TFs. We then identified 1,128 3-node FFLs and 805 4-node FFLs with statistical significance. By merging these FFLs together, we constructed a comprehensive GBM-specific miRNA-TF mediated regulatory network. Then, from the network, we extracted a composite GBM-specific regulatory network. To illustrate the GBM-specific regulatory network is promising for identification of critical miRNA components, we specifically examined a Notch signaling pathway subnetwork. Our follow up topological and functional analyses of the subnetwork revealed that six miRNAs (miR-124, miR-137, miR-219-5p, miR-34a, miR-9, and miR-92b) might play important roles in GBM, including some results that are supported by previous studies. In this study, we have developed a computational framework to construct a miRNA-TF regulatory network and generated the first miRNA-TF regulatory network for GBM, providing a valuable resource for further understanding the complex regulatory mechanisms in GBM. The observation of critical miRNAs in the Notch signaling pathway, with partial verification from previous studies, demonstrates that our network-based approach is promising for the identification of new and important

  5. Intracystic interferon-alpha in pediatric craniopharyngioma patients: an international multicenter assessment on behalf of SIOPE and ISPN.

    PubMed

    Kilday, John-Paul; Caldarelli, Massimo; Massimi, Luca; Chen, Robert Hsin-Hung; Lee, Yi Yen; Liang, Muh-Lii; Parkes, Jeanette; Naiker, Thuran; van Veelen, Marie-Lise; Michiels, Erna; Mallucci, Conor; Pettorini, Benedetta; Meijer, Lisethe; Dorfer, Christian; Czech, Thomas; Diezi, Manuel; Schouten-van Meeteren, Antoinette Y N; Holm, Stefan; Gustavsson, Bengt; Benesch, Martin; Müller, Hermann L; Hoffmann, Anika; Rutkowski, Stefan; Flitsch, Joerg; Escherich, Gabriele; Grotzer, Michael; Spoudeas, Helen A; Azquikina, Kristian; Capra, Michael; Jiménez-Guerra, Rolando; MacDonald, Patrick; Johnston, Donna L; Dvir, Rina; Constantini, Shlomi; Kuo, Meng-Fai; Yang, Shih-Hung; Bartels, Ute

    2017-10-01

    Craniopharyngiomas are frequent hypothalamo-pituitary tumors in children, presenting predominantly as cystic lesions. Morbidity from conventional treatment has focused attention on intracystic drug delivery, hypothesized to cause fewer clinical consequences. However, the efficacy of intracystic therapy remains unclear. We report the retrospective experiences of several global centers using intracystic interferon-alpha. European Société Internationale d'Oncologie Pédiatrique and International Society for Pediatric Neurosurgery centers were contacted to submit a datasheet capturing pediatric patients with cystic craniopharyngiomas who had received intracystic interferon-alpha. Patient demographics, administration schedules, adverse events, and outcomes were obtained. Progression was clinical or radiological (cyst reaccumulation, novel cysts, or solid growth). Fifty-six children (median age, 6.3 y) from 21 international centers were identified. Median follow-up from diagnosis was 5.1 years (0.3-17.7 y). Lesions were cystic (n = 22; 39%) or cystic/solid (n = 34; 61%). Previous progression was treated in 43 (77%) patients before interferon use. In such cases, further progression was delayed by intracystic interferon compared with the preceding therapy for cystic lesions (P = 0.0005). Few significant attributable side effects were reported. Progression post interferon occurred in 42 patients (median 14 mo; 0-8 y), while the estimated median time to definitive therapy post interferon was 5.8 (1.8-9.7) years. Intracystic interferon-alpha can delay disease progression and potentially offer a protracted time to definitive surgery or radiotherapy in pediatric cystic craniopharyngioma, yet demonstrates a favorable toxicity profile compared with other therapeutic modalities-important factors for this developing age group. A prospective, randomized international clinical trial assessment is warranted. © The Author(s) 2017. Published by Oxford University Press on behalf of

  6. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape.

    PubMed

    Lloret-Fernández, Carla; Maicas, Miren; Mora-Martínez, Carlos; Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter; Flames, Nuria

    2018-03-22

    Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis -regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans . Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. © 2018, Lloret-Fernández et al.

  7. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape

    PubMed Central

    Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter

    2018-01-01

    Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis-regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans. Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. PMID:29553368

  8. [ASSESSMENT OF EXTREME FACTORS OF SHIFT WORK IN ARCTIC CONDITIONS BY WORKERS WITH DIFFERENT REGULATORY PROCESSES].

    PubMed

    Korneeva, Ya A; Simonova, N N

    2016-01-01

    A man working on a shift basis in the Arctic, every day is under the influence of various extreme factors which are inevitable for oil and gas indudtry. To adapt to shift work employees use various resources of the individual. The purpose of research is the determination of personal resources of shift workers to overcome the adverse factors of the environment in the Arctic. The study involved 191 builder of main gas pipelines, working in shifts in the Tyumen region (the length of the shift 52 days of arrival) at the age of 23 to 59 (mean age 34.9 ± 8.1) years. Methods: psychological testing, questioning, observation, descriptive statistics, discriminant step by step analysis. There was revealed the correlation between the subjective assessment of the majority of adverse climatic factors in the regulatory process "assessment of results"; production factors--regulatory processes such as flexibility, autonomy, simulation, and the general level of self-regulation; social factors are more associated with the severity of such regulatory processes, flexibility and evaluation of results.

  9. Regulation of TBK1 activity by Optineurin contributes to cell cycle-dependent expression of the interferon pathway.

    PubMed

    Weil, Robert; Laplantine, Emmanuel; Génin, Pierre

    2016-06-01

    The innate immune system has evolved to detect and neutralize viral invasions. Triggering of this defense mechanism relies on the production and secretion of soluble factors that stimulate intracellular antiviral defense mechanisms. The Tank Binding Kinase 1 (TBK1) is a serine/threonine kinase in the innate immune signaling pathways including the antiviral response and the host defense against cytosolic infection by bacteries. Given the critical roles of TBK1, important regulatory mechanisms are required to regulate its activity. Among these, Optineurin (Optn) was shown to negatively regulate the interferon response, in addition to its important role in membrane trafficking, protein secretion, autophagy and cell division. As Optn does not carry any enzymatic activity, its functions depend on its precise subcellular localization and its interaction with other proteins, especially with components of the innate immune pathway. This review highlights advances in our understanding of Optn mechanisms of action with focus on the relationships between Optn and TBK1 and their implication in host defense against pathogens. Specifically, how the antiviral immune system is controlled during the cell cycle by the Optn/TBK1 axis and the physiological consequences of this regulatory mechanism are described. This review may serve to a better understanding of the relationships between the different functions of Optn, including those related to immune responses and its associated pathologies such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Bruton's tyrosine kinase and protein kinase C µ are required for TLR7/9-induced IKKα and IRF-1 activation and interferon-β production in conventional dendritic cells.

    PubMed

    Li, Yan-Feng; Lee, Koon-Guan; Ou, Xijun; Lam, Kong-Peng

    2014-01-01

    Stimulation of TLR7/9 by their respective ligands leads to the activation of IκB kinase α (IKKα) and Interferon Regulatory Factor 1 (IRF-1) and results in interferon (IFN)-β production in conventional dendritic cells (cDC). However, which other signaling molecules are involved in IKKα and IRF-1 activation during TLR7/9 signaling pathway are not known. We and others have shown that Bruton's Tyrosine Kinase (BTK) played a part in TLR9-mediated cytokine production in B cells and macrophages. However, it is unclear if BTK participates in TLR7/9-induced IFN-β production in cDC. In this study, we show that BTK is required for IFN-β synthesis in cDC upon TLR7/9 stimulation and that stimulated BTK-deficient cDC are defective in the induction of IKKα/β phosphorylation and IRF-1 activation. In addition, we demonstrate that Protein Kinase C µ (PKCµ) is also required for TLR7/9-induced IRF-1 activation and IFN-β upregulation in cDC and acts downstream of BTK. Taken together, we have uncovered two new molecules, BTK and PKCµ, that are involved in TLR7/9-triggered IFN-β production in cDC.

  11. How hepatitis C patients manage the treatment process of pegylated interferon and ribavirin therapy: a qualitative study.

    PubMed

    Tsai, Shu-Mei; Kao, Jung-Ta; Tsai, Yun-Fang

    2016-07-11

    Hepatitis C virus (HCV) infection is a global public health issue. Adequate treatment for hepatitis C patients is important, but anticipated side effects make patients fearful of receiving treatment. Little is known about the experiences of hepatitis C patients who have completed treatment with pegylated interferon and ribavirin. The purpose of this study was to explore the experiences of hepatitis C patients who had undergone therapy with pegylated interferon and ribavirin and gain an understanding of what factors contributed to completion of treatment. This was a qualitative study with 21 adult hepatitis C patients purposively sampled from outpatient liver clinics of a medical university hospital in Taichung City, Taiwan. Participants had completed 6-12 months of therapy with pegylated interferon and ribavirin. Data were collected through individual, face-to-face, in-depth interviews conducted in the participants' homes from June-October 2013. Data were analysed using conventional content analysis. Data analysis revealed three themes that described the strategies employed to alleviate and ease symptoms and manage the processes involved: restructuring their lifestyle, adopting a positive attitude, and seeking support. Hepatitis C patients face many challenges during treatment with pegylated interferon and ribavirin. These findings provide knowledge that can be used in designing effective programs to help other Hepatitis C patients manage the side effects of pegylated interferon and ribavirin therapy, complete treatment and improve quality of life.

  12. Coordinated therapeutic effects of immune modulators and interferon.

    PubMed Central

    Cerutti, I; Chany, C

    1983-01-01

    Immune modulators injected 24 h before encephalomyocarditis virus significantly increase antiviral resistance in mice when interferon is administered 1 h after the virus. These immune modulators can be crude bacterial extracts or synthetic drugs. In some cases, the responses are additive; in others, they are clearly cooperative. To protect the mice against the development of 180 TG Crocker sarcomas, the association of bacterial extracts and interferon is highly effective under the condition that the drug concentrations and chronological order and number of injections are well defined. In contrast, the conjunction of interferon and synthetic immune modulators, in particular cimetidine, result in delayed tumor development with no significant change in the final survival rate in the experimental model described here. PMID:6315585

  13. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction

    PubMed Central

    Uematsu, Satoshi; Sato, Shintaro; Yamamoto, Masahiro; Hirotani, Tomonori; Kato, Hiroki; Takeshita, Fumihiko; Matsuda, Michiyuki; Coban, Cevayir; Ishii, Ken J.; Kawai, Taro; Takeuchi, Osamu; Akira, Shizuo

    2005-01-01

    Toll-like receptors (TLRs) recognize microbial pathogens and trigger innate immune responses. Among TLR family members, TLR7, TLR8, and TLR9 induce interferon (IFN)-α in plasmacytoid dendritic cells (pDCs). This induction requires the formation of a complex consisting of the adaptor MyD88, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and IFN regulatory factor (IRF) 7. Here we show an essential role of IL-1 receptor-associated kinase (IRAK)-1 in TLR7- and TLR9-mediated IRF7 signaling pathway. IRAK-1 directly bound and phosphorylated IRF7 in vitro. The kinase activity of IRAK-1 was necessary for transcriptional activation of IRF7. TLR7- and TLR9-mediated IFN-α production was abolished in Irak-1–deficient mice, whereas inflammatory cytokine production was not impaired. Despite normal activation of NF-κB and mitogen-activated protein kinases, IRF7 was not activated by a TLR9 ligand in Irak-1–deficient pDCs. These results indicated that IRAK-1 is a specific regulator for TLR7- and TLR9-mediated IFN-α induction in pDCs. PMID:15767370

  14. Regulatory T cell frequency in patients with melanoma with different disease stage and course, and modulating effects of high-dose interferon-alpha 2b treatment.

    PubMed

    Ascierto, Paolo A; Napolitano, Maria; Celentano, Egidio; Simeone, Ester; Gentilcore, Giusy; Daponte, Antonio; Capone, Mariaelena; Caracò, Corrado; Calemma, Rosa; Beneduce, Gerardo; Cerrone, Margherita; De Rosa, Vincenzo; Palmieri, Giuseppe; Castello, Giuseppe; Kirkwood, John M; Marincola, Francesco M; Mozzillo, Nicola

    2010-08-16

    High-dose interferon-alpha 2b (IFN-alpha 2b) is the only approved systemic therapy in the United States for the adjuvant treatment of melanoma. The study objective was to explore the immunomodulatory mechanism of action for IFN-alpha 2b by measuring serum regulatory T cell (Treg), serum transforming growth factor-beta (TGF-beta), interleukin (IL)-10, and autoantibody levels in patients with melanoma treated with the induction phase of the high-dose IFN-alpha 2b regimen. Patients with melanoma received IFN-alpha 2b administered intravenously (20 MU/m2 each day from day 1 to day 5 for 4 consecutive weeks). Serum Treg levels were measured as whole lymphocytes in CD4+ cells using flow cytometry while TGF-beta, IL-10, and autoantibody levels were measured using enzyme-linked immunosorbent assays. Twenty-two patients with melanoma received IFN-alpha 2b treatment and were evaluated for Treg levels. Before treatment, Treg levels were significantly higher in patients with melanoma when compared with data from 20 healthy subjects (P = 0.001; Mann-Whitney test). Although a trend for reduction of Treg levels following IFN-α 2b treatment was observed (average decrease 0.29% per week), statistical significance was not achieved. Subgroup analyses indicated higher baseline Treg levels for stage III versus IV disease (P = 0.082), early recurrence versus no recurrence (P = 0.017), deceased versus surviving patients (P = 0.021), and preoperative neoadjuvant versus postoperative adjuvant treatment groups (not significant). No significant effects were observed on the levels of TGF-beta, IL-10, and autoantibodies in patients with melanoma treated with IFN-alpha 2b. Patients with melanoma in this study showed increased basal levels of Treg that may be relevant to their disease and its progression. Treg levels shifted in patients with melanoma treated with IFN-alpha 2b, although no firm conclusions regarding the role of Tregs as a marker of treatment response or outcome can be made at

  15. Assessing efficacy and therapeutic claims in emerging indications for recombinant factor VIIa: regulatory perspectives.

    PubMed

    Farrugia, Albert

    2006-01-01

    When compared with the evidence-based, cost-effectiveness criteria underpinning most government reimbursement schemes in the social market economies, the three regulatory hurdles of safety, quality and efficacy are probably of modest impact in influencing increased usage of recombinant activated factor VII (rFVIIa; NovoSeven, Novo Nordisk, Bagsvaerd, Denmark). Nevertheless, efficacy claims must be supported if regulatory approval is to be granted for the wider range of indications that have been proposed for rFVIIa. With the refinement of clinical trial designs over the past 40 years, the randomized controlled trial (RCT) has assumed the role of gold standard, providing the highest level of evidence for therapeutic efficacy. However, it is incorrect to assume that regulatory authorities give sole credence to RCTs in assessing claims. It is noteworthy that the indications already accepted for rFVIIa by international regulatory authorities--including the treatment of inhibitors to factor VIII and factor IX, substitution for FVII deficiency, and treatment of Glanzmann's thrombasthenia--were supported not by RCTs but by studies conventionally considered to provide modest evidence levels. Therefore, the use of studies other than RCTs for the more recently proposed indications for rFVIIa in a range of conditions requiring hemostatic correction is perfectly feasible. What regulators expect are well-conducted and well-described studies adhering to principles of good clinical practice, which can be scrutinized for evidence of clinical efficacy and which are based on the initially proven principle for the drug. This paper discusses the regulatory history of rFVIIa in the major regulatory authorities and assesses the route needed to support claims being made in the mainstream literature. Recent episodes where post-market events have forced regulators to be more than usually cautious will be used as examples to suggest possible pitfalls to the extension of approved claims for

  16. Interferon action: two (2'-5')(A)n synthetases specified by distinct mRNAs in Ehrlich ascites tumor cells treated with interferon.

    PubMed

    St Laurent, G; Yoshie, O; Floyd-Smith, G; Samanta, H; Sehgal, P B; Lengyel, P

    1983-05-01

    (2'-5')(A)n synthetase and RNAase L (a latent endoribonuclease) are among the mediators of interferon action. The product of (2'-5')(A)n synthetase (i.e., (2'-5')(A)n) binds, and thereby activates RNAase L. Interferons induce in Ehrlich ascites tumor (EAT) cells two mRNAs (sizes 1.5 kb and 3.8 kb), which can be translated in Xenopus oocytes into (2'-5')(A)n synthetases of 20,000 to 30,000 daltons and 85,000 to 100,000 daltons, respectively. (2'-5')(A)n synthetases of corresponding sizes are induced by interferons in EAT cells. In the cell extract the bulk of the larger enzyme is in the cytoplasmic fraction, and the bulk of the smaller one in the nuclear fraction. The only known function of (2'-5')(A)n is the activation of RNAase L, and RNAase L can be selectively crosslinked to a (2'-5')(A)n derivative in a cytoplasmic extract from EAT cells. The same (2'-5')(A)n derivative can be crosslinked to several proteins in the nuclear extract of EAT cells, and some of these proteins are induced by interferon.

  17. CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data

    PubMed Central

    O'Connor, Timothy; Bodén, Mikael

    2017-01-01

    Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599

  18. Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier.

    PubMed

    Lazear, Helen M; Daniels, Brian P; Pinto, Amelia K; Huang, Albert C; Vick, Sarah C; Doyle, Sean E; Gale, Michael; Klein, Robyn S; Diamond, Michael S

    2015-04-22

    Although interferon-λ [also known as type III interferon or interleukin-28 (IL-28)/IL-29] restricts infection by several viruses, its inhibitory mechanism has remained uncertain. We used recombinant interferon-λ and mice lacking the interferon-λ receptor (IFNLR1) to evaluate the effect of interferon-λ on infection with West Nile virus, an encephalitic flavivirus. Cell culture studies in mouse keratinocytes and dendritic cells showed no direct antiviral effect of exogenous interferon-λ, even though expression of interferon-stimulated genes was induced. We observed no differences in West Nile virus burden between wild-type and Ifnlr1(-/-) mice in the draining lymph nodes, spleen, or blood. We detected increased West Nile virus infection in the brain and spinal cord of Ifnlr1(-/-) mice, yet this was not associated with a direct antiviral effect in mouse neurons. Instead, we observed an increase in blood-brain barrier permeability in Ifnlr1(-/-) mice. Treatment of mice with pegylated interferon-λ2 resulted in decreased blood-brain barrier permeability, reduced West Nile virus infection in the brain without affecting viremia, and improved survival against lethal virus challenge. An in vitro model of the blood-brain barrier showed that interferon-λ signaling in mouse brain microvascular endothelial cells increased transendothelial electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in a protein synthesis- and signal transducer and activator of transcription 1 (STAT1)-independent manner. Our data establish an indirect antiviral function of interferon-λ in which noncanonical signaling through IFNLR1 tightens the blood-brain barrier and restricts viral neuroinvasion and pathogenesis. Copyright © 2015, American Association for the Advancement of Science.

  19. Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation

    PubMed Central

    Zhou, Hao; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2014-01-01

    Interferon may be thought of as a key, with the interferon receptor as the signal lock: Crosstalk between them maintains their balance during viral infection. In this review, the protein structure of avian interferon and the interferon receptor are discussed, indicating remarkable similarity between different species. However, the structures of the interferon receptors are more sophisticated than those of the interferons, suggesting that the interferon receptor is a more complicated signal lock system and has considerable diversity in subtypes or structures. Preliminary evolutionary analysis showed that the subunits of the interferon receptor formed a distinct clade, and the orthologs may be derived from the same ancestor. Furthermore, the development of interferons and interferon receptors in birds may be related to an animal’s age and the maintenance of a balanced state. In addition, the equilibrium between interferon and its receptor during pathological and physiological states revealed that the virus and the host influence this equilibrium. Birds could represent an important model for studies on interferon’s antiviral activities and may provide the basis for new antiviral strategies. PMID:25405736

  20. The Synthetic Cannabinoid R(+)WIN55,212-2 Augments Interferon-β Expression via Peroxisome Proliferator-activated Receptor-α*

    PubMed Central

    Downer, Eric J.; Clifford, Eileen; Amu, Sylvie; Fallon, Padraic G.; Moynagh, Paul N.

    2012-01-01

    We have demonstrated that R(+)WIN55,212-2, a synthetic cannabinoid that possesses cannabimimetic properties, acts as a novel regulator of Toll-like receptor 3 (TLR3) signaling to interferon (IFN) regulatory factor 3 (IRF3) activation and IFN-β expression, and this is critical for manifesting its protective effects in a murine multiple sclerosis model. Here we investigated the role of peroxisome proliferator-activated receptor-α (PPARα) in mediating the effects of R(+)WIN55,212-2 on this pathway. Data herein demonstrate that the TLR3 agonist poly(I:C) promotes IFN-β expression and R(+)WIN55,212-2 enhances TLR3-induced IFN-β expression in a stereoselective manner via PPARα. R(+)WIN55,212-2 promotes increased transactivation and expression of PPARα. Using the PPARα antagonist GW6471, we demonstrate that R(+)WIN55,212-2 acts via PPARα to activate JNK, activator protein-1, and positive regulatory domain IV to transcriptionally regulate the IFN-β promoter. Furthermore, GW6471 ameliorated the protective effects of R(+)WIN55,212-2 during the initial phase of experimental autoimmune encephalomyelitis. Overall, these findings define PPARα as an important mediator in manifesting the effects of R(+)WIN55,212-2 on the signaling cascade regulating IFN-β expression. The study adds to our molecular appreciation of potential therapeutic effects of R(+)WIN55,212-2 in multiple sclerosis. PMID:22654113

  1. Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection.

    PubMed

    Ng, Cherie T; Sullivan, Brian M; Teijaro, John R; Lee, Andrew M; Welch, Megan; Rice, Stephanie; Sheehan, Kathleen C F; Schreiber, Robert D; Oldstone, Michael B A

    2015-05-13

    Although type I interferon (IFN-I) is thought to be beneficial against microbial infections, persistent viral infections are characterized by high interferon signatures suggesting that IFN-I signaling may promote disease pathogenesis. During persistent lymphocytic choriomeningitis virus (LCMV) infection, IFNα and IFNβ are highly induced early after infection, and blocking IFN-I receptor (IFNAR) signaling promotes virus clearance. We assessed the specific roles of IFNβ versus IFNα in controlling LCMV infection. While blockade of IFNβ alone does not alter early viral dissemination, it is important in determining lymphoid structure, lymphocyte migration, and anti-viral T cell responses that lead to accelerated virus clearance, approximating what occurs during attenuation of IFNAR signaling. Comparatively, blockade of IFNα was not associated with improved viral control, but with early dissemination of virus. Thus, despite their use of the same receptor, IFNβ and IFNα have unique and distinguishable biologic functions, with IFNβ being mainly responsible for promoting viral persistence. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Identification of regulatory targets for the bacterial Nus factor complex.

    PubMed

    Baniulyte, Gabriele; Singh, Navjot; Benoit, Courtney; Johnson, Richard; Ferguson, Robert; Paramo, Mauricio; Stringer, Anne M; Scott, Ashley; Lapierre, Pascal; Wade, Joseph T

    2017-12-11

    Nus factors are broadly conserved across bacterial species, and are often essential for viability. A complex of five Nus factors (NusB, NusE, NusA, NusG and SuhB) is considered to be a dedicated regulator of ribosomal RNA folding, and has been shown to prevent Rho-dependent transcription termination. Here, we identify an additional cellular function for the Nus factor complex in Escherichia coli: repression of the Nus factor-encoding gene, suhB. This repression occurs primarily by translation inhibition, followed by Rho-dependent transcription termination. Thus, the Nus factor complex can prevent or promote Rho activity depending on the gene context. Conservation of putative NusB/E binding sites upstream of Nus factor genes suggests that Nus factor autoregulation occurs in many bacterial species. Additionally, many putative NusB/E binding sites are also found upstream of other genes in diverse species, and we demonstrate Nus factor regulation of one such gene in Citrobacter koseri. We conclude that Nus factors have an evolutionarily widespread regulatory function beyond ribosomal RNA, and that they are often autoregulatory.

  3. Interferon Gamma-1b Injection

    MedlinePlus

    ... in people with severe, malignant osteopetrosis (an inherited bone disease). Interferon gamma-1b is in a class of ... you may have flu-like symptoms such as headache, fever, chills, muscle aches, and tiredness after your ...

  4. Factors affecting self-regulatory driving practices among older adults.

    PubMed

    Molnar, Lisa J; Charlton, Judith L; Eby, David W; Langford, Jim; Koppel, Sjaan; Kolenic, Giselle E; Marshall, Shawn

    2014-01-01

    The primary objective of this study was to better understand how self-regulatory driving practices at multiple levels of driver decision making are influenced by various factors. Specifically, the study investigated patterns of tactical and strategic self-regulation among a sample of 246 Australian older drivers. Of special interest was the relative influence of several variables on the adoption of self-regulation, including self-perceptions of health, functioning, and abilities for safe driving and driving confidence and comfort. The research was carried out at the Monash University Accident Research Centre, as part of its Ozcandrive study, a partnership with the Canadian Driving Research Initiative for Vehicular Safety in the Elderly (Candrive), and in conjunction with the University of Michigan Transportation Research Institute (UMTRI). Candrive/Ozcandrive represents the first study to follow a large group of older drivers over several years and collect comprehensive self-reported and objectively derived data on health, functioning, and driving. This study used a subset of data from the Candrive/Ozcandrive study. Upon enrolling in the study, participants underwent a comprehensive clinical assessment during which data on visual, cognitive, and psychomotor functioning were collected. Approximately 4 months after study enrollment, participants completed the Advanced Driving Decisions and Patterns of Travel (ADDAPT) questionnaire, a computer-based self-regulation instrument developed and pilot-tested at UMTRI. Self-regulation among older adults was found to be a multidimensional concept. Rates of self-regulation were tied closely to specific driving situations, as well as level of decision making. In addition, self-regulatory practices at the strategic and tactical levels of decision making were influenced by different sets of factors. Continuing efforts to better understand the self-regulatory practices of older drivers at multiple levels of driver performance and

  5. Human interferon and its inducers: clinical program overview at Roswell Park Memorial Institute.

    PubMed

    Carter, W A; Horoszewicz, J S

    1978-11-01

    An overview of the clinical interferon program at Roswell Park Memorial Institute is presented. Purified fibroblast interferon and a novel inducer of human interferon [rIn-r(C12,U)n] are being evaluated for possible antiviral, antiproliferative, and immunomodulatory activities in patients with cancer.

  6. A novel mechanism of skin tumor promotion involving interferon-gamma (IFNγ)/signal transducer and activator of transcription-1 (Stat1) signaling.

    PubMed

    Bozeman, Ronald; Abel, Erika L; Macias, Everardo; Cheng, Tianyi; Beltran, Linda; DiGiovanni, John

    2015-08-01

    The current study was designed to explore the role of signal transducer and activator of transcription 1 (Stat1) during tumor promotion using the mouse skin multistage carcinogenesis model. Topical treatment with both 12-O-tetradecanoylphorbol-13-acetate (TPA) and 3-methyl-1,8-dihydroxy-9-anthrone (chrysarobin or CHRY) led to rapid phosphorylation of Stat1 on both tyrosine (Y701) and serine (S727) residues in epidermis. CHRY treatment also led to upregulation of unphosphorylated Stat1 (uStat1) at later time points. CHRY treatment also led to upregulation of interferon regulatory factor 1 (IRF-1) mRNA and protein, which was dependent on Stat1. Further analyses demonstrated that topical treatment with CHRY but not TPA upregulated interferon-gamma (IFNγ) mRNA in the epidermis and that the induction of both IRF-1 and uStat1 was dependent on IFNγ signaling. Stat1 deficient (Stat1(-/-) ) mice were highly resistant to skin tumor promotion by CHRY. In contrast, the tumor response (in terms of both papillomas and squamous cell carcinomas) was similar in Stat1(-/-) mice and wild-type littermates with TPA as the promoter. Maximal induction of both cyclooxygenase-2 and inducible nitric oxide synthase in epidermis following treatment with CHRY was also dependent on the presence of functional Stat1. These studies define a novel mechanism associated with skin tumor promotion by the anthrone class of tumor promoters involving upregulation of IFNγ signaling in the epidermis and downstream signaling through activated (phosphorylated) Stat1, IRF-1 and uStat1. © 2014 Wiley Periodicals, Inc.

  7. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.

    PubMed

    Ai, Trinh Ngoc; Naing, Aung Htay; Arun, Muthukrishnan; Lim, Sun-Hyung; Kim, Chang Kil

    2016-11-01

    The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T 2 ) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru+mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru+mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Effects of type I/type II interferons and transforming growth factor-beta on B-cell differentiation and proliferation. Definition of costimulation and cytokine requirements for immunoglobulin synthesis and expression.

    PubMed

    Estes, D M; Tuo, W; Brown, W C; Goin, J

    1998-12-01

    In this report, we sought to determine the role of selected type I interferons [interferon-alpha (IFN-alpha) and interferon-tau (IFN-tau)], IFN-gamma and transforming growth factor-beta (TGF-beta) in the regulation of bovine antibody responses. B cells were stimulated via CD40 in the presence or absence of B-cell receptor (BCR) cross-linking. IFN-alpha enhanced IgM, IgG2 and IgA responses but did not enhance IgG1 responses. BCR signalling alone was more effective at inducing IgG2 responses with IFN-alpha than dual cross-linking with CD40. Recombinant ovine IFN-tau was less effective at inducing IgG2 responses when compared with IFN-alpha, though IgA responses were similar in magnitude following BCR cross-linking. At higher concentrations, IFN-tau enhanced IgA responses greater than twofold over the levels observed with IFN-alpha. Previous studies have shown that addition of IFN-gamma to BCR or pokeweed mitogen-activated bovine B cells stimulates IgG2 production. However, following CD40 stimulation alone, IFN-gamma was relatively ineffective at stimulating high-rate synthesis of any non-IgM isotype. Dual cross-linking via CD40 and the BCR resulted in decreased synthesis of IgM with a concomitant increase in IgA and similar levels of IgG2 production to those obtained via the BCR alone. We also assessed the effects of endogenous and exogenous TGF-beta on immunoglobulin synthesis by bovine B cells. Exogenous TGF-beta stimulates both IgG2 and IgA production following CD40 and BCR cross-linking in the presence of IL-2. Blocking endogenous TGF-beta did not inhibit the up-regulation of IgG2 or IgA by interferons.

  9. Interferon Beta-1b Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS, a disease in which ... interferon beta-1b injection at around the same time of day each time you inject it. Follow ...

  10. Interferon Regulatory Factor 5 Gene Polymorphisms in Iranian Women with Unexplained Recurrent Pregnancy Loss.

    PubMed

    Amiri Jahromi, Rakhshan; Nasiri, Mahboobeh; Jahromi, Athar Rasekh

    2017-01-01

    This study aimed to examine the association of three functional IRF5 rs10954213, rs3757385, and rs41298401 polymorphisms with susceptibility to unexplained recurrent pregnancy loss (RPL) among Iranian women from south of Iran. 176 women with unexplained RPL and 173 healthy postmenopausal controls were enrolled in this case-control study. Genotyping of the polymorphisms rs10954213 and rs3757385 was carried out using touchdown tetra-primer amplification refractory mutation system-polymerase chain reaction (T-ARMS PCR), and polymorphism rs41298401 was typed using PCR-restriction fragment length polymorphism (PCR-RFLP). Genotype frequencies were significantly different between RPL cases and controls regarding AG heterozygote genotype of rs10954213, GT genotype of rs3757385, and GG genotype of rs41298401. In addition, allele variants (G for rs10954213, T for rs3757385, and G for rs41298401) showed protective role against RPL, while GG haplotype of two first variants was shown to be a susceptibility factor for the disease. These data provide the first evidence, to our knowledge, of the protective role of the studied IRF5 gene polymorphisms against unexplained RPL among Iranian women from south of Iran.

  11. Identification of distal silencing elements in the murine interferon-A11 gene promoter.

    PubMed

    Roffet, P; Lopez, S; Navarro, S; Bandu, M T; Coulombel, C; Vignal, M; Doly, J; Vodjdani, G

    1996-08-01

    The murine interferon-A11 (Mu IFN-A11) gene is a member of the IFN-A multigenic family. In mouse L929 cells, the weak response of the gene's promoter to viral induction is due to a combination of both a point mutation in the virus responsive element (VRE) and the presence of negatively regulating sequences surrounding the VRE. In the distal part of the promoter, the negatively acting E1E2 sequence was delimited. This sequence displays an inhibitory effect in either orientation or position on the inducibility of a virus-responsive heterologous promoter. It selectively represses VRE-dependent transcription but is not able to reduce the transcriptional activity of a VRE-lacking promoter. In a transient transfection assay, an E1E2-containing DNA competitor was able to derepress the native Mu IFN-A11 promoter. Specific nuclear factors bind to this sequence; thus the binding of trans-regulators participates in the repression of the Mu IFN-A11 gene. The E1E2 sequence contains an IFN regulatory factor (IRF)-binding site. Recombinant IRF2 binds this sequence and anti-IRF2 antibodies supershift a major complex formed with nuclear extracts. The protein composing the complex is 50 kDa in size, indicating the presence of IRF2 or antigenically related proteins in the complex. The Mu IFN-A11 gene is the first example within the murine IFN-A family, in which a distal promoter element has been identified that can negatively modulate the transcriptional response to viral induction.

  12. Effects of interferon-gamma and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide-induced degradation of iron regulatory protein 2.

    PubMed

    Kim, S; Ponka, P

    2000-03-03

    Iron regulatory proteins (IRP-1 and IRP-2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements, which are located in the 3'-untranslated region and the 5'-untranslated region of their respective mRNAs. Cellular iron levels affect binding of IRPs to iron-responsive elements and consequently expression of TfR and ferritin. Moreover, NO(*), a redox species of nitric oxide that interacts primarily with iron, can activate IRP-1 RNA binding activity resulting in an increase in TfR mRNA levels. Recently we found that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA binding of IRP-2 followed by IRP-2 degradation, and these changes were associated with a decrease in TfR mRNA levels (Kim, S., and Ponka, P. (1999) J. Biol. Chem. 274, 33035-33042). In this study, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP-1 binding activity, whereas RNA binding of IRP-2 decreased and was followed by a degradation of this protein. Moreover, the decrease of IRP-2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. Furthermore, LPS/IFN-gamma-stimulated RAW 264.7 cells showed increased rates of ferritin synthesis. These results suggest that NO(+)-mediated degradation of IRP-2 plays a major role in iron metabolism during inflammation.

  13. Patterns of Positive Selection of the Myogenic Regulatory Factor Gene Family in Vertebrates

    PubMed Central

    Zhao, Xiao; Yu, Qi; Huang, Ling; Liu, Qing-Xin

    2014-01-01

    The functional divergence of transcriptional factors is critical in the evolution of transcriptional regulation. However, the mechanism of functional divergence among these factors remains unclear. Here, we performed an evolutionary analysis for positive selection in members of the myogenic regulatory factor (MRF) gene family of vertebrates. We selected 153 complete vertebrate MRF nucleotide sequences from our analyses, which revealed substantial evidence of positive selection. Here, we show that sites under positive selection were more frequently detected and identified from the genes encoding the myogenic differentiation factors (MyoG and Myf6) than the genes encoding myogenic determination factors (Myf5 and MyoD). Additionally, the functional divergence within the myogenic determination factors or differentiation factors was also under positive selection pressure. The positive selection sites were more frequently detected from MyoG and MyoD than Myf6 and Myf5, respectively. Amino acid residues under positive selection were identified mainly in their transcription activation domains and on the surface of protein three-dimensional structures. These data suggest that the functional gain and divergence of myogenic regulatory factors were driven by distinct positive selection of their transcription activation domains, whereas the function of the DNA binding domains was conserved in evolution. Our study evaluated the mechanism of functional divergence of the transcriptional regulation factors within a family, whereby the functions of their transcription activation domains diverged under positive selection during evolution. PMID:24651579

  14. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.

    PubMed

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice

  15. How Does Vaccinia Virus Interfere With Interferon?

    PubMed

    Smith, Geoffrey L; Talbot-Cooper, Callum; Lu, Yongxu

    2018-01-01

    Interferons (IFNs) are secreted glycoproteins that are produced by cells in response to virus infection and other stimuli and induce an antiviral state in cells bearing IFN receptors. In this way, IFNs restrict virus replication and spread before an adaptive immune response is developed. Viruses are very sensitive to the effects of IFNs and consequently have evolved many strategies to interfere with interferon. This is particularly well illustrated by poxviruses, which have large dsDNA genomes and encode hundreds of proteins. Vaccinia virus is the prototypic poxvirus and expresses many proteins that interfere with IFN and are considered in this review. These proteins act either inside or outside the cell and within the cytoplasm or nucleus. They function by restricting the production of IFN by blocking the signaling pathways leading to transcription of IFN genes, stopping IFNs binding to their receptors, blocking IFN-induced signal transduction leading to expression of interferon-stimulated genes (ISGs), or inhibiting the antiviral activity of ISG products. © 2018 Elsevier Inc. All rights reserved.

  16. pol-miR-731, a teleost miRNA upregulated by megalocytivirus, negatively regulates virus-induced type I interferon response, apoptosis, and cell cycle arrest

    PubMed Central

    Zhang, Bao-cun; Zhou, Ze-jun; Sun, Li

    2016-01-01

    Megalocytivirus is a DNA virus that is highly infectious in a wide variety of marine and freshwater fish, including Japanese flounder (Paralichthys olivaceus), a flatfish that is farmed worldwide. However, the infection mechanism of megalocytivirus remains largely unknown. In this study, we investigated the function of a flounder microRNA, pol-miR-731, in virus-host interaction. We found that pol-miR-731 was induced in expression by megalocytivirus and promoted viral replication at the early infection stage. In vivo and in vitro studies revealed that pol-miR-731 (i) specifically suppresses the expression of interferon regulatory factor 7 (IRF7) and cellular tumor antigen p53 in a manner that depended on the integrity of the pol-miR-731 complementary sequences in the 3′ untranslated regions of IRF7 and p53, (ii) disrupts megalocytivirus-induced Type I interferon response through IRF7, (iii) inhibits megalocytivirus-induced splenocyte apoptosis and cell cycle arrest through p53. Furthermore, overexpression of IRF7 and p53 abolished both the inhibitory effects of pol-miR-731 on these biological processes and its stimulatory effect on viral replication. These results disclosed a novel evasion mechanism of megalocytivirus mediated by a host miRNA. This study also provides the first evidence that a virus-induced host miRNA can facilitate viral infection by simultaneously suppressing several antiviral pathways. PMID:27311682

  17. Uncovering transcription factor and microRNA risk regulatory pathways associated with osteoarthritis by network analysis.

    PubMed

    Song, Zhenhua; Zhang, Chi; He, Lingxiao; Sui, Yanfang; Lin, Xiafei; Pan, Jingjing

    2018-06-12

    Osteoarthritis (OA) is the most common form of joint disease. The development of inflammation have been considered to play a key role during the progression of OA. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, deciphering these risk regulatory pathways is critical for elucidating the mechanisms underlying OA. We constructed an OA-specific regulatory network by integrating comprehensive curated transcription and post-transcriptional resource involving transcription factor (TF) and microRNA (miRNA). To deepen our understanding of underlying molecular mechanisms of OA, we developed an integrated systems approach to identify OA-specific risk regulatory pathways. In this study, we identified 89 significantly differentially expressed genes between normal and inflamed areas of OA patients. We found the OA-specific regulatory network was a standard scale-free network with small-world properties. It significant enriched many immune response-related functions including leukocyte differentiation, myeloid differentiation and T cell activation. Finally, 141 risk regulatory pathways were identified based on OA-specific regulatory network, which contains some known regulator of OA. The risk regulatory pathways may provide clues for the etiology of OA and be a potential resource for the discovery of novel OA-associated disease genes. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Interferon-γ differentially modulates the impact of tumor necrosis factor-α on human endometrial stromal cells.

    PubMed

    Spratte, Julia; Oemus, Anne; Zygmunt, Marek; Fluhr, Herbert

    2015-09-01

    The pro-inflammatory T helper (Th)-1 cytokines, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), are immunological factors relevant at the feto-maternal interface and involved in the pathophysiology of implantation disorders. The synergistic action of the two cytokines has been described with regard to apoptotic cell death and inflammatory responses in different cell types, but little is known regarding the human endometrium. Therefore, we examined the interaction of TNF-α and IFN-γ in human endometrial stromal cells (ESCs). ESCs were isolated from specimens obtained during hysterectomy and decidualized in vitro. Cells were incubated with TNF-α, IFN-γ or signaling-inhibitor. Insulin-like growth factor binding protein (IGFBP)-1, prolactin (PRL), leukemia inhibitory factor (LIF), interleukin (IL)-6, IL-8, regulated on activation normal T-cell expressed and secreted protein (RANTES) and monocyte chemotactic protein (MCP)-1 were measured using ELISA and real-time RT-PCR. Nuclear factor of transcription (NF)-κB and its inhibitor (IκBα) were analyzed by in-cell western assay and transcription factor assay. TNF-α inhibited and IFN-γ did not affect the decidualization of ESCs. In contrast, IFN-gamma differentially modulated the stimulating effect of TNF-alpha on cytokines by enhancing IL-6, RANTES and MCP-1 and attenuating LIF mRNA expression. These effects were time- and dose-dependent. IFN-γ had no impact on the initial activation of NF-κB signaling. Histone-deacetylase activity was involved in the modulating effect of IFN-γ on RANTES secretion. These observations showed a distinct pattern of interaction of the Th-1 cytokines, TNF-α and IFN-γ in the human endometrium, which could play an important role in the pathophysiology of implantation disorders. Copyright © 2015 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z

  19. Various heterologous cells exhibit interferon induced transfer of viral resistance.

    PubMed

    Hughes, T K; Blalock, J E; Baron, S

    1978-01-01

    Previously it was shown that cocultivation of mouse L and human WISH or baby hamster kidney cells in the presence of mouse interferon resulted in decreased viral yield from both cell species. We now show that this phenomenon also occurs when rabbit kidney and human WISH cells, with their corresponding interferons, are cocultivated with human WISH and baby hamster kidney cells, respectively. This finding increases the number of donor cell types to three. The related finding that monkey VERO and chick embryo cells can be recipients of transferred resistance expands the number of heterologous recipient cell species capable of receiving transferred resistence to five. Not all cell types tested have been shown to function in this transfer system. The fact that VERO cells, which do not produce interferon, are capable of receiving transferred resistence is significant because it indicates that the mechanism of transfer does not involve production or interferon by the recipient cells.

  20. Interferon alpha for the adjuvant treatment of cutaneous melanoma.

    PubMed

    Mocellin, Simone; Lens, Marko B; Pasquali, Sandro; Pilati, Pierluigi; Chiarion Sileni, Vanna

    2013-06-18

    Interferon alpha is the only agent approved for the postoperative adjuvant treatment of high-risk cutaneous melanoma. However, the survival advantage associated with this treatment is unclear, especially in terms of overall survival. Thus, adjuvant interferon is not universally considered a gold standard treatment by all oncologists. To assess the disease-free survival and overall survival effects of interferon alpha as adjuvant treatment for people with high-risk cutaneous melanoma. We searched the following databases up to August 2012: the Cochrane Skin Group Specialised Register, CENTRAL in The Cochrane Library (2012, issue 8), MEDLINE (from 2005), EMBASE (from 2010), AMED (from 1985), and LILACS (from 1982). We also searched trials databases in 2011, and proceedings of the ASCO annual meeting from 2000 to 2011. We checked the reference lists of selected articles for further references to relevant trials. We included only randomised controlled trials (RCTs) comparing interferon alpha to observation (or any other treatment) for the postoperative (adjuvant) treatment of patients with high-risk skin melanoma, that is, people with regional lymph node metastasis (American Joint Committee on Cancer (AJCC) TNM (tumour, lymph node, metastasis) stage III) undergoing radical lymph node dissection, or people without nodal disease but with primary tumour thickness greater than 1 mm (AJCC TNM stage II). Two authors extracted data, and a third author independently verified the extracted data. The main outcome measure was the hazard ratio (HR), which is the ratio of the risk of the event occurring in the treatment arm (adjuvant interferon) compared to the control arm (no adjuvant interferon). The survival data were either entered directly into Review Manager (RevMan) or extrapolated from Kaplan-Meier plots and then entered into RevMan. Based on the presence of between-study heterogeneity, we applied a fixed-effect or random-effects model for calculating the pooled estimates

  1. Evolution of DNA-Binding Sites of a Floral Master Regulatory Transcription Factor

    PubMed Central

    Muiño, Jose M.; de Bruijn, Suzanne; Pajoro, Alice; Geuten, Koen; Vingron, Martin; Angenent, Gerco C.; Kaufmann, Kerstin

    2016-01-01

    Flower development is controlled by the action of key regulatory transcription factors of the MADS-domain family. The function of these factors appears to be highly conserved among species based on mutant phenotypes. However, the conservation of their downstream processes is much less well understood, mostly because the evolutionary turnover and variation of their DNA-binding sites (BSs) among plant species have not yet been experimentally determined. Here, we performed comparative ChIP (chromatin immunoprecipitation)-seq experiments of the MADS-domain transcription factor SEPALLATA3 (SEP3) in two closely related Arabidopsis species: Arabidopsis thaliana and A. lyrata which have very similar floral organ morphology. We found that BS conservation is associated with DNA sequence conservation, the presence of the CArG-box BS motif and on the relative position of the BS to its potential target gene. Differences in genome size and structure can explain that SEP3 BSs in A. lyrata can be located more distantly to their potential target genes than their counterparts in A. thaliana. In A. lyrata, we identified transposition as a mechanism to generate novel SEP3 binding locations in the genome. Comparative gene expression analysis shows that the loss/gain of BSs is associated with a change in gene expression. In summary, this study investigates the evolutionary dynamics of DNA BSs of a floral key-regulatory transcription factor and explores factors affecting this phenomenon. PMID:26429922

  2. An integrated approach to characterize transcription factor and microRNA regulatory networks involved in Schwann cell response to peripheral nerve injury

    PubMed Central

    2013-01-01

    Background The regenerative response of Schwann cells after peripheral nerve injury is a critical process directly related to the pathophysiology of a number of neurodegenerative diseases. This SC injury response is dependent on an intricate gene regulatory program coordinated by a number of transcription factors and microRNAs, but the interactions among them remain largely unknown. Uncovering the transcriptional and post-transcriptional regulatory networks governing the Schwann cell injury response is a key step towards a better understanding of Schwann cell biology and may help develop novel therapies for related diseases. Performing such comprehensive network analysis requires systematic bioinformatics methods to integrate multiple genomic datasets. Results In this study we present a computational pipeline to infer transcription factor and microRNA regulatory networks. Our approach combined mRNA and microRNA expression profiling data, ChIP-Seq data of transcription factors, and computational transcription factor and microRNA target prediction. Using mRNA and microRNA expression data collected in a Schwann cell injury model, we constructed a regulatory network and studied regulatory pathways involved in Schwann cell response to injury. Furthermore, we analyzed network motifs and obtained insights on cooperative regulation of transcription factors and microRNAs in Schwann cell injury recovery. Conclusions This work demonstrates a systematic method for gene regulatory network inference that may be used to gain new information on gene regulation by transcription factors and microRNAs. PMID:23387820

  3. Treatment of inflammatory airway disease in young standardbreds with interferon alpha

    PubMed Central

    2004-01-01

    Abstract The effect of oral treatment with natural or recombinant human interferon alpha (HIA) on inflammatory airway disease in young standardbreds was assessed in a double-blind, randomized clinical trial. A total of 34 horses with nasal discharge, excess mucus in the trachea, and a persistent cough of at least 2 weeks’ duration that interfered with training completed the trial. Horses were rested for 1 week and received oral treatment with either a saline placebo, recombinant human interferon alpha (rHIA; 90 U/horse/day), or natural human interferon alpha (nHIA: 50 U/horse/day) for 5 days. There was a significant decline in nasal discharge and cough scores in all groups and the apparent response rate was similar. However, significantly fewer horses relapsed within 2 weeks once treatment was ceased when interferon rather than placebo was used (P = 0.012). Seventeen of 22 horses treated with rHIA or nHIA were cough-free 4 weeks after treatment, compared with only 4 of 12 after treatment with the placebo. Treatment with oral interferon is a useful adjunct to rest in standardbreds with inflammatory airway disease. PMID:15317391

  4. Possible prevention of chronic hepatitis B by early interferon therapy.

    PubMed

    Trépo, C; Chemin, I; Petit, M A; Chossegros, P; Zoulim, F; Chevallier, P; Sepetjan, M

    1990-01-01

    A study is currently underway to investigate the efficacy of interferon therapy in patients with prolonged (greater than or equal to 10 weeks but less than 6 months) hepatitis B infection. To date, a total of 15 patients have been enrolled in the study and randomly assigned to receive either placebo for 24 weeks (n = 8) or interferon 5 million units subcutaneously 3 times a week for 24 weeks (n = 7), with follow up for 1 year. Thirteen patients have completed the follow-up period: seven patients in the placebo group and six in the treated group. Five of the six treated patients completely eradicated the infection during interferon therapy, with clearance of hepatitis B e and surface antigens, and seroconversion to antibody positivity in each case. Two of the eight placebo patients seroconverted during the placebo period. Clearance of hepatitis B e antigen was associated with a sudden rise in serum transaminase levels and an exacerbation of hepatitis, a phenomenon that has also been reported in chronic hepatitis B patients who have responded well to interferon therapy. Therapy was well tolerated in all cases. Our results suggest that interferon treatment of patients with prolonged hepatitis B infection may prevent progression to chronicity. If confirmed by further study, they should trigger more vigilant screening for patients with raised serum transaminase levels and viral markers of hepatitis B infection.

  5. Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity

    USDA-ARS?s Scientific Manuscript database

    Interferons (IFNs) are key cytokines identified in vertebrates, and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronle...

  6. The effects of interferon-alpha/beta in a model of rat heart transplantation

    NASA Technical Reports Server (NTRS)

    Slater, A. D.; Klein, J. B.; Sonnenfeld, G.; Ogden, L. L. 2nd; Gray, L. A. Jr

    1992-01-01

    Interferons have multiple immunologic effects. One such effect is the activation of expression of cell surface antigens. Interferon alpha/beta enhance expression of class I but not class II histocompatibility antigens. Contradictory information has been published regarding the effect of interferon-alpha/beta administration in patients with kidney transplantation. In a model of rat heart transplantation we demonstrated that administration of interferon-alpha/beta accelerated rejection in a dose-dependent fashion in the absence of maintenance cyclosporine. Animals treated with maintenance cyclosporine had evidence of increased rejection at 20 days that was resolved completely at 45 days with cyclosporine alone.

  7. Methamphetamine enhances Hepatitis C virus replication in human hepatocytes

    PubMed Central

    Ye, L.; Peng, J. S.; Wang, X.; Wang, Y. J.; Luo, G. X.; Ho, W. Z.

    2009-01-01

    SUMMARY Very little is known about the interactions between hepatitis C virus (HCV) and methamphetamine, which is a highly abused psychostimulant and a known risk factor for human immunodeficiency virus (HIV)/HCV infection. This study examined whether methamphetamine has the ability to inhibit innate immunity in the host cells, facilitating HCV replication in human hepatocytes. Methamphetamine inhibited intracellular interferon alpha expression in human hepatocytes, which was associated with the increase in HCV replication. In addition, methamphetamine also compromised the anti-HCV effect of recombinant interferon alpha. Further investigation of mechanism(s) responsible for the methamphetamine action revealed that methamphetamine was able to inhibit the expression of the signal transducer and activator of transcription 1, a key modulator in interferon-mediated immune and biological responses. Methamphetamine also down-regulated the expression of interferon regulatory factor-5, a crucial transcriptional factor that activates the interferon pathway. These in vitro findings that methamphetamine compromises interferon alpha-mediated innate immunity against HCV infection indicate that methamphetamine may have a cofactor role in the immunopathogenesis of HCV disease. PMID:18307590

  8. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells.

    PubMed Central

    Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H

    1987-01-01

    One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978

  9. Type I interferons modulate methotrexate resistance in gestational trophoblastic neoplasia.

    PubMed

    Elias, Kevin M; Harvey, Richard A; Hasselblatt, Kathleen T; Seckl, Michael J; Berkowitz, Ross S

    2017-06-01

    Resistance to methotrexate is a leading clinical problem in gestational trophoblastic neoplasia (GTN), but there are limited laboratory models for this condition. We created isogenic trophoblastic cell lines resistant to methotrexate and compared these to the parent cell lines using gene expression microarrays and qRT-PCR followed by mechanistic studies using recombinant cytokines, pathway inhibitors, and patient sera. Gene expression microarrays and focused analysis by qRT-PCR revealed methotrexate led to type I interferon upregulation, in particular interferon alpha 2 (IFNA2), and methotrexate resistance was associated with chronic low level increases in type I interferon expression. Recombinant IFNA2 imparted chemosensitive choriocarcinoma cells with partial resistance to methotrexate, while chemoresistant choriocarcinoma cells were uniquely sensitive to fludarabine, a STAT1 inhibitor. In pre-treatment patient sera, IFNA2 levels correlated with subsequent resistance to methotrexate chemotherapy. Methotrexate resistance is influenced by type I interferon signaling with prognostic and therapeutic implications for treating women with GTN. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Azathioprine versus Beta Interferons for Relapsing-Remitting Multiple Sclerosis: A Multicentre Randomized Non-Inferiority Trial

    PubMed Central

    Massacesi, Luca; Tramacere, Irene; Amoroso, Salvatore; Battaglia, Mario A.; Benedetti, Maria Donata; Filippini, Graziella; La Mantia, Loredana; Repice, Anna; Solari, Alessandra; Tedeschi, Gioacchino; Milanese, Clara

    2014-01-01

    For almost three decades in many countries azathioprine has been used to treat relapsing-remitting multiple sclerosis. However its efficacy was usually considered marginal and following approval of β interferons for this indication it was no longer recommended as first line treatment, even if presently no conclusive direct β interferon-azathioprine comparison exists. To compare azathioprine efficacy versus the currently available β interferons in relapsing-remitting multiple sclerosis, a multicenter, randomized, controlled, single-blinded, non-inferiority trial was conducted in 30 Italian multiple sclerosis centers. Eligible patients (relapsing-remitting course; ≥2 relapses in the last 2 years) were randomly assigned to azathioprine or β interferons. The primary outcome was annualized relapse rate ratio (RR) over 2 years. Key secondary outcome was number of new brain MRI lesions. Patients (n = 150) were randomized in 2 groups (77 azathioprine, 73 β interferons). At 2 years, clinical evaluation was completed in 127 patients (62 azathioprine, 65 β interferons). Annualized relapse rate was 0.26 (95% Confidence Interval, CI, 0.19–0.37) in the azathioprine and 0.39 (95% CI 0.30–0.51) in the interferon group. Non-inferiority analysis showed that azathioprine was at least as effective as β interferons (relapse RRAZA/IFN 0.67, one-sided 95% CI 0.96; p<0.01). MRI outcomes were analyzed in 97 patients (50 azathioprine and 47 β interferons). Annualized new T2 lesion rate was 0.76 (95% CI 0.61–0.95) in the azathioprine and 0.69 (95% CI 0.54–0.88) in the interferon group. Treatment discontinuations due to adverse events were higher (20.3% vs. 7.8%, p = 0.03) in the azathioprine than in the interferon group, and concentrated within the first months of treatment, whereas in the interferon group discontinuations occurred mainly during the second year. The results of this study indicate that efficacy of azathioprine is not inferior to that of

  11. [Characterization and comparison of interferon reference standards using UPLC-MS].

    PubMed

    Tao, Lei; Pei, De-ning; Han, Chun-mei; Chen, Wei; Rao, Chun-ming; Wang, Jun-zhi

    2015-01-01

    The study aims to characterize and compare interferon reference standards from 5 manufacturers. By testing molecular mass and trypsin-digested peptide mass mapping, the amino acid sequence was verified and post-translational modifications such as disulfide bond were identified. Results show that the molecular mass and amino acid sequence were consistent with theory; the disulfide bonds of 4 lots of interferon were Cys1-Cys98/Cys29-Cys138, 1 lot was Cys29-Cys139/Cys86-Cys99; N-terminal "+Met", acetyl N-terminal and Met oxidation were identified in part of the sample. UPLC-MS can be used to characterize and compare interferon reference standards from different manufacturers.

  12. Phleboviruses and the Type I Interferon Response

    PubMed Central

    Wuerth, Jennifer Deborah; Weber, Friedemann

    2016-01-01

    The genus Phlebovirus of the family Bunyaviridae contains a number of emerging virus species which pose a threat to both human and animal health. Most prominent members include Rift Valley fever virus (RVFV), sandfly fever Naples virus (SFNV), sandfly fever Sicilian virus (SFSV), Toscana virus (TOSV), Punta Toro virus (PTV), and the two new members severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV). The nonstructural protein NSs is well established as the main phleboviral virulence factor in the mammalian host. NSs acts as antagonist of the antiviral type I interferon (IFN) system. Recent progress in the elucidation of the molecular functions of a growing list of NSs proteins highlights the astonishing variety of strategies employed by phleboviruses to evade the IFN system. PMID:27338447

  13. The evolution of the major hepatitis C genotypes correlates with clinical response to interferon therapy.

    PubMed

    Pang, Phillip S; Planet, Paul J; Glenn, Jeffrey S

    2009-08-11

    Patients chronically infected with hepatitis C virus (HCV) require significantly different durations of therapy and achieve substantially different sustained virologic response rates to interferon-based therapies, depending on the HCV genotype with which they are infected. There currently exists no systematic framework that explains these genotype-specific response rates. Since humans are the only known natural hosts for HCV-a virus that is at least hundreds of years old-one possibility is that over the time frame of this relationship, HCV accumulated adaptive mutations that confer increasing resistance to the human immune system. Given that interferon therapy functions by triggering an immune response, we hypothesized that clinical response rates are a reflection of viral evolutionary adaptations to the immune system. We have performed the first phylogenetic analysis to include all available full-length HCV genomic sequences (n = 345). This resulted in a new cladogram of HCV. This tree establishes for the first time the relative evolutionary ages of the major HCV genotypes. The outcome data from prospective clinical trials that studied interferon and ribavirin therapy was then mapped onto this new tree. This mapping revealed a correlation between genotype-specific responses to therapy and respective genotype age. This correlation allows us to predict that genotypes 5 and 6, for which there currently are no published prospective trials, will likely have intermediate response rates, similar to genotype 3. Ancestral protein sequence reconstruction was also performed, which identified the HCV proteins E2 and NS5A as potential determinants of genotype-specific clinical outcome. Biochemical studies have independently identified these same two proteins as having genotype-specific abilities to inhibit the innate immune factor double-stranded RNA-dependent protein kinase (PKR). An evolutionary analysis of all available HCV genomes supports the hypothesis that immune

  14. Npro of classical swine fever virus contributes to pathogenicity in pigs by preventing type I interferon induction at local replication sites.

    PubMed

    Tamura, Tomokazu; Nagashima, Naofumi; Ruggli, Nicolas; Summerfield, Artur; Kida, Hiroshi; Sakoda, Yoshihiro

    2014-04-17

    Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of pigs. The viral protein Npro of CSFV interferes with alpha- and beta-interferon (IFN-α/β) induction by promoting the degradation of interferon regulatory factor 3 (IRF3). During the establishment of the live attenuated CSF vaccine strain GPE-, Npro acquired a mutation that abolished its capacity to bind and degrade IRF3, rendering it unable to prevent IFN-α/β induction. In a previous study, we showed that the GPE- vaccine virus became pathogenic after forced serial passages in pigs, which was attributed to the amino acid substitutions T830A in the viral proteins E2 and V2475A and A2563V in NS4B. Interestingly, during the re-adaptation of the GPE- vaccine virus in pigs, the IRF3-degrading function of Npro was not recovered. Therefore, we examined whether restoring the ability of Npro to block IFN-α/β induction of both the avirulent and moderately virulent GPE--derived virus would enhance pathogenicity in pigs. Viruses carrying the N136D substitution in Npro regained the ability to degrade IRF3 and suppress IFN-α/β induction in vitro. In pigs, functional Npro significantly reduced the local IFN-α mRNA expression in lymphoid organs while it increased quantities of IFN-α/β in the circulation, and enhanced pathogenicity of the moderately virulent virus. In conclusion, the present study demonstrates that functional Npro influences the innate immune response at local sites of virus replication in pigs and contributes to pathogenicity of CSFV in synergy with viral replication.

  15. Characterization of a spliced variant of human IRF-3 promoter and its regulation by the transcription factor Sp1.

    PubMed

    Ren, Wei; Zhu, Liang-Hua; Xu, Hua-Guo; Jin, Rui; Zhou, Guo-Ping

    2012-06-01

    Interferon regulatory factor 3 (IRF-3), an essential transcriptional regulator of the interferon genes, plays an important role in host defense against viral and microbial infection as well as in cell growth regulation. Promoter plays a crucial role in gene transcription. We have reported the characterization of the wide type of human IRF-3 promoter, but the characterization of the spliced variant of human IRF-3 Int2V1 promoter has not been systematically analyzed. To observe the spliced variant of human IRF-3 promoter, we have cloned the human IRF-3 gene promoter region containing 300 nucleotides upstream the transcription start site (TSS). Transient transfection of 5' deleted promoter-reporter constructs and luciferase assay illustrated the region -159/-100 relative to the TSS is sufficient for full promoter activity. This region contains GATA1 and specific protein-1 (Sp1) transcription factor binding sites. Interestingly, mutation of this Sp1 site reduced the promoter activity by 50%. However, overexpression of Sp1 increased the transcription activity by 2.4-fold. These results indicated that the spliced variant of human IRF-3 gene core promoter was located within the region -159/-100 relative to the TSS. Sp1 transcription factor upregulates the spliced variant of human IRF-3 gene promoter.

  16. A Regulatory Circuit Composed of a Transcription Factor, IscR, and a Regulatory RNA, RyhB, Controls Fe-S Cluster Delivery.

    PubMed

    Mandin, Pierre; Chareyre, Sylvia; Barras, Frédéric

    2016-09-20

    Fe-S clusters are cofactors conserved through all domains of life. Once assembled by dedicated ISC and/or SUF scaffolds, Fe-S clusters are conveyed to their apo-targets via A-type carrier proteins (ATCs). Escherichia coli possesses four such ATCs. ErpA is the only ATC essential under aerobiosis. Recent studies reported a possible regulation of the erpA mRNA by the small RNA (sRNA) RyhB, which controls the expression of many genes under iron starvation. Surprisingly, erpA has not been identified in recent transcriptomic analysis of the iron starvation response, thus bringing into question the actual physiological significance of the putative regulation of erpA by RyhB. Using an sRNA library, we show that among 26 sRNAs, only RyhB represses the expression of an erpA-lacZ translational fusion. We further demonstrate that this repression occurs during iron starvation. Using mutational analysis, we show that RyhB base pairs to the erpA mRNA, inducing its disappearance. In addition, IscR, the master regulator of Fe-S homeostasis, represses expression of erpA at the transcriptional level when iron is abundant, but depleting iron from the medium alleviates this repression. The conjunction of transcriptional derepression by IscR and posttranscriptional repression by RyhB under Fe-limiting conditions is best described as an incoherent regulatory circuit. This double regulation allows full expression of erpA at iron concentrations for which Fe-S biogenesis switches from the ISC to the SUF system. We further provide evidence that this regulatory circuit coordinates ATC usage to iron availability. Regulatory small RNAs (sRNAs) have emerged as major actors in the control of gene expression in the last few decades. Relatively little is known about how these regulators interact with classical transcription factors to coordinate genetic responses. We show here how an sRNA, RyhB, and a transcription factor, IscR, regulate expression of an essential gene, erpA, in the bacterium E

  17. Immunomodulatory intervention with Gamma interferon in mice with sepsis.

    PubMed

    Wang, Yu; Kong, Bing-Bing; Yang, Wen-Ping; Zhao, Xin; Zhang, Rong

    2017-09-15

    Sepsis-triggered immune paralysis including T-cell dysfunction increase susceptibility to infection. Gamma interferon (IFNg) exert beneficial effects in patients with sepsis. Herein, we speculated that IFNg may attenuate T-cell dysfunction induced by sepsis, although the mechanisms remain elusive. To test this hypothesis, we used a model based on cecal ligation and puncture (CLP) to induce sepsis in mice. Male C57BL/6 mice were pretreated with recombinant human IFNg (0.01μg/g of body weight) before CLP. The immunophenotyping of cell surface receptor expression, and regulatory T cells (CD4+CD25+Foxp3+) were quantified by flow cytometry. Immunohistochemical staining was performed to evaluate the loss of immune effector cells. Formation of IFNg and interleukin 4 (IL-4) in the spleen and plasma levels of TNF-α, IL-6, high-mobility group box 1 (HMGB1) were determined using enzyme-linked immunosorbent assay. IFNg markedly inhibited the reduction in cytokine secretion from lipopolysaccharide (LPS)-stimulated splenocytes. IFNg-treated mices had significantly decreased percentages of programmed cell death 1 (PD-1) receptors, increased the percentages of positive costimulatory receptor CD28 on CD4 T cells expressing. IFNg markedly reduced T-cell apoptosis through upregulating the expression of Bcl-2. CLP-induced formation of regulatory T cells in the spleen was abolished in IFNg -treated mices. Moreover, IFNg treatment reduced plasma levels of TNF-α, IL-6, HMGB1. IFNg can be a powerful regulator of immune function under sepsis conditions. Therefore, targeted immune-enhancement with IFNg may be a valid therapeutic approach in sepsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Interferon-inducible effector mechanisms in cell-autonomous immunity

    PubMed Central

    MacMicking, John D.

    2014-01-01

    Interferons (IFNs) induce the expression of hundreds of genes as part of an elaborate antimicrobial programme designed to combat infection in all nucleated cells — a process termed cell-autonomous immunity. As described in this Review, recent genomic and subgenomic analyses have begun to assign functional properties to novel IFN-inducible effector proteins that restrict bacteria, protozoa and viruses in different subcellular compartments and at different stages of the pathogen life cycle. Several newly described host defence factors also participate in canonical oxidative and autophagic pathways by spatially coordinating their activities to enhance microbial killing. Together, these IFN-induced effector networks help to confer vertebrate host resistance to a vast and complex microbial world. PMID:22531325

  19. Interferon Beta-1a Intramuscular Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS, a disease in which ... interferon beta-1a intramuscular at around the same time of day on your injection days. Follow the ...

  20. Renal thrombotic microangiopathy caused by interferon beta-1a treatment for multiple sclerosis

    PubMed Central

    Mahe, Julien; Meurette, Aurélie; Moreau, Anne; Vercel, Caroline; Jolliet, Pascale

    2013-01-01

    Interferon beta-1a is available as an immunomodulating agent for relapsing forms of multiple sclerosis. Common side effects include flu-like symptoms, asthenia, anorexia, and administration site reaction. Kidney disorders are rarely reported. In this study we describe the case of a woman who has been undergoing treatment with interferon beta-1a for multiple sclerosis for 5 years. She developed a hemolytic-uremic syndrome with intravascular hemolysis in a context of severe hypertension. A kidney biopsy showed a thrombotic microangiopathy. This observation highlights an uncommon side effect of long-term interferon beta-1a therapy. Pathophysiological mechanisms leading to this complication might be explained by the antiangiogenic activity of interferon. PMID:23950639

  1. The Specificity of Innate Immune Responses Is Enforced by Repression of Interferon Response Elements by NF-κB p50

    PubMed Central

    Cheng, Christine S.; Feldman, Kristyn E.; Lee, James; Verma, Shilpi; Huang, De-Bin; Huynh, Kim; Chang, Mikyoung; Ponomarenko, Julia V.; Sun, Shao-Cong; Benedict, Chris A.; Ghosh, Gourisankar; Hoffmann, Alexander

    2011-01-01

    The specific binding of transcription factors to cognate sequence elements is thought to be critical for the generation of specific gene expression programs. Members of the nuclear factor κB (NF-κB) and interferon (IFN) regulatory factor (IRF) transcription factor families bind to the κB site and the IFN response element (IRE), respectively, of target genes, and they are activated in macrophages after exposure to pathogens. However, how these factors produce pathogen-specific inflammatory and immune responses remains poorly understood. Combining top-down and bottom-up systems biology approaches, we have identified the NF-κB p50 homodimer as a regulator of IRF responses. Unbiased genome-wide expression and biochemical and structural analyses revealed that the p50 homodimer repressed a subset of IFN-inducible genes through a previously uncharacterized subclass of guanine-rich IRE (G-IRE) sequences. Mathematical modeling predicted that the p50 homodimer might enforce the stimulus specificity of composite promoters. Indeed, the production of the antiviral regulator IFN-β was rendered stimulus-specific by the binding of the p50 homodimer to the G-IRE–containing IFNβ enhancer to suppress cytotoxic IFN signaling. Specifically, a deficiency in p50 resulted in the inappropriate production of IFN-β in response to bacterial DNA sensed by Toll-like receptor 9. This role for the NF-κB p50 homodimer in enforcing the specificity of the cellular response to pathogens by binding to a subset of IRE sequences alters our understanding of how the NF-κB and IRF signaling systems cooperate to regulate antimicrobial immunity. PMID:21343618

  2. Interaction of interferon alpha therapy with thyroid function tests in the management of hepatitis C: a case report.

    PubMed

    Gill, Gurmit; Bajwa, Hammad; Strouhal, Peter; Buch, Harit N

    2016-09-15

    Interferon alpha is a widely used therapeutic agent in the treatment of hepatitis C virus infection. Clinical thyroid disease is seen in nearly 15 % of patients receiving interferon alpha for hepatitis C virus infection. The mechanism of thyroid dysfunction with interferon alpha is either autoimmune or inflammatory. We report a case of young woman who developed biphasic thyroid dysfunction posing a diagnostic challenge, while receiving interferon alpha treatment for hepatitis C virus infection. A 29-year-old, Caucasian woman with type 1 diabetes and hepatitis C virus infection was referred with hyperthyroidism, while she was at 17 weeks of a planned 24-week course of interferon alpha therapy. A laboratory investigation revealed a thyroid stimulation hormone level of 0.005 mU/L (0.350-4.94), free thyroxine of 45.6 pmol/L (9.0-19.0) and free tri-iodothyronine of 12.6 pmol/L (2.6-5.7). She had a mild neutropenia and alanine aminotransferase at double the reference value. Her thyroid peroxidase antibody level was 497 ku/L (<5.6) and thyroid inhibitory factor 7 IU/L (>1.8 iu/l is positive). Thyroid scintigraphy with technetium99 scan confirmed a normal-sized thyroid gland with diffuse but normal overall uptake. A diagnosis of interferon alpha-triggered autoimmune hyperthyroidism as opposed to an inflammatory thyroiditis was made. She was offered radioactive iodine therapy, as thionamides were considered inappropriate in view of her liver disease and mild neutropenia. Due to our patient's personal circumstances, radioactive iodine therapy was delayed by 8 weeks and her thyrotoxic symptoms were controlled with beta-blockers alone. A repeat thyroid function test, 4 weeks post treatment with interferon alpha, indicated spontaneous conversion to hypothyroidism with a thyroid stimulation hormone level of 100 mU/L, free thyroxine of 5.2 pmol/L and free tri-iodothyronine of 1.7 pmol/L. She subsequently received levothyroxine for 4 months only and had remained euthyroid for the

  3. CDK9-Dependent Transcriptional Elongation in the Innate Interferon-Stimulated Gene Response to Respiratory Syncytial Virus Infection in Airway Epithelial Cells

    PubMed Central

    Tian, Bing; Zhao, Yingxin; Kalita, Mridul; Edeh, Chukwudi B.; Paessler, Slobodan; Casola, Antonella; Teng, Michael N.; Garofalo, Roberto P.

    2013-01-01

    Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections. During infection, the presence of double-stranded RNA (dsRNA) activates the interferon (IFN) regulatory factor 3 (IRF3) transcription factor, an event triggering expression of immediate early, IFN-stimulated genes (ISGs). We examine the role of transcriptional elongation in control of IRF3-dependent ISG expression. RSV infection induces ISG54, ISG56, and CIG5 gene expression in an IRF3-dependent manner demonstrated by IRF3 small interfering RNA (siRNA) silencing in both A549 epithelial cells and IRF3−/− MEFs. ISG expression was mediated by the recruitment of IRF3, CDK9, polymerase II (Pol II), and phospho-Ser2 carboxy-terminal domain (CTD) Pol II to the IFN-stimulated response element (ISRE) binding sites of the IRF3-dependent ISG promoters in native chromatin. We find that RSV infection enhances the activated fraction of cyclin-dependent kinase 9 (CDK9) by promoting its association with bromodomain 4 (BRD4) and disrupting its association with the inhibitory 7SK small nuclear RNA. The requirement of CDK9 activity for ISG expression was shown by siRNA-mediated silencing of CDK9 and by a selective CDK9 inhibitor in A549 cells. In contrast, RSV-induced beta interferon (IFN-β) expression is not influenced by CDK9 inhibition. Using transcript-selective quantitative real-time reverse transcription-PCR (Q-RT-PCR) assays for the ISG54 gene, we observed that RSV induces transition from short to fully spliced mRNA transcripts and that this transition is blocked by CDK9 inhibition in both A549 and primary human small airway epithelial cells. These data indicate that transcription elongation plays a major role in RSV-induced ISG expression and is mediated by IRF3-dependent recruitment of activated CDK9. CDK9 activity may be a target for immunomodulation in RSV-induced lung disease. PMID:23596302

  4. Interferon after surgery for women with advanced (Stage II-IV) epithelial ovarian cancer.

    PubMed

    Lawal, Aramide O; Musekiwa, Alfred; Grobler, Liesl

    2013-06-06

    Epithelial ovarian cancer (EOC) is a life-threatening disease. Most often women become symptomatic only in the advanced stages of the disease, increasing the difficulty of treatment. Whilst the disease responds well to surgery and chemotherapy, the relapse rate is high. New treatments to prevent disease recurrence or progression, prolong survival, and increase the quality of life are needed. To assess the effectiveness and safety of interferon after surgery in the treatment of advanced (stage II-IV) EOC. The Cochrane Gynaecological Cancer Review Group Specialized Register, Cochrane Central Register of Controlled Trials (CENTRAL) Issue 1, 2012, MEDLINE and EMBASE were searched to January 2012. Handsearching of conference proceedings was also undertaken. Reference lists of reviews and included trials were screened and experts in the field were contacted for additional trials. Clinical trials registers were searched for ongoing trials. Randomised controlled trials (RCTs) involving participants with advanced EOC that compared post-operative chemotherapy alone with post-operative interferon therapy in combination with chemotherapy or post-operative chemotherapy followed by interferon or observation alone Two review authors (AL and AM) independently screened the search results for relevant trials and extracted pre-specified information from each included trial. Data were managed using Review Manager 5.1. Hazard ratios (HR) were calculated for time-to-event outcomes and risk ratios (RR) for dichotomous outcomes, with corresponding 95% confidence intervals (CI). Five trials, including 1476 participants, were included in the review. Two trials compared interferon with observation alone and three trials compared interferon plus chemotherapy with chemotherapy alone. A meta-analysis of two trials involving 370 participants found no significant difference in both overall survival (HR 1.14, 95% CI 0.84 to 1.55) and progression free survival (HR 0.99, 95% CI 0.79 to 1.24) between

  5. Clinical trials in "emerging markets": regulatory considerations and other factors.

    PubMed

    Singh, Romi; Wang, Ouhong

    2013-11-01

    Clinical studies are being placed in emerging markets as part of global drug development programs to access large pool of eligible patients and to benefit from a cost effective structure. However, over the last few years, the definition of "emerging markets" is being revisited, especially from a regulatory perspective. For purposes of this article, countries outside US, EU and the traditional "western countries" are discussed. Multiple factors are considered for placement of clinical studies such as adherence to Good Clinical Practice (GCP), medical infrastructure & standard of care, number of eligible patients, etc. This article also discusses other quantitative factors such as country's GDP, patent applications, healthcare expenditure, healthcare infrastructure, corruption, innovation, etc. These different factors and indexes are correlated to the number of clinical studies ongoing in the "emerging markets". R&D, healthcare expenditure, technology infrastructure, transparency, and level of innovation, show a significant correlation with the number of clinical trials being conducted in these countries. This is the first analysis of its kind to evaluate and correlate the various other factors to the number of clinical studies in a country. © 2013.

  6. Interferon antagonist NSs of La Crosse virus triggers a DNA damage response-like degradation of transcribing RNA polymerase II.

    PubMed

    Verbruggen, Paul; Ruf, Marius; Blakqori, Gjon; Överby, Anna K; Heidemann, Martin; Eick, Dirk; Weber, Friedemann

    2011-02-04

    La Crosse encephalitis virus (LACV) is a mosquito-borne member of the negative-strand RNA virus family Bunyaviridae. We have previously shown that the virulence factor NSs of LACV is an efficient inhibitor of the antiviral type I interferon system. A recombinant virus unable to express NSs (rLACVdelNSs) strongly induced interferon transcription, whereas the corresponding wt virus (rLACV) suppressed it. Here, we show that interferon induction by rLACVdelNSs mainly occurs through the signaling pathway leading from the pattern recognition receptor RIG-I to the transcription factor IRF-3. NSs expressed by rLACV, however, acts downstream of IRF-3 by specifically blocking RNA polymerase II-dependent transcription. Further investigations revealed that NSs induces proteasomal degradation of the mammalian RNA polymerase II subunit RPB1. NSs thereby selectively targets RPB1 molecules of elongating RNA polymerase II complexes, the so-called IIo form. This phenotype has similarities to the cellular DNA damage response, and NSs was indeed found to transactivate the DNA damage response gene pak6. Moreover, NSs expressed by rLACV boosted serine 139 phosphorylation of histone H2A.X, one of the earliest cellular reactions to damaged DNA. However, other DNA damage response markers such as up-regulation and serine 15 phosphorylation of p53 or serine 1524 phosphorylation of BRCA1 were not triggered by LACV infection. Collectively, our data indicate that the strong suppression of interferon induction by LACV NSs is based on a shutdown of RNA polymerase II transcription and that NSs achieves this by exploiting parts of the cellular DNA damage response pathway to degrade IIo-borne RPB1 subunits.

  7. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis.

    PubMed

    Hauser, Stephen L; Bar-Or, Amit; Comi, Giancarlo; Giovannoni, Gavin; Hartung, Hans-Peter; Hemmer, Bernhard; Lublin, Fred; Montalban, Xavier; Rammohan, Kottil W; Selmaj, Krzysztof; Traboulsee, Anthony; Wolinsky, Jerry S; Arnold, Douglas L; Klingelschmitt, Gaelle; Masterman, Donna; Fontoura, Paulo; Belachew, Shibeshih; Chin, Peter; Mairon, Nicole; Garren, Hideki; Kappos, Ludwig

    2017-01-19

    B cells influence the pathogenesis of multiple sclerosis. Ocrelizumab is a humanized monoclonal antibody that selectively depletes CD20+ B cells. In two identical phase 3 trials, we randomly assigned 821 and 835 patients with relapsing multiple sclerosis to receive intravenous ocrelizumab at a dose of 600 mg every 24 weeks or subcutaneous interferon beta-1a at a dose of 44 μg three times weekly for 96 weeks. The primary end point was the annualized relapse rate. The annualized relapse rate was lower with ocrelizumab than with interferon beta-1a in trial 1 (0.16 vs. 0.29; 46% lower rate with ocrelizumab; P<0.001) and in trial 2 (0.16 vs. 0.29; 47% lower rate; P<0.001). In prespecified pooled analyses, the percentage of patients with disability progression confirmed at 12 weeks was significantly lower with ocrelizumab than with interferon beta-1a (9.1% vs. 13.6%; hazard ratio, 0.60; 95% confidence interval [CI], 0.45 to 0.81; P<0.001), as was the percentage of patients with disability progression confirmed at 24 weeks (6.9% vs. 10.5%; hazard ratio, 0.60; 95% CI, 0.43 to 0.84; P=0.003). The mean number of gadolinium-enhancing lesions per T 1 -weighted magnetic resonance scan was 0.02 with ocrelizumab versus 0.29 with interferon beta-1a in trial 1 (94% lower number of lesions with ocrelizumab, P<0.001) and 0.02 versus 0.42 in trial 2 (95% lower number of lesions, P<0.001). The change in the Multiple Sclerosis Functional Composite score (a composite measure of walking speed, upper-limb movements, and cognition; for this z score, negative values indicate worsening and positive values indicate improvement) significantly favored ocrelizumab over interferon beta-1a in trial 2 (0.28 vs. 0.17, P=0.004) but not in trial 1 (0.21 vs. 0.17, P=0.33). Infusion-related reactions occurred in 34.3% of the patients treated with ocrelizumab. Serious infection occurred in 1.3% of the patients treated with ocrelizumab and in 2.9% of those treated with interferon beta-1a. Neoplasms

  8. Toward an Orofacial Gene Regulatory Network

    PubMed Central

    Kousa, Youssef A.; Schutte, Brian C.

    2015-01-01

    Orofacial clefting is a common birth defect with significant morbidity. A panoply of candidate genes have been discovered through synergy of animal models and human genetics. Among these, variants in Interferon Regulatory Factor 6 (IRF6) cause syndromic orofacial clefting and contribute risk toward isolated cleft lip and palate (1/700 live births). Rare variants in IRF6 can lead to Van der Woude Syndrome (1/35,000 live births) and Popliteal Pterygium Syndrome (1/300,000 live births). Furthermore, IRF6 regulates GRHL3 and rare variants in this downstream target can also lead to Van der Woude Syndrome. In addition, a common variant (rs642961) in the IRF6 locus is found in 30% of the world’s population and contributes risk for isolated orofacial clefting. Biochemical studies revealed that rs642961 abrogates one of four AP-2alpha binding sites. Like IRF6 and GRHL3, rare variants in TFAP2A can also lead to syndromic orofacial clefting with lip pits (Branchio-oculo-facial Syndrome). The literature suggests that AP-2alpha, IRF6 and GRHL3 are part of a pathway that is essential for lip and palate development. In addition to updating the pathways, players and pursuits, this review will highlight some of the current questions in the study of orofacial clefting. PMID:26332872

  9. Rhabdomyolysis following interferon-beta treatment in a patient with multiple sclerosis - A case report.

    PubMed

    Dalbjerg, Sara Maria; Tsakiri, Anna; Frederiksen, Jette Lautrup

    2016-07-01

    Multiple sclerosis is an inflammatory disease of the central nervous system for which there is currently no cure. Interferon-beta-1-alpha is worldwide one of the most widely used treatments in multiple sclerosis. To our knowledge there is one previous reported case of rhabdomyolysis associated with Interferon-beta treatment. We describe a 30 year old man with relapsing remitting multiple sclerosis who developed rhabdomyolysis and increased creatine kinase following Interferon-beta-1-alpha therapy. After the medication was discontinued, the patient rapidly improved. Clinicians should be aware of the possibility of rhabdomyolysis occurring during Interferon-beta-1-alpha therapy. In cases where patients complain of severe myalgia, and in particular if weakness is reported, creatine kinase activity should be measured to prevent irreversible rhabdomyolysis during Interferon-beta-1-alpha therapy in patients with multiple sclerosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Monitoring acute phase proteins in retrovirus infected cats undergoing feline interferon-ω therapy.

    PubMed

    Leal, R O; Gil, S; Sepúlveda, N; McGahie, D; Duarte, A; Niza, M M R E; Tavares, L

    2014-01-01

    Recombinant feline interferon-ω therapy is an immunomodulator currently used in the treatment of different retroviral diseases including feline immune deficiency virus and feline leukaemia virus. Although its mechanism of action remains unclear, this drug appears to potentiate the innate response. Acute phase proteins are one of the key components of innate immunity and studies describing their use as a monitoring tool for the immune system in animals undergoing interferon-ω therapy are lacking. This study aimed to determine whether interferon-ω therapy influences acute phase protein concentrations namely serum amyloid-A, α-1-glycoprotein and C-reactive protein. A single-arm study was performed using 16 cats, living in an animal shelter, naturally infected with retroviruses and subjected to the interferon-ω therapy licensed protocol. Samples were collected before (D0), during (D10 and D30) and after therapy (D65). Serum amyloid-A and C-reactive protein were measured by specific enzyme-linked immunosorbent assay kits and α-1-glycoprotein by single radial immunodiffusion. All the acute phase proteins significantly increased in cats undergoing interferon-ω therapy (D0/D65: P<0·05) CLINICAL SIGNIFICANCE: Acute phase proteins appear to be reasonable predictors of innate-immune stimulation and may be useful in the individual monitoring of naturally retroviral infected cats undergoing interferon-ω therapy. © 2013 British Small Animal Veterinary Association.

  11. Brain-Derived Neurotrophic Factor Serum Levels and Genotype: Association with Depression during Interferon-α Treatment

    PubMed Central

    Lotrich, Francis E; Albusaysi, Salwa; Ferrell, Robert E

    2013-01-01

    Depression has been associated with inflammation, and inflammation may both influence and interact with growth factors such as brain-derived neurotrophic factor (BDNF). Both the functional Val66Met BDNF polymorphism (rs6265) and BDNF levels have been associated with depression. It is thus plausible that decreased BDNF could mediate and/or moderate cytokine-induced depression. We therefore prospectively employed the Beck Depression Inventory-II (BDI-II), the Hospital Anxiety and Depression Scale (HADS), and the Montgomery–Asberg Depression Rating Scale (MADRS) in 124 initially euthymic patients during treatment with interferon-alpha (IFN-α), assessing serum BDNF and rs6265. Using mixed-effect repeated measures, lower pretreatment BDNF was associated with higher depression symptoms during IFN-α treatment (F144,17.2=6.8; P<0.0001). However, although the Met allele was associated with lower BDNF levels (F1,83.0=5.0; P=0.03), it was only associated with increased MADRS scores (F4,8.9=20.3; P<0.001), and not the BDI-II or HADS. An exploratory comparison of individual BDI-II items indicated that the Met allele was associated with suicidal ideation, sadness, and worthlessness, but not neurovegetative symptoms. Conversely, the serotonin transporter promoter polymorphism (5-HTTLPR) short allele was associated with neurovegetative symptoms such as insomnia, poor appetite and fatigue, but not sadness, worthlessness, or suicidal ideation. IFN-α therapy further lowered BDNF serum levels (F4,37.7=5.0; P=0.003), but this decrease occurred regardless of depression development. The findings thus do not support the hypothesis that decreasing BDNF is the primary pathway by which IFN-α worsens depression. Nonetheless, the results support the hypothesis that BDNF levels influence resiliency against developing inflammatory cytokine-associated depression, and specifically to a subset of symptoms distinct from those influenced by 5-HTTLPR. PMID:23303061

  12. Interferon-beta signaling in retinal mononuclear phagocytes attenuates pathological neovascularization.

    PubMed

    Lückoff, Anika; Caramoy, Albert; Scholz, Rebecca; Prinz, Marco; Kalinke, Ulrich; Langmann, Thomas

    2016-06-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss among the elderly. AMD pathogenesis involves chronic activation of the innate immune system including complement factors and microglia/macrophage reactivity in the retina. Here, we show that lack of interferon-β signaling in the retina accelerates mononuclear phagocyte reactivity and promotes choroidal neovascularization (CNV) in the laser model of neovascular AMD Complete deletion of interferon-α/β receptor (Ifnar) using Ifnar1(-/-) mice significantly enhanced early microglia and macrophage activation in lesion areas. This triggered subsequent vascular leakage and CNV at later stages. Similar findings were obtained in laser-treated Cx3cr1(Cre) (ER):Ifnar1(fl/fl) animals that allowed the tamoxifen-induced conditional depletion of Ifnar in resident mononuclear phagocytes only. Conversely, systemic IFN-β therapy of laser-treated wild-type animals effectively attenuated microgliosis and macrophage responses in the early stage of disease and significantly reduced CNV size in the late phase. Our results reveal a protective role of Ifnar signaling in retinal immune homeostasis and highlight a potential use for IFN-β therapy in the eye to limit chronic inflammation and pathological angiogenesis in AMD. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    PubMed Central

    Fang, Xin; Sastry, Anand; Mih, Nathan; Kim, Donghyuk; Tan, Justin; Lloyd, Colton J.; Gao, Ye; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN—probably the best characterized TRN—several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism’s TRN from disparate data types. PMID:28874552

  14. DNA residence time is a regulatory factor of transcription repression

    PubMed Central

    Clauß, Karen; Popp, Achim P.; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N. Henriette

    2017-01-01

    Abstract Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. PMID:28977492

  15. Treatment of trypanosome-infected mice with exogenous interferon, interferon inducers, or antibody to interferon

    NASA Technical Reports Server (NTRS)

    Degee, Antonie L. W.; Mansfield, John M.; Sonnenfeld, Gerald

    1986-01-01

    Earlier studies have demonstrated that mice resistant to Trypanosoma brucei rhodesiense (the B10.BR/SgSnJ strain) produces, upon infection by this parasite, two peaks of serum interferon (IFN), while the susceptible mice (C3HeB/FeJ) produces no IFN. In the present study, survival times were compared for B10.BR/SgSnJ, C3HeB/FeJ, and CBA/J (an intermediately resistant strain) mice that were injected, prior to infection with the parasite, with either of the following three preparations (1) IFN-gamma, (2) an antibody to IFN-gamma and (3) polyriboinosinic-polyribocytidylic acid (to induce IFN-alpha/beta). No effect on the survival times of mice by any of these preparations could be demonstrated, contrary to some previous reports.

  16. Smac mimetics and type II interferon synergistically induce necroptosis in various cancer cell lines.

    PubMed

    Cekay, Michael John; Roesler, Stefanie; Frank, Tanja; Knuth, Anne-Kathrin; Eckhardt, Ines; Fulda, Simone

    2017-12-01

    Since cancer cells often evade apoptosis, induction of necroptosis as another mode of programmed cell death is considered a promising therapeutic alternative. Here, we identify a novel synergistic interaction of Smac mimetics that antagonize x-linked Inhibitor of Apoptosis (XIAP), cellular Inhibitor of Apoptosis (cIAP) 1 and 2 with interferon (IFN)γ to induce necroptosis in apoptosis-resistant cancer cells in which caspase activation is blocked. This synergism is confirmed by calculation of combination indices (CIs) and found in both solid and hematological cancer cell lines as well as for different Smac mimetics (i.e. BV6, Birinapant), pointing to a broader relevance. Importantly, individual genetic knockdown of key components of necroptosis signaling, i.e. receptor-interacting protein (RIP) 1, RIP3 or mixed lineage kinase domain-like pseudokinase (MLKL), significantly protects from BV6/IFNγ-induced cell death. Similarly, pharmacological inhibitors of RIP1 (necrostatin-1(Nec-1)), RIP3 (GSK'872) or MLKL (necrosulfonamide (NSA)) significantly reduce BV6/IFNγ-stimulated cell death. Of note, IFN-regulatory factor (IRF)1 is required for BV6/IFNγ-mediated necroptosis, as IRF1 silencing provides protection from cell death. By comparison, antibodies blocking tumor necrosis factor (TNF)α, TNF-related apoptosis-inducing ligand (TRAIL) or CD95 ligand fail to inhibit BV6/IFNγ-induced cell death, pointing to a mechanism independently of death receptor ligands. This is the first report showing that Smac mimetics synergize with IFNγ to trigger necroptosis in apoptosis-resistant cancer cells with important implications for Smac mimetic-based strategies for the treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Diversification of transcription factor-DNA interactions and the evolution of gene regulatory networks.

    PubMed

    Rogers, Julia M; Bulyk, Martha L

    2018-04-25

    Sequence-specific transcription factors (TFs) bind short DNA sequences in the genome to regulate the expression of target genes. In the last decade, numerous technical advances have enabled the determination of the DNA-binding specificities of many of these factors. Large-scale screens of many TFs enabled the creation of databases of TF DNA-binding specificities, typically represented as position weight matrices (PWMs). Although great progress has been made in determining and predicting binding specificities systematically, there are still many surprises to be found when studying a particular TF's interactions with DNA in detail. Paralogous TFs' binding specificities can differ in subtle ways, in a manner that is not immediately apparent from looking at their PWMs. These differences affect gene regulatory outputs and enable TFs to rewire transcriptional networks over evolutionary time. This review discusses recent observations made in the study of TF-DNA interactions that highlight the importance of continued in-depth analysis of TF-DNA interactions and their inherent complexity. This article is categorized under: Biological Mechanisms > Regulatory Biology. © 2018 Wiley Periodicals, Inc.

  18. Multilayer regulatory mechanisms control cleavage factor I proteins in filamentous fungi

    PubMed Central

    Rodríguez-Romero, J.; Franceschetti, M.; Bueno, E.; Sesma, A.

    2015-01-01

    Cleavage factor I (CFI) proteins are core components of the polyadenylation machinery that can regulate several steps of mRNA life cycle, including alternative polyadenylation, splicing, export and decay. Here, we describe the regulatory mechanisms that control two fungal CFI protein classes in Magnaporthe oryzae: Rbp35/CfI25 complex and Hrp1. Using mutational, genetic and biochemical studies we demonstrate that cellular concentration of CFI mRNAs is a limited indicator of their protein abundance. Our results suggest that several post-transcriptional mechanisms regulate Rbp35/CfI25 complex and Hrp1 in the rice blast fungus, some of which are also conserved in other ascomycetes. With respect to Rbp35, these include C-terminal processing, RGG-dependent localization and cleavage, C-terminal autoregulatory domain and regulation by an upstream open reading frame of Rbp35-dependent TOR signalling pathway. Our proteomic analyses suggest that Rbp35 regulates the levels of proteins involved in melanin and phenylpropanoids synthesis, among others. The drastic reduction of fungal CFI proteins in carbon-starved cells suggests that the pre-mRNA processing pathway is altered. Our findings uncover broad and multilayer regulatory mechanisms controlling fungal polyadenylation factors, which have profound implications in pre-mRNA maturation. This area of research offers new avenues for fungicide design by targeting fungal-specific proteins that globally affect thousands of mRNAs. PMID:25514925

  19. Identification of Regulatory Factors for Mesenchymal Stem Cell-Derived Salivary Epithelial Cells in a Co-Culture System

    PubMed Central

    Park, Yun-Jong; Koh, Jin; Gauna, Adrienne E.; Chen, Sixue; Cha, Seunghee

    2014-01-01

    Patients with Sjögren’s syndrome or head and neck cancer patients who have undergone radiation therapy suffer from severe dry mouth (xerostomia) due to salivary exocrine cell death. Regeneration of the salivary glands requires a better understanding of regulatory mechanisms by which stem cells differentiate into exocrine cells. In our study, bone marrow-derived mesenchymal stem cells were co-cultured with primary salivary epithelial cells from C57BL/6 mice. Co-cultured bone marrow-derived mesenchymal stem cells clearly resembled salivary epithelial cells, as confirmed by strong expression of salivary gland epithelial cell-specific markers, such as alpha-amylase, muscarinic type 3 receptor, aquaporin-5, and cytokeratin 19. To identify regulatory factors involved in this differentiation, transdifferentiated mesenchymal stem cells were analyzed temporarily by two-dimensional-gel-electrophoresis, which detected 58 protein spots (>1.5 fold change, p<0.05) that were further categorized into 12 temporal expression patterns. Of those proteins only induced in differentiated mesenchymal stem cells, ankryin-repeat-domain-containing-protein 56, high-mobility-group-protein 20B, and transcription factor E2a were selected as putative regulatory factors for mesenchymal stem cell transdifferentiation based on putative roles in salivary gland development. Induction of these molecules was confirmed by RT-PCR and western blotting on separate sets of co-cultured mesenchymal stem cells. In conclusion, our study is the first to identify differentially expressed proteins that are implicated in mesenchymal stem cell differentiation into salivary gland epithelial cells. Further investigation to elucidate regulatory roles of these three transcription factors in mesenchymal stem cell reprogramming will provide a critical foundation for a novel cell-based regenerative therapy for patients with xerostomia. PMID:25402494

  20. Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon

    PubMed Central

    Ma, Feng; Liu, Su-Yang; Razani, Bahram; Arora, Neda; Li, Bing; Kagechika, Hiroyuki; Tontonoz, Peter; Núñez, Vanessa; Ricote, Mercedes; Cheng, Genhong

    2015-01-01

    The retinoid X receptor α (RXRα), a key nuclear receptor in metabolic processes, is down-regulated during host antiviral response. However, the roles of RXRα in host antiviral response are unknown. Here we show that RXRα overexpression or ligand activation increases host susceptibility to viral infections in vitro and in vivo, while Rxra −/− or antagonist treatment reduces infection by the same viruses. Consistent with these functional studies, ligand activation of RXR inhibits the expression of antiviral genes including type I interferon (IFN) and Rxra −/− macrophages produce more IFNβ than WT macrophages in response to polyI:C stimulation. Further results indicate that ligand activation of RXR suppresses the nuclear translocation of β-catenin, a co-activator of IFNβ enhanceosome. Thus, our studies have uncovered a novel RXR-dependent innate immune regulatory pathway, suggesting that the downregulation of RXR expression or RXR antagonist treatment benefits host antiviral response, whereas RXR agonist treatment may increase the risk of viral infections. PMID:25417649

  1. CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks.

    PubMed

    Baumbach, Jan; Brinkrolf, Karina; Czaja, Lisa F; Rahmann, Sven; Tauch, Andreas

    2006-02-14

    The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation.

  2. Description of human AAA by cytokine and immune cell aberrations compared to risk-factor matched controls.

    PubMed

    Wang, S Keisin; Green, Linden A; Gutwein, Ashley R; Drucker, Natalie A; Motaganahalli, Raghu L; Gupta, Alok K; Fajardo, Andres; Murphy, Michael P

    2018-04-28

    The pathogenesis driving the formation of abdominal aortic aneurysms continues to be poorly understood. Therefore, we systemically define the cytokine and circulating immune cell environment observed in human abdominal aortic aneurysm compared with risk-factor matched controls. From 2015 to 2017, a total of 274 patients donated blood to the Indiana University Center for Aortic Disease. Absolute concentrations of circulating cytokines were determined, using enzyme-linked immunosorbent assays while the expression of circulating immune cell phenotypes were assayed via flow cytometric analysis. Human abdominal aortic aneurysm is characterized by a significant depletion of the antigen-specific, CD4 + Tr1 regulatory lymphocyte that corresponds to an upregulation of the antigen-specific, inflammatory Th17 cell. We found no differences in the incidence of Treg, B10, and myeloid-derived suppressor regulatory cells. Similarly, no disparities were noted in the following inflammatory cytokines: IL-1β, C-reactive protein, tumor necrosis factor α, interferon γ, and IL-23. However, significant upregulation of the inflammatory cytokines osteopontin, IL-6, and IL-17 were noted. Additionally, no changes were observed in the regulatory cytokines IL-2, IL-4, IL-13, TNF-stimulated gene 6 protein, and prostaglandin E2, but we did observe a significant decrease in the essential regulatory cytokine IL-10. In this investigation, we systematically characterize the abdominal aortic aneurysm-immune environment and present preliminary evidence that faulty immune regulation may also contribute to aneurysm formation and growth. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Anti-inflammatory effects of Artemisia princeps in antigen-stimulated T cells and regulatory T cells.

    PubMed

    Chang, Sung Ho; Jung, Eun Jung; Park, Youn Hee; Lim, Dong Gyun; Ko, Na Young; Choi, Wahn Soo; Her, Erk; Kim, Soo Hyun; Choi, Kang Duk; Bae, Jae Ho; Kim, Sun Hee; Kang, Chi Dug; Han, Duck Jong; Kim, Song Cheol

    2009-08-01

    The aim was to investigate the anti-inflammatory effects of Artemisia princeps extract on the activity of anti-CD3/CD28-stimulated CD4(+)CD25(-) T cells and antigen-expanded regulatory T cells. CD4(+)CD25(-) T cells were activated with coated anti-CD3 and anti-CD28 and cultured in the presence or absence of various concentrations of A. princeps extract. The cultures were pulsed on Day 6 with [(3)H]thymidine and, after harvesting the cells, [(3)H]thymidine incorporation was measured. For analysis of interleukin-2 and interferon-gamma secreted from CD4(+)CD25(-) T cells, culture supernatants were collected on Days 2 and 6. For the analysis of interleukin-10 secreted from the CD4(+)CD25(-) T cells and expanded regulatory T cells, supernatants were collected after 2 and 7 days, respectively. Cytokine levels were determined using an enzyme-linked immunosorbent assay. Potential medicinal components of the A. princeps extract were determined using gas chromatography-mass spectrometry. A. princeps (30 microg/ml) effectively suppressed proliferation of CD4(+)CD25(-) T cells that were stimulated with anti-CD3/CD28 without causing cytotoxicity in spleen cells incubated under conditions lacking antigen stimulation. A. princeps inhibited production of the pro-inflammatory cytokines interleukin-2 and interferon-gamma in anti-CD3/CD28-stimulated CD4(+)CD25(-) T cells. Also, the extract slightly increased production of the anti-inflammatory cytokine interleukin-10 in these cells. In regulatory T cells expanded by anti-CD3/CD28, A. princeps increased production of interleukin-10 and Foxp3. The results suggest that A. princeps may be useful in the treatment of autoimmune diseases and organ transplantation rejection by inhibiting proliferation of inflammatory T cells, suppressing inflammatory processes in antigen-stimulated CD4(+)CD25(-) T cells and increasing activity of expanded regulatory T cells.

  4. Interferon-γ Drives Treg Fragility to Promote Anti-tumor Immunity.

    PubMed

    Overacre-Delgoffe, Abigail E; Chikina, Maria; Dadey, Rebekah E; Yano, Hiroshi; Brunazzi, Erin A; Shayan, Gulidanna; Horne, William; Moskovitz, Jessica M; Kolls, Jay K; Sander, Cindy; Shuai, Yongli; Normolle, Daniel P; Kirkwood, John M; Ferris, Robert L; Delgoffe, Greg M; Bruno, Tullia C; Workman, Creg J; Vignali, Dario A A

    2017-06-01

    Regulatory T cells (T regs ) are a barrier to anti-tumor immunity. Neuropilin-1 (Nrp1) is required to maintain intratumoral T reg stability and function but is dispensable for peripheral immune tolerance. T reg -restricted Nrp1 deletion results in profound tumor resistance due to T reg functional fragility. Thus, identifying the basis for Nrp1 dependency and the key drivers of T reg fragility could help to improve immunotherapy for human cancer. We show that a high percentage of intratumoral NRP1 + T regs correlates with poor prognosis in melanoma and head and neck squamous cell carcinoma. Using a mouse model of melanoma where Nrp1-deficient (Nrp1 -/- ) and wild-type (Nrp1 +/+ ) T regs can be assessed in a competitive environment, we find that a high proportion of intratumoral Nrp1 -/- T regs produce interferon-γ (IFNγ), which drives the fragility of surrounding wild-type T regs , boosts anti-tumor immunity, and facilitates tumor clearance. We also show that IFNγ-induced T reg fragility is required for response to anti-PD1, suggesting that cancer therapies promoting T reg fragility may be efficacious. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The lived experience of interferon-free treatments for hepatitis C: A thematic analysis.

    PubMed

    Whiteley, David; Whittaker, Anne; Elliott, Lawrie; Cunningham-Burley, Sarah

    2016-12-01

    International discourse concerning the evolution in hepatitis C virus (HCV) therapy has tended to focus on improving outcomes, shortened treatment length and reduced side-effects of interferon-free regimens. How these treatments are being understood and experienced by the people receiving them has so far been overlooked. This study therefore aimed to explore the lived experience of individuals taking interferon-free HCV therapies. Data were generated through 16 semi-structured interviews with a purposive sample of eight participants, recruited from a university hospital in Scotland. The interviews took place between June 2015 and March 2016, before and after a period of interferon-free HCV treatment. The data were interrogated using a thematic analysis, underpinned by social phenomenological theory. Three overriding themes were identified. 'Expectations and realisations' characterised the influence that interferon continued to cast over interferon-free treatment, contrasting the practicalities of taking interferon-free therapy with preconceived notions. 'An honour and a pleasure' portrayed a positive experience of an undemanding therapy, yet among those with a history of drug use, was also positioned as a privilege, associated with feelings of luck and guilt. 'Treatment needs' illustrated the strategies participants used to search for treatment efficacy, and the value those with a significant history of drug use placed on support. One nonconforming case is then discussed to enhance rigour and trustworthiness. This is the first qualitative exploration of the experience of interferon-free HCV treatment reported globally. The results from this study suggest a cultural lag exists between the pharmacological developments which have been witnessed, and societal understandings of them. This has implications for the way services meet the needs of, and offer therapy to, HCV positive individuals. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. [Expression of gamma interferon during HPV and Chlamydia trachomatis infection in cervical samples].

    PubMed

    Colín-Ferreyra, María Del Carmen; Mendieta-Zerón, Hugo; Romero-Figueroa, María Del Socorro; Martínez-Madrigal, Migdania; Martínez-Pérez, Sergio; Domínguez-García, María Victoria

    2015-02-01

    The aim of this study was to mesure the expression of gamma interferon in HPV and Chlamydia trachomatis infection in squamous intraepithelial lesions. Samples from 100 patients diagnosed by colposcopy with or without squamous intraepithelial lesions were used in the present study. Each patient was found to be infected by HPV and C.trachomatis. Relative gamma interferon mRNA expression was assessed using a real-time reverse transcriptase PCR assay (RT-PCR). The relative units of expression of gamma interferon mRNA were 13, 1.8 and 0.3, for HPV and C.trachomatis co-infection, or HPV or C.trachomatis infection, respectively. HPV and C.trachomatis could overstimulate the expression of gamma interferon. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  7. Interferon-free treatment for HCV-infected patients with decompensated cirrhosis.

    PubMed

    Kanda, Tatsuo

    2017-01-01

    Progress in interferon-free treatment against hepatitis C virus (HCV) has remained a challenge in patients with decompensated cirrhosis due to a paucity of information on efficacy and safety profiles. This review illustrates that interferon-free treatment could result in greater than 85 % sustained virological response (SVR) rates in patients with HCV genotype 1 and decompensated cirrhosis. The combination of pangenotypic HCV NS5A inhibitor velpatasvir and HCV NS5B inhibitor sofosbuvir has demonstrated high SVR rates in patients with HCV genotypes 1, 2, 3, 4 or 6 and decompensated cirrhosis. Certain patients discontinued treatment due to adverse events, death or having liver transplantation. Taken together, interferon-free treatment could produce higher SVR rates in decompensated hepatic cirrhosis. However, as adverse events were occasionally observed, liver transplantation should always be considered as well. Further improvements in treatment are called for in patients with decompensated cirrhosis.

  8. Results of interferon treatment in children with chronic hepatitis B.

    PubMed

    Grigorescu-Sido, Paula; Călin, Lazăr; Manasia, Rodica; Mireştean, Stefan; Creţ, Victoria; Skorka, Cristina; Grigorescu-Sido, Anca

    2002-12-01

    Many observations report a variable therapeutical response to interferon in children with chronic hepatitis B. In order to evaluate the efficiency of alpha-interferon treatment in the downregulation of viral replication and in the eradication of infection in these patients, we assessed HBeAg/HBeAb and HBsAg/HBsAb seroconversion (as well as with clinical outcome and the changes in the plasma level of aminotransferases) in 61 treated patients. The diagnosis was established by means of the usual clinical, biochemical and histopathological criteria. There was no possibility to viral DNA test and no control group was included. Patients were selected for interferon treatment who displayed at least a two fold rise in the plasma level of aminotransferases as compared to normal values, as well as necroinflammatory activity (score > or = 6) and positive HBeAg as a marker of viral replication. Treatment was carried out with alpha-2a interferon or alpha-2b interferon in a dose of 3 million U/m2/dose in 3 weekly doses for a period of 4-6 months. The monitoring interval was 6.6+/-3 years. HBeAg/HBeAb seroconversion was registered in 77.2% of the patients and mainly occurred during the first year of follow-up (50.9 %). HBsAg/HBsAb seroconversion was revealed in 1.75% of the cases. The therapeutical response was complete, incomplete, transient and absent in 1.75%, 64.9%, 10.5% and 22.8% of the patients, respectively. The results show that the eradication of HBV infection is insignificant, but the downregulation of viral replication and, subsequently the halt of further progression of hepatic lesions is obtained in a high percentage of cases, highlighting the efficiency of this treatment in children with chronic hepatitis B

  9. Proliferation inhibitory effect of human alpha interferon on primary explants of Burkitt lymphoma: inverse relationship to patient survival.

    PubMed

    Ernberg, I; Einhorn, S; Strander, H; Klein, G

    1981-11-01

    Eleven biopsies from 9 patients with Burkitt's lymphoma were tested for their sensitivity to the cell multiplication inhibitory activity of interferon. Three were resistant to interferon while 8 were sensitive to various degrees. Different biopsies from the same patient did not differ in interferon sensitivity. These results indicate that Burkitt's lymphoma cells might be resistant to interferon already in vivo as previously shown for some derived cell lines tested in vitro. The results imply an inverse relationship between patient survival and interferon sensitivity of the tumor cells.

  10. Exploring the bZIP transcription factor regulatory network in Neurospora crassa

    PubMed Central

    Tian, Chaoguang; Li, Jingyi; Glass, N. Louise

    2011-01-01

    Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution. PMID:21081763

  11. Exploring the bZIP transcription factor regulatory network in Neurospora crassa.

    PubMed

    Tian, Chaoguang; Li, Jingyi; Glass, N Louise

    2011-03-01

    Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution.

  12. Utility of an interferon-gamma release assay for latent tuberculosis diagnosis in a case of bullous pemphigoid.

    PubMed

    Goodfellow, Alfred; Keeling, Douglas N; Hayes, Robert C; Webster, Duncan

    2009-01-01

    With increasing use of immunosuppressive therapy, including tumor necrosis factor alpha inhibitors, there is concern about infectious complications, including reactivation of latent Mycobacterium tuberculosis infection. Routine testing prior to administration of systemic immunosuppression includes the tuberculin skin test, which lacks sensitivity and specificity and may be difficult to interpret in the presence of extensive cutaneous disease. Treatment of individuals with latent tuberculosis infection is recommended when immunosuppressive medications are to be employed. We report a case in which a diagnosis of latent tuberculosis infection in a patient with extensive bullous pemphigoid was clarified by the use of an interferon-gamma release assay after equivocal tuberculin skin test results. Interferon-gamma release assays are useful adjuncts to the tuberculin skin test in the diagnosis of latent tuberculosis infection in the setting of extensive cutaneous disease.

  13. Coordination of meristem and boundary functions by transcription factors in the SHOOT MERISTEMLESS regulatory network.

    PubMed

    Scofield, Simon; Murison, Alexander; Jones, Angharad; Fozard, John; Aida, Mitsuhiro; Band, Leah R; Bennett, Malcolm; Murray, James A H

    2018-04-30

    The Arabidopsis homeodomain transcription factor SHOOT MERISTEMLESS (STM) is crucial for shoot apical meristem (SAM) function, yet the components and structure of the STM gene regulatory network (GRN) are largely unknown. Here, we show that transcriptional regulators are overrepresented among STM-regulated genes and, using these as GRN components in Bayesian network analysis, we infer STM GRN associations and reveal regulatory relationships between STM and factors involved in multiple aspects of SAM function. These include hormone regulation, TCP-mediated control of cell differentiation, AIL/PLT-mediated regulation of pluripotency and phyllotaxis, and specification of meristem-organ boundary zones via CUC1. We demonstrate a direct positive transcriptional feedback loop between STM and CUC1, despite their distinct expression patterns in the meristem and organ boundary, respectively. Our further finding that STM activates expression of the CUC1-targeting microRNA miR164c combined with mathematical modelling provides a potential solution for this apparent contradiction, demonstrating that these proposed regulatory interactions coupled with STM mobility could be sufficient to provide a mechanism for CUC1 localisation at the meristem-organ boundary. Our findings highlight the central role for the STM GRN in coordinating SAM functions. © 2018. Published by The Company of Biologists Ltd.

  14. Chicken interferome: avian interferon-stimulated genes identified by microarray and RNA-seq of primary chick embryo fibroblasts treated with a chicken type I interferon (IFN-α).

    PubMed

    Giotis, Efstathios S; Robey, Rebecca C; Skinner, Natalie G; Tomlinson, Christopher D; Goodbourn, Stephen; Skinner, Michael A

    2016-08-05

    Viruses that infect birds pose major threats-to the global supply of chicken, the major, universally-acceptable meat, and as zoonotic agents (e.g. avian influenza viruses H5N1 and H7N9). Controlling these viruses in birds as well as understanding their emergence into, and transmission amongst, humans will require considerable ingenuity and understanding of how different species defend themselves. The type I interferon-coordinated response constitutes the major antiviral innate defence. Although interferon was discovered in chicken cells, details of the response, particularly the identity of hundreds of stimulated genes, are far better described in mammals. Viruses induce interferon-stimulated genes but they also regulate the expression of many hundreds of cellular metabolic and structural genes to facilitate their replication. This study focusses on the potentially anti-viral genes by identifying those induced just by interferon in primary chick embryo fibroblasts. Three transcriptomic technologies were exploited: RNA-seq, a classical 3'-biased chicken microarray and a high density, "sense target", whole transcriptome chicken microarray, with each recognising 120-150 regulated genes (curated for duplication and incorrect assignment of some microarray probesets). Overall, the results are considered robust because 128 of the compiled, curated list of 193 regulated genes were detected by two, or more, of the technologies.

  15. CoryneRegNet: An ontology-based data warehouse of corynebacterial transcription factors and regulatory networks

    PubMed Central

    Baumbach, Jan; Brinkrolf, Karina; Czaja, Lisa F; Rahmann, Sven; Tauch, Andreas

    2006-01-01

    Background The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. Description CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. Conclusion CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation. PMID:16478536

  16. Induction of Interferon-Stimulated Genes by IRF3 Promotes Replication of Toxoplasma gondii

    PubMed Central

    Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C.; Barik, Sailen

    2015-01-01

    Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell

  17. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii.

    PubMed

    Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C; Barik, Sailen

    2015-03-01

    Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell

  18. Several fibroblast growth factors are expressed during pre-attachment bovine conceptus development and regulate interferon-tau expression from trophectoderm.

    PubMed

    Cooke, Flavia N T; Pennington, Kathleen A; Yang, Qien; Ealy, Alan D

    2009-02-01

    The trophectoderm-derived factor interferon tau (IFNT) maintains the uterus in a pregnancy-receptive state in cattle and sheep. Fibroblast growth factors (FGFs) are implicated in regulating IFNT expression and potentially other critical events associated with early conceptus development in cattle. The overall objectives of this work were to identify the various FGFs and FGF receptors (FGFRs) expressed in elongating pre-attachment bovine conceptuses and determine if these FGFs regulate conceptus development and/or mediate IFNT production. In vitro-derived bovine blastocysts and in vivo-derived elongated conceptuses collected at day 17 of pregnancy express at least four FGFR subtypes (R1c, R2b, R3c, R4). In addition, transcripts for FGF1, 2, and 10 but not FGF7 are present in elongated bovine conceptuses. The expression pattern of FGF10 most closely resembled that of IFNT, with both transcripts remaining low in day 8 and day 11 conceptuses and increasing substantially in day 14 and day 17 conceptuses. Supplementation with recombinant FGF1, 2 or 10 increased IFNT mRNA levels in bovine trophectoderm cells and bovine blastocysts and increased IFNT protein concentrations in trophectoderm-conditioned medium. Blastocyst development was not affected by any of the FGFs. In summary, at least four FGFRs reside in pre- and peri-attachment bovine conceptuses. Moreover, conceptuses express at least three candidate FGFs during elongation, the time of peak IFNT expression. These findings provide new insight for how conceptus-derived factors such as FGF1, 2, and 10 may control IFNT expression during early pregnancy in cattle.

  19. Respiratory syncytial virus nonstructural proteins decrease levels of multiple members of the cellular interferon pathways.

    PubMed

    Swedan, Samer; Musiyenko, Alla; Barik, Sailen

    2009-10-01

    Viruses of the Paramyxoviridae family, such as the respiratory syncytial virus (RSV), suppress cellular innate immunity represented by type I interferon (IFN) for optimal growth in their hosts. The two unique nonstructural (NS) proteins, NS1 and NS2, of RSV suppress IFN synthesis, as well as IFN function, but their exact targets are still uncharacterized. Here, we investigate if either or both of the NS proteins affect the steady-state levels of key members of the IFN pathway. We found that both NS1 and NS2 decreased the levels of TRAF3, a strategic integrator of multiple IFN-inducing signals, although NS1 was more efficient. Only NS1 reduced IKKepsilon, a key protein kinase that specifically phosphorylates and activates IFN regulatory factor 3. Loss of the TRAF3 and IKKepsilon proteins appeared to involve a nonproteasomal mechanism. Interestingly, NS2 modestly increased IKKepsilon levels. In the IFN response pathway, NS2 decreased the levels of STAT2, the essential transcription factor for IFN-inducible antiviral genes. Preliminary mapping revealed that the C-terminal 10 residues of NS1 were essential for reducing IKKepsilon levels and the C-terminal 10 residues of NS2 were essential for increasing and reducing IKKepsilon and STAT2, respectively. In contrast, deletion of up to 20 residues of the C termini of NS1 and NS2 did not diminish their TRAF3-reducing activity. Coimmunoprecipitation studies revealed that NS1 and NS2 form a heterodimer. Clearly, the NS proteins of RSV, working individually and together, regulate key signaling molecules of both the IFN activation and response pathways.

  20. A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells.

    PubMed

    Furr, Samantha R; Chauhan, Vinita S; Moerdyk-Schauwecker, Megan J; Marriott, Ian

    2011-08-12

    The rapid onset of potentially lethal neuroinflammation is a defining feature of viral encephalitis. Microglia and astrocytes are likely to play a significant role in viral encephalitis pathophysiology as they are ideally positioned to respond to invading central nervous system (CNS) pathogens by producing key inflammatory mediators. Recently, DNA-dependent activator of IFN regulatory factor (DAI) has been reported to function as an intracellular sensor for DNA viruses. To date, the expression and functional role of DAI in the inflammatory responses of resident CNS cells to neurotropic DNA viruses has not been reported. Expression of DAI and its downstream effector molecules was determined in C57BL/6-derived microglia and astrocytes, either at rest or following exposure to herpes simplex virus type 1 (HSV-1) and/or murine gammaherpesvirus-68 (MHV-68), by immunoblot analysis. In addition, such expression was studied in ex vivo microglia/macrophages and astrocytes from uninfected animals or mice infected with HSV-1. Inflammatory cytokine production by glial cultures following transfection with a DAI specific ligand (B-DNA), or following HSV-1 challenge in the absence or presence of siRNA directed against DAI, was assessed by specific capture ELISA. The production of soluble neurotoxic mediators by HSV-1 infected glia following DAI knockdown was assessed by analysis of the susceptibility of neuron-like cells to conditioned glial media. We show that isolated microglia and astrocytes constitutively express DAI and its effector molecules, and show that such expression is upregulated following DNA virus challenge. We demonstrate that these resident CNS cells express DAI in situ, and show that its expression is similarly elevated in a murine model of HSV-1 encephalitis. Importantly, we show B-DNA transfection can elicit inflammatory cytokine production by isolated glial cells and DAI knockdown can significantly reduce microglial and astrocyte responses to HSV-1. Finally

  1. Highly accessible AU-rich regions in 3' untranslated regions are hotspots for binding of regulatory factors.

    PubMed

    Plass, Mireya; Rasmussen, Simon H; Krogh, Anders

    2017-04-01

    Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3'UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing "free" target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer of

  2. Vitamin A supplementation leads to increases in regulatory CD4+Foxp3+LAP+ T cells in mice.

    PubMed

    Medeiros, Samara R; Pinheiro-Rosa, Natalia; Lemos, Luisa; Loli, Flavia G; Pereira, Alline G; Santiago, Andrezza F; Pinter, Ester C; Alves, Andrea C; Oliveira, Jamil S; Cara, Denise C; Maioli, Tatiani U; Faria, Ana Maria C

    2015-10-01

    Dietary compounds, including micronutrients such as vitamin A and its metabolite retinoic acid, directly influence the development and function of the immune system. In this study, we show that either dietary deficiency of or supplementation with vitamin A had immunologic effects in mice that were fed these diets during their development (for 8 wk during the postweaning period). Deficient mice presented higher levels of interferon-γ, interleukin (IL)-6, transforming growth factor-β, IL-17, and IL-10 in the gut-associated lymphoid tissues and draining lymph nodes, indicating a proinflammatory shift in the gut mucosa. Serum immunoglobulin G levels also were elevated in these mice. Conversely, supplemented mice showed higher frequencies of CD4+Foxp3+LAP+ regulatory T cells in gut lymphoid tissues and spleen, suggesting that vitamin A supplementation in the diet may be beneficial in pathologic situations such as inflammatory bowel diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Plasma interferon-gamma and interleukin-10 concentrations in systemic meningococcal disease compared with severe systemic Gram-positive septic shock.

    PubMed

    Bjerre, Anna; Brusletto, Berit; Høiby, Ernst Arne; Kierulf, Peter; Brandtzaeg, Petter

    2004-02-01

    To analyze plasma interferon-gamma and interleukin-10 concentrations in patients with systemic meningococcal disease and patients with severe Gram-positive septic shock caused by Streptococcus pneumoniae or Staphylococcus aureus. To study the in vitro cytokine (interferon-gamma and interleukin-10) responses in a whole blood model boosted with heat-killed Neisseria meningitidis, S. pneumoniae, and S. aureus before and after treatment with recombinant interleukin-10 or recombinant interferon-gamma. Experimental study. Laboratory. Plasma samples were collected from patients with systemic meningococcal disease (n = 66) and patients with severe Gram-positive septic shock caused by S. pneumoniae (n = 4) or S. aureus (n = 3). Whole blood was boosted with heat-killed N. meningitidis, S. pneumoniae, and S. aureus (1 x 106 colony forming units/mL), and plasmas were analyzed for interleukin-10 or interferon-gamma at 0, 5, 12, and 24 hrs. Furthermore, recombinant interleukin-10 or recombinant interferon-gamma was added before bacteria, and the effect on the secretion of interferon-gamma and interleukin-10, respectively, was analyzed after 24 hrs. The median concentration of interferon-gamma was 15 pg/mL and of interleukin-10 was 10,269 pg/mL in patients with meningococcal septic shock (n = 24) compared with median interferon-gamma concentration of 3400 pg/mL and interleukin-10 concentration of 465 pg/mL in patients with severe Gram-positive shock (p =.001). Increased interferon-gamma concentrations were associated with case fatality (p =.011). In a whole blood model we demonstrated that 1 x 106 colony forming units/mL of N. meningitidis induced more interleukin-10 but less interferon-gamma than S. pneumoniae. S. aureus induced minimal secretion of both cytokines. Recombinant interleukin-10 efficiently down-regulated the secretion of interferon-gamma, and vice versa, as shown in a whole blood model. We speculate whether high concentrations of interleukin-10 contribute to the

  4. EFFECT OF INTERFERON-α ON CORTICAL GLUTAMATE IN PATIENTS WITH HEPATITIS C: A PROTON MRS STUDY

    PubMed Central

    Taylor, Matthew J; Godlewska, Beata; Near, Jamie; Christmas, David; Potokar, John; Collier, Jane; Klenerman, Paul; Barnes, Eleanor; Cowen, Philip J

    2013-01-01

    Background The development of depressive symptomatology is a recognised complication of treatment with the cytokine, interferon-α, and has been seen as supporting inflammatory theories of the pathophysiology of major depression. Major depression has been associated with changes in glutamatergic activity and recent formulations of interferon-induced depression have implicated neurotoxic influences which could also lead to changes in glutamate function. The present study used magnetic resonance spectroscopy (MRS) to measure both glutamate and its major metabolite, glutamine in patients with hepatitis C who received treatment with pegylated-interferon-α and ribavirin. Methods MRS measurements of glutamate and glutamine were taken from a 25×20×20mm voxel including pregenual anterior cingulate cortex in 12 patients before and after 4-6 weeks treatment with interferon. Results Interferon treatment led to an increase in cortical levels of glutamine (p= 0.02) and a significant elevation in the ratio of glutamine to glutamate (p<.01). Further, changes in glutamine level correlated significantly with ratings of depression and anxiety at the time of the second scan. Conclusions We conclude that treatment with interferon-α is associated with MRS-visible changes in glutamatergic metabolism. However, the changes seen differ from those reported in major depression which suggests that the pathophysiology of interferon-induced depression may be distinct from that of major depression more generally. PMID:23659574

  5. ADAR1 deletion induces NFκB and interferon signaling dependent liver inflammation and fibrosis.

    PubMed

    Ben-Shoshan, Shirley Oren; Kagan, Polina; Sultan, Maya; Barabash, Zohar; Dor, Chen; Jacob-Hirsch, Jasmine; Harmelin, Alon; Pappo, Orit; Marcu-Malina, Victoria; Ben-Ari, Ziv; Amariglio, Ninette; Rechavi, Gideon; Goldstein, Itamar; Safran, Michal

    2017-05-04

    Adenosine deaminase acting on RNA (ADAR) 1 binds and edits double-stranded (ds) RNA secondary structures found mainly within untranslated regions of many transcripts. In the current research, our aim was to study the role of ADAR1 in liver homeostasis. As previous studies show a conserved immunoregulatory function for ADAR1 in mammalians, we focused on its role in preventing chronic hepatic inflammation and the associated activation of hepatic stellate cells to produce extracellular matrix and promote fibrosis. We show that hepatocytes specific ADAR1 knock out (KO) mice display massive liver damage with multifocal inflammation and fibrogenesis. The bioinformatics analysis of the microarray gene-expression datasets of ADAR1 KO livers reveled a type-I interferons signature and an enrichment for immune response genes compared to control littermate livers. Furthermore, we found that in vitro silencing of ADAR1 expression in HepG2 cells leads to enhanced transcription of NFκB target genes, foremost of the pro-inflammatory cytokines IL6 and IL8. We also discovered immune cell-independent paracrine signaling among ADAR1-depleted HepG2 cells and hepatic stellate cells, leading to the activation of the latter cell type to adopt a profibrogenic phenotype. This paracrine communication dependent mainly on the production and secretion of the cytokine IL6 induced by ADAR1 silencing in hepatocytes. Thus, our findings shed a new light on the vital regulatory role of ADAR1 in hepatic immune homeostasis, chiefly its inhibitory function on the crosstalk between the NFκB and type-I interferons signaling cascades, restraining the development of liver inflammation and fibrosis.

  6. ADAR1 deletion induces NFκB and interferon signaling dependent liver inflammation and fibrosis

    PubMed Central

    Ben-Shoshan, Shirley Oren; Kagan, Polina; Sultan, Maya; Barabash, Zohar; Dor, Chen; Jacob-Hirsch, Jasmine; Harmelin, Alon; Pappo, Orit; Marcu-Malina, Victoria; Ben-Ari, Ziv; Amariglio, Ninette; Rechavi, Gideon; Goldstein, Itamar; Safran, Michal

    2017-01-01

    ABSTRACT Adenosine deaminase acting on RNA (ADAR) 1 binds and edits double-stranded (ds) RNA secondary structures found mainly within untranslated regions of many transcripts. In the current research, our aim was to study the role of ADAR1 in liver homeostasis. As previous studies show a conserved immunoregulatory function for ADAR1 in mammalians, we focused on its role in preventing chronic hepatic inflammation and the associated activation of hepatic stellate cells to produce extracellular matrix and promote fibrosis. We show that hepatocytes specific ADAR1 knock out (KO) mice display massive liver damage with multifocal inflammation and fibrogenesis. The bioinformatics analysis of the microarray gene-expression datasets of ADAR1 KO livers reveled a type-I interferons signature and an enrichment for immune response genes compared to control littermate livers. Furthermore, we found that in vitro silencing of ADAR1 expression in HepG2 cells leads to enhanced transcription of NFκB target genes, foremost of the pro-inflammatory cytokines IL6 and IL8. We also discovered immune cell-independent paracrine signaling among ADAR1-depleted HepG2 cells and hepatic stellate cells, leading to the activation of the latter cell type to adopt a profibrogenic phenotype. This paracrine communication dependent mainly on the production and secretion of the cytokine IL6 induced by ADAR1 silencing in hepatocytes. Thus, our findings shed a new light on the vital regulatory role of ADAR1 in hepatic immune homeostasis, chiefly its inhibitory function on the crosstalk between the NFκB and type-I interferons signaling cascades, restraining the development of liver inflammation and fibrosis. PMID:27362366

  7. Depletion of elongation initiation factor 4E binding proteins by CRISPR/Cas9 enhances the antiviral response in porcine cells.

    PubMed

    Ramírez-Carvajal, Lisbeth; Singh, Neetu; de los Santos, Teresa; Rodríguez, Luis L; Long, Charles R

    2016-01-01

    Type I interferons (IFNs) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF-7), the "master regulator" of IFN transcription. Previous studies have suggested that mouse cells depleted of 4E-BPs are more sensitive to IFNβ treatment and had lower viral loads as compared to wild type (WT) cells. However, such approach has not been tested as an antiviral strategy in livestock species. In this study, we tested the antiviral activity of porcine cells depleted of 4E-BP1 by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome engineering system. We found that 4E-BP1 knockout (KO) porcine cells had increased expression of IFNα and β, IFN stimulated genes, and significant reduction in vesicular stomatitis virus titer as compare to WT cells. No phenotypical changes associated with CRISPR/Cas9 manipulation were observed in 4E-BP1 KO cells. This work highlights the use of the CRISPR/Cas9 system to enhance the antiviral response in porcine cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [Gamma interferon: basics aspects, clinic significance and terapeutic uses].

    PubMed

    Mata-Espinosa, Dulce A; Hernández-Pando, Rogelio

    2008-01-01

    Interferons are a family of pleiotropic cytokines, their name was assigned because of their anti-replicative viral activity. IFNgamma or immune type II interferon does not share receptors with the type I interferon, its structure is different and its gene is located in different chromosome, although its biologic effects are similar. Along of several years of research, it has been found that IFNgamma enhances the transcription of genes involved in immunomodulation, antiviral responses and antitumoral activities. Regarding to the immune system, IFNgamma increases the cytotoxic and phagocytic activity of macrophages and upregulates the expression of major histocompatibility complex (MHC) class I and class II molecules in dendritics cells and other antigen presenting cells. IFNgamma also promotes the development and differentiation of naive CD4+ T lymphocytes to Th1 helper subset. Indeed, this cytokine has a key role in the control of bacterial, micotic, viral and parasitic infections. Depending of the micro-environment, IFNgamma has a dual role as pro or anti inflammatory cytokine. Novel therapeutic strategies are currently being developed with the aim to enhance the immune response or replace IFNgamma gene abnormal expression with beneficial results in humans, being recombinant IFNgamma safe and well tolerated.

  9. West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5.

    PubMed

    Zhang, Hong-Lei; Ye, Han-Qing; Liu, Si-Qing; Deng, Cheng-Lin; Li, Xiao-Dan; Shi, Pei-Yong; Zhang, Bo

    2017-09-15

    West Nile virus (WNV) is a mosquito-borne flavivirus that causes epidemics of encephalitis and viscerotropic disease worldwide. This virus has spread rapidly and has posed a significant public health threat since the outbreak in New York City in 1999. The interferon (IFN)-mediated antiviral response represents an important component of virus-host interactions and plays an essential role in regulating viral replication. Previous studies have suggested that multifunctional nonstructural proteins encoded by flaviviruses antagonize the host IFN response via various means in order to establish efficient viral replication. In this study, we demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes IFN-β production, most likely through suppression of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) activation. In a dual-luciferase reporter assay, WNV NS1 significantly inhibited the activation of the IFN-β promoter after Sendai virus infection or poly(I·C) treatment. NS1 also suppressed the activation of the IFN-β promoter when it was stimulated by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in the RLR signaling pathway. Furthermore, NS1 blocked the phosphorylation and nuclear translocation of IRF3 upon stimulation by various inducers. Mechanistically, WNV NS1 targets RIG-I and melanoma differentiation-associated gene 5 (MDA5) by interacting with them and subsequently causing their degradation by the proteasome. Furthermore, WNV NS1 inhibits the K63-linked polyubiquitination of RIG-I, thereby inhibiting the activation of downstream sensors in the RLR signaling pathway. Taken together, our results reveal a novel mechanism by which WNV NS1 interferes with the host antiviral response. IMPORTANCE WNV Nile virus (WNV) has received increased attention since its introduction to the United States. However, the pathogenesis of this virus is poorly understood. This study demonstrated that the nonstructural protein 1 (NS1) of WNV

  10. A Recombinant Adenovirus Expressing Ovine Interferon Tau Prevents Influenza Virus-Induced Lethality in Mice.

    PubMed

    Martín, V; Pascual, E; Avia, M; Rangel, G; de Molina, A; Alejo, A; Sevilla, N

    2016-01-06

    Ovine interferon tau (IFN-τ) is a unique type I interferon with low toxicity and a broad host range in vivo. We report the generation of a nonreplicative recombinant adenovirus expressing biologically active IFN-τ. Using the B6.A2G-Mx1 mouse model, we showed that single-dose intranasal administration of recombinant Ad5-IFN-τ can effectively prevent lethality and disease induced by highly virulent hv-PR8 influenza virus by activating the interferon response and preventing viral replication. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Haemolytic anaemia to the alpha-interferon treatment: a proposed mechanism.

    PubMed

    Barbolla, L; Paniagua, C; Outeiriño, J; Prieto, E; Sánchez Fayos, J

    1993-01-01

    Auto-immune haemolytic anaemia (AIHA) has been found in a case of alpha-interferon treatment. Serum antibody and eluate were positive in the absence of the drug. Although the patient recovered after the treatment was stopped, DAGT remained positive for at least 8 months. The mechanism proposed to explain why this drug induced AIHA is similar to that proposed for alpha-methyl-dopa. Drugs could alter the red cell membrane and impair the immune system. Such changes have been observed with alpha-interferon and were related with increased autoimmunity.

  12. Interferon-targeted therapy in systemic lupus erythematosus: Is this an alternative to targeting B and T cells?

    PubMed

    Kalunian, K C

    2016-09-01

    Clinical trials of investigational agents in systemic lupus erythematosus (SLE) have focused on targeting dysregulated B and T cells; however, recent translational research findings of the importance of the dysregulation of the innate immune system in SLE have led to clinical trials that target interferon. Three biologics that target type I interferons have been tested for their efficacy and safety in active SLE patients; these phase II trials have tested the hypothesis that down-regulation of interferon-regulated gene expression (the interferon signature) lessen the clinical burden of SLE. Rontalizumab, an anti-interferon-α monoclonal antibody, was studied in patients who had discontinued immunosuppressants. This study failed to show efficacy as assessed by both two outcome assessments; however, in low interferon signature patients, response was higher and corticosteroid usage was less in rontalizumab-treated patients. Sifalimumab, another anti-interferon-α monoclonal antibody, was studied in patients who remained on standard of care therapy. This study showed significantly better efficacy in patients treated with two sifalimumab dosages; significant differences were seen in the high interferon signature group. In a similar design and in a similar population as the sifalimumab study, anifrolumab, a monoclonal antibody that binds to a type I interferon receptor, was studied in patients who remained on standard of care therapy. In this study, one dosage group demonstrated efficacy and statistically significant effects were achieved in both tested dosage groups with secondary end points. Oral corticosteroid reduction to ≤7.5 mg daily was achieved in one of the tested dosage groups and organ-specific outcomes were significantly improved in that same group. For all studies, no significant differences in serious adverse effects were seen; although, herpes zoster infections were increased in sifalimumab- and anifrolumab-treated patients and influenza rates were

  13. Type I Interferon Induced by Streptococcus suis Serotype 2 is Strain-Dependent and May Be Beneficial for Host Survival

    PubMed Central

    Auger, Jean-Philippe; Santinón, Agustina; Roy, David; Mossman, Karen; Xu, Jianguo; Segura, Mariela; Gottschalk, Marcelo

    2017-01-01

    Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis, with exacerbated inflammation being a hallmark of the infection. However, serotype 2 strains are genotypically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies: the virulent ST1 (Eurasia), highly virulent ST7 (responsible for the human outbreaks in China), and intermediate virulent ST25 (North America) are the most important worldwide. Even though type I interferons (IFNs) are traditionally associated with important antiviral functions, recent studies have demonstrated that they may also play an important role during infections with extracellular bacteria. Upregulation of IFN-β levels was previously observed in mice following infection with this pathogen. Consequently, the implication of IFN-β in the S. suis serotype 2 pathogenesis, which has always been considered a strict extracellular bacterium, was evaluated using strains of varying virulence. This study demonstrates that intermediate virulent strains are significantly more susceptible to phagocytosis than virulent strains. Hence, subsequent localization of these strains within the phagosome results in recognition of bacterial nucleic acids by Toll-like receptors 7 and 9, leading to activation of the interferon regulatory factors 1, 3, and 7 and production of IFN-β. Type I IFN, whose implication depends on the virulence level of the S. suis strain, is involved in host defense by participating in the modulation of systemic inflammation, which is responsible for the clearance of blood bacterial burden. As such, when induced by intermediate, and to a lesser extent, virulent S. suis strains, type I IFN plays a beneficial role in host survival. The highly virulent ST7 strain, however, hastily induces a septic shock that cannot be controlled by type I IFN, leading to rapid death

  14. Nonarteritic anterior ischemic optic neuropathy associated with interferon and ribavirin in a patient with hepatitis C.

    PubMed

    Sharif, Walid; Sheikh, Khayam; De Silva, Ian; Elsherbiny, Samer

    2017-04-01

    To report a case of a temporal artery biopsy negative anterior ischemic optic neuropathy associated with a recently completed course of pegylated interferon 2 α with ribavirin for chronic hepatitis C. Despite the early presentation with symptoms and prompt treatment with systemic intravenous steroids the patient experienced deterioration of their optic neuropathy over the following few days. Although nonarteritic anterior ischemic optic neuropathy is a common disorder with known risk factors, the timing of onset of symptoms in our patient was suggestive of a possible etiology related to treatment with ribavirin and interferon 2 α, as found in the previously reported cases. There have been a few reported cases of the association between the use of interferon/ribavirin for treatment of chronic hepatitis with nonarteritic anterior ischemic optic neuropathy. In these cases stopping the drug caused some improvement of symptoms or halting the progression of optic neuropathy. Having reviewed the literature on previous cases, we postulate that there may be a dose related reaction to explain the delay and deterioration of vision in some cases despite stopping the drugs. We also advise that any person who is started on this treatment for chronic hepatitis are appropriately counselled as to the potential optic nerve side effect of the drug, based on the evidence reported in the literature.

  15. Type I interferon and pattern recognition receptor signaling following particulate matter inhalation

    PubMed Central

    2012-01-01

    Background Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS) welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. Results The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. Conclusion This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure. PMID:22776377

  16. Type I interferon and pattern recognition receptor signaling following particulate matter inhalation.

    PubMed

    Erdely, Aaron; Antonini, James M; Salmen-Muniz, Rebecca; Liston, Angie; Hulderman, Tracy; Simeonova, Petia P; Kashon, Michael L; Li, Shengqiao; Gu, Ja K; Stone, Samuel; Chen, Bean T; Frazer, David G; Zeidler-Erdely, Patti C

    2012-07-09

    Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc - stainless steel (GMA-SS) welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.

  17. Whole-exome sequencing reveals a rare interferon gamma receptor 1 mutation associated with myasthenia gravis.

    PubMed

    Qi, Guoyan; Liu, Peng; Gu, Shanshan; Yang, Hongxia; Dong, Huimin; Xue, Yinping

    2018-04-01

    Our study is aimed to explore the underlying genetic basis of myasthenia gravis. We collected a Chinese pedigree with myasthenia gravis, and whole-exome sequencing was performed on the two affected siblings and their parents. The candidate pathogenic gene was identified by bioinformatics filtering, which was further verified by Sanger sequencing. The homozygous mutation c.G40A (p.V14M) in interferon gamma receptor 1was identified. Moreover, the mutation was also detected in 3 cases of 44 sporadic myasthenia gravis patients. The p.V14M substitution in interferon gamma receptor 1 may affect the signal peptide function and the translocation on cell membrane, which could disrupt the binding of the ligand of interferon gamma and antibody production, contributing to myasthenia gravis susceptibility. We discovered that a rare variant c.G40A in interferon gamma receptor 1 potentially contributes to the myasthenia gravis pathogenesis. Further functional studies are needed to confirm the effect of the interferon gamma receptor 1 on the myasthenia gravis phenotype.

  18. Insulin-like growth factor-binding protein 7 alters the sensitivity to interferon-based anticancer therapy in hepatocellular carcinoma cells.

    PubMed

    Tomimaru, Y; Eguchi, H; Wada, H; Noda, T; Murakami, M; Kobayashi, S; Marubashi, S; Takeda, Y; Tanemura, M; Umeshita, K; Doki, Y; Mori, M; Nagano, H

    2010-05-11

    A striking efficiency of interferon (IFN)-based anticancer therapy for advanced hepatocellular carcinoma (HCC) has been reported. Because its clinical efficiency greatly depends on each patient's local response, prediction of local response is crucial. Continuous exposure of IFN-alpha to parental PLC/PRF/5 cells (PLC-P) and a limiting dilution method resulted in the establishment of IFN-resistant cell clones (PLC-Rs). Microarray analyses of PLC-P and PLC-Rs identified insulin-like growth factor-binding protein 7 (IGFBP7) as one of the most significantly downregulated genes in PLC-Rs. Changes in anticancer effects of IFN-alpha were examined in HCC cells after genetic manipulation of IGFBP7 expression. The correlation between immunohistochemically determined IGFBP7 expression and the response to IFN-alpha/5-fluorouracil (5-FU) therapy was investigated in surgically resected HCC specimens. PLC-R cells showed a remarkable downregulation of IGFBP7 and resistance to IFN-alpha, compared with PLC-P. Parental PLC/PRF/5 cells transfected with short hairpin RNA against IGFBP7 showed a significant resistance to IFN-alpha relative to control cells (IC(50) fold increase=14.38 times). Insulin-like growth factor-binding protein 7 transfection into PLC-R restored sensitivity to IFN-alpha. In resected specimens, IGFBP7 expression significantly correlated with the response to IFN-alpha/5-FU therapy. IGFBP7 could be a useful predictor of the response to IFN-based therapy in advanced HCC.

  19. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Karen E.; Song, Byeongwoon; Knipe, David M.

    2008-05-10

    Host cells respond to viral infection by many mechanisms, including the production of type I interferons which act in a paracrine and autocrine manner to induce the expression of antiviral interferon-stimulated genes (ISGs). Viruses have evolved means to inhibit interferon signaling to avoid induction of the innate immune response. Herpes simplex virus 1 (HSV-1) has several mechanisms to inhibit type I interferon production, the activities of ISGs, and the interferon signaling pathway itself. We report that the inhibition of the Jak/STAT pathway by HSV-1 requires viral gene expression and that viral immediate-early protein ICP27 plays a role in downregulating STAT-1more » phosphorylation and in preventing the accumulation of STAT-1 in the nucleus. We also show that expression of ICP27 by transfection causes an inhibition of IFN-induced STAT-1 nuclear accumulation. Therefore, ICP27 is necessary and sufficient for at least some of the effects of HSV infection on STAT-1.« less

  20. Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated levels of FoxP3+ regulatory t cells in the granulomatous lesions.

    PubMed

    Rahman, Sayma; Gudetta, Berhanu; Fink, Joshua; Granath, Anna; Ashenafi, Senait; Aseffa, Abraham; Derbew, Milliard; Svensson, Mattias; Andersson, Jan; Brighenti, Susanna Grundström

    2009-06-01

    Immune responses were assessed at the single-cell level in lymph nodes from children with tuberculous lymphadenitis. Tuberculosis infection was associated with tissue remodeling of lymph nodes as well as altered cellular composition. Granulomas were significantly enriched with CD68+ macrophages expressing the M. tuberculosis complex-specific protein antigen MPT64 and inducible nitric oxide synthase. There was a significant increase in CD8+ cytolytic T cells surrounding the granuloma; however, CD8+ T cells expressed low levels of the cytolytic and antimicrobial effector molecules perforin and granulysin in the granulomatous lesions. Quantitative real-time mRNA analysis revealed that interferon-gamma, tumor necrosis factor-alpha, and interleukin-17 were not up-regulated in infected lymph nodes, but there was a significant induction of both transforming growth factor-beta and interleukin-13. In addition, granulomas contained an increased number of CD4+FoxP3+ T cells co-expressing the immunoregulatory cytotoxic T-lymphocyte antigen-4 and glucocorticoid-induced tumor necrosis factor receptor molecules. Low numbers of CD8+ T cells in the lesions correlated with high levels of transforming growth factor-beta and FoxP3+ regulatory T cells, suggesting active immunosuppression at the local infection site. Compartmentalization and skewing of the immune response toward a regulatory phenotype may result in an uncoordinated effector T-cell response that reduces granule-mediated killing of M. tuberculosis-infected cells and subsequent disease control.

  1. Hypothyroidism In Hepatitis C Patients On Pegylated Interferon Therapy.

    PubMed

    Hameed, Muhammad Asim; Mehmood, Asif; Farooq, Muhammad Ahsan; Tayyab, Ghias Un Nabi; Haq Toor, Israr Ul

    2016-01-01

    Chronic hepatitis has become a major health problem all over the world especially in the third world countries. The most common cause of chronic hepatitis in Pakistan is hepatitis C which can lead Toliver cirrhosis and hepatocellular carcinoma. In Pakistan Pegylated Interferon Alpha is still corner stone of therapy for chronic hepatitis C. One of the major side effects of this therapy is the development of thyroid dysfunction, i.e., hypothyroidism and hyperthyroidism. This study was done to assess the frequency of hypothyroidism in hepatitis C patients after three months of pegylated interferon therapy. This study was conducted from 1st October 2013 to 31st march 2014 at outpatients department (OPD) of Gastroenterology and Hepatology, Lahore General Hospital Lahore. Descriptive case series study design was used. The sample of 200 patients was taken from the patients who visited OPD and fulfil the inclusion criteria of the study. Serum thyroid stimulating hormone level (TSH) was done before and after completion of three months therapy at centre for Nuclear Medicine (CENUM) laboratory, Mayo Hospital, Lahore by immune-radiometric assay (IRMA) and patients having TSH>4.0 mIU/L (normal range: 0.2-4.0 mIU/L) were considered hypothyroid. The mean age of the patients was 36.29±8.5 years. One hundred and twenty-three (61.5%) were male and 77 (38.5%) were female. After 3 months of interferon therapy, 163 (81.5%) patients were euthyroid and 37(18.5%) patients were having thyroid dysfunction. There were total 29 (14.5%) hypothyroid patients; 8 (27.6%) were male and 21 (72.4%) female. It is concluded from this study that frequency of hypothyroidism in patients with chronic hepatitis C was 14.5% after treatment with pegylated interferon therapy for 3 months. Female patients were more prone to develop hypothyroidism as compared to male patients.

  2. Cold activation of complement for monitoring the response to interferon in patients with chronic hepatitis C.

    PubMed

    Akahane, Y; Miyazaki, Y; Naitoh, S; Takeda, K; Tsuda, F; Okamoto, H; Itoh, K; Miyakawa, Y; Mayumi, M

    1996-02-01

    Because of its specific association with hepatitis C virus (HCV) infection, the cold activation of complement is an easy and inexpensive indicator of HCV viremia. It was evaluated for eligibility as a marker of response to interferon in patients with hepatitis C. The cold activation of complement was determined by the loss or decrease of hemolytic activity with the microtitration method in sera that had been stored at 4 degrees C overnight. We observed the loss of hemolytic activity by the cold activation of complement in 236 (72%) and a decrease in 56 (17%) of 327 sera from patients with HCV-associated chronic liver disease, which was much more (p < 0.001) that in 1 (1%) and 13 (14%), respectively, of 49 sera from patients with chronic liver disease associated with hepatitis B virus infection. Interferon-alpha (total dose 516 x 10(6) units) or interferon-alpha 2b (774 x 10(6) units) was given to 67 patients with chronic hepatitis C, of whom 56 had the cold activation of complement. The response to interferon was evaluated by the clearance of serum HCV RNA at 6 months after the completion of therapy. The cold activation of complement disappeared in 18 patients, of whom 15 (86%) responded. It persisted or fluctuated in the remaining 38 patients, only six (16%) of whom responded to interferon (p < 0.001). The cold activation of complement once disappeared at the completion of interferon and then reappeared in patients who relapsed after completing interferon therapy. These results indicate that the cold activation of complement may be associated with the presence of HCV in blood and a lower rate of durable response after completion of interferon therapy.

  3. Clinical Value of Thyrotropin Receptor Antibodies for the Differential Diagnosis of Interferon Induced Thyroiditis.

    PubMed

    Benaiges, D; Garcia-Retortillo, M; Mas, A; Cañete, N; Broquetas, T; Puigvehi, M; Chillarón, J J; Flores-Le Roux, J A; Sagarra, E; Cabrero, B; Zaffalon, D; Solà, R; Pedro-Botet, J; Carrión, J A

    2016-01-01

    The clinical value of thyrotropin receptor antibodies for the differential diagnosis of thyrotoxicosis induced by pegylated interferon-alpha remains unknown. We analyzed the diagnostic accuracy of thyrotropin receptor antibodies in the differential diagnosis of thyrotoxicosis in patients with chronic hepatitis C (CHC) receiving pegylated interferon-alpha plus ribavirin. Retrospective analysis of 274 patients with CHC receiving pegylated interferon-alpha plus ribavirin. Interferon-induced thyrotoxicosis was classified according to clinical guidelines as Graves disease, autoimmune and non- autoimmune destructive thyroiditis. 48 (17.5%) patients developed hypothyroidism, 17 (6.2%) thyrotoxicosis (6 non- autoimmune destructive thyroiditis, 8 autoimmune destructive thyroiditis and 3 Graves disease) and 22 "de novo" thyrotropin receptor antibodies (all Graves disease, 2 of the 8 autoimmune destructive thyroiditis and 17 with normal thyroid function). The sensitivity and specificity of thyrotropin receptor antibodies for Graves disease diagnosis in patients with thyrotoxicosis were 100 and 85%, respectively. Patients with destructive thyroiditis developed hypothyroidism in 87.5% of autoimmune cases and in none of those with a non- autoimmune etiology (p<0.001). Thyrotropin receptor antibodies determination cannot replace thyroid scintigraphy for the differential diagnosis of thyrotoxicosis in CHC patients treated with pegylated interferon. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Dampened STING-Dependent Interferon Activation in Bats.

    PubMed

    Xie, Jiazheng; Li, Yang; Shen, Xurui; Goh, Geraldine; Zhu, Yan; Cui, Jie; Wang, Lin-Fa; Shi, Zheng-Li; Zhou, Peng

    2018-03-14

    Compared with terrestrial mammals, bats have a longer lifespan and greater capacity to co-exist with a variety of viruses. In addition to cytosolic DNA generated by these viral infections, the metabolic demands of flight cause DNA damage and the release of self-DNA into the cytoplasm. However, whether bats have an altered DNA sensing/defense system to balance high cytosolic DNA levels remains an open question. We demonstrate that bats have a dampened interferon response due to the replacement of the highly conserved serine residue (S358) in STING, an essential adaptor protein in multiple DNA sensing pathways. Reversing this mutation by introducing S358 restored STING functionality, resulting in interferon activation and virus inhibition. Combined with previous reports on bat-specific changes of other DNA sensors such as TLR9, IFI16, and AIM2, our findings shed light on bat adaptation to flight, their long lifespan, and their unique capacity to serve as a virus reservoir. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Stability of nonaqueous suspension formulations of plasma derived factor IX and recombinant human alpha interferon at elevated temperatures.

    PubMed

    Knepp, V M; Muchnik, A; Oldmark, S; Kalashnikova, L

    1998-07-01

    To identify a suitable nonaqueous, parenterally acceptable suspending vehicle whereby a therapeutic protein is delivered as a stable flowable powder, making it amenable to delivery from sustained delivery systems maintained at body temperature. Formulations of plasma derived Factor IX (pdFIX) and recombinant human alpha interferon (rhalpha-IFN) were formulated as dry powders, suspended in various vehicles (perfluorodecalin, perfluorotributylamine, methoxyflurane, polyethylene glycol 400, soybean oil, tetradecane or octanol) and stored at 37 degrees C. Stability was assessed by size exclusion chromatography, reverse phase chromatography, ion exchange chromatography, and bioassay, and was compared to the stability of dry powder formulations stored at 37 degrees C and -80 degrees C. PdFIX was stable when stored at 37 degrees C as a dry powder, or when the dry powder was suspended in the pharmaceutically acceptable vehicles perfluorodecalin or perfluorotributylamine. Suspensions of the powder in other pharmaceutically/parenterally acceptable vehicles such as soybean oil or PEG 400 resulted in aggregation and loss of bioactivity. A dry powder formulation of rhalpha-IFN suspended in perfluorodecalin was also stable at 37 degrees C. This study shows the potential utility of perfluorinated hydrocarbons as nonaqueous suspending vehicles for long term in-vivo delivery of therapeutic proteins.

  6. NSs protein of severe fever with thrombocytopenia syndrome virus suppresses interferon production through different mechanism than Rift Valley fever virus.

    PubMed

    Zhang, S; Zheng, B; Wang, T; Li, A; Wan, J; Qu, J; Li, C H; Li, D; Liang, M

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified Phlebovirus that causes severe fever with thrombocytopenia syndrome. Our study demonstrated that SFTSV NSs functioned as IFN antagonist mainly by suppressing TBK1/IKKε-IRF3 signaling pathway. NSs interacted with and relocalized TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures and this interaction could effectively inhibit downstream phosphorylation and dimerization of interferon regulatory factor 3 (IRF3), resulting in the suppression of antiviral signaling and IFN induction. Functional sites of SFTSV NSs binding with TBK1 were then studied and results showed that NSs had lost their IFN-inhibiting activity after deleting the 25 amino acids in N-terminal. Furthermore, the mechanism of Rift Valley fever virus (RVFV) NSs blocking IFN-β response were also investigated. Preliminary results showed that RVFV NSs proteins could neither interact nor co-localize with TBK1 in cytoplasm, but suppressed its expression levels, phosphorylation and dimerization of IRF3 in the subsequent steps, resulting in inhibition of the IFN-β production. Altogether, our data demonstrated the probable mechanism used by SFTSV to inhibit IFN responses which was different from RVFV and pointed toward a novel mechanism for RVFV suppressing IFN responses.

  7. A case of reversible dilated cardiomyopathy after alpha-interferon therapy in a patient with renal cell carcinoma.

    PubMed

    Kuwata, Akiko; Ohashi, Masuo; Sugiyama, Masaya; Ueda, Ryuzo; Dohi, Yasuaki

    2002-12-01

    A 47-year-old man with renal cell carcinoma underwent nephrectomy, and postoperative chemotherapy was performed with recombinant alpha-interferon. Five years later, he experienced dyspnea during physical exertion. An echocardiogram revealed dilatation and systolic dysfunction of the left ventricle, and thallium-201 myocardial scintigraphy showed diffuse heterogeneous perfusion. We diagnosed congestive heart failure because of cardiomyopathy induced by alpha-interferon therapy. Withdrawal of interferon therapy and the combination of an angiotensin-converting enzyme inhibitor, diuretics, and digitalis improved left ventricular systolic function. Furthermore, myocardial scintigraphy using [123I] beta-methyl-p-iodophenylpentadecanoic acid (123I-BMIPP) or [123 I]metaiodobenzylguanidine (123I-MIBG) revealed normal perfusion after the improvement of congestive heart failure. This is a rare case of interferon-induced cardiomyopathy that resulted in normal myocardial images in 123I-BMIPP and 123I-MIBG scintigrams after withdrawal of interferon therapy.

  8. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    PubMed

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity.

    PubMed

    Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan

    2016-06-01

    Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed. © 2016 The Authors Cellular Microbiology published by John Wiley & Sons Ltd.

  10. (PCG) Protein Crystal Growth Gamma-Interferon

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Gamma-Interferon. Stimulates the body's immune system and is used clinically in the treatment of cancer. Potential as an anti-tumor agent against solid tumors as well as leukemia's and lymphomas. It has additional utility as an anti-ineffective agent, including antiviral, anti-bacterial, and anti-parasitic activities. Principal Investigator on STS-26 was Charles Bugg.

  11. Bropirimine inhibits osteoclast differentiation through production of interferon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Hiroaki; Mochizuki, Ayako; Yoshimura, Kentaro

    Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presencemore » of activated vitamin D{sub 3}. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D{sub 3}. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.« less

  12. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.

    PubMed

    Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K

    2005-01-20

    Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.

  13. Final Report of Unmet Needs of Interferon-Based Therapy for Chronic Hepatitis C in Korea: Basis for Moving into the Direct-Acting Antiviral Era

    PubMed Central

    Jang, Eun Sun; Kim, Young Seok; Kim, Kyung-Ah; Lee, Youn Jae; Chung, Woo Jin; Kim, In Hee; Lee, Byung Seok; Jeong, Sook-Hyang

    2017-01-01

    Background/Aims To evaluate the era of direct acting antivirals (DAAs), we must understand the treatment patterns and outcomes of interferon-based therapy for hepatitis C virus (HCV) infection. We aimed to elucidate the treatment rate, factors affecting treatment decisions, and efficacy of interferon-based therapy in a real-world setting. Methods This nationwide cohort study included 1,191 newly diagnosed patients with chronic HCV infection at seven tertiary hospitals in South Korea. Subjects were followed retrospectively until March 2015, which was just before the approval of DAA therapy. Results In total, 48.2% and 49.3% of the patients had HCV genotypes 1 and 2, respectively. Interferon-based therapy was initiated in 541 patients (45.4%). The major reasons for no treatment included ineligibility (18.9%), concern about adverse events (22.3%), cost (21.5%), and an age >75 years (19.5%). Interferon-based therapy was discontinued (18.5%) mainly due to adverse events (n=66). The intent-to-treat analysis found that the sustained virologic response (SVR) rate was 58.3% in genotype 1 patients and 74.7% in non-genotype 1 patients. Conclusions Approximately one-third of newly diagnosed HCV patients in South Korea received interferon-based therapy and showed a suboptimal SVR rate. Diagnosis of patients at younger ages and with a less advanced liver status and reducing the DAA therapy cost may fulfill unmet needs. PMID:28506027

  14. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis.

    PubMed

    Fantini, M C; Becker, C; Tubbe, I; Nikolaev, A; Lehr, H A; Galle, P; Neurath, M F

    2006-05-01

    The imbalance between effector and regulatory T cells plays a central role in the pathogenesis of inflammatory bowel diseases. In addition to the thymus, CD4+CD25+ regulatory T cells can be induced in the periphery from a population of CD25- T cells by treatment with transforming growth factor beta (TGF-beta). Here, we analysed the in vivo function of TGF-beta induced regulatory T (Ti-Treg) cells in experimental colitis. Ti-Treg cells were generated in cell culture in the presence or absence of TGF-beta and tested for their regulatory potential in experimental colitis using the CD4+CD62L+ T cell transfer model. Ti-Treg cells significantly suppressed Th1 mediated colitis on CD4+CD62L+ T cell transfer in vivo, as shown by high resolution endoscopy, histology, immunohistochemistry, and cytokine analysis. Further analysis of in vivo and in vitro expanded Ti-Treg cells showed that exogenous interleukin 2 (IL-2) was crucial for survival and expansion of these cells. Our data suggest that regulatory Ti-Treg cells expand by TGF-beta and exogenous IL-2 derived from effector T cells at the site of inflammation. In addition to Tr1 and thymic CD4+CD25+ T cells, peripheral Ti-Treg cells emerge as a class of regulatory T cells with therapeutic potential in T cell mediated chronic intestinal inflammation.

  15. Highly accessible AU-rich regions in 3’ untranslated regions are hotspots for binding of regulatory factors

    PubMed Central

    2017-01-01

    Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3’UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing “free” target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer

  16. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants.

    PubMed

    Jin, Jinpu; Tian, Feng; Yang, De-Chang; Meng, Yu-Qi; Kong, Lei; Luo, Jingchu; Gao, Ge

    2017-01-04

    With the goal of providing a comprehensive, high-quality resource for both plant transcription factors (TFs) and their regulatory interactions with target genes, we upgraded plant TF database PlantTFDB to version 4.0 (http://planttfdb.cbi.pku.edu.cn/). In the new version, we identified 320 370 TFs from 165 species, presenting a more comprehensive genomic TF repertoires of green plants. Besides updating the pre-existing abundant functional and evolutionary annotation for identified TFs, we generated three new types of annotation which provide more directly clues to investigate functional mechanisms underlying: (i) a set of high-quality, non-redundant TF binding motifs derived from experiments; (ii) multiple types of regulatory elements identified from high-throughput sequencing data; (iii) regulatory interactions curated from literature and inferred by combining TF binding motifs and regulatory elements. In addition, we upgraded previous TF prediction server, and set up four novel tools for regulation prediction and functional enrichment analyses. Finally, we set up a novel companion portal PlantRegMap (http://plantregmap.cbi.pku.edu.cn) for users to access the regulation resource and analysis tools conveniently. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. [Peptide Ala-Glu-Asp-Gly and interferon gamma: their role in immune response during aging].

    PubMed

    Lin'kova, N S; Kuznik, B I; Khavinson, V Kh

    2012-01-01

    The decrease of lymphocyte interferon gamma expression during aging is one of the main mechanisms leading to the immunodeficiency state in the elderly. Cell penetrating geroprotective peptide Ala-Glu-Asp-Gly has the capability to activate the proliferation of lymphocytes in thymus during its aging. The nucleotide sequence which is complementary contacted with peptide Ala-Glu-Asp-Gly was found in promoter region of interferon gamma gene. Thus, the immune protection of this peptide can be explained by its activation of the interferon gamma production in T-cells.

  18. A MicroRNA Screen Identifies the Wnt Signaling Pathway as a Regulator of the Interferon Response during Flavivirus Infection

    PubMed Central

    Smith, Jessica L.; Jeng, Sophia; McWeeney, Shannon K.

    2017-01-01

    ABSTRACT The impact of mosquito-borne flavivirus infections worldwide is significant, and many critical aspects of these viruses' biology, including virus-host interactions, host cell requirements for replication, and how virus-host interactions impact pathology, remain to be fully understood. The recent reemergence and spread of flaviviruses, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV), highlight the importance of performing basic research on this important group of pathogens. MicroRNAs (miRNAs) are small, noncoding RNAs that modulate gene expression posttranscriptionally and have been demonstrated to regulate a broad range of cellular processes. Our research is focused on identifying pro- and antiflaviviral miRNAs as a means of characterizing cellular pathways that support or limit viral replication. We have screened a library of known human miRNA mimics for their effect on the replication of three flaviviruses, DENV, WNV, and Japanese encephalitis virus (JEV), using a high-content immunofluorescence screen. Several families of miRNAs were identified as inhibiting multiple flaviviruses, including the miRNA miR-34, miR-15, and miR-517 families. Members of the miR-34 family, which have been extensively characterized for their ability to repress Wnt/β-catenin signaling, demonstrated strong antiflaviviral effects, and this inhibitory activity extended to other viruses, including ZIKV, alphaviruses, and herpesviruses. Previous research suggested a possible link between the Wnt and type I interferon (IFN) signaling pathways. Therefore, we investigated the role of type I IFN induction in the antiviral effects of the miR-34 family and confirmed that these miRNAs potentiate interferon regulatory factor 3 (IRF3) phosphorylation and translocation to the nucleus, the induction of IFN-responsive genes, and the release of type I IFN from transfected cells. We further demonstrate that the intersection between the Wnt and IFN signaling pathways

  19. A MicroRNA Screen Identifies the Wnt Signaling Pathway as a Regulator of the Interferon Response during Flavivirus Infection.

    PubMed

    Smith, Jessica L; Jeng, Sophia; McWeeney, Shannon K; Hirsch, Alec J

    2017-04-15

    The impact of mosquito-borne flavivirus infections worldwide is significant, and many critical aspects of these viruses' biology, including virus-host interactions, host cell requirements for replication, and how virus-host interactions impact pathology, remain to be fully understood. The recent reemergence and spread of flaviviruses, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV), highlight the importance of performing basic research on this important group of pathogens. MicroRNAs (miRNAs) are small, noncoding RNAs that modulate gene expression posttranscriptionally and have been demonstrated to regulate a broad range of cellular processes. Our research is focused on identifying pro- and antiflaviviral miRNAs as a means of characterizing cellular pathways that support or limit viral replication. We have screened a library of known human miRNA mimics for their effect on the replication of three flaviviruses, DENV, WNV, and Japanese encephalitis virus (JEV), using a high-content immunofluorescence screen. Several families of miRNAs were identified as inhibiting multiple flaviviruses, including the miRNA miR-34, miR-15, and miR-517 families. Members of the miR-34 family, which have been extensively characterized for their ability to repress Wnt/β-catenin signaling, demonstrated strong antiflaviviral effects, and this inhibitory activity extended to other viruses, including ZIKV, alphaviruses, and herpesviruses. Previous research suggested a possible link between the Wnt and type I interferon (IFN) signaling pathways. Therefore, we investigated the role of type I IFN induction in the antiviral effects of the miR-34 family and confirmed that these miRNAs potentiate interferon regulatory factor 3 (IRF3) phosphorylation and translocation to the nucleus, the induction of IFN-responsive genes, and the release of type I IFN from transfected cells. We further demonstrate that the intersection between the Wnt and IFN signaling pathways occurs at

  20. The Role of the Interferon-Gamma-Jak/STAT Pathway in Rheumatoid Arthritis

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0537 TITLE: The Role of the Interferon-Gamma-Jak/STAT Pathway in Rheumatoid Arthritis PRINCIPAL INVESTIGATOR: Stanley...Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER The Role of the Interferon-Gamma-Jak/STAT Pathway in Rheumatoid Arthritis 5b...subsets that likely counteracts IL-2 regulator activity and contribute to the pathogenesis of RA. 15. SUBJECT TERMS Rheumatoid arthritis ; Autoimmunity; T

  1. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses

    PubMed Central

    Montanuy, Imma; Alejo, Ali; Alcami, Antonio

    2011-01-01

    Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110

  2. Bell's palsy during interferon alpha 2a treatment in a case with Behçet uveitis.

    PubMed

    Yalçindağ, Fatime Nilüfer; Alay, Cem

    2013-01-01

    To present a case who developed Bell's palsy while using interferon alpha 2a for Behçet uveitis. A patient with Behçet disease presented with decreased vision in his right eye. Ophthalmic examination, fundus fluorescein angiography and optical coherence tomography were performed. After developing facial paralysis while on interferon therapy, the patient was referred to our neurology service for differential diagnosis and treatment. Examination of right eye revealed panuveitis with branch retinal vein occlusion, so high dose steroids were prescribed. In three days there was no improvement in terms of vitreous inflammation and so steroids were replaced with interferon. At the seventh month, patient experienced a facial paralysis. After eliminating other causes, including viral infections, trauma, cold exposure and neurological evaluation with cranial MRI, the patient was diagnosed to have Bell's palsy by a neurologist. Interferon was replaced with mycophenolate mofetil and the Bell's palsy was treated with oral steroids. It is important to be alert to both common and rare complications while treating with interferon.

  3. Assessment of Type I Interferon Signaling in Pediatric Inflammatory Disease.

    PubMed

    Rice, Gillian I; Melki, Isabelle; Frémond, Marie-Louise; Briggs, Tracy A; Rodero, Mathieu P; Kitabayashi, Naoki; Oojageer, Anthony; Bader-Meunier, Brigitte; Belot, Alexandre; Bodemer, Christine; Quartier, Pierre; Crow, Yanick J

    2017-02-01

    Increased type I interferon is considered relevant to the pathology of a number of monogenic and complex disorders spanning pediatric rheumatology, neurology, and dermatology. However, no test exists in routine clinical practice to identify enhanced interferon signaling, thus limiting the ability to diagnose and monitor treatment of these diseases. Here, we set out to investigate the use of an assay measuring the expression of a panel of interferon-stimulated genes (ISGs) in children affected by a range of inflammatory diseases. A cohort study was conducted between 2011 and 2016 at the University of Manchester, UK, and the Institut Imagine, Paris, France. RNA PAXgene blood samples and clinical data were collected from controls and symptomatic patients with a genetically confirmed or clinically well-defined inflammatory phenotype. The expression of six ISGs was measured by quantitative polymerase chain reaction, and the median fold change was used to calculate an interferon score (IS) for each subject compared to a previously derived panel of 29 controls (where +2 SD of the control data, an IS of >2.466, is considered as abnormal). Results were correlated with genetic and clinical data. Nine hundred ninety-two samples were analyzed from 630 individuals comprising symptomatic patients across 24 inflammatory genotypes/phenotypes, unaffected heterozygous carriers, and controls. A consistent upregulation of ISG expression was seen in 13 monogenic conditions (455 samples, 265 patients; median IS 10.73, interquartile range (IQR) 5.90-18.41), juvenile systemic lupus erythematosus (78 samples, 55 patients; median IS 10.60, IQR 3.99-17.27), and juvenile dermatomyositis (101 samples, 59 patients; median IS 9.02, IQR 2.51-21.73) compared to controls (78 samples, 65 subjects; median IS 0.688, IQR 0.427-1.196), heterozygous mutation carriers (89 samples, 76 subjects; median IS 0.862, IQR 0.493-1.942), and individuals with non-molecularly defined autoinflammation (89 samples, 69

  4. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells.

    PubMed

    Laurette, Patrick; Strub, Thomas; Koludrovic, Dana; Keime, Céline; Le Gras, Stéphanie; Seberg, Hannah; Van Otterloo, Eric; Imrichova, Hana; Siddaway, Robert; Aerts, Stein; Cornell, Robert A; Mengus, Gabrielle; Davidson, Irwin

    2015-03-24

    Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.

  5. Interferon-Inducible CD169/Siglec1 Attenuates Anti-HIV-1 Effects of Alpha Interferon

    PubMed Central

    Akiyama, Hisashi; Ramirez, Nora-Guadalupe Pina; Gibson, Gregory; Kline, Christopher; Watkins, Simon; Ambrose, Zandrea

    2017-01-01

    ABSTRACT A hallmark of human immunodeficiency virus type 1 (HIV-1) infection in vivo is chronic immune activation concomitant with type I interferon (IFN) production. Although type I IFN induces an antiviral state in many cell types, HIV-1 can replicate in vivo via mechanisms that have remained unclear. We have recently identified a type I IFN-inducible protein, CD169, as the HIV-1 attachment factor on dendritic cells (DCs) that can mediate robust infection of CD4+ T cells in trans. Since CD169 expression on macrophages is also induced by type I IFN, we hypothesized that type I IFN-inducible CD169 could facilitate productive HIV-1 infection in myeloid cells in cis and CD4+ T cells in trans and thus offset antiviral effects of type I IFN. In support of this hypothesis, infection of HIV-1 or murine leukemia virus Env (MLV-Env)-pseudotyped HIV-1 particles was enhanced in IFN-α-treated THP-1 monocytoid cells, and this enhancement was primarily dependent on CD169-mediated enhancement at the virus entry step, a phenomenon phenocopied in HIV-1 infections of IFN-α-treated primary monocyte-derived macrophages (MDMs). Furthermore, expression of CD169, a marker of type I IFN-induced immune activation in vivo, was enhanced in lymph nodes from pigtailed macaques infected with simian immunodeficiency virus (SIV) carrying HIV-1 reverse transcriptase (RT-SHIV), compared to uninfected macaques, and interestingly, there was extensive colocalization of p27gag and CD169, suggesting productive infection of CD169+ myeloid cells in vivo. While cell-free HIV-1 infection of IFN-α-treated CD4+ T cells was robustly decreased, initiation of infection in trans via coculture with CD169+ IFN-α-treated DCs restored infection, suggesting that HIV-1 exploits CD169 in cis and in trans to attenuate a type I IFN-induced antiviral state. IMPORTANCE HIV-1 infection in humans causes immune activation characterized by elevated levels of proinflammatory cytokines, including type I interferons (IFN

  6. The changing landscape of hepatitis C virus therapy: focus on interferon-free treatment.

    PubMed

    Lam, Brian P; Jeffers, Thomas; Younoszai, Zahra; Fazel, Yousef; Younossi, Zobair M

    2015-09-01

    Chronic hepatitis C (CHC) affects over 185 million individuals worldwide, approximately 3% of the world's population. CHC can lead to quality of life impairment, cirrhosis, hepatocellular carcinoma (HCC), liver failure and liver-related death. While CHC has been associated with increases in HCC, liver-related mortality and all-cause mortality, being cured of CHC is associated with improvement in these outcomes. Older interferon-based regimens were complex and toxic and required 6-12 months of therapy, with cure rates averaging around 40-45% for HCV genotype 1. Newer interferon-free regimens are now available in the US, Europe, Japan and in other countries. These regimens have short durations, minimal side effects, low pill burden and efficacy approaching 90-100%. We may eventually see single-tablet regimens lasting no more than 4-6 weeks. This review will summarize the data regarding these interferon-free regimens, including Gilead's Harvoni (sofosbuvir/ledipasvir), AbbVie's Viekira Pak (paritaprevir/ritonavir/ombitasvir with dasabuvir), and Janssen's Olysio (simeprevir) with sofosbuvir. Some practical considerations as we move into an interferon-free era will also be discussed, such as patient adherence and drug-drug interactions.

  7. The changing landscape of hepatitis C virus therapy: focus on interferon-free treatment

    PubMed Central

    Lam, Brian P.; Jeffers, Thomas; Younoszai, Zahra; Fazel, Yousef

    2015-01-01

    Chronic hepatitis C (CHC) affects over 185 million individuals worldwide, approximately 3% of the world’s population. CHC can lead to quality of life impairment, cirrhosis, hepatocellular carcinoma (HCC), liver failure and liver-related death. While CHC has been associated with increases in HCC, liver-related mortality and all-cause mortality, being cured of CHC is associated with improvement in these outcomes. Older interferon-based regimens were complex and toxic and required 6–12 months of therapy, with cure rates averaging around 40–45% for HCV genotype 1. Newer interferon-free regimens are now available in the US, Europe, Japan and in other countries. These regimens have short durations, minimal side effects, low pill burden and efficacy approaching 90–100%. We may eventually see single-tablet regimens lasting no more than 4–6 weeks. This review will summarize the data regarding these interferon-free regimens, including Gilead’s Harvoni (sofosbuvir/ledipasvir), AbbVie’s Viekira Pak (paritaprevir/ritonavir/ombitasvir with dasabuvir), and Janssen’s Olysio (simeprevir) with sofosbuvir. Some practical considerations as we move into an interferon-free era will also be discussed, such as patient adherence and drug–drug interactions. PMID:26327920

  8. Is the use of IL28B genotype justified in the era of interferon-free treatments for hepatitis C?

    PubMed Central

    Kanda, Tatsuo; Nakamoto, Shingo; Yokosuka, Osamu

    2015-01-01

    In 2009, several groups reported that interleukin-28B (IL28B) genotypes are associated with the response to peginterferon plus ribavirin therapy for chronic hepatitis C virus (HCV) infection in a genome-wide association study, although the mechanism of this association is not yet well understood. However, in recent years, tremendous progress has been made in the treatment of HCV infection. In Japan, some patients infected with HCV have the IL28B major genotype, which may indicate a favorable response to interferon-including regimens; however, certain patients within this group are also interferon-intolerant or ineligible. In Japan, interferon-free 24-wk regimens of asunaprevir and daclatasvir are now available for HCV genotype 1b-infected patients who are interferon-intolerant or ineligible or previous treatment null-responders. The treatment response to interferon-free regimens appears better, regardless of IL28B genotype. Maybe other interferon-free regimens will widely be available soon. In conclusion, although some HCV-infected individuals have IL28B favorable alleles, importance of IL28B will be reduced with availability of oral interferon free regimen. PMID:26279979

  9. Anxiety sensitivity and affect regulatory strategies: individual and interactive risk factors for anxiety-related symptoms.

    PubMed

    Kashdan, Todd B; Zvolensky, Michael J; McLeish, Alison C

    2008-01-01

    Studies have shown that anxiety sensitivity (AS) is a risk factor in the development of pathological anxiety. Recent theoretical models emphasize the additional importance of how people handle their anxious experiences. The present study examined whether high AS and being fixated on the control and regulation of unwanted anxious feelings or being unable to properly modulate affect as needed lead to particularly problematic outcomes. We examined the interactive influence of AS and affect regulatory strategies on the frequency and intensity of anxiety symptoms. Questionnaires were completed by 248 young adults in the community. Results showed a general pattern with anxiety symptoms being the most severe when high AS was paired with affect regulatory difficulties. Of participants high in AS, anxious arousal and worry were heightened in the presence of less acceptance of emotional distress; anxious arousal, worry, and agoraphobic cognitions were heightened when fewer resources were available to properly modulate affect; and agoraphobic cognitions were heightened in the presence of high emotion expressiveness. As evidence of construct specificity, an alternative model with anhedonic depressive symptoms as a main effect and interaction effect (with regulatory strategies) failed to predict anxiety symptoms. However, anxiety sensitivity and less acceptance of emotional distress were associated with greater anhedonia. Results are discussed in the context of how and when affect regulatory behavior shifts individuals from normative anxiety to pathology.

  10. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution.

    PubMed

    Vierstra, Jeff; Rynes, Eric; Sandstrom, Richard; Zhang, Miaohua; Canfield, Theresa; Hansen, R Scott; Stehling-Sun, Sandra; Sabo, Peter J; Byron, Rachel; Humbert, Richard; Thurman, Robert E; Johnson, Audra K; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Haugen, Eric; Dunn, Douglas; Wilken, Matthew S; Josefowicz, Steven; Samstein, Robert; Chang, Kai-Hsin; Eichler, Evan E; De Bruijn, Marella; Reh, Thomas A; Skoultchi, Arthur; Rudensky, Alexander; Orkin, Stuart H; Papayannopoulou, Thalia; Treuting, Piper M; Selleri, Licia; Kaul, Rajinder; Groudine, Mark; Bender, M A; Stamatoyannopoulos, John A

    2014-11-21

    To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Copyright © 2014, American Association for the Advancement of Science.

  11. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus.

    PubMed

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.

  12. Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    PubMed Central

    Holzer, Barbara; Bakshi, Siddharth; Bridgen, Anne; Baron, Michael D.

    2011-01-01

    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU. PMID:22163042

  13. [Cost-utility analisys of multiple sclerosis treatment with glatiramer acetate or interferon beta in Spain].

    PubMed

    Rubio-Terrés, C; Arístegui Ruiz, I; Medina Redondo, F; Izquierdo Ayuso, G

    2003-01-01

    To carry out a cost-utility analysis of the treatment of relapsing-remitting multiple sclerosis (RRMS) with glatiramer acetate (copaxone) or interferon beta (all, avonex, rebif and betaferon). A pharmacoeconomic Markov model was used to compare treatment options by simulating the life of a hypothetical cohort of women aged 30, from the societal perspective. The transition probabilities, utilities, resource utilisation and costs (direct and indirect) were obtained from Spanish sources and from bibliography. Univariant sensitivity analyses of the base case were performed. In the base case analysis, the average cost per patient (euro in 2001) for a lifetime treatment, considering a life expectancy of 53 years, would be 1,243,906 euros (euro), 1,818,149 euros, 1,763,263 euros, 1,987,153 euros and 1,704,031 euros with copaxone, all interferons, avonex, rebif and betaferon, respectively. Therefore, the saving with copaxone would range between 460,000 and 737,000 euros approximately. The quality-adjusted life years (QALY) obtained with copaxone or interferons would be 10.977 and 6.917, respectively, with an average gain of 4.060 QALY patient with copaxone. The sensitivity analyses confirmed the robustness of the base case. The interferons would only be superior to copaxone in the unlikely hypothetical case that they delay the progression of the illness by 20% more than that actually observed in clinical trials. For a typical patient with RRMS, treatment with copaxone would be more efficient than interferons and would dominate (would be more efficacious with lower costs) interferon beta.

  14. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon.

    PubMed

    Laurent-Rolle, Maudry; Morrison, Juliet; Rajsbaum, Ricardo; Macleod, Jesica M Levingston; Pisanelli, Giuseppe; Pham, Alissa; Ayllon, Juan; Miorin, Lisa; Martinez, Carles; tenOever, Benjamin R; García-Sastre, Adolfo

    2014-09-10

    To successfully establish infection, flaviviruses have to overcome the antiviral state induced by type I interferon (IFN-I). The nonstructural NS5 proteins of several flaviviruses antagonize IFN-I signaling. Here we show that yellow fever virus (YFV) inhibits IFN-I signaling through a unique mechanism that involves binding of YFV NS5 to the IFN-activated transcription factor STAT2 only in cells that have been stimulated with IFN-I. This NS5-STAT2 interaction requires IFN-I-induced tyrosine phosphorylation of STAT1 and the K63-linked polyubiquitination at a lysine in the N-terminal region of YFV NS5. We identified TRIM23 as the E3 ligase that interacts with and polyubiquitinates YFV NS5 to promote its binding to STAT2 and trigger IFN-I signaling inhibition. Our results demonstrate the importance of YFV NS5 in overcoming the antiviral action of IFN-I and offer a unique example of a viral protein that is activated by the same host pathway that it inhibits. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by Type I interferon

    PubMed Central

    Rajsbaum, Ricardo; Macleod, Jesica M. Levingston; Pisanelli, Giuseppe; Pham, Alissa; Ayllon, Juan; Miorin, Lisa; Martinez, Carles; tenOever, Benjamin R; García-Sastre, Adolfo

    2014-01-01

    Summary To successfully establish infection Flaviviruses have to overcome the antiviral state induced by type I interferon (IFN-I). The nonstructural NS5 proteins of several flaviviruses antagonize IFN-I signaling. Here we show that yellow fever virus (YFV) inhibits IFN-I signaling through a unique mechanism that involves binding of YFV NS5 to the IFN-activated transcription factor STAT2 only in cells that have been stimulated with IFN-I. This NS5-STAT2 interaction requires IFN-I-induced tyrosine phosphorylation of STAT1 and the K63-linked polyubiquitination at a lysine in the N-terminal region of YFV NS5. We identified TRIM23 as the E3 ligase that interacts with and polyubiquitinates YFV NS5 to promote its binding to STAT2 and trigger IFN-I signaling inhibition. Our results demonstrate the importance of YFV NS5 in overcoming the antiviral action of IFN-I and offer a unique example of a viral protein that is activated by the same host pathway that it inhibits. PMID:25211074

  16. Monitoring interferon β treatment response with magnetic resonance spectroscopy in relapsing remitting multiple sclerosis.

    PubMed

    Yetkin, Mehmet Fatih; Mirza, Meral; Dönmez, Halil

    2016-09-01

    The aim of this study is to compare the white matter of multiple sclerosis (MS) patients with healthy controls and to monitor the response to the treatment with magnetic resonance spectroscopy (MRS).Fifteen healthy controls and 36 recently diagnosed MS patients never treated with interferon β were included in this study. In the patient group, MRS was performed before treatment, at 6th and 12th month after the initiation of treatment and once in control group. Patient group was divided into 3 interferon groups randomly. Physical examination findings were recorded as Expanded Disability Status Scale scores before treatment, at 6th and 12th month of interferon treatment.At the end of 1 year follow up, 26 of 36 patients completed the study. In patients' white matter lesions, N-acetylaspartate/creatine (NAA/Cr) ratios were lower than control group's white matters. NAA/Cr ratios were higher in control group's white matter than patient's normal appearing white matter but this difference was not statistically significant. There was no difference in choline/creatine (Cho/Cr) ratios between 2 groups. In follow-up period, NAA/Cr and Cho/Cr ratios obtained from patients' white matter lesions and normal appearing white matter did not change statistically.This study showed that in MS patients' white matters, especially in white matter lesions, neuron viability is reduced compared with healthy controls' normal white matter; and in the patients treated with interferon β NAA/Cr ratios remained stable. These stable levels of metabolite ratios in the patients who received interferon β therapy can be explained with either the shortness of the follow-up period post-treatment or may reflect a positive effect of the beta interferon therapy on the progress of MS.

  17. Amplified RLR signaling activation through an interferon-stimulated gene-endoplasmic reticulum stress-mitochondrial calcium uniporter protein loop

    PubMed Central

    Cheng, Jinbo; Liao, Yajin; Zhou, Lujun; Peng, Shengyi; Chen, Hong; Yuan, Zengqiang

    2016-01-01

    Type I interferon (IFN-I) is critical for a host against viral and bacterial infections via induction of hundreds of interferon-stimulated genes (ISGs), but the mechanism underlying the regulation of IFN-I remains largely unknown. In this study, we first demonstrate that ISG expression is required for optimal IFN-β levels, an effect that is further enhanced by endoplasmic reticulum (ER) stress. Furthermore, we identify mitochondrial calcium uniporter protein (MCU) as a mitochondrial antiviral signaling protein (MAVS)-interacting protein that is important for ER stress induction and amplified MAVS signaling activation. In addition, by performing an ectopic expression assay to screen a library of 117 human ISGs for effects on IFN-β levels, we found that tumor necrosis factor receptor 1 (TNFR1) significantly increases IFN-β levels independent of ER stress. Altogether, our findings suggest that MCU and TNFR1 are involved in the regulation of RIG-I-like receptors (RLR) signaling. PMID:26892273

  18. Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints

    PubMed Central

    2012-01-01

    Background The potential contribution of upstream sequence variation to the unique features of orthologous genes is just beginning to be unraveled. A core subset of stress-associated bZIP transcription factors from rice (Oryza sativa) formed ten clusters of orthologous groups (COG) with genes from the monocot sorghum (Sorghum bicolor) and dicot Arabidopsis (Arabidopsis thaliana). The total cis-regulatory information content of each stress-associated COG was examined by phylogenetic footprinting to reveal ortholog-specific, lineage-specific and species-specific conservation patterns. Results The most apparent pattern observed was the occurrence of spatially conserved ‘core modules’ among the COGs but not among paralogs. These core modules are comprised of various combinations of two to four putative transcription factor binding site (TFBS) classes associated with either developmental or stress-related functions. Outside the core modules are specific stress (ABA, oxidative, abiotic, biotic) or organ-associated signals, which may be functioning as ‘regulatory fine-tuners’ and further define lineage-specific and species-specific cis-regulatory signatures. Orthologous monocot and dicot promoters have distinct TFBS classes involved in disease and oxidative-regulated expression, while the orthologous rice and sorghum promoters have distinct combinations of root-specific signals, a pattern that is not particularly conserved in Arabidopsis. Conclusions Patterns of cis-regulatory conservation imply that each ortholog has distinct signatures, further suggesting that they are potentially unique in a regulatory context despite the presumed conservation of broad biological function during speciation. Based on the observed patterns of conservation, we postulate that core modules are likely primary determinants of basal developmental programming, which may be integrated with and further elaborated by additional intrinsic or extrinsic signals in conjunction with lineage

  19. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    PubMed Central

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  20. The immunomodulatory effects of interferon-gamma on mature B-lymphocyte responses.

    PubMed

    Jurado, A; Carballido, J; Griffel, H; Hochkeppel, H K; Wetzel, G D

    1989-06-15

    Interferon-gamma (IFN-gamma) exerts a broad spectrum of activities which affect the responses of mature B-cells. It strongly inhibits B-cell activation, acts as a B-cell growth factor (BCGF), and also induces final differentiation to immunoglobulin (Ig) production. IFN-gamma is deeply involved in the differential control of isotype expression, as it enhances IgG2a production and suppresses both IgG1 and IgE production. Although it is now possible to draw a general scheme of the effects of IFN-gamma on B-cells, a number of paradoxical results still exist in the field. In this manuscript, different experimental systems are analyzed in an attempt to explain these apparent paradoxes.

  1. Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease.

    PubMed

    Rice, Gillian I; Kitabayashi, Naoki; Barth, Magalie; Briggs, Tracy A; Burton, Annabel C E; Carpanelli, Maria Luisa; Cerisola, Alfredo M; Colson, Cindy; Dale, Russell C; Danti, Federica Rachele; Darin, Niklas; De Azua, Begoña; De Giorgis, Valentina; De Goede, Christian G L; Desguerre, Isabelle; De Laet, Corinne; Eslahi, Atieh; Fahey, Michael C; Fallon, Penny; Fay, Alex; Fazzi, Elisa; Gorman, Mark P; Gowrinathan, Nirmala Rani; Hully, Marie; Kurian, Manju A; Leboucq, Nicolas; Lin, Jean-Pierre S-M; Lines, Matthew A; Mar, Soe S; Maroofian, Reza; Martí-Sanchez, Laura; McCullagh, Gary; Mojarrad, Majid; Narayanan, Vinodh; Orcesi, Simona; Ortigoza-Escobar, Juan Dario; Pérez-Dueñas, Belén; Petit, Florence; Ramsey, Keri M; Rasmussen, Magnhild; Rivier, François; Rodríguez-Pombo, Pilar; Roubertie, Agathe; Stödberg, Tommy I; Toosi, Mehran Beiraghi; Toutain, Annick; Uettwiller, Florence; Ulrick, Nicole; Vanderver, Adeline; Waldman, Amy; Livingston, John H; Crow, Yanick J

    2017-06-01

    We investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1 . The clinicoradiological phenotype encompassed a spectrum of Aicardi-Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64-25.71) compared with controls (median: 0.93, IQR: 0.57-1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context. Georg Thieme Verlag KG Stuttgart · New York.

  2. Modular Evolution of DNA-Binding Preference of a Tbrain Transcription Factor Provides a Mechanism for Modifying Gene Regulatory Networks

    PubMed Central

    Cheatle Jarvela, Alys M.; Brubaker, Lisa; Vedenko, Anastasia; Gupta, Anisha; Armitage, Bruce A.; Bulyk, Martha L.; Hinman, Veronica F.

    2014-01-01

    Gene regulatory networks (GRNs) describe the progression of transcriptional states that take a single-celled zygote to a multicellular organism. It is well documented that GRNs can evolve extensively through mutations to cis-regulatory modules (CRMs). Transcription factor proteins that bind these CRMs may also evolve to produce novelty. Coding changes are considered to be rarer, however, because transcription factors are multifunctional and hence are more constrained to evolve in ways that will not produce widespread detrimental effects. Recent technological advances have unearthed a surprising variation in DNA-binding abilities, such that individual transcription factors may recognize both a preferred primary motif and an additional secondary motif. This provides a source of modularity in function. Here, we demonstrate that orthologous transcription factors can also evolve a changed preference for a secondary binding motif, thereby offering an unexplored mechanism for GRN evolution. Using protein-binding microarray, surface plasmon resonance, and in vivo reporter assays, we demonstrate an important difference in DNA-binding preference between Tbrain protein orthologs in two species of echinoderms, the sea star, Patiria miniata, and the sea urchin, Strongylocentrotus purpuratus. Although both orthologs recognize the same primary motif, only the sea star Tbr also has a secondary binding motif. Our in vivo assays demonstrate that this difference may allow for greater evolutionary change in timing of regulatory control. This uncovers a layer of transcription factor binding divergence that could exist for many pairs of orthologs. We hypothesize that this divergence provides modularity that allows orthologous transcription factors to evolve novel roles in GRNs through modification of binding to secondary sites. PMID:25016582

  3. Biogenesis of non-structural protein 1 (nsp1) and nsp1-mediated type I interferon modulation in arteriviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Mingyuan; Kim, Chi Yong; Rowland, Raymond R.R.

    2014-06-15

    Type I interferons (IFNs-α/β) play a key role for the antiviral state of host, and the porcine arterivirus; porcine reproductive and respiratory syndrome virus (PRRSV), has been shown to down-regulate the production of IFNs during infection. Non-structural protein (nsp) 1 of PRRSV has been identified as a viral IFN antagonist, and the nsp1α subunit of nsp1 has been shown to degrade the CREB-binding protein (CBP) and to inhibit the formation of enhanceosome thus resulting in the suppression of IFN production. The study was expanded to other member viruses in the family Arteriviridae: equine arteritis virus (EAV), murine lactate dehydrogenase-elevating virusmore » (LDV), and simian hemorrhagic fever virus (SHFV). While PRRSV–nsp1 and LDV–nsp1 were auto-cleaved to produce the nsp1α and nsp1β subunits, EAV–nsp1 remained uncleaved. SHFV–nsp1 was initially predicted to be cleaved to generate three subunits (nsp1α, nsp1β, and nsp1γ), but only two subunits were generated as SHFV–nsp1αβ and SHFV–nsp1γ. The papain-like cysteine protease (PLP) 1α motif in nsp1α remained inactive for SHFV, and only the PLP1β motif of nsp1β was functional to generate SHFV–nsp1γ subunit. All subunits of arterivirus nsp1 were localized in the both nucleus and cytoplasm, but PRRSV–nsp1β, LDV–nsp1β, EAV–nsp1, and SHFV–nsp1γ were predominantly found in the nucleus. All subunits of arterivirus nsp1 contained the IFN suppressive activity and inhibited both interferon regulatory factor 3 (IRF3) and NF-κB mediated IFN promoter activities. Similar to PRRSV–nsp1α, CBP degradation was evident in cells expressing LDV–nsp1α and SHFV–nsp1γ, but no such degradation was observed for EAV–nsp1. Regardless of CBP degradation, all subunits of arterivirus nsp1 suppressed the IFN-sensitive response element (ISRE)-promoter activities. Our data show that the nsp1-mediated IFN modulation is a common strategy for all arteriviruses but their mechanism of action may

  4. [Cost-utility analysis of relapsing-remitting multiple sclerosis treatment with azathioprine or interferon beta in Spain].

    PubMed

    Rubio-Terrés, C; Domínguez-Gil Hurlé, A

    To carry out a cost-utility analysis of the treatment of relapsing-remitting multiple sclerosis (RRMS) with azathioprine (Imurel) or beta interferon (all, Avonex, Rebif and Betaferon). Pharmacoeconomic Markov model comparing treatment options by simulating the life of a hypothetical cohort of women aged 30, from the societal perspective. The transition probabilities, utilities, resource utilisation and costs (direct and indirect) were obtained from Spanish sources and from bibliography. Univariant sensitivity analyses of the base case were performed. In the base case analysis, the average cost per patient (euros in 2003) of a life treatment, considering a life expectancy of 53 years, would be 620,205, 1,047,836, 1,006,014, 1,161,638 and 968,157 euros with Imurel, all interferons, Avonex, Rebif and Betaferon, respectively. Therefore, the saving with Imurel would range between 327,000 and 520,000 euros approximately. The quality-adjusted life years (QALY) obtained with Imurel or interferons would be 10.08 and 9.30, respectively, with an average gain of 0.78 QALY per patient treated with Imurel. The sensitivity analyses confirmed the robustness of the base case. The cost of one additional QALY with interferons would range between 413,000 and 1,308,000 euros approximately in the hypothetical worst scenario for Imurel. For a typical patient with RRMS, treatment with Imurel would be more efficient than interferons and would dominate (would be more efficacious with lower costs) beta interferon.

  5. Characterization of mouse natural killer cell activating factor (NKAF) induced by OK-432: evidence for interferon- and interleukin 2-independent NK cell activation.

    PubMed Central

    Ichimura, O.; Suzuki, S.; Sugawara, Y.; Osawa, T.

    1984-01-01

    The bacterial immunopotentiator OK-432 induced natural killer cell activating factor (NKAF) from mouse spleen cells. OK-432-induced NKAF showed a single peak with an apparent mol. wt of 70 Kd by Sephadex G-100 chromatography and OK-432-induced interleukin 2 (IL-2) had the same mol. wt as NKAF. However, OK-432-induced interferon (IFN) showed molecular heterogeneity with two peaks at 90 Kd and 45 Kd. Further purification was achieved by Blue Sepharose affinity chromatography which copurified NKAF and IFN. The affinity-purified NKAF, however, was stable to heat (56 degrees C) and acid (pH 2) treatments. Moreover, anti-IFN failed to abolish NKAF activity and this activity was not absorbed by IL-2 dependent T cells. From isoelectric focusing analysis, a dissociation of NKAF and IFN was observed over the range of pI 6.5 to 8.0. Based on these results, KNAF appears to be a new kind of cytokine distinguishable from IFN and IL-2. PMID:6204667

  6. Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation.

    PubMed

    Razaghi, Ali; Owens, Leigh; Heimann, Kirsten

    2016-12-20

    Human interferon gamma is a cytokine belonging to a diverse group of interferons which have a crucial immunological function against mycobacteria and a wide variety of viral infections. To date, it has been approved for treatment of chronic granulomatous disease and malignant osteopetrosis, and its application as an immunotherapeutic agent against cancer is an increasing prospect. Recombinant human interferon gamma, as a lucrative biopharmaceutical, has been engineered in different expression systems including prokaryotic, protozoan, fungal (yeasts), plant, insect and mammalian cells. Human interferon gamma is commonly expressed in Escherichia coli, marketed as ACTIMMUNE ® , however, the resulting product of the prokaryotic expression system is unglycosylated with a short half-life in the bloodstream; the purification process is tedious and makes the product costlier. Other expression systems also did not show satisfactory results in terms of yields, the biological activity of the protein or economic viability. Thus, the review aims to synthesise available information from previous studies on the production of human interferon gamma and its glycosylation patterns in different expression systems, to provide direction to future research in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors.

    PubMed

    Motohashi, Hozumi; O'Connor, Tania; Katsuoka, Fumiki; Engel, James Douglas; Yamamoto, Masayuki

    2002-07-10

    Recent progress in the analysis of transcriptional regulation has revealed the presence of an exquisite functional network comprising the Maf and Cap 'n' collar (CNC) families of regulatory proteins, many of which have been isolated. Among Maf factors, large Maf proteins are important in the regulation of embryonic development and cell differentiation, whereas small Maf proteins serve as obligatory heterodimeric partner molecules for members of the CNC family. Both Maf homodimers and CNC-small Maf heterodimers bind to the Maf recognition element (MARE). Since the MARE contains a consensus TRE sequence recognized by AP-1, Jun and Fos family members may act to compete or interfere with the function of CNC-small Maf heterodimers. Overall then, the quantitative balance of transcription factors interacting with the MARE determines its transcriptional activity. Many putative MARE-dependent target genes such as those induced by antioxidants and oxidative stress are under concerted regulation by the CNC family member Nrf2, as clearly proven by mouse germline mutagenesis. Since these genes represent a vital aspect of the cellular defense mechanism against oxidative stress, Nrf2-null mutant mice are highly sensitive to xenobiotic and oxidative insults. Deciphering the molecular basis of the regulatory network composed of Maf and CNC families of transcription factors will undoubtedly lead to a new paradigm for the cooperative function of transcription factors.

  8. Interferon alfa-2b, colchicine, and benzathine penicillin versus colchicine and benzathine penicillin in Behçet's disease: a randomised trial.

    PubMed

    Demiroglu, H; Ozcebe, O I; Barista, I; Dündar, S; Eldem, B

    2000-02-19

    Sight-threatening eye involvement is a serious complication of Behçet's disease. Extraocular complications such as arthritis, vascular occlusive disorders, mucocutaneous lesions, and central-nervous-system disease may lead to morbidity and even death. We designed a prospective study in newly diagnosed patients without previous eye disease to assess whether prevention of eye involvement and extraocular manifestations, and preservation of visual acuity are possible with combination treatments with and without interferon alfa-2b. Patients were randomly assigned 3 million units interferon alfa-2b subcutaneously every other day for the first 6 months plus 1.5 mg colchicine orally daily and 1.2 million units benzathine penicillin intramuscularly every 3 weeks (n=67), or colchicine and benzathine penicillin alone (n=68). The primary endpoint was visual-acuity loss. Analysis was by intention to treat. Significantly fewer patients who were treated with interferon had eye involvement than did patients who did not receive interferon (eight vs 27, relative risk 0.21 [95% CI 0.09-0.50], p<0.001). Ocular attack rate was 0.2 (SD 0.62) per year with interferon therapy and 1.02 (1.13) without interferon therapy (p=0.0001). Visual-acuity loss was significantly lower among patients treated with interferon than in those without interferon (two vs 13, relative risk 0.13 [95% CI 0.03-0.60], p=0.003). Arthritis episodes, vascular events, and mucocutaneous lesions were also less frequent in patients treated with interferon than in those not receiving interferon. No serious side-effects were reported. Therapy with interferon alfa-2b, colchicine, and benzathine penicillin seems to be an effective regimen in Behçet's disease for the prevention of recurrent eye attacks and extraocular complications, and for the protection of vision.

  9. Successful Treatment of Provisional Cutaneous Mastocytosis with Interferon Alpha

    PubMed Central

    Rosario, Andrea; Bhat, Ramesh M

    2016-01-01

    Mastocytosis is a disorder characterized by the clonal proliferation of mast cells and their accumulation in skin, bone marrow, liver, and spleen. Cutaneous mastocytosis presents in children in over 90% of the cases and any cutaneous manifestation in an adult is the earliest sign of the systemic disease. A 45-year-old patient presented with itchy dark lesions over the body since childhood and Darier's sign was positive. Skin biopsy showed features of mastocytosis and immunohistochemistry was positive for CD34. Since the patient was refractory to treatment with antihistamines and psoralen-ultraviolet A therapy, injections of interferon alpha were given – 3 million IU twice weekly subcutaneously as they have been proven to improve constitutional symptoms. Very few reports of successful treatment of cutaneous mastocytosis using interferon alpha have been published. PMID:27293273

  10. Stress-induced alterations in interferon production and class II histocompatibility antigen expression

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Cunnick, J. E.; Armfield, A. V.; Wood, P. G.; Rabin, B. S.

    1992-01-01

    Mild electric foot-shock has been shown to be a stressor that can alter immune responses. Male Lewis rats were exposed to one session of 16 5.0-s 1.6-mA foot-shocks. Production of interferon-gamma by splenocytes in response to concanavalin-A was decreased in spleens from the shocked rats compared to control spleens. Spleen cells from rats treated with nadolol, a peripherally acting beta-adrenergic receptor antagonist, and then shocked, showed dose-dependent attenuation of the suppression of interferon-gamma production. This suggests that catecholamines mediate shock-induced suppression of interferon-gamma production. The percentage of splenic mononuclear cells expressing class II histocompatibility (Ia) antigens on their surfaces from spleens of shocked rats was determined by flow cytometry. Significantly decreased class II positive mononuclear cells were present in the spleens of shocked rats in comparison to the spleens of control rats. This may reflect an alteration of cell trafficking or decreased production of class II antigens.

  11. Association between use of interferon beta and progression of disability in patients with relapsing-remitting multiple sclerosis.

    PubMed

    Shirani, Afsaneh; Zhao, Yinshan; Karim, Mohammad Ehsanul; Evans, Charity; Kingwell, Elaine; van der Kop, Mia L; Oger, Joel; Gustafson, Paul; Petkau, John; Tremlett, Helen

    2012-07-18

    Interferon beta is widely prescribed to treat multiple sclerosis (MS); however, its relationship with disability progression has yet to be established. To investigate the association between interferon beta exposure and disability progression in patients with relapsing-remitting MS. Retrospective cohort study based on prospectively collected data (1985-2008) from British Columbia, Canada. Patients with relapsing-remitting MS treated with interferon beta (n = 868) were compared with untreated contemporary (n = 829) and historical (n = 959) cohorts. The main outcome measure was time from interferon beta treatment eligibility (baseline) to a confirmed and sustained score of 6 (requiring a cane to walk 100 m; confirmed at >150 days with no measurable improvement) on the Expanded Disability Status Scale (EDSS) (range, 0-10, with higher scores indicating higher disability). A multivariable Cox regression model with interferon beta treatment included as a time-varying covariate was used to assess the hazard of disease progression associated with interferon beta treatment. Analyses also included propensity score adjustment to address confounding by indication. The median active follow-up times (first to last EDSS measurement) were as follows: for the interferon beta-treated cohort, 5.1 years (interquartile range [IQR], 3.0-7.0 years); for the contemporary control cohort, 4.0 years (IQR, 2.1-6.4 years); and for the historical control cohort, 10.8 years (IQR, 6.3-14.7 years). The observed outcome rates for reaching a sustained EDSS score of 6 were 10.8%, 5.3%, and 23.1% in the 3 cohorts, respectively. After adjustment for potential baseline confounders (sex, age, disease duration, and EDSS score), exposure to interferon beta was not associated with a statistically significant difference in the hazard of reaching an EDSS score of 6 when either the contemporary control cohort (hazard ratio, 1.30; 95% CI, 0.92-1.83; P = .14) or the historical control cohort (hazard ratio, 0

  12. Hypertriglyceridemia during long-term interferon-alpha therapy: efficacy of diet and gemfibrosil treatment. A case report.

    PubMed

    Berruti, A; Gorzegno, G; Vitetta, G; Tampellini, M; Dogliotti, L

    1992-10-31

    Interferon-alpha might increase triglyceride serum levels through the enhancement of hepatic lipogenesis and/or inhibition of the peripheral lipoprotein lipase. Hypertriglyceridemia during interferon-alpha therapy has been only recently described, mostly in patients with previous abnormalities of lipid metabolism. The authors report here a case of a 65-year-old male bearing advanced colon carcinoma who developed hypertriglyceridemia during long-term interferon-alpha treatment in association with 5 fluorouracil administration. Hypertriglyceridemia was maintained within acceptable levels, without adjusting the treatment plan, by an appropriate diet and gemfibrosil administration.

  13. Chronic hepatitis C virus patients with breakthroughs during interferon treatment can successfully be retreated with consensus interferon. The Consensus Interferon Study Group.

    PubMed

    Heathcote, E J; James, S; Mullen, K D; Hauser, S C; Rosenblate, H; Albert, D G

    1999-08-01

    Patients with chronic hepatitis C who have not had a sustained hepatitis C virus (HCV)-RNA response or serum alanine transaminase (ALT) response to a 6-month course of interferon (IFN) may respond to higher dose retreatment with consensus interferon (CIFN). Some nonresponders to initial IFN treatment have a transient response defined as undetectable HCV RNA or normalization of ALT during treatment, but subsequently have a "breakthrough" while still on treatment. The aim of this study was to determine if nonresponders who had breakthroughs responded differently to CIFN retreatment than nonresponders without breakthroughs using data from a large, multicenter trial. ALT and HCV RNA were monitored frequently during initial IFN therapy (either 9 mcg CIFN or 3 MU IFN-alpha2b 3 times per week). HCV-RNA breakthroughs were observed in 86 of 467 (18%) of all treated patients, and ALT breakthroughs were observed in 90 of 467 (19%) of all treated patients. There was no association between breakthroughs and the presence of either binding or neutralizing anti-IFN antibodies. When the patients who were nonresponders to initial IFN treatment were retreated with CIFN (15 mcg) for 12 months, 27% of those with viral breakthroughs had a sustained viral response compared with 8% in prior nonresponders without breakthroughs (P =.102). Sustained ALT responses were observed in 39% with breakthroughs compared with 10% in those without breakthroughs (P =.014). The data suggest that prior nonresponders with breakthroughs have a greater chance of responding to retreatment than do nonresponders without breakthroughs. However, most breakthrough patients would be missed unless repeated HCV-RNA testing were conducted during therapy.

  14. Interferon-gamma enhances radiation-induced cell death via downregulation of Chk1

    PubMed Central

    Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo

    2012-01-01

    Interferon-gamma (IFNγ) is a cytokine with roles in immune responses as well as in tumor control. Interferon is often used in cancer treatment together with other therapies. Here we report a novel approach to enhancement of cancer cell killing by combined treatment of IFNγ with ionizing radiation. We found that IFNγ treatment alone in HeLa cells induced phosphorylation of Chk1 in a time- and dose-dependent manner, and resulted in cell arrest. Moreover IFNγ treatment was correlated with attenuation of Chk1 as the treatment shortened protein half-life of Chk1. As Chk1 is an essential cell cycle regulator for viability after DNA damage, attenuation of Chk1 by IFNγ pre-treatment in HeLa cells resulted in increased cell death following ionizing radiation about 2-folds than ionizing radiation treatment alone whereas IFNγ treatment alone had little effect on cell death. X-linked inhibitor of apoptosis-associated factor 1 (XAF1), an IFN-induced gene, seems to partly regulate IFNγ-induced Chk1 destabilization and radiation sensitivity because transient depletion of XAF1 by siRNA prevented IFNγ-induced Chk1 attenuation and partly protected cells from IFNγ-enhanced radiation cell killing. Therefore the results provide a novel rationale to combine IFNγ pretreatment and DNA-damaging anti-cancer drugs such as ionizing radiation to enhance cancer cell killing. PMID:22825336

  15. Emerging principles of regulatory evolution.

    PubMed

    Prud'homme, Benjamin; Gompel, Nicolas; Carroll, Sean B

    2007-05-15

    Understanding the genetic and molecular mechanisms governing the evolution of morphology is a major challenge in biology. Because most animals share a conserved repertoire of body-building and -patterning genes, morphological diversity appears to evolve primarily through changes in the deployment of these genes during development. The complex expression patterns of developmentally regulated genes are typically controlled by numerous independent cis-regulatory elements (CREs). It has been proposed that morphological evolution relies predominantly on changes in the architecture of gene regulatory networks and in particular on functional changes within CREs. Here, we discuss recent experimental studies that support this hypothesis and reveal some unanticipated features of how regulatory evolution occurs. From this growing body of evidence, we identify three key operating principles underlying regulatory evolution, that is, how regulatory evolution: (i) uses available genetic components in the form of preexisting and active transcription factors and CREs to generate novelty; (ii) minimizes the penalty to overall fitness by introducing discrete changes in gene expression; and (iii) allows interactions to arise among any transcription factor and downstream CRE. These principles endow regulatory evolution with a vast creative potential that accounts for both relatively modest morphological differences among closely related species and more profound anatomical divergences among groups at higher taxonomical levels.

  16. Interferon Lambda: A New Sword in Cancer Immunotherapy

    PubMed Central

    Lasfar, Ahmed; Abushahba, Walid; Balan, Murugabaskar; Cohen-Solal, Karine A.

    2011-01-01

    The discovery of the interferon-lambda (IFN-λ) family has considerably contributed to our understanding of the role of interferon not only in viral infections but also in cancer. IFN-λ proteins belong to the new type III IFN group. Type III IFN is structurally similar to type II IFN (IFN-γ) but functionally identical to type I IFN (IFN-α/β). However, in contrast to type I or type II IFNs, the response to type III IFN is highly cell-type specific. Only epithelial-like cells and to a lesser extent some immune cells respond to IFN-λ. This particular pattern of response is controlled by the differential expression of the IFN-λ receptor, which, in contrast to IFN-α, should result in limited side effects in patients. Recently, we and other groups have shown in several animal models a potent antitumor role of IFN-λ that will open a new challenging era for the current IFN therapy. PMID:22190970

  17. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta.

    PubMed

    Wynn, Daniel; Kaufman, Michael; Montalban, Xavier; Vollmer, Timothy; Simon, Jack; Elkins, Jacob; O'Neill, Gilmore; Neyer, Lauri; Sheridan, James; Wang, Chungchi; Fong, Alice; Rose, John W

    2010-04-01

    Daclizumab, a humanised monoclonal antibody, reduced multiple sclerosis disease activity in previous non-randomised studies. We aimed to assess whether daclizumab reduces disease activity in patients with active relapsing multiple sclerosis who are receiving interferon beta treatment. We did a phase 2, randomised, double-blind, placebo-controlled study at 51 centres in the USA, Canada, Germany, Italy, and Spain. Patients with active relapsing multiple sclerosis who were taking interferon beta were randomly assigned to receive add-on subcutaneous daclizumab 2 mg/kg every 2 weeks (interferon beta and high-dose daclizumab group), daclizumab 1 mg/kg every 4 weeks (interferon beta and low-dose daclizumab group), or interferon beta and placebo for 24 weeks. The randomisation scheme was generated by Facet Biotech. All patients and assessors were masked to treatment with the exception of Facet Biotech bioanalysts who prepared data for the data safety monitoring board or generated pharmacokinetic or pharmacodynamic data, a drug accountability auditor, and the site pharmacist. The primary endpoint was total number of new or enlarged gadolinium contrast-enhancing lesions measured on brain MRI scans every 4 weeks between weeks 8 and 24. Effects of daclizumab on prespecified subsets of lymphocytes and quantitative T-cell proliferative response were assessed in an exploratory pharmacodynamic substudy. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00109161. From May, 2005, to March, 2006, 288 patients were assessed for eligibility, and 230 were randomly assigned to receive interferon beta and high-dose daclizumab (n=75), interferon beta and low-dose daclizumab (n=78), or interferon beta and placebo (n=77). The adjusted mean number of new or enlarged gadolinium contrast-enhancing lesions was 4.75 in the interferon beta and placebo group compared with 1.32 in the interferon beta and high-dose daclizumab group (difference 72%, 95% CI

  18. Cumulative Review of Thrombotic Microangiopathy, Thrombotic Thrombocytopenic Purpura, and Hemolytic Uremic Syndrome Reports with Subcutaneous Interferon β-1a.

    PubMed

    Ben-Amor, Ali-Frédéric; Trochanov, Anton; Fischer, Tanya Z

    2015-05-01

    Rare cases of thrombotic microangiopathy (TMA), manifested as thrombotic thrombocytopenic purpura (TTP) or hemolytic uremic syndrome (HUS), have been reported with interferon β products. We performed a cumulative review of TMA cases recorded in a Global Safety Database for patients with multiple sclerosis who received subcutaneous interferon β-1a treatment. Search criteria were: all reported cases, serious and non-serious, from all sources (including non-health care professionals and clinical trial reports), regardless of event ranking and causality assessment by reporter or company. Data lock was May 3, 2014, with additional analysis of cases reported between August 1, 2014-November 30, 2014. Ninety-one patient cases (76.9% female) with 105 events were retrieved. Time to onset varied from 2 months to 14 years, and in 31.9% of patients the event occurred within 2 years of treatment initiation. Seven patients had a fatal outcome (five were secondary to other causes and two reported insufficient information). Forty-four patients recovered, 32 patients had not recovered at the time of the report, and in eight cases outcome was either not reported or unknown. Treatment was discontinued in 84.6% (77/91) of patients. In 67% (61/91) of patients, the reporter suspected a causal association between treatment and TMA/TTP-HUS. Risk factors and/or confounding factors were present in 45.1% (41/91) of patients. Early prodromal syndrome or specific patterns were not detected, although 54.9% (50/91) of cases contained insufficient information. Overall reporting rate of TMA/TTP-HUS was estimated as 7.2 per 100,000 patient-years. Reporting rates for human serum album (HSA)-containing and HSA-free formulations were 5.72 and 7.68 per 100,000 patient-years, respectively. No new signal relating specifically to increased frequency of TMA/TTP-HUS with HSA-free subcutaneous interferon β-1a was detected and no additional risk mitigation measures are required regarding the different

  19. Branch retinal vein thrombosis and visual loss probably associated with pegylated interferon therapy of chronic hepatitis C

    PubMed Central

    Gonçalves, Luciana Lofego; Farias, Alberto Queiroz; Gonçalves, Patrícia Lofego; D’Amico, Elbio Antonio; Carrilho, Flair José

    2006-01-01

    Ophthalmological complications with interferon therapy are usually mild and reversible, not requiring the withdrawal of the treatment. We report a case of a patient who had visual loss probably associated with interferon therapy. Chronic hepatitis C virus infection (genotype 1a) was diagnosed in a 33-year old asymptomatic man. His past medical history was unremarkable and previous routine ophthalmologic check-up was normal. Pegylated interferon alpha and ribavirin were started. Three weeks later he reported painless reduction of vision. Ophthalmologic examination showed extensive intraretinal hemorrhages and cotton-wool spots, associated with inferior branch retinal vein thrombosis. Antiviral therapy was immediately discontinued, but one year later he persists with severely decreased visual acuity. This case illustrates the possibility of unpredictable and severe complications during pegylated interferon therapy. PMID:16874884

  20. Nuclear factor of activated T cells (NFAT) in pearl oyster Pinctada fucata: molecular cloning and functional characterization.

    PubMed

    Huang, Xian-De; Wei, Guo-jian; Zhang, Hua; He, Mao-Xian

    2015-01-01

    Nuclear factor of activated T cells (NFAT) plays an important role in nonimmune cells and also in T cells and many other cells of the immune system, by regulating the expression of a variety of genes involved in the immune response, organ development, developmental apoptosis and angiogenesis. In the present study, the NFAT homology gene, PfNFAT, from the pearl oyster Pinctada fucata was cloned and its genomic structure and promoter were analyzed. PfNFAT encodes a putative protein of 1226 amino acids, and contains a highly conserved Rel homology region (RHR) with DNA-binding specificity, and a regulatory domain (NFAT homology region, NHR) containing a potent transactivation domain (TAD). The PfNFAT gene consists of 12 exons and 11 introns, and its promoter contains potential binding sites for transcription factors such as NF-κB (Nuclear factor κB), STATx (signal transducer and activator of transcription), AP-1 (activator protein-1) and Sox-5/9 (SRY type HMG box-5/9), MyoD (Myogenic Differentiation Antigen) and IRF (Interferon regulatory factor). Comparison and phylogenetic analysis revealed that PfNFAT shows high identity with other invertebrate NFAT, and clusters with the NFAT5 subgroup. Furthermore, gene expression analysis revealed that PfNFAT is involved in the immune response to lipopolysaccharide (LPS) and Polyinosinic-polycytidylic acid (poly I:C) stimulation and in the nucleus inserting operation. The study of PfNFAT may increase understanding of molluscan innate immunity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells.

    PubMed

    Fisher, P B; Prignoli, D R; Hermo, H; Weinstein, I B; Pestka, S

    1985-01-01

    We have analyzed the effects of various human interferons produced in bacteria and the antileukemic compound mezerein (MEZ) on growth and melanogenesis in human melanoma cells. In four human melanoma cell lines, recombinant human fibroblast interferon (IFN-beta) was more active than recombinant human leukocyte interferons (IFN-alpha A, IFN-alpha D, or IFN-alpha A/D (Bgl] in inhibiting cellular proliferation. When monolayer cultures were exposed to 1000 IU/ml IFN-beta for four days the degree of growth inhibition in the different melanoma cell lines varied between 94 and 26%. Similarly, four days growth in medium containing 10 ng/ml MEZ resulted in either no inhibition of growth or as much as 53% inhibition of growth, depending on the specific melanoma cell line tested. MEZ induced dendrite-like processes, cytoplasmic projections morphologically similar to those normally found in neurons and melanocytes, in all four melanoma cell lines, whereas none of the interferons tested had this effect. The combination of interferon and MEZ resulted in a dramatic inhibition in cellular proliferation in all four melanoma cell lines. When cell extracts were assayed for melanin content, a marker of melanoma cell differentiation, the combination of IFN-beta and MEZ resulted in higher levels of melanin than with either agent alone. Dendrite-like formation was also prominent in the cultures treated with this combination. These results indicate that the antiproliferative effect of interferon toward human melanoma dells can be enhanced by treatment with MEZ and that this effect is associated with an enhancement of terminal differentiation.

  2. Regulatory element-based prediction identifies new susceptibility regulatory variants for osteoporosis.

    PubMed

    Yao, Shi; Guo, Yan; Dong, Shan-Shan; Hao, Ruo-Han; Chen, Xiao-Feng; Chen, Yi-Xiao; Chen, Jia-Bin; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2017-08-01

    Despite genome-wide association studies (GWASs) have identified many susceptibility genes for osteoporosis, it still leaves a large part of missing heritability to be discovered. Integrating regulatory information and GWASs could offer new insights into the biological link between the susceptibility SNPs and osteoporosis. We generated five machine learning classifiers with osteoporosis-associated variants and regulatory features data. We gained the optimal classifier and predicted genome-wide SNPs to discover susceptibility regulatory variants. We further utilized Genetic Factors for Osteoporosis Consortium (GEFOS) and three in-house GWASs samples to validate the associations for predicted positive SNPs. The random forest classifier performed best among all machine learning methods with the F1 score of 0.8871. Using the optimized model, we predicted 37,584 candidate SNPs for osteoporosis. According to the meta-analysis results, a list of regulatory variants was significantly associated with osteoporosis after multiple testing corrections and contributed to the expression of known osteoporosis-associated protein-coding genes. In summary, combining GWASs and regulatory elements through machine learning could provide additional information for understanding the mechanism of osteoporosis. The regulatory variants we predicted will provide novel targets for etiology research and treatment of osteoporosis.

  3. Effects of adenoviral delivered interferon-alpha on porcine reproductive and respiratory syndrome virus infection in swine

    USDA-ARS?s Scientific Manuscript database

    Type I interferons, such as interferon (IFN) alpha, contribute to innate antiviral immunity by promoting production of antiviral mediators and also play a role in the adaptive immune response. Porcine reproductive and respiratory syndrome (PRRS) has been shown to induce a meager IFN-alpha response. ...

  4. Effects of adenoviral delivered interferon-alpha on porcine reproductive and respiratory syndrome virus infection in swine.

    USDA-ARS?s Scientific Manuscript database

    Type I interferons, such as interferon alpha (IFN-alpha), contribute to innate antiviral immunity by promoting production of antiviral mediators and also play a role in the adaptive immune response. Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating and costly diseas...

  5. Interferon-Gamma Promotes UV-Induced Melanoma in Mice | Center for Cancer Research

    Cancer.gov

    Scientists have made an unanticipated discovery in mice that interferon-gamma, a type of protein primarily used by the immune system for intercellular communication, acts as a promoter for the deadly form of skin cancer known as melanoma. This finding resulted from a series of experiments designed to understand how solar ultraviolet (UV) radiation causes melanoma. This study suggests that interferon-gamma, which has been thought to contribute to an innate defense system against cancer, under some circumstances, may instead promote melanoma and incite the development of tumors.

  6. Identifying Mechanisms by Which Escherichia coli O157:H7 Subverts Interferon-γ Mediated Signal Transducer and Activator of Transcription-1 Activation

    PubMed Central

    Ho, Nathan K.; Crandall, Ian; Sherman, Philip M.

    2012-01-01

    Enterohemorrhagic Escherichia coli serotype O157:H7 is a food borne enteric bacterial pathogen that causes significant morbidity and mortality in both developing and industrialized nations. E. coli O157:H7 infection of host epithelial cells inhibits the interferon gamma pro-inflammatory signaling pathway, which is important for host defense against microbial pathogens, through the inhibition of Stat-1 tyrosine phosphorylation. The aim of this study was to determine which bacterial factors are involved in the inhibition of Stat-1 tyrosine phosphorylation. Human epithelial cells were challenged with either live bacteria or bacterial-derived culture supernatants, stimulated with interferon-gamma, and epithelial cell protein extracts were then analyzed by immunoblotting. The results show that Stat-1 tyrosine phosphorylation was inhibited by E. coli O157:H7 secreted proteins. Using sequential anion exchange and size exclusion chromatography, YodA was identified, but not confirmed to mediate subversion of the Stat-1 signaling pathway using isogenic mutants. We conclude that E. coli O157:H7 subverts Stat-1 tyrosine phosphorylation in response to interferon-gamma through a still as yet unidentified secreted bacterial protein. PMID:22253910

  7. Thyroid hormonal disturbances related to treatment of hepatitis C with interferon-alpha and ribavirin

    PubMed Central

    Danilovic, Debora Lucia Seguro; Mendes-Correa, Maria Cassia; Chammas, Maria Cristina; Zambrini, Heverton; Marui, Suemi

    2011-01-01

    OBJECTIVE: To characterize thyroid disturbances induced by interferon-alpha and ribavirin therapy in patients with chronic hepatitis C. INTRODUCTION: Interferon-alpha is used to treat chronic hepatitis C infections. This compound commonly induces both autoimmune and non-autoimmune thyroiditis. METHODS: We prospectively selected 26 patients with chronic hepatitis C infections. Clinical examinations, hormonal evaluations, and color-flow Doppler ultrasonography of the thyroid were performed before and during antiviral therapy. RESULTS: Of the patients in our study, 54% had no thyroid disorders associated with the interferon-alpha therapy but showed reduced levels of total T3 along with a decrease in serum alanine aminotransferase. Total T4 levels were also reduced at 3 and 12 months, but free T4 and thyroid stimulating hormone (TSH) levels remained stable. A total of 19% of the subjects had autoimmune interferon-induced thyroiditis, which is characterized by an emerge of antithyroid antibodies or overt hypothyroidism. Additionally, 16% had non-autoimmune thyroiditis, which presents as destructive thyroiditis or subclinical hypothyroidism, and 11% remained in a state of euthyroidism despite the prior existence of antithyroidal antibodies. Thyrotoxicosis with destructive thyroiditis was diagnosed within three months of therapy, and ultrasonography of these patients revealed thyroid shrinkage and discordant change in the vascular patterns. DISCUSSION: Decreases in the total T3 and total T4 levels may be related to improvements in the hepatocellular lesions or inflammatory changes similar to those associated with nonthyroidal illnesses. The immune mechanisms and direct effects of interferon-alpha can be associated with thyroiditis. CONCLUSION: Interferon-alpha and ribavirin induce autoimmune and non-autoimmune thyroiditis and hormonal changes (such as decreased total T3 and total T4 levels), which occur despite stable free T4 and TSH levels. A thyroid hormonal evaluation

  8. Thyroid hormonal disturbances related to treatment of hepatitis C with interferon-alpha and ribavirin.

    PubMed

    Danilovic, Debora Lucia Seguro; Mendes-Correa, Maria Cassia; Chammas, Maria Cristina; Zambrini, Heverton; Marui, Suemi

    2011-01-01

    To characterize thyroid disturbances induced by interferon-alpha and ribavirin therapy in patients with chronic hepatitis C. Interferon-alpha is used to treat chronic hepatitis C infections. This compound commonly induces both autoimmune and non-autoimmune thyroiditis. We prospectively selected 26 patients with chronic hepatitis C infections. Clinical examinations, hormonal evaluations, and color-flow Doppler ultrasonography of the thyroid were performed before and during antiviral therapy. Of the patients in our study, 54% had no thyroid disorders associated with the interferon-alpha therapy but showed reduced levels of total T3 along with a decrease in serum alanine aminotransferase. Total T4 levels were also reduced at 3 and 12 months, but free T4 and thyroid stimulating hormone (TSH) levels remained stable. A total of 19% of the subjects had autoimmune interferon-induced thyroiditis, which is characterized by an emerge of antithyroid antibodies or overt hypothyroidism. Additionally, 16% had non-autoimmune thyroiditis, which presents as destructive thyroiditis or subclinical hypothyroidism, and 11% remained in a state of euthyroidism despite the prior existence of antithyroidal antibodies. Thyrotoxicosis with destructive thyroiditis was diagnosed within three months of therapy, and ultrasonography of these patients revealed thyroid shrinkage and discordant change in the vascular patterns. Decreases in the total T3 and total T4 levels may be related to improvements in the hepatocellular lesions or inflammatory changes similar to those associated with nonthyroidal illnesses. The immune mechanisms and direct effects of interferon-alpha can be associated with thyroiditis. Interferon-alpha and ribavirin induce autoimmune and non-autoimmune thyroiditis and hormonal changes (such as decreased total T3 and total T4 levels), which occur despite stable free T4 and TSH levels. A thyroid hormonal evaluation, including the analysis of the free T4, TSH, and antithyroid

  9. Interferon-γ : The Major Mediator of Resistance against Toxoplasma gondii

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuhiro; Orellana, Manuel A.; Schreiber, Robert D.; Remington, Jack S.

    1988-04-01

    Mice were injected with a monoclonal antibody to interferon-γ to examine the importance of endogenous production of this lymphokine in resistance against infection with the sporozoan parasite Toxoplasma gondii. Mice with intraperitoneal infections of T. gondii that received no antibody survived and developed chronic T. gondii infection, whereas the infected mice that received the monoclonal antibody died of toxoplasmosis. The activation of macrophages, which kill T. gondii in vivo, was inhibited by administration of the monoclonal antibody, but the production of antibodies to T. gondii was not suppressed. The fact that an antibody to interferon-γ can eliminate resistance to acute Toxoplasma infection in mice suggests that this lymphokine is an important mediator of host resistance to this parasite.

  10. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints

    PubMed Central

    Suciu, Maria C.; Telenius, Jelena

    2017-01-01

    In the era of genome-wide association studies (GWAS) and personalized medicine, predicting the impact of single nucleotide polymorphisms (SNPs) in regulatory elements is an important goal. Current approaches to determine the potential of regulatory SNPs depend on inadequate knowledge of cell-specific DNA binding motifs. Here, we present Sasquatch, a new computational approach that uses DNase footprint data to estimate and visualize the effects of noncoding variants on transcription factor binding. Sasquatch performs a comprehensive k-mer-based analysis of DNase footprints to determine any k-mer's potential for protein binding in a specific cell type and how this may be changed by sequence variants. Therefore, Sasquatch uses an unbiased approach, independent of known transcription factor binding sites and motifs. Sasquatch only requires a single DNase-seq data set per cell type, from any genotype, and produces consistent predictions from data generated by different experimental procedures and at different sequence depths. Here we demonstrate the effectiveness of Sasquatch using previously validated functional SNPs and benchmark its performance against existing approaches. Sasquatch is available as a versatile webtool incorporating publicly available data, including the human ENCODE collection. Thus, Sasquatch provides a powerful tool and repository for prioritizing likely regulatory SNPs in the noncoding genome. PMID:28904015

  11. Regulatory Focus Affects Physician Risk Tolerance

    PubMed Central

    Veazie, Peter J.; McIntosh, Scott; Chapman, Benjamin P.; Dolan, James G.

    2014-01-01

    Risk tolerance is a source of variation in physician decision-making. This variation, if independent of clinical concerns, can result in mistaken utilization of health services. To address such problems, it will be helpful to identify nonclinical factors of risk tolerance, particularly those amendable to intervention – regulatory focus theory suggests such a factor. This study tested whether regulatory focus affects risk tolerance among primary care physicians. Twenty-seven primary care physicians were assigned to promotion-focused or prevention-focused manipulations and compared on the Risk Taking Attitudes in Medical Decision Making scale using a randomization test. Results provide evidence that physicians assigned to the promotion-focus manipulation adopted an attitude of greater risk tolerance than the physicians assigned to the prevention-focused manipulation (P=0.01). The Cohen’s d statistic was conventionally large at 0.92. Results imply that situational regulatory focus in primary care physicians affects risk tolerance and may thereby be a nonclinical source of practice variation. Results also provide marginal evidence that chronic regulatory focus is associated with risk tolerance (P=0.05), but the mechanism remains unclear. Research and intervention targeting physician risk tolerance may benefit by considering situational regulatory focus as an explanatory factor. PMID:25431799

  12. Regulatory states in the developmental control of gene expression.

    PubMed

    Peter, Isabelle S

    2017-09-01

    A growing body of evidence shows that gene expression in multicellular organisms is controlled by the combinatorial function of multiple transcription factors. This indicates that not the individual transcription factors or signaling molecules, but the combination of expressed regulatory molecules, the regulatory state, should be viewed as the functional unit in gene regulation. Here, I discuss the concept of the regulatory state and its proposed role in the genome-wide control of gene expression. Recent analyses of regulatory gene expression in sea urchin embryos have been instrumental for solving the genomic control of cell fate specification in this system. Some of the approaches that were used to determine the expression of regulatory states during sea urchin embryogenesis are reviewed. Significant developmental changes in regulatory state expression leading to the distinct specification of cell fates are regulated by gene regulatory network circuits. How these regulatory state transitions are encoded in the genome is illuminated using the sea urchin endoderm-mesoderms cell fate decision circuit as an example. These observations highlight the importance of considering developmental gene regulation, and the function of individual transcription factors, in the context of regulatory states. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Early development of de novo hepatocellular carcinoma after direct-acting agent therapy: Comparison with pegylated interferon-based therapy in chronic hepatitis C patients.

    PubMed

    Yoo, S H; Kwon, J H; Nam, S W; Kim, H Y; Kim, C W; You, C R; Choi, S W; Cho, S H; Han, J-Y; Song, D S; Chang, U I; Yang, J M; Lee, H L; Lee, S W; Han, N I; Kim, S-H; Song, M J; Hwang, S; Sung, P S; Jang, J W; Bae, S H; Choi, J Y; Yoon, S K

    2018-04-16

    Patients with chronic hepatitis C who achieve a sustained viral response after pegylated interferon therapy have a reduced risk of hepatocellular carcinoma, but the risk after treatment with direct-acting antivirals is unclear. We compared the rates of early development of hepatocellular carcinoma after direct-acting antivirals and after pegylated interferon therapy. We retrospectively analysed 785 patients with chronic hepatitis C who had no history of hepatocellular carcinoma (211 treated with pegylated interferon, 574 with direct-acting antivirals) and were followed up for at least 24 weeks after antiviral treatment. De novo hepatocellular carcinoma developed in 6 of 574 patients receiving direct-acting antivirals and in 1 of 211 patients receiving pegylated interferon. The cumulative incidence of early hepatocellular carcinoma development did not differ between the treatment groups either for the whole cohort (1.05% vs 0.47%, P = .298) or for those patients with Child-Pugh Class A cirrhosis (3.73% vs 2.94%, P = .827). Multivariate analysis indicated that alpha-fetoprotein level >9.5 ng/mL at the time of end-of-treatment response was the only independent risk factor for early development of hepatocellular carcinoma in all patients (P < .0001, hazard ratio 176.174, 95% confidence interval 10.768-2882.473) and in patients treated with direct-acting agents (P < .0001, hazard ratio 128.402, 95% confidence interval 8.417-1958.680). In conclusion, the rate of early development of hepatocellular carcinoma did not differ between patients treated with pegylated interferon and those treated with direct-acting antivirals and was associated with the serum alpha-fetoprotein level at the time of end-of-treatment response. © 2018 John Wiley & Sons Ltd.

  14. BID is a critical factor controlling cell viability regulated by IFN-α.

    PubMed

    Tsuno, Takaya; Mejido, Josef; Zhao, Tongmao; Phillips, Terry; Myers, Timothy G; Bekisz, Joseph; Zoon, Kathryn C

    2012-01-01

    Clinical applications of human interferon (IFN)-α have met with varying degrees of success. Nevertheless, key molecules in cell viability regulated by IFN-α have not been clearly identified. Our previous study indicated that IFN (α, β, and ω) receptor (IFNAR) 1/2- and IFN regulatory factor 9-RNA interference (RNAi) completely restored cell viability after IFN-α treatment in human ovarian adenocarcinoma OVCAR3 cells sensitive to IFN-α. In this study, IFNAR1/2- and IFN regulatory factor 9-RNAi inhibited the gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but not of Fas ligand, after IFN-α treatment. In fact, TRAIL but not Fas ligand inhibited the viability of OVCAR3 cells. IFN-α notably upregulated the levels of TRAIL protein in the supernatant and on the membrane of OVCAR3 cells. After TRAIL signaling, caspase 8 inhibitor and BH3 interacting domain death agonist (BID)-RNAi significantly restored cell viability in response to IFN-α and TRAIL in OVCAR3 cells. Furthermore, BID-RNAi prevented both IFN-α and TRAIL from collapsing the mitochondrial membrane potential (ΔΨm). Finally, we provided important evidence that BID overexpression led to significant inhibition of cell viability after IFN-α or TRAIL treatments in human lung carcinoma A549 cells resistant to IFN-α. Thus, this study suggests that BID is crucial for cell viability regulated by IFN-α which can induce mitochondria-mediated apoptosis, indicating a notable potential to be a targeted therapy for IFN-α resistant tumors.

  15. Interferon γ limits the effectiveness of melanoma peptide vaccines.

    PubMed

    Cho, Hyun-Il; Lee, Young-Ran; Celis, Esteban

    2011-01-06

    The development of effective therapeutic vaccines to generate tumor-reactive cytotoxic T lymphocytes (CTLs) continues to be a top research priority. However, in spite of some promising results, there are no clear examples of vaccines that eradicate established tumors. Most vaccines are ineffective because they generate low numbers of CTLs and because numerous immunosuppressive factors abound in tumor-bearing hosts. We designed a peptide vaccine that produces large numbers of tumor-reactive CTLs in a mouse model of melanoma. Surprisingly, CTL tumor recognition and antitumor effects decreased in the presence of interferon γ (IFNγ), a cytokine that can provide therapeutic benefit. Tumors exposed to IFNγ evade CTLs by inducing large amounts of noncognate major histocompatibility complex class I molecules, which limit T-cell activation and effector function. Our results demonstrate that peptide vaccines can eradicate large, established tumors in circumstances under which the inhibitory activities of IFNγ are curtailed.

  16. Genetic and environmental determinants of interferon-tau secretion by in vivo- and in vitro-derived bovine blastocysts.

    PubMed

    Kubisch, H M; Larson, M A; Ealy, A D; Murphy, C N; Roberts, R M

    2001-04-30

    Several experiments were conducted to assess the effects of genotype and various culture media on interferon-tau secretion by in vitro-derived bovine blastocysts and to compare these values with interferon released by blastocysts flushed from superovulated cows. In experiment 1, oocytes were inseminated with semen from three different bulls. While paternal genotype had no effect on cleavage rate, the size or hatching ability of blastocysts, it was a significant determinant of the embryo's ability to develop to the blastocyst stage and of subsequent interferon-tau secretion. In the second experiment, embryos were cultured in synthetic oviductal fluid containing either polyvinyl alcohol, bovine serum albumin or fetal bovine serum. While there was no effect of supplement on the percentage of embryos developing to the blastocyst stage, blastocysts which formed in medium with polyvinyl alcohol had significantly fewer cells, were older at blastocyst formation and produced significantly more interferon-tau. In the third experiment, embryos were cultured to the blastocyst stage in either TCM199 alone or in co-culture with buffalo rat liver, bovine oviductal or bovine uterine epithelial cells. Culture with oviductal or buffalo rat liver cells increased blastocyst cell number, although secretion of interferon-tau was not affected. In the final experiment, bovine blastocysts were flushed from superovulated cows on Day 7 following insemination. Overall, secretion of interferon-tau by in vivo-produced blastocysts did not differ from that of age-matched blastocysts produced in vitro.

  17. A subdose of fluconazole alters the virulence of Cryptococcus gattii during murine cryptococcosis and modulates type I interferon expression.

    PubMed

    Fontes, Alide Caroline Lima; Bretas Oliveira, Danilo; Santos, Juliana Ribeiro Alves; Carneiro, Hellem Cristina Silva; Ribeiro, Noelly de Queiroz; Oliveira, Lorena Vívien Neves de; Barcellos, Vanessa Abreu; Paixão, Tatiane Alves; Abrahão, Jonatas Santos; Resende-Stoianoff, Maria Aparecida; Vainstein, Marilene Henning; Santos, Daniel Assis

    2017-02-01

    Cryptococcosis is an invasive infection caused by yeast-like fungus of the genera Cryptococcus spp. The antifungal therapy for this disease provides some toxicity and the incidence of infections caused by resistant strains increased. Thus, we aimed to assess the consequences of fluconazole subdoses during the treatment of cryptococcosis in the murine inflammatory response and in the virulence factors of Cryptococcus gattii. Mice infected with Cryptococcus gattii were treated with subdoses of fluconazole. We determined the behavior of mice and type 1 interferon expression during the treatment; we also studied the virulence factors and susceptibility to fluconazole for the colonies recovered from the animals. A subdose of fluconazole prolonged the survival of mice, but the morbidity of cryptococcosis was higher in treated animals. These data were linked to the increase in: (i) fluconazole minimum inhibitory concentration, (ii) capsule size and (iii) melanization of C. gattii, which probably led to the increased expression of type I interferons in the brains of mice but not in the lungs. In conclusion, a subdose of fluconazole altered fungal virulence factors and susceptibility to this azole, leading to an altered inflammatory host response and increased morbidity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Antiviral activity of ovine interferon tau 4 against foot-and-mouth disease virus.

    PubMed

    Usharani, Jayaramaiah; Park, Sun Young; Cho, Eun-Ju; Kim, Chungsu; Ko, Young-Joon; Tark, Dongseob; Kim, Su-Mi; Park, Jong-Hyeon; Lee, Kwang-Nyeong; Lee, Myoung-Heon; Lee, Hyang-Sim

    2017-07-01

    Foot-and-mouth disease (FMD) is an economically important disease in most parts of the world and new therapeutic agents are needed to protect the animals before vaccination can trigger the host immune response. Although several interferons have been used for their antiviral activities against Foot-and-mouth disease virus (FMDV), ovine interferon tau 4 (OvIFN-τ4), with a broad-spectrum of action, cross-species antiviral activity, and lower incidence of toxicity in comparison to other type І interferons, has not yet been evaluated for this indication. This is the first study to evaluate the antiviral activity of OvIFN-τ4 against various strains of FMDV. The effective anti-cytopathic concentration of OvIFN-τ4 and its effectiveness pre- and post-infection with FMDV were tested in vitro in LFBK cells. In vivo activity of OvIFN-τ4 was then confirmed in a mouse model of infection. OvIFN-τ4 at a concentration of 500 ng, protected mice until 5days post-FMDV challenge and provided 90% protection for 10 days following FMDV challenge. These results suggest that OvIFN-τ4 could be used as an alternative to other interferons or antiviral agents at the time of FMD outbreak. Copyright © 2017. Published by Elsevier B.V.

  19. Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505.

    PubMed

    Golding, Josephine P; Goatley, Lynnette; Goodbourn, Steve; Dixon, Linda K; Taylor, Geraldine; Netherton, Christopher L

    2016-06-01

    African swine fever virus (ASFV) causes a lethal haemorrhagic disease of pigs. There are conflicting reports on the role of interferon in ASFV infection. We therefore analysed the interaction of ASFV with porcine interferon, in vivo and in vitro. Virulent ASFV induced biologically active IFN in the circulation of pigs from day 3-post infection, whereas low virulent OUR T88/3, which lacks genes from multigene family (MGF) 360 and MGF505, did not. Infection of porcine leucocytes enriched for dendritic cells, with ASFV, in vitro, induced high levels of interferon, suggesting a potential source of interferon in animals undergoing acute ASF. Replication of OUR T88/3, but not virulent viruses, was reduced in interferon pretreated macrophages and a recombinant virus lacking similar genes to those absent in OUR T88/3 was also inhibited. These findings suggest that as well as inhibiting the induction of interferon, MGF360 and MGF505 genes also enable ASFV to overcome the antiviral state. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. [Interferon-alpha and liver fibrosis in patients with chronic damage due to hepatitis C virus].

    PubMed

    Gonzalez-Huezo, María Sarai; Gallegos-Orozco, Juan Fernando

    2003-01-01

    The present review focuses on the published information published regarding the effects of interferon alpha therapy on liver fibrosis in patients with chronic liver damage secondary to hepatitis C infection. Data reviewed included results of the in vitro effects of interferon on hepatic cell line cultures with regards to indirect markers of fibrosis, activation of hepatic stellate cells and oxidative stress response. In the clinical arena, there is current clear evidence of a favorable histological outcome in patients with sustained viral response to interferon therapy. For this reason, the current review focuses more on the histological outcomes regarding liver fibrosis in patients who have not attained viral response to therapy (non-responders) or who already have biopsy defined cirrhosis. Data in these patients were analyzed according to the results of objective testing of fibrosis through the assessment of liver biopsy and its change during time, specially because the morbidity and mortality of this disease is directly related to the complications of liver cirrhosis and not necessarily to the persistence of the hepatitis C virus. Lastly, it is concluded that the process of liver fibrosis/cirrhosis is a dynamic one and that there is some evidence to support the usefulness of interferon alpha therapy as a means to halt or retard the progression of hepatic fibrosis. The result of current clinical trials in which interferon therapy is being used to modify the progression of fibrosis in non-responders or cirrhotic patients is eagerly awaited.

  1. [Action of human leukocyte interferon on poliomyelitis virus reproduction in resistant MIO(r) cells].

    PubMed

    Gulevich, N E; Orlova, N G; Pokidysheva, L N

    1981-01-01

    The effect of human leukocyte interferon on reproduction of poliomyelitis virus in MIO cells resistant to this virus (MIOr) and sensitive MIO cells was studied. Interferon was shown to exert a short-time protective effect in the sensitive cells and to induce virus reproduction in the resistant cells. It is suggested that poliomyelitis virus reproduction in the resistant cells is due to activation of lysosomal enzyme, cathepsin D, in this system.

  2. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases.

    PubMed

    Akdis, Mübeccel; Aab, Alar; Altunbulakli, Can; Azkur, Kursat; Costa, Rita A; Crameri, Reto; Duan, Su; Eiwegger, Thomas; Eljaszewicz, Andrzej; Ferstl, Ruth; Frei, Remo; Garbani, Mattia; Globinska, Anna; Hess, Lena; Huitema, Carly; Kubo, Terufumi; Komlosi, Zsolt; Konieczna, Patricia; Kovacs, Nora; Kucuksezer, Umut C; Meyer, Norbert; Morita, Hideaki; Olzhausen, Judith; O'Mahony, Liam; Pezer, Marija; Prati, Moira; Rebane, Ana; Rhyner, Claudio; Rinaldi, Arturo; Sokolowska, Milena; Stanic, Barbara; Sugita, Kazunari; Treis, Angela; van de Veen, Willem; Wanke, Kerstin; Wawrzyniak, Marcin; Wawrzyniak, Paulina; Wirz, Oliver F; Zakzuk, Josefina Sierra; Akdis, Cezmi A

    2016-10-01

    There have been extensive developments on cellular and molecular mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections during the last few years. Better understanding the functions, reciprocal regulation, and counterbalance of subsets of immune and inflammatory cells that interact through interleukins, interferons, TNF-α, and TGF-β offer opportunities for immune interventions and novel treatment modalities in the era of development of biological immune response modifiers particularly targeting these molecules or their receptors. More than 60 cytokines have been designated as interleukins since the initial discoveries of monocyte and lymphocyte interleukins (called IL-1 and IL-2, respectively). Studies of transgenic or gene-deficient mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided essential information about their functions. Here we review recent developments on IL-1 to IL-38, TNF-α, TGF-β, and interferons. We highlight recent advances during the last few years in this area and extensively discuss their cellular sources, targets, receptors, signaling pathways, and roles in immune regulation in patients with allergy and asthma and other inflammatory diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Interferon sensitivity-determining region of hepatitis C virus influences virus production and interferon signaling

    PubMed Central

    Sugiyama, Ryuichi; Murayama, Asako; Nitta, Sayuri; Yamada, Norie; Tasaka-Fujita, Megumi; Masaki, Takahiro; Aly, Hussein Hassan; Shiina, Masaaki; Ryo, Akihide; Ishii, Koji; Wakita, Takaji; Kato, Takanobu

    2018-01-01

    The number of amino acid substitutions in the interferon (IFN) sensitivity-determining region (ISDR) of hepatitis C virus (HCV) NS5A is a strong predictor for the outcome of IFN-based treatment. To assess the involvement of ISDR in the HCV life cycle and to clarify the molecular mechanisms influencing IFN susceptibility, we used recombinant JFH-1 viruses with NS5A of the genotype 1b Con1 strain (JFH1/5ACon1) and with NS5A ISDR containing 7 amino acid substitutions (JFH1/5ACon1/i-7mut), and compared the virus propagation and the induction of interferon-stimulated genes (ISGs). By transfecting RNAs of these strains into HuH-7-derived cells, we found that the efficiency of infectious virus production of JFH1/5ACon1/i-7mut was attenuated compared with JFH1/5ACon1. After transfecting full-length HCV RNA into HepaRG cells, the mRNA expression of ISGs was sufficiently induced by IFN treatment in JFH1/5ACon1/i-7mut-transfected but not in JFH1/5ACon1-transfected cells. These data suggested that the NS5A-mediated inhibition of ISG induction was deteriorated by amino acid substitutions in the ISDR. In conclusion, using recombinant JFH-1 viruses, we demonstrated that HCV NS5A is associated with infectious virus production and the inhibition of IFN signaling, and amino acid substitutions in the NS5A ISDR deteriorate these functions. These observations explain the strain-specific evasion of IFN signaling by HCV. PMID:29464023

  4. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate themore » effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.« less

  5. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe

    PubMed Central

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  6. Use of Disposable Micro Tissue Culture Plates for Antiviral and Interferon Induction Studies

    PubMed Central

    Sidwell, Robert W.; Huffman, John H.

    1971-01-01

    A reproducible test system requiring small amounts of test compound was developed for evaluating antiviral and interferon-inducing activity. In the antiviral experiments, KB cells were grown in disposable polystyrene microplates covered with a standard domestic plastic wrap. Viruses used in the system were types 1 and 2 herpes simplex virus, vaccinia virus, type 3 adenovirus, myxoma virus, pseudorabies virus, type 3 parainfluenza virus, types 1A and 13 rhinovirus, vesicular stomatitis virus, coxsackievirus B, and type 2 poliovirus. Inhibition of viral cytopathogenic effect was the primary criterion of evaluation of antiviral activity. Reduction in cell and supernatant fluid virus titers was used as a secondary means of evaluation. The microplate system was adaptable for determining prophylactic, therapeutic, and inactivating effects against viruses. Mouse L-929 cells were used for the interferon induction studies, with vesicular stomatitis virus utilized as the indicator of interferon activity. Known active compounds evaluated in this microplate system had activity similar to that seen in macro in vitro systems. PMID:4332040

  7. Interferon-alpha and transfer factor in the treatment of multiple sclerosis: a double-blind, placebo-controlled trial. AUSTIMS Research Group.

    PubMed Central

    1989-01-01

    The role of interferon-alpha (IFN-alpha) and transfer factor (TF) in the treatment of multiple sclerosis was investigated in a prospective, multi-centric, three year, double-blind, placebo-controlled trial. One hundred and eighty two patients with clinically definite multiple sclerosis were randomised into three treatment groups whose compositions were found to be similar for demographic and prognostic variables including HLA status. Subcutaneous injections of IFN-alpha (3 x 10(6) units), TF (0.5 units) manufactured from leucocytes of cohabiting donors, or placebo were given twice weekly for two months, once weekly for 10 months then fortnightly for 24 months. One hundred and fifty three patients completed the injection regimen. There was no significant difference in the progression of disability for multiple sclerosis patients in either the IFN-alpha or TF-treated groups compared with the placebo group. Similarly, change in visual evoked responses (VER), and in number of oligoclonal bands (OCB) and the level of myelin basic protein (MBP) in the cerebrospinal fluid (CSF) over the trial period did not differ significantly between the three groups. However, the IFN-alpha-treated group had significantly more reported adverse drug reactions and patient withdrawals than either of the other two groups. PMID:2659737

  8. Recombinant interferon-α in myelofibrosis reduces bone marrow fibrosis, improves its morphology and is associated with clinical response.

    PubMed

    Pizzi, Marco; Silver, Richard T; Barel, Ariella; Orazi, Attilio

    2015-10-01

    Recombinant interferon-α represents a well-established therapeutic option for the treatment of polycythemia vera and essential thrombocythemia. Recent studies also suggest a role for recombinant interferon-α in the treatment of 'early stage' primary myelofibrosis, but few studies have reported the bone marrow changes after clinically successful interferon therapy. The aim of the present study is to detail the histological responses to recombinant interferon-α in primary myelofibrosis and post-polycythemia vera/post-essential thrombocythemia myelofibrosis and to correlate these with clinical findings. We retrospectively studied 12 patients with primary myelofibrosis or post-polycythemia vera/post-essential thrombocythemia myelofibrosis, who had been treated with recombinant interferon-α. Six patients had received other prior cytoreductive therapies. Bone marrow biopsy was assessed for the following histological parameters: (i) cellularity; (ii) myeloid-to-erythroid ratio; (iii) megakaryocyte tight clusters; (iv) megakaryocyte and naked nuclei density; (v) megakaryocytic atypia; (vi) fibrosis; and (vii) the percentage of blasts. Clinical and laboratory data were included: (i) constitutional symptoms; (ii) splenomegaly, if present; and (iii) complete cell blood count. The clinical response to therapy was evaluated using the International Working Group for Myelofibrosis Research and Treatment/European LeukemiaNet response criteria. The Dynamic International Prognostic Scoring System (DIPSS) score was calculated before and after recombinant interferon-α administration. Successful interferon therapy for myelofibrosis was associated with a significant reduction of marrow fibrosis, cellularity, megakaryocyte density and naked nuclei density. The presence of JAK2(V617F) mutation correlated with improved DIPSS score. JAK2(V617F)-negative cases showed worsening of such score or evolution to acute myeloid leukemia. Cytogenetic analysis documented a normal karyotype in all

  9. Recent considerations in the use of recombinant interferon gamma for biological therapy of atopic dermatitis.

    PubMed

    Brar, Kanwaljit; Leung, Donald Y M

    2016-01-01

    Atopic dermatitis (AD) is the most common inflammatory skin disease in the general population. There are different endophenotypes of AD that likely have a unique immune and molecular basis, such as those who are predisposed to eczema herpeticum, or Staphylococcus aureus infections. In this review, we highlight the endophenotypes of AD where reduced interferon gamma expression may be playing a role. Additionally, we review the potential role of recombinant interferon gamma therapy in the treatment of atopic dermatitis and the particular phenotypes that may benefit from this treatment. Recombinant interferon gamma treatment will likely benefit the pediatric population with AD, as well as those with susceptibilities for skin infections. Future studies are needed to elucidate whether IFN-γ may reduce the prevalence of skin infection in AD.

  10. Effect of leukocyte therapy on tumor necrosis factor-alpha and interferon-gamma production in patients with recurrent spontaneous abortion.

    PubMed

    Gharesi-Fard, Behrouz; Zolghadri, Jaleh; Kamali-Sarvestani, Eskandar

    2008-03-01

    Considering the deleterious role of T helper1 (Th1) cells in pregnancy outcome, a successful treatment for recurrent spontaneous abortion (RSA) should be able to make a significant shift away from Th1 responses. Although paternal leukocyte immunization has been used for treatment of RSA for years, because of methodological differences there is no consensus on the mechanism of action and effectiveness of this method. Twenty-five Iranian non-pregnant women with RSA and 16 non-pregnant control women with at least two successful pregnancies were included in this study. All cases were followed up after leukocyte therapy for pregnancy outcome. Mononuclear cells from women were co-cultured with the husband's mononuclear cells before and after immunotherapy. The levels of tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) were checked on culture supernatant by enzyme-linked immunosorbent assay method. The mean concentration of TNF-alpha was significantly higher in patients compared with that in normal controls (P=0.0001). After immunotherapy, the TNF-alpha level was only significantly decreased in women with successful outcome (P=0.0001). Immunotherapy also induced a significant reduction in the IFN-gamma level (P=0.009). The results of this investigation confirm the role of TNF-alpha in RSA and propose the assessment of TNF-alpha production as a valuable prognostic parameter for the prediction of abortion after leukocyte therapy.

  11. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  12. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules.

    PubMed

    Turatsinze, Jean-Valery; Thomas-Chollier, Morgane; Defrance, Matthieu; van Helden, Jacques

    2008-01-01

    This protocol shows how to detect putative cis-regulatory elements and regions enriched in such elements with the regulatory sequence analysis tools (RSAT) web server (http://rsat.ulb.ac.be/rsat/). The approach applies to known transcription factors, whose binding specificity is represented by position-specific scoring matrices, using the program matrix-scan. The detection of individual binding sites is known to return many false predictions. However, results can be strongly improved by estimating P value, and by searching for combinations of sites (homotypic and heterotypic models). We illustrate the detection of sites and enriched regions with a study case, the upstream sequence of the Drosophila melanogaster gene even-skipped. This protocol is also tested on random control sequences to evaluate the reliability of the predictions. Each task requires a few minutes of computation time on the server. The complete protocol can be executed in about one hour.

  13. Mouse interferons: production by Ehrlich ascites tumour cells infected with Newcastle disease virus and its enhancement by theophylline.

    PubMed

    Slattery, E; Taira, H; Broeze, R; Lengyel, P

    1980-07-01

    Conditions are described for the production of 0.3 to 0.7 NIH mouse reference standard units of interferon per cell from Ehrlich ascites tumour cells cultured as monolayers and induced by infection with Newcastle disease virus (NDV). Inclusion of theophylline (6 mM) in the medium increased the interferon yield three to four times. Cells infected with NDV started to lyse at about 15 p.i., but infected, theophylline-treated cells lysed only 24 p.i. Several other methylxanthines (e.g. theobromine, caffeine and isobutylmethylxanthine) when tested a concentrations similar to that of theophylline, did not boost interferon production. Dibutyryl cyclic AMP (10(-10) to 10(-2)M) did not substitute for theophylline in increasing interferon production, and, if used together with theophylline, did not cause further enhancement.

  14. Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells.

    PubMed

    Jin, Shouheng; Tian, Shuo; Luo, Man; Xie, Weihong; Liu, Tao; Duan, Tianhao; Wu, Yaoxing; Cui, Jun

    2017-10-19

    Tetherin (BST2/CD317) is an interferon-inducible antiviral factor known for its ability to block the release of enveloped viruses from infected cells. Yet its role in type I interferon (IFN) signaling remains poorly defined. Here, we demonstrate that Tetherin is a negative regulator of RIG-I like receptor (RLR)-mediated type I IFN signaling by targeting MAVS. The induction of Tetherin by type I IFN accelerates MAVS degradation via ubiquitin-dependent selective autophagy in human cells. Moreover, Tetherin recruits E3 ubiquitin ligase MARCH8 to catalyze K27-linked ubiquitin chains on MAVS at lysine 7, which serves as a recognition signal for NDP52-dependent autophagic degradation. Taken together, our findings reveal a negative feedback loop of RLR signaling generated by Tetherin-MARCH8-MAVS-NDP52 axis and provide insights into a better understanding of the crosstalk between selective autophagy and optimal deactivation of type I IFN signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Clonal type I interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations.

    PubMed

    Chicha, Laurie; Jarrossay, David; Manz, Markus G

    2004-12-06

    Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c(-) natural type I interferon-producing cells (IPCs) and CD11c(+) dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I-producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system.

  16. Interferon-induced 2'-5' adenylate synthetase in vivo and interferon production in vitro by lymphocytes from systemic lupus erythematosus patients with and without circulating interferon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preble, O.T.; Rothko, K.; Klippel, J.H.

    1983-06-01

    The interferon (IFN)-induced enzyme 2-5A synthetase was elevated in mononuclear cells from both serum IFN-positive and -negative systemic lupus erythematosus (SLE) patients. This suggests that a much higher percentage of patients than previously thought produce endogenous IFN. These results may partly explain findings that mononuclear cells from SLE patients are deficient in IFN production in vitro in response to certain IFN inducers. Although normal lymphocytes can produce an acid-labile alpha IFN after stimulation with C. parvum in vitro, the reason for endogenous production of this unusual alpha IFN by SLE patients remains unknown.

  17. Interferon production and signaling pathways are antagonized during henipavirus infection of fruit bat cell lines.

    PubMed

    Virtue, Elena R; Marsh, Glenn A; Baker, Michelle L; Wang, Lin-Fa

    2011-01-01

    Bats are natural reservoirs for a spectrum of infectious zoonotic diseases including the recently emerged henipaviruses (Hendra and Nipah viruses). Henipaviruses have been observed both naturally and experimentally to cause serious and often fatal disease in many different mammal species, including humans. Interestingly, infection of the flying fox with henipaviruses occurs in the absence of clinical disease. The extreme variation in the disease pattern between humans and bats has led to an investigation into the effects of henipavirus infection on the innate immune response in bat cell lines. We report that henipavirus infection does not result in the induction of interferon expression, and the viruses also inhibit interferon signaling. We also confirm that the interferon production and signaling block in bat cells is not due to differing viral protein expression levels between human and bat hosts. This information, in addition to the known lack of clinical signs in bats following henipavirus infection, suggests that bats control henipavirus infection by an as yet unidentified mechanism, not via the interferon response. This is the first report of henipavirus infection in bat cells specifically investigating aspects of the innate immune system.

  18. Sequence diversity of hepatitis C virus 6a within the extended interferon sensitivity-determining region correlates with interferon-alpha/ribavirin treatment outcomes.

    PubMed

    Zhou, Daniel X M; Chan, Paul K S; Zhang, Tiejun; Tully, Damien C; Tam, John S

    2010-10-01

    Studies on the association between sequence variability of the interferon sensitivity-determining region (ISDR) of hepatitis C virus and the outcome of treatment have reached conflicting results. In this study, 25 patients infected with HCV 6a who had received interferon-alpha/ribavirin combination treatment were analyzed for the sequence variations. 14 of them had the full genome sequences obtained from a previous study, whereas the other 11 samples were sequenced for the extended ISDR (eISDR). This eISDR fragment covers 192 bp (64 amino acids) upstream and 201 bp (67 amino acids) downstream from the ISDR previously defined for HCV 1b. The comparison between interferon-alpha resistance and response groups for the amino acid mutations located in the full genome (6 and 8 patients respectively) as well as the mutations located in the eISDR (10 and 15 patients respectively) showed that the mutations I2160V, I2256V, V2292I (P<0.05) within eISDR were significantly associated with resistance to treatment. However, the extent of amino acid variations within previously defined ISDR was not associated with resistance to treatment as previously reported. Four amino acid variations I248V (P=0.03-0.06) within E1, R445K (P=0.02-0.05) and S747T (P=0.03) within E2, I861V (P=0.01) within NS2 which located outside the eISDR may also associate with treatment outcome as identified by a prescreening of variations within 14 HCV 6a full genomes. (c) 2010 Elsevier B.V. All rights reserved.

  19. Role of extracytoplasmic function sigma factor PG1660 (RpoE) in the oxidative stress resistance regulatory network of Porphyromonas gingivalis

    PubMed Central

    Dou, Y.; Rutanhira, H.; Chen, X.; Mishra, A.; Wang, C.; Fletcher, H.M.

    2018-01-01

    Summary In Porphyromonas gingivalis, the protein PG1660, composed of 174 amino acids, is annotated as an extracytoplasmic function (ECF) sigma factor (RpoE homologue-σ24). Because PG1660 can modulate several virulence factors and responds to environmental signals in P. gingivalis, its genetic properties were evaluated. PG1660 is co-transcribed with its downstream gene PG1659, and the transcription start site was identified as adenine residue 54-nucleotides upstream of the ATG translation start codon. In addition to binding its own promoter, using the purified rPG1660 and RNAP core enzyme from Escherichia coli with the PG1660 promoter DNA as template, the function of PG1660 as a sigma factor was demonstrated in an in vitro transcription assay. Transcriptome analyses of a P. gingivalis PG1660-defective isogenic mutant revealed that under oxidative stress conditions 176 genes including genes involved in secondary metabolism were downregulated more than two-fold compared with the parental strain. The rPG1660 protein also showed the ability to bind to the promoters of the highly downregulated genes in the PG1660-deficient mutant. As the ECF sigma factor PG0162 has a 29% identity with PG1660 and can modulate its expression, the cross-talk between their regulatory networks was explored. The expression profile of the PG0162PG1660-deficient mutant (P. gingivalis FLL356) revealed that the type IX secretion system genes and several virulence genes were downregulated under hydrogen peroxide stress conditions. Taken together, we have confirmed that PG1660 can function as a sigma factor, and plays an important regulatory role in the oxidative stress and virulence regulatory network of P. gingivalis. PMID:29059500

  20. Current report on the interferon program at Roswell Park Memorial Institute.

    PubMed

    Murphy, G P

    1981-01-01

    An overview of the interferon program at Roswell Park Memorial Institute (RPMI), is presented. This program encompasses three interrelated areas of research and new drug development: (a) basic research on purification and characterization of animal and human interferons (leukocyte, fibroblast, and immune); (b) large scale manufacture and preclinical testing of human fibroblast interferon (HFIF); and (c) clinical trials with HFIF to determine its safety of administration as well as antiviral, antitumor, and immunomodulatory activities in patients with neoplastic or viral disease. The antitumor effect of HFIF produced at RPMI as assessed by intralesional injection of various metastatic nodules resulted in an overall 71% local response. Phase I studies in 13 patients demonstrated that HFIF can be administered safely by the subcutaneous, intramuscular, and intravenous routes in doses up to 25 million units per day without any serious untoward effects. Intrathecal administration of HFIF into patients with CNS leukemia was also well tolerated. Pharmacokinetic studies indicated significant levels of HFIF in serum and cerebrospinal fluid after intravenous and intrathecal administration, respectively. Coincidental with the HFIF systemic administration during the Phase I trials, favorable responses in several laboratory, immune, and clinical parameters were observed. These results provide the rationale for conducting phase II and phase III clinical trials with HFIF produced at RPMI.

  1. Using FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) to isolate active regulatory DNA

    PubMed Central

    Simon, Jeremy M.; Giresi, Paul G.; Davis, Ian J.; Lieb, Jason D.

    2013-01-01

    Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements of the eukaryotic genome. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are crosslinked briefly with formaldehyde, lysed, and sonicated. Sheared chromatin is subjected to phenol-chloroform extraction and the isolated DNA, typically encompassing 1–3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays, or next-generation sequencing. Regulatory elements enriched by FAIRE display high concordance with those identified by nuclease hypersensitivity or ChIP, and the entire procedure can be completed in three days. FAIRE exhibits low technical variability, which allows its use in large-scale studies of chromatin from normal or diseased tissues. PMID:22262007

  2. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints.

    PubMed

    Schwessinger, Ron; Suciu, Maria C; McGowan, Simon J; Telenius, Jelena; Taylor, Stephen; Higgs, Doug R; Hughes, Jim R

    2017-10-01

    In the era of genome-wide association studies (GWAS) and personalized medicine, predicting the impact of single nucleotide polymorphisms (SNPs) in regulatory elements is an important goal. Current approaches to determine the potential of regulatory SNPs depend on inadequate knowledge of cell-specific DNA binding motifs. Here, we present Sasquatch, a new computational approach that uses DNase footprint data to estimate and visualize the effects of noncoding variants on transcription factor binding. Sasquatch performs a comprehensive k -mer-based analysis of DNase footprints to determine any k -mer's potential for protein binding in a specific cell type and how this may be changed by sequence variants. Therefore, Sasquatch uses an unbiased approach, independent of known transcription factor binding sites and motifs. Sasquatch only requires a single DNase-seq data set per cell type, from any genotype, and produces consistent predictions from data generated by different experimental procedures and at different sequence depths. Here we demonstrate the effectiveness of Sasquatch using previously validated functional SNPs and benchmark its performance against existing approaches. Sasquatch is available as a versatile webtool incorporating publicly available data, including the human ENCODE collection. Thus, Sasquatch provides a powerful tool and repository for prioritizing likely regulatory SNPs in the noncoding genome. © 2017 Schwessinger et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections.

    PubMed

    Lee, Sanghyun; Baldridge, Megan T

    2017-01-01

    Interferon-lambda (IFN-λ) is a recently described cytokine found to be of critical importance in innate immune regulation of intestinal viruses. Endogenous IFN-λ has potent antiviral effects and has been shown to control multiple intestinal viruses and may represent a factor that contributes to human variability in response to infection. Importantly, recombinant IFN-λ has therapeutic potential against enteric viral infections, many of which lack other effective treatments. In this mini-review, we describe recent advances regarding IFN-λ-mediated regulation of enteric viruses with important clinical relevance including rotavirus, reovirus, and norovirus. We also briefly discuss IFN-λ interactions with other cytokines important in the intestine, and how IFN-λ may play a role in regulation of intestinal viruses by the commensal microbiome. Finally, we indicate currently outstanding questions regarding IFN-λ control of enteric infections that remain to be explored to enhance our understanding of this important immune molecule.

  4. Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections

    PubMed Central

    Lee, Sanghyun; Baldridge, Megan T.

    2017-01-01

    Interferon-lambda (IFN-λ) is a recently described cytokine found to be of critical importance in innate immune regulation of intestinal viruses. Endogenous IFN-λ has potent antiviral effects and has been shown to control multiple intestinal viruses and may represent a factor that contributes to human variability in response to infection. Importantly, recombinant IFN-λ has therapeutic potential against enteric viral infections, many of which lack other effective treatments. In this mini-review, we describe recent advances regarding IFN-λ-mediated regulation of enteric viruses with important clinical relevance including rotavirus, reovirus, and norovirus. We also briefly discuss IFN-λ interactions with other cytokines important in the intestine, and how IFN-λ may play a role in regulation of intestinal viruses by the commensal microbiome. Finally, we indicate currently outstanding questions regarding IFN-λ control of enteric infections that remain to be explored to enhance our understanding of this important immune molecule. PMID:28713375

  5. Type I interferons in tuberculosis: Foe and occasionally friend.

    PubMed

    Moreira-Teixeira, Lúcia; Mayer-Barber, Katrin; Sher, Alan; O'Garra, Anne

    2018-05-07

    Tuberculosis remains one of the leading causes of mortality worldwide, and, despite its clinical significance, there are still significant gaps in our understanding of pathogenic and protective mechanisms triggered by Mycobacterium tuberculosis infection. Type I interferons (IFN) regulate a broad family of genes that either stimulate or inhibit immune function, having both host-protective and detrimental effects, and exhibit well-characterized antiviral activity. Transcriptional studies have uncovered a potential deleterious role for type I IFN in active tuberculosis. Since then, additional studies in human tuberculosis and experimental mouse models of M. tuberculosis infection support the concept that type I IFN promotes both bacterial expansion and disease pathogenesis. More recently, studies in a different setting have suggested a putative protective role for type I IFN. In this study, we discuss the mechanistic and contextual factors that determine the detrimental versus beneficial outcomes of type I IFN induction during M. tuberculosis infection, from human disease to experimental mouse models of tuberculosis. © 2018 Moreira-Teixeira et al.

  6. Development and evaluation of an interferon-γ release assay in Asian elephants (Elephas maximus).

    PubMed

    Paudel, Sarad; Villanueva, Marvin A; Mikota, Susan K; Nakajima, Chie; Gairhe, Kamal P; Subedi, Suraj; Rayamajhi, Nabin; Sashika, Mariko; Shimozuru, Michito; Matsuba, Takashi; Suzuki, Yasuhiko; Tsubota, Toshio

    2016-08-01

    We developed an interferon-γ release assay (IGRA) specific for Asian elephants (Elephas maximus). Whole blood collected from forty captive Asian elephants was stimulated with three different mitogens i.e., phytohemagglutinin (PHA), pokweed mitogen (PWM) and phorbol myristate aceteate/ionomycin (PMA/I). A sandwich ELISA that was able to recognize the recombinant elephant interferon-γ (rEIFN-γ) as well as native interferon-γ from the Asian elephants was performed using anti-elephant IFN-γ rabbit polyclonal antibodies as capture antibodies and biotinylated anti-elephant IFN-γ rabbit polyclonal antibodies as detection antibodies. PMA/I was the best mitogen to use as a positive control for an Asian elephant IGRA. The development of an Asian elephant-specific IGRA that detects native IFN-γ in elephant whole blood provides promising results for its application as a potential diagnostic tool for diseases, such as tuberculosis (TB) in Asian elephants.

  7. DDX60L Is an Interferon-Stimulated Gene Product Restricting Hepatitis C Virus Replication in Cell Culture

    PubMed Central

    Grünvogel, Oliver; Esser-Nobis, Katharina; Reustle, Anna; Schult, Philipp; Müller, Birthe; Metz, Philippe; Trippler, Martin; Windisch, Marc P.; Frese, Michael; Binder, Marco; Fackler, Oliver; Bartenschlager, Ralf; Ruggieri, Alessia

    2015-01-01

    ABSTRACT All major types of interferon (IFN) efficiently inhibit hepatitis C virus (HCV) replication in vitro and in vivo. Remarkably, HCV replication is not sensitive to IFN-γ in the hepatoma cell line Huh6, despite an intact signaling pathway. We performed transcriptome analyses between Huh6 and Huh-7 cells to identify effector genes of the IFN-γ response and thereby identified the DExD/H box helicase DEAD box polypeptide 60-like (DDX60L) as a restriction factor of HCV replication. DDX60L and its homolog DEAD box polypeptide 60 (DDX60) were both induced upon viral infection and IFN treatment in primary human hepatocytes. However, exclusively DDX60L knockdown increased HCV replication in Huh-7 cells and rescued HCV replication from type II IFN as well as type I and III IFN treatment, suggesting that DDX60L is an important effector protein of the innate immune response against HCV. In contrast, we found no impact of DDX60L on replication of hepatitis A virus. DDX60L protein was detectable only upon strong ectopic overexpression, displayed a broad cytoplasmic distribution, but caused cytopathic effects under these conditions. DDX60L knockdown did not alter interferon-stimulated gene (ISG) induction after IFN treatment but inhibited HCV replication upon ectopic expression, suggesting that it is a direct effector of the innate immune response. It most likely inhibits viral RNA replication, since we found neither impact of DDX60L on translation or stability of HCV subgenomic replicons nor additional impact on assembly of infectious virus. Similar to DDX60, DDX60L had a moderate impact on RIG-I dependent activation of innate immunity, suggesting additional functions in the sensing of viral RNA. IMPORTANCE Interferons induce a plethora of interferon-stimulated genes (ISGs), which are our first line of defense against viral infections. In addition, IFNs have been used in antiviral therapy, in particular against the human pathogen hepatitis C virus (HCV); still, their

  8. Shift in disparities in hepatitis C treatment from interferon to DAA era: A population-based cohort study.

    PubMed

    Janjua, N Z; Islam, N; Wong, J; Yoshida, E M; Ramji, A; Samji, H; Butt, Z A; Chong, M; Cook, D; Alvarez, M; Darvishian, M; Tyndall, M; Krajden, M

    2017-08-01

    We evaluated the shift in the characteristics of people who received interferon-based hepatitis C virus (HCV) treatments and those who received recently introduced direct-acting antivirals (DAAs) in British Columbia (BC), Canada. The BC Hepatitis Testers Cohort includes 1.5 million individuals tested for HCV or HIV, or reported cases of hepatitis B and active tuberculosis in BC from 1990 to 2013 linked to medical visits, hospitalization, cancer, prescription drugs and mortality data. This analysis included all patients who filled at least one prescription for HCV treatment until 31 July 2015. HCV treatments were classified as older interferon-based treatments including pegylated interferon/ribavirin (PegIFN/RBV) with/without boceprevir or telaprevir, DAAs with RBV or PegIFN/RBV, and newer interferon-free DAAs. Of 11 886 people treated for HCV between 2000 and 2015, 1164 (9.8%) received interferon-free DAAs (ledipasvir/sofosbuvir: n=1075; 92.4%), while 452 (3.8%) received a combination of DAAs and RBV or PegIFN/RBV. Compared to those receiving interferon-based treatment, people with HIV co-infection (adjusted odds ratio [aOR]: 2.96, 95% CI: 2.31-3.81), cirrhosis (aOR: 1.77, 95% CI: 1.45-2.15), decompensated cirrhosis (aOR: 1.72, 95% CI: 1.31-2.28), diabetes (aOR: 1.30, 95% CI: 1.10-1.54), a history of injection drug use (aOR: 1.34, 95% CI: 1.09-1.65) and opioid substitution therapy (aOR: 1.30, 95% CI: 1.01-1.67) were more likely to receive interferon-free DAAs. Socio-economically marginalized individuals were significantly less likely (most deprived vs most privileged: aOR: 0.71, 95% CI: 0.58-0.87) to receive DAAs. In conclusion, there is a shift in prescription of new HCV treatments to previously excluded groups (eg HIV-co-infected), although gaps remain for the socio-economically marginalized populations. © 2017 John Wiley & Sons Ltd.

  9. Interferon-Induced Ifit2/ISG54 Protects Mice from Lethal VSV Neuropathogenesis

    PubMed Central

    Fensterl, Volker; Wetzel, Jaime L.; Ramachandran, Srividya; Ogino, Tomoaki; Stohlman, Stephen A.; Bergmann, Cornelia C.; Diamond, Michael S.; Virgin, Herbert W.; Sen, Ganes C.

    2012-01-01

    Interferon protects mice from vesicular stomatitis virus (VSV) infection and pathogenesis; however, it is not known which of the numerous interferon-stimulated genes (ISG) mediate the antiviral effect. A prominent family of ISGs is the interferon-induced with tetratricopeptide repeats (Ifit) genes comprising three members in mice, Ifit1/ISG56, Ifit2/ISG54 and Ifit3/ISG49. Intranasal infection with a low dose of VSV is not lethal to wild-type mice and all three Ifit genes are induced in the central nervous system of the infected mice. We tested their potential contributions to the observed protection of wild-type mice from VSV pathogenesis, by taking advantage of the newly generated knockout mice lacking either Ifit2 or Ifit1. We observed that in Ifit2 knockout (Ifit2 −/−) mice, intranasal VSV infection was uniformly lethal and death was preceded by neurological signs, such as ataxia and hind limb paralysis. In contrast, wild-type and Ifit1 −/− mice were highly protected and survived without developing such disease. However, when VSV was injected intracranially, virus replication and survival were not significantly different between wild-type and Ifit2−/− mice. When administered intranasally, VSV entered the central nervous system through the olfactory bulbs, where it replicated equivalently in wild-type and Ifit2 −/− mice and induced interferon-β. However, as the infection spread to other regions of the brain, VSV titers rose several hundred folds higher in Ifit2 −/− mice as compared to wild-type mice. This was not caused by a broadened cell tropism in the brains of Ifit2 −/− mice, where VSV still replicated selectively in neurons. Surprisingly, this advantage for VSV replication in the brains of Ifit2−/− mice was not observed in other organs, such as lung and liver. Pathogenesis by another neurotropic RNA virus, encephalomyocarditis virus, was not enhanced in the brains of Ifit2 −/− mice. Our study provides a clear demonstration of

  10. Alternative activation of STAT1 and STAT3 in response to interferon-gamma.

    PubMed

    Qing, Yulan; Stark, George R

    2004-10-01

    Interferon-gamma (IFNgamma) is a pluripotent cytokine whose major biological effects are mediated through a pathway in which STAT1 is the predominant and essential transcription factor. STAT3 can also be activated weakly by IFNgamma, but the mechanism of activation and function of STAT3 as a part of the interferon response are not known. Here we show that STAT3 activation is much stronger and more prolonged in STAT1-null mouse embryo fibroblasts than in wild-type cells. In response to IFNgamma, SRC-family kinases are required to activate STAT3 (but not STAT1) through tyrosine phosphorylation, whereas the receptor-bound kinases JAK1 and JAK2 are required to activate both STATs. Tyrosine 419 of the IFNgamma receptor subunit 1 (IFNGR1) is required to activate both STATs, suggesting that STAT1 and STAT3 compete with each other for the same receptor phosphotyrosine motif. Activated STAT3 can replace STAT1 in STAT1-null cells to drive the transcription of certain genes, for example, socs-3 and c/ebpdelta, which have gamma-activated sequence motifs in their promoters. Work from Ian Kerr's laboratory reveals that the gp130-linked interleukin-6 receptor, which usually activates STAT3 predominantly, activates STAT1 efficiently when STAT3 is absent. Because STAT1 and STAT3 have opposing biological effects (STAT3 is an oncogene, and STAT1 is a tumor suppressor), the reciprocal activation of these two transcription factors in response to IFNgamma or interleukin-6 suggests that their relative abundance, which may vary substantially in different normal cell types, under different conditions or in tumors is likely to have a major impact on how cells behave in response to different cytokines.

  11. Type 1 IFN-independent activation of a subset of interferon stimulated genes in West Nile virus Eg101-infected mouse cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulit-Penaloza, Joanna A.; Scherbik, Svetlana V.; Brinton, Margo A., E-mail: mbrinton@gsu.edu

    2012-04-10

    Although infection of mouse embryofibroblasts (MEFs) with WNV Eg101 induced interferon (IFN) beta production and STAT1 and STAT2 phosphorylation, these transcription factors (TFs) were not detected in the nucleus or on the promoters of four IRF-3-independent interferon stimulated genes (ISGs): Oas1a and Irf7 (previously characterized as IFN/ISGF3-dependent), Oas1b and Irf1. These ISGs were upregulated in WNV Eg101-infected STAT1-/-, STAT2-/-, and IFN alpha/beta receptor -/- MEFs. Although either IRF-3 or IRF-7 could amplify/sustain Oas1a and Oas1b upregulation at later times after infection, these factors were not required for the initial gene activation. The lack of upregulation of these ISGs in WNVmore » Eg101-infected IRF-3/9-/- MEFs suggested the involvement of IRF-9. Activation of Irf1 in infected MEFs did not depend on any of these IRFs. The data indicate that additional alternative activation mechanisms exist for subsets of ISGs when a virus infection has blocked ISG activation by the canonical IFN-mediated pathway.« less

  12. Robust interferon-α and IL-12 responses by dendritic cells are related to efficient CD4+ T-cell recovery in HIV patients on ART.

    PubMed

    Tan, Dino Bee Aik; Yong, Yean Kong; Lim, Andrew; Tan, Hong Yien; Kamarulzaman, Adeeba; French, Martyn; Price, Patricia

    2011-05-01

    Amongst HIV patients with successful virological responses to antiretroviral therapy (ART), poor CD4(+) T-cell recovery is associated with low nadir CD4(+) T-cell counts and persistent immune activation. These factors might be influenced by dendritic cell (DC) function. Interferon-α-producing plasmacytoid DC and IL-12-producing myeloid DC were quantified by flow cytometry after stimulation with agonists to TLR7/8 (CL075) or TLR9 (CpG-ODN). These were compared between patients who achieved CD4(+) T-cell counts above or below 200 cells/μL after 6 months on ART (High vs. Low groups). High Group patients had more DC producing interferon-α or IL-12 at Weeks 6 and 12 on ART than Low Group patients. The frequencies of cytokine-producing DC at Week 12 were directly correlated with CD4(+) T-cell counts at baseline and at Week 12. Patients with good recovery of CD4(+) T-cells had robust TLR-mediated interferon-α responses by plasmacytoid DC and IL-12 responses by myeloid DC during early ART (1-3 months). Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Effects of tumor necrosis factor-alpha and interferon-gamma on expressions of matrix metalloproteinase-2 and -9 in human bladder cancer cells.

    PubMed

    Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G

    2000-10-31

    We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.

  14. Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation

    PubMed Central

    Qian, Jiang; Esumi, Noriko; Chen, Yangjian; Wang, Qingliang; Chowers, Itay; Zack, Donald J.

    2005-01-01

    Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX. PMID:15967807

  15. Repression by Homeoprotein Pitx1 of Virus-Induced Interferon A Promoters Is Mediated by Physical Interaction and trans Repression of IRF3 and IRF7

    PubMed Central

    Island, Marie-Laure; Mesplede, Thibault; Darracq, Nicole; Bandu, Marie-Thérèse; Christeff, Nicolas; Djian, Philippe; Drouin, Jacques; Navarro, Sébastien

    2002-01-01

    Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by the specific transcription activators IFN regulatory factor 3 (IRF3) and IRF-7 and the homeoprotein transcription repressor Pitx1. We now show that repression by Pitx1 does not appear to be due to the recruitment of histone deacetylases. On the other hand, Pitx1 inhibits the IRF3 and IRF7 transcriptional activity of the IFN-A11 and IFN-A5 promoters and interacts physically with IRF3 and IRF7. Pitx1 trans-repression activity maps to specific C-terminal domains, and the Pitx1 homeodomain is involved in physical interaction with IRF3 or IRF7. IRF3 is able to bind to the antisilencer region of the IFN-A4 promoter, which overrides the repressive activity of Pitx1. These results indicate that interaction between the Pitx1 homeodomain and IRF3 or IRF7 and the ability of the Pitx1 C-terminal repressor domains to block IFN-A11 and IFN-A5 but not IFN-A4 promoter activities may contribute to our understanding of the complex differential transcriptional activation, repression, and antirepression of the IFN-A genes. PMID:12242290

  16. [Autoimmunity in children with chronic hepatitis C treated with interferon alpha and ribavirin].

    PubMed

    Gora-Gebka, Magdalena; Liberek, Anna; Bako, Wanda; Raczkowska-Kozak, Janina; Sikorska-Wisniewska, Grazyna; Korzon, Maria

    2004-01-01

    The role of interferon alpha or the virus itself in the pathogenesis and the risk of autoimmunological disorders in patients infected with HCV, still remain unknown, especially in children. The aim of the study was to evaluate the incidence of autoantibodies and the risk of autoimmunological disorders in children with chronic hepatitis C, treated with interferon alpha and ribavirin in the Department of Paediatrics, Paediatric Gastroenterology and Oncology in Gdansk. In the studied group of 12 patients, in 4 cases autoantibodies were present in low titers prior to the treatment and they had no prognostic value for the response to the therapy or the risk of autoimmunological disorders. Positive response for the treatment was achieved in 4 cases; in 3 cases indications for discontinuation of the therapy were established. During the therapy with interferon alpha and ribavirin, in 2 children elevation of serum titers of antibodies to liver-kidney microsome type 1 (anti-LKM1) (> 1:640) with normal gammaglobulin levels was noted. In none of the children autoimmunological disorders were observed.

  17. Effect of interferon on the replication of mink cell focus-inducing virus in murine cells: synthesis, processing, assembly, and release of viral proteins.

    PubMed Central

    Bilello, J A; Wivel, N A; Pitha, P M

    1982-01-01

    Treatment of mink cell focus-inducing (MCF) virus (isolate AK-13) producing SC-1 cells with mouse fibroblast interferon (150 to 600 U/ml) led to a 100-fold decrease in the release of infectious virus, whereas there was a 2.5- to 10-fold decrease in various parameters of virus particle release. Analysis of labeled virion proteins indicated that a temporal change in virion protein composition occurred after interferon treatment. After a 24-h exposure of chronically infected cells to interferon, the virions produced contained a 85,000-dalton glycoprotein (apparently of nonviral origin) which was in excess of the virus envelope glycoprotein gp70. Particles produced from cells treated with interferon for 32 to 48 h were nearly devoid of gp70 and contained substantially lower quantities of p30. Intracellular processing of viral precursor polyproteins to the mature virion structural proteins was not altered in the presence of interferon. However, an accumulation of the viral p30 and p12E proteins was observed in interferon-treated cells, consistent with an increase in cell-associated virions. Immunoprecipitation analysis of the tissue culture fluids from [35S]methionine-labeled control and interferon-treated cells revealed marked decrease in p30 and p15E/p12E released after interferon treatment. In contrast, gp70 did not accumulate in interferon-treated cells, but was released into the culture medium in a form that was neither pelletable nor associated with p15E/p12E. Images PMID:6180173

  18. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network

    PubMed Central

    Samad, Abdul F. A.; Sajad, Muhammad; Nazaruddin, Nazaruddin; Fauzi, Izzat A.; Murad, Abdul M. A.; Zainal, Zamri; Ismail, Ismanizan

    2017-01-01

    Recent achievements in plant microRNA (miRNA), a large class of small and non-coding RNAs, are very exciting. A wide array of techniques involving forward genetic, molecular cloning, bioinformatic analysis, and the latest technology, deep sequencing have greatly advanced miRNA discovery. A tiny miRNA sequence has the ability to target single/multiple mRNA targets. Most of the miRNA targets are transcription factors (TFs) which have paramount importance in regulating the plant growth and development. Various families of TFs, which have regulated a range of regulatory networks, may assist plants to grow under normal and stress environmental conditions. This present review focuses on the regulatory relationships between miRNAs and different families of TFs like; NF-Y, MYB, AP2, TCP, WRKY, NAC, GRF, and SPL. For instance NF-Y play important role during drought tolerance and flower development, MYB are involved in signal transduction and biosynthesis of secondary metabolites, AP2 regulate the floral development and nodule formation, TCP direct leaf development and growth hormones signaling. WRKY have known roles in multiple stress tolerances, NAC regulate lateral root formation, GRF are involved in root growth, flower, and seed development, and SPL regulate plant transition from juvenile to adult. We also studied the relation between miRNAs and TFs by consolidating the research findings from different plant species which will help plant scientists in understanding the mechanism of action and interaction between these regulators in the plant growth and development under normal and stress environmental conditions. PMID:28446918

  19. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network.

    PubMed

    Samad, Abdul F A; Sajad, Muhammad; Nazaruddin, Nazaruddin; Fauzi, Izzat A; Murad, Abdul M A; Zainal, Zamri; Ismail, Ismanizan

    2017-01-01

    Recent achievements in plant microRNA (miRNA), a large class of small and non-coding RNAs, are very exciting. A wide array of techniques involving forward genetic, molecular cloning, bioinformatic analysis, and the latest technology, deep sequencing have greatly advanced miRNA discovery. A tiny miRNA sequence has the ability to target single/multiple mRNA targets. Most of the miRNA targets are transcription factors (TFs) which have paramount importance in regulating the plant growth and development. Various families of TFs, which have regulated a range of regulatory networks, may assist plants to grow under normal and stress environmental conditions. This present review focuses on the regulatory relationships between miRNAs and different families of TFs like; NF-Y, MYB, AP2, TCP, WRKY, NAC, GRF, and SPL. For instance NF-Y play important role during drought tolerance and flower development, MYB are involved in signal transduction and biosynthesis of secondary metabolites, AP2 regulate the floral development and nodule formation, TCP direct leaf development and growth hormones signaling. WRKY have known roles in multiple stress tolerances, NAC regulate lateral root formation, GRF are involved in root growth, flower, and seed development, and SPL regulate plant transition from juvenile to adult. We also studied the relation between miRNAs and TFs by consolidating the research findings from different plant species which will help plant scientists in understanding the mechanism of action and interaction between these regulators in the plant growth and development under normal and stress environmental conditions.

  20. Factors Influencing Acceptability and Perceived Impacts of a Mandatory ePortfolio Implemented by an Occupational Therapy Regulatory Organization.

    PubMed

    Vachon, Brigitte; Foucault, Marie-Lyse; Giguère, Charles-Édouard; Rochette, Annie; Thomas, Aliki; Morel, Martine

    2018-01-01

    The use of ePortfolios has been implemented in several regulatory organizations to encourage clinicians' engagement in continuing professional development (CPD). However, their use has achieved mixed success, and multiple personal and contextual factors can influence their impacts on practice change. The aim of this study was to identify which factors influence the acceptability and perceived impacts of an ePortfolio implemented by an occupational therapy regulatory organization in one Canadian province. A cross-sectional online survey design was used. The survey was sent to registered occupational therapists in Quebec. Multiple regression analyses were conducted to identify factors influencing acceptability and outcomes: ease of use, satisfaction, impact on implementation of the CPD plan, and competence improvement. The survey was fully completed by 546 participants. Factors significantly influencing the ePortfolio acceptability and perceived impacts were attitude toward and familiarity with the portfolio, confidence in reflective skills, engagement in the CPD plan, and desire for feedback. Time spent completing the ePortfolio and the fact of completing it in teams were negatively associated with the outcomes. Shaping more favorable user attitudes, helping users recognize and experience the tool's benefits for their practice, and fostering confidence in their reflective skills are important factors that can be addressed to improve ePortfolio acceptability and outcomes. Contextual factors, such as time spent completing the ePortfolio and completing it in teams, seem to reflect greater difficulty with using the tool. Study findings can contribute to improving ePortfolio implementation in the CPD context.

  1. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice.

    PubMed

    Li, L; Tu, J; Jiang, Y; Zhou, J; Schust, D J

    2017-05-01

    Pregnancy loss is the commonest complication of pregnancy. The causes of pregnancy loss are poorly understood. It has been reported that stimulation of invariant natural killer T (iNKT) cells using α-galactosylceramide (αGC) induces pregnancy loss in mice. Here we investigated the mechanisms, especially the role of regulatory T (Treg) cells, in iNKT cell-mediated pregnancy loss. We found that injection of αGC rapidly induced fetal resorption, activated decidual iNKT cells, decreased the percentage of decidual Treg cells and their interleukin (IL)-10 and transforming growth factor (TGF)-β production, and upregulated the levels of interferon (IFN)-γ, tumor necrosis factor-α, IL-4, and IL-10 in serum. Adoptive transfer of iNKT cells from wild-type (WT) and IL-4 -/- mice but not IFN-γ -/- mice into αGC-treated iNKT cell-deficient Jα18 -/- mice restored αGC-induced pregnancy loss. Adoptive transfer of Treg cells downregulated α-GC-induced pregnancy loss in WT mice. Finally, co-culture with αGC-stimulated decidual iNKT cells decreased the production of IL-10 and TGF-β in decidual Treg cells and inhibited their suppressive activity. These findings suggest that activation of iNKT cells induces pregnancy loss in mice in an IFN-γ-dependent manner. In addition, inhibition of the function of decidual Treg cells has an important role in iNKT cell-mediated pregnancy loss.

  2. Influenza A virus TRIMs the type I interferon response.

    PubMed

    Ludwig, Stephan; Wolff, Thorsten

    2009-05-08

    The virulence of many pathogenic viruses depends on suppression of the innate type I interferon defense. For influenza viruses, a unique strategy has now been unraveled, as the viral nonstructural protein 1 was shown to inhibit activation of the pathogen recognition receptor RIG-I by binding the ubiquitin ligase TRIM25.

  3. Crystallization and preliminary X-ray analysis of Ebola VP35 interferon inhibitory domain mutant proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Daisy W.; Borek, Dominika; Farahbakhsh, Mina

    2010-06-21

    VP35 is one of seven structural proteins encoded by the Ebola viral genome and mediates viral replication, nucleocapsid formation and host immune suppression. The C-terminal interferon inhibitory domain (IID) of VP35 is critical for dsRNA binding and interferon inhibition. The wild-type VP35 IID structure revealed several conserved residues that are important for dsRNA binding and interferon antagonism. Here, the expression, purification and crystallization of recombinant Zaire Ebola VP35 IID mutants R312A, K319A/R322A and K339A in space groups P6{sub 1}22, P2{sub 1}2{sub 1}2{sub 1} and P2{sub 1}, respectively, are described. Diffraction data were collected using synchrotron sources at the Advanced Lightmore » Source and the Advanced Photon Source.« less

  4. A strong interferon response correlates with a milder dengue clinical condition.

    PubMed

    De La Cruz Hernández, Sergio Isaac; Puerta-Guardo, Henry; Flores-Aguilar, Hilario; González-Mateos, Silvia; López-Martinez, Irma; Ortiz-Navarrete, Vianney; Ludert, Juan E; Del Angel, Rosa María

    2014-07-01

    Type 1 interferon (IFNα/β) has a significant role in establishing protection against virus infections. It has been well documented by in vitro studies that dengue virus (DENV) activates a robust IFNα/β response. However, DENV also induces a down-regulation of the JAK/STAT pathway, inhibiting the induction of interferon regulated genes. As a consequence, the role played by the IFN type 1 response in the protection of dengue patients is not fully understood. To compare IFN-α levels in dengue patients with dengue fever (DF) or dengue hemorrhagic fever (DHF) undergoing primary or secondary infections. Two hundred and four serum samples were analyzed for IFN-α level by cytometric bead array. Patients' clinical condition was assigned following the WHO 1997 criteria and specific IgG and IgM antibodies were measured using commercial assays to determine primary and secondary infections. The infecting serotype was determined by qRT-PCR. The IFN-α levels were found significantly higher in DF than DHF patients irrespective of the infecting serotype (DENV1 or 2), and were found to decline rapidly at day 3 after fever onset. For DENV2 infections, higher IFN-α level was found during primary than secondary infections. These results suggest that an early strong interferon response correlates with a better clinical condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Interferon-free treatment for patients with chronic hepatitis C and autoimmune liver disease: higher SVR rates with special precautions for deterioration of autoimmune hepatitis

    PubMed Central

    Kanda, Tatsuo; Yasui, Shin; Nakamura, Masato; Nakamoto, Shingo; Takahashi, Koji; Wu, Shuang; Sasaki, Reina; Haga, Yuki; Ogasawara, Sadahisa; Saito, Tomoko; Kobayashi, Kazufumi; Kiyono, Soichiro; Ooka, Yoshihiko; Suzuki, Eiichiro; Chiba, Tetsuhiro; Maruyama, Hitoshi; Imazeki, Fumio; Moriyama, Mitsuhiko; Kato, Naoya

    2018-01-01

    Background Interferon-free treatment can achieve higher sustained virological response (SVR) rates, even in patients in whom hepatitis C virus (HCV) could not be eradicated in the interferon treatment era. Immune restoration in the liver is occasionally associated with HCV infection. We examined the safety and effects of interferon-free regimens on HCV patients with autoimmune liver diseases. Results All 7 HCV patients with autoimmune hepatitis (AIH) completed treatment and achieved SVR. Three patients took prednisolone (PSL) at baseline, and 3 did not take PSL during interferon-free treatment. In one HCV patient with AIH and cirrhosis, PSL were not administered at baseline, but she needed to take 40 mg/day PSL at week 8 for liver dysfunction. She also complained back pain and was diagnosed with vasospastic angina by coronary angiography at week 11. However, she completed interferon-free treatment. All 5 HCV patients with primary biliary cholangitis (PBC) completed treatment and achieved SVR. Three of these HCV patients with PBC were treated with UDCA during interferon-free treatment. Conclusions Interferon-free regimens could result in higher SVR rates in HCV patients with autoimmune liver diseases. As interferon-free treatment for HCV may have an effect on hepatic immunity and activity of the autoimmune liver diseases, careful attention should be paid to unexpected adverse events in their treatments. Methods Total 12 patients with HCV and autoimmune liver diseases [7 AIH and PBC], who were treated with interferon-free regimens, were retrospectively analyzed. PMID:29545925

  6. Interferon-free treatment for patients with chronic hepatitis C and autoimmune liver disease: higher SVR rates with special precautions for deterioration of autoimmune hepatitis.

    PubMed

    Kanda, Tatsuo; Yasui, Shin; Nakamura, Masato; Nakamoto, Shingo; Takahashi, Koji; Wu, Shuang; Sasaki, Reina; Haga, Yuki; Ogasawara, Sadahisa; Saito, Tomoko; Kobayashi, Kazufumi; Kiyono, Soichiro; Ooka, Yoshihiko; Suzuki, Eiichiro; Chiba, Tetsuhiro; Maruyama, Hitoshi; Imazeki, Fumio; Moriyama, Mitsuhiko; Kato, Naoya

    2018-02-20

    Interferon-free treatment can achieve higher sustained virological response (SVR) rates, even in patients in whom hepatitis C virus (HCV) could not be eradicated in the interferon treatment era. Immune restoration in the liver is occasionally associated with HCV infection. We examined the safety and effects of interferon-free regimens on HCV patients with autoimmune liver diseases. All 7 HCV patients with autoimmune hepatitis (AIH) completed treatment and achieved SVR. Three patients took prednisolone (PSL) at baseline, and 3 did not take PSL during interferon-free treatment. In one HCV patient with AIH and cirrhosis, PSL were not administered at baseline, but she needed to take 40 mg/day PSL at week 8 for liver dysfunction. She also complained back pain and was diagnosed with vasospastic angina by coronary angiography at week 11. However, she completed interferon-free treatment. All 5 HCV patients with primary biliary cholangitis (PBC) completed treatment and achieved SVR. Three of these HCV patients with PBC were treated with UDCA during interferon-free treatment. Interferon-free regimens could result in higher SVR rates in HCV patients with autoimmune liver diseases. As interferon-free treatment for HCV may have an effect on hepatic immunity and activity of the autoimmune liver diseases, careful attention should be paid to unexpected adverse events in their treatments. Total 12 patients with HCV and autoimmune liver diseases [7 AIH and PBC], who were treated with interferon-free regimens, were retrospectively analyzed.

  7. Transglutaminase 2 expression is enhanced synergistically by interferon-γ and tumour necrosis factor-α in human small intestine

    PubMed Central

    Bayardo, M; Punzi, F; Bondar, C; Chopita, N; Chirdo, F

    2012-01-01

    Transglutaminase 2 (TG2) is expressed ubiquitously, has multiple physiological functions and has also been associated with inflammatory diseases, neurodegenerative disorders, autoimmunity and cancer. In particular, TG2 is expressed in small intestine mucosa where it is up-regulated in active coeliac disease (CD). The aim of this work was to investigate the induction of TG2 expression by proinflammatory cytokines [interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-15] and the signalling pathways involved, in human epithelial and monocytic cells and in intestinal tissue from controls and untreated CD patients. Here we report that IFN-γ was the most potent inducer of TG2 expression in the small intestinal mucosa and in four [Caco-2, HT-29, Calu-6 and human acute monocytic leukaemia cell line (THP-1)] of five cell lines tested. The combination of TNF-α and IFN-γ produced a strong synergistic effect. The use of selective inhibitors of signalling pathways revealed that induction of TG2 by IFN-γ was mediated by phosphoinositide 3-kinase (PI3K), while c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were required for TNF-α activation. Quantitative polymerase chain reaction (PCR), flow cytometry and Western blot analysis showed that TG2 expression was blocked completely when stimulation by either TNF-α or IFN-γ was performed in the presence of nuclear factor (NF)-κB inhibitors (sulphasalazine and BAY-117082). TG2 was up-regulated substantially by TNF-α and IFN-γ in intestinal mucosa in untreated CD compared with controls. This study shows that IFN-γ, a dominant cytokine in intestinal mucosa in active CD, is the most potent inducer of TG2, and synergism with TNF-α may contribute to exacerbate the pathogenic mechanism of CD. Selective inhibition of signalling pathways may be of therapeutic benefit. PMID:22385244

  8. Transglutaminase 2 expression is enhanced synergistically by interferon-γ and tumour necrosis factor-α in human small intestine.

    PubMed

    Bayardo, M; Punzi, F; Bondar, C; Chopita, N; Chirdo, F

    2012-04-01

    Transglutaminase 2 (TG2) is expressed ubiquitously, has multiple physiological functions and has also been associated with inflammatory diseases, neurodegenerative disorders, autoimmunity and cancer. In particular, TG2 is expressed in small intestine mucosa where it is up-regulated in active coeliac disease (CD). The aim of this work was to investigate the induction of TG2 expression by proinflammatory cytokines [interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-15] and the signalling pathways involved, in human epithelial and monocytic cells and in intestinal tissue from controls and untreated CD patients. Here we report that IFN-γ was the most potent inducer of TG2 expression in the small intestinal mucosa and in four [Caco-2, HT-29, Calu-6 and human acute monocytic leukaemia cell line (THP-1)] of five cell lines tested. The combination of TNF-α and IFN-γ produced a strong synergistic effect. The use of selective inhibitors of signalling pathways revealed that induction of TG2 by IFN-γ was mediated by phosphoinositide 3-kinase (PI3K), while c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were required for TNF-α activation. Quantitative polymerase chain reaction (PCR), flow cytometry and Western blot analysis showed that TG2 expression was blocked completely when stimulation by either TNF-α or IFN-γ was performed in the presence of nuclear factor (NF)-κB inhibitors (sulphasalazine and BAY-117082). TG2 was up-regulated substantially by TNF-α and IFN-γ in intestinal mucosa in untreated CD compared with controls. This study shows that IFN-γ, a dominant cytokine in intestinal mucosa in active CD, is the most potent inducer of TG2, and synergism with TNF-α may contribute to exacerbate the pathogenic mechanism of CD. Selective inhibition of signalling pathways may be of therapeutic benefit. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  9. ATL response to arsenic/interferon therapy is triggered by SUMO/PML/RNF4-dependent Tax degradation.

    PubMed

    Dassouki, Zeina; Sahin, Umut; El Hajj, Hiba; Jollivet, Florence; Kfoury, Youmna; Lallemand-Breitenbach, Valérie; Hermine, Olivier; de Thé, Hugues; Bazarbachi, Ali

    2015-01-15

    The human T-cell lymphotropic virus type I (HTLV-1) Tax transactivator initiates transformation in adult T-cell leukemia/lymphoma (ATL), a highly aggressive chemotherapy-resistant malignancy. The arsenic/interferon combination, which triggers degradation of the Tax oncoprotein, selectively induces apoptosis of ATL cell lines and has significant clinical activity in Tax-driven murine ATL or human patients. However, the role of Tax loss in ATL response is disputed, and the molecular mechanisms driving degradation remain elusive. Here we demonstrate that ATL-derived or HTLV-1-transformed cells are dependent on continuous Tax expression, suggesting that Tax degradation underlies clinical responses to the arsenic/interferon combination. The latter enforces promyelocytic leukemia protein (PML) nuclear body (NB) formation and partner protein recruitment. In arsenic/interferon-treated HTLV-1 transformed or ATL cells, Tax is recruited onto NBs and undergoes PML-dependent hyper-sumoylation by small ubiquitin-like modifier (SUMO)2/3 but not SUMO1, ubiquitination by RNF4, and proteasome-dependent degradation. Thus, the arsenic/interferon combination clears ATL through degradation of its Tax driver, and this regimen could have broader therapeutic value by promoting degradation of other pathogenic sumoylated proteins. © 2015 by The American Society of Hematology.

  10. Overexpression of Cyclooxygenase-2 and Transforming Growth Factor-Beta 1 is an Independent Predictor of Poor Virological Response to Interferon Therapy in Chronic HCV Genotype 4 Patients

    PubMed Central

    Gomaa, Wafaey M.; Ibrahim, Mohammed A.; Shatat, Mohamed E.

    2014-01-01

    Background/Aims: COX-2 and TGF-β1 are overexpressed in hepatitis C virus (HCV) infection and are related to hepatitis pathogenesis and hepatic fibrosis. The current study investigated the relationship between pretreatment COX-2 and TGF-β1 hepatic expression in HCV genotype 4 and the virological response to interferon therapy. Patients and Methods: Liver biopsies of 55 patients with HCV infection genotype 4 were selected together with 10 liver biopsies as control. The patients’ clinicopathological data were collected. Immunohistochemistry was done using anti-COX-2 and anti-TGF-β1 antibodies. Statistical tests were used to determine the association between both COX-2 and TGF-β1 expression in relation to clinicopathological parameters and response to interferon therapy. Results: COX-2 was upregulated especially in nonresponders and was an independent predictor of poor virological response. However, COX-2 showed no association with other clinicopathological features. TGF-β1 was upregulated and associated with nonresponders, histological activity, and fibrosis stage. There was no association between TGF-β1 and other clinicopathological features. There was an association between COX-2 and TGF-β1 immunoexpression. Conclusion: Overexpression of COX-2 and TGF-β1 is an independent predictor for poor outcome of interferon and ribavirin therapy and these might be useful markers for the response to treatment. Both molecules are associated together; however, their role during hepatitis treatment has to be clarified. PMID:24496160

  11. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1

    PubMed Central

    Erdal, Erkin; Haider, Syed; Rehwinkel, Jan; Harris, Adrian L.

    2017-01-01

    Radiotherapy and chemotherapy are effective treatment methods for many types of cancer, but resistance is common. Recent findings indicate that antiviral type I interferon (IFN) signaling is induced by these treatments. However, the underlying mechanisms still need to be elucidated. Expression of a set of IFN-stimulated genes comprises an IFN-related DNA damage resistance signature (IRDS), which correlates strongly with resistance to radiotherapy and chemotherapy across different tumors. Classically, during viral infection, the presence of foreign DNA in the cytoplasm of host cells can initiate type I IFN signaling. Here, we demonstrate that DNA-damaging modalities used during cancer therapy lead to the release of ssDNA fragments from the cell nucleus into the cytosol, engaging this innate immune response. We found that the factors that control DNA end resection during double-strand break repair, including the Bloom syndrome (BLM) helicase and exonuclease 1 (EXO1), play a major role in generating these DNA fragments and that the cytoplasmic 3′–5′ exonuclease Trex1 is required for their degradation. Analysis of mRNA expression profiles in breast tumors demonstrates that those with lower Trex1 and higher BLM and EXO1 expression levels are associated with poor prognosis. Targeting BLM and EXO1 could therefore represent a novel approach for circumventing the IRDS produced in response to cancer therapeutics. PMID:28279982

  12. Interferon-γ-Mediated Allograft Rejection Exacerbates Cardiovascular Disease of Hyperlipidemic Murine Transplant Recipients

    PubMed Central

    Zhou, Jing; Qin, Lingfeng; Yi, Tai; Ali, Rahmat; Li, Qingle; Jiao, Yang; Li, Guangxin; Tobiasova, Zuzana; Huang, Yan; Zhang, Jiasheng; Yun, James J.; Sadeghi, Mehran M.; Giordano, Frank J.; Pober, Jordan S.; Tellides, George

    2015-01-01

    Rationale Transplantation, the most effective therapy for end-stage organ failure, is markedly limited by early-onset cardiovascular disease (CVD) and premature death of the host. The mechanistic basis of this increased CVD is not fully explained by known risk factors. Objective To investigate the role of alloimmune responses in promoting CVD of organ transplant recipients. Methods and Results We established an animal model of graft-exacerbated host CVD by combining murine models of atherosclerosis (apolipoprotein E-deficient recipients on standard diet) and of intra-abdominal graft rejection (heterotopic cardiac transplantation without immunosuppression). CVD was absent in normolipidemic hosts receiving allogeneic grafts and varied in severity among hyperlipidemic grafted hosts according to recipient-donor genetic disparities, most strikingly across an isolated major histocompatibility complex class II antigen barrier. Host disease manifested as increased atherosclerosis of the aorta that also involved the native coronary arteries and new findings of decreased cardiac contractility, ventricular dilatation, and diminished aortic compliance. Exacerbated CVD was accompanied by greater levels of circulating cytokines, especially interferon-γ and other Th1-type cytokines, and showed both systemic and intra-lesional activation of leukocytes, particularly T helper cells. Serologic neutralization of interferon-γ after allotransplantation prevented graft-related atherosclerosis, cardiomyopathy, and aortic stiffening in the host. Conclusions Our study reveals that sustained activation of the immune system due to chronic allorecognition exacerbates the atherogenic diathesis of hyperlipidemia and results in de novo cardiovascular dysfunction in organ transplant recipients. PMID:26399469

  13. Efficacy of HCV treatment in Poland at the turn of the interferon era - the EpiTer study.

    PubMed

    Flisiak, Robert; Pogorzelska, Joanna; Berak, Hanna; Horban, Andrzej; Orłowska, Iwona; Simon, Krzysztof; Tuchendler, Ewelina; Madej, Grzegorz; Piekarska, Anna; Jabłkowski, Maciej; Deroń, Zbigniew; Mazur, Włodzimierz; Kaczmarczyk, Marcin; Janczewska, Ewa; Pisula, Arkadiusz; Smykał, Jacek; Nowak, Krzysztof; Matukiewicz, Marek; Halota, Waldemar; Wernik, Joanna; Sikorska, Katarzyna; Mozer-Lisewska, Iwona; Rozpłochowski, Błażej; Garlicki, Aleksander; Tomasiewicz, Krzysztof; Krzowska-Firych, Joanna; Baka-Ćwierz, Barbara; Kryczka, Wiesław; Zarębska-Michaluk, Dorota; Olszok, Iwona; Boroń-Kaczmarska, Anna; Sobala-Szczygieł, Barbara; Szlauer, Bronisława; Korcz-Ondrzejek, Bogumiła; Sieklucki, Jerzy; Pleśniak, Robert; Ruszała, Agata; Postawa-Kłosińska, Barbara; Citko, Jolanta; Lachowicz-Wawrzyniak, Anna; Musialik, Joanna; Jezierska, Edyta; Dobracki, Witold; Dobracka, Beata; Hałubiec, Jan; Krygier, Rafał; Strokowska, Anna; Chomczyk, Wojciech; Witczak-Malinowska, Krystyna

    2016-12-01

    Was to analyze the efficacy achieved with regimens available for chronic hepatitis C (CHC) in Poland between 2013 and 2016. Data were collected from 29 centers and included 6786 patients with available sustained virologic response (SVR) data between 1 January 2013 and 31 March 2016. The sustained virologic response rate for genotypes (G) 1a, 1b, 2, 3 and 4 was 62%, 56%, 92%, 67% and 56% respectively; 71% patients ( n = 4832) were treated with pegylated interferon α (Peg-IFNα) and ribavirin (RBV), with SVR rates of 58%, 49%, 92%, 67% and 55% respectively. The sustained virologic response among 5646 G1 infected patients was the lowest with natural interferon α (7%, n = 70) or PegIFN (50%, n = 3779) with RBV, and improved in those receiving triple regimens of Peg-IFN + RBV combined with boceprevir (47%, n = 485), telaprevir (64%, n = 805), simeprevir (73%, n = 132) or sofosbuvir (70%, n = 23). The sustained virologic response with interferon-free regimens of sofosbuvir and RBV ( n = 7), sofosbuvir and simeprevir ( n = 53), and ledipasvir and sofosbuvir ( n = 64) achieved 86%, 89% and 94% respectively. The highest SVR of 98% was observed with ombitasvir/paritaprevir combined with dasabuvir ( n = 227). Patients infected with G3 ( n = 896) and G4 ( n = 220) received mostly Peg-IFN + RBV with SVR of 67% and 56% respectively. Interferon-free regimens were administered in 18 G3/G4 patients and all achieved an SVR. Sofosbuvir combined with Peg-IFN and RBV was administered to 33 patients with an SVR rate of 94%, and a similar rate was achieved among 13 G2 patients treated with interferon and RBV. We observed significant differences in efficacy of HCV regimens available in Poland at the turn of the interferon era. The data will be useful as a comparison for therapeutic options expected in the next few years.

  14. The Human Respiratory Syncytial Virus Nonstructural Protein 1 Regulates Type I and Type II Interferon Pathways*

    PubMed Central

    Hastie, Marcus L.; Headlam, Madeleine J.; Patel, Nirav B.; Bukreyev, Alexander A.; Buchholz, Ursula J.; Dave, Keyur A.; Norris, Emma L.; Wright, Cassandra L.; Spann, Kirsten M.; Collins, Peter L.; Gorman, Jeffrey J.

    2012-01-01

    Respiratory syncytial viruses encode a nonstructural protein (NS1) that interferes with type I and III interferon and other antiviral responses. Proteomic studies were conducted on human A549 type II alveolar epithelial cells and type I interferon-deficient Vero cells (African green monkey kidney cells) infected with wild-type and NS1-deficient clones of human respiratory syncytial virus to identify other potential pathway and molecular targets of NS1 interference. These analyses included two-dimensional differential gel electrophoresis and quantitative Western blotting. Surprisingly, NS1 was found to suppress the induction of manganese superoxide dismutase (SOD2) expression in A549 cells and to a much lesser degree Vero cells in response to infection. Because SOD2 is not directly inducible by type I interferons, it served as a marker to probe the impact of NS1 on signaling of other cytokines known to induce SOD2 expression and/or indirect effects of type I interferon signaling. Deductive analysis of results obtained from cell infection and cytokine stimulation studies indicated that interferon-γ signaling was a potential target of NS1, possibly as a result of modulation of STAT1 levels. However, this was not sufficient to explain the magnitude of the impact of NS1 on SOD2 induction in A549 cells. Vero cell infection experiments indicated that NS1 targeted a component of the type I interferon response that does not directly induce SOD2 expression but is required to induce another initiator of SOD2 expression. STAT2 was ruled out as a target of NS1 interference using quantitative Western blot analysis of infected A549 cells, but data were obtained to indicate that STAT1 was one of a number of potential targets of NS1. A label-free mass spectrometry-based quantitative approach is proposed as a means of more definitive identification of NS1 targets. PMID:22322095

  15. Immunogenicity of an interferon-beta1a product.

    PubMed

    Kauffman, M A; Sterin-Prync, A; Papouchado, M; González, E; Vidal, A J; Grossberg, S E; Chuppa, S; Odoriz, B; Vrech, C; Diez, R A; Ferro, H H

    2011-01-01

    In order to determine whether Blastoferon®, a biosimilar interferon (IFN)- beta 1a formulation, shares epitopes with other known IFN-beta products, a series of neutralization bioassays were performed with a set of well-characterized anti-IFN- beta monoclonal antibodies and human sera (World Health Organization Reference Reagents). The bioassay was the interferon-induced inhibition of virus cytopathic effect on human cells in culture (EMC virus and A-549 cells). Computer-calculated results were reported as Tenfold Reduction Units (TRU)/ml. To further assess Blastoferon® immunogenicity, in vivo production of anti-IFN beta antibodies was determined in sera of patients included in the pharmacovigilance plan of Blastoferon® by the level of IFN- beta 1a binding antibodies (by enzyme immunoassay -EIA) and neutralizing antibodies (in the Wish-VSV system). The highly characterized neutralizing monoclonal antibodies A1 and A5 that bind to specific regions of the IFN- beta molecule reacted positively with the three beta 1a IFNs: Blastoferon®, Rebif®, and the IFN- beta WHO Second International Standard 00/572. As expected, the non-neutralizing monoclonal antibodies B4 and B7 did not neutralize any of the IFN- beta preparations. The commercially available monoclonal antibody B-02 reacted essentially equally with Rebif® and Blastoferon®. The WHO Reference Reagent human serum anti-IFN- beta polyclonal antibody neutralized all the IFN- beta products, whereas the WHO Reference Reagent human serum anti-IFN-alpha polyclonal antibody G037-501-572 appropriately failed to react with any of the IFN- beta products. On the basis of in vitro reactivity with known, well-characterized monoclonal and polyclonal antibody preparations, Blastoferon® shares immunological determinants with other human interferon- beta products, especially IFN- beta 1a. In vivo antibodies were detected by EIA in 72.9% of 37 chronically treated multiple sclerosis patients, whereas neutralizing antibodies were

  16. SNPs in putative regulatory regions identified by human mouse comparative sequencing and transcription factor binding site data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Poulabi; Bahlo, Melanie; Schwartz, Jody R.

    2002-01-01

    Genome wide disease association analysis using SNPs is being explored as a method for dissecting complex genetic traits and a vast number of SNPs have been generated for this purpose. As there are cost and throughput limitations of genotyping large numbers of SNPs and statistical issues regarding the large number of dependent tests on the same data set, to make association analysis practical it has been proposed that SNPs should be prioritized based on likely functional importance. The most easily identifiable functional SNPs are coding SNPs (cSNPs) and accordingly cSNPs have been screened in a number of studies. SNPs inmore » gene regulatory sequences embedded in noncoding DNA are another class of SNPs suggested for prioritization due to their predicted quantitative impact on gene expression. The main challenge in evaluating these SNPs, in contrast to cSNPs is a lack of robust algorithms and databases for recognizing regulatory sequences in noncoding DNA. Approaches that have been previously used to delineate noncoding sequences with gene regulatory activity include cross-species sequence comparisons and the search for sequences recognized by transcription factors. We combined these two methods to sift through mouse human genomic sequences to identify putative gene regulatory elements and subsequently localized SNPs within these sequences in a 1 Megabase (Mb) region of human chromosome 5q31, orthologous to mouse chromosome 11 containing the Interleukin cluster.« less

  17. Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects.

    PubMed

    Rosenkranz, Eva; Hilgers, Ralf-Dieter; Uciechowski, Peter; Petersen, Arnd; Plümäkers, Birgit; Rink, Lothar

    2017-03-01

    The trace element zinc is essential for immune function and its regulation. Since zinc deficiency and allergic hyperresponsive reactions are often accompanied, the influence of zinc on allergen-induced cell growth, CD4+ regulatory T (Treg) cell numbers and cytokine expression during allergic immune reactions was investigated. Peripheral blood mononuclear cells (PBMCs) from non-atopic and atopic subjects were treated with timothy grass allergen pre-incubated with or without zinc. Proliferation was determined by analyzing the incorporation of 3 H-thymidine. Intracellular zinc and Foxp3 levels and cell surface antigens were measured by FACS, cytokine expression by ELISA and real-time PCR. Incubation with 50 μM zinc sulfate (Zn50) enhances cytosolic zinc concentrations in CD3+ T cells. The data also reveal that the combination of Zn50 plus allergen significantly reduces PBMC proliferation of atopic subjects. Additionally, Zn50 plus allergen enhances Th1 cytokine responses shown by increased interferon (IFN)-γ/interleukin (IL)-10 ratios as well as enhanced tumor necrosis factor-α release. In response to allergen, zinc increases Treg cells and upregulates the mRNA expression of cytotoxic T-lymphocyte antigen-4 in atopic subjects. Interestingly, Zn50 alone leads to an increase of CD4+CD25high(hi)+ cells in atopic and non-atopic subjects. Zinc may regulate unwanted hyperresponsive immune reactions by suppressing proliferation through a significant shift from IL-10 to the Th1 cytokine IFN-γ, and enhanced regulatory T cell numbers. Therefore, zinc supplementation may be a promising tool for the therapy of allergies, without negatively affecting the immune system.

  18. Inhibited interferon-gamma but normal interleukin-3 production from rats flown on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Gould, Cheryl L.; Lyte, Mark; Williams, Joann; Mandel, Adrian D.; Sonnenfeld, Gerald

    1987-01-01

    Rats were flown on Space Shuttle SL-3 for one week. When spleen cells were removed from these rats and challenged with concanavalin-A, interferon-gamma production was severely inhibited, while interleukin-3 production was unaffected compared to ground-based control rats. These data indicate that there is a defect in interferon-gamma production in rats that have been exposed to spaceflight. This defect could contribute to, and be one reason for, immunosuppression observed after spaceflight.

  19. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

    PubMed

    Zanou, Nadège; Gailly, Philippe

    2013-11-01

    Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.

  20. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Autonomous parvoviruses neither stimulate nor are inhibited by the type I interferon response in human normal or cancer cells.

    PubMed

    Paglino, Justin C; Andres, Wells; van den Pol, Anthony N

    2014-05-01

    Members of the genus Parvovirus are small, nonenveloped single-stranded DNA viruses that are nonpathogenic in humans but have potential utility as cancer therapeutics. Because the innate immune response to parvoviruses has received relatively little attention, we compared the response to parvoviruses to that of several other types of viruses in human cells. In normal human glia, fibroblasts, or melanocytes, vesicular stomatitis virus evoked robust beta interferon (IFN-β) responses. Cytomegalovirus, pseudorabies virus, and Sindbis virus all evoked a 2-log-unit or greater upregulation of IFN-β in glia; in contrast, LuIII and MVMp parvoviruses did not evoke a detectable IFN-β or interferon-stimulated gene (ISG; MX1, oligoadenylate synthetase [OAS], IFIT-1) response in the same cell types. The lack of response raised the question of whether parvoviral infection can be attenuated by IFN; interestingly, we found that IFN did not decrease parvovirus (MVMp, LuIII, and H-1) infectivity in normal human glia, fibroblasts, or melanocytes. The same was true in human cancers, including glioma, sarcoma, and melanoma. Similarly, IFN failed to attenuate transduction by the dependovirus vector adeno-associated virus type 2. Progeny production of parvoviruses was also unimpaired by IFN in both glioma and melanoma, whereas vesicular stomatitis virus replication was blocked. Sarcoma cells with upregulated IFN signaling that show high levels of resistance to other viruses showed strong infection by LuIII. Unlike many other oncolytic viruses, we found no evidence that impairment of innate immunity in cancer cells plays a role in the oncoselectivity of parvoviruses in human cells. Parvoviral resistance to the effects of IFN in cancer cells may constitute an advantage in the virotherapy of some tumors. Understanding the interactions between oncolytic viruses and the innate immune system will facilitate employing these viruses as therapeutic agents in cancer patients. The cancer

  2. Autonomous Parvoviruses neither Stimulate nor Are Inhibited by the Type I Interferon Response in Human Normal or Cancer Cells

    PubMed Central

    Paglino, Justin C.; Andres, Wells

    2014-01-01

    ABSTRACT Members of the genus Parvovirus are small, nonenveloped single-stranded DNA viruses that are nonpathogenic in humans but have potential utility as cancer therapeutics. Because the innate immune response to parvoviruses has received relatively little attention, we compared the response to parvoviruses to that of several other types of viruses in human cells. In normal human glia, fibroblasts, or melanocytes, vesicular stomatitis virus evoked robust beta interferon (IFN-β) responses. Cytomegalovirus, pseudorabies virus, and Sindbis virus all evoked a 2-log-unit or greater upregulation of IFN-β in glia; in contrast, LuIII and MVMp parvoviruses did not evoke a detectable IFN-β or interferon-stimulated gene (ISG; MX1, oligoadenylate synthetase [OAS], IFIT-1) response in the same cell types. The lack of response raised the question of whether parvoviral infection can be attenuated by IFN; interestingly, we found that IFN did not decrease parvovirus (MVMp, LuIII, and H-1) infectivity in normal human glia, fibroblasts, or melanocytes. The same was true in human cancers, including glioma, sarcoma, and melanoma. Similarly, IFN failed to attenuate transduction by the dependovirus vector adeno-associated virus type 2. Progeny production of parvoviruses was also unimpaired by IFN in both glioma and melanoma, whereas vesicular stomatitis virus replication was blocked. Sarcoma cells with upregulated IFN signaling that show high levels of resistance to other viruses showed strong infection by LuIII. Unlike many other oncolytic viruses, we found no evidence that impairment of innate immunity in cancer cells plays a role in the oncoselectivity of parvoviruses in human cells. Parvoviral resistance to the effects of IFN in cancer cells may constitute an advantage in the virotherapy of some tumors. IMPORTANCE Understanding the interactions between oncolytic viruses and the innate immune system will facilitate employing these viruses as therapeutic agents in cancer patients

  3. Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture.

    PubMed

    Jothi, Raja; Balaji, S; Wuster, Arthur; Grochow, Joshua A; Gsponer, Jörg; Przytycka, Teresa M; Aravind, L; Babu, M Madan

    2009-01-01

    Although several studies have provided important insights into the general principles of biological networks, the link between network organization and the genome-scale dynamics of the underlying entities (genes, mRNAs, and proteins) and its role in systems behavior remain unclear. Here we show that transcription factor (TF) dynamics and regulatory network organization are tightly linked. By classifying TFs in the yeast regulatory network into three hierarchical layers (top, core, and bottom) and integrating diverse genome-scale datasets, we find that the TFs have static and dynamic properties that are similar within a layer and different across layers. At the protein level, the top-layer TFs are relatively abundant, long-lived, and noisy compared with the core- and bottom-layer TFs. Although variability in expression of top-layer TFs might confer a selective advantage, as this permits at least some members in a clonal cell population to initiate a response to changing conditions, tight regulation of the core- and bottom-layer TFs may minimize noise propagation and ensure fidelity in regulation. We propose that the interplay between network organization and TF dynamics could permit differential utilization of the same underlying network by distinct members of a clonal cell population.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main generalmore » mechanism for coronaviruses to prevent IFN induction.« less

  5. IL-2 activation of STAT5 enhances production of IL-10 from human cytotoxic regulatory T cells, HOZOT.

    PubMed

    Tsuji-Takayama, Kazue; Suzuki, Motoyuki; Yamamoto, Mayuko; Harashima, Akira; Okochi, Ayumi; Otani, Takeshi; Inoue, Toshiya; Sugimoto, Akira; Motoda, Ryuichi; Yamasaki, Fumiyuki; Nakamura, Shuji; Kibata, Masayoshi

    2008-02-01

    Interleukin (IL)-10 is an immunosuppressive cytokine produced by many cell types, including T cells. We previously reported that a novel type of regulatory T (Treg) cells, termed HOZOT, which possesses a FOXP3+CD4+CD8+CD25+ phenotype and dual suppressor/cytotoxic activities, produced high levels of IL-10. In this study, we examined the mechanisms of high IL-10 production by HOZOT, focusing on Janus activating kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway. We prepared five different types of T cells, including HOZOT from human umbilical cord blood. Cytokine productions of IL-10, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) were compared among these T cells after anti-CD3/CD28 antibody stimulation in the presence or absence of IL-2. Specific inhibitors for JAK/STAT, nuclear factor-kappaB (NF-kappaB), and nuclear factor for activated T cell (NFAT) were used to analyze signal transduction mechanisms. IL-10 production by HOZOTs was greatly enhanced by the addition of IL-2. Little or no enhancement of IFN-gamma and TNF-alpha production was observed under the same conditions. The enhancing effect of IL-2 was specific for both HOZOT and IL-10-secreting Treg cells. T helper type 2 cells, whose IL-10 production mechanisms involve GATA-3, failed to show IL-2-mediated enhancement of IL-10. Similar enhancing effects of IL-15 and IFN-alpha suggested a major role of JAK/STAT activation pathway for high IL-10 production. Further inhibitor experiments demonstrated that STAT5 rather than STAT3 was critically involved in this mechanism. Our results demonstrated that IL-2 selectively enhanced production of IL-10 in HOZOT primarily through activation of STAT5, which synergistically acts with NF-kappaB/NFAT activation, implying a novel regulatory mechanism of IL-10 production in Treg cells.

  6. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes.

    PubMed

    Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto

    2013-01-01

    In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected.

  7. Increments and Duplication Events of Enzymes and Transcription Factors Influence Metabolic and Regulatory Diversity in Prokaryotes

    PubMed Central

    Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto

    2013-01-01

    In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected. PMID:23922780

  8. Radiation-Induced Chromosomal Aberrations and Immunotherapy: Micronuclei, Cytosolic DNA, and Interferon-Production Pathway.

    PubMed

    Durante, Marco; Formenti, Silvia C

    2018-01-01

    Radiation-induced chromosomal aberrations represent an early marker of late effects, including cell killing and transformation. The measurement of cytogenetic damage in tissues, generally in blood lymphocytes, from patients treated with radiotherapy has been studied for many years to predict individual sensitivity and late morbidity. Acentric fragments are lost during mitosis and create micronuclei (MN), which are well correlated to cell killing. Immunotherapy is rapidly becoming a most promising new strategy for metastatic tumors, and combination with radiotherapy is explored in several pre-clinical studies and clinical trials. Recent evidence has shown that the presence of cytosolic DNA activates immune response via the cyclic GMP-AMP synthase/stimulator of interferon genes pathway, which induces type I interferon transcription. Cytosolic DNA can be found after exposure to ionizing radiation either as MN or as small fragments leaking through nuclear envelope ruptures. The study of the dependence of cytosolic DNA and MN on dose and radiation quality can guide the optimal combination of radiotherapy and immunotherapy. The role of densely ionizing charged particles is under active investigation to define their impact on the activation of the interferon pathway.

  9. Beyond interferon: rationale and prospects for newer treatment paradigms for chronic hepatitis C

    PubMed Central

    Cortez, Karoll J.

    2015-01-01

    Hepatitis C virus (HCV) infection results in a chronic carrier state in 80% of individuals infected with the virus and presently affects over 170 million people worldwide. Approximately 20% of those chronically infected will ultimately progress to develop cirrhosis and death due to end-stage liver disease or hepatocellular carcinoma (HCC). Unlike many other chronic viral infections, effective treatments for HCV are available. Cure from the infection is known as a sustained virologic response (SVR). SVR is associated with reversal of the long-term outcomes of chronic liver disease, decrease in incidence of HCC, and decrease HCV attributable mortality. The current FDA approved therapies for hepatitis C virus genotype 1 (GT-1) include pegylated interferon (PEG-IFN) and ribavirin (RBV) in combination with a directly acting antiviral agent (DAA). New therapeutic advances are being made aiming to simplify management, improve the tolerability of treatment, and shorten the duration of therapy. Moreover, treatment regimens that will effectively eradicate hepatitis C without the use of interferon formulations (IFN) are being developed. In this review, we report the transition of HCV therapeutics from an interferon-α based combination therapy to an all-oral, directly acting antiviral therapy. PMID:25553238

  10. [Complication of pernicious anemia during interferon-β treatment for type C chronic hepatitis].

    PubMed

    Ichihara, Hiroyoshi; Koh, Shiro; Aoyama, Yasutaka; Kumura, Takeo; Ohta, Tadanobu; Furukawa, Yoshio; Terada, Yoshiki; Yamane, Takahisa; Hino, Masayuki; Mugitani, Atsuko

    2012-03-01

    A 62-year-old man with chronic hepatitis C underwent interferon (IFN)-β therapy. After treatment for a period comprising 29 months and 2 weeks, hematological results showed a decrease in white blood cell, hemoglobin, and platelet counts (WBC 2,300/µl, Hb 7.2 g/dl, PLT 4.7×10(4)/µl), and IFN therapy was stopped. Despite therapy discontinuation, the pancytopenia continued to progress with elevation of LDH (LDH 4,898 IU/l), and the patient was admitted to our hospital with suspected hematological disease. The patient underwent clinical screening, and pernicious anemia caused by vitamin B12 deficiency was diagnosed. The anemia rapidly improved with vitamin B12 treatment. Interferon is the mainstay of treatment for patients with viral hepatitis. While the adverse effects of interferon therapy are widely recognized, only a few reports have documented pernicious anemia developing during IFN-therapy. We recommend that particular attention be paid to such clinical and laboratory conditions as megaloblastic anemia when administering IFN. We also recommend checking the vitamin B12 level, as a deficiency of this vitamin may lead to the development of megaloblastic anemia.

  11. Production of interferon-alpha in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins.

    PubMed

    Babu, K R; Swaminathan, S; Marten, S; Khanna, N; Rinas, U

    2000-06-01

    Escherichia coli TG1 transformed with a temperature-regulated interferon-alpha expression vector was grown to high cell density in defined medium containing glucose as the sole carbon and energy source, utilizing a simple fed-batch process. Feeding was carried out to achieve an exponential increase in biomass at growth rates which minimized acetate production. Thermal induction of such high cell density cultures resulted in the production of approximately 4 g interferon-alpha/l culture broth. Interferon-alpha was produced exclusively in the form of insoluble inclusion bodies and was solubilized under denaturing conditions, refolded in the presence of arginine and purified to near homogeneity, utilizing single-step ion-exchange chromatography on Q-Sepharose. The yield of purified interferon-alpha was approximately 300 mg/l with respect to the original high cell density culture broth (overall yield of approximately 7.5% active interferon-alpha). The purified recombinant interferon-alpha was found by different criteria to be predominantly monomeric and possessed a specific bioactivity of approximately 2.5 x 10(8) IU/mg based on viral cytopathic assay.

  12. Pig but not Human Interferon-γ Initiates Human Cell-Mediated Rejection of Pig Tissue in vivo

    NASA Astrophysics Data System (ADS)

    Sultan, Parvez; Murray, Allan G.; McNiff, Jennifer M.; Lorber, Marc I.; Askenase, Philip W.; Bothwell, Alfred L. M.; Pober, Jordan S.

    1997-08-01

    Split-thickness pig skin was transplanted on severe combined immunodeficient mice so that pig dermal microvessels spontaneously inosculated with mouse microvessels and functioned to perfuse the grafts. Pig endothelial cells in the healed grafts constitutively expressed class I and class II major histocompatibility complex molecules. Major histocompatibility complex molecule expression could be further increased by intradermal injection of pig interferon-γ (IFN-γ ) but not human IFN-γ or tumor necrosis factor. Grafts injected with pig IFN-γ also developed a sparse infiltrate of mouse neutrophils and eosinophils without evidence of injury. Introduction of human peripheral blood mononuclear cells into the animals by intraperitoneal inoculation resulted in sparse perivascular mononuclear cell infiltrates in the grafts confined to the pig dermis. Injection of pig skin grafts on mice that received human peripheral blood mononuclear cells with pig IFN-γ (but not human IFN-γ or heat-inactivated pig IFN-γ ) induced human CD4+ and CD8+ T cells and macrophages to more extensively infiltrate the pig skin grafts and injure pig dermal microvessels. These findings suggest that human T cell-mediated rejection of xenotransplanted pig organs may be prevented if cellular sources of pig interferon (e.g., passenger lymphocytes) are eliminated from the graft.

  13. Interferon Gamma as a Biomarker of Exposure to Enteric Viruses

    EPA Science Inventory

    Interferon gamma (IFN-γ) was selected as a biomarker for viral exposure. Twelve-week-old BALB/c mice were intraperitoneally injected with Coxsackievirus B3 or B4 diluted in phosphate-buffered saline (PBS). Control mice were injected with PBS only. Four months after viral infectio...

  14. Anti-interferon-gamma antibodies in the treatment of autoimmune diseases.

    PubMed

    Skurkovich, Boris; Skurkovich, Simon

    2003-02-01

    Interferon (IFN)-gamma is an important immune regulator in normal immunity. When IFN gamma production is disturbed, various autoimmune diseases (ADs) can develop, in which we suggest that anti-IFN gamma could have a beneficial effect. Depending on the cell type in which IFN gamma synthesis is disturbed, different clinical manifestations may result. We have also proposed to remove tumor necrosis factor (TNF)-alpha, together with certain types of IFNs, to treat various ADs and AIDS, also an autoimmune condition. Anti-IFN gamma has been tested in several T-helper cell (Th1) ADs, including rheumatoid arthritis (RA), multiple sclerosis (MS), corneal transplant rejection, uveitis, Type I diabetes, schizophrenia (anti-IFN gamma and anti-TNF alpha), and various autoimmune skin diseases (alopecia areata, psoriasis vulgaris, vitiligo, pemphigus vulgaris and epidermolysis bullosa). A strong, sometimes striking, therapeutic response followed administration of anti-IFN gamma, indicating that it may be a promising therapy for Th1 ADs.

  15. The structure of the human interferon alpha/beta receptor gene.

    PubMed

    Lutfalla, G; Gardiner, K; Proudhon, D; Vielh, E; Uzé, G

    1992-02-05

    Using the cDNA coding for the human interferon alpha/beta receptor (IFNAR), the IFNAR gene has been physically mapped relative to the other loci of the chromosome 21q22.1 region. 32,906 base pairs covering the IFNAR gene have been cloned and sequenced. Primer extension and solution hybridization-ribonuclease protection have been used to determine that the transcription of the gene is initiated in a broad region of 20 base pairs. Some aspects of the polymorphism of the gene, including noncoding sequences, have been analyzed; some are allelic differences in the coding sequence that induce amino acid variations in the resulting protein. The exon structure of the IFNAR gene and of that of the available genes for the receptors of the cytokine/growth hormone/prolactin/interferon receptor family have been compared with the predictions for the secondary structure of those receptors. From this analysis, we postulate a common origin and propose an hypothesis for the divergence from the immunoglobulin superfamily.

  16. Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology

    PubMed Central

    Salomon, Benoît L.; Leclerc, Mathieu; Tosello, Jimena; Ronin, Emilie; Piaggio, Eliane; Cohen, José L.

    2018-01-01

    Tumor necrosis factor α (TNF) is a potent pro-inflammatory cytokine that has deleterious effect in some autoimmune diseases, which led to the use of anti-TNF drugs in some of these diseases. However, some rare patients treated with these drugs paradoxically develop an aggravation of their disease or new onset autoimmunity, revealing an immunosuppressive facet of TNF. A possible mechanism of this observation is the direct and positive effect of TNF on regulatory T cells (Tregs) through its binding to the TNF receptor type 2 (TNFR2). Indeed, TNF is able to increase expansion, stability, and possibly function of Tregs via TNFR2. In this review, we discuss the role of TNF in graft-versus-host disease as an example of the ambivalence of this cytokine in the pathophysiology of an immunopathology, highlighting the therapeutic potential of triggering TNFR2 to boost Treg expansion. We also describe new targets in immunotherapy of cancer, emphasizing on the putative suppressive effect of TNF in antitumor immunity and of the interest of blocking TNFR2 to regulate the Treg compartment. PMID:29593717

  17. Plasmodium falciparum erythrocyte membrane protein-1 specifically suppresses early production of host interferon-gamma.

    PubMed

    D'Ombrain, Marthe C; Voss, Till S; Maier, Alexander G; Pearce, J Andrew; Hansen, Diana S; Cowman, Alan F; Schofield, Louis

    2007-08-16

    Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a variable antigen expressed by P. falciparum, the malarial parasite. PfEMP-1, present on the surface of infected host erythrocytes, mediates erythrocyte binding to vascular endothelium, enabling the parasite to avoid splenic clearance. In addition, PfEMP-1 is proposed to regulate host immune responses via interactions with the CD36 receptor on antigen-presenting cells. We investigated the immunoregulatory function of PfEMP-1 by comparing host cell responses to erythrocytes infected with either wild-type parasites or transgenic parasites lacking PfEMP-1. We showed that PfEMP-1 suppresses the production of the cytokine interferon-gamma by human peripheral blood mononuclear cells early after exposure to P. falciparum. Suppression of this rapid proinflammatory response was CD36 independent and specific to interferon-gamma production by gammadelta-T, NK, and alphabeta-T cells. These data demonstrate a parasite strategy for downregulating the proinflammatory interferon-gamma response and further establish transgenic parasites lacking PfEMP-1 as powerful tools for elucidating PfEMP-1 functions.

  18. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium

    PubMed Central

    Robinson, Nirmal; McComb, Scott; Mulligan, Rebecca; Dudani, Renu; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a virulent pathogen that induces rapid host death. Here we observed that host survival after infection with S. Typhimurium was enhanced in the absence of type I interferon signaling, with improved survival of mice deficient in the receptor for type I interferons (Ifnar1−/− mice) that was attributed to macrophages. Although there was no impairment in cytokine expression or inflammasome activation in Ifnar1−/− macrophages, they were highly resistant to S. Typhimurium–induced cell death. Specific inhibition of the kinase RIP1or knockdown of the gene encoding the kinase RIP3 prevented the death of wild-type macrophages, which indicated that necroptosis was a mechanism of cell death. Finally, RIP3-deficient macrophages, which cannot undergo necroptosis, had similarly less death and enhanced control of S. Typhimurium in vivo. Thus, we propose that S. Typhimurium induces the production of type I interferon, which drives necroptosis of macrophages and allows them to evade the immune response. PMID:22922364

  19. Hepatitis C Virus Resistance to Direct-Acting Antiviral Drugs in Interferon-Free Regimens.

    PubMed

    Pawlotsky, Jean-Michel

    2016-07-01

    Treatment of hepatitis C virus (HCV) infection has progressed considerably with the approval of interferon-free, direct-acting antiviral (DAA)-based combination therapies. Although most treated patients achieve virological cure, HCV resistance to DAAs has an important role in the failure of interferon-free treatment regimens. The presence of viral variants resistant to NS5A inhibitors at baseline is associated with lower rates of virological cure in certain groups of patients, such as those with genotype 1a or 3 HCV, those with cirrhosis, and/or prior nonresponders to pegylated interferon-based regimens. DAA-resistant HCV is generally dominant at virological failure (most often relapse). Viruses resistant to NS3-4A protease inhibitors disappear from peripheral blood in a few weeks to months, whereas NS5A inhibitor-resistant viruses persist for years. Re-treatment options are available, but first-line treatment strategies should be optimized to efficiently prevent treatment failure due to HCV resistance. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Sex steroids, the insulin-like growth factor regulatory system, and aging: implications for the management of older postmenopausal women.

    PubMed

    Rosen, C J; Glowacki, J; Craig, W

    1998-01-01

    Aging is associated with profound changes in the growth hormone/insulin-like growth factor (IGF) regulatory system. These include reductions in growth hormone, IGF-I, IGFBP3, and IGFBP-5 and an increase in IGFBP-4. These changes, coupled with rather marked declines in sex steroid production from both the ovary and adrenals may combine to have very deleterious effects on several organ systems in the postmenopausal woman. In particular, the prevalence of two very common diseases, osteoporosis and coronary artery disease, increase dramatically after the cessation of gonadal steroid production. The complex interrelationship between the IGF regulatory system and estrogens/androgens in the postmenopausal period may provide important clues as to the pathophysiology of both these disorders. In this paper, we begin to define the role of IGF-I (and its constituent IGF binding proteins) in skeletal and vascular tissue. Recent experimental data show the effects of estrogen on circulating and tissue IGFs in older individuals. Finally, estrogen replacement therapy affects the IGF regulatory system in postmenopausal women. Although conclusions from early studies remain somewhat preliminary, it is likely that the IGF regulatory system will be a prime target for future studies into the pathogenesis of several age and sex hormone related degenerative disorders.

  1. Effects of Four Different Regulatory Mechanisms on the Dynamics of Gene Regulatory Cascades

    NASA Astrophysics Data System (ADS)

    Hansen, Sabine; Krishna, Sandeep; Semsey, Szabolcs; Lo Svenningsen, Sine

    2015-07-01

    Gene regulatory cascades (GRCs) are common motifs in cellular molecular networks. A given logical function in these cascades, such as the repression of the activity of a transcription factor, can be implemented by a number of different regulatory mechanisms. The potential consequences for the dynamic performance of the GRC of choosing one mechanism over another have not been analysed systematically. Here, we report the construction of a synthetic GRC in Escherichia coli, which allows us for the first time to directly compare and contrast the dynamics of four different regulatory mechanisms, affecting the transcription, translation, stability, or activity of a transcriptional repressor. We developed a biologically motivated mathematical model which is sufficient to reproduce the response dynamics determined by experimental measurements. Using the model, we explored the potential response dynamics that the constructed GRC can perform. We conclude that dynamic differences between regulatory mechanisms at an individual step in a GRC are often concealed in the overall performance of the GRC, and suggest that the presence of a given regulatory mechanism in a certain network environment does not necessarily mean that it represents a single optimal evolutionary solution.

  2. Resveratrol in Hepatitis C Patients Treated with Pegylated-Interferon-α-2b and Ribavirin Reduces Sleep Disturbance

    PubMed Central

    Pennisi, Manuela; Bertino, Gaetano; Gagliano, Caterina; Malaguarnera, Michele; Bella, Rita; Borzì, Antonio Maria; Madeddu, Roberto; Drago, Filippo

    2017-01-01

    Background: Hepatitis C virus infection and interferon treatment have shown to be risk factors for sleep disorder health-related quality of life. Aim: To determine whether the effects of resveratrol on sleep disorders were associated with different tests in subjects with chronic hepatitis C treated with Peg-IFN-α and RBV. Patients and Methods: In this prospective, randomized, placebo controlled, double blind clinical trial, 30 subjects (Group A) with chronic hepatitis received Pegylated-Interferon-α2b (1.5 mg/kg per week), Ribavirin and placebo (N-acetylcysteine 600 mg and lactoferrin 23.6 g), while 30 subjects (Group B) received the same dosage of Pegylated-Interferon-α2b, Ribavirin and association of N-acetylcysteine 600 mg, lactoferrin 23.6 g and Resveratrol 19.8 mg for 12 months. All subjects underwent laboratory exams and questionnaires to evaluate mood and sleep disorders (General Health Questionnaire (GHQ), Profile of Mood States (POMS), Pittsburgh Sleep Quality Inventory (PSQI), Epworth Sleepiness Scale (ESS)). Results: The comparison between Group A and Group B showed significant differences after six months in C-reactive protein (p < 0.0001); after 12 months in aspartate aminotransferase (AST) (p < 0.0001) Viremia (p < 0.0001), HAI (p < 0.0012) and C-reactive protein (p < 0.0001); and at follow up in AST (p < 0.0001), Viremia (p < 0.0026) and C-reactive protein (p < 0.0001). Significant differences were observed after 12 month and follow-up in General Health Questionnaire, after 1, 6, 12 and follow-up in Profile of Mood States, after 6, 12, follow-up in Pittsburgh Sleep Quality Inventory and Epworth Sleepiness Scale. Conclusions: Supplementation with Resveratrol decreased General Health Questionnaire score and reduced sleep disorders in patients treated with Peg–IFN-α and RBV. PMID:28820468

  3. Numerical detection, measuring and analysis of differential interferon resistance for individual HCV intra-host variants and its influence on the therapy response.

    PubMed

    Skums, Pavel; Campo, David S; Dimitrova, Zoya; Vaughan, Gilberto; Lau, Daryl T; Khudyakov, Yury

    Hepatitis C virus (HCV) is a major cause of liver disease world-wide. Current interferon and ribavirin (IFN/RBV) therapy is effective in 50%-60% of patients. HCV exists in infected patients as a large viral population of intra-host variants (quasispecies), which may be differentially resistant to interferon treatment. We present a method for measuring differential interferon resistance of HCV quasispecies based on mathematical modeling and analysis of HCV population dynamics during the first hours of interferon therapy. The mathematical models showed that individual intra-host HCV variants have a wide range of resistance to IFN treatment in each patient. Analysis of differential IFN resistance among intra-host HCV variants allows for accurate prediction of response to IFN therapy. The models strongly suggest that resistance to interferon may vary broadly among closely related variants in infected hosts and therapy outcome may be defined by a single or a few variants irrespective of their frequency in the intra-host HCV population before treatment.

  4. [Change in the activity of natural killer cells in normal subjects and in virus diseases on exposure to interferon in vitro].

    PubMed

    Petrov, R V; Saidov, M Z; Koval'chuk, L V; Sorokin, A M; Kaganov, B S

    1984-04-01

    The activity of natural killers was examined in peripheral blood of healthy subjects and patients with chronic hepatitis and disseminated sclerosis. An attempt was made to correct natural killer activity by human leukocyte interferon in vitro. To assess the activity of natural killers, use was made of the method of serial dilutions. An optimal effector/target ratio was employed in experiments. The patients with chronic hepatitis and disseminated sclerosis demonstrated a reduction in the activity of natural killers whatever the effector/target ratio. The action of interferon in vitro is specific immunomodulatory in nature. Administration of interferon in a dose of 250 Units/ml raises the magnitude of the cytotoxic index in healthy donors and in patients with chronic hepatitis and disseminated sclerosis, making the shape of the killer activity curve approach that of normal. Such an approach can be used for preliminary assessment of the sensitivity of natural killers to interferon in viral diseases of man. The potentialities and efficacy of interferon in clinical medicine are discussed.

  5. Papillorenal syndrome after Beta-interferon treatment in pregnancy.

    PubMed

    Gucev, Zoran S; Kirovski, Ilija; Jancevska, Aleksandra; Popjordanova, Nada; Tasic, Velibor

    2009-01-01

    Papillo-Renal Syndrome (PRS, or Renal-Coloboma Syndrome) is an autosomal dominant disorder, characterized by colobomatous eye defects, abnormal vascular pattern of the optic disk, renal hypoplasia, vesicoureteral reflux, high-frequency hearing loss, and sometimes central nervous system (CNS) abnormalities. The syndrome is associated with mutations in the PAX2 gene. This 11-year-old girl's mother was treated with beta-interferon (IFNbeta-1a) for multiple sclerosis (MS) during the pregnancy. The child failed to thrive in infancy and early childhood. The multicystic renal dystrophy, hypoplastic right kidney, and vesico-ureteral reflux (II-III grade) were diagnosed by ultrasound and radionucleotide renal scan. Subsequently, a morning glory anomaly and coloboma of the optic disc was discovered. Renal failure progressively followed. MRI of the head revealed a cyst of the right optic nerve. Genetic analysis revealed a mutation of the PAX2 gene (619 insG). The multicystic renal dystrophy and a cyst of the optic nerve in association with PRS syndrome have only rarely been described. The fact that this PRS patient stemmed from a pregnancy under beta-interferon treatment raises the question whether IFNbeta-1a treatment during pregnancy has influenced the manifestation or the severity of the PAX2 mutant phenotype in this child.

  6. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights

    PubMed Central

    2011-01-01

    Background Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. Results We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. cerevisiae TFs. Our collection comprises DNA binding site motifs and comprehensive in vitro DNA binding specificity data for all possible 8-bp sequences. Investigation of the DNA binding specificities within the basic leucine zipper (bZIP) and VHT1 regulator (VHR) TF families revealed unexpected plasticity in TF-DNA recognition: intriguingly, the VHR TFs, newly characterized by protein binding microarrays in this study, recognize bZIP-like DNA motifs, while the bZIP TF Hac1 recognizes a motif highly similar to the canonical E-box motif of basic helix-loop-helix (bHLH) TFs. We identified several TFs with distinct primary and secondary motifs, which might be associated with different regulatory functions. Finally, integrated analysis of in vivo TF binding data with protein binding microarray data lends further support for indirect DNA binding in vivo by sequence-specific TFs. Conclusions The comprehensive data in this curated collection allow for more accurate analyses of regulatory TF-DNA interactions, in-depth structural studies of TF-DNA specificity determinants, and future experimental investigations of the TFs' predicted target genes and regulatory roles. PMID:22189060

  7. Identification of Neurodegenerative Factors Using Translatome-Regulatory Network Analysis

    PubMed Central

    Brichta, Lars; Shin, William; Jackson-Lewis, Vernice; Blesa, Javier; Yap, Ee-Lynn; Walker, Zachary; Zhang, Jack; Roussarie, Jean-Pierre; Alvarez, Mariano J.; Califano, Andrea; Przedborski, Serge; Greengard, Paul

    2016-01-01

    For degenerative disorders of the central nervous system, the major obstacle to therapeutic advancement has been the challenge of identifying the key molecular mechanisms underlying neuronal loss. We developed a combinatorial approach including translational profiling and brain regulatory network analysis to search for key determinants of neuronal survival or death. Following the generation of transgenic mice for cell type-specific profiling of midbrain dopaminergic neurons, we established and compared translatome libraries reflecting the molecular signature of these cells at baseline or under degenerative stress. Analysis of these libraries by interrogating a context-specific brain regulatory network led to the identification of a repertoire of intrinsic upstream regulators that drive the dopaminergic stress response. The altered activity of these regulators was not associated with changes in their expression levels. This strategy can be generalized for the elucidation of novel molecular determinants involved in the degeneration of other classes of neurons. PMID:26214373

  8. Myxoma virus M-T7, a secreted homolog of the interferon-gamma receptor, is a critical virulence factor for the development of myxomatosis in European rabbits.

    PubMed

    Mossman, K; Nation, P; Macen, J; Garbutt, M; Lucas, A; McFadden, G

    1996-01-01

    Myxoma virus is a leporipoxvirus of New World rabbits (Sylvilagus sp.) that induces a rapidly lethal infection known as myxomatosis in the European rabbit (Oryctolagus cuniculus). Like all poxviruses, myxoma virus encodes a plethora of proteins to circumvent or inhibit a variety of host antiviral immune mechanisms. M-T7, the most abundantly secreted protein of myxoma virus-infected cells, was originally identified as an interferon-gamma receptor homolog (Upton, Mossman, and McFadden, Science 258, 1369-1372, 1992). Here, we demonstrate that M-T7 is dispensable for virus replication in cultured cells but is a critical virulence factor for virus pathogenesis in European rabbits. Disruption of both copies of the M-T7 gene in myxoma virus was achieved by the deletion of 372 bp of M-T7 coding sequences, replacement with a selectable marker, p7.5Ecogpt, and selection of a recombinant virus (vMyxlac-T7gpt) resistant to mycophenolic acid. vMyxlac-T7gpt expressed no detectable M-T7 protein and infected cells supernatants were devoid of any detectable interferon-gamma binding activities. Immunohistochemical staining with anti-beta-galactosidase and anti-CD43 antibodies demonstrated that in vMyxlac-T7gpt-infected rabbits the loss of M-T7 not only caused a dramatic reduction in disease symptoms and viral dissemination to secondary sites, but also dramatically influenced host leukocyte behavior. Notably, primary lesions in wild-type virus infections were generally underlayed by large masses of inflammatory cells that did not effectively migrate into the dermal sites of viral replication, whereas in vMyxlac-T7gpt infections this apparent block to leukocyte influx was relieved. A second major phenotypic distinction noted for the M-T7 knockout virus was the extensive activation of lymphocytes in secondary immune organs, particularly the spleen and lymph nodes, by Day 4 of the infection. This is in stark contrast to infection by wild-type myxoma virus, which results in relatively

  9. Normal and cancer mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR Axis

    PubMed Central

    Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin

    2017-01-01

    Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657

  10. IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus

    PubMed Central

    Niewold, Timothy B; Kelly, Jennifer A; Kariuki, Silvia N; Franek, Beverly S; Kumar, Akaash A; Kaufman, Kenneth M; Thomas, Kenaz; Walker, Daniel; Kamp, Stan; Frost, Jacqueline M; Wong, Andrew K; Merrill, Joan T; Alarcón-Riquelme, Marta E; Tikly, Mohammed; Ramsey-Goldman, Rosalind; Reveille, John D; Petri, Michelle A; Edberg, Jeffrey C; Kimberly, Robert P; Alarcón, Graciela S; Kamen, Diane L; Gilkeson, Gary S; Vyse, Timothy J; James, Judith A; Gaffney, Patrick M; Moser, Kathy L; Crow, Mary K; Harley, John B

    2012-01-01

    Objective High serum interferon α (IFNα) activity is a heritable risk factor for systemic lupus erythematosus (SLE). Auto-antibodies found in SLE form immune complexes which can stimulate IFNα production by activating endosomal Toll-like receptors and interferon regulatory factors (IRFs), including IRF5. Genetic variation in IRF5 is associated with SLE susceptibility; however, it is unclear how IRF5 functional genetic elements contribute to human disease. Methods 1034 patients with SLE and 989 controls of European ancestry, 555 patients with SLE and 679 controls of African–American ancestry, and 73 patients with SLE of South African ancestry were genotyped at IRF5 polymorphisms, which define major haplotypes. Serum IFNα activity was measured using a functional assay. Results In European ancestry subjects, anti-double-stranded DNA (dsDNA) and anti-Ro antibodies were each associated with different haplotypes characterised by a different combination of functional genetic elements (OR > 2.56, p >003C; 1.9×10−14 for both). These IRF5 haplotype-auto-antibody associations strongly predicted higher serum IFNα in patients with SLE and explained > 70% of the genetic risk of SLE due to IRF5. In African–American patients with SLE a similar relationship between serology and IFNα was observed, although the previously described European ancestry-risk haplotype was present at admixture proportions in African–American subjects and absent in African patients with SLE. Conclusions The authors define a novel risk haplotype of IRF5 that is associated with anti-dsDNA antibodies and show that risk of SLE due to IRF5 genotype is largely dependent upon particular auto-antibodies. This suggests that auto-antibodies are directly pathogenic in human SLE, resulting in increased IFNα in cooperation with particular combinations of IRF5 functional genetic elements. SLE is a systemic autoimmune disorder affecting multiple organ systems including the skin, musculoskeletal, renal and

  11. Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice.

    PubMed

    Chort, Alice; Alves, Sandro; Marinello, Martina; Dufresnois, Béatrice; Dornbierer, Jean-Gabriel; Tesson, Christelle; Latouche, Morwena; Baker, Darren P; Barkats, Martine; El Hachimi, Khalid H; Ruberg, Merle; Janer, Alexandre; Stevanin, Giovanni; Brice, Alexis; Sittler, Annie

    2013-06-01

    We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7(266Q/5Q) knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7(266Q/5Q) knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7(266Q/5Q) mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7(266Q/5Q) mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival.

  12. Zinc supplementation augments TGF-β1-dependent regulatory T cell induction.

    PubMed

    Maywald, Martina; Meurer, Steffen K; Weiskirchen, Ralf; Rink, Lothar

    2017-03-01

    Regulatory T cells (Treg) play a pivotal role in immune regulation. For proper immune function, also trace elements such as zinc, and anti-inflammatory cytokines, including transforming growth factor beta 1 (TGF-β1) and interleukin (IL)-10 are indispensable. Hence, in this study the influence of TGF-β1, IL-10, and zinc supplementation on Treg cells differentiation was investigated. A synergistic effect of a combined zinc and TGF-β1 treatment on Foxp3 expression in peripheral blood mononuclear cells and mixed lymphocyte cultures (MLC) was found by performing Western blot analysis. Additionally, combined treatment causes elevated Smad 2/3 phosphorylation, which plays an important role in Foxp3 expression. This is due to a TGF-β1-mediated increase of intracellular-free zinc measured by zinc probes Fluozin3-AM and ZinPyr-1. Moreover, zinc as well as TGF-β1 treatment caused significantly reduced interferon (IFN)-γ secretion in MLC. Combined zinc and TGF-β1 treatment provoked an increased Treg cell induction due to a triggered intracellular zinc signal, which in association with an increased Smad 2/3 activation leads to a boosted Foxp3 expression and resulting in an ameliorated allogeneic reaction in MLC. Thus, zinc can be used as a favorable additive to elevate the induction of Treg cells in adverse immune reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3

    PubMed Central

    Rabbani, M. A. G.; Ribaudo, Michael; Guo, Ju-Tao

    2016-01-01

    ABSTRACT A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3. IMPORTANCE The innate immunity of the host, typified by interferon (IFN), is a major antiviral defense. IFN inhibits virus growth by inducing a large number of IFN-stimulated gene (ISG) proteins, several of which have been shown to have specific antiviral functions. Parainfluenza virus type 3 (PIV3) is major pathogen of children, and no reliable vaccine or specific antiviral against it currently exists. In this article, we report several ISG proteins that strongly inhibit PIV3 growth, the use of which may allow a better antiviral regimen targeting PIV3. PMID:27707917

  14. Regulatory Divergence between Parental Alleles Determines Gene Expression Patterns in Hybrids

    PubMed Central

    Combes, Marie-Christine; Hueber, Yann; Dereeper, Alexis; Rialle, Stéphanie; Herrera, Juan-Carlos; Lashermes, Philippe

    2015-01-01

    Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history. PMID:25819221

  15. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection

    PubMed Central

    Fu, Yuxuan; Zhang, Li; Zhang, Fang; Tang, Ting; Zhou, Qi; Feng, Chunhong; Jin, Yu

    2017-01-01

    Exosomes can transfer genetic materials between cells. Their roles in viral infections are beginning to be appreciated. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular response and result in productive infection of the recipient host. Here, we showed that EV71 infection resulted in upregulated exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. We provided evidence showing that miR-146a was preferentially enriched in exosomes while the viral RNA was not in infected cells. Moreover, the exosomes contained replication-competent EV71 RNA in complex with miR-146a, Ago2, and GW182 and could mediate EV71 transmission independent of virus-specific receptor. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Additionally, we found that the IFN-stimulated gene factors (ISGs), BST-2/tetherin, were involved in regulating EV71-induced upregulation of exosome secretion. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. Together, our findings provide evidence that exosomes secreted by EV71-infected cells selectively packaged high level miR-146a that can be functionally transferred to and facilitate exosomal EV71 RNA to replicate in the recipient cells by suppressing type I interferon response. PMID:28910400

  16. Peripheral lymphocyte subsets in chronic hepatitis C: Effects of 12 weeks of antiviral treatment with interferon-alpha plus ribavirin.

    PubMed

    Oliveira, Isabela S; Carvalho, Lucas P; Schinoni, Maria Isabel; Paraná, Raymundo; Atta, Ajax M; Atta, Maria Luiza B Sousa

    2016-02-01

    Chronic infection with hepatitis C virus (HCV) causes a quantitative and functional alteration in innate and adaptative immunity. In the present work, we determined by flow-cytometry the profile of blood lymphocyte of untreated HCV patients and in subjects of this group that achieved or not an early virologic response at 12-weeks of treatment with interferon-α plus ribavirin. Twenty-six untreated HCV patients and 20 control healthy individuals were enrolled in the study. Untreated HCV patients had a higher proportion of B cell and a lower proportion of CD8(+) T cell and NK cells than healthy individuals did, but the proportions of CD4(+) T cells and Treg cells (CD4(+)CD25(+)Foxp3(+)) were similar in these patients and controls. Untreated HCV patients presenting cryoglobulinemia had a lower proportion of Treg cells and a lower Treg/NK cell ratio when compared with those without cryoglobulins. Nineteen out of 26 untreated HCV patients remained in the study and were treated with Interferon-α plus ribavirin. At 12-weeks of treatment, 10 of them achieved early virologic response (EVR), whereas 9 were non-responders (NR). EVR patients differed from NR patients in the increase of their proportion of NK cells at 12 weeks of treatment. In conclusion, untreated HCV patients exhibit an altered profile of blood lymphocyte subsets, including a reduction in the proportion of CD4(+)CD25(+)FoxP3(+)T regulatory cells in patients that present cryoglobulinemia. An early virological response at 12-weeks of treatment with IFN-α plus ribavirin seems to be associated a significant improvement in the proportion of NK cells of HCV treated patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage

    PubMed Central

    Bekpen, Cemalettin; Hunn, Julia P; Rohde, Christoph; Parvanova, Iana; Guethlein, Libby; Dunn, Diane M; Glowalla, Eva; Leptin, Maria; Howard, Jonathan C

    2005-01-01

    Background Members of the p47 (immunity-related GTPases (IRG) family) GTPases are essential, interferon-inducible resistance factors in mice that are active against a broad spectrum of important intracellular pathogens. Surprisingly, there are no reports of p47 function in humans. Results Here we show that the p47 GTPases are represented by 23 genes in the mouse, whereas humans have only a single full-length p47 GTPase and an expressed, truncated presumed pseudo-gene. The human full-length gene is orthologous to an isolated mouse p47 GTPase that carries no interferon-inducible elements in the promoter of either species and is expressed constitutively in the mature testis of both species. Thus, there is no evidence for a p47 GTPase-based resistance system in humans. Dogs have several interferon-inducible p47s, and so the primate lineage that led to humans appears to have lost an ancient function. Multiple p47 GTPases are also present in the zebrafish, but there is only a tandem p47 gene pair in pufferfish. Conclusion Mice and humans must deploy their immune resources against vacuolar pathogens in radically different ways. This carries significant implications for the use of the mouse as a model of human infectious disease. The absence of the p47 resistance system in humans suggests that possession of this resistance system carries significant costs that, in the primate lineage that led to humans, are not outweighed by the benefits. The origin of the vertebrate p47 system is obscure. PMID:16277747

  18. Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE

    PubMed Central

    Marín, Nieves; Mecha, Miriam; Espejo, Carmen; Mestre, Leyre; Eixarch, Herena; Montalban, Xavier; Álvarez-Cermeño, José C.; Guaza, Carmen; Villar, Luisa M.

    2014-01-01

    Background and Objectives. Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE), an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. Methods. For EAE induction, female C57BL/6 (susceptible strain) and CD1 (resistant outbred strain showing heterogeneous MHC antigens) mice were immunized with the 35–55 peptide of myelin oligodendrocyte glycoprotein (MOG35−55). We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Results. Upon immunization with MOG35−55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35−55. Accordingly, resistant mice experienced a rise in regulatory B cells (P = 0.001) and, to a lower extent, in regulatory T cells (P = 0.02) compared with C57BL/6 susceptible mice. As a consequence, MOG35−55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P = 0.02) and IL-17 (P = 0.009) and higher serum levels of IL-17 (P = 0.04) than resistant mice. Conclusions. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism. PMID:24868560

  19. Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor

    PubMed Central

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies. PMID:24190970

  20. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor.

    PubMed

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.