Sample records for factor lmx1b regulates

  1. The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rascle, Anne; Neumann, Tanja; Raschta, Anne-Sarah

    2009-01-01

    LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-{kappa}B target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-{kappa}B activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-{kappa}B activity by TNF-{alpha} synergizes induction of NF-{kappa}B target genes by LMX1B. Chromatin immunoprecipitation demonstratedmore » that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized {kappa}B site, and that LMX1B recruitment correlates with increased NF-{kappa}B DNA association. IL-6 promoter-reporter assays showed that the {kappa}B site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-{kappa}B target genes is affected in the kidney of Lmx1b{sup -/-} knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-{kappa}B target genes in cooperation with nuclear p50/p65 NF-{kappa}B.« less

  2. Detection of Genes Regulated by Lmx1b During Limb Dorsalization

    PubMed Central

    Feenstra, Jennifer M.; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E.; Eppey, Richard J.; Oberg, Kerby C.

    2012-01-01

    Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wildtype mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism which includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. PMID:22417325

  3. Detection of genes regulated by Lmx1b during limb dorsalization.

    PubMed

    Feenstra, Jennifer M; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E; Eppey, Richard J; Oberg, Kerby C

    2012-05-01

    Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wild type mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes that were differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism that includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. © 2012 The Authors. Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  4. Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer.

    PubMed

    O'Hara, F Patrick; Beck, Ernestine; Barr, Lauren K; Wong, Lily L; Kessler, Daniel S; Riddle, Robert D

    2005-07-01

    The mesencephalic and metencephalic region (MMR) of the vertebrate central nervous system develops in response to signals produced by the isthmic organizer (IsO). We have previously reported that the LIM homeobox transcription factor Lmx1b is expressed within the chick IsO, where it is sufficient to maintain expression of the secreted factor wnt1. In this paper, we show that zebrafish express two Lmx1b orthologs, lmx1b.1 and lmx1b.2, in the rostral IsO, and demonstrate that these genes are necessary for key aspects of MMR development. Simultaneous knockdown of Lmx1b.1 and Lmx1b.2 using morpholino antisense oligos results in a loss of wnt1, wnt3a, wnt10b, pax8 and fgf8 expression at the IsO, leading ultimately to programmed cell death and the loss of the isthmic constriction and cerebellum. Single morpholino knockdown of either Lmx1b.1 or Lmx1b.2 has no discernible effect on MMR development. Maintenance of lmx1b.1 and lmx1b.2 expression at the isthmus requires the function of no isthmus/pax2.1, as well as Fgf signaling. Transient misexpression of Lmx1b.1 or Lmx1b.2 during early MMR development induces ectopic wnt1 and fgf8 expression in the MMR, as well as throughout much of the embryo. We propose that Lmx1b.1- and Lmx1b.2-mediated regulation of wnt1, wnt3a, wnt10b, pax8 and fgf8 maintains cell survival in the isthmocerebellar region.

  5. Lmx1b-targeted cis-regulatory modules involved in limb dorsalization.

    PubMed

    Haro, Endika; Watson, Billy A; Feenstra, Jennifer M; Tegeler, Luke; Pira, Charmaine U; Mohan, Subburaman; Oberg, Kerby C

    2017-06-01

    Lmx1b is a homeodomain transcription factor responsible for limb dorsalization. Despite striking double-ventral (loss-of-function) and double-dorsal (gain-of-function) limb phenotypes, no direct gene targets in the limb have been confirmed. To determine direct targets, we performed a chromatin immunoprecipitation against Lmx1b in mouse limbs at embryonic day 12.5 followed by next-generation sequencing (ChIP-seq). Nearly 84% ( n =617) of the Lmx1b-bound genomic intervals (LBIs) identified overlap with chromatin regulatory marks indicative of potential cis -regulatory modules (PCRMs). In addition, 73 LBIs mapped to CRMs that are known to be active during limb development. We compared Lmx1b-bound PCRMs with genes regulated by Lmx1b and found 292 PCRMs within 1 Mb of 254 Lmx1b-regulated genes. Gene ontological analysis suggests that Lmx1b targets extracellular matrix production, bone/joint formation, axonal guidance, vascular development, cell proliferation and cell movement. We validated the functional activity of a PCRM associated with joint-related Gdf5 that provides a mechanism for Lmx1b-mediated joint modification and a PCRM associated with Lmx1b that suggests a role in autoregulation. This is the first report to describe genome-wide Lmx1b binding during limb development, directly linking Lmx1b to targets that accomplish limb dorsalization. © 2017. Published by The Company of Biologists Ltd.

  6. Association of Transcription Factor Gene LMX1B with Autism

    PubMed Central

    Yamada, Kazuo; Iwayama, Yoshimi; Toyota, Tomoko; Tsujii, Masatsugu; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Iwata, Keiko; Sugiyama, Toshiro; Yoshikawa, Takeo; Mori, Norio

    2011-01-01

    Multiple lines of evidence suggest a serotoninergic dysfunction in autism. The role of LMX1B in the development and maintenance of serotoninergic neurons is well known. In order to examine the role, if any, of LMX1B with autism pathophysiology, a trio-based SNP association study using 252 family samples from the AGRE was performed. Using pair-wise tagging method, 24 SNPs were selected from the HapMap data, based on their location and minor allele frequency. Two SNPs (rs10732392 and rs12336217) showed moderate association with autism with p values 0.018 and 0.022 respectively in transmission disequilibrium test. The haplotype AGCGTG also showed significant association (p = 0.008). Further, LMX1B mRNA expressions were studied in the postmortem brain tissues of autism subjects and healthy controls samples. LMX1B transcripts was found to be significantly lower in the anterior cingulate gyrus region of autism patients compared with controls (p = 0.049). Our study suggests a possible role of LMX1B in the pathophysiology of autism. Based on previous reports, it is likely to be mediated through a seretoninergic mechanism. This is the first report on the association of LMX1B with autism, though it should be viewed with some caution considering the modest associations we report. PMID:21901133

  7. LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys.

    PubMed

    Burghardt, Tillmann; Kastner, Jürgen; Suleiman, Hani; Rivera-Milla, Eric; Stepanova, Natalya; Lottaz, Claudio; Kubitza, Marion; Böger, Carsten A; Schmidt, Sarah; Gorski, Mathias; de Vries, Uwe; Schmidt, Helga; Hertting, Irmgard; Kopp, Jeffrey; Rascle, Anne; Moser, Markus; Heid, Iris M; Warth, Richard; Spang, Rainer; Wegener, Joachim; Mierke, Claudia T; Englert, Christoph; Witzgall, Ralph

    2013-11-01

    Mutations of the LMX1B gene cause nail-patella syndrome, a rare autosomal-dominant disorder affecting the development of the limbs, eyes, brain, and kidneys. The characterization of conventional Lmx1b knockout mice has shown that LMX1B regulates the development of podocyte foot processes and slit diaphragms, but studies using podocyte-specific Lmx1b knockout mice have yielded conflicting results regarding the importance of LMX1B for maintaining podocyte structures. In order to address this question, we generated inducible podocyte-specific Lmx1b knockout mice. One week of Lmx1b inactivation in adult mice resulted in proteinuria with only minimal foot process effacement. Notably, expression levels of slit diaphragm and basement membrane proteins remained stable at this time point, and basement membrane charge properties also did not change, suggesting that alternative mechanisms mediate the development of proteinuria in these mice. Cell biological and biophysical experiments with primary podocytes isolated after 1 week of Lmx1b inactivation indicated dysregulation of actin cytoskeleton organization, and time-resolved DNA microarray analysis identified the genes encoding actin cytoskeleton-associated proteins, including Abra and Arl4c, as putative LMX1B targets. Chromatin immunoprecipitation experiments in conditionally immortalized human podocytes and gel shift assays showed that LMX1B recognizes AT-rich binding sites (FLAT elements) in the promoter regions of ABRA and ARL4C, and knockdown experiments in zebrafish support a model in which LMX1B and ABRA act in a common pathway during pronephros development. Our report establishes the importance of LMX1B in fully differentiated podocytes and argues that LMX1B is essential for the maintenance of an appropriately structured actin cytoskeleton in podocytes.

  8. LMX1B Mutations Cause Hereditary FSGS without Extrarenal Involvement

    PubMed Central

    Boyer, Olivia; Woerner, Stéphanie; Yang, Fan; Oakeley, Edward J.; Linghu, Bolan; Gribouval, Olivier; Tête, Marie-Josèphe; Duca, José S.; Klickstein, Lloyd; Damask, Amy J.; Szustakowski, Joseph D.; Heibel, Françoise; Matignon, Marie; Baudouin, Véronique; Chantrel, François; Champigneulle, Jacqueline; Martin, Laurent; Nitschké, Patrick; Gubler, Marie-Claire; Johnson, Keith J.; Chibout, Salah-Dine

    2013-01-01

    LMX1B encodes a homeodomain-containing transcription factor that is essential during development. Mutations in LMX1B cause nail-patella syndrome, characterized by dysplasia of the patellae, nails, and elbows and FSGS with specific ultrastructural lesions of the glomerular basement membrane (GBM). By linkage analysis and exome sequencing, we unexpectedly identified an LMX1B mutation segregating with disease in a pedigree of five patients with autosomal dominant FSGS but without either extrarenal features or ultrastructural abnormalities of the GBM suggestive of nail-patella–like renal disease. Subsequently, we screened 73 additional unrelated families with FSGS and found mutations involving the same amino acid (R246) in 2 families. An LMX1B in silico homology model suggested that the mutated residue plays an important role in strengthening the interaction between the LMX1B homeodomain and DNA; both identified mutations would be expected to diminish such interactions. In summary, these results suggest that isolated FSGS could result from mutations in genes that are also involved in syndromic forms of FSGS. This highlights the need to include these genes in all diagnostic approaches to FSGS that involve next-generation sequencing. PMID:23687361

  9. Lmx1b is essential for Fgf8 and Wnt1 expression in the isthmic organizer during tectum and cerebellum development in mice.

    PubMed

    Guo, Chao; Qiu, Hai-Yan; Huang, Ying; Chen, Haixu; Yang, Rong-Qiang; Chen, Sheng-Di; Johnson, Randy L; Chen, Zhou-Feng; Ding, Yu-Qiang

    2007-01-01

    Secreted factors FGF8 and WNT1 are essential either for the inductive activity of the isthmus organizer or for the regionalization of the midbrain-hindbrain boundary (MHB). However, transcriptional regulation of these secreted factors during development remains to be elucidated. Here we show that the LIM homeobox gene Lmx1b is expressed in the anterior embryo as early as E7.5 and its expression becomes progressively restricted to the isthmus at E9.0. Analysis of gene expression in the MHB of the mutant embryos showed that many genes were lost by E9.5. In the MHB of Lmx1b-/- embryos, the expression of Fgf8, which normally occurs at the 4-somite stage, was completely absent, whereas Wnt1 was downregulated before the 4-somite stage. Moreover, transcription factors En1 and Pax2 were also downregulated prior to the 4-somite stage, whereas Gbx2 downregulation occurred at the 4-somite stage. By contrast, Otx2 and Pax6 expression was not affected in Lmx1b-/- embryos. The requirement of specific Lmx1b expression in the MHB was further confirmed by Wnt1-Cre-mediated region-specific conditional knockout of Lmx1b. As a result of these molecular defects, the development of the tectum and cerebellum was severely impaired in Lmx1b-/- mice. Taken together, our results indicate that Lmx1b plays an essential role in the development of the tectum and cerebellum by regulating expression of Fgf8, Wnt1 and several isthmus-related transcription factors in the MHB, and is a crucial component of a cross-regulatory network required for the induction activity of the isthmic organizer in the MHB.

  10. Shaping of inner ear sensory organs through antagonistic interactions between Notch signalling and Lmx1a

    PubMed Central

    Mann, Zoe F; Chen, Ziqi; Chrysostomou, Elena; Żak, Magdalena; Kang, Miso; Canden, Elachumee

    2017-01-01

    The mechanisms of formation of the distinct sensory organs of the inner ear and the non-sensory domains that separate them are still unclear. Here, we show that several sensory patches arise by progressive segregation from a common prosensory domain in the embryonic chicken and mouse otocyst. This process is regulated by mutually antagonistic signals: Notch signalling and Lmx1a. Notch-mediated lateral induction promotes prosensory fate. Some of the early Notch-active cells, however, are normally diverted from this fate and increasing lateral induction produces misshapen or fused sensory organs in the chick. Conversely Lmx1a (or cLmx1b in the chick) allows sensory organ segregation by antagonizing lateral induction and promoting commitment to the non-sensory fate. Our findings highlight the dynamic nature of sensory patch formation and the labile character of the sensory-competent progenitors, which could have facilitated the emergence of new inner ear organs and their functional diversification in the course of evolution. PMID:29199954

  11. Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) Are Two New Mutations of Lmx1a Causing Severe Cochlear and Vestibular Defects

    PubMed Central

    Pearson, Selina; Brooker, Rachael H.; Spiden, Sarah; Kiernan, Amy E.; Guénet, Jean-Louis; Steel, Karen P.

    2012-01-01

    Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new spontaneous alleles of the Lmx1a gene in mice. Homozygous mutants show head tossing and circling behaviour, indicative of vestibular defects, and they have short tails and white belly patches of variable size. The analysis of auditory brainstem responses (ABR) showed that mtl and bsd homozygotes are deaf, whereas heterozygous and wildtype littermates have normal hearing. Paint-filled inner ears at E16.5 revealed that mtl and bsd homozygotes lack endolymphatic ducts and semicircular canals and have short cochlear ducts. These new alleles show similarities with dreher (Lmx1a) mutants. Complementation tests between mtl and dreher and between mtl and bsd suggest that mtl and bsd are new mutant alleles of the Lmx1a gene. To determine the Lmx1a mutation in mtl and bsd mutant mice we performed PCR followed by sequencing of genomic DNA and cDNA. The mtl mutation is a single point mutation in the 3′ splice site of exon 4 leading to an exon extension and the activation of a cryptic splice site 44 base pairs downstream, whereas the bsd mutation is a genomic deletion that includes exon 3. Both mutations lead to a truncated LMX1A protein affecting the homeodomain (mtl) or LIM2-domain (bsd), which is critical for LMX1A protein function. Moreover, the levels of Lmx1a transcript in mtl and bsd mutants are significantly down-regulated. Hmx2/3 and Pax2 expression are also down-regulated in mtl and bsd mutants, suggesting a role of Lmx1a upstream of these transcription factors in early inner ear morphogenesis. We have found that these mutants develop sensory patches although they are misshapen. The characterization of these two new Lmx1a alleles highlights the critical role of this gene in the development of the cochlea and vestibular system. PMID:23226461

  12. Leader-member exchange (LMX) and culture: a meta-analysis of correlates of LMX across 23 countries.

    PubMed

    Rockstuhl, Thomas; Dulebohn, James H; Ang, Soon; Shore, Lynn M

    2012-11-01

    This study extends leader-member exchange (LMX) research by meta-analyzing the role of national culture in moderating relationships between LMX and its correlates. Results based on 282 independent samples (N = 68,587) from 23 countries and controlling for extreme response style differences indicate that (a) relationships of LMX with organizational citizenship behavior, justice perceptions, job satisfaction, turnover intentions, and leader trust are stronger in horizontal-individualistic (e.g., Western) contexts than in vertical-collectivistic (e.g., Asian) contexts; and (b) national culture does not affect relationships of LMX with task performance, organizational commitment, and transformational leadership. These findings highlight that although members are universally sensitive to how their leaders treat them, members' responses in Asian contexts may also be influenced by collective interests and role-based obligations. (c) 2012 APA, all rights reserved.

  13. Leader-member exchange (LMX) and innovation climate: the role of LMX differentiation.

    PubMed

    Tordera, Núria; González-Romá, Vicente

    2013-01-01

    Leader-member Exchange (LMX) theory has been shown to be one of the most compelling theories for understanding the effects of leadership on organizational behavior. This theory proposes that leaders establish differentiated relationships with each of their subordinates according to the exchanges produced between them. Recently, the concept of LMX differentiation has been introduced into the theory to extend research from the dyadic to the group level. The present paper uses a longitudinal design to analyze the moderator role of LMX differentiation in the relationship between mean LMX and innovation climate in a sample of 24 healthcare teams. The results showed no direct effects of mean LMX on changes in innovation climate over time. However, they provide support for the moderator effect of LMX differentiation in this relationship, as it was stronger when LMX differentiation was low than when it was high.

  14. Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction.

    PubMed

    Wesdorp, Mieke; de Koning Gans, Pia A M; Schraders, Margit; Oostrik, Jaap; Huynen, Martijn A; Venselaar, Hanka; Beynon, Andy J; van Gaalen, Judith; Piai, Vitória; Voermans, Nicol; van Rossum, Michelle M; Hartel, Bas P; Lelieveld, Stefan H; Wiel, Laurens; Verbist, Berit; Rotteveel, Liselotte J; van Dooren, Marieke F; Lichtner, Peter; Kunst, Henricus P M; Feenstra, Ilse; Admiraal, Ronald J C; Yntema, Helger G; Hoefsloot, Lies H; Pennings, Ronald J E; Kremer, Hannie

    2018-05-12

    Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein-protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families.

  15. Association of LMX1A genetic polymorphisms with susceptibility to congenital scoliosis in Chinese Han population.

    PubMed

    Wu, Nan; Yuan, Suomao; Liu, Jiaqi; Chen, Jun; Fei, Qi; Liu, Sen; Su, Xinlin; Wang, Shengru; Zhang, Jianguo; Li, Shugang; Wang, Yipeng; Qiu, Guixing; Wu, Zhihong

    2014-10-01

    A genetic association study of single nucleotide polymorphisms (SNPs) for the LMX1A gene with congenital scoliosis (CS) in the Chinese Han population. To determine whether LMX1A genetic polymorphisms are associated with susceptibility to CS. CS is a lateral curvature of the spine due to congenital vertebral defects, whose exact genetic cause has not been well established. The LMX1A gene was suggested as a potential human candidate gene for CS. However, no genetic study of LMX1A in CS has ever been reported. We genotyped 13 SNPs of the LMX1A gene in 154 patients with CS and 144 controls with matched sex and age. After conducting the Hardy-Weinberg equilibrium test, the data of 13 SNPs were analyzed by the allelic and genotypic association with logistic regression analysis. Furthermore, the genotype-phenotype association and haplotype association analysis were also performed. The 13 SNPs of the LMX1A gene met Hardy-Weinberg equilibrium in the controls, which was not in the cases. None of the allelic and genotypic frequencies of these SNPs showed significant difference between case and control groups (P > 0.05). However, the genotypic frequencies of rs1354510 and rs16841013 in the LMX1A gene were associated with CS predisposition in the unconditional logistic regression analysis (P = 0.02 and 0.018, respectively). Genotypic frequencies of 3 SNPs at rs6671290, rs1354510, and rs16841013 were found to exhibit significant differences between patients with CS with failure of formation and the healthy controls (P = 0.019, 0.007, and 0.006, respectively). Besides, in the model analysis by using unconditional logistic regression analysis, the optimized model for the 3 genotypic positive SNPs with failure of formation were rs6671290 (codominant; P = 0.025, Akaike information value = 316.6, Bayesian information criterion = 333.9), rs1354510 (overdominant; P = 0.0017, Akaike information value = 312.1, Bayesian information criterion = 325.9), and rsl6841013 (overdominant; P = 0

  16. Fibroblast growth factor homologous factor 1 interacts with NEMO to regulate NF-κB signaling in neurons.

    PubMed

    König, Hans-Georg; Fenner, Beau J; Byrne, Jennifer C; Schwamborn, Robert F; Bernas, Tytus; Jefferies, Caroline A; Prehn, Jochen H M

    2012-12-15

    Neuronal survival and plasticity critically depend on constitutive activity of the transcription factor nuclear factor-κB (NF-κB). We here describe a role for a small intracellular fibroblast growth factor homologue, the fibroblast growth factor homologous factor 1 (FHF1/FGF12), in the regulation of NF-κB activity in mature neurons. FHFs have previously been described to control neuronal excitability, and mutations in FHF isoforms give rise to a form of progressive spinocerebellar ataxia. Using a protein-array approach, we identified FHF1b as a novel interactor of the canonical NF-κB modulator IKKγ/NEMO. Co-immunoprecipitation, pull-down and GAL4-reporter experiments, as well as proximity ligation assays, confirmed the interaction of FHF1 and NEMO and demonstrated that a major site of interaction occurred within the axon initial segment. Fhf1 gene silencing strongly activated neuronal NF-κB activity and increased neurite lengths, branching patterns and spine counts in mature cortical neurons. The effects of FHF1 on neuronal NF-κB activity and morphology required the presence of NEMO. Our results imply that FHF1 negatively regulates the constitutive NF-κB activity in neurons.

  17. Genetics Home Reference: nail-patella syndrome

    MedlinePlus

    ... protein that attaches (binds) to specific regions of DNA and regulates the activity of other genes. On the basis of this role, the LMX1B protein is called a transcription factor. The LMX1B protein appears to be particularly ...

  18. Only time will tell: the changing relationships between LMX, job performance, and justice.

    PubMed

    Park, Sanghee; Sturman, Michael C; Vanderpool, Chelsea; Chan, Elisa

    2015-05-01

    Although it has been argued that leader-member exchange (LMX) is a phenomenon that develops over time, the existing LMX literature is largely cross-sectional in nature. Yet, there is a great need for unraveling how LMX develops over time. To address this issue in the LMX literature, we examine the relationships of LMX with 2 variables known for changing over time: job performance and justice perceptions. On the basis of current empirical findings, a simulation deductively shows that LMX develops over time, but differently in early stages versus more mature stages. Our findings also indicate that performance and justice trends affect LMX. Implications for LMX theory and for longitudinal research on LMX, performance, and justice are discussed. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  19. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wentao; Du, Bojing; Liu, Di

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerancemore » in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.« less

  20. Zic1 and Zic4 regulate zebrafish roof plate specification and hindbrain ventricle morphogenesis

    PubMed Central

    Elsen, Gina E.; Choi, Louis; Millen, Kathleen; Grinblat, Yevgenya; Prince, Victoria E.

    2008-01-01

    During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle. In Zic1 and/or Zic4 morphants the ventricle does not open properly, but remains completely or partially fused from the level of rhombomere (r) 2 towards the posterior. In the absence of Zic function early hindbrain regionalization and neural crest development remain unaffected, but dorsal hindbrain progenitor cell proliferation is significantly reduced. Importantly, we find that Zic1 and Zic4 are required for development of the dorsal roof plate. In Zic morphants expression of roof plate markers, including lmx1b.1 and lmx1b.2, is disrupted. We further demonstrate that zebrafish Lmx1b function is required for both hindbrain roof plate development and 4th ventricle morphogenesis, confirming that roof plate formation is a critical component of ventricle development. Finally, we show that dorsal rhombomere boundary signaling centers depend on Zic1 and Zic4 function and on roof plate signals, and provide evidence that these boundary signals are also required for ventricle morphogenesis. In summary, we conclude that Zic1 and Zic4 control zebrafish 4th ventricle morphogenesis by regulating multiple mechanisms including cell proliferation and fate specification in the dorsal hindbrain. PMID:18191121

  1. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis.

    PubMed

    Kumar, Mukesh; Busch, Wolfgang; Birke, Hannah; Kemmerling, Birgit; Nürnberger, Thorsten; Schöffl, Friedrich

    2009-01-01

    In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdf1.2a/b in mutant plants. The Pdf expression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdf1.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdf genes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses.

  2. Heat Shock Factors HsfB1 and HsfB2b Are Involved in the Regulation of Pdf1.2 Expression and Pathogen Resistance in Arabidopsis

    PubMed Central

    Kumar, Mukesh; Busch, Wolfgang; Birke, Hannah; Kemmerling, Birgit; Nürnberger, Thorsten; Schöffl, Friedrich

    2009-01-01

    In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdf1.2a/b in mutant plants. The Pdf expression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdf1.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdf genes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses. PMID:19529832

  3. Not All Differentiation is the Same: Examining the Moderating Effects of Leader-Member Exchange (LMX) Configurations.

    PubMed

    Seo, Jungmin Jamie; Nahrgang, Jennifer D; Carter, Min Z; Hom, Peter W

    2017-12-14

    Leaders often influence whether an employee stays or quits and yet research in collective turnover, or turnover at the work-unit level, has neglected leadership as a key antecedent. In the current study we examine how the quality of leader-member relationships within a group (i.e., leader-member exchange, LMX) influences building a shared mindset of collective organizational commitment and ultimately influences collective turnover. We build on a key tenet of LMX theory that leaders form differentiated relationships with followers and propose that not all LMX differentiation is the same and therefore, researchers must take into account the configuration, or mix of high and low LMX relationships, within a group. We expect LMX configurations will moderate the influence of LMX differentiation on collective turnover through the mechanism of collective organizational commitment. We find 5 configurations of LMX relationships, including a bimodal, solo-status low LMX, solo-status high LMX, and 2 fragmented configurations. As hypothesized, LMX differentiation positively relates to collective organizational commitment and negatively relates to collective turnover in a solo-status low LMX configuration and a fragmented LMX configuration, and negatively relates to collective organizational commitment and positively relates to collective turnover in a bimodal configuration. Theoretical implications and future research directions are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Regulation of the human ascorbate transporter SVCT2 exon 1b gene by zinc-finger transcription factors

    PubMed Central

    Qiao, Huan; May, James M.

    2011-01-01

    The sodium-dependent vitamin C transporter (SVCT) 2 is crucial for ascorbate uptake in metabolically active and specialized tissues. The present study focused on the gene regulation of the SVCT2 exon 1b, which is ubiquitously expressed in human and mouse tissues. Although the human SVCT2 exon 1b promoter doesn’t contain a classical TATA-box, we found that it does contain a functional initiator (Inr) that binds YY1 and interacts with upstream Sp1/Sp3 elements in the proximal promoter region. These elements in turn play a critical role in regulating YY1-mediated transcription of the exon 1b gene. Formation of YY1/Sp complexes on the promoter is required for its optional function. YY1 with Sp1 or Sp3 synergistically enhanced exon 1b promoter activity as well as the endogenous SVCT2 protein expression. Further, in addition to Sp1/Sp3 both EGR-1 and -2 were detected in the protein complexes that bound the three GC boxes bearing overlapping binding sites for EGR/WT1 and Sp1/3. The EGR family factors, WT1 and MAZ were found to differentially regulate exon 1b promoter activity. These results show that differential occupancy of transcription factors on the GC-rich consensus sequences in SVCT2 exon 1b promoter contributes to the regulation of cell and tissue expression of SVCT2. PMID:21335086

  5. Co-regulation of nuclear respiratory factor-1 by NFκB and CREB links LPS-induced inflammation to mitochondrial biogenesis

    PubMed Central

    Suliman, Hagir B.; Sweeney, Timothy E.; Withers, Crystal M.; Piantadosi, Claude A.

    2010-01-01

    The nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H2O2. These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses. PMID:20587593

  6. Testing Relationships between Servant Leadership Dimensions and Leader Member Exchange (LMX)

    ERIC Educational Resources Information Center

    Barbuto, John E.; Hayden, Robert W.

    2011-01-01

    Leader member exchange has previously been found to be a solid predictor of positive organizational outcomes. Much research has tested a variety of possible antecedents to Leader Member Exchange (LMX), but only a limited number involving leadership styles. In this study servant leadership dimensions were tested for relationship to LMX quality.…

  7. The Transcription Factor Rbf1 Is the Master Regulator for b-Mating Type Controlled Pathogenic Development in Ustilago maydis

    PubMed Central

    Vranes, Miroslav; Wahl, Ramon; Pothiratana, Chetsada; Schuler, David; Vincon, Volker; Finkernagel, Florian; Flor-Parra, Ignacio; Kämper, Jörg

    2010-01-01

    In the phytopathogenic basidiomycete Ustilago maydis, sexual and pathogenic development are tightly connected and controlled by the heterodimeric bE/bW transcription factor complex encoded by the b-mating type locus. The formation of the active bE/bW heterodimer leads to the formation of filaments, induces a G2 cell cycle arrest, and triggers pathogenicity. Here, we identify a set of 345 bE/bW responsive genes which show altered expression during these developmental changes; several of these genes are associated with cell cycle coordination, morphogenesis and pathogenicity. 90% of the genes that show altered expression upon bE/bW-activation require the zinc finger transcription factor Rbf1, one of the few factors directly regulated by the bE/bW heterodimer. Rbf1 is a novel master regulator in a multilayered network of transcription factors that facilitates the complex regulatory traits of sexual and pathogenic development. PMID:20700446

  8. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression

    PubMed Central

    Balda, Maria S.; Matter, Karl

    2000-01-01

    Epithelial tight junctions regulate paracellular diffusion and restrict the intermixing of apical and basolateral plasma membrane components. We now identify a Y-box transcription factor, ZONAB (ZO-1-associated nucleic acid-binding protein), that binds to the SH3 domain of ZO-1, a submembrane protein of tight junctions. ZONAB localizes to the nucleus and at tight junctions, and binds to sequences of specific promoters containing an inverted CCAAT box. In reporter assays, ZONAB and ZO-1 functionally interact in the regulation of the ErbB-2 promoter in a cell density-dependent manner. In stably transfected overexpressing cells, ZO-1 and ZONAB control expression of endogenous ErbB-2 and function in the regulation of paracellular permeability. These data indicate that tight junctions directly participate in the control of gene expression and suggest that they function in the regulation of epithelial cell differentiation. PMID:10790369

  9. Evolutionary Conserved Regulation of HIF-1β by NF-κB

    PubMed Central

    van Uden, Patrick; Kenneth, Niall S.; Webster, Ryan; Müller, H. Arno; Mudie, Sharon; Rocha, Sonia

    2011-01-01

    Hypoxia Inducible Factor-1 (HIF-1) is essential for mammalian development and is the principal transcription factor activated by low oxygen tensions. HIF-α subunit quantities and their associated activity are regulated in a post-translational manner, through the concerted action of a class of enzymes called Prolyl Hydroxylases (PHDs) and Factor Inhibiting HIF (FIH) respectively. However, alternative modes of HIF-α regulation such as translation or transcription are under-investigated, and their importance has not been firmly established. Here, we demonstrate that NF-κB regulates the HIF pathway in a significant and evolutionary conserved manner. We demonstrate that NF-κB directly regulates HIF-1β mRNA and protein. In addition, we found that NF-κB–mediated changes in HIF-1β result in modulation of HIF-2α protein. HIF-1β overexpression can rescue HIF-2α protein levels following NF-κB depletion. Significantly, NF-κB regulates HIF-1β (tango) and HIF-α (sima) levels and activity (Hph/fatiga, ImpL3/ldha) in Drosophila, both in normoxia and hypoxia, indicating an evolutionary conserved mode of regulation. These results reveal a novel mechanism of HIF regulation, with impact in the development of novel therapeutic strategies for HIF–related pathologies including ageing, ischemia, and cancer. PMID:21298084

  10. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels1[OPEN

    PubMed Central

    Fina, Julieta; AbdElgawad, Hamada; Prinsen, Els

    2017-01-01

    Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family. PMID:28400494

  11. Dual effects of 5-HT(1a) receptor activation on breathing in neonatal mice.

    PubMed

    Corcoran, Andrea E; Commons, Kathryn G; Wu, Yuanming; Smith, Jeffrey C; Harris, Michael B; Richerson, George B

    2014-01-01

    Inhibitory 5-HT(1a) receptors are located on serotonin (5-HT) neurons (autoreceptors) as well as neurons of the respiratory network (heteroreceptors). Thus, effects on breathing of 5-HT(1a) agonists, such as (R)-(+)-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT), could either be due to decreased firing of 5-HT neurons or direct effects on the respiratory network. Mice in which the transcription factor LMX1B is genetically deleted selectively in Pet1-1-expressing cells (Lmx1b(f/f/p)) essentially have complete absence of central 5-HT neurons, providing a unique opportunity to separate the effect of activation of downstream 5-HT(1a) heteroreceptors from that of autoreceptors. We used rhythmically active medullary slices from wild-type (WT) and Lmx1b(f/f/p) neonatal mice to differentiate autoreceptor versus heteroreceptor effects of 8-OH-DPAT on hypoglossal nerve respiratory output. 8-OH-DPAT transiently increased respiratory burst frequency in Lmx1b(f/f/p) preparations, but not in WT slices. This excitation was abolished when synaptic inhibition was blocked by GABAergic/glycinergic receptor antagonists. Conversely, after 10 min of application, frequency in Lmx1b(f/f/p) slices was not different from baseline, whereas it was significantly depressed in WT slices. In WT mice in vivo, subcutaneous injection of 8-OH-DPAT produced similar biphasic respiratory effects as in Lmx1b(f/f/p) mice. We conclude that 5-HT1a receptor agonists have two competing effects: rapid stimulation of breathing due to excitation of the respiratory network, and delayed inhibition of breathing due to autoreceptor inhibition of 5-HT neurons. The former effect is presumably due to inhibition of inhibitory interneurons embedded in the respiratory network.

  12. Moderating effects of leader-member exchange (LMX) on job burnout in dietitians and chefs of institutional foodservice

    PubMed Central

    2011-01-01

    The objectives of the study were to investigate job burnout and leader-member exchange (LMX) levels as well as to evaluate buffering effects of LMX on burnout among dietitians and chefs at institutional foodservices. Hypotheses were proposed based on the Job Demands-Resources model and LMX theory. The study population consisted of dietitians and chefs who were in charge of managing unit operations in a nationwide contract management company. Positive/negative affectivity, workload, job burnout, and LMX scales that had been validated in previous research were adopted. A total of 552 questionnaires were distributed and 154 responses were returned. Results indicated that respondents' burnout levels were moderate and emotional exhaustion was greater than cynicism. In terms of LMX, the surveyed dietitians and chefs showed higher respect toward their supervisors than loyalty. When positive affectivity and negative affectivity were controlled, workload influenced emotional exhaustion and professional efficacy significantly. With affectivity and workload controlled, however, LMX did not influence any dimensions of burnout. The moderating effect of LMX on the relationship between workload and cynicism was significant. That is, the effect of workload on cynicism was weak if the dietitians and chefs perceived the relationship with their supervisor positively. Based on the findings and literature reviewed, how to mitigate job burnout among foodservice managers is discussed. PMID:21487501

  13. Examining the Relationship between Leader-Member Exchange (LMX) and Objective Performance within Higher Education: An Exploratory Empirical Study

    ERIC Educational Resources Information Center

    Peterson, Tim O.; Aikens, Shontarius D.

    2017-01-01

    While the common suggestion in leader-member exchange (LMX) research is that there is a strong relationship between LMX and performance, a closer look at these studies reveal that the performance measures in the majority of studies are primarily subjective in nature such as performance reviews. Relatively few studies examine the LMX-objective…

  14. Intron-Mediated Alternative Splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B Regulates Cell Wall Thickening during Fiber Development in Populus Species1[W

    PubMed Central

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-01-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation. PMID:24394777

  15. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  16. RNA Regulation by Estrogen

    DTIC Science & Technology

    2011-08-01

    activator, urokinase 6.06 207403_at IRS4 insulin receptor substrate 4 6.06 208487_at lmx1b LIM homeobox transcription factor 1, beta 6.06 206051_at...3.48 216533_at pccA propionyl Coenzyme A carboxylase, alpha polypeptide 3.48 202410_x_at INS-IGF2 insulin -like growth factor 2 (somatomedin A); insulin ...INS-IGF2 readthrough transcript 3.48 202410_x_at INS insulin -like growth factor 2 (somatomedin A); insulin ; INS-IGF2 readthrough transcript 3.48

  17. Self-other rating agreement and leader-member exchange (LMX): a quasi-replication.

    PubMed

    Barbuto, John E; Wilmot, Michael P; Singh, Matthew; Story, Joana S P

    2012-04-01

    Data from a sample of 83 elected community leaders and 391 direct-report staff (resulting in 333 useable leader-member dyads) were reanalyzed to test relations between self-other rating agreement of servant leadership and member-reported leader-member exchange (LMX). Polynomial regression analysis indicated that the self-other rating agreement model was not statistically significant. Instead, all of the variance in member-reported LMX was accounted for by the others' ratings component alone.

  18. Regulation of B7.1 costimulatory molecule is mediated by the IFN regulatory factor-7 through the activation of JNK in lipopolysaccharide-stimulated human monocytic cells.

    PubMed

    Lim, Wilfred; Gee, Katrina; Mishra, Sasmita; Kumar, Ashok

    2005-11-01

    The engagement of CD28 or CTLA-4 with B7.1 provides the essential second costimulatory signal that regulates the development of immune responses, including T cell activation, differentiation, and induction of peripheral tolerance. The signaling molecules and the transcription factors involved in B7.1 regulation are poorly understood. In this study we investigated the role of MAPKs in the regulation of LPS-induced B7.1 expression in human monocytes and the promonocytic THP-1 cells. Our results show that LPS-induced B7.1 expression in monocytic cells did not involve the activation of either p38 or ERKs. Using the JNK-specific inhibitor SP600125, small interfering RNAs specific for JNK1 and JNK2, and agents such as dexamethasone that inhibit JNK activation, we determined that LPS-induced B7.1 expression was regulated by JNK MAPK in both monocytes and THP-1 cells. In addition, we identified a distinct B7.1-responsive element corresponding to the IFN regulatory factor-7 (IRF-7) binding site in the B7.1 promoter responsible for the regulation of LPS-induced B7.1 transcription. Furthermore, SP600125 and dexamethasone inhibited LPS-induced IRF-7 activity. Taken together, these results suggest that LPS-induced B7.1 transcription in human monocytic cells may be regulated by JNK-mediated activation of the IRF-7 transcription factor.

  19. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species.

    PubMed

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-02-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.

  20. bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana

    PubMed Central

    Liang, Gang; Zhang, Huimin; Li, Xiaoli; Ai, Qin

    2017-01-01

    Abstract Iron (Fe) deficiency is a limiting factor for the normal growth and development of plants, and many species have evolved sophisticated systems for adaptation to Fe-deficient environments. It is still unclear how plants sense Fe status and coordinate the expression of genes responsive to Fe deficiency. In this study, we show that the bHLH transcription factor bHLH115 is a positive regulator of the Fe-deficiency response. Loss-of-function of bHLH115 causes strong Fe-deficiency symptoms and alleviates expression of genes responsive to Fe deficiency, whereas its overexpression causes the opposite effect. Chromatin immunoprecipitation assays confirmed that bHLH115 binds to the promoters of the Fe-deficiency-responsive genes bHLH38/39/100/101 and POPEYE (PYE), which suggests redundant molecular functions with bHLH34, bHLH104, and bHLH105. This is further supported by the fact that the bhlh115-1 mutant was complemented by overexpression of any of bHLH34, bHLH104, bHLH105, and bHLH115. Further investigations determined that bHLH115 could interact with itself and with bHLH34, bHLH104, and bHLH105. Their differential tissue-specific expression patterns and the severe Fe deficiency symptoms of multiple mutants supported their non-redundant biological functions. Genetic analysis revealed that bHLH115 is negatively regulated by BRUTUS (BTS), an E3 ligase that can interact with bHLH115. Thus, bHLH115 plays key roles in the maintenance of Fe homeostasis in Arabidopsis thaliana. PMID:28369511

  1. Regulation of nuclear factor κB (NF-κB) transcriptional activity via p65 acetylation by the chaperonin containing TCP1 (CCT).

    PubMed

    Pejanovic, Nadja; Hochrainer, Karin; Liu, Tao; Aerne, Birgit L; Soares, Miguel P; Anrather, Josef

    2012-01-01

    The NF-κB family member p65 is central to inflammation and immunity. The purpose of this study was to identify and characterize evolutionary conserved genes modulating p65 transcriptional activity. Using an RNAi screening approach, we identified chaperonin containing TCP1 subunit η (CCTη) as a regulator of Drosophila NF-κB proteins, Dorsal and Dorsal-related immunity factor (Dif). CCTη was also found to regulate NF-κB-driven transcription in mammalian cells, acting in a promoter-specific context, downstream of IκB kinase (IKK). CCTη knockdown repressed IκBα and CXCL2/MIP2 transcription during the early phase of NF-κB activation while impairing the termination of CCL5/RANTES and CXCL10/IP10 transcription. The latter effect was associated with increased DNA binding and reduced p65 acetylation, presumably by altering the activity of histone acetyltransferase CREB-binding protein (CBP). We identified p65 lysines (K) 122 and 123 as target residues mediating the CCTη-driven termination of NF-κB-dependent transcription. We propose that CCTη regulates NF-κB activity in a manner that resolves inflammation.

  2. Transcription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon.

    PubMed

    Inan, M S; Tolmacheva, V; Wang, Q S; Rosenberg, D W; Giardina, C

    2000-12-01

    The transcription factor nuclear factor (NF)-kappaB regulates the expression of genes that can influence cell proliferation and death. Here we analyze the contribution of NF-kappaB to the regulation of epithelial cell turnover in the colon. Immunohistochemical, immunoblot, and DNA binding analyses indicate that NF-kappaB complexes change as colonocytes mature: p65-p50 complexes predominate in proliferating epithelial cells of the colon, whereas the p50-p50 dimer is prevalent in mature epithelial cells. NF-kappaB1 (p50) knockout mice were used to study the role of NF-kappaB in regulating epithelial cell turnover. Knockout animals lacked detectable NF-kappaB DNA binding activity in isolated epithelial cells and had significantly longer crypts with a more extensive proliferative zone than their wild-type counterparts (as determined by proliferating cell nuclear antigen staining and in vivo bromodeoxyuridine labeling). Gene expression profiling reveals that the NF-kappaB1 knockout mice express the potentially growth-enhancing tumor necrosis factor (TNF)-alpha and nerve growth factor-alpha genes at elevated levels, with in situ hybridization localizing some of the TNF-alpha expression to epithelial cells. TNF-alpha is NF-kappaB regulated, and its upregulation in NF-kappaB1 knockouts may result from an alleviation of p50-p50 repression. NF-kappaB complexes may therefore influence cell proliferation in the colon through their ability to selectively activate and/or repress gene expression.

  3. Regulation of the nuclear factor (NF)-kappaB pathway by ISGylation.

    PubMed

    Minakawa, Miki; Sone, Takayuki; Takeuchi, Tomoharu; Yokosawa, Hideyoshi

    2008-12-01

    Post-translational modification with ISG15 (interferon-stimulated gene 15 kDa) (ISGylation) is mediated by a sequential reaction similar to ubiquitination, and various target proteins for ISGylation have been identified. We previously reported that ISGylation of the E2 ubiquitin-conjugating enzyme Ubc13 suppresses its E2 activity. Ubc13 forms a heterodimer with Uev1A, a ubiquitin-conjugating enzyme variant, and the Ubc13-Uev1A complex catalyzes the assembly of a Lys63-linked polyubiquitin chain, which plays a non-proteolytic role in the nuclear factor (NF)-kappaB pathway. In this study, we examined the effect of ISGylation on tumor necrosis factor receptor-associated factor (TRAF)-6/transforming growth factor beta-activated kinase (TAK)-1-dependent NF-kappaB activation. We found that expression of the ISGylation system suppresses NF-kappaB activation via TRAF6 and TAK1 and that the level of polyubiquitinated TRAF6 is reduced by expression of the ISGylation system. Taken together, the results suggest that the NF-kappaB pathway is negatively regulated by ISGylation.

  4. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-{kappa}B in human aortic smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manea, Adrian, E-mail: adrian.manea@icbp.ro; Tanase, Laurentia I.; Raicu, Monica

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-{kappa}B (NF-{kappa}B) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-{kappa}B signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-{alpha} (TNF{alpha}), a potent inducer of both Nox and NF-{kappa}B, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysismore » showed that inhibition of NF-{kappa}B pathway reduced significantly the TNF{alpha}-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-{kappa}B elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-{kappa}B significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-{kappa}B proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-{kappa}B is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-{kappa}B and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.« less

  5. Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling

    PubMed Central

    Fukada, Toshiyuki; Tonks, Nicholas K.

    2003-01-01

    Changes in expression of PTP1B, the prototypic protein tyrosine phosphatase, have been associated with various human diseases; however, the mechanisms by which PTP1B expression is regulated have not been defined. We have identified an enhancer sequence within the PTP1B promoter which serves as a binding site for the transcription factor Y box-binding protein-1 (YB-1). Overexpression of YB-1 resulted in increased levels of PTP1B. Furthermore, depletion of YB-1 protein, by expression of a specific antisense construct, led to an ∼70% decrease in expression of PTP1B, but no change in the level of its closest relative, TC-PTP. Expression of antisense YB-1 resulted in increased sensitivity to insulin and enhanced signaling through the cytokine receptor gp130, which was suppressed by re-expression of PTP1B. Finally, we observed a correlation between the expression of PTP1B and that of YB-1 in cancer cell lines and an animal model of type II diabetes. Our data reveal an important role for YB-1 as a regulator of PTP1B expression, and further highlight PTP1B as a critical regulator of insulin- and cytokine-mediated signal transduction. PMID:12554649

  6. Immunity drives TET1 regulation in cancer through NF-κB

    PubMed Central

    Canale, Annalisa; Bizet, Martin; Dedeurwaerder, Sarah; Garaud, Soizic; Naveaux, Céline; Barham, Whitney; Wilson, Andrew; Bouchat, Sophie; Van Lint, Carine; Yull, Fiona; Sotiriou, Christos; Noel, Agnès; Fuks, François

    2018-01-01

    Ten-eleven translocation enzymes (TET1, TET2, and TET3), which induce DNA demethylation and gene regulation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), are often down-regulated in cancer. We uncover, in basal-like breast cancer (BLBC), genome-wide 5hmC changes related to TET1 regulation. We further demonstrate that TET1 repression is associated with high expression of immune markers and high infiltration by immune cells. We identify in BLBC tissues an anticorrelation between TET1 expression and the major immunoregulator family nuclear factor κB (NF-κB). In vitro and in mice, TET1 is down-regulated in breast cancer cells upon NF-κB activation through binding of p65 to its consensus sequence in the TET1 promoter. We lastly show that these findings extend to other cancer types, including melanoma, lung, and thyroid cancers. Together, our data suggest a novel mode of regulation for TET1 in cancer and highlight a new paradigm in which the immune system can influence cancer cell epigenetics.

  7. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells

    PubMed Central

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-01

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. PMID:27872190

  8. TAK1 regulates NF-{Kappa}B and AP-1 activation in airway epithelial cells following RSV infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Nilay; Liu Tianshuang; Garofalo, Roberto P.

    2011-09-30

    Respiratory syncytial virus (RSV) is the most common cause of epidemic respiratory diseases in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B) and AP-1. In this study, we have investigated the signaling pathway leading to activation of these two transcription factors in response to RSV infection. Our results show that IKK{beta} plays a key role in viral-induced NF-{kappa}B activation, while JNK regulates AP-1-dependent gene transcription, as demonstrated by using kinase inactive proteins and chemical inhibitors of the two kinases.more » Inhibition of TAK1 activation, by overexpression of kinase inactive TAK1 or using cells lacking TAK1 expression, significantly reduced RSV-induced NF-{kappa}B and AP-1 nuclear translocation and DNA-binding activity, as well as NF-{kappa}B-dependent gene expression, identifying TAK1 as an important upstream signaling molecule regulating RSV-induced NF-{kappa}B and AP-1 activation. - Highlights: > IKK{beta} is a major kinase involved in RSV-induced NF-{kappa}B activation. > JNK regulates AP-1-dependent gene transcription in RSV infection. > TAK1 is a critical upstream signaling molecule for both pathways in infected cells.« less

  9. The Epigenetic Factor KDM2B Regulates EMT and Small GTPases in Colon Tumor Cells.

    PubMed

    Zacharopoulou, Nefeli; Tsapara, Anna; Kallergi, Galatea; Schmid, Evi; Alkahtani, Saad; Alarifi, Saud; Tsichlis, Philip N; Kampranis, Sotirios C; Stournaras, Christos

    2018-05-14

    The epigenetic factor KDM2B is a histone demethylase expressed in various tumors. Recently, we have shown that KDM2B regulates actin cytoskeleton organization, small Rho GTPases signaling, cell-cell adhesion and migration of prostate tumor cells. In the present study, we addressed its role in regulating EMT and small GTPases expression in colon tumor cells. We used RT-PCR for the transcriptional analysis of various genes, Western blotting for the assessment of protein expression and immunofluorescence microscopy for visualization of fluorescently labeled proteins. We report here that KDM2B regulates EZH2 and BMI1 in HCT116 colon tumor cells. Knockdown of this epigenetic factor induced potent up-regulation of the protein levels of the epithelial markers E-cadherin and ZO-1, while the mesenchymal marker N-cadherin was downregulated. On the other hand, KDM2B overexpression downregulated the levels of both epithelial markers and upregulated the mesenchymal marker, suggesting control of EMT by KDM2B. In addition, RhoA, RhoB and RhoC protein levels diminished upon KDM2B-knockdown, while all three small GTPases became upregulated in KDM2B-overexpressing HCT116 cell clones. Interestingly, Rac1 GTPase level increased upon KDM2B-knockdown and diminished in KDM2B-overexpressing HCT116 colon tumor- and DU-145 prostate cancer cells. These results establish a clear functional role of the epigenetic factor KDM2B in the regulation of EMT and small-GTPases expression in colon tumor cells and further support the recently postulated oncogenic role of this histone demethylase in various tumors. © 2018 The Author(s). Published by S. Karger AG, Basel.

  10. miR-133b Regulation of Connective Tissue Growth Factor

    PubMed Central

    Gjymishka, Altin; Pi, Liya; Oh, Seh-Hoon; Jorgensen, Marda; Liu, Chen; Protopapadakis, Yianni; Patel, Ashnee; Petersen, Bryon E.

    2017-01-01

    miRNAs are involved in liver regeneration, and their expression is dysregulated in hepatocellular carcinoma (HCC). Connective tissue growth factor (CTGF), a direct target of miR-133b, is crucial in the ductular reaction (DR)/oval cell (OC) response for generating new hepatocyte lineages during liver injury in the context of hepatotoxin-inhibited hepatocyte proliferation. Herein, we investigate whether miR-133b regulation of CTGF influences HCC cell proliferation and migration, and DR/OC response. We analyzed miR-133b expression and found it to be down-regulated in HCC patient samples and induced in the rat DR/OC activation model of 2-acetylaminofluorene with partial hepatectomy. Furthermore, overexpression of miR-133b via adenoviral system in vitro led to decreased CTGF expression and reduced proliferation and Transwell migration of both HepG2 HCC cells and WBF-344 rat OCs. In vivo, overexpression of miR-133b in DR/OC activation models of 2-acetylaminofluorene with partial hepatectomy in rats, and 3,5-diethoxycarbonyl-1,4-dihydrocollidine in mice, led to down-regulation of CTGF expression and OC proliferation. Collectively, these results show that miR-133b regulation of CTGF is a novel mechanism critical for the proliferation and migration of HCC cells and OC response. PMID:26945106

  11. Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1.

    PubMed

    Lin, Ling; Peng, Stanford L

    2006-04-15

    Forkhead transcription factors play critical roles in the maintenance of immune homeostasis. In this study, we demonstrate that this regulation most likely involves intricate interactions between the forkhead family members and inflammatory transcription factors: the forkhead member Foxd1 coordinates the regulation of the activity of two key inflammatory transcription factors, NF-AT and NF-kappaB, with Foxd1 deficiency resulting in multiorgan, systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autologous MLRs. Foxd1-deficient T cells possess increased activity of both NF-AT and NF-kappaB: the former correlates with the ability of Foxd1 to regulate casein kinase 1, an NF-AT inhibitory kinase; the latter with the ability of Foxd1 to regulate Foxj1, which regulates the NF-kappaB inhibitory subunit IkappaB beta. Thus, Foxd1 modulates inflammatory reactions and prevents autoimmunity by directly regulating anti-inflammatory regulators of the NF-AT pathway, and by coordinating the suppression of the NF-kappaB pathway via Foxj1. These findings indicate the presence of a general network of forkhead proteins that enforce T cell quiescence.

  12. Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain.

    PubMed

    Krasnova, Irina N; Ladenheim, Bruce; Hodges, Amber B; Volkow, Nora D; Cadet, Jean Lud

    2011-04-25

    Methamphetamine (METH) is an addictive and neurotoxic psychostimulant widely abused in the USA and throughout the world. When administered in large doses, METH can cause depletion of striatal dopamine terminals, with preservation of midbrain dopaminergic neurons. Because alterations in the expression of transcription factors that regulate the development of dopaminergic neurons might be involved in protecting these neurons after toxic insults, we tested the possibility that their expression might be affected by toxic doses of METH in the adult brain. Male Sprague-Dawley rats pretreated with saline or increasing doses of METH were challenged with toxic doses of the drug and euthanized two weeks later. Animals that received toxic METH challenges showed decreases in dopamine levels and reductions in tyrosine hydroxylase protein concentration in the striatum. METH pretreatment protected against loss of striatal dopamine and tyrosine hydroxylase. In contrast, METH challenges caused decreases in dopamine transporters in both saline- and METH-pretreated animals. Interestingly, METH challenges elicited increases in dopamine transporter mRNA levels in the midbrain in the presence but not in the absence of METH pretreatment. Moreover, toxic METH doses caused decreases in the expression of the dopamine developmental factors, Shh, Lmx1b, and Nurr1, but not in the levels of Otx2 and Pitx3, in saline-pretreated rats. METH pretreatment followed by METH challenges also decreased Nurr1 but increased Otx2 and Pitx3 expression in the midbrain. These findings suggest that, in adult animals, toxic doses of METH can differentially influence the expression of transcription factors involved in the developmental regulation of dopamine neurons. The combined increases in Otx2 and Pitx3 expression after METH preconditioning might represent, in part, some of the mechanisms that served to protect against METH-induced striatal dopamine depletion observed after METH preconditioning.

  13. Quantitative DNA methylation analysis of paired box gene 1 and LIM homeobox transcription factor 1 α genes in cervical cancer

    PubMed Central

    Xu, Ling; Xu, Jun; Hu, Zheng; Yang, Baohua; Wang, Lifeng; Lin, Xiao; Xia, Ziyin; Zhang, Zhiling; Zhu, Yunheng

    2018-01-01

    DNA methylation is associated with tumorigenesis and may act as a potential biomarker for detecting cervical cancer. The aim of the present study was to explore the methylation status of the paired box gene 1 (PAX1) and the LIM homeobox transcription factor 1 α (LMX1A) gene in a spectrum of cervical lesions in an Eastern Chinese population. This single-center study involved 121 patients who were divided into normal cervix (NC; n=28), low-grade squamous intraepithelial lesion (LSIL; n=32), high-grade squamous intraepithelial lesion (HSIL; n=34) and cervical squamous cell carcinoma (CSCC; n=27) groups, according to biopsy results. Following extraction and modification of the DNA, quantitative assessment of the PAX1 and LMX1A genes in exfoliated cells was performed using pyrosequencing analysis. Receiver operating characteristic (ROC) curves were generated to calculate the sensitivity and specificity of each parameter and cut-off values of the percentage of methylation reference (PMR) for differentiation diagnosis. Analysis of variance was used to identify differences among groups. The PMR of the two genes was significantly higher in the HSIL and CSCC groups compared with that in the NC and LSIL groups (P<0.001). ROC curve analysis demonstrated that the sensitivity, specificity and accuracy for detection of CSCC were 0.790, 0.837 and 0.809, respectively, using PAX1; and 0.633, 0.357 and 0.893, respectively, using LMX1A. These results indicated that quantitative PAX1 methylation demonstrates potential for cervical cancer screening, while further investigation is required to determine the potential of LMX1A methylation. PMID:29541217

  14. Mapping the Complement Factor H-Related Protein 1 (CFHR1):C3b/C3d Interactions

    PubMed Central

    Laskowski, Jennifer; Thurman, Joshua M.; Hageman, Gregory S.; Holers, V. Michael

    2016-01-01

    Complement factor H-related protein 1 (CFHR1) is a complement regulator which has been reported to regulate complement by blocking C5 convertase activity and interfering with C5b surface association. CFHR1 also competes with complement factor H (CFH) for binding to C3b, and may act as an antagonist of CFH-directed regulation on cell surfaces. We have employed site-directed mutagenesis in conjunction with ELISA-based and functional assays to isolate the binding interaction that CFHR1 undertakes with complement components C3b and C3d to a single shared interface. The C3b/C3d:CFHR1 interface is identical to that which occurs between the two C-terminal domains (SCR19-20) of CFH and C3b. Moreover, we have been able to corroborate that dimerization of CFHR1 is necessary for this molecule to bind effectively to C3b and C3d, or compete with CFH. Finally, we have established that CFHR1 competes with complement factor H-like protein 1 (CFHL-1) for binding to C3b. CFHL-1 is a CFH gene splice variant, which is almost identical to the N-terminal 7 domains of CFH (SCR1-7). CFHR1, therefore, not only competes with the C-terminus of CFH for binding to C3b, but also sterically blocks the interaction that the N-terminus of CFH undertakes with C3b, and which is required for CFH-regulation. PMID:27814381

  15. Transcriptional regulation of podocyte specification and differentiation.

    PubMed

    Quaggin, Susan E

    2002-05-15

    Glomerular visceral epithelial cells (podocytes) are highly specialized cells found in the vertebrate and invertebrate kidney and make up a major portion of the filtration barrier between blood and urinary spaces. During development, specification and differentiation of the podocyte lineage must be tightly orchestrated to produce highly specialized characteristics such as foot processes and slit diaphragms. Furthermore, podocytes are poised to direct incoming endothelial and mesangial cells during glomerular development. They express a number of growth factors that likely play a major role in these processes. Recent findings from transgenic and knockout mouse models and the identification of genes responsible for human podocyte disease have provided insight into transcriptional regulation of some of these processes. These transcription factors include Pax2, WT1 (the Wilms tumor suppressor gene), Pod1 (capsulin, epicardin), Kreisler (maf-1), lmx1b, and mf2. Furthermore, regulatory regions from a podocyte-restricted gene, NPHS1 (nephrin) that are required to direct podocyte-specific expression have been identified from both human and murine genes and provide a tool to further dissect the transcriptional regulation of podocyte-specific gene expression. This article reviews the present state of knowledge regarding transcriptional regulation of podocyte specification and differentiation. Copyright 2002 Wiley-Liss, Inc.

  16. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest.

    PubMed

    Gascoyne, Duncan M; Spearman, Hayley; Lyne, Linden; Puliyadi, Rathi; Perez-Alcantara, Marta; Coulton, Les; Fisher, Simon E; Croucher, Peter I; Banham, Alison H

    2015-01-01

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology.

  17. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest

    PubMed Central

    Gascoyne, Duncan M.; Spearman, Hayley; Lyne, Linden; Puliyadi, Rathi; Perez-Alcantara, Marta; Coulton, Les; Fisher, Simon E.; Croucher, Peter I.; Banham, Alison H.

    2015-01-01

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology. PMID:26034982

  18. Differential phosphorylations of Spi-B and Spi-1 transcription factors.

    PubMed

    Mao, C; Ray-Gallet, D; Tavitian, A; Moreau-Gachelin, F

    1996-02-15

    Spi-1/PU-1 and Spi-B are hematopoietic transcription factors, which, in vitro, display similar affinities for DNA target sequences containing the consensus binding site 5'-GGAA-3'. While the role of Spi-1 in the transcriptional regulation of B cell and myeloid specific genes has been largely demonstrated, the biological function of Spi-B still remains to be elucidated. Since Spi-B and Spi-1 are very divergent in their transactivator domain, these domains might acquire functional specificity in vivo by interacting with different co-factors and/or by undergoing different phosphorylations. First, we observed that casein kinase II phosphorylates Spi-B as well as Spi-1, in vitro. Then, by affinity chromatographies and in vitro kinase assays with fusion proteins between glutathione-S-transferase and the transactivator domain of Spi-B, two kinases were identified on their ability to interact and phosphorylate this domain; the MAP kinase ERK1 and the stress activated protein kinase JNK1. The Threonine 56 was defined as the ERK1 phosphorylation site by using phosphoamino-acid analyses and a Spi-B mutant version with the substitution T56 to A56. Strikingly, ERK1 failed to phosphorylate Spi-1, in vitro, whereas JNK1, like CK II, phosphorylated Spi-B and Spi-1. In addition, other purified Spi-B-kinase activities, unidentified as yet, display similar specificity than ERK1 for Spi-B versus Spi-1. Furthermore, the evident interaction of pRb protein with the transactivator domain of Spi-B in an unphosphorylated state disappeared when this domain was first phosphorylated in vitro either by ERK1 or by the purified Spi-B-kinase activities. Our data revealed multiple phosphorylation sites within Spi-B whose some of them appeared specific for Spi-B versus Spi-1 and which may account for differential regulation of their activities.

  19. NF-kappaB mediates FGF signal regulation of msx-1 expression.

    PubMed

    Bushdid, P B; Chen, C L; Brantley, D M; Yull, F; Raghow, R; Kerr, L D; Barnett, J V

    2001-09-01

    The nuclear factor-kappaB (NF-kappaB) family of transcription factors is involved in proliferation, differentiation, and apoptosis in a stage- and cell-dependent manner. Recent evidence has shown that NF-kappaB activity is necessary for both chicken and mouse limb development. We report here that the NF-kappaB family member c-rel and the homeodomain gene msx-1 have partially overlapping expression patterns in the developing chick limb. In addition, inhibition of NF-kappaB activity resulted in a decrease in msx-1 mRNA expression. Sequence analysis of the msx-1 promoter revealed three potential kappaB-binding sites similar to the interferon-gamma (IFN-gamma) kappaB-binding site. These sites bound to c-Rel, as shown by electrophoretic mobility shift assay (EMSA). Furthermore, inhibition of NF-kappaB activity significantly reduced transactivation of the msx-1 promoter in response to FGF-2/-4, known stimulators of msx-1 expression. These results suggest that NF-kappaB mediates the FGF-2/-4 signal regulation of msx-1 gene expression. Copyright 2001 Academic Press.

  20. Innovation in globally distributed teams: the role of LMX, communication frequency, and member influence on team decisions.

    PubMed

    Gajendran, Ravi S; Joshi, Aparna

    2012-11-01

    For globally distributed teams charged with innovation, member contributions to the team are crucial for effective performance. Prior research, however, suggests that members of globally distributed teams often feel isolated and excluded from their team's activities and decisions. How can leaders of such teams foster member inclusion in team decisions? Drawing on leader-member exchange (LMX) theory, we propose that for distributed teams, LMX and communication frequency jointly shape member influence on team decisions. Findings from a test of our hypotheses using data from 40 globally distributed teams suggest that LMX can enhance member influence on team decisions when it is sustained through frequent leader-member communication. This joint effect is strengthened as team dispersion increases. At the team level, member influence on team decisions has a positive effect on team innovation. (c) 2012 APA, all rights reserved.

  1. Host factor SPCS1 regulates the replication of Japanese encephalitis virus through interactions with transmembrane domains of NS2B.

    PubMed

    Ma, Le; Li, Fang; Zhang, Jing-Wei; Li, Wei; Zhao, Dong-Ming; Wang, Han; Hua, Rong-Hong; Bu, Zhi-Gao

    2018-03-28

    Signal peptidase complex subunit 1 (SPCS1) is a newly identified host factor that regulates flavivirus replication, but the molecular mechanism is not fully understood. Herein, using Japanese encephalitis virus (JEV) as a model, we investigated the mechanism through which host factor SPCS1 regulates the replication of flaviviruses. We first validated the regulatory function of SPCS1 in JEV propagation by knocking down and knocking out endogenous SPCS1. Loss of SPCS1 function markedly reduced intracellular virion assembly and production of infectious JEV particles, but did not affect virus cell entry, RNA replication, or translation. SPCS1 was found to interact with NS2B, which is involved in post-translational protein processing and viral assembly. Serial deletion mutation of the JEV NS2B protein revealed that two transmembrane domains, NS2B (1-49) and NS2B (84-131), interact with SPCS1. Further mutagenesis analysis of conserved flavivirus residues in two SPCS1 interaction domains of NS2B demonstrated that G12A, G37A, and G47A in NS2B (1-49), and P112A in NS2B (84-131), weakened the interaction with SPCS1. Deletion mutation of SPCS1 revealed that SPCS1 (91-169) which containing two transmembrane domains was involved in the interaction with both NS2B (1-49) and NS2B (84-131). Taken together, the results demonstrate that SPCS1 affects viral replication by interacting with NS2B, thereby influencing post-translational processing of JEV proteins and the assembly of virions. IMPORTANCE Understanding viral-host interactions is important for elucidating the molecular mechanisms of viral propagation, and identifying potential anti-viral targets. Previous reports demonstrated that SPCS1 is involved in the flavivirus life cycle, but the mechanism remains unknown. In this study, we confirmed that SPCS1 participates in the post-translational protein processing and viral assembly stages of the JEV lifecycle, but not in the cell entry, genome RNA replication, or translation

  2. ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells

    PubMed Central

    Pan, Ling; Deng, Min; Xie, Xiaoling; Gan, Lin

    2009-01-01

    SUMMARY LIM-homeodomain (HD) and POU-HD transcription factors play critical roles in neurogenesis. However, it remains largely unknown how they cooperate in this process and what downstream target genes they regulate. Here we show that ISL1, a LIM-HD protein, is co-expressed with BRN3B, a POU-HD factor, in nascent, post-mitotic retinal ganglion cells (RGCs). Similar to the Brn3b-null retinas, retina-specific deletion of Isl1 results in the apoptosis of a majority of RGCs and in RGC axon guidance defects. The Isl1 and Brn3b double null mice display more severe retinal abnormalities with a near complete loss of RGCs, indicating the synergistic functions of these two factors. Furthermore, we show that both Isl1 and Brn3b function downstream of Math5 to regulate the expression of a common set of RGC-specific genes. Whole retina chromatin immunoprecipitation and in vitro transactivation assays reveal that ISL1 and BRN3B concurrently bind to and synergistically regulate the expression of a common set of RGC-specific genes. Thus, our results uncover a novel regulatory mechanism of BRN3B and ISL1 in RGC differentiation. PMID:18434421

  3. CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in Arabidopsis

    PubMed Central

    Li, Shibai; Wang, Xiaochen; He, Shan; Li, Jieru; Huang, Qingpei; Imaizumi, Takato; Qu, Leqing; Qin, Genji; Qu, Li-Jia; Gu, Hongya

    2016-01-01

    The cuticle is a hydrophobic lipid layer covering the epidermal cells of terrestrial plants. Although many genes involved in Arabidopsis cuticle development have been identified, the transcriptional regulation of these genes is largely unknown. Previously, we demonstrated that AtCFL1 negatively regulates cuticle development by interacting with the HD-ZIP IV transcription factor HDG1. Here, we report that two bHLH transcription factors, AtCFL1 associated protein 1 (CFLAP1) and CFLAP2, are also involved in AtCFL1-mediated regulation of cuticle development. CFLAP1 and CFLAP2 interact with AtCFL1 both in vitro and in vivo. Overexpression of either CFLAP1 or CFLAP2 led to expressional changes of genes involved in fatty acids, cutin and wax biosynthesis pathways and caused multiple cuticle defective phenotypes such as organ fusion, breakage of the cuticle layer and decreased epicuticular wax crystal loading. Functional inactivation of CFLAP1 and CFLAP2 by chimeric repression technology caused opposite phenotypes to the CFLAP1 overexpressor plants. Interestingly, we find that, similar to the transcription factor HDG1, the function of CFLAP1 in cuticle development is dependent on the presence of AtCFL1. Furthermore, both HDG1 and CFLAP1/2 interact with the same C-terminal C4 zinc finger domain of AtCFL1, a domain that is essential for AtCFL1 function. These results suggest that AtCFL1 may serve as a master regulator in the transcriptional regulation of cuticle development, and that CFLAP1 and CFLAP2 are involved in the AtCFL1-mediated regulation pathway, probably through competing with HDG1 to bind to AtCFL1. PMID:26745719

  4. An Examination of Coach and Player Relationships According to the Adapted LMX 7 Scale: A Validity and Reliability Study

    ERIC Educational Resources Information Center

    Caliskan, Gokhan

    2015-01-01

    The current study aims to test the reliability and validity of the Leader-Member Exchange (LMX 7) scale with regard to coach--player relationships in sports settings. A total of 330 professional soccer players from the Turkish Super League as well as from the First and Second Leagues participated in this study. Factor analyses were performed to…

  5. Dishevelled-induced phosphorylation regulates membrane localization of Par1b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terabayashi, Takeshi; Funato, Yosuke; Miki, Hiroaki, E-mail: hmiki@protein.osaka-u.ac.jp

    2008-10-31

    Par1b is an evolutionarily conserved kinase that plays crucial roles in cell polarity. Controlling intracellular localization of Par1b is important for its biological activity. We previously reported that Wnt stimulation or expression of Dvl promotes accumulation of Par1b in the membrane (T. Terabayashi, T.J. Itoh, H. Yamaguchi, Y. Yoshimura, Y. Funato, S. Ohno, H. Miki, Polarity-Regulating Kinase Partitioning-Defective 1/Microtubule Affinity-Regulating Kinase 2 Negatively Regulates Development of Dendrites on Hippocampal Neurons, J. Neurosci. 27 (2007) 13098-13107). However, its molecular mechanism remains unclear. Here we show the importance of Par1b phosphorylation in the regulation of membrane localization. We find that Thr-324 ismore » phosphorylated in a Dvl-dependent manner. Interestingly, the conversion of Thr-324 to Glu results in a significant accumulation of Par1b in the membrane, without any effects on the kinase activity. Moreover, the phospho-mimicking Par1b mutant does not antagonistically function against Dvl in microtubule stabilization and neurite extension, although wildtype Par1b does. These results suggest that membrane accumulation of Par1b induced by Dvl is regulated by its phosphorylation status, which is important for Par1b to regulate the microtubule dynamics.« less

  6. miR-193b Regulates Mcl-1 in Melanoma

    PubMed Central

    Chen, Jiamin; Zhang, Xiao; Lentz, Cindy; Abi-Daoud, Marie; Paré, Geneviève C.; Yang, Xiaolong; Feilotter, Harriet E.; Tron, Victor A.

    2011-01-01

    MicroRNAs play important roles in gene regulation, and their expression is frequently dysregulated in cancer cells. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma cells, suggesting that miR-193b could act as a tumor suppressor. Herein, we demonstrate that miR-193b also down-regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. MicroRNA microarray profiling revealed that miR-193b is expressed at a significantly lower level in malignant melanoma than in benign nevi. Consistent with this, Mcl-1 is detected at a higher level in malignant melanoma than in benign nevi. In a survey of melanoma samples, the level of Mcl-1 is inversely correlated with the level of miR-193b. Overexpression of miR-193b in melanoma cells represses Mcl-1 expression. Previous studies showed that Mcl-1 knockdown cells are hypersensitive to ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-XL, and Bcl-w. Similarly, overexpression of miR-193b restores ABT-737 sensitivity to ABT-737–resistant cells. Furthermore, the effect of miR-193b on the expression of Mcl-1 seems to be mediated by direct interaction between miR-193b and seed and seedless pairing sequences in the 3′ untranslated region of Mcl-1 mRNA. Thus, this study provides evidence that miR-193b directly regulates Mcl-1 and that down-regulation of miR-193b in vivo could be an early event in melanoma progression. PMID:21893020

  7. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  8. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  9. Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer.

    PubMed

    Spirina, Ludmila V; Yunusova, Nataliya V; Kondakova, Irina V; Kolomiets, Larisa A; Koval, Valeriya D; Chernyshova, Alena L; Shpileva, Olga V

    2012-09-01

    Insulin-like growth factors (IGFs), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF-1), and nuclear factor kappa-B (NF-κB) are known to play an important role in endometrial cancer pathogenesis. However, the proteolytic regulation of these factors is still poorly understood. We studied the correlation between chymotrypsin-like activity of proteasomes and IGF-I, IGF-II, VEGF, HIF-1, and NF-κB levels in endometrial cancer tissues. It was shown that the total activity of proteasomes and the activity of the 20S and 26S proteasomes in malignant tumors were significantly higher than those observed in the normal endometrium. Negative relationships between the proteasome activity and IGF-I, HIF-1, and NF-κB p50 expressions were found. High 20S proteasome activity was associated with increase of HIF-1 level. Positive relationships between IGF-I expression and two classic forms of NF-κB p50 and p65 in endometrial cancer were revealed. The data obtained indicate the possible proteasomal regulation of growth and transcription factors. The major pool of IGF-I is located in the extracellular space, and it is likely that extracellular proteasomes also take part in the regulation of the IGF-I content. The present data show the evidence of proteasome regulation of growth and nuclear factors that can play an important role in cancer pathogenesis.

  10. miR-193b Regulates Mcl-1 in Melanoma.

    PubMed

    Chen, Jiamin; Zhang, Xiao; Lentz, Cindy; Abi-Daoud, Marie; Paré, Geneviève C; Yang, Xiaolong; Feilotter, Harriet E; Tron, Victor A

    2011-11-01

    MicroRNAs play important roles in gene regulation, and their expression is frequently dysregulated in cancer cells. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma cells, suggesting that miR-193b could act as a tumor suppressor. Herein, we demonstrate that miR-193b also down-regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. MicroRNA microarray profiling revealed that miR-193b is expressed at a significantly lower level in malignant melanoma than in benign nevi. Consistent with this, Mcl-1 is detected at a higher level in malignant melanoma than in benign nevi. In a survey of melanoma samples, the level of Mcl-1 is inversely correlated with the level of miR-193b. Overexpression of miR-193b in melanoma cells represses Mcl-1 expression. Previous studies showed that Mcl-1 knockdown cells are hypersensitive to ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w. Similarly, overexpression of miR-193b restores ABT-737 sensitivity to ABT-737-resistant cells. Furthermore, the effect of miR-193b on the expression of Mcl-1 seems to be mediated by direct interaction between miR-193b and seed and seedless pairing sequences in the 3' untranslated region of Mcl-1 mRNA. Thus, this study provides evidence that miR-193b directly regulates Mcl-1 and that down-regulation of miR-193b in vivo could be an early event in melanoma progression. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Differential Regulation of Mouse B Cell Development by Transforming Growth Factor β1

    PubMed Central

    Kaminski, Denise A.; Letterio, John J.; Burrows, Peter D.

    2002-01-01

    Transforming growth factor β (TGFβ) can inhibit the in vitro proliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/- mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1- pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+ pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell development in vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation. PMID:12739785

  12. Dual Effects of 5-HT1a Receptor Activation on Breathing in Neonatal Mice

    PubMed Central

    Commons, Kathryn G.; Wu, Yuanming; Smith, Jeffrey C.; Harris, Michael B.; Richerson, George B.

    2014-01-01

    Inhibitory 5-HT1a receptors are located on serotonin (5-HT) neurons (autoreceptors) as well as neurons of the respiratory network (heteroreceptors). Thus, effects on breathing of 5-HT1a agonists, such as (R)-(+)-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT), could either be due to decreased firing of 5-HT neurons or direct effects on the respiratory network. Mice in which the transcription factor LMX1B is genetically deleted selectively in Pet1-1-expressing cells (Lmx1bf/f/p) essentially have complete absence of central 5-HT neurons, providing a unique opportunity to separate the effect of activation of downstream 5-HT1a heteroreceptors from that of autoreceptors. We used rhythmically active medullary slices from wild-type (WT) and Lmx1bf/f/p neonatal mice to differentiate autoreceptor versus heteroreceptor effects of 8-OH-DPAT on hypoglossal nerve respiratory output. 8-OH-DPAT transiently increased respiratory burst frequency in Lmx1bf/f/p preparations, but not in WT slices. This excitation was abolished when synaptic inhibition was blocked by GABAergic/glycinergic receptor antagonists. Conversely, after 10 min of application, frequency in Lmx1bf/f/p slices was not different from baseline, whereas it was significantly depressed in WT slices. In WT mice in vivo, subcutaneous injection of 8-OH-DPAT produced similar biphasic respiratory effects as in Lmx1bf/f/p mice. We conclude that 5-HT1a receptor agonists have two competing effects: rapid stimulation of breathing due to excitation of the respiratory network, and delayed inhibition of breathing due to autoreceptor inhibition of 5-HT neurons. The former effect is presumably due to inhibition of inhibitory interneurons embedded in the respiratory network. PMID:24381267

  13. Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB.

    PubMed

    Willis, Simon N; Tellier, Julie; Liao, Yang; Trezise, Stephanie; Light, Amanda; O'Donnell, Kristy; Garrett-Sinha, Lee Ann; Shi, Wei; Tarlinton, David M; Nutt, Stephen L

    2017-11-10

    Humoral immunity requires B cells to respond to multiple stimuli, including antigen, membrane and soluble ligands, and microbial products. Ets family transcription factors regulate many aspects of haematopoiesis, although their functions in humoral immunity are difficult to decipher as a result of redundancy between the family members. Here we show that mice lacking both PU.1 and SpiB in mature B cells do not generate germinal centers and high-affinity antibody after protein immunization. PU.1 and SpiB double-deficient B cells have a survival defect after engagement of CD40 or Toll-like receptors (TLR), despite paradoxically enhanced plasma cell differentiation. PU.1 and SpiB regulate the expression of many components of the B cell receptor signaling pathway and the receptors for CD40L, BAFF and TLR ligands. Thus, PU.1 and SpiB enable B cells to appropriately respond to environmental cues.

  14. Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor

    PubMed Central

    Noda, Chieko; Narita, Yohei; Watanabe, Takahiro; Yoshida, Masahiro; Ashio, Keiji; Sato, Yoshitaka; Goshima, Fumi; Kanda, Teru; Yoshiyama, Hironori; Tsurumi, Tatsuya; Kimura, Hiroshi

    2016-01-01

    ABSTRACT Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1. PMID:26819314

  15. Regulation of anoikis by Deleted in Breast Cancer-1 (DBC1) through NF-κB

    PubMed Central

    Park, Sun Hee; Riley, Philip; Frisch, Steven M

    2013-01-01

    Anoikis-resistance of tumor cells is critical for anchorage-independent growth and metastasis. The inflammatory-response transcription factor NF-κB contributes to anoikis-resistance and tumor progression through mechanisms that are understood incompletely. Deleted in Breast Cancer-1 protein (KIAA1967) is over-expressed in several tumor types, and correlates with a poorer prognosis in some cases. We report here that DBC1 suppressed anoikis in normal epithelial and breast cancer cell lines. DBC1 interacted with IKK-β, stimulating its kinase activity, promoting NF-κB transcriptional activity through the phosphorylation of relA serine-536 and enhancing the expression of the NF-κB target genes, c-FLIP and bcl-xl. Our results indicate that DBC1 is an important co-factor for the control of the IKK-β-NF-κB signaling pathway that regulates anoikis. PMID:23588592

  16. OCA-B regulation of B-cell development and function.

    PubMed

    Teitell, Michael A

    2003-10-01

    The transcriptional co-activator OCA-B [for Oct co-activator from B cells, also known as OBF-1 (OCT-binding factor-1) and Bob1] is not required for B-cell genesis but does regulate subsequent B-cell development and function. OCA-B deficient mice show strain-specific, partial blocks at multiple stages of B-cell maturation and a complete disruption of germinal center formation in all strains, causing humoral immune deficiency and susceptibility to infection. OCA-B probably exerts its effects through the regulation of octamer-motif controlled gene expression. The OCA-B gene encodes two proteins of distinct molecular weight, designated p34 and p35. The p34 isoform localizes in the nucleus, whereas the p35 isoform is myristoylated and is bound to the cytoplasmic membrane. p35 can traffic to the nucleus and probably activates octamer-dependent transcription, although this OCA-B isoform might regulate B cells through membrane-related signal transduction.

  17. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Li, Wei; Zheng, Qichang

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negativemore » effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.« less

  18. Regulator-dependent mechanisms of C3b processing by factor I allow differentiation of immune responses.

    PubMed

    Xue, Xiaoguang; Wu, Jin; Ricklin, Daniel; Forneris, Federico; Di Crescenzio, Patrizia; Schmidt, Christoph Q; Granneman, Joke; Sharp, Thomas H; Lambris, John D; Gros, Piet

    2017-08-01

    The complement system labels microbes and host debris for clearance. Degradation of surface-bound C3b is pivotal to direct immune responses and protect host cells. How the serine protease factor I (FI), assisted by regulators, cleaves either two or three distant peptide bonds in the CUB domain of C3b remains unclear. We present a crystal structure of C3b in complex with FI and regulator factor H (FH; domains 1-4 with 19-20). FI binds C3b-FH between FH domains 2 and 3 and a reoriented C3b C-terminal domain and docks onto the first scissile bond, while stabilizing its catalytic domain for proteolytic activity. One cleavage in C3b does not affect its overall structure, whereas two cleavages unfold CUB and dislodge the thioester-containing domain (TED), affecting binding of regulators and thereby determining the number of cleavages. These data explain how FI generates late-stage opsonins iC3b or C3dg in a context-dependent manner, to react to foreign, danger or healthy self signals.

  19. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor-κB in osteoblasts.

    PubMed

    Qu, Liu; Yu, Yaqiong; Qiu, Lihong; Yang, Di; Yan, Lu; Guo, Jiajie; Jahan, Rabita

    2017-01-01

    Porphyromonas endodontalis lipopolysaccharide (P.e LPS) is an important initiating factor for periapical inflammation and bone destruction. Matrix metalloproteinase-13 (MMP-13) has been shown to participate in the formation and diffusion of periapical bone lesion in chronic apical periodontitis. Sirtuin 1 (SIRT1) is a key regulator of inflammation in mammalian cells which suppresses the release of inflammatory mediators. This study aimed to explore the role of SIRT1 in regulating MMP-13 expression induced by P.e LPS in osteoblasts. P.e LPS stimulated MMP-13 expression in MC3T3-E1 cells. Knockdown of SIRT1 reinforced the increase of MMP-13mRNA expression induced by P.e LPS. SIRT1 activator resveratrol significantly reduced the expression of MMP-13 and SIRT1 inhibitor EX-527 enhanced the expression of MMP-13. Moreover, SIRT1 activation with resveratrol inhibited acetylation of NF-κB p65 and NF-κB transcriptional activity, which were enhanced by P.e LPS. In addition, NF-κB p65 was involved in P.e LPS-induced MMP-13 expression via directly binding to the MMP-13 promoter. However, SIRT1 activation significantly interfered with this binding. These findings strongly suggest that P.e LPS induces MMP-13 expression in osteoblasts, and SIRT1 suppresses this expression of MMP-13 through targeting NF-κB p65. This provides new insights into understanding the actions of SIRT1 on anti-inflammatory and anti-bone resorption activity.

  20. Resveratrol (Trans-3,5,4′-trihydroxystilbene) Induces Silent Mating Type Information Regulation-1 and Down-Regulates Nuclear Transcription Factor-κB Activation to Abrogate Dextran Sulfate Sodium-Induced Colitis

    PubMed Central

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Hofseth, Lorne J.; Price, Robert L.; Nagarkatti, Mitzi

    2010-01-01

    Inflammatory bowel disease is a chronic, relapsing, and tissue-destructive disease. Resveratrol (3,4,5-trihydroxy-trans-stilbene), a naturally occurring polyphenol that exhibits beneficial pleiotropic health effects, is recognized as one of the most promising natural molecules in the prevention and treatment of chronic inflammatory disease and autoimmune disorders. In the present study, we investigated the effect of resveratrol on dextran sodium sulfate (DSS)-induced colitis in mice and found that it effectively attenuated overall clinical scores as well as various pathological markers of colitis. Resveratrol reversed the colitis-associated decrease in body weight and increased levels of serum amyloid A, tumor necrosis factor-α, interleukin (IL-6), and IL-1β. After resveratrol treatment, the percentage of CD4+ T cells in mesenteric lymph nodes (MLN) of colitis mice was restored to normal levels, and there was a decrease in these cells in the colon lamina propria (LP). Likewise, the percentages of macrophages in MLN and the LP of mice with colitis were decreased after resveratrol treatment. Resveratrol also suppressed cyclooxygenase-2 (COX-2) expression induced in DSS-exposed mice. Colitis was associated with a decrease in silent mating type information regulation-1 (SIRT1) gene expression and an increase in p-inhibitory κB expression and nuclear transcription factor-κB (NF-κB) activation. Resveratrol treatment of mice with colitis significantly reversed these changes. This study demonstrates for the first time that SIRT1 is involved in colitis, functioning as an inverse regulator of NF-κB activation and inflammation. Furthermore, our results indicate that resveratrol may protect against colitis through up-regulation of SIRT1 in immune cells in the colon. PMID:19940103

  1. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion.

    PubMed

    Zheng, Hongzhi; Fu, Jingqi; Xue, Peng; Zhao, Rui; Dong, Jian; Liu, Dianxin; Yamamoto, Masayuki; Tong, Qingchun; Teng, Weiping; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E; Pi, Jingbo

    2015-04-01

    The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.

  2. Protein tyrosine phosphatase-1B regulates the tyrosine phosphorylation of the adapter Grb2-associated binder 1 (Gab1) in the retina

    PubMed Central

    2013-01-01

    Background Gab1 (Grb2-associated binder 1) is a key coordinator that belongs to the insulin receptor substrate-1 like family of adaptor molecules and is tyrosine phosphorylated in response to various growth factors, cytokines, and numerous other molecules. Tyrosine phosphorylated Gab1 is able to recruit a number of signaling effectors including PI3K, SHP2 and PLC-γ. In this study, we characterized the localization and regulation of tyrosine phosphorylation of Gab1 in the retina. Results Our immuno localization studies suggest that Gab1 is expressed in rod photoreceptor inner segments. We found that hydrogen peroxide activates the tyrosine phosphorylation of Gab1 ex vivo and hydrogen peroxide has been shown to inhibit the protein tyrosine phosphatase PTP1B activity. We found a stable association between the D181A substrate trap mutant of PTP1B and Gab1. Our studies suggest that PTP1B interacts with Gab1 through Tyrosine 83 and this residue may be the major PTP1B target residue on Gab1. We also found that Gab1 undergoes a light-dependent tyrosine phosphorylation and PTP1B regulates the phosphorylation state of Gab1. Consistent with these observations, we found an enhanced Gab1 tyrosine phosphorylation in PTP1B deficient mice and also in retinas treated ex vivo with a PTP1B specific allosteric inhibitor. Conclusions Our laboratory has previously reported that retinas deficient of PTP1B are resistant to light damage compared to wild type mice. Since Gab1 is negatively regulated by PTP1B, a part of the retinal neuroprotective effect we have observed previously in PTP1B deficient mice could be contributed by Gab1 as well. In summary, our data suggest that PTP1B regulates the phosphorylation state of retinal Gab1 in vivo. PMID:23521888

  3. FGF-23 Regulates CYP27B1 Transcription in the Kidney and in Extra-Renal Tissues

    PubMed Central

    Chanakul, Ankanee; Zhang, Martin Y. H.; Louw, Andrew; Armbrecht, Harvey J.; Miller, Walter L.; Portale, Anthony A.; Perwad, Farzana

    2013-01-01

    The mitochondrial enzyme 25-hydroxyvitamin D 1α-hydroxylase, which is encoded by the CYP27B1 gene, converts 25OHD to the biological active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D). Renal 1α-hydroxylase activity is the principal determinant of the circulating 1,25(OH)2D concentration and enzyme activity is tightly regulated by several factors. Fibroblast growth factor-23 (FGF-23) decreases serum 1,25(OH)2D concentrations by suppressing CYP27B1 mRNA abundance in mice. In extra-renal tissues, 1α-hydroxylase is responsible for local 1,25(OH)2D synthesis, which has important paracrine actions, but whether FGF-23 regulates CYP27B1 gene expression in extra-renal tissues is unknown. We sought to determine whether FGF-23 regulates CYP27B1 transcription in the kidney and whether extra-renal tissues are target sites for FGF-23-induced suppression of CYP27B1. In HEK293 cells transfected with the human CYP27B1 promoter, FGF-23 suppressed promoter activity by 70%, and the suppressive effect was blocked by CI-1040, a specific inhibitor of extracellular signal regulated kinase 1/2. To examine CYP27B1 transcriptional activity in vivo, we crossed fgf-23 null mice with mice bearing the CYP27B1 promoter-driven luciferase transgene (1α-Luc). In the kidney of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity was increased by 3-fold compared to that in wild-type/1α-Luc mice. Intraperitoneal injection of FGF-23 suppressed renal CYP27B1 promoter activity and protein expression by 26% and 60% respectively, and the suppressive effect was blocked by PD0325901, an ERK1/2 inhibitor. These findings provide evidence that FGF-23 suppresses CYP27B1 transcription in the kidney. Furthermore, we demonstrate that in FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA abundance are increased in several extra-renal sites. In the heart of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA were 2- and 5-fold higher, respectively, than in control mice. We also

  4. 17 CFR 240.11b-1 - Regulation of specialists.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Regulation of specialists. 240... Securities Exchange Act of 1934 Adoption of Regulation on Conduct of Specialists § 240.11b-1 Regulation of specialists. (a)(1) The rules of a national securities exchange may permit a member of such exchange to...

  5. Heat shock factor 1 suppresses the HIV-induced inflammatory response by inhibiting nuclear factor-κB.

    PubMed

    Pan, Xiaoyan; Lin, Jian; Zeng, Xiaoyun; Li, Wenjuan; Wu, Wenjiao; Lu, Wan Zhen; Liu, Jing; Liu, Shuwen

    2018-05-01

    The persistent inflammation aggravated by a disordered immune response is considered to be the major cause of CD4 + T cell depletion in lymphoid tissue, which impels the progression of AIDS. Here, we report that heat shock factor 1 (HSF1) works as an innate repressor of HIV-induced inflammation. The activation of HSF1 was found to accompany inflammation during HIV infection. Further research uncovered that HSF1 activation inhibited HIV-induced inflammation. In addition, HSF1 overexpression suppressed the inflammatory response induced by HIV, while HSF1 deficiency exacerbated that inflammation. Mechanistically, HSF1 was found to compete with nuclear factor-κB (NF-κB) in the nucleus. Generally, our report highlights that HSF1 is an important host factor in regulating HIV-induced inflammation and may work as a potential target for curing AIDS. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Interaction with epsin 1 regulates the constitutive clathrin-dependent internalization of ErbB3.

    PubMed

    Szymanska, Monika; Fosdahl, Anne Marthe; Raiborg, Camilla; Dietrich, Markus; Liestøl, Knut; Stang, Espen; Bertelsen, Vibeke

    2016-06-01

    In contrast to other members of the EGF receptor family, ErbB3 is constitutively internalized in a clathrin-dependent manner. Previous studies have shown that ErbB3 does not interact with the coated pit localized adaptor complex 2 (AP-2), and that ErbB3 lacks two AP-2 interacting internalization signals identified in the EGF receptor. Several other clathrin-associated sorting proteins which may recruit cargo into coated pits have, however, been identified, and the study was performed to identify adaptors needed for constitutive internalization of ErbB3. A high-throughput siRNA screen was used to identify adaptor proteins needed for internalization of ErbB3. Upon knock-down of candidate proteins internalization of ErbB3 was identified using an antibody-based internalization assay combined with automatic fluorescence microscopy. Among 29 candidates only knock-down of epsin 1 turned out to inhibit ErbB3. Epsin 1 has ubiquitin interacting motifs (UIMs) and we show that ErbB3 interacts with an epsin 1 deletion mutant containing these UIMs. In support of an ErbB3-epsin 1 UIM dependent interaction, we show that ErbB3 is constitutively ubiquitinated, but that both ubiquitination and the ErbB3-epsin 1 interaction increase upon ligand binding. Altogether the results are consistent with a model whereby both constitutive and ligand-induced internalization of ErbB3 are regulated through interaction with epsin 1. Internalization is an important regulator of growth factor receptor mediated signaling and the current study identify mechanisms regulating plasma membrane turnover of ErbB3. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Endophilin B1

    PubMed Central

    Cheung, Zelda H

    2009-01-01

    Endophilin B1 is a member of the endophilin family that is localized predominantly to intracellular membranes. Also known as Bax-interacting factor-1 (Bif-1), this protein has been observed to regulate the membrane dynamics of various intracellular compartments, such as the control of mitochondrial morphology and autophagosome formation in fibroblast. Endophilin B1 is expressed in the brain, but its functions in neurons had remained unknown. Recently, we have observed a novel role of endophilin B1 in neurons where it controls the trafficking of TrkA, cognate receptor for the prototypic neurotrophin nerve growth factor (NGF). Knock-down of endophilin B1 expression induces precocious targeting of NGF/TrkA to late endosomes and lysosomes, thereby leading to reduced TrkA levels. This is accompanied by marked attenuation of NGF-induced gene transcription and neurite outgrowth. Our observations suggest that endophilin B1 regulates TrkA level and downstream functions by controlling the movement of TrkA to late endosomes/lysosomes, possibly acting at the level of early endosomes. PMID:19704909

  8. Interaction of the B cell-specific transcriptional coactivator OCA-B and galectin-1 and a possible role in regulating BCR-mediated B cell proliferation.

    PubMed

    Yu, Xin; Siegel, Rachael; Roeder, Robert G

    2006-06-02

    OCA-B is a B cell-specific transcriptional coactivator for OCT factors during the activation of immunoglobulin genes. In addition, OCA-B is crucial for B cell activation and germinal center formation. However, the molecular mechanisms for OCA-B function in these processes are not clear. Our previous studies documented two OCA-B isoforms and suggested a novel mechanism for the function of the myristoylated, membrane-bound form of OCA-B/p35 as a signaling molecule. Here, we report the identification of galectin-1, and related galectins, as a novel OCA-B-interacting protein. The interaction of OCA-B and galectin-1 can be detected both in vivo and in vitro. The galectin-1 binding domain in OCA-B has been localized to the N terminus of OCA-B. In B cells lacking OCA-B expression, increased galectin-1 expression, secretion, and cell surface association are observed. Consistent with these observations, and a reported inhibitory interaction of galectin-1 with CD45, the phosphatase activity of CD45 is reduced modestly, but significantly, in OCA-B-deficient B cells. Finally, galectin-1 is shown to negatively regulate B cell proliferation and tyrosine phosphorylation upon BCR stimulation. Together, these results raise the possibility that OCA-B may regulate BCR signaling through an association with galectin-1.

  9. Targeting Sulfotransferase (SULT) 2B1b as a Regulator of Cholesterol Metabolism in Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0588 TITLE: Targeting Sulfotransferase (SULT) 2B1b as a regulator of Cholesterol Metabolism in Prostate Cancer...October 2015 30Sep2014 - 29Sep2015 W81XWH-14-1-0588Targeting Sulfotransferase (SULT) 2B1b as a regulator of Cholesterol Metabolism in Prostate...epidemiological and experimental evidence establishes alterations in cholesterol metabolism as a key driver of prostate cancer (PCa) aggressiveness

  10. Paradoxical Regulation of Hypoxia Inducible Factor-1α (HIF-1α) by Histone Deacetylase Inhibitor in Diffuse Large B-Cell Lymphoma

    PubMed Central

    Bhalla, Savita; Evens, Andrew M.; Prachand, Sheila; Schumacker, Paul T.; Gordon, Leo I.

    2013-01-01

    Hypoxia inducible factor (HIF) is important in cancer, as it regulates various oncogenic genes as well as genes involved in cell survival, proliferation, and migration. Elevated HIF-1 protein promotes a more aggressive tumor phenotype, and greater HIF-1 expression has been demonstrated to correlate with poorer prognosis, increased risk of metastasis and increased mortality. Recent reports suggest that HIF-1 activates autophagy, a lysosomal degradation pathway which may promote tumor cell survival. We show here that HIF-1α expression is constitutively active in multiple diffuse large B cell lymphoma (DLBCL) cell lines under normoxia and it is regulated by the PI3K/AKT pathway. PCI-24781, a pan histone deacetylase inhibitor (HDACI), enhanced accumulation of HIF-1α and induced autophagy initially, while extended incubation with the drug resulted in inhibition of HIF-1α. We tested the hypothesis that PCI-24781- induced autophagy is mediated by HIF-1α and that inhibition of HIF-1α in these cells results in attenuation of autophagy and decreased survival. We also provide evidence that autophagy serves as a survival pathway in DLBCL cells treated with PCI-24781 which suggests that the use of autophagy inhibitors such as chloroquine or 3-methyl adenine in combination with PCI-24781 may enhance apoptosis in lymphoma cells. PMID:24312289

  11. Regulation of HSD17B1 and SRD5A1 in lymphocytes.

    PubMed

    Zhou, Z; Speiser, P W

    1999-11-01

    We previously reported lymphocyte expression of genes encoding enzymes required for steroid metabolism; however, only 17beta-HSD and 5alpha-reductase showed significant enzyme activity. We now investigate regulation of lymphocyte expression for genes encoding 17beta-HSD and 5alpha-reductase. Cultured human T and B lymphoid cell lines and peripheral blood mononuclear cells were treated with known regulators of steroidogenic gene expression including forskolin, PMA, ionomycin, various steroids, interleukin (IL)-4, and IL-6. Treatment with 10 or 50 microM forskolin resulted in a 20-60% reduction of expression for HSD17B1 (encoding 17beta-HSD I) in T and B lymphoid cell lines and peripheral blood mononuclear cells, although such a change was not observed in the expression of SRD5A1 (encoding 5alpha-reductase I). No significant changes were found when cells were treated for 24 h with various concentrations of PMA or ionomycin. Incubation with 10(-9) to 10(-7) M androstenedione or estradiol increased expression of HSD17B1, while testosterone decreased the expression of this gene. SRD5A1 expression was increased in the presence of 5alpha-DHT although no consistent changes were observed when the cells were treated with testosterone. Other steroids, including dexamethasone, progesterone, and 6-hydroxypregnanolone, produced no effects on expression of either HSD17B1 or SRD5A1. Treatment with 0.1-10 ng/ml of IL-4 or IL-6 also did not effect significant changes in gene expression. These data implicate the involvement of the cAMP-protein kinase signal transduction pathway in regulating lymphocyte expression of HSD17B1. Furthermore, it appears that lymphocyte HSD17B1 and SRD5A1 are regulated to some extent by specific steroids. Copyright 1999 Academic Press.

  12. MiR-128b is down-regulated in gastric cancer and negatively regulates tumour cell viability by targeting PDK1/Akt/NF-κB axis.

    PubMed

    Zhang, Ling; Lei, Jun; Fang, Zi-Ling; Xiong, Jian-Ping

    2016-03-01

    Gastric cancer (GC) is the fourth most prevalent type of cancer worldwide, which is usually caused by the interaction between environmental and genetic factors, or epigenetic aspects. Referring to the non-coding RNAs, miR-128b has been reported to be associated with many tumour cases, and exerts distinct functions in different types of cancers. However, the function of miR-128b in GC onset and progression largely remains unknown. In the present study, we found that miR-128b expression was down-regulated in tissues from 18 GC patients and 3 carcinoma cell lines. In turn, over-expression of miR-128b suppressed GC cell proliferation, invasion and promoted apoptosis. Moreover, miR-128b was predicted to bind the 3'UTR of PDK1 gene using bioinformatic target-screening tools. Accordingly, ectopic expression of miR-128b inhibited the PDK1 expression at both transcriptional and post-transcriptional levels, and furthermore, the expression of gene tailed by the 3'UTR of PDK1 gene was significantly decreased in a dualluciferase reporter assay, suggesting that PDK1 was a direct target of miR-128b in GC cells. In the conditon of miR- 128b over-expression, we also observed spontaneous inactivation of the Akt/NF-κB signalling, implying PDK1 was a potential regulator of this pathway. In conclusion, our study shed some novel light on miR-128b-PDK1/Akt/NF-κB axis on GC progression.

  13. Expression Profile of Interferon Regulatory Factor 1 in Chronic Hepatitis B Virus-Infected Liver Transplant Patients.

    PubMed

    Janfeshan, Sahar; Yaghobi, Ramin; Eidi, Akram; Karimi, Mohammad Hossein; Geramizadeh, Bita; Malekhosseini, Seyed Ali; Kafilzadeh, Farshid

    2017-12-01

    Hepatitis B virus, which mainly affects normal liver function, leads to severe acute and chronic hepatitis, resulting in cirrhosis and hepatocellular carcinoma, but can be safely treated after liver transplant. Evaluation of determinative biomarkers may facilitate more effective treatment of posttransplant rejection. Therefore, we investigated interferon regulatory factor 1 expression in hepatitis B virus-infected liver transplant patients with and without previous rejection compared with controls. Hepatitis B virus-infected liver recipients were divided into those with (20 patients) and without a rejection (26 patients), confirmed by pathologic analyses in those who had a rejection. In addition, a healthy control group composed of 13 individuals was included. Expression levels of interferon regulatory factor 1 were evaluated during 3 follow-ups after transplant using an in-house comparative SYBR green real-time polymerase chain reaction method. Statistical analyses were performed with SPSS software (SPSS: An IBM Company, version 16.0, IBM Corporation, Armonk, NY, USA). Modifications of interferon regulatory factor 1 gene expression levels in patient groups with and without rejection were not significant between days 1, 4, and 7 after liver transplant. Interferon regulatory factor 1 mRNA expression levels were down-regulated in patients without rejection versus patients with rejection, although not significantly at day 1 (P = .234) and day 4 (P = .302) but significantly at day 7 (P = .004) after liver transplant. Down-regulation of interferon regulatory factor 1 gene expression in hepatitis B virus patients without rejection emphasized counteraction between hepatitis B virus replication and interferon regulatory factor 1 production. On the other hand, interferon regulatory factor 1 gene overexpression in patients with rejection may result in inflammatory reactions and ischemic-reperfusion injury. Therefore, a better understanding of the association between

  14. 42 CFR 52b.1 - To what programs do these regulations apply?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false To what programs do these regulations apply? 52b.1 Section 52b.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.1 To what programs do these regulations apply? (a) General...

  15. 42 CFR 52b.1 - To what programs do these regulations apply?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false To what programs do these regulations apply? 52b.1 Section 52b.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.1 To what programs do these regulations apply? (a) General...

  16. 42 CFR 52b.1 - To what programs do these regulations apply?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false To what programs do these regulations apply? 52b.1 Section 52b.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.1 To what programs do these regulations apply? (a) General...

  17. 42 CFR 52b.1 - To what programs do these regulations apply?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false To what programs do these regulations apply? 52b.1 Section 52b.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.1 To what programs do these regulations apply? (a) General...

  18. 42 CFR 52b.1 - To what programs do these regulations apply?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false To what programs do these regulations apply? 52b.1 Section 52b.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.1 To what programs do these regulations apply? (a) General...

  19. Regulation of natriuretic peptide receptor A and B expression by transforming growth factor-beta 1 in cultured aortic smooth muscle cells.

    PubMed

    Fujio, N; Gossard, F; Bayard, F; Tremblay, J

    1994-06-01

    Two types of natriuretic peptide receptors (NPR-A and NPR-B) are membrane guanylate cyclases whose relative expression varies in different tissues. Because natriuretic peptides have been shown to inhibit aortic smooth muscle proliferation, we investigated the regulation of NPR-A and NPR-B in these cells under different proliferative conditions. NPR subtype mRNA levels were measured by our newly developed quantitative reverse transcription-polymerase chain reaction assay using mutated NPR-A and NPR-B cRNA as internal standards. The functional impact of their expression was determined by atrial natriuretic peptide (ANP)- and C-type natriuretic peptide (CNP)-induced stimulation of cyclic GMP production. In the intact aorta, NPR-B mRNA levels were found to be 10-fold higher than those of NPR-A. This dominance was further amplified (1000-fold) in long-term cultures (10 to 15 passages) of aortic smooth muscle cells (ASMC). Higher cyclic GMP production with CNP than with ANP was observed in cultured ASMC from Wistar-Kyoto (WKY) rats. Similar stimulation by the two agonists was noted in spontaneously hypertensive rat (SHR) cells, paralleled by a 10-fold increase in NPR-A mRNA levels and ANP stimulation of cyclic GMP in hypertensive cells. The present study also evaluated NPR-A and NPR-B mRNA control by transforming growth factor-beta 1 (TGF-beta 1), an important regulator of cell proliferation that is overexpressed in SHR ASMC. TGF-beta 1 decreased both NPR-A and NPR-B mRNA levels with a predominant effect in SHR cells at high cell density.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Crosstalk between ERK2 and RXR regulates nuclear import of transcription factor NGFI-B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Chris M.; Paulsen, Ragnhild E.

    2005-10-21

    Transcription factor NGFI-B initiates apoptosis when allowed to translocate to mitochondria. Retinoid-X receptor (RXR), another member of the nuclear receptor family, regulates NGFI-B signaling through heterodimerization and nuclear export. Growth factor EGF activates ERK2, which phosphorylates NGFI-B and determines if NGFI-B is allowed to translocate to mitochondria. In the present study, EGF treatment resulted in an increased nuclear import of NGFI-B. Likewise, active ERK2 resulted in a preferential nuclear localization of NGFI-B. When coexpressed with RXR the nuclear import and nuclear localization induced by active ERK2 were strongly reduced. In the presence of its ligand 9-cis-retinoic acid, RXR no longermore » inhibited ERK2-induced nuclear import. Thus, RXR serves a permissive role for ERK2-mediated nuclear accumulation of NGFI-B. This finding represents a novel crosstalk between ERK2 and RXR signaling pathways, and explains how two independent inhibitors of apoptosis (EGF and 9-cis-retinoic acid) may cooperate to regulate nuclear targeting of apoptosis inducer NGFI-B.« less

  1. The Zinc-finger protein ASCIZ regulates B cell development via DYNLL1 and Bim

    PubMed Central

    Jurado, Sabine; Gleeson, Kimberly; O’Donnell, Kristy; Izon, David J.; Walkley, Carl R.; Strasser, Andreas; Tarlinton, David M.

    2012-01-01

    Developing B lymphocytes expressing defective or autoreactive pre-B or B cell receptors (BCRs) are eliminated by programmed cell death, but how the balance between death and survival signals is regulated to prevent immunodeficiency and autoimmunity remains incompletely understood. In this study, we show that absence of the essential ATM (ataxia telangiectasia mutated) substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN/ZNF822), a protein with dual functions in the DNA damage response and as a transcription factor, leads to progressive cell loss from the pre-B stage onwards and severely diminished splenic B cell numbers in mice. This lymphopenia cannot be suppressed by deletion of p53 or complementation with a prearranged BCR, indicating that it is not caused by impaired DNA damage responses or defective V(D)J recombination. Instead, ASCIZ-deficient B cell precursors contain highly reduced levels of DYNLL1 (dynein light chain 1; LC8), a recently identified transcriptional target of ASCIZ, and normal B cell development can be restored by ectopic Dynll1 expression. Remarkably, the B cell lymphopenia in the absence of ASCIZ can also be fully suppressed by deletion of the proapoptotic DYNLL1 target Bim. Our findings demonstrate a key role for ASCIZ in regulating the survival of developing B cells by activating DYNLL1 expression, which may then modulate Bim-dependent apoptosis. PMID:22891272

  2. Cyp1b1 Regulates Ocular Fissure Closure Through a Retinoic Acid–Independent Pathway

    PubMed Central

    Williams, Antionette L.; Eason, Jessica; Chawla, Bahaar; Bohnsack, Brenda L.

    2017-01-01

    Purpose Mutations in the CYP1B1 gene are the most commonly identified genetic causes of primary infantile-onset glaucoma. Despite this disease association, the role of CYP1B1 in eye development and its in vivo substrate remain unknown. In the present study, we used zebrafish to elucidate the mechanism by which cyp1b1 regulates eye development. Methods Zebrafish eye and neural crest development were analyzed using live imaging of transgenic zebrafish embryos, in situ hybridization, immunostaining, TUNEL assay, and methylacrylate sections. Cyp1b1 and retinoic acid (RA) levels were genetically (morpholino oligonucleotide antisense and mRNA) and pharmacologically manipulated to examine gene function. Results Using zebrafish, we observed that cyp1b1 was expressed in a specific spatiotemporal pattern in the ocular fissures of the developing zebrafish retina and regulated fissure patency. Decreased Cyp1b1 resulted in the premature breakdown of laminin in the ventral fissure and altered subsequent neural crest migration into the anterior segment. In contrast, cyp1b1 overexpression inhibited cell survival in the ventral ocular fissure and prevented fissure closure via an RA-independent pathway. Cyp1b1 overexpression also inhibited the ocular expression of vsx2, pax6a, and pax6b and increased the extraocular expression of shha. Importantly, embryos injected with human wild-type but not mutant CYP1B1 mRNA also showed colobomas, demonstrating the evolutionary and functional conservation of gene function between species. Conclusions Cyp1b1 regulation of ocular fissure closure indirectly affects neural crest migration and development through an RA-independent pathway. These studies provide insight into the role of Cyp1b1 in eye development and further elucidate the pathogenesis of primary infantile-onset glaucoma. PMID:28192799

  3. Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells

    PubMed Central

    Ishino, Yutaka; Zhu, Cheng; Harris, Deshea L.

    2008-01-01

    Purpose Human corneal endothelial cells (HCEC), particularly from older donors, only proliferate weakly in response to EGF. The protein tyrosine phosphatase, PTP1B, is known to negatively regulate EGF-induced signaling in several cell types by dephosphorylating the epidermal growth factor receptor (EGFR). The current studies were conducted to determine whether PTP1B plays a role in regulating cell cycle entry in HCEC in response to EGF stimulation. Methods Donor corneas were obtained from the National Disease Research Interchange and accepted for study based on established exclusion criteria. PTP1B was localized in the endothelium of ex vivo corneas and in cultured cells by immunocytochemistry. Western blot analysis verified PTP1B protein expression in HCEC and then compared the relative expression of EGFR and PTP1B in HCEC from young (<3 years old) and older donors (>60 years old). The effect of inhibiting the activity of PTP1B on S-phase entry was tested by comparing time-dependent BrdU incorporation in subconfluent HCEC incubated in the presence or absence of the PTP1B inhibitor, CinnGEL 2Me, before EGF stimulation. Results PTP1B was localized in a punctate pattern mainly within the cytoplasm of HCEC in ex vivo corneas and cultured cells. Western blots revealed the presence of three PTP1B-positive bands in HCEC and the control. Further western blot analysis showed no significant age-related difference in expression of EGFR (p=0.444>0.05); however, PTP1B expression was significantly higher in HCEC from older donors (p=0.024<0.05). Pre-incubation of HCEC with the PTP1B inhibitor significantly increased (p=0.019<0.05) the number of BrdU positive cells by 48 h after EGF stimulation. Conclusions Both immunolocalization and western blot studies confirmed that PTP1B is expressed in HCEC. Staining patterns strongly suggest that at least a subset of PTP1B is localized to the cytoplasm and most likely to the endoplasmic reticulum, the known site of EGFR/PTP1B interaction

  4. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells: IMPLICATIONS IN VEGF-DEPENDENT ANGIOGENESIS AND DIABETIC WOUND HEALING.

    PubMed

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-13

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. PTP1B Regulates Cortactin Tyrosine Phosphorylation by Targeting Tyr446*S⃞

    PubMed Central

    Stuible, Matthew; Dubé, Nadia; Tremblay, Michel L.

    2008-01-01

    The emergence of protein-tyrosine phosphatase 1B (PTP1B) as a potential drug target for treatment of diabetes, obesity, and cancer underlies the importance of understanding its full range of cellular functions. Here, we have identified cortactin, a central regulator of actin cytoskeletal dynamics, as a substrate of PTP1B. A trapping mutant of PTP1B binds cortactin at the phosphorylation site Tyr446, the regulation and function of which have not previously been characterized. We show that phosphorylation of cortactin Tyr446 is induced by hyperosmolarity and potentiates apoptotic signaling during prolonged hyperosmotic stress. This study advances the importance of Tyr446 in the regulation of cortactin and provides a potential mechanism to explain the effects of PTP1B on processes including cell adhesion, migration, and tumorigenesis. PMID:18387954

  6. Physiological factors that regulate skin pigmentation

    PubMed Central

    Yamaguchi, Yuji; Hearing, Vincent J.

    2009-01-01

    More than 150 genes have been identified that affect skin color either directly or indirectly, and we review current understanding of physiological factors that regulate skin pigmentation. We focus on melanosome biogenesis, transport and transfer, melanogenic regulators in melanocytes and factors derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells and nerves. Enzymatic components of melanosomes include tyrosinase, tyrosinase-related protein 1 and dopachrome tautomerase, which depend on the functions of OA1, P, MATP, ATP7A and BLOC-1 to synthesize eumelanins and pheomelanins. The main structural component of melanosomes is Pmel17/gp100/Silv, whose sorting involves adaptor protein 1A (AP1A), AP1B, AP2 and spectrin, as well as a chaperone-like component, MART-1. During their maturation, melanosomes move from the perinuclear area toward the plasma membrane. Microtubules, dynein, kinesin, actin filaments, Rab27a, melanophilin, myosin Va and Slp2-a are involved in melanosome transport. Foxn1 and p53 up-regulate skin pigmentation via bFGF and POMC derivatives including α-MSH and ACTH, respectively. Other critical factors that affect skin pigmentation include MC1R, CREB, ASP, MITF, PAX3, SOX9/10, LEF-1/TCF, PAR-2, DKK1, SCF, HGF, GM-CSF, endothelin-1, prostaglandins, leukotrienes, thromboxanes, neurotrophins and neuropeptides. UV radiation up-regulates most factors that increase melanogenesis. Further studies will elucidate the currently unknown functions of many other pigment genes/proteins. PMID:19449448

  7. TIM-1 signaling in B cells regulates antibody production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Juan; Usui, Yoshihiko; Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku-ku, Tokyo 160-0023

    Highlights: {yields} TIM-1 is highly expressed on anti-IgM + anti-CD40-stimulated B cells. {yields} Anti-TIM-1 mAb enhanced proliferation and Ig production on activated B cell in vitro. {yields} TIM-1 signaling regulates Ab production by response to TI-2 and TD antigens in vivo. -- Abstract: Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressedmore » on B cells and inducible on anti-CD3{sup +} anti-CD28-stimulated CD4{sup +} T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.« less

  8. Semen Brassicae ameliorates hepatic fibrosis by regulating transforming growth factor1/Smad, nuclear factor-κB, and AKT signaling pathways in rats.

    PubMed

    Cao, Si; Zheng, Baoping; Chen, Tao; Chang, Xinfeng; Yin, Bao; Huang, Zhihua; Shuai, Ping; Han, Limin

    2018-01-01

    There is no effective treatment for liver fibrosis, which is a common phase during the progression of many chronic liver diseases to cirrhosis. Previous studies found that Semen Brassicae therapy can effectively improve the clinical symptoms of patients with asthma, allergic rhinitis, and chronic lung diseases; however, its effects on liver fibrosis in rats and its possible mechanisms of action remain unclear. Rats were injected intraperitoneally with 4% thioacetamide aqueous solution (5 mL·kg -1 ) at a dose of 200 mg·kg -1 twice a week for 8 consecutive weeks to establish the liver fibrosis model and were then treated with different concentrations of Semen Brassicae extract. After Semen Brassicae treatment, the morphology of the liver tissue was analyzed using hematoxylin and eosin and Masson's trichrome staining, and liver index and liver fibrosis grade were calculated. Thereafter, the levels of collagen-I, collagen-III, α-SMA, transforming growth factor (TGF)-β1, p-Smad 2/3, Smad 2/3, Smad4, NF-κB-p65, p-NF-κB-p65, IL-1β, IL-6, AKT, and p-AKT were determined using Western blotting. Compared with the untreated model group, the Semen Brassicae-treated group showed significantly decreased liver function indices; expression levels of collagen-I, collagen-III, and α-SMA; and hepatic fibrosis. Further studies also showed that the expression of TGF-β1, Smad4, p-Smad 2/3/Smad 2/3, p-NF-κB-p65/NF-κB-p65, IL-1β, IL-6, and p-AKT/AKT significantly decreased after the treatment. These results indicate that Semen Brassicae exhibits an anti-hepatic fibrosis effect, and the underlying mechanism of action may be related to the regulation of TGF-β1/Smad, NF-κB, and AKT signaling pathways and the reduction of extracellular matrix deposition.

  9. The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways*

    PubMed Central

    Kovacevic, Zaklina; Menezes, Sharleen V.; Sahni, Sumit; Kalinowski, Danuta S.; Bae, Dong-Hun; Lane, Darius J. R.; Richardson, Des R.

    2016-01-01

    N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-β pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors. PMID:26534963

  10. Teleost growth factor independence (gfi) genes differentially regulate successive waves of hematopoiesis.

    PubMed

    Cooney, Jeffrey D; Hildick-Smith, Gordon J; Shafizadeh, Ebrahim; McBride, Paul F; Carroll, Kelli J; Anderson, Heidi; Shaw, George C; Tamplin, Owen J; Branco, Diana S; Dalton, Arthur J; Shah, Dhvanit I; Wong, Clara; Gallagher, Patrick G; Zon, Leonard I; North, Trista E; Paw, Barry H

    2013-01-15

    Growth Factor Independence (Gfi) transcription factors play essential roles in hematopoiesis, differentially activating and repressing transcriptional programs required for hematopoietic stem/progenitor cell (HSPC) development and lineage specification. In mammals, Gfi1a regulates hematopoietic stem cells (HSC), myeloid and lymphoid populations, while its paralog, Gfi1b, regulates HSC, megakaryocyte and erythroid development. In zebrafish, gfi1aa is essential for primitive hematopoiesis; however, little is known about the role of gfi1aa in definitive hematopoiesis or about additional gfi factors in zebrafish. Here, we report the isolation and characterization of an additional hematopoietic gfi factor, gfi1b. We show that gfi1aa and gfi1b are expressed in the primitive and definitive sites of hematopoiesis in zebrafish. Our functional analyses demonstrate that gfi1aa and gfi1b have distinct roles in regulating primitive and definitive hematopoietic progenitors, respectively. Loss of gfi1aa silences markers of early primitive progenitors, scl and gata1. Conversely, loss of gfi1b silences runx-1, c-myb, ikaros and cd41, indicating that gfi1b is required for definitive hematopoiesis. We determine the epistatic relationships between the gfi factors and key hematopoietic transcription factors, demonstrating that gfi1aa and gfi1b join lmo2, scl, runx-1 and c-myb as critical regulators of teleost HSPC. Our studies establish a comparative paradigm for the regulation of hematopoietic lineages by gfi transcription factors. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. DNA Binding and Phosphorylation Regulate the Core Structure of the NF-κB p50 Transcription Factor

    NASA Astrophysics Data System (ADS)

    Vonderach, Matthias; Byrne, Dominic P.; Barran, Perdita E.; Eyers, Patrick A.; Eyers, Claire E.

    2018-06-01

    The NF-κB transcription factors are known to be extensively phosphorylated, with dynamic site-specific modification regulating their ability to dimerize and interact with DNA. p50, the proteolytic product of p105 (NF-κB1), forms homodimers that bind DNA but lack intrinsic transactivation function, functioning as repressors of transcription from κB promoters. Here, we examine the roles of specific phosphorylation events catalysed by either protein kinase A (PKAc) or Chk1, in regulating the functions of p50 homodimers. LC-MS/MS analysis of proteolysed p50 following in vitro phosphorylation allows us to define Ser328 and Ser337 as PKAc- and Chk1-mediated modifications, and pinpoint an additional four Chk1 phosphosites: Ser65, Thr152, Ser242 and Ser248. Native mass spectrometry (MS) reveals Chk1- and PKAc-regulated disruption of p50 homodimer formation through Ser337. Additionally, we characterise the Chk1-mediated phosphosite, Ser242, as a regulator of DNA binding, with a S242D p50 phosphomimetic exhibiting a > 10-fold reduction in DNA binding affinity. Conformational dynamics of phosphomimetic p50 variants, including S242D, are further explored using ion-mobility MS (IM-MS). Finally, comparative theoretical modelling with experimentally observed p50 conformers, in the absence and presence of DNA, reveals that the p50 homodimer undergoes conformational contraction during electrospray ionisation that is stabilised by complex formation with κB DNA.

  12. DNA Binding and Phosphorylation Regulate the Core Structure of the NF-κB p50 Transcription Factor.

    PubMed

    Vonderach, Matthias; Byrne, Dominic P; Barran, Perdita E; Eyers, Patrick A; Eyers, Claire E

    2018-06-05

    The NF-κB transcription factors are known to be extensively phosphorylated, with dynamic site-specific modification regulating their ability to dimerize and interact with DNA. p50, the proteolytic product of p105 (NF-κB1), forms homodimers that bind DNA but lack intrinsic transactivation function, functioning as repressors of transcription from κB promoters. Here, we examine the roles of specific phosphorylation events catalysed by either protein kinase A (PKA c ) or Chk1, in regulating the functions of p50 homodimers. LC-MS/MS analysis of proteolysed p50 following in vitro phosphorylation allows us to define Ser328 and Ser337 as PKA c - and Chk1-mediated modifications, and pinpoint an additional four Chk1 phosphosites: Ser65, Thr152, Ser242 and Ser248. Native mass spectrometry (MS) reveals Chk1- and PKA c -regulated disruption of p50 homodimer formation through Ser337. Additionally, we characterise the Chk1-mediated phosphosite, Ser242, as a regulator of DNA binding, with a S242D p50 phosphomimetic exhibiting a > 10-fold reduction in DNA binding affinity. Conformational dynamics of phosphomimetic p50 variants, including S242D, are further explored using ion-mobility MS (IM-MS). Finally, comparative theoretical modelling with experimentally observed p50 conformers, in the absence and presence of DNA, reveals that the p50 homodimer undergoes conformational contraction during electrospray ionisation that is stabilised by complex formation with κB DNA. Graphical Abstract ᅟ.

  13. Jumonji/Arid1b (Jarid1b) protein modulates human esophageal cancer cell growth

    PubMed Central

    KANO, YOSHIHIRO; KONNO, MASAMITSU; OHTA, KATSUYA; HARAGUCHI, NAOTSUGU; NISHIKAWA, SHIMPEI; KAGAWA, YOSHINORI; HAMABE, ATSUSHI; HASEGAWA, SHINICHIRO; OGAWA, HISATAKA; FUKUSUMI, TAKAHITO; NOGUCHI, YUKO; OZAKI, MIYUKI; KUDO, TOSHIHIRO; SAKAI, DAISUKE; SATOH, TAROH; ISHII, MASARU; MIZOHATA, EIICHI; INOUE, TAKESHI; MORI, MASAKI; DOKI, YUICHIRO; ISHII, HIDESHI

    2013-01-01

    Although esophageal cancer is highly heterogeneous and the involvement of epigenetic regulation of cancer stem cells is highly suspected, the biological significance of epigenetically modified molecules that regulate different subpopulations remains to be firmly established. Using esophageal cancer cells, we investigated the functional roles of the H3K4 demethylase Jumonji/Arid1b (Jarid1b) (Kdm5b/Plu-1/Rbp2-h1), an epigenetic factor that is required for continuous cell growth in melanoma. JARID1B knockdown resulted in the suppression of esophageal cancer cell growth, sphere formation and invasion ability and was associated with loss of epithelial marker expression. However, these inhibitory effects observed on tumor formation were reverted subsequent to subcutaneous inoculation of these cells into immune-deficient mice. These results indicated that JARID1B plays a role in maintaining cancer stem cells in the esophagus and justifies the rationale for studying the effects of continuous inhibition of this epigenetic factor in esophageal cancer. PMID:24649241

  14. NF-κB Regulation of YY1 Inhibits Skeletal Myogenesis through Transcriptional Silencing of Myofibrillar Genes▿ †

    PubMed Central

    Wang, Huating; Hertlein, Erin; Bakkar, Nadine; Sun, Hao; Acharyya, Swarnali; Wang, Jingxin; Carathers, Micheal; Davuluri, Ramana; Guttridge, Denis C.

    2007-01-01

    NF-κB signaling is implicated as an important regulator of skeletal muscle homeostasis, but the mechanisms by which this transcription factor contributes to muscle maturation and turnover remain unclear. To gain insight into these mechanisms, gene expression profiling was examined in C2C12 myoblasts devoid of NF-κB activity. Interestingly, even in proliferating myoblasts, the absence of NF-κB caused the pronounced induction of several myofibrillar genes, suggesting that NF-κB functions as a negative regulator of late-stage muscle differentiation. Although several myofibrillar promoters contain predicted NF-κB binding sites, functional analysis using the troponin-I2 gene as a model revealed that NF-κB-mediated repression does not occur through direct DNA binding. In the search for an indirect mediator, the transcriptional repressor YinYang1 (YY1) was identified. While inducers of NF-κB stimulated YY1 expression in multiple cell types, genetic ablation of the RelA/p65 subunit of NF-κB in both cultured cells and adult skeletal muscle correlated with reduced YY1 transcripts and protein. NF-κB regulation of YY1 occurred at the transcriptional level, mediated by direct binding of the p50/p65 heterodimer complex to the YY1 promoter. Furthermore, YY1 was found associated with multiple myofibrillar promoters in C2C12 myoblasts containing NF-κB activity. Based on these results, we propose that NF-κB regulation of YY1 and transcriptional silencing of myofibrillar genes represent a new mechanism by which NF-κB functions in myoblasts to modulate skeletal muscle differentiation. PMID:17438126

  15. Nurses' participation in personal knowledge transfer: the role of leader-member exchange (LMX) and structural empowerment.

    PubMed

    Davies, Alicia; Wong, Carol A; Laschinger, Heather

    2011-07-01

    The purpose of this study was to test Kanter's theory by examining relationships among structural empowerment, leader-member exchange (LMX) quality and nurses' participation in personal knowledge transfer activities. Despite the current emphasis on evidence-based practice in health care, research suggests that implementation of research findings in everyday clinical practice is unsystematic at best with mixed outcomes. This study was a secondary analysis of data collected using a non-experimental, predictive mailed survey design. A random sample of 400 registered nurses who worked in urban tertiary care hospitals in Ontario yielded a final sample of 234 for a 58.5% response rate. Hierarchical multiple linear regression analysis revealed that the combination of LMX and structural empowerment accounted for 9.1% of the variance in personal knowledge transfer but only total empowerment was a significant independent predictor of knowledge transfer (β=0.291, t=4.012, P<0.001). Consistent with Kanter's Theory, higher levels of empowerment and leader-member exchange quality resulted in increased participation in personal knowledge transfer in practice. The results reinforce the pivotal role of nurse managers in supporting empowering work environments that are conducive to transfer of knowledge in practice to provide evidence-based care. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.

  16. Regulation of NucB2/Nesfatin-1 throughout rat pregnancy.

    PubMed

    Garcés, María F; Poveda, Natalia E; Sanchez, Elizabeth; Sánchez, Ángel Y; Bravo, Susana B; Vázquez, María J; Diéguez, Carlos; Nogueiras, Rubén; Caminos, Jorge E

    2014-06-22

    Nesfatin-1 is an anorexigenic neuropeptide derived by post-translational cleavage from the N-terminus region DNA binding/EF-hand/acidic amino acid rich region (NEFA)/nucleobindin2 (NucB2) protein through proteolytic prohormone convertases. This neuropeptide was originally localized in different appetite controlling areas such as the hypothalamic paraventricular nucleus, arcuate nucleus, supraoptic nucleus, lateral hypothalamic area, and nucleus tractus solitarius. The objective of this study was to determine the expression and the changes that occur to mRNA and protein of NucB2 and Nesfatin-1 serum levels during gestation. This study utilized molecular and immunological approaches to investigate the expression and regulation of NucB2/Nesfatin-1 protein throughout gestation in rat fed under ad libitum and food restricted conditions (30% nutrient restriction). NucB2 was immunolocalized in the amnion and decidua of the rat placenta. Nesfatin-1 serum levels were measured by radioimmunoassay on gestational days 12, 16, 19 and 21, showing a significant (p<0.01) decrease in serum levels after day 12 until the end of gestation in rats fed ad libitum. These results were correlated with the analysis of NucB2 mRNA, with a significant (p<0.01) reduction observed in both the mRNA and protein of NucB2 during the gestational days 12, 16 and 21. It was also observed that food restriction decreases Nesfatin-1 serum levels and NucB2 placental expression at day 16 of gestation when compared to pregnant rats fed ad libitum. This study illustrates for the first time through molecular and immunological approaches the NucB2 expression and regulation on rat placenta and that this peptide is regulated throughout pregnancy. Consistent with previous reports, our results provide additional evidence supporting the role of NucB2 protein as an anorexigenic peptide that may contribute to the regulation of feeding behavior and energy homeostasis. NucB2/Nesfatin-1 might play an important metabolic

  17. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor1 in gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Liping; Xu, Yinghui; Zou, Lijuan, E-mail: zoulijuantg@126.com

    2014-03-28

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9more » expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis.« less

  18. PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT.

    PubMed

    Liu, Xue; Chen, Qian; Hu, Xu-Gang; Zhang, Xian-Chao; Fu, Ti-Wei; Liu, Qing; Liang, Yan; Zhao, Xi-Long; Zhang, Xia; Ping, Yi-Fang; Bian, Xiu-Wu

    2016-10-01

    Metastasis is a complicated, multistep process and remains the major cause of cancer-related mortality. Exploring the molecular mechanisms underlying tumor metastasis is crucial for development of new strategies for cancer prevention and treatment. In this study, we found that protein tyrosine phosphatase 1B (PTP1B) promoted breast cancer metastasis by regulating phosphatase and tensin homolog (PTEN) but not epithelial-mesenchymal transition (EMT). By detecting PTP1B expression of the specimens from 128 breast cancer cases, we found that the level of PTP1B was higher in breast cancer tissues than the corresponding adjacent normal tissues. Notably, PTP1B was positively associated with lymph node metastasis (LNM) and estrogen receptor (ER) status. In vitro, disturbing PTP1B expression obviously attenuated cell migration and invasion. On the contrary, PTP1B overexpression significantly increased migration and invasion of breast cancer cells. Mechanistically, PTP1B knockdown upregulated PTEN, accompanied with an abatement of AKT phosphorylation and the expression of matrix metalloproteinase 2 (MMP2) and MMP7. Conversely, forced expression of PTP1B reduced PTEN and increased AKT phosphorylation as well as the expression of MMP2 and MMP7. Notably, neither EMT nor stemness of breast cancer cells was regulated by PTP1B. We also found that PTP1B acted as an independent prognostic factor and predicted poor prognosis in ER-positive breast cancer patients. Taken together, our findings provide advantageous evidence for the development of PTP1B as a potential therapeutic target for breast cancer, especially for ER-positive breast cancer patients.

  19. Regulation of the Drosophila Hypoxia-Inducible Factor α Sima by CRM1-Dependent Nuclear Export ▿

    PubMed Central

    Romero, Nuria M.; Irisarri, Maximiliano; Roth, Peggy; Cauerhff, Ana; Samakovlis, Christos; Wappner, Pablo

    2008-01-01

    Hypoxia-inducible factor α (HIF-α) proteins are regulated by oxygen levels through several different mechanisms that include protein stability, transcriptional coactivator recruitment, and subcellular localization. It was previously reported that these transcription factors are mainly nuclear in hypoxia and cytoplasmic in normoxia, but so far the molecular basis of this regulation is unclear. We show here that the Drosophila melanogaster HIF-α protein Sima shuttles continuously between the nucleus and the cytoplasm. We identified the relevant nuclear localization signal and two functional nuclear export signals (NESs). These NESs are in the Sima basic helix-loop-helix (bHLH) domain and promote CRM1-dependent nuclear export. Site-directed mutagenesis of either NES provoked Sima nuclear retention and increased transcriptional activity, suggesting that nuclear export contributes to Sima regulation. The identified NESs are conserved and probably functional in the bHLH domains of several bHLH-PAS proteins. We propose that rapid nuclear export of Sima regulates the duration of cellular responses to hypoxia. PMID:18332128

  20. Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation.

    PubMed

    Kelleher, Zachary T; Sha, Yonggang; Foster, Matthew W; Foster, W Michael; Forrester, Michael T; Marshall, Harvey E

    2014-01-31

    S-nitrosylation of nuclear factor κB (NF-κB) on the p65 subunit of the p50/p65 heterodimer inhibits NF-κB DNA binding activity. We have recently shown that p65 is constitutively S-nitrosylated in the lung and that LPS-induced injury elicits a decrease in SNO-p65 levels concomitant with NF-κB activation in the respiratory epithelium and initiation of the inflammatory response. Here, we demonstrate that TNFα-mediated activation of NF-κB in the respiratory epithelium similarly induces p65 denitrosylation. This process is mediated by the denitrosylase thioredoxin (Trx), which becomes activated upon cytokine-induced degradation of thioredoxin-interacting protein (Txnip). Similarly, inhibition of Trx activity in the lung attenuates LPS-induced SNO-p65 denitrosylation, NF-κB activation, and airway inflammation, supporting a pathophysiological role for this mechanism in lung injury. These data thus link stimulus-coupled activation of NF-κB to a specific, protein-targeted denitrosylation mechanism and further highlight the importance of S-nitrosylation in the regulation of the immune response.

  1. Endothelin-1 gene regulation

    PubMed Central

    Stow, Lisa R.; Jacobs, Mollie E.; Wingo, Charles S.; Cain, Brian D.

    2011-01-01

    Over two decades of research have demonstrated that the peptide hormone endothelin-1 (ET-1) plays multiple, complex roles in cardiovascular, neural, pulmonary, reproductive, and renal physiology. Differential and tissue-specific production of ET-1 must be tightly regulated in order to preserve these biologically diverse actions. The primary mechanism thought to control ET-1 bioavailability is the rate of transcription from the ET-1 gene (edn1). Studies conducted on a variety of cell types have identified key transcription factors that govern edn1 expression. With few exceptions, the cis-acting elements bound by these factors have been mapped in the edn1 regulatory region. Recent evidence has revealed new roles for some factors originally believed to regulate edn1 in a tissue or hormone-specific manner. In addition, other mechanisms involved in epigenetic regulation and mRNA stability have emerged as important processes for regulated edn1 expression. The goal of this review is to provide a comprehensive overview of the specific factors and signaling systems that govern edn1 activity at the molecular level.—Stow, L. R., Jacobs, M. E., Wingo, C. S., Cain, B. D. Endothelin-1 gene regulation. PMID:20837776

  2. Natural antioxidants exhibit chemopreventive characteristics through the regulation of CNC b-Zip transcription factors in estrogen-induced breast carcinogenesis.

    PubMed

    Chatterjee, Anwesha; Ronghe, Amruta; Singh, Bhupendra; Bhat, Nimee K; Chen, Jie; Bhat, Hari K

    2014-12-01

    The objective of the present study was to characterize the role of resveratrol (Res) and vitamin C (VC) in prevention of estrogen-induced breast cancer through regulation of cap "n"collar (CNC) b-zip transcription factors. Human breast epithelial cell line MCF-10A was treated with 17β-estradiol (E2) and VC or Res with or without E2. mRNA and protein expression levels of CNC b-zip transcription factors nuclear factor erythroid 2-related factor 1 (Nrf1), nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor erythroid 2 related factor 3 (Nrf3), and Nrf2-regulated antioxidant enzymes superoxide dismutase 3 (SOD3) and quinone oxidoreductase 1 (NQO1) were quantified. The treatment with E2 suppressed, whereas VC and Res prevented E2-mediated decrease in the expression levels of SOD3, NQO1, Nrf2 mRNA, and protein in MCF-10A cells. The treatment with E2, Res, or VC significantly increased mRNA and protein expression levels of Nrf1. 17β-Estradiol treatment significantly increased but VC or Res decreased Nrf3 mRNA and protein expression levels. Our studies demonstrate that estrogen-induced breast cancer might be prevented through upregulation of antioxidant enzymes via Nrf-dependent pathways. © 2014 Wiley Periodicals, Inc.

  3. Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus.

    PubMed

    Koeppen, Jordan; Nguyen, Amanda Q; Nikolakopoulou, Angeliki M; Garcia, Michael; Hanna, Sandy; Woodruff, Simone; Figueroa, Zoe; Obenaus, Andre; Ethell, Iryna M

    2018-06-20

    Astrocyte-derived factors can control synapse formation and functions, making astrocytes an attractive target for regulating neuronal circuits and associated behaviors. Abnormal astrocyte-neuronal interactions are also implicated in neurodevelopmental disorders and neurodegenerative diseases associated with impaired learning and memory. However, little is known about astrocyte-mediated mechanisms that regulate learning and memory. Here, we propose astrocytic ephrin-B1 as a regulator of synaptogenesis in adult hippocampus and mouse learning behaviors. We found that astrocyte-specific ablation of ephrin-B1 in male mice triggers an increase in the density of immature dendritic spines and excitatory synaptic sites in the adult CA1 hippocampus. However, the prevalence of immature dendritic spines is associated with decreased evoked postsynaptic firing responses in CA1 pyramidal neurons, suggesting impaired maturation of these newly formed and potentially silent synapses or increased excitatory drive on the inhibitory neurons resulting in the overall decreased postsynaptic firing. Nevertheless, astrocyte-specific ephrin-B1 knock-out male mice exhibit normal acquisition of fear memory but enhanced contextual fear memory recall. In contrast, overexpression of astrocytic ephrin-B1 in the adult CA1 hippocampus leads to the loss of dendritic spines, reduced excitatory input, and impaired contextual memory retention. Our results suggest that astrocytic ephrin-B1 may compete with neuronal ephrin-B1 and mediate excitatory synapse elimination through its interactions with neuronal EphB receptors. Indeed, a deletion of neuronal EphB receptors impairs the ability of astrocytes expressing functional ephrin-B1 to engulf synaptosomes in vitro Our findings demonstrate that astrocytic ephrin-B1 regulates long-term contextual memory by restricting new synapse formation in the adult hippocampus. SIGNIFICANCE STATEMENT These studies address a gap in our knowledge of astrocyte

  4. MicroRNA-22 and microRNA-140 suppress NF-{kappa}B activity by regulating the expression of NF-{kappa}B coactivators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, Akemi; Otsuka, Motoyuki, E-mail: otsukamo-tky@umin.ac.jp; Kojima, Kentaro

    2011-08-12

    Highlights: {yields} miRNAs were screened for their ability to regulate NF-{kappa}B activity. {yields} miRNA-22 and miRNA-140-3p suppress NF-{kappa}B activity by regulating coactivators. {yields} miRNA-22 targets nuclear receptor coactivator 1 (NCOA1). {yields} miRNA-140-3p targets nuclear receptor-interacting protein 1 (NRIP1). -- Abstract: Nuclear factor {kappa}B (NF-{kappa}B) is a transcription factor that regulates a set of genes that are critical to many biological phenomena, including liver tumorigenesis. To identify microRNAs (miRNAs) that regulate NF-{kappa}B activity in the liver, we screened 60 miRNAs expressed in hepatocytes for their ability to modulate NF-{kappa}B activity. We found that miRNA-22 and miRNA-140-3p significantly suppressed NF-{kappa}B activity bymore » regulating the expression of nuclear receptor coactivator 1 (NCOA1) and nuclear receptor-interacting protein 1 (NRIP1), both of which are NF-{kappa}B coactivators. Our results provide new information about the roles of miRNAs in the regulation of NF-{kappa}B activity.« less

  5. Physiological factors that regulate skin pigmentation.

    PubMed

    Yamaguchi, Yuji; Hearing, Vincent J

    2009-01-01

    More than 150 genes have been identified that affect skin color either directly or indirectly, and we review current understanding of physiological factors that regulate skin pigmentation. We focus on melanosome biogenesis, transport and transfer, melanogenic regulators in melanocytes, and factors derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells, and nerves. Enzymatic components of melanosomes include tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase, which depend on the functions of OA1, P, MATP, ATP7A, and BLOC-1 to synthesize eumelanins and pheomelanins. The main structural component of melanosomes is Pmel17/gp100/Silv, whose sorting involves adaptor protein 1A (AP1A), AP1B, AP2, and spectrin, as well as a chaperone-like component, MART-1. During their maturation, melanosomes move from the perinuclear area toward the plasma membrane. Microtubules, dynein, kinesin, actin filaments, Rab27a, melanophilin, myosin Va, and Slp2-a are involved in melanosome transport. Foxn1 and p53 up-regulate skin pigmentation via bFGF and POMC derivatives including alpha-MSH and ACTH, respectively. Other critical factors that affect skin pigmentation include MC1R, CREB, ASP, MITF, PAX3, SOX9/10, LEF-1/TCF, PAR-2, DKK1, SCF, HGF, GM-CSF, endothelin-1, prostaglandins, leukotrienes, thromboxanes, neurotrophins, and neuropeptides. UV radiation up-regulates most factors that increase melanogenesis. Further studies will elucidate the currently unknown functions of many other pigment genes/proteins. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.

  6. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma.

    PubMed

    Chen, Jiamin; Feilotter, Harriet E; Paré, Geneviève C; Zhang, Xiao; Pemberton, Joshua G W; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A

    2010-05-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.

  7. MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma

    PubMed Central

    Chen, Jiamin; Feilotter, Harriet E.; Paré, Geneviève C.; Zhang, Xiao; Pemberton, Joshua G.W.; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A.

    2010-01-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by ≥50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3′untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development. PMID:20304954

  8. Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization.

    PubMed

    Schaarschmidt, Sara; Gresshoff, Peter M; Hause, Bettina

    2013-06-18

    Similarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis. Affymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis. Our results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.

  9. HIF-1α regulates epithelial inflammation by cell autonomous NFκB activation and paracrine stromal remodeling

    PubMed Central

    Scortegagna, Marzia; Cataisson, Christophe; Martin, Rebecca J.; Hicklin, Daniel J.; Schreiber, Robert D.; Yuspa, Stuart H.

    2008-01-01

    Hypoxia inducible factor-1 (HIF-1) is a master regulatory transcription factor controlling multiple cell-autonomous and non–cell-autonomous processes, such as metabolism, angiogenesis, matrix invasion, and cancer metastasis. Here we used a new line of transgenic mice with constitutive gain of HIF-1 function in basal keratinocytes and demonstrated a signaling pathway from HIF-1 to nuclear factor κ B (NFκB) activation to enhanced epithelial chemokine and cytokine elaboration. This pathway was responsible for a phenotypically silent accumulation of stromal inflammatory cells and a marked inflammatory hypersensitivity to a single 12-O-tetradecanoylphorbol-13-acetate (TPA) challenge. HIF-1–induced NFκB activation was composed of 2 elements, IκB hyperphosphorylation and phosphorylation of Ser276 on p65, enhancing p65 nuclear localization and transcriptional activity, respectively. NFκB transcriptional targets macrophage inflammatory protein-2 (MIP-2/CXCL2/3), keratinocyte chemokine (KC/CXCL1), and tumor necrosis factor [alfa] (TNFα) were constitutively up-regulated and further increased after TPA challenge both in cultured keratinocytes and in transgenic mice. Whole animal KC, MIP-2, or TNFα immunodepletion each abrogated TPA-induced inflammation, whereas blockade of either VEGF or placenta growth factor (PlGF) signaling did not affect transgenic inflammatory hyper-responsiveness. Thus, epithelial HIF-1 gain of function remodels the local environment by cell-autonomous NFκB-mediated chemokine and cytokine secretion, which may be another mechanism by which HIF-1 facilitates either inflammatory diseases or malignant progression. PMID:18199827

  10. Protein Tyrosine Phosphatase 1B Regulates Pyruvate Kinase M2 Tyrosine Phosphorylation*

    PubMed Central

    Bettaieb, Ahmed; Bakke, Jesse; Nagata, Naoto; Matsuo, Kosuke; Xi, Yannan; Liu, Siming; AbouBechara, Daniel; Melhem, Ramzi; Stanhope, Kimber; Cummings, Bethany; Graham, James; Bremer, Andrew; Zhang, Sheng; Lyssiotis, Costas A.; Zhang, Zhong-Yin; Cantley, Lewis C.; Havel, Peter J.; Haj, Fawaz G.

    2013-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr105 phosphorylation in cultured adipocytes and in vivo. Substrate trapping and mutagenesis studies identify PKM2 Tyr-105 and Tyr-148 as key sites that mediate PTP1B-PKM2 interaction. In addition, in vitro analyses illustrate a direct effect of Tyr-105 phosphorylation on PKM2 activity in adipocytes. Importantly, PTP1B pharmacological inhibition increased PKM2 Tyr-105 phosphorylation and decreased PKM2 activity. Moreover, PKM2 Tyr-105 phosphorylation is regulated nutritionally, decreasing in adipose tissue depots after high-fat feeding. Further, decreased PKM2 Tyr-105 phosphorylation correlates with the development of glucose intolerance and insulin resistance in rodents, non-human primates, and humans. Together, these findings identify PKM2 as a novel substrate of PTP1B and provide new insights into the regulation of adipose PKM2 activity. PMID:23640882

  11. TCL1A, a Novel Transcription Factor and a Coregulator of Nuclear Factor κB p65: Single Nucleotide Polymorphism and Estrogen Dependence.

    PubMed

    Ho, Ming-Fen; Lummertz da Rocha, Edroaldo; Zhang, Cheng; Ingle, James N; Goss, Paul E; Shepherd, Lois E; Kubo, Michiaki; Wang, Liewei; Li, Hu; Weinshilboum, Richard M

    2018-06-01

    T-cell leukemia 1A ( TCL1A ) single-nucleotide polymorphisms (SNPs) have been associated with aromatase inhibitor-induced musculoskeletal adverse events. We previously demonstrated that TCL1A is inducible by estradiol (E 2 ) and plays a critical role in the regulation of cytokines, chemokines, and Toll-like receptors in a TCL1A SNP genotype and estrogen-dependent fashion. Furthermore, TCLIA SNP-dependent expression phenotypes can be "reversed" by exposure to selective estrogen receptor modulators such as 4-hydroxytamoxifen (4OH-TAM). The present study was designed to comprehensively characterize the role of TCL1A in transcriptional regulation across the genome by performing RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) assays with lymphoblastoid cell lines. RNA-seq identified 357 genes that were regulated in a TCL1A SNP- and E 2 -dependent fashion with expression patterns that were 4OH-TAM reversible. ChIP-seq for the same cells identified 57 TCL1A binding sites that could be regulated by E 2 in a SNP-dependent fashion. Even more striking, nuclear factor- κ B (NF- κ B) p65 bound to those same DNA regions. In summary, TCL1A is a novel transcription factor with expression that is regulated in a SNP- and E 2 -dependent fashion-a pattern of expression that can be reversed by 4OH-TAM. Integrated RNA-seq and ChIP-seq results suggest that TCL1A also acts as a transcriptional coregulator with NF- κ B p65, an important immune system transcription factor. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  12. HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling

    PubMed Central

    Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang

    2017-01-01

    Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target. PMID:28881635

  13. HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling.

    PubMed

    Huang, Qingsong; Niu, Zhiguo; Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang

    2017-08-01

    Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target.

  14. Cryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation

    PubMed Central

    Chaudhari, Amol; Gupta, Richa; Patel, Sonal; Velingkaar, Nikkhil; Kondratov, Roman

    2017-01-01

    Insulin-like growth factor (IGF) signaling plays an important role in cell growth and proliferation and is implicated in regulation of cancer, metabolism, and aging. Here we report that IGF-1 level in blood and IGF-1 signaling demonstrates circadian rhythms. Circadian control occurs through cryptochromes (CRYs)—transcriptional repressors and components of the circadian clock. IGF-1 rhythms are disrupted in Cry-deficient mice, and IGF-1 level is reduced by 80% in these mice, which leads to reduced IGF signaling. In agreement, Cry-deficient mice have reduced body (∼30% reduction) and organ size. Down-regulation of IGF-1 upon Cry deficiency correlates with reduced Igf-1 mRNA expression in the liver and skeletal muscles. Igf-1 transcription is regulated through growth hormone–induced, JAK2 kinase–mediated phosphorylation of transcriptional factor STAT5B. The phosphorylation of STAT5B on the JAK2-dependent Y699 site is significantly reduced in the liver and skeletal muscles of Cry-deficient mice. At the same time, phosphorylation of JAK2 kinase was not reduced upon Cry deficiency, which places CRY activity downstream from JAK2. Thus CRYs link the circadian clock and JAK-STAT signaling through control of STAT5B phosphorylation, which provides the mechanism for circadian rhythms in IGF signaling in vivo. PMID:28100634

  15. Effects of ZEB1 on regulating osteosarcoma cells via NF-κB/iNOS.

    PubMed

    Xu, X-M; Liu, W; Cao, Z-H; Liu, M-X

    2017-03-01

    Osteosarcoma is one common malignant bone tumors, as it frequently has invasion, metastasis and recurrence, causing unfavorable prognosis of patients. Osteosarcoma has complicated pathogenesis, which has not been elucidated fully. Therefore, the identification of effective molecular target of osteosarcoma onset can help to improve treatment efficacy and prognosis of osteosarcoma. Zinc finger E-box binding homeobox 1 (ZEB1) protein is one member of zinc finger E-box binding protein family, and participates in embryonic genesis and development. A recent study found the participation of ZEB1 in mediating multiple tumor onset and its up-regulation of osteosarcoma. The regulatory mechanism of ZEB1 in osteosarcoma has not been illustrated yet. In vitro cultured osteosarcoma MG-63 cells were transfected with ZEB1 siRNA. Real-time PCR and Western blot were tested for ZEB1 mRNA/protein expression. MTT was used to test MG-63 cell proliferation, whilst cell invasion was used to describe the effect of ZEB1 on MG-63 cells. Caspase-3 activity assay was employed to test MG-63 cell apoptosis. Western blot was employed to detect nuclear factor kappa B (NF-kB) and inducible nitric oxide synthase (iNOS) protein expression. After transfecting with ZEB1 siRNA, MG-63 cell proliferation or invasion was inhibited accompanied with lower ZEB1 mRNA/protein expression. Caspase3 activity was also increased after transfection (p < 0.05), along with down-regulation of NF-kB and iNOS proteins in MG-63 cells (p < 0.05). Inhibition of ZEB1 can facilitate osteosarcoma cell apoptosis and inhibit cell proliferation or invasion via down-regulating NF-kB/iNOS signal pathway.

  16. The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells

    PubMed Central

    Grötsch, Bettina; Brachs, Sebastian; Lang, Christiane; Luther, Julia; Derer, Anja; Schlötzer-Schrehardt, Ursula; Bozec, Aline; Fillatreau, Simon; Berberich, Ingolf; Hobeika, Elias; Reth, Michael; Wagner, Erwin F.; Schett, Georg

    2014-01-01

    The cornerstone of humoral immunity is the differentiation of B cells into antibody-secreting plasma cells. This process is tightly controlled by a regulatory gene network centered on the transcriptional repressor B lymphocyte–induced maturation protein 1 (Blimp1). Proliferation of activated B cells is required to foster Blimp1 expression but needs to be terminated to avoid overshooting immune reactions. Activator protein 1 (AP-1) transcription factors become quickly up-regulated upon B cell activation. We demonstrate that Fra1, a Fos member of AP-1, enhances activation-induced cell death upon induction in activated B cells. Moreover, mice with B cell–specific deletion of Fra1 show enhanced plasma cell differentiation and exacerbated antibody responses. In contrast, transgenic overexpression of Fra1 blocks plasma cell differentiation and immunoglobulin production, which cannot be rescued by Bcl2. On the molecular level, Fra1 represses Blimp1 expression and interferes with binding of the activating AP-1 member c-Fos to the Blimp1 promoter. Conversely, overexpression of c-Fos in Fra1 transgenic B cells releases Blimp1 repression. As Fra1 lacks transcriptional transactivation domains, we propose that Fra1 inhibits Blimp1 expression and negatively controls plasma cell differentiation through binding to the Blimp1 promoter. In summary, we demonstrate that Fra1 negatively controls plasma cell differentiation by repressing Blimp1 expression. PMID:25288397

  17. Regulation of Selenoproteins and Methionine Sulfoxide Reductases A and B1 by Age, Calorie Restriction, and Dietary Selenium in Mice

    PubMed Central

    Novoselov, Sergey V.; Kim, Hwa-Young; Hua, Deame; Lee, Byung Cheon; Astle, Clinton M.; Harrison, David E.; Friguet, Bertrand; Moustafa, Mohamed E.; Carlson, Bradley A.; Hatfield, Dolph L.

    2010-01-01

    Abstract Methionine residues are susceptible to oxidation, but this damage may be reversed by methionine sulfoxide reductases MsrA and MsrB. Mammals contain one MsrA and three MsrBs, including a selenoprotein MsrB1. Here, we show that MsrB1 is the major methionine sulfoxide reductase in liver of mice and it is among the proteins that are most easily regulated by dietary selenium. MsrB1, but not MsrA activities, were reduced with age, and the selenium regulation of MsrB1 was preserved in the aging liver, suggesting that MsrB1 could account for the impaired methionine sulfoxide reduction in aging animals. We also examined regulation of Msr and selenoprotein expression by a combination of dietary selenium and calorie restriction and found that, under calorie restriction conditions, selenium regulation was preserved. In addition, mice overexpressing a mutant form of selenocysteine tRNA reduced MsrB1 activity to the level observed in selenium deficiency, whereas MsrA activity was elevated in these animals. Finally, we show that selenium regulation in inbred mouse strains is preserved in an outbred aging model. Taken together, these findings better define dietary regulation of methionine sulfoxide reduction and selenoprotein expression in mice with regard to age, calorie restriction, dietary Se, and a combination of these factors. Antioxid. Redox Signal. 12, 829–838. PMID:19769460

  18. Heme oxygenase up-regulation under ultraviolet-B radiation is not epigenetically restricted and involves specific stress-related transcriptions factors.

    PubMed

    Santa-Cruz, Diego; Pacienza, Natalia; Zilli, Carla; Pagano, Eduardo; Balestrasse, Karina; Yannarelli, Gustavo

    2017-08-01

    Heme oxygenase-1 (HO-1) plays a protective role against oxidative stress in plants. The mechanisms regulating its expression, however, remain unclear. Here we studied the methylation state of a GC rich HO-1 promoter region and the expression of several stress-related transcription factors (TFs) in soybean plants subjected to ultraviolet-B (UV-B) radiation. Genomic DNA and total RNA were isolated from leaves of plants irradiated with 7.5 and 15kJm-2 UV-B. A 304bp HO-1 promoter region was amplified by PCR from sodium bisulfite-treated DNA, cloned into pGEMT plasmid vector and evaluated by DNA sequencing. Bisulfite sequencing analysis showed similar HO-1 promoter methylation levels in control and UV-B-treated plants (C: 3.4±1.3%; 7.5: 2.6±0.5%; 15: 3.1±1.1%). Interestingly, HO-1 promoter was strongly unmethylated in control plants. Quantitative RT-PCR analysis of TFs showed that GmMYB177, GmMYBJ6, GmWRKY21, GmNAC11, GmNAC20 and GmGT2A but not GmWRK13 and GmDREB were induced by UV-B radiation. The expression of several TFs was also enhanced by hemin, a potent and specific HO inducer, inferring that they may mediate HO-1 up-regulation. These results suggest that soybean HO-1 gene expression is not epigenetically regulated. Moreover, the low level of HO-1 promoter methylation suggests that this antioxidant enzyme can rapidly respond to environmental stress. Finally, this study has identified some stress-related TFs involved in HO-1 up-regulation under UV-B radiation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Dexamethasone inhibits IL-12p40 production in lipopolysaccharide-stimulated human monocytic cells by down-regulating the activity of c-Jun N-terminal kinase, the activation protein-1, and NF-kappa B transcription factors.

    PubMed

    Ma, Wei; Gee, Katrina; Lim, Wilfred; Chambers, Kelly; Angel, Jonathan B; Kozlowski, Maya; Kumar, Ashok

    2004-01-01

    IL-12 plays a critical role in the development of cell-mediated immune responses and in the pathogenesis of inflammatory and autoimmune disorders. Dexamethasone (DXM), an anti-inflammatory glucocorticoid, has been shown to inhibit IL-12p40 production in LPS-stimulated monocytic cells. In this study, we investigated the molecular mechanism by which DXM inhibits IL-12p40 production by studying the role of the mitogen-activated protein kinases (MAPKs), and the key transcription factors involved in human IL-12p40 production in LPS-stimulated monocytic cells. A role for c-Jun N-terminal kinase (JNK) MAPK in LPS-induced IL-12p40 regulation in a promonocytic THP-1/CD14 cell line was demonstrated by using specific inhibitors of JNK activation, SP600125 and a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase-1 mutant. To identify transcription factors regulating IL-12p40 gene transcription, extensive deletion analyses of the IL-12p40 promoter was performed. The results revealed the involvement of a sequence encompassing the AP-1-binding site, in addition to that of NF-kappaB. The role of AP-1 in IL-12p40 transcription was confirmed by using antisense c-fos and c-jun oligonucleotides. Studies conducted to understand the regulation of AP-1 and NF-kappaB activation by JNK MAPK revealed that both DXM and SP600125 inhibited IL-12p40 gene transcription by inhibiting the activation of AP-1 and NF-kappaB transcription factors as revealed by luciferase reporter and gel mobility shift assays. Taken together, our results suggest that DXM may inhibit IL-12p40 production in LPS-stimulated human monocytic cells by down-regulating the activation of JNK MAPK, the AP-1, and NF-kappaB transcription factors.

  20. Ubiquitin-conjugating enzyme complex Uev1A-Ubc13 promotes breast cancer metastasis through nuclear factor-кB mediated matrix metalloproteinase-1 gene regulation

    PubMed Central

    2014-01-01

    Introduction UEV1A encodes a ubiquitin-conjugating enzyme variant (Ubc13), which is required for Ubc13-catalyzed Lys63-linked polyubiquitination of target proteins and nuclear factor κB (NF-кB) activation. Previous reports have correlated the level of UEV1A expression with tumorigenesis; however, the detailed molecular events leading to tumors particularly breast cancer and metastasis are unclear. This study is to investigate roles of different UEV1 splicing variants, and its close homolog MMS2, in promoting tumorigenesis and metastasis in breast cancer cells. Methods We experimentally manipulated the UEV1 and MMS2 levels in MDA-MB-231 breast cancer cells and monitored their effects on cell invasion and migration, as well as tumor formation and metastasis in xenograft mice. The underlying molecular mechanisms leading to metastasis were also examined. Results It was found that overexpression of UEV1A alone, but not UEV1C or MMS2, is sufficient to induce cell invasion in vitro and metastasis in vivo. This process is mediated by NF-κB activation and requires functional Ubc13. Our experimental data establish that among NF-κB target genes, UEV1A-regulated matrix metalloproteinase-1 (MMP1) expression plays a critical role in cell invasion and metastasis. Interestingly, experimental depletion of UEV1 in MDA-MB-231 cells reduces MMP1 expression and prevents tumor formation and metastasis in a xenograft mouse model, while overexpression of MMP1 overrides the metastasis effects in UEV1-depleted cells. Conclusions These results identify UEV1A as a potential therapeutic target in the treatment of metastasic breast cancers. PMID:25022892

  1. Transcriptional Regulation of JARID1B/KDM5B Histone Demethylase by Ikaros, Histone Deacetylase 1 (HDAC1), and Casein Kinase 2 (CK2) in B-cell Acute Lymphoblastic Leukemia*

    PubMed Central

    Wang, Haijun; Song, Chunhua; Ding, Yali; Pan, Xiaokang; Ge, Zheng; Tan, Bi-Hua; Gowda, Chandrika; Sachdev, Mansi; Muthusami, Sunil; Ouyang, Hongsheng; Lai, Liangxue; Francis, Olivia L.; Morris, Christopher L.; Abdel-Azim, Hisham; Dorsam, Glenn; Xiang, Meixian; Payne, Kimberly J.; Dovat, Sinisa

    2016-01-01

    Impaired function of the Ikaros (IKZF1) protein is associated with the development of high-risk B-cell precursor acute lymphoblastic leukemia (B-ALL). The mechanisms of Ikaros tumor suppressor activity in leukemia are unknown. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. Here, we report that Ikaros represses transcription of the histone H3K4 demethylase, JARID1B (KDM5B). Transcriptional repression of JARID1B is associated with increased global levels of H3K4 trimethylation. Ikaros-mediated repression of JARID1B is dependent on the activity of the histone deacetylase, HDAC1, which binds to the upstream regulatory element of JARID1B in complex with Ikaros. In leukemia, JARID1B is overexpressed, and its inhibition results in cellular growth arrest. Ikaros-mediated repression of JARID1B in leukemia is impaired by pro-oncogenic casein kinase 2 (CK2). Inhibition of CK2 results in increased binding of the Ikaros-HDAC1 complex to the promoter of JARID1B, with increased formation of trimethylated histone H3 lysine 27 and decreased histone H3 Lys-9 acetylation. In cases of high-risk B-ALL that carry deletion of one Ikaros (IKZF1) allele, targeted inhibition of CK2 restores Ikaros binding to the JARID1B promoter and repression of JARID1B. In summary, the presented data suggest a mechanism through which Ikaros and HDAC1 regulate the epigenetic signature in leukemia: via regulation of JARID1B transcription. The presented data identify JARID1B as a novel therapeutic target in B-ALL and provide a rationale for the use of CK2 inhibitors in the treatment of high-risk B-ALL. PMID:26655717

  2. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions.

    PubMed

    Albihlal, Waleed S; Obomighie, Irabonosi; Blein, Thomas; Persad, Ramona; Chernukhin, Igor; Crespi, Martin; Bechtold, Ulrike; Mullineaux, Philip M

    2018-05-19

    In Arabidopsis thaliana, HEAT SHOCK TRANSCRIPTION FACTORA1b (HSFA1b) controls resistance to environmental stress and is a determinant of reproductive fitness by influencing seed yield. To understand how HSFA1b achieves this, we surveyed its genome-wide targets (ChIP-seq) and its impact on the transcriptome (RNA-seq) under non-stress (NS), heat stress (HS) in the wild type, and in HSFA1b-overexpressing plants under NS. A total of 952 differentially expressed HSFA1b-targeted genes were identified, of which at least 85 are development associated and were bound predominantly under NS. A further 1780 genes were differentially expressed but not bound by HSFA1b, of which 281 were classified as having development-associated functions. These genes are indirectly regulated through a hierarchical network of 27 transcription factors (TFs). Furthermore, we identified 480 natural antisense non-coding RNA (cisNAT) genes bound by HSFA1b, defining a further mode of indirect regulation. Finally, HSFA1b-targeted genomic features not only harboured heat shock elements, but also MADS box, LEAFY, and G-Box promoter motifs. This revealed that HSFA1b is one of eight TFs that target a common group of stress defence and developmental genes. We propose that HSFA1b transduces environmental cues to many stress tolerance and developmental genes to allow plants to adjust their growth and development continually in a varying environment.

  3. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 andmore » CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO

  4. Stimulation of EphB2/ephrin-B1 signalling by tumour necrosis factor alpha in human dental pulp stem cells.

    PubMed

    Zhu, Lifang; Dissanayaka, Waruna Lakmal; Green, David William; Zhang, Chengfei

    2015-04-01

    The aim of this study was to investigate whether in vitro stimulation of dental pulp stem cells (DPSCs) by tumour necrosis factor alpha (TNF-α) would induce secretion of EphB2/ephrin-B1 signalling. Dental pulp stem cells isolated from human dental pulp were treated with TNF-α (5-100 ng/ml) over 2-48 h. EphB2/ephrin-B1 mRNA and protein levels were measured by real-time polymerase chain reaction (RT-PCR) and western blot analysis respectively. Additionally, DPSCs were pre-incubated with TNF-α receptor neutralizing antibodies or infected with nuclear factor-kappa B (NF-ĸB) inhibitor, p38 MAPK inhibitor, Jun N-terminal kinase (JNK) inhibitor and MEK inhibitor before TNF-α treatment. Results were analysed by one-way ANOVA. Tumour necrosis factor alpha increased EphB2 mRNA expression in DPSCs at concentrations up to 20 ng/ml and ephrin-B1 at concentrations up to 40 ng/ml (P < 0.05). Its mRNA expression reached maximum at 24 h when treated with TNF-α at 20 ng/ml (P < 0.05). EphB2/ephrin-B1 protein expression levels were high at 16 and 24 h as shown by western blotting. Neutralizing antibodies for TNFR1/2 receptors down-regulated EphB2/ephrin-B1 mRNA expression (P < 0.05) and ephrin-B1 protein expression, but not EphB2 protein expression. JNK-inhibitor inhibited EphB2 mRNA expression only (P < 0.05). EphB2/ephrin-B1 were invoked in DPSCs with TNF-α treatment via the JNK-dependent pathway, but not NF-ĸB, p38 MAPK or MEK signalling. © 2015 John Wiley & Sons Ltd.

  5. ADP-Ribosylation Factor 6 and a Functional PIX/p95-APP1 Complex Are Required for Rac1B-mediated Neurite Outgrowth

    PubMed Central

    Albertinazzi, Chiara; Za, Lorena; Paris, Simona; de Curtis, Ivan

    2003-01-01

    The mechanisms coordinating adhesion, actin organization, and membrane traffic during growth cone migration are poorly understood. Neuritogenesis and branching from retinal neurons are regulated by the Rac1B/Rac3 GTPase. We have identified a functional connection between ADP-ribosylation factor (Arf) 6 and p95-APP1 during the regulation of Rac1B-mediated neuritogenesis. P95-APP1 is an ADP-ribosylation factor GTPase-activating protein (ArfGAP) of the GIT family expressed in the developing nervous system. We show that Arf6 has a predominant role in neurite extension compared with Arf1 and Arf5. Cotransfection experiments indicate a specific and cooperative potentiation of neurite extension by Arf6 and the carboxy-terminal portion of p95-APP1. Localization studies in neurons expressing different p95-derived constructs show a codistribution of p95-APP1 with Arf6, but not Arf1. Moreover, p95-APP1–derived proteins with a mutated or deleted ArfGAP domain prevent Rac1B-induced neuritogenesis, leading to PIX-mediated accumulation at large Rab11-positive endocytic vesicles. Our data support a role of p95-APP1 as a specific regulator of Arf6 in the control of membrane trafficking during neuritogenesis. PMID:12686588

  6. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors.

    PubMed

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A S; Schuringa, Jan Jacob; Bond, Heather M; Morrone, Giovanni

    2011-07-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an amino-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of the hematopoietic stem/progenitor cell compartment, however the underlying molecular mechanisms are still largely unknown. Here, we show that this protein plays an important role in the control of B-cell development by inhibiting the activity of early B-cell factor-1 (EBF1), a master factor in B-lineage specification. In particular, our data demonstrate that: (1) ZNF521 binds to EBF1 via its carboxyl-terminal portion and this interaction is required for EBF1 inhibition; (2) NuRD complex recruitment by ZNF521 is not essential for the inhibition of transactivation of EBF1-dependent promoters; (3) ZNF521 represses EBF1 target genes in a human B-lymphoid molecular context; and (4) RNAi-mediated silencing of ZNF521/Zfp521 in primary human and murine hematopoietic progenitors strongly enhances the generation of B-lymphocytes in vitro. Taken together, our data indicate that ZNF521 can antagonize B-cell development and lend support to the notion that it may contribute to conserve the multipotency of primitive lympho-myeloid progenitors by preventing or delaying their EBF1-driven commitment toward the B-cell lineage.

  7. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Peng; Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709; Xue, Peng

    2013-11-01

    Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2more » activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.« less

  8. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena

    PubMed Central

    Hughes, Shannon K.; Oudin, Madeleine J.; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A.; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S.; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A.; Gertler, Frank B.

    2015-01-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express MenaINV, which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5′ inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When MenaINV is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor–induced signaling. Disruption of this attenuation by MenaINV sensitizes tumor cells to low–growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. PMID:26337385

  9. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions.

    PubMed

    Alam, Khondoker; Crowe, Alexandra; Wang, Xueying; Zhang, Pengyue; Ding, Kai; Li, Lang; Yue, Wei

    2018-03-14

    Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs.

  10. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions

    PubMed Central

    Alam, Khondoker; Crowe, Alexandra; Wang, Xueying; Zhang, Pengyue; Ding, Kai; Li, Lang; Yue, Wei

    2018-01-01

    Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs. PMID:29538325

  11. RUNX1 positively regulates the ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells.

    PubMed

    Mitsuda, Yoshihide; Morita, Ken; Kashiwazaki, Gengo; Taniguchi, Junichi; Bando, Toshikazu; Obara, Moeka; Hirata, Masahiro; Kataoka, Tatsuki R; Muto, Manabu; Kaneda, Yasufumi; Nakahata, Tatsutoshi; Liu, Pu Paul; Adachi, Souichi; Sugiyama, Hiroshi; Kamikubo, Yasuhiko

    2018-04-23

    The dual function of runt-related transcriptional factor 1 (RUNX1) as an oncogene or oncosuppressor has been extensively studied in various malignancies, yet its role in gastric cancer remains elusive. Up-regulation of the ErbB2/HER2 signaling pathway is frequently-encountered in gastric cancer and contributes to the maintenance of these cancer cells. This signaling cascade is partly mediated by son of sevenless homolog (SOS) family, which function as adaptor proteins in the RTK cascades. Herein we report that RUNX1 regulates the ErbB2/HER2 signaling pathway in gastric cancer cells through transactivating SOS1 expression, rendering itself an ideal target in anti-tumor strategy toward this cancer. Mechanistically, RUNX1 interacts with the RUNX1 binding DNA sequence located in SOS1 promoter and positively regulates it. Knockdown of RUNX1 led to the decreased expression of SOS1 as well as dephosphorylation of ErbB2/HER2, subsequently suppressed the proliferation of gastric cancer cells. We also found that our novel RUNX inhibitor (Chb-M') consistently led to the deactivation of the ErbB2/HER2 signaling pathway and was effective against several gastric cancer cell lines. Taken together, our work identified a novel interaction of RUNX1 and the ErbB2/HER2 signaling pathway in gastric cancer, which can potentially be exploited in the management of this malignancy.

  12. Cdc2/cyclin B1 regulates centrosomal Nlp proteolysis and subcellular localization.

    PubMed

    Zhao, Xuelian; Jin, Shunqian; Song, Yongmei; Zhan, Qimin

    2010-11-01

    The formation of proper mitotic spindles is required for appropriate chromosome segregation during cell division. Aberrant spindle formation often causes aneuploidy and results in tumorigenesis. However, the underlying mechanism of regulating spindle formation and chromosome separation remains to be further defined. Centrosomal Nlp (ninein-like protein) is a recently characterized BRCA1-regulated centrosomal protein and plays an important role in centrosome maturation and spindle formation. In this study, we show that Nlp can be phosphorylated by cell cycle protein kinase Cdc2/cyclin B1. The phosphorylation sites of Nlp are mapped at Ser185 and Ser589. Interestingly, the Cdc2/cyclin B1 phosphorylation site Ser185 of Nlp is required for its recognition by PLK1, which enable Nlp depart from centrosomes to allow the establishment of a mitotic scaffold at the onset of mitosis . PLK1 fails to dissociate the Nlp mutant lacking Ser185 from centrosome, suggesting that Cdc2/cyclin B1 might serve as a primary kinase of PLK1 in regulating Nlp subcellular localization. However, the phosphorylation at the site Ser589 by Cdc2/cyclin B1 plays an important role in Nlp protein stability probably due to its effect on protein degradation. Furthermore, we show that deregulated expression or subcellular localization of Nlp lead to multinuclei in cells, indicating that scheduled levels of Nlp and proper subcellular localization of Nlp are critical for successful completion of normal cell mitosis, These findings demonstrate that Cdc2/cyclin B1 is a key regulator in maintaining appropriate degradation and subcellular localization of Nlp, providing novel insights into understanding on the role of Cdc2/cyclin B1 in mitotic progression.

  13. Regulation of Mitochondria Function by TRAF3 in B Lymphocytes and B Cell Malignancies

    DTIC Science & Technology

    2014-08-01

    PARP1, PHB2 4 Background B cell neoplasms account for over 90% of lymphoid tumors worldwide, and comprise >50% of blood cancers. Despite recent... cells examined include common lymphoid progenitor, pre-pro-B, pro-B, pre-B, newly-formed B, and transitional (T1, T2 and T3) B cells . The data in...factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007, 27:253-267. 13. Moore CR, Liu Y, Shao CS, Covey LR

  14. Glucose-regulated protein 78 is an intracellular antiviral factor against hepatitis B virus.

    PubMed

    Ma, Yan; Yu, Jun; Chan, Henry L Y; Chen, Yang-chao; Wang, Hua; Chen, Ying; Chan, Chu-yan; Go, Minnie Y Y; Tsai, Sau-na; Ngai, Sai-ming; To, Ka-fai; Tong, Joanna H M; He, Qing-Yu; Sung, Joseph J Y; Kung, Hsiang-fu; Cheng, Christopher H K; He, Ming-liang

    2009-11-01

    Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-beta1 (IFN-beta1). In this connection, the IFN-beta1-mediated 2',5'-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-beta1-2',5'-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic

  15. Glucose-regulated Protein 78 Is an Intracellular Antiviral Factor against Hepatitis B Virus*

    PubMed Central

    Ma, Yan; Yu, Jun; Chan, Henry L. Y.; Chen, Yang-chao; Wang, Hua; Chen, Ying; Chan, Chu-yan; Go, Minnie Y. Y.; Tsai, Sau-na; Ngai, Sai-ming; To, Ka-fai; Tong, Joanna H. M.; He, Qing-Yu; Sung, Joseph J. Y.; Kung, Hsiang-fu; Cheng, Christopher H. K.; He, Ming-liang

    2009-01-01

    Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-β1 (IFN-β1). In this connection, the IFN-β1-mediated 2′,5′-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-β1-2′,5′-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic

  16. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia.

    PubMed

    Banh, Robert S; Iorio, Caterina; Marcotte, Richard; Xu, Yang; Cojocari, Dan; Rahman, Anas Abdel; Pawling, Judy; Zhang, Wei; Sinha, Ankit; Rose, Christopher M; Isasa, Marta; Zhang, Shuang; Wu, Ronald; Virtanen, Carl; Hitomi, Toshiaki; Habu, Toshiyuki; Sidhu, Sachdev S; Koizumi, Akio; Wilkins, Sarah E; Kislinger, Thomas; Gygi, Steven P; Schofield, Christopher J; Dennis, James W; Wouters, Bradly G; Neel, Benjamin G

    2016-07-01

    Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor (HIF) controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-tyrosine phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, although the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2(+) xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2(+) BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The moyamoya disease gene product RNF213, an E3 ligase, is negatively regulated by PTP1B in HER2(+) BC cells. RNF213 knockdown reverses the effects of PTP1B deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2(+) BC cells, and partially restores tumorigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2(+) BC, and possibly other malignancies, in the hypoxic tumour microenvironment.

  17. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines.

    PubMed

    Kiseleva, Antonina A; Potokina, Elena K; Salina, Elena A

    2017-11-14

    Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, "Ppd-m" and "Ppd-w" with Ppd-B1a introgressed from Sonora, we investigated the putative factors that influence Ppd-B1a expression. By analyzing the Ppd-B1a three distinct copies, we identified an indel and the two SNPs, which distinguished the investigated allele from other alleles with a copy number variation. We studied the expression of the Ppd-A1, Ppd-B1a, and Ppd-D1 genes along with genes that are involved in light perception (PhyA, PhyB, PhyC) and the flowering initiation (Vrn-1, TaFT1) and discussed their interactions. Expression of Ppd-B1a in the "Ppd-m" line, which flowered four days earlier than "Ppd-w", was significantly higher. We found PhyC to be up-regulated in lines with Ppd-B1a alleles. Expression of PhyC was higher in "Ppd-m". Microsatellite genotyping demonstrated that in the line "Ppd-m", there is an introgression in the pericentromeric region of chromosome 5B from the early flowering parental Sonora, while the "Ppd-w" does not have this introgression. FHY3/FAR1 is known to be located in this region. Expression of the transcription factor FHY3/FAR1 was higher in the "Ppd-m" line than in "Ppd-w", suggesting that FHY3/FAR1 is important for the wheat flowering time and may cause earlier flowering of "Ppd-m" as compared to "Ppd-w". We propose that there is a positive bidirectional regulation of Ppd-B1a and PhyC with an FHY3/FAR1 contribution. The bidirectional regulation can be proposed for Ppd-A1a and Ppd-D1a. Using in silico analysis, we demonstrated that the specificity of the Ppd-B1 regulation compared to that of homoeologous genes involves not only a

  18. IGF-1 and PDGF-bb Suppress IL-1β-Induced Cartilage Degradation through Down-Regulation of NF-κB Signaling: Involvement of Src/PI-3K/AKT Pathway

    PubMed Central

    Mobasheri, Ali; Buhrmann, Constanze; Aldinger, Constance; Rad, Jafar Soleimani; Shakibaei, Mehdi

    2011-01-01

    Objective Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Methods Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Results Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. Conclusion The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects. PMID

  19. The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in Medicago truncatula.

    PubMed

    Mertens, Jan; Pollier, Jacob; Vanden Bossche, Robin; Lopez-Vidriero, Irene; Franco-Zorrilla, José Manuel; Goossens, Alain

    2016-01-01

    Plants respond to stresses by producing a broad spectrum of bioactive specialized metabolites. Hormonal elicitors, such as jasmonates, trigger a complex signaling circuit leading to the concerted activation of specific metabolic pathways. However, for many specialized metabolic pathways, the transcription factors involved remain unknown. Here, we report on two homologous jasmonate-inducible transcription factors of the basic helix-loop-helix family, TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR1 (TSAR1) and TSAR2, which direct triterpene saponin biosynthesis in Medicago truncatula. TSAR1 and TSAR2 are coregulated with and transactivate the genes encoding 3-HYDROXY-3-METHYLGLUTARYL-COENZYME A REDUCTASE1 (HMGR1) and MAKIBISHI1, the rate-limiting enzyme for triterpene biosynthesis and an E3 ubiquitin ligase that controls HMGR1 levels, respectively. Transactivation is mediated by direct binding of TSARs to the N-box in the promoter of HMGR1. In transient expression assays in tobacco (Nicotiana tabacum) protoplasts, TSAR1 and TSAR2 exhibit different patterns of transactivation of downstream triterpene saponin biosynthetic genes, hinting at distinct functionalities within the regulation of the pathway. Correspondingly, overexpression of TSAR1 or TSAR2 in M. truncatula hairy roots resulted in elevated transcript levels of known triterpene saponin biosynthetic genes and strongly increased the accumulation of triterpene saponins. TSAR2 overexpression specifically boosted hemolytic saponin biosynthesis, whereas TSAR1 overexpression primarily stimulated nonhemolytic soyasaponin biosynthesis. Both TSARs also activated all genes of the precursor mevalonate pathway but did not affect sterol biosynthetic genes, pointing to their specific role as regulators of specialized triterpene metabolism in M. truncatula. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Sustained Expression of Negative Regulators of Myelination Protects Schwann Cells from Dysmyelination in a Charcot-Marie-Tooth 1B Mouse Model.

    PubMed

    Florio, Francesca; Ferri, Cinzia; Scapin, Cristina; Feltri, M Laura; Wrabetz, Lawrence; D'Antonio, Maurizio

    2018-05-02

    Schwann cell differentiation and myelination in the PNS are the result of fine-tuning of positive and negative transcriptional regulators. As myelination starts, negative regulators are downregulated, whereas positive ones are upregulated. Fully differentiated Schwann cells maintain an extraordinary plasticity and can transdifferentiate into "repair" Schwann cells after nerve injury. Reactivation of negative regulators of myelination is essential to generate repair Schwann cells. Negative regulators have also been implicated in demyelinating neuropathies, although their role in disease remains elusive. Here, we used a mouse model of Charcot-Marie-Tooth neuropathy type 1B (CMT1B), the P0S63del mouse characterized by ER stress and the activation of the unfolded protein response, to show that adult Schwann cells are in a partial differentiation state because they overexpress transcription factors that are normally expressed only before myelination. We provide evidence that two of these factors, Sox2 and Id2, act as negative regulators of myelination in vivo However, their sustained expression in neuropathy is protective because ablation of Sox2 or/and Id2 from S63del mice of both sexes results in worsening of the dysmyelinating phenotype. This is accompanied by increased levels of mutant P0 expression and exacerbation of ER stress, suggesting that limited differentiation may represent a novel adaptive mechanism through which Schwann cells counter the toxic effect of a mutant terminal differentiation protein. SIGNIFICANCE STATEMENT In many neuropathies, Schwann cells express high levels of early differentiation genes, but the significance of these altered expression remained unclear. Because many of these factors may act as negative regulators of myelination, it was suggested that their misexpression could contribute to dysmyelination. Here, we show that the transcription factors Sox2 and Id2 act as negative regulators of myelination in vivo , but that their sustained

  1. Insight into podocyte differentiation from the study of human genetic disease: nail-patella syndrome and transcriptional regulation in podocytes.

    PubMed

    Morello, Roy; Lee, Brendan

    2002-05-01

    In recent years, our understanding of the molecular basis of kidney development has benefited from the study of rare genetic diseases affecting renal function. This has especially been the case with the differentiation of the highly specialized podocyte in the pathogenesis of human disorders and mouse phenotypes affecting the renal filtration barrier. This filtration barrier represents the end product of a complex series of signaling events that produce a tripartite structure consisting of interdigitating podocyte foot processes with intervening slit diaphragms, the glomerular basement membrane, and the fenestrated endothelial cell. Dysregulation of unique cytoskeletal and extracellular matrix proteins in genetic forms of nephrotic syndrome has shown how specific structural proteins contribute to podocyte function and differentiation. However, much less is known about the transcriptional determinants that both specify and maintain this differentiated cell. Our studies of a skeletal malformation syndrome, nail-patella syndrome, have shown how the LIM homeodomain transcription factor, Lmx1b, contributes to transcriptional regulation of glomerular basement membrane collagen expression by podocytes. Moreover, they raise intriguing questions about more global transcriptional regulation of podocyte morphogenesis.

  2. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1.

    PubMed

    Reuter, Simone; Schnekenburger, Michael; Cristofanon, Silvia; Buck, Isabelle; Teiten, Marie-Hélène; Daubeuf, Sandrine; Eifes, Serge; Dicato, Mario; Aggarwal, Bharat B; Visvikis, Athanase; Diederich, Marc

    2009-02-01

    Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions.

  3. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena.

    PubMed

    Hughes, Shannon K; Oudin, Madeleine J; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A; Gertler, Frank B

    2015-11-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express Mena(INV), which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5' inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When Mena(INV) is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor-induced signaling. Disruption of this attenuation by Mena(INV) sensitizes tumor cells to low-growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. © 2015 Hughes, Oudin, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. NF-{kappa}B regulates Lef1 gene expression in chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Kangsun; Choi, Yoo Duk; Nam, Jong Hee

    The relation of Wnt/{beta}-catenin signaling to osteoarthritis progression has been revealed with little information on the underlying molecular mechanism. In this study we found overexpression of Lef1 in cartilage tissue of osteoarthritic patients and elucidated molecular mechanism of NF-{kappa}B-mediated Lef1 gene regulation in chondrocytes. Treatment of IL-1{beta} augmented Lef1 upregulation and nuclear translocation of NF-{kappa}B in chondrocytes. Under IL-1{beta} signaling, treatment of NF-{kappa}B nuclear translocation inhibitor SN-50 reduced Lef1 expression. A conserved NF-{kappa}B-binding site between mouse and human was selected through bioinformatic analysis and mapped at the 14 kb upstream of Lef1 transcription initiation site. NF-{kappa}B binding to the sitemore » was confirmed by chromatin immunoprecipitation assay. Lef1 expression was synergistically upregulated by interactions of NF-{kappa}B with Lef1/{beta}-catenin in chondrocytes. Our results suggest a pivotal role of NF-{kappa}B in Lef1 expression in arthritic chondrocytes or cartilage degeneration.« less

  5. RhoB controls coordination of adult angiogenesis and lymphangiogenesis following injury by regulating VEZF1-mediated transcription

    NASA Astrophysics Data System (ADS)

    Gerald, Damien; Adini, Irit; Shechter, Sharon; Perruzzi, Carole; Varnau, Joseph; Hopkins, Benjamin; Kazerounian, Shiva; Kurschat, Peter; Blachon, Stephanie; Khedkar, Santosh; Bagchi, Mandrita; Sherris, David; Prendergast, George C.; Klagsbrun, Michael; Stuhlmann, Heidi; Rigby, Alan C.; Nagy, Janice A.; Benjamin, Laura E.

    2013-11-01

    Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1-DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury.

  6. SCF(KMD) controls cytokinin signaling by regulating the degradation of type-B response regulators.

    PubMed

    Kim, Hyo Jung; Chiang, Yi-Hsuan; Kieber, Joseph J; Schaller, G Eric

    2013-06-11

    Cytokinins are plant hormones that play critical roles in growth and development. In Arabidopsis, the transcriptional response to cytokinin is regulated by action of type-B Arabidopsis response regulators (ARRs). Although central elements in the cytokinin signal transduction pathway have been identified, mechanisms controlling output remain to be elucidated. Here we demonstrate that a family of F-box proteins, called the kiss me deadly (KMD) family, targets type-B ARR proteins for degradation. KMD proteins form an S-phase kinase-associated PROTEIN1 (SKP1)/Cullin/F-box protein (SCF) E3 ubiquitin ligase complex and directly interact with type-B ARR proteins. Loss-of-function KMD mutants stabilize type-B ARRs and exhibit an enhanced cytokinin response. In contrast, plants with elevated KMD expression destabilize type-B ARR proteins leading to cytokinin insensitivity. Our results support a model in which an SCF(KMD) complex negatively regulates cytokinin responses by controlling levels of a key family of transcription factors.

  7. Nuclear respiratory factor 2 regulates the expression of the same NMDA receptor subunit genes as NRF-1: both factors act by a concurrent and parallel mechanism to couple energy metabolism and synaptic transmission.

    PubMed

    Priya, Anusha; Johar, Kaid; Wong-Riley, Margaret T T

    2013-01-01

    Neuronal activity and energy metabolism are tightly coupled processes. Previously, we found that nuclear respiratory factor 1 (NRF-1) transcriptionally co-regulates energy metabolism and neuronal activity by regulating all 13 subunits of the critical energy generating enzyme, cytochrome c oxidase (COX), as well as N-methyl-d-aspartate (NMDA) receptor subunits 1 and 2B, GluN1 (Grin1) and GluN2B (Grin2b). We also found that another transcription factor, nuclear respiratory factor 2 (NRF-2 or GA-binding protein) regulates all subunits of COX as well. The goal of the present study was to test our hypothesis that NRF-2 also regulates specific subunits of NMDA receptors, and that it functions with NRF-1 via one of three mechanisms: complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation of mouse neuroblastoma cells and rat visual cortical tissue, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate Grin1 and Grin2b genes, but not any other NMDA subunit genes. Grin1 and Grin2b transcripts were up-regulated by depolarizing KCl, but silencing of NRF-2 prevented this up-regulation. On the other hand, over-expression of NRF-2 rescued the down-regulation of these subunits by the impulse blocker TTX. NRF-2 binding sites on Grin1 and Grin2b are conserved among species. Our data indicate that NRF-2 and NRF-1 operate in a concurrent and parallel manner in mediating the tight coupling between energy metabolism and neuronal activity at the molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. 28 CFR 0.128b - Regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Regulations. 0.128b Section 0.128b Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE 1-Foreign Claims Settlement Commission § 0.128b Regulations. All rules of practice and regulations applicable to the...

  9. 28 CFR 0.128b - Regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Regulations. 0.128b Section 0.128b Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE 1-Foreign Claims Settlement Commission § 0.128b Regulations. All rules of practice and regulations applicable to the...

  10. Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-kappaB pathway.

    PubMed

    Borthakur, Alip; Saksena, Seema; Gill, Ravinder K; Alrefai, Waddah A; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K

    2008-04-01

    Butyrate, a short chain fatty acid (SCFA) produced by bacterial fermentation of undigested carbohydrates in the colon, constitutes the major fuel for colonocytes. We have earlier shown the role of apically localized monocarboxylate transporter isoform 1 (MCT1) in transport of butyrate into human colonic Caco-2 cells. In an effort to study the regulation of MCT1 gene, we and others have cloned the promoter region of the MCT1 gene and identified cis elements for key transcription factors. A previous study has shown up-regulation of MCT1 expression, and activity by butyrate in AA/C1 human colonic epithelial cells, however, the detailed mechanisms of this up-regulation are not known. In this study, we demonstrate that butyrate, a substrate for MCT1, stimulates MCT1 promoter activity in Caco-2 cells. This effect was dose dependent and specific to butyrate as other predominant SCFAs, acetate, and propionate, were ineffective. Utilizing progressive deletion constructs of the MCT1 promoter, we showed that the putative butyrate responsive elements are in the -229/+91 region of the promoter. Butyrate stimulation of the MCT1 promoter was found to be independent of PKC, PKA, and tyrosine kinases. However, specific inhibitors of the NF-kappaB pathway, lactacystein (LC), and caffeic acid phenyl ester (CAPE) significantly reduced the MCT1 promoter stimulation by butyrate. Also, butyrate directly stimulated NF-kappaB-dependent luciferase reporter activity. Histone deacetylase (HDAC) inhibitor trichostatin A (TSA) also stimulated MCT1 promoter activity, however, unlike butyrate, this stimulation was unaltered by the NF-kappaB inhibitors. Further, the combined effect of butyrate, and TSA on MCT1 promoter activity was additive, indicating that their mechanisms of action were independent. Our results demonstrate the involvement of NF-kappaB pathway in the regulation of MCT1 promoter activity by butyrate. 2007 Wiley-Liss, Inc.

  11. Bromodomain and Extraterminal (BET) Protein Inhibition Suppresses Human T Cell Leukemia Virus 1 (HTLV-1) Tax Protein-mediated Tumorigenesis by Inhibiting Nuclear Factor κB (NF-κB) Signaling*

    PubMed Central

    Wu, Xuewei; Qi, Jun; Bradner, James E.; Xiao, Gutian; Chen, Lin-Feng

    2013-01-01

    The etiology of human T cell leukemia virus 1 (HTLV-1)-mediated adult T cell leukemia is associated with the ability of viral oncoprotein Tax to induce sustained NF-κB activation and the expression of many NF-κB target genes. Acetylation of the RelA subunit of NF-κB and the subsequent recruitment of bromodomain-containing factor Brd4 are important for the expression of NF-κB target genes in response to various stimuli. However, their contributions to Tax-mediated NF-κB target gene expression and tumorigenesis remain unclear. Here we report that Tax induced the acetylation of lysine 310 of RelA and the binding of Brd4 to acetylated RelA to facilitate Tax-mediated transcriptional activation of NF-κB. Depletion of Brd4 down-regulated Tax-mediated NF-κB target gene expression and cell proliferation. Inhibiting the interaction of Brd4 and acetylated RelA with the bromodomain extraterminal protein inhibitor JQ1 suppressed the proliferation of Tax-expressing rat fibroblasts and Tax-positive HTLV-1-infected cells and Tax-mediated cell transformation and tumorigenesis. Moreover, JQ1 attenuated the Tax-mediated transcriptional activation of NF-κB, triggering the polyubiquitination and proteasome-mediated degradation of constitutively active nuclear RelA. Our results identify Brd4 as a key regulator for Tax-mediated NF-κB gene expression and suggest that targeting epigenetic regulators such as Brd4 with the bromodomain extraterminal protein inhibitor might be a potential therapeutic strategy for cancers and other diseases associated with HTLV-1 infection. PMID:24189064

  12. An RNA Interference Screen Identifies the Deubiquitinase STAMBPL1 as a Critical Regulator of Human T-Cell Leukemia Virus Type 1 Tax Nuclear Export and NF-κB Activation

    PubMed Central

    Lavorgna, Alfonso

    2012-01-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein actively shuttles between the nucleus, where it interacts with transcriptional and splicing regulatory proteins, and the cytoplasm, where it activates NF-κB. Posttranslational modifications of Tax such as ubiquitination regulate its subcellular localization and hence its function; however, the regulation of Tax trafficking and NF-κB activation by host factors is poorly understood. By screening a deubiquitinating (DUB) enzyme small interfering RNA (siRNA) library, we identified the metalloprotease STAM-binding protein-like 1 (STAMBPL1) as a positive regulator of Tax-mediated NF-κB activation. Overexpression of wild-type STAMBPL1, but not a catalytically inactive mutant, enhanced Tax-mediated NF-κB activation, whereas silencing of STAMBPL1 with siRNA impaired Tax activation of both the canonical and noncanonical NF-κB signaling pathways. STAMBPL1 regulated Tax-induced NF-κB signaling indirectly by controlling Tax nuclear/cytoplasmic transport and was required for DNA damage-induced Tax nuclear export. Together, these results reveal that the deubiquitinase STAMBPL1 is a key regulator of Tax trafficking and function. PMID:22258247

  13. DHU1 negatively regulates UV-B signaling via its direct interaction with COP1 and RUP1.

    PubMed

    Kim, Sang-Hoon; Kim, Hani; Chung, Sunglan; Lee, Jae-Hoon

    2017-09-16

    Although DWD HYPERSENSITIVE TO UV-B 1 (DHU1) is reported to be a negative regulator in UV-B mediated cellular responses, its detailed role in UV-B signaling is still elusive. To further understand the action mechanism of DHU1 in UV-B response, physical and genetic interactions of DHU1 with various UV-B signaling components were investigated. Yeast two hybrid assay results suggested that DHU1 directly interacts with COP1 and RUP1, implying a functional connection with both COP1 and RUP1. In spite of the physical association between DHU1 and COP1, loss of DHU1 did not affect protein stability of COP1. Epistatic analysis showed that the functional loss of both DHU1 and UVR8 leads to alleviation of UV-B hypersensitivity displayed in dhu1-1. Moreover, phenotypic studies with dhu1-1 cop1-6 and dhu1-1 hy5-215 revealed that COP1 and HY5 are epistatic to DHU1, indicating that UV-B hypersensitivity of dhu1-1 requires both COP1 and HY5. In the case of dhu1-1 rup1-1, UV-B responsiveness was similar to that of both dhu1-1 and rup1-1, implying that DHU1 and RUP1 are required for each other's function. Collectively, these results show that the role of DHU1 as a negative regulator in UV-B response may be derived from its direct interaction with COP1 by sequestering COP1 from the active UVR8-COP1 complex, resulting in a decrease in the COP1 population that positively participates in UV-B signaling together with UVR8. Furthermore, this inhibitory role of DHU1 in UV-B signaling is likely to be functionally connected to RUP1. This study will serve as a platform to further understand more detailed action mechanism of DHU1 in UV-B response and DHU1-mediated core UV-B signaling in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes

    PubMed Central

    Ajit, Deepa; Simonyi, Agnes; Li, Runting; Chen, Zihong; Hannink, Mark; Fritsche, Kevin L.; Mossine, Valeri V.; Smith, Robert E.; Dobbs, Thomas K.; Luo, Rensheng; Folk, William R.; Gu, Zezong; Lubahn, Dennis B.; Weisman, Gary A.; Sun, Grace Y.

    2016-01-01

    The increase in oxidative stress and inflammatory responses associated with neurodegenerative diseases has drawn considerable attention towards understanding the transcriptional signaling pathways involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and Nrf2 (Nuclear Factor Erythroid 2-like 2). Our recent studies with immortalized murine microglial cells (BV-2) demonstrated effects of botanical polyphenols to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) and enhance Nrf2-mediated antioxidant responses (Sun et al., 2015). In this study, an immortalized rat astrocyte (DI TNC1) cell line expressing a luciferase reporter driven by the NF-κB or the Nrf2/Antioxidant Response Element (ARE) promoter was used to assess regulation of these two pathways by phytochemiscals such as quercetin, rutin, cyanidin, cyanidin-3-O-glucoside, as well as botanical extracts from Withania somnifera (Ashwagandha), Sutherlandia frutescens (Sutherlandia) and Euterpe oleracea (Açaí). Quercetin effectively inhibited LPS-induced NF-κB reporter activity and stimulated Nrf2/ARE reporter activity in DI TNC1 astrocytes. Cyanidin and the glycosides showed similar effects but only at much higher concentrations. All three botanical extracts effectively inhibited LPS-induced NF-κB reporter activity. These extracts were capable of enhancing ARE activity by themselves and further enhanced ARE activity in the presence of LPS. Quercetin and botanical extracts induced Nrf2 and HO-1 protein expression. Interestingly, Ashwagandha extract was more active in inducing Nrf2 and HO-1 expression in DI TNC1 astrocytes as compared to Sutherlandia and Açaí extracts. In summary, this study demonstrated NF-kB and Nrf2/ARE promotor activities in DI TNC1 astrocytes, and further showed differences in ability for specific botanical polyphenols and extracts to down-regulate LPS-induced NF-kB and up-regulate the NRF2/ARE activities in these cells. PMID:27166148

  15. Resveratrol attenuates myocardial ischemia/reperfusion injury through up-regulation of vascular endothelial growth factor B.

    PubMed

    Yang, Lei; Zhang, Yan; Zhu, Mengmeng; Zhang, Qiong; Wang, Xiaoling; Wang, Yanjiao; Zhang, Jincai; Li, Jing; Yang, Liang; Liu, Jie; Liu, Fei; Yang, Yinan; Kang, Licheng; Shen, Yanna; Qi, Zhi

    2016-12-01

    The objective was to examine the protective effect of resveratrol (RSV) on myocardial ischemia/reperfusion (IR) injury and whether the mechanism was related to vascular endothelial growth factor B (VEGF-B) signaling pathway. Rat hearts were isolated for Langendorff perfusion test and H9c2 cells were used for in vitro assessments. RSV treatment significantly improved left ventricular function, inhibited CK-MB release, and reduced infarct size in comparison with IR group ex vivo. RSV treatment markedly decreased cell death and apoptosis of H9c2 cells during IR. We found that RSV was responsible for the up-regulation of VEGF-B mRNA and protein level, which caused the activation of Akt and the inhibition of GSK3β. Additionally, RSV prevented the generation of reactive oxygen species (ROS) by up-regulating the expression of MnSOD either in vitro or ex vivo. We also found that the inhibition of VEGF-B abolished the cardioprotective effect of RSV, increased apoptosis, and led to the down-regulation of phosphorylated Akt, GSK3β, and MnSOD in H9c2 cells. These results demonstrated that RSV was able to attenuate myocardial IR injury via promotion of VEGF-B/antioxidant signaling pathway. Therefore, the up-regulation of VEGF-B can be a promising modality for clinical myocardial IR injury therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling.

    PubMed

    Wu, Chia-Lun; Buszard, Bree; Teng, Chun-Hung; Chen, Wei-Lin; Warr, Coral G; Tiganis, Tony; Meng, Tzu-Ching

    2011-10-01

    PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.

  17. Zac1 is a histone acetylation-regulated NF-κB suppressor that mediates histone deacetylase inhibitor-induced apoptosis.

    PubMed

    Shu, G; Tang, Y; Zhou, Y; Wang, C; Song, J-G

    2011-12-01

    Histone deacetylase (HDAC) inhibitors are a class of promising anticancer reagents. They are able to induce apoptosis in embryonic carcinoma (EC) cells. However, the underlying mechanism remains poorly understood. Here we show that increased expression of zinc-finger protein regulator of apoptosis and cell-cycle arrest (Zac1) is implicated in HDAC inhibitor-induced apoptosis in F9 and P19 EC cells. By chromatin immunoprecipitation analysis we identified that increased Zac1 expression is mediated by histone acetylation of the Zac1 promoter region. Knockdown of Zac1 inhibited HDAC inhibitor-induced cell apoptosis. Moreover, HDAC inhibitors repressed nuclear factor-κB (NF-κB) activity, and this effect is abrogated by Zac1 knockdown. Consistently, Zac1 overexpression suppressed cellular NF-κB activity. Further investigation showed that Zac1 inhibits NF-κB activity by interacting with the C-terminus of the p65 subunit, which suppresses the phosphorylation of p65 at Ser468 and Ser536 residues. These results indicate that Zac1 is a histone acetylation-regulated suppressor of NF-κB, which is induced and implicated in HDAC inhibitor-mediated EC cell apoptosis.

  18. PLOD2 regulated by transcription factor FOXA1 promotes metastasis in NSCLC

    PubMed Central

    Du, Hongzhi; Chen, Yulong; Hou, Xiaoying; Huang, Yue; Wei, Xiaohui; Yu, Xiaowen; Feng, Shuyun; Wu, Yao; Zhan, Meixiao; Shi, Xin; Lin, Sensen; Lu, Ligong; Yuan, Shengtao; Sun, Li

    2017-01-01

    In multiple types of tumors, fibrotic collagen is regarded as the 'highway' for cancer cell migration, which is mainly modified by lysyl hydroxylase 2 (PLOD2). The previous findings have demonstrated that the expression of PLOD2 was regulated by multiple factors, including HIF-1α, TGF-β and microRNA-26a/b. Although PLOD2 was confirmed to be related to poor prognosis in lung adenocarcinoma, the regulatory mechanism and function of PLOD2 in human lung adenocarcinoma is poorly understood. On the other hand, upregulation or hyperactivation of epidermal growth factor receptor is considered as a prognostic marker in many cancers, especially in non-small-cell lung cancer (NSCLC). In this study, we found that PLOD2 was elevated in NSCLC specimens and positively links to NSCLC poor prognosis. Gain- and loss-of-function studies and orthotopic implantation metastasis model pinpointed that PLOD2 promotes NSCLC metastasis directly by enhancing migration and indirectly by inducing collagen reorganization. In addition, we revealed that PLOD2 was regulated by PI3K/AKT-FOXA1 axis. The transcription factor FOXA1 directly bound to the PLOD2 promoter, and turned on PLOD2 transcription. In summary, our findings revealed a regulatory mechanism of NSCLC metastasis through EGFR-PI3K/AKT-FOXA1-PLOD2 pathway, and provided PLOD2 as a therapeutic target for NSCLC treatment. PMID:29072684

  19. The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis

    PubMed Central

    Revilla-i-Domingo, Roger; Bilic, Ivan; Vilagos, Bojan; Tagoh, Hiromi; Ebert, Anja; Tamir, Ido M; Smeenk, Leonie; Trupke, Johanna; Sommer, Andreas; Jaritz, Markus; Busslinger, Meinrad

    2012-01-01

    Pax5 controls the identity and development of B cells by repressing lineage-inappropriate genes and activating B-cell-specific genes. Here, we used genome-wide approaches to identify Pax5 target genes in pro-B and mature B cells. In these cell types, Pax5 bound to 40% of the cis-regulatory elements defined by mapping DNase I hypersensitive (DHS) sites, transcription start sites and histone modifications. Although Pax5 bound to 8000 target genes, it regulated only 4% of them in pro-B and mature B cells by inducing enhancers at activated genes and eliminating DHS sites at repressed genes. Pax5-regulated genes in pro-B cells account for 23% of all expression changes occurring between common lymphoid progenitors and committed pro-B cells, which identifies Pax5 as an important regulator of this developmental transition. Regulated Pax5 target genes minimally overlap in pro-B and mature B cells, which reflects massive expression changes between these cell types. Hence, Pax5 controls B-cell identity and function by regulating distinct target genes in early and late B lymphopoiesis. PMID:22669466

  20. Taci Is a Traf-Interacting Receptor for Tall-1, a Tumor Necrosis Factor Family Member Involved in B Cell Regulation

    PubMed Central

    Xia, Xing-Zhong; Treanor, James; Senaldi, Giorgio; Khare, Sanjay D.; Boone, Tom; Kelley, Michael; Theill, Lars E.; Colombero, Anne; Solovyev, Irina; Lee, Frances; McCabe, Susan; Elliott, Robin; Miner, Kent; Hawkins, Nessa; Guo, Jane; Stolina, Marina; Yu, Gang; Wang, Judy; Delaney, John; Meng, Shi-Yuan; Boyle, William J.; Hsu, Hailing

    2000-01-01

    We and others recently reported tumor necrosis factor (TNF) and apoptosis ligand–related leukocyte-expressed ligand 1 (TALL-1) as a novel member of the TNF ligand family that is functionally involved in B cell proliferation. Transgenic mice overexpressing TALL-1 have severe B cell hyperplasia and lupus-like autoimmune disease. Here, we describe expression cloning of a cell surface receptor for TALL-1 from a human Burkitt's lymphoma RAJI cell library. The cloned receptor is identical to the previously reported TNF receptor (TNFR) homologue transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI). Murine TACI was subsequently isolated from the mouse B lymphoma A20 cells. Human and murine TACI share 54% identity overall. Human TACI exhibits high binding affinities to both human and murine TALL-1. Soluble TACI extracellular domain protein specifically blocks TALL-1–mediated B cell proliferation without affecting CD40- or lipopolysaccharide-mediated B cell proliferation in vitro. In addition, when injected into mice, soluble TACI inhibits antibody production to both T cell–dependent and –independent antigens. By yeast two-hybrid screening of a B cell library with TACI intracellular domain, we identified that, like many other TNFR family members, TACI intracellular domain interacts with TNFR-associated factor (TRAF)2, 5, and 6. Correspondingly, TACI activation in a B cell line results in nuclear factor κB and c-Jun NH2-terminal kinase activation. The identification and characterization of the receptor for TALL-1 provides useful information for the development of a treatment for B cell–mediated autoimmune diseases such as systemic lupus erythematosus. PMID:10880535

  1. Zinc finger transcription factor CASZ1 interacts with histones, DNA repair proteins and recruits NuRD complex to regulate gene transcription.

    PubMed

    Liu, Zhihui; Lam, Norris; Thiele, Carol J

    2015-09-29

    The zinc finger transcription factor CASZ1 has been found to control neural fate-determination in flies, regulate murine and frog cardiac development, control murine retinal cell progenitor expansion and function as a tumor suppressor gene in humans. However, the molecular mechanism by which CASZ1 regulates gene transcription to exert these diverse biological functions has not been described. Here we identify co-factors that are recruited by CASZ1b to regulate gene transcription using co-immunoprecipitation (co-IP) and mass spectrometry assays. We find that CASZ1b binds to the nucleosome remodeling and histone deacetylase (NuRD) complex, histones and DNA repair proteins. Mutagenesis of the CASZ1b protein assay demonstrates that the N-terminus of CASZ1b is required for NuRD binding, and a poly(ADP-ribose) binding motif in the CASZ1b protein is required for histone H3 and DNA repair proteins binding. The N-terminus of CASZ1b fused to an artificial DNA-binding domain (GAL4DBD) causes a significant repression of transcription (5xUAS-luciferase assay), which could be blocked by treatment with an HDAC inhibitor. Realtime PCR results show that the transcriptional activity of CASZ1b mutants that abrogate NuRD or histone H3/DNA binding is significantly decreased. This indicates a model in which CASZ1b binds to chromatin and recruits NuRD complexes to orchestrate epigenetic-mediated transcriptional programs.

  2. The importance of social exchange to nurses and nurse assistants: impact on retention factors.

    PubMed

    Trybou, Jeroen; De Pourcq, Kaat; Paeshuyse, Michel; Gemmel, Paul

    2014-07-01

    The purpose of this study was to test the norm of reciprocity by examining relationships between perceived organisational support (POS), the quality of leader-member exchange (LMX) and psychological contract breach (PCB) and important nurse retention factors identified in the literature. A major cause of turnover among nurses is related to unsatisfying workplaces. Previous research, mainly outside the nursing setting, found that social exchange affects employees' work-related attitudes. A cross-sectional survey was conducted on 217 nurses and nursing assistants to test and refine a model linking POS, LMX, PCB with job satisfaction, trust and turnover intentions. Hierarchical multiple linear regression revealed that POS, PCB and LMX explained significant variance in all three retention factors: job satisfaction (adjusted R² = 0.502), trust (adjusted R² = 0.462) and turnover intentions (adjusted R² = 0.196). POS and PCB predicted most strongly job satisfaction (P < 0.001) and trust (P < 0.001 and P < 0.01, respectively). LMX predicted most strongly intention to leave (P < 0.01). In our study, POS, the quality of LMX and PCB were strongly related to job satisfaction, trust and turnover intentions. Nursing managers and leaders should recognize the importance of social exchange within their organisation to build trust, satisfy and retain scarce nurses and nursing assistants. © 2013 John Wiley & Sons Ltd.

  3. Zyxin regulates migration of renal epithelial cells through activation of hepatocyte nuclear factor-1β.

    PubMed

    Choi, Yun-Hee; McNally, Brian T; Igarashi, Peter

    2013-07-01

    Hepatocyte nuclear factor-1β (HNF-1β) is an epithelial tissue-specific transcription factor that regulates gene expression in the kidney, liver, pancreas, intestine, and other organs. Mutations of HNF-1β in humans produce renal cysts and congenital kidney anomalies. Here, we identify the LIM-domain protein zyxin as a novel binding partner of HNF-1β in renal epithelial cells. Zyxin shuttles to the nucleus where it colocalizes with HNF-1β. Immunoprecipitation of zyxin in leptomycin B-treated cells results in coprecipitation of HNF-1β. The protein interaction requires the second LIM domain of zyxin and two distinct domains of HNF-1β. Overexpression of zyxin stimulates the transcriptional activity of HNF-1β, whereas small interfering RNA silencing of zyxin inhibits HNF-1β-dependent transcription. Epidermal growth factor (EGF) induces translocation of zyxin into the nucleus and stimulates HNF-1β-dependent promoter activity. The EGF-mediated nuclear translocation of zyxin requires activation of Akt. Expression of dominant-negative mutant HNF-1β, knockdown of zyxin, or inhibition of Akt inhibits EGF-stimulated cell migration. These findings reveal a novel pathway by which extracellular signals are transmitted to the nucleus to regulate the activity of a transcription factor that is essential for renal epithelial differentiation.

  4. When my supervisor dislikes you more than me: the effect of dissimilarity in leader-member exchange on coworkers' interpersonal emotion and perceived help.

    PubMed

    Tse, Herman H M; Lam, Catherine K; Lawrence, Sandra A; Huang, Xu

    2013-11-01

    According to balance theory (Heider, 1958), when 2 coworkers develop different levels of leader-member exchange (LMX) relationships with their supervisor, a triadic relational imbalance will arise among the 3 parties that may result in hostile sentiments and poor social interactions between them. This study examines the consequences and psychological processes of (dis)similar levels of LMX on the interpersonal interactions between coworkers. Using data from 2 independent studies, the results of social relations analyses show that (a) actual (dis)similarity in LMX between Coworkers A and B increases Coworker A's feelings of contempt for Coworker B and decreases Coworker A's perception of help received from Coworker B (Study 1); (b) Coworker A is more likely to experience contempt for Coworker B when Coworker A perceives that he/she has a higher or lower level of LMX compared to Coworker B than when Coworker A perceives that his/her level of LMX is similar to Coworker B's (Study 2); and (c) these relationships only hold true for employees with a high social comparison orientation (SCO) in both Studies 1 and 2. Particularly, in Study 1, we also show that contempt is a crucial mediator that transmits the interactive effect of LMX (dis)similarity and SCO on perceptions of help received from coworkers. Furthermore, an average level of perceived help from coworkers is positively related to the sales performance of individual employees. (c) 2013 APA, all rights reserved.

  5. NLR Nod1 signaling promotes survival of BCR-engaged mature B cells through up-regulated Nod1 as a positive outcome

    PubMed Central

    Asano, Masanao; Li, Yue-Sheng; Núñez, Gabriel

    2017-01-01

    Although B cell development requires expression of the B cell antigen receptor (BCR), it remains unclear whether engagement of self-antigen provides a positive impact for most B cells. Here, we show that BCR engagement by self-ligand during development in vivo results in up-regulation of the Nod-like receptor member Nod1, which recognizes the products of intestinal commensal bacteria. In anti-thymocyte/Thy-1 autoreactive BCR knock-in mice lacking self–Thy-1 ligand, immunoglobulin light chain editing occurred, generating B cells with up-regulated Nod1, including follicular and marginal zone B cells with natural autoreactivity. This BCR editing with increased Nod1 resulted in preferential survival. In normal adult mice, most mature B cells are enriched for Nod1 up-regulated cells, and signaling through Nod1 promotes competitive survival of mature B cells. These findings demonstrate a role for microbial products in promoting survival of mature B cells through up-regulated Nod1, providing a positive effect of BCR engagement on development of most B cells. PMID:28878001

  6. Transcription factors define the neuroanatomical organization of the medullary reticular formation

    PubMed Central

    Gray, Paul A.

    2013-01-01

    The medullary reticular formation contains large populations of inadequately described, excitatory interneurons that have been implicated in multiple homeostatic behaviors including breathing, viserosensory processing, vascular tone, and pain. Many hindbrain nuclei show a highly stereotyped pattern of localization across vertebrates suggesting a strong underlying genetic organization. Whether this is true for neurons within the reticular regions of hindbrain is unknown. Hindbrain neurons are derived from distinct developmental progenitor domains each of which expresses distinct patterns of transcription factors (TFs). These neuronal populations have distinct characteristics such as transmitter identity, migration, and connectivity suggesting developmentally expressed TFs might identify unique subpopulations of neurons within the reticular formation. A fate-mapping strategy using perinatal expression of reporter genes within Atoh1, Dbx1, Lmx1b, and Ptf1a transgenic mice coupled with immunohistochemistry (IHC) and in situ hybridization (ISH) were used to address the developmental organization of a large subset of reticular formation glutamatergic neurons. All hindbrain lineages have relatively large populations that extend the entire length of the hindbrain. Importantly, the location of neurons within each lineage was highly constrained. Lmx1b- and Dbx1- derived populations were both present in partially overlapping stripes within the reticular formation extending from dorsal to ventral brain. Within each lineage, distinct patterns of gene expression and organization were localized to specific hindbrain regions. Rostro-caudally sub-populations differ sequentially corresponding to proposed pseudo-rhombomereic boundaries. Dorsal-ventrally, sub-populations correspond to specific migratory positions. Together these data suggests the reticular formation is organized by a highly stereotyped developmental logic. PMID:23717265

  7. Transcription factors define the neuroanatomical organization of the medullary reticular formation.

    PubMed

    Gray, Paul A

    2013-01-01

    The medullary reticular formation contains large populations of inadequately described, excitatory interneurons that have been implicated in multiple homeostatic behaviors including breathing, viserosensory processing, vascular tone, and pain. Many hindbrain nuclei show a highly stereotyped pattern of localization across vertebrates suggesting a strong underlying genetic organization. Whether this is true for neurons within the reticular regions of hindbrain is unknown. Hindbrain neurons are derived from distinct developmental progenitor domains each of which expresses distinct patterns of transcription factors (TFs). These neuronal populations have distinct characteristics such as transmitter identity, migration, and connectivity suggesting developmentally expressed TFs might identify unique subpopulations of neurons within the reticular formation. A fate-mapping strategy using perinatal expression of reporter genes within Atoh1, Dbx1, Lmx1b, and Ptf1a transgenic mice coupled with immunohistochemistry (IHC) and in situ hybridization (ISH) were used to address the developmental organization of a large subset of reticular formation glutamatergic neurons. All hindbrain lineages have relatively large populations that extend the entire length of the hindbrain. Importantly, the location of neurons within each lineage was highly constrained. Lmx1b- and Dbx1- derived populations were both present in partially overlapping stripes within the reticular formation extending from dorsal to ventral brain. Within each lineage, distinct patterns of gene expression and organization were localized to specific hindbrain regions. Rostro-caudally sub-populations differ sequentially corresponding to proposed pseudo-rhombomereic boundaries. Dorsal-ventrally, sub-populations correspond to specific migratory positions. Together these data suggests the reticular formation is organized by a highly stereotyped developmental logic.

  8. The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation.

    PubMed

    Martins, Telma S; Pereira, Clara; Canadell, David; Vilaça, Rita; Teixeira, Vítor; Moradas-Ferreira, Pedro; de Nadal, Eulàlia; Posas, Francesc; Costa, Vítor

    2018-01-01

    Iron acquisition systems have to be tightly regulated to assure a continuous supply of iron, since it is essential for survival, but simultaneously to prevent iron overload that is toxic to the cells. In budding yeast, the low‑iron sensing transcription factor Aft1p is a master regulator of the iron regulon. Our previous work revealed that bioactive sphingolipids modulate iron homeostasis as yeast cells lacking the sphingomyelinase Isc1p exhibit an upregulation of the iron regulon. In this study, we show that Isc1p impacts on iron accumulation and localization. Notably, Aft1p is activated in isc1Δ cells due to a decrease in its phosphorylation and an increase in its nuclear levels. Consistently, the expression of a phosphomimetic version of Aft1p-S210/S224 that favours its nuclear export abolished iron accumulation in isc1Δ cells. Notably, the Hog1p kinase, homologue of mammalian p38, interacts with and directly phosphorylates Aft1p at residues S210 and S224. However, Hog1p-Aft1p interaction decreases in isc1Δ cells, which likely contributes to Aft1p dephosphorylation and consequently to Aft1p activation and iron overload in isc1Δ cells. These results suggest that alterations in sphingolipid composition in isc1Δ cells may impact on iron homeostasis by disturbing the regulation of Aft1p by Hog1p. To our knowledge, Hog1p is the first kinase reported to directly regulate Aft1p, impacting on iron homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Research on the impact of LMX leadership theory on mutual trust and organisational commitment of employees in Bosnia and Herzegovina

    NASA Astrophysics Data System (ADS)

    Strukan, E.; Nikolić, M.

    2017-05-01

    The paper presents the theoretical foundations of leadership based on the LMX exchange leader-member theory which essentially involves leadership process where a continuous and creative interaction between leaders and followers is at the centre of attention, during which the leader, among other things, affects the degree of mutual trust and organisational commitment and the quality of relationships in his/her organisation, which actually has a direct impact on organisational performances, effectiveness of the organisation’s business and its market positioning. Also, the paper presents the results of research conducted in organisations in Bosnia and Herzegovina, which undoubtedly point to the fact that the dimensions of leadership based on the LMX exchange leader-member theory, is strongly correlated with the dimensions of mutual trust and organisational commitment, and to have a significant positive impact on them, and therefore on organisational performances and effectiveness of business organisations that were included in this study.

  10. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    PubMed

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Sulfate as a pivotal factor in regulation of Serratia sp. strain S2B pigment biosynthesis.

    PubMed

    Rastegari, Banafsheh; Karbalaei-Heidari, Hamid Reza

    2016-10-01

    In the present work, we investigated the prodiginine family as secondary metabolite members. Bacterial strain S2B, with the ability to produce red pigment, was isolated from the Sarcheshmeh copper mine in Iran. 16S rDNA gene sequencing revealed that the strain was placed in the Serratia genus. Pigment production was optimized using low-cost culture medium and the effects of various physicochemical factors were studied via statistical approaches. Purification of the produced pigment by silica gel column chromatography showed a strong red pigment fraction and a weaker orange band. Mass spectrometry, FT-IR spectroscopy and (1)H NMR analysis revealed that the red pigment was prodigiosin and the orange band was a prodigiosin-like analog, with molecular weights of 323 and 317 Da, respectively. Genotoxicity and cytotoxicity studies confirmed their membership in the prodiginine family. Analysis of the production pattern of the pigments in the presence of different concentrations of ammonium salts revealed the role of sulfate as an important factor in regulation of the pigment biosynthesis pathway. Overall, the data showed that regulation of the pigment biosynthesis pathway in Serratia sp. strain S2B was affected by inorganic micronutrients, particularly the sulfate ions. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Regulation of Na(+)/K(+)-ATPase by nuclear respiratory factor 1: implication in the tight coupling of neuronal activity, energy generation, and energy consumption.

    PubMed

    Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T

    2012-11-23

    NRF-1 regulates mediators of neuronal activity and energy generation. NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and β1. NRF-1 functionally regulates mediators of energy consumption in neurons. NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between

  13. Sirt1 negatively regulates FcεRI-mediated mast cell activation through AMPK- and PTP1B-dependent processes.

    PubMed

    Li, Xian; Lee, Youn Ju; Jin, Fansi; Park, Young Na; Deng, Yifeng; Kang, Youra; Yang, Ju Hye; Chang, Jae-Hoon; Kim, Dong-Young; Kim, Jung-Ae; Chang, Young-Chae; Ko, Hyun-Jeong; Kim, Cheorl-Ho; Murakami, Makoto; Chang, Hyeun Wook

    2017-07-25

    Sirt1, a key regulator of metabolism and longevity, has recently been implicated in the regulation of allergic reactions, although the underlying mechanism remains unclear. Here we show that Sirt1 negatively regulates FcεRI-stimulated mast cell activation and anaphylaxis through two mutually regulated pathways involving AMP-activated protein kinase (AMPK) and protein tyrosine phosphatase 1B (PTP1B). Mast cell-specific knockout of Sirt1 dampened AMPK-dependent suppression of FcεRI signaling, thereby augmenting mast cell activation both in vitro and in vivo. Sirt1 inhibition of FcεRI signaling also involved an alternative component, PTP1B, which attenuated the inhibitory AMPK pathway and conversely enhanced the stimulatory Syk pathway, uncovering a novel role of this phosphatase. Moreover, a Sirt1 activator resveratrol stimulated the inhibitory AMPK axis, with reciprocal suppression of the stimulatory PTP1B/Syk axis, thus potently inhibiting anaphylaxis. Overall, our results provide a molecular explanation for the beneficial role of Sirt1 in allergy and underscore a potential application of Sirt1 activators as a new class of anti-allergic agents.

  14. TBK1 controls IgA class switching by negatively regulating noncanonical NF-κB signaling

    PubMed Central

    Jin, Jin; Xiao, Yichuan; Chang, Jae-Hoon; Yu, Jiayi; Hu, Hongbo; Starr, Robyn; Brittain, George C.; Chang, Mikyoung; Cheng, Xuhong; Sun, Shao-Cong

    2012-01-01

    Immunoglobulin (Ig) class switching is crucial for generating antibody diversity in humoral immunity and, if deregulated, also has severe pathological consequences. How the magnitude of Ig isotype switching is controlled is still poorly understood. Here we identify TANK-binding kinase 1 (TBK1) as a pivotal negative regulator of IgA class switching. B cell-specific TBK1 ablation in mice resulted in uncontrolled production of IgA and development of nephropathy-like disease symptoms. TBK1 negatively regulated IgA class switching by attenuating noncanonical NF-κB signaling, an action that involved TBK1-mediated phosphorylation and subsequent degradation of the NF-κB-inducing kinase. These findings establish TBK1 as a pivotal negative regulator of the noncanonical NF-κB pathway and highlight a unique mechanism that controls IgA production. PMID:23023393

  15. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of Phytochrome B

    PubMed Central

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; Borba, Ana Rita; Lourenço, Tiago; Abreu, Isabel A.; Ouwerkerk, Pieter B.F.; Quail, Peter H.; Oliveira, M. Margarida; Saibo, Nelson J. M.

    2016-01-01

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a Yeast one Hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein-DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressor activity observed in the transactivation assays using Arabidopsis protoplasts. In addition, we showed that OsPIF14 is indeed a Phytochrome Interacting Factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. All together, these results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses. PMID:26732823

  16. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B

    DOE PAGES

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; ...

    2015-12-28

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a yeast one-hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein–DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressormore » activity observed in the transactivation assays using Arabidopsis protoplasts. Additionally, we showed that OsPIF14 is indeed a phytochrome interacting factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. Our results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Finally, although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses.« less

  17. Antagonistic Function of the RNA-binding Protein HuR and miR-200b in Post-transcriptional Regulation of Vascular Endothelial Growth Factor-A Expression and Angiogenesis*

    PubMed Central

    Chang, Sung-Hee; Lu, Yi-Chien; Li, Xi; Hsieh, Wan-Ying; Xiong, Yuquan; Ghosh, Mallika; Evans, Todd; Elemento, Olivier; Hla, Timothy

    2013-01-01

    HuR, also known as Elavl1, is an RNA-binding protein that regulates embryonic development, progenitor cell survival, and cell stress responses. The role of HuR in angiogenesis is not known. Using a myeloid-specific HuR knock-out mouse model (Elavl1Mø KO), we show that HuR expression in bone marrow-derived macrophages (BMDMs) is needed to maintain the expression of genes enriched in AU-rich elements and U-rich elements in the 3′-UTR. In addition, BMDMs from Elavl1Mø KO mice also showed alterations in expression of several miRNAs. Interestingly, computational analysis suggested that miR-200b, which is up-regulated in Elavl1Mø KO BMDMs, interacts with myeloid mRNAs very close to the HuR binding sites, suggesting competitive regulation of gene expression. One such mRNA encodes vascular endothelial growth factor (VEGF)-A, a major regulator of angiogenesis. Immunoprecipitation of RNA-protein complexes and luciferase reporter assays indicate that HuR antagonizes the suppressive activity of miR-200b, down-regulates miR-200b expression, and promotes VEGF-A expression. Indeed, Vegf-a and other angiogenic regulatory transcripts were down-regulated in Elavl1Mø KO BMDMs. Interestingly, tumor growth, angiogenesis, vascular sprouting, branching, and permeability were significantly attenuated in Elavl1Mø KO mice, suggesting that HuR-regulated myeloid-derived factors modulate tumor angiogenesis in trans. Zebrafish embryos injected with an elavl1 morpholino oligomer or miR-200b mimic showed angiogenesis defects in the subintestinal vein plexus, and elavl1 mRNA rescued the repressive effect of miR-200b. In addition, miR-200b and HuR morpholino oligomer suppressed the activity of a zVEGF 3′-UTR luciferase reporter construct. Together, these studies reveal an evolutionarily conserved post-transcriptional mechanism involving competitive interactions between HuR and miR-200b that controls angiogenesis. PMID:23223443

  18. Catalysis-dependent stabilization of Bre1 fine-tunes histone H2B ubiquitylation to regulate gene transcription

    PubMed Central

    Wozniak, Glenn G.

    2014-01-01

    Monoubiquitylation of histone H2B on Lys123 (H2BK123ub1) plays a multifaceted role in diverse DNA-templated processes, yet the mechanistic details by which this modification is regulated are not fully elucidated. Here we show in yeast that H2BK123ub1 is regulated in part through the protein stability of the E3 ubiquitin ligase Bre1. We found that Bre1 stability is controlled by the Rtf1 subunit of the polymerase-associated factor (PAF) complex and through the ability of Bre1 to catalyze H2BK123ub1. Using a domain in Rtf1 that stabilizes Bre1, we show that inappropriate Bre1 levels lead to defects in gene regulation. Collectively, these data uncover a novel quality control mechanism used by the cell to maintain proper Bre1 and H2BK123ub1 levels, thereby ensuring proper control of gene expression. PMID:25085417

  19. Rice phytochrome-interacting factor protein OsPIFff14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B

    USDA-ARS?s Scientific Manuscript database

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a Yeast one Hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bi...

  20. Hcfc1b, a zebrafish ortholog of HCFC1, regulates craniofacial development by modulating mmachc expression.

    PubMed

    Quintana, Anita M; Geiger, Elizabeth A; Achilly, Nate; Rosenblatt, David S; Maclean, Kenneth N; Stabler, Sally P; Artinger, Kristin B; Appel, Bruce; Shaikh, Tamim H

    2014-12-01

    Mutations in HCFC1 (MIM300019), have been recently associated with cblX (MIM309541), an X-linked, recessive disorder characterized by multiple congenital anomalies including craniofacial abnormalities. HCFC1 is a transcriptional co-regulator that modulates the expression of numerous downstream target genes including MMACHC, but it is not clear how these HCFC1 targets play a role in the clinical manifestations of cblX. To begin to elucidate the mechanism by which HCFC1 modulates disease phenotypes, we have carried out loss of function analyses in the developing zebrafish. Of the two HCFC1 orthologs in zebrafish, hcfc1a and hcfc1b, the loss of hcfc1b specifically results in defects in craniofacial development. Subsequent analysis revealed that hcfc1b regulates cranial neural crest cell differentiation and proliferation within the posterior pharyngeal arches. Further, the hcfc1b-mediated craniofacial abnormalities were rescued by expression of human MMACHC, a downstream target of HCFC1 that is aberrantly expressed in cblX. Furthermore, we tested distinct human HCFC1 mutations for their role in craniofacial development and demonstrated variable effects on MMACHC expression in humans and craniofacial development in zebrafish. Notably, several individuals with mutations in either HCFC1 or MMACHC have been reported to have mild to moderate facial dysmorphia. Thus, our data demonstrates that HCFC1 plays a role in craniofacial development, which is in part mediated through the regulation of MMACHC expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Application of HC-AFW1 Hepatocarcinoma Cells for Mechanistic Studies: Regulation of Cytochrome P450 2B6 Expression by Dimethyl Sulfoxide and Early Growth Response 1.

    PubMed

    Petzuch, Barbara; Groll, Nicola; Schwarz, Michael; Braeuning, Albert

    2015-11-01

    Various exogenous compounds, for example, the drugs bupropione and propofol, but also various cytostatics, are metabolized in the liver by the enzyme cytochrome P450 (P450) CYP2B6. Transcription from the CYP2B6 gene is regulated mainly via the transcription factors constitutive androstane receptor (CAR) and pregnane-X-receptor (PXR). Most hepatic cell lines express no or only low levels of CYP2B6 because of loss of these two regulators. Dimethyl sulfoxide (DMSO) is frequently used in liver cell cultivation and is thought to affect the expression of various P450 isoforms by inducing or preserving cellular differentiation. We studied the effects of up to 1.5% of DMSO as cell culture medium supplement on P450 expression in hepatocarcinoma cells from line HC-AFW1. DMSO did not induce differentiation of the HC-AFW1 cell line, as demonstrated by unaltered levels of selected mRNA markers important for hepatocyte differentiation, and also by the lack of a DMSO effect on a broader spectrum of P450s. By contrast, CYP2B6 mRNA was strongly induced by DMSO. This process was independent of CAR or PXR activation. Interestingly, elevated transcription of CYP2B6 was accompanied by a simultaneous induction of early growth response 1 (EGR1), a transcription factor known to influence the expression of CYP2B6. Expression of wild-type EGR1 or of a truncated, dominant-negative EGR1 mutant was able to mimic or attenuate the DMSO effect, respectively. These findings demonstrate that EGR1 is involved in the regulation of CYP2B6 by DMSO in HC-AFW1 cells. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Multiple environmental factors regulate the expression of the carbohydrate-selective OprB porin of Pseudomonas aeruginosa.

    PubMed

    Adewoye, L O; Worobec, E A

    1999-12-01

    In response to low extracellular glucose concentration, Pseudomonas aeruginosa induces the expression of the outer membrane carbohydrate-selective OprB porin. The promoter region of the oprB gene was cloned into a lacZ transcriptional fusion vector, and the construct was mobilized into P. aeruginosa OprB-deficient strain, WW100, to evaluate additional environmental factors that influence OprB porin gene expression. Growth temperature, pH of the growth medium, salicylate concentration, and carbohydrate source were found to differentially influence porin expression. This expression pattern was compared to those of whole-cell [14C]glucose uptake under conditions of high osmolarity, ionicity, variable pH, growth temperatures, and carbohydrate source. These studies revealed that the high-affinity glucose transport genes are down-regulated by salicylic acid, differentially regulated by pH and temperature, and are specifically responsive to exogenous glucose induction.

  3. Maintenance of dendritic spine morphology by partitioning-defective 1b through regulation of microtubule growth.

    PubMed

    Hayashi, Kenji; Suzuki, Atsushi; Hirai, Syu-ichi; Kurihara, Yasuyuki; Hoogenraad, Casper C; Ohno, Shigeo

    2011-08-24

    Dendritic spines are postsynaptic structures that receive excitatory synaptic input from presynaptic terminals. Actin and its regulatory proteins play a central role in morphogenesis of dendritic spines. In addition, recent studies have revealed that microtubules are indispensable for the maintenance of mature dendritic spine morphology by stochastically invading dendritic spines and regulating dendritic localization of p140Cap, which is required for actin reorganization. However, the regulatory mechanisms of microtubule dynamics remain poorly understood. Partitioning-defective 1b (PAR1b), a cell polarity-regulating serine/threonine protein kinase, is thought to regulate microtubule dynamics by inhibiting microtubule binding of microtubule-associated proteins. Results from the present study demonstrated that PAR1b participates in the maintenance of mature dendritic spine morphology in mouse hippocampal neurons. Immunofluorescent analysis revealed PAR1b localization in the dendrites, which was concentrated in dendritic spines of mature neurons. PAR1b knock-down cells exhibited decreased mushroom-like dendritic spines, as well as increased filopodia-like dendritic protrusions, with no effect on the number of protrusions. Live imaging of microtubule plus-end tracking proteins directly revealed decreases in distance and duration of microtubule growth following PAR1b knockdown in a neuroblastoma cell line and in dendrites of hippocampal neurons. In addition, reduced accumulation of GFP-p140Cap in dendritic protrusions was confirmed in PAR1b knock-down neurons. In conclusion, the present results suggested a novel function for PAR1b in the maintenance of mature dendritic spine morphology by regulating microtubule growth and the accumulation of p140Cap in dendritic spines.

  4. Disruption of STAT5b-Regulated Sexual Dimorphism of the Liver Transcriptome by Diverse Factors Is a Common Event

    EPA Science Inventory

    Signal transducer and activator of transcription 5b (STAT5b) is a growth hormone (GH)-activated transcription factor and a master regulator of sexually dimorphic gene expression in the liver. Disruption ofthe GH hypothalamo-pituitary-liver axis controlling STAT5b activation can ...

  5. The Metastasis Efficiency Modifier Ribosomal RNA Processing 1 Homolog B (RRP1B) Is a Chromatin-associated Factor*

    PubMed Central

    Crawford, Nigel P. S.; Yang, Hailiu; Mattaini, Katherine R.; Hunter, Kent W.

    2009-01-01

    There is accumulating evidence for a role of germ line variation in breast cancer metastasis. We have recently identified a novel metastasis susceptibility gene, Rrp1b (ribosomal RNA processing 1 homolog B). Overexpression of Rrp1b in a mouse mammary tumor cell line induces a gene expression signature that predicts survival in breast cancer. Here we extend the analysis of RRP1B function by demonstrating that the Rrp1b activation gene expression signature accurately predicted the outcome in three of four publicly available breast carcinoma gene expression data sets. In addition, we provide insights into the mechanism of RRP1B. Tandem affinity purification demonstrated that RRP1B physically interacts with many nucleosome binding factors, including histone H1X, poly(ADP-ribose) polymerase 1, TRIM28 (tripartite motif-containing 28), and CSDA (cold shock domain protein A). Co-immunofluorescence and co-immunoprecipitation confirmed these interactions and also interactions with heterochromatin protein-1α and acetyl-histone H4 lysine 5. Finally, we investigated the effects of ectopic expression of an RRP1B allelic variant previously associated with improved survival in breast cancer. Gene expression analyses demonstrate that, compared with ectopic expression of wild type RRP1B in HeLa cells, the variant RRP1B differentially modulates various transcription factors controlled by TRIM28 and CSDA. These data suggest that RRP1B, a tumor progression and metastasis susceptibility candidate gene, is potentially a dynamic modulator of transcription and chromatin structure. PMID:19710015

  6. Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses.

    PubMed

    Majumdar, Tanmay; Dhar, Jayeeta; Patel, Sonal; Kondratov, Roman; Barik, Sailen

    2017-02-01

    BMAL1 (brain and muscle ARNT-like protein 1, also known as MOP3 or ARNT3) belongs to the family of the basic helix-loop-helix (bHLH)-PAS domain-containing transcription factors, and is a key component of the molecular oscillator that generates circadian rhythms. Here, we report that BMAL1-deficient cells are significantly more susceptible to infection by two major respiratory viruses of the Paramyxoviridae family, namely RSV and PIV3. Embryonic fibroblasts from Bmal1 -/- mice produced nearly 10-fold more progeny virus than their wild type controls. These results were supported by animal studies whereby pulmonary infection of RSV produced a more severe disease and morbidity in Bmal1 -/- mice. These results show that BMAL1 can regulate cellular innate immunity against specific RNA viruses.

  7. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a)

    PubMed Central

    Emerling, Brooke M.; Weinberg, Frank; Liu, Juinn-Lin; Mak, Tak W.; Chandel, Navdeep S.

    2008-01-01

    The tumor suppressor PTEN is mutated or deleted in many tumors, causing the activation of the PI3K pathway. Here, we show that the loss of PTEN increases the transcriptional activity of hypoxia-inducible factor 1 (HIF-1) through the inactivation of Forkhead transcription factors (FOXO) in PTEN-null cells. Reintroduction of PTEN into the nucleus, overexpression of a nonphosphorylatable FOXO3a, which accumulates in the nucleus, or inhibition of nuclear export of FOXO3a by leptomycin B represses HIF-1 transcriptional activity in PTEN-null cells. HIF-1 transcriptional activity increases in PTEN-positive cells depleted of FOXO3a with siRNA. PTEN and FOXO3a regulate the transactivation domain of HIF-1α. Chromatin immunoprecipitation indicates that FOXO3a complexes with HIF-1α and p300 on the Glut-1 promoter, a HIF-1 target gene. Overexpression of p300 reverses FOXO3a-mediated repression of HIF-1 transcriptional activity. Coimmunoprecipitation and GAL4-HIF-1α transactivation assays reveal that FOXO3a interferes with p300-dependent HIF-1 transcriptional activity. Thus, FOXO3a negatively regulates HIF-1 transcriptional activity. PMID:18268343

  8. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yang; Han, Chen-chen; Li, Yifan

    Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth responsemore » protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. - Highlights: • IGFBP-3 plays an inhibition role in IGF1-induced HCC cell growth. • IGFBP-3 inhibits bFGF and PDGF production in the IGF-dependent manner. • EGR1 is involved in IGFBP-3 regulation of bFGF and PDGF in HCC cells. • IGFBP-3 suppresses EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.« less

  9. Heat shock factor-1 knockout induces multidrug resistance gene, MDR1b, and enhances P-glycoprotein (ABCB1)-based drug extrusion in the heart

    PubMed Central

    Krishnamurthy, Karthikeyan; Vedam, Kaushik; Kanagasabai, Ragu; Druhan, Lawrence J.; Ilangovan, Govindasamy

    2012-01-01

    Heat-shock factor 1 (HSF-1), a transcription factor for heat-shock proteins (HSPs), is known to interfere with the transcriptional activity of many oncogenic factors. In the present work, we have discovered that HSF-1 ablation induced the multidrug resistance gene, MDR1b, in the heart and increased the expression of P-glycoprotein (P-gp, ABCB1), an ATP binding cassette that is usually associated with multidrug-resistant cancer cells. The increase in P-gp enhanced the extrusion of doxorubicin (Dox) to alleviate Dox-induced heart failure and reduce mortality in mice. Dox-induced left ventricular (LV) dysfunction was significantly reduced in HSF-1−/− mice. DNA-binding activity of NF-κB was higher in HSF-1−/− mice. IκB, the NF-κB inhibitor, was depleted due to enhanced IκB kinase (IKK)-α activity. In parallel, MDR1b gene expression and a large increase in P-gp and lowering Dox loading were observed in HSF-1−/− mouse hearts. Moreover, application of the P-gp antagonist, verapamil, increased Dox loading in HSF-1−/− cardiomyocytes, deteriorated cardiac function in HSF-1−/− mice, and decreased survival. MDR1 promoter activity was higher in HSF-1−/− cardiomyocytes, whereas a mutant MDR1 promoter with heat-shock element (HSE) mutation showed increased activity only in HSF-1+/+ cardiomyocytes. However, deletion of HSE and NF-κB binding sites diminished luminescence in both HSF-1+/+ and HSF-1−/− cardiomyocytes, suggesting that HSF-1 inhibits MDR1 activity in the heart. Thus, because high levels of HSF-1 are attributed to poor prognosis of cancer, systemic down-regulation of HSF-1 before chemotherapy is a potential therapeutic approach to ameliorate the chemotherapy-induced cardiotoxicity and enhance cancer prognosis. PMID:22615365

  10. The Yeast Anaerobic Response Element AR1b Regulates Aerobic Antifungal Drug-dependent Sterol Gene Expression*

    PubMed Central

    Gallo-Ebert, Christina; Donigan, Melissa; Liu, Hsing-Yin; Pascual, Florencia; Manners, Melissa; Pandya, Devanshi; Swanson, Robert; Gallagher, Denise; Chen, WeiWei; Carman, George M.; Nickels, Joseph T.

    2013-01-01

    Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp consensus SRE is identical to the anaerobic response element, AR1c. Data indicate that Upc2 and Ecm22 function through binding to this SRE site. We now show that it is two novel anaerobic AR1b elements in the UPC2 promoter that direct global ERG gene expression in response to a block in de novo ergosterol biosynthesis, brought about by antifungal drug treatment. The AR1b elements are absolutely required for auto-induction of UPC2 gene expression and protein and require Upc2 and Ecm22 for function. We further demonstrate the direct binding of recombinant expressed S. cerevisiae ScUpc2 and pathogenic Candida albicans CaUpc2 and Candida glabrata CgUpc2 to AR1b and SRE/AR1c elements. Recombinant endogenous promoter studies show that the UPC2 anaerobic AR1b elements act in trans to regulate ergosterol gene expression. Our results indicate that Upc2 must occupy UPC2 AR1b elements in order for ERG gene expression induction to take place. Thus, the two UPC2-AR1b elements drive expression of all ERG genes necessary for maintaining normal antifungal susceptibility, as wild type cells lacking these elements have increased susceptibility to azole antifungal drugs. Therefore, targeting these specific sites for antifungal therapy represents a novel approach to treat systemic fungal infections. PMID:24163365

  11. B Cell-Intrinsic IDO1 Regulates Humoral Immunity to T Cell-Independent Antigens.

    PubMed

    Shinde, Rahul; Shimoda, Michiko; Chaudhary, Kapil; Liu, Haiyun; Mohamed, Eslam; Bradley, Jillian; Kandala, Sridhar; Li, Xia; Liu, Kebin; McGaha, Tracy L

    2015-09-01

    Humoral responses to nonproteinaceous Ags (i.e., T cell independent [TI]) are a key component of the early response to bacterial and viral infection and a critical driver of systemic autoimmunity. However, mechanisms that regulate TI humoral immunity are poorly defined. In this study, we report that B cell-intrinsic induction of the tryptophan-catabolizing enzyme IDO1 is a key mechanism limiting TI Ab responses. When Ido1(-/-) mice were immunized with TI Ags, there was a significant increase in Ab titers and formation of extrafollicular Ab-secreting cells compared with controls. This effect was specific to TI Ags, as Ido1 disruption did not affect Ig production after immunization with protein Ags. The effect of IDO1 abrogation was confined to the B cell compartment, as adoptive transfer of Ido1(-/-) B cells to B cell-deficient mice was sufficient to replicate increased TI responses observed in Ido1(-/-) mice. Moreover, in vitro activation with TLR ligands or BCR crosslinking rapidly induced Ido1 expression and activity in purified B cells, and Ido1(-/-) B cells displayed enhanced proliferation and cell survival associated with increased Ig and cytokine production compared with wild-type B cells. Thus, our results demonstrate a novel, B cell-intrinsic, role for IDO1 as a regulator of humoral immunity that has implications for both vaccine design and prevention of autoimmunity. Copyright © 2015 by The American Association of Immunologists, Inc.

  12. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma.

    PubMed

    Liu, Shujing; Kumar, Suresh M; Lu, Hezhe; Liu, Aihua; Yang, Ruifeng; Pushparajan, Anitha; Guo, Wei; Xu, Xiaowei

    2012-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate gene expression. Hsa-miR-9 has been shown to have opposite functions in different tumour types; however, the underlying mechanism is unclear. Here we show that hsa-miR-9 is down-regulated in metastatic melanomas compared to primary melanomas. Overexpression of miR-9 in melanoma cells resulted in significantly decreased cell proliferation and migratory capacity with decreased F-actin polymerization and down-regulation of multiple GTPases involved in cytoskeleton remodelling. miR-9 overexpression induced significant down-regulation of Snail1 with a concomitant increase in E-cadherin expression. In contrast, knockdown of miR-9 increased Snail1 expression as well as melanoma cell proliferation and migration capacity. Mechanistically, miR-9 expression down-regulated NF-κB1 in melanoma and the effect was abolished by mutations in the putative miR-9 binding sites within the 3'-untranslated region (UTR) of NF-κB1. Anti-miR-9 miRNA inhibitor also increased the expression of NF-κB1. The effects of miR-9 on Snail1 expression and melanoma cell proliferation and migration were rescued by overexpression of NF-κB1 in these cells. Furthermore, miR-9 overexpression resulted in significantly decreased melanoma growth and metastasis in vivo. In summary, miR-9 inhibits melanoma proliferation and metastasis through down-regulation of the NF-κB1-Snail1 pathway. This study finds a new mechanism that miR-9 utilizes to decrease E-cadherin expression and inhibit melanoma progression. The results suggest that function of microRNAs is context and tumour type-specific. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. c-Met and its ligand hepatocyte growth factor/scatter factor regulate mature B cell survival in a pathway induced by CD74.

    PubMed

    Gordin, Maya; Tesio, Melania; Cohen, Sivan; Gore, Yael; Lantner, Frida; Leng, Lin; Bucala, Richard; Shachar, Idit

    2010-08-15

    The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Durable B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism involved in mature B cell homeostasis, the hepatocyte growth factor/scatter factor (HGF)/c-Met pathway. We demonstrate that c-Met activation by HGF leads to a survival cascade, whereas its blockade results in induction of mature B cell death. Our results emphasize a unique and critical function for c-Met signaling in the previously described macrophage migration inhibitory factor/CD74-induced survival pathway. Macrophage migration inhibitory factor recruits c-Met to the CD74/CD44 complex and thereby enables the induction of a signaling cascade within the cell. This signal results in HGF secretion, which stimulates the survival of the mature B cell population in an autocrine manner. Thus, the CD74-HGF/c-Met axis defines a novel physiologic survival pathway in mature B cells, resulting in the control of the humoral immune response.

  14. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

    PubMed

    Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun

    2018-03-15

    Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

  15. cAMP Response Element-binding Protein (CREB) and Nuclear Factor κB Mediate the Tamoxifen-induced Up-regulation of Glutamate Transporter 1 (GLT-1) in Rat Astrocytes*

    PubMed Central

    Karki, Pratap; Webb, Anton; Smith, Keisha; Lee, Kyuwon; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2013-01-01

    Tamoxifen (TX), a selective estrogen receptor modulator, exerts antagonistic effects on breast tissue and is used to treat breast cancer. Recent evidence also suggests that it may act as an agonist in brain tissue. We reported previously that TX enhanced the expression and function of glutamate transporter 1 (GLT-1) in rat astrocytes, an effect that was mediated by TGF-α. To gain further insight into the mechanisms that mediate TX-induced up-regulation of GLT-1 (EAAT2 in humans), we investigated its effect on GLT-1 at the transcriptional level. TX phosphorylated the cAMP response element-binding protein (CREB) and recruited CREB to the GLT-1 promoter consensus site. The effect of TX on astrocytic GLT-1 was attenuated by the inhibition of PKA, the upstream activator of the CREB pathway. In addition, the effect of TX on GLT-1 promoter activity was abolished by the inhibition of the NF-κB pathway. Furthermore, TX recruited the NF-κB subunits p65 and p50 to the NF-κB binding domain of the GLT-1 promoter. Mutation of NF-κB (triple, −583/-282/-251) or CRE (-308) sites on the GLT-1 promoter led to significant repression of the promoter activity, but neither mutant completely abolished the TX-induced GLT-1 promoter activity. Mutation of both the NF-κB (-583/-282/-251) and CRE (-308) sites led to a complete abrogation of the effect of TX on GLT-1 promoter activity. Taken together, our findings establish that TX regulates GLT-1 via the CREB and NF-κB pathways. PMID:23955341

  16. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhong Xin; Sun, Cong Cong; Wenzhou People's Hospital, Wenzhou, Zhejiang

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Westernmore » blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.« less

  17. Forkhead Box M1 Is Regulated by Heat Shock Factor 1 and Promotes Glioma Cells Survival under Heat Shock Stress*

    PubMed Central

    Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun

    2013-01-01

    The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351

  18. NFκB signaling regulates embryonic and adult neurogenesis

    PubMed Central

    ZHANG, Yonggang; HU, Wenhui

    2013-01-01

    Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells. PMID:24324484

  19. Regulation of Memory Formation by the Transcription Factor XBP1.

    PubMed

    Martínez, Gabriela; Vidal, René L; Mardones, Pablo; Serrano, Felipe G; Ardiles, Alvaro O; Wirth, Craig; Valdés, Pamela; Thielen, Peter; Schneider, Bernard L; Kerr, Bredford; Valdés, Jose L; Palacios, Adrian G; Inestrosa, Nibaldo C; Glimcher, Laurie H; Hetz, Claudio

    2016-02-16

    Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimer's disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR), mediating adaptation to endoplasmic reticulum (ER) stress. Using a phenotypic screen, we uncovered an unexpected function of XBP1 in cognition and behavior. Mice lacking XBP1 in the nervous system showed specific impairment of contextual memory formation and long-term potentiation (LTP), whereas neuronal XBP1s overexpression improved performance in memory tasks. Gene expression analysis revealed that XBP1 regulates a group of memory-related genes, highlighting brain-derived neurotrophic factor (BDNF), a key component in memory consolidation. Overexpression of BDNF in the hippocampus reversed the XBP1-deficient phenotype. Our study revealed an unanticipated function of XBP1 in cognitive processes that is apparently unrelated to its role in ER stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Argonaute-1 functions as a mitotic regulator by controlling Cyclin B during Drosophila early embryogenesis.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Bag, Indira; Hunt, Clayton R; Ramaiah, M Janaki; Pandita, Tej K; Bhadra, Utpal; Pal-Bhadra, Manika

    2014-02-01

    The role of Ago-1 in microRNA (miRNA) biogenesis has been thoroughly studied, but little is known about its involvement in mitotic cell cycle progression. In this study, we established evidence of the regulatory role of Ago-1 in cell cycle control in association with the G2/M cyclin, cyclin B. Immunostaining of early embryos revealed that the maternal effect gene Ago-1 is essential for proper chromosome segregation, mitotic cell division, and spindle fiber assembly during early embryonic development. Ago-1 mutation resulted in the up-regulation of cyclin B-Cdk1 activity and down-regulation of p53, grp, mei-41, and wee1. The increased expression of cyclin B in Ago-1 mutants caused less stable microtubules and probably does not produce enough force to push the nuclei to the cortex, resulting in a decreased number of pole cells. The role of cyclin B in mitotic defects was further confirmed by suppressing the defects in the presence of one mutant copy of cyclin B. We identified involvement of 2 novel embryonic miRNAs--miR-981 and miR--317-for spatiotemporal regulation of cyclin B. In summary, our results demonstrate that the haploinsufficiency of maternal Ago-1 disrupts mitotic chromosome segregation and spindle fiber assembly via miRNA-guided control during early embryogenesis in Drosophila. The increased expression of cyclin B-Cdk1 and decreased activity of the Cdk1 inhibitor and cell cycle checkpoint proteins (mei-41 and grp) in Ago-1 mutant embryos allow the nuclei to enter into mitosis prematurely, even before completion of DNA replication. Thus, our results have established a novel role of Ago-1 as a regulator of the cell cycle.

  1. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis.

    PubMed

    Lee, Hansol; Habas, Raymond; Abate-Shen, Cory

    2004-06-11

    During embryogenesis, differentiation of skeletal muscle is regulated by transcription factors that include members of the Msx homeoprotein family. By investigating Msx1 function in repression of myogenic gene expression, we identified a physical interaction between Msx1 and H1b, a specific isoform of mouse histone H1. We found that Msx1 and H1b bind to a key regulatory element of MyoD, a central regulator of skeletal muscle differentiation, where they induce repressed chromatin. Moreover, Msx1 and H1b cooperate to inhibit muscle differentiation in cell culture and in Xenopus animal caps. Our findings define a previously unknown function for "linker" histones in gene-specific transcriptional regulation.

  2. The identification of transcription factors expressed in the notochord of Ciona intestinalis adds new potential players to the brachyury gene regulatory network.

    PubMed

    José-Edwards, Diana S; Kerner, Pierre; Kugler, Jamie E; Deng, Wei; Jiang, Di; Di Gregorio, Anna

    2011-07-01

    The notochord is the distinctive characteristic of chordates; however, the knowledge of the complement of transcription factors governing the development of this structure is still incomplete. Here we present the expression patterns of seven transcription factor genes detected in the notochord of the ascidian Ciona intestinalis at various stages of embryonic development. Four of these transcription factors, Fos-a, NFAT5, AFF and Klf15, have not been directly associated with the notochord in previous studies, while the others, including Spalt-like-a, Lmx-like, and STAT5/6-b, display evolutionarily conserved expression in this structure as well as in other domains. We examined the hierarchical relationships between these genes and the transcription factor Brachyury, which is necessary for notochord development in all chordates. We found that Ciona Brachyury regulates the expression of most, although not all, of these genes. These results shed light on the genetic regulatory program underlying notochord formation in Ciona and possibly other chordates. Copyright © 2011 Wiley-Liss, Inc.

  3. The identification of transcription factors expressed in the notochord of Ciona intestinalis adds new potential players to the Brachyury gene regulatory network

    PubMed Central

    José-Edwards, Diana S.; Kerner, Pierre; Kugler, Jamie E.; Deng, Wei; Jiang, Di; Di Gregorio, Anna

    2013-01-01

    The notochord is the distinctive characteristic of chordates; however, the knowledge of the complement of transcription factors governing the development of this structure is still incomplete. Here we present the expression patterns of seven transcription factor genes detected in the notochord of the ascidian Ciona intestinalis at various stages of embryonic development. Four of these transcription factors, Fos-a, NFAT5, AFF and Klf15, have not been directly associated with the notochord in previous studies, while the others, including Spalt-like-a, Lmx-like and STAT5/6-b, display evolutionarily conserved expression in this structure as well as in other domains. We examined the hierarchical relationships between these genes and the transcription factor Brachyury, which is necessary for notochord development in all chordates. We found that Ciona Brachyury regulates the expression of most, although not all, of these genes. These results shed light on the genetic regulatory program underlying notochord formation in Ciona and possibly other chordates. PMID:21594950

  4. Tumour necrosis factorregulates human eosinophil apoptosis via ligation of TNF-receptor 1 and balance between NF-κB and AP-1.

    PubMed

    Kankaanranta, Hannu; Ilmarinen, Pinja; Zhang, Xianzhi; Adcock, Ian M; Lahti, Aleksi; Barnes, Peter J; Giembycz, Mark A; Lindsay, Mark A; Moilanen, Eeva

    2014-01-01

    Eosinophils play a central role in asthma. The present study was performed to investigate the effect of tumour necrosis factor-α (TNF-α) on longevity of isolated human eosinophils. In contrast to Fas, TNF-α inhibited eosinophil apoptosis as evidenced by a combination of flow cytometry, DNA fragmentation assay and morphological analyses. The effect of TNF-α on eosinophil apoptosis was reversed by a TNF-α neutralising antibody. The anti-apoptotic effect of TNF-α was not due to autocrine release of known survival-prolonging cytokines interleukins 3 and 5 or granulocyte-macrophage-colony-stimulating factor as their neutralisation did not affect the effect of TNF-α. The anti-apoptotic signal was mediated mainly by the TNF-receptor 1. TNF-α induced phosphorylation and degradation of IκB and an increase in NF-κB DNA-binding activity. The survival-prolonging effect of TNF-α was reversed by inhibitors of NF-κB pyrrolidinedithiocarbamate and gliotoxin and by an inhibitor of IκB kinase, BMS-345541. TNF-α induced also an increase in AP-1 DNA-binding activity and the antiapoptotic effect of TNF-α was potentiated by inhibitors of AP-1, SR 11302 and tanshinone IIA and by an inhibitor of c-jun-N-terminal kinase, SP600125, which is an upstream kinase activating AP-1. Our results thus suggest that TNF-α delays human eosinophil apoptosis via TNF-receptor 1 and the resulting changes in longevity depend on yin-yang balance between activation of NF-κB and AP-1.

  5. SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana

    PubMed Central

    Sadanandom, Ari; Ádám, Éva; Orosa, Beatriz; Viczián, András; Klose, Cornelia; Zhang, Cunjin; Josse, Eve-Marie; Kozma-Bognár, László; Nagy, Ferenc

    2015-01-01

    The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyBLys996Arg-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases. PMID:26283376

  6. Regulation of the voltage-gated Ca2+ channel CaVα2δ-1 subunit expression by the transcription factor Egr-1.

    PubMed

    González-Ramírez, Ricardo; Martínez-Hernández, Elizabeth; Sandoval, Alejandro; Gómez-Mora, Kimberly; Felix, Ricardo

    2018-04-23

    It is well known that the Ca V α 2 δ auxiliary subunit regulates the density of high voltage-activated Ca 2+ channels in the plasma membrane and that alterations in their functional expression might have implications in the pathophysiology of diverse human diseases such as neuropathic pain. However, little is known concerning the transcriptional regulation of this protein. We previously characterized the promoter of Ca V α 2 δ, and here we report its regulation by the transcription factor Egr-1. Using the neuroblastoma N1E-115 cells, we found that Egr-1 interacts specifically with its binding site in the promoter, affecting the transcriptional regulation of Ca V α 2 δ. Overexpression and knockdown analysis of Egr-1 showed significant changes in the transcriptional activity of the Ca V α 2 δ promoter. Egr-1 also regulated the expression of Ca V α 2 δ at the level of protein. Also, functional studies showed that Egr-1 knockdown significantly decreases Ca 2+ currents in dorsal root ganglion (DRG) neurons, while overexpression of the transcription factor increased Ca 2+ currents in the F11 cell line, a hybrid of DRG and N18TG2 neuroblastoma cells. Studying the effects of Egr-1 on the transcriptional expression of Ca V α 2 δ could help to understand the regulatory mechanisms of this protein in both health and disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. TabHLH1, a bHLH-type transcription factor gene in wheat, improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis.

    PubMed

    Yang, Tongren; Hao, Lin; Yao, Sufei; Zhao, Yuanyuan; Lu, Wenjing; Xiao, Kai

    2016-07-01

    Basic helix-loop-helix (bHLH) transcription factors (TFs) comprise a large TF family and act as crucial regulators in various biological processes in plants. Here, we report the functional characterization of TabHLH1, a bHLH TF member in wheat (Triticum aestivum). TabHLH1 shares conserved bHLH domain and targets to nucleus with transactivation activity. Upon Pi and N deprivation, the expression of TabHLH1 was up-regulated in roots and leaves, showing a pattern to be gradually increased within 23-h treatment regimes. The lines with overexpression of TabHLH1 exhibited drastically improved tolerance to Pi and N deprivation, showing larger plant phenotype, more biomass, higher concentration and more accumulation of P and N than wild type (WT) upon the Pi- and N-starvation stresses. NtPT1 and NtNRT2.2, the genes encoding phosphate transporter (PT) and nitrate transporter (NRT) in tobacco, respectively, showed up-regulated expression in TabHLH1-overexpressing plants; knockdown expression of them led to deteriorated growth feature, lowered biomass, and decreased nutrient accumulation of plants under Pi- and N-deficient conditions. Compared with WT, the TabHLH1-overexpressing plants also showed lowered reactive oxygen species (ROS) accumulation and improved antioxidant enzyme (AE) activities, such as those of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). NtSOD1, NtCAT1, and NtPOD1;6 that encode SOD, CAT, and POD, respectively, were up-regulated in TabHLH1-overexpressing plants. Further knockdown of these AE gene expression caused reduced antioxidant enzymatic activities, indicative of their crucial roles in mediating cellular ROS homeostasis in Pi- and N-starvation conditions. Together, TabHLH1 plays an important role in mediating adaptation to the Pi- and N-starvation stresses through transcriptional regulation of a set of genes encoding PT, NRT and AEs that mediate the taken up of Pi and N and the cellular homeostasis of ROS initiated by the nutrient

  8. Brassinosteroid-Induced Transcriptional Repression and Dephosphorylation-Dependent Protein Degradation Negatively Regulate BIN2-Interacting AIF2 (a BR Signaling-Negative Regulator) bHLH Transcription Factor.

    PubMed

    Kim, Yoon; Song, Ji-Hye; Park, Seon-U; Jeong, You-Seung; Kim, Soo-Hwan

    2017-02-01

    Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minegishi, Yoshiki; Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193; Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, itmore » has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.« less

  10. Down-regulation of microRNA-135b inhibited growth of cervical cancer cells by targeting FOXO1.

    PubMed

    Xu, Yue; Zhao, Shuhua; Cui, Manhua; Wang, Qiang

    2015-01-01

    More and more evidence has confirmed that dysregulation of microRNAs (miRNAs) can conduce to the progression of human cancers. Previous studied have shown that dysregulation of miR-135b is in varieties of tumors. However, the roles of miR-135b in cervical cancer remain unknown. Therefore, our aim of this study was to explore the biological function and molecular mechanism of miR-135b in cervical cancer cell lines, discussing whether it could be a therapeutic biomarker of cervical cancer in the future. The MTT assay and ELISA-Brdu assay were used to assess cell proliferation. Cell cycle was detected by flow cytometry. Real-time quantitative polymerase chain reaction (PCR) and Western blot analyses were used to detect expressions of cyclin D1, p21, p27 and FOXO1. In our study, we found that miR-135b is up-regulated in cervical cancer cell lines. Down-regulation of miR-135b evidently inhibited proliferation and arrested cell cycle in cervical cancer cells. Bioinformatics analysis predicted that the FOXO1 was a potential target gene of miR-135b. Besides, miR-135b inhibition significantly increased expressions of the cyclin-dependent kinase inhibitors, p21(/CIP1) and p27(/KIP1), and decreased expression of cyclin D1. However, the high level of miR-135b was associated with increased expression of FOXO1 in cervical cancer cells. Further study by luciferase reporter assay demonstrated that miR-135b could directly target FOXO1. Down-regulation of FOXO1 in cervical cancer cells transfected with miR-135b inhibitor partially reversed its inhibitory effects. In conclusion, down-regulation of miR-135b inhibited cell growth in cervical cancer cells by up-regulation of FOXO1.

  11. Yin yang 1 is a novel regulator of pulmonary fibrosis.

    PubMed

    Lin, Xin; Sime, Patricia J; Xu, Haodong; Williams, Marc A; LaRussa, Larry; Georas, Steve N; Guo, Jia

    2011-06-15

    The differentiation of fibroblasts into myofibroblasts is a cardinal feature of idiopathic pulmonary fibrosis (IPF). The transcription factor Yin Yang 1 (YY1) plays a role in the proliferation and differentiation of diverse cell types, but its role in fibrotic lung diseases is not known. To elucidate the mechanism by which YY1 regulates fibroblast differentiation and lung fibrosis. Lung fibroblasts were cultured with transforming growth factor (TGF)-β or tumor necrosis factor-α. Nuclear factor (NF)-κB, YY1, and α-smooth muscle actin (SMA) were determined in protein, mRNA, and promoter reporter level. Lung fibroblasts and lung fibrosis were assessed in a partial YY1-deficient mouse and a YY1(f/f) conditional knockout mouse after being exposed to silica or bleomycin. TGF-β and tumor necrosis factor-α up-regulated YY1 expression in lung fibroblasts. TGF-β-induced YY1 expression was dramatically decreased by an inhibitor of NF-κB, which blocked I-κB degradation. YY1 is significantly overexpressed in both human IPF and murine models of lung fibrosis, including in the aggregated pulmonary fibroblasts of fibrotic foci. Furthermore, the mechanism of fibrogenesis is that YY1 can up-regulate α-SMA expression in pulmonary fibroblasts. YY1-deficient (YY1(+/-)) mice were significantly protected from lung fibrosis, which was associated with attenuated α-SMA and collagen expression. Finally, decreasing YY1 expression through instilled adenovirus-cre in floxed-YY1(f/f) mice reduced lung fibrosis. YY1 is overexpressed in fibroblasts in both human IPF and murine models in a NF-κB-dependent manner, and YY1 regulates fibrogenesis at least in part by increasing α-SMA and collagen expression. Decreasing YY1 expression may provide a new therapeutic strategy for pulmonary fibrosis.

  12. GPER is involved in the regulation of the estrogen-metabolizing CYP1B1 enzyme in breast cancer

    PubMed Central

    Cirillo, Francesca; Pellegrino, Michele; Malivindi, Rocco; Rago, Vittoria; Avino, Silvia; Muto, Luigina; Dolce, Vincenza; Vivacqua, Adele; Rigiracciolo, Damiano Cosimo; De Marco, Paola; Sebastiani, Anna; Abonante, Sergio; Nakajima, Miki; Lappano, Rosamaria; Maggiolini, Marcello

    2017-01-01

    The cytochrome P450 1B1 (CYP1B1) is a heme-thiolate monooxygenase involved in both estrogen biosynthesis and metabolism. For instance, CYP1B1 catalyzes the hydroxylation of E2 leading to the production of 4-hydroxyestradiol that may act as a potent carcinogenic agent. In addition, CYP1B1 is overexpressed in different tumors including breast cancer. In this scenario, it is worth mentioning that CYP1B1 expression is triggered by estrogens through the estrogen receptor (ER)α in breast cancer cells. In the present study, we evaluated whether the G protein estrogen receptor namely GPER may provide an alternate route toward the expression and function of CYP1B1 in ER-negative breast cancer cells, in main players of the tumor microenvironment as cancer associated fibroblasts (CAFs) that were obtained from breast cancer patients, in CAFs derived from a cutaneous metastasis of an invasive mammary ductal carcinoma and in breast tumor xenografts. Our results show that GPER along with the EGFR/ERK/c-Fos transduction pathway can lead to CYP1B1 regulation through the involvement of a half-ERE sequence located within the CYP1B1 promoter region. As a biological counterpart, we found that both GPER and CYP1B1 mediate growth effects in vitro and in vivo. Altogether, our data suggest that estrogens in ER-negative cell contexts may engage the alternate GPER signaling toward CYP1B1 regulation. Estrogen-CYP1B1 landscape via GPER should be taken into account in setting novel pharmacological approaches targeting breast cancer development. PMID:29290975

  13. GPER is involved in the regulation of the estrogen-metabolizing CYP1B1 enzyme in breast cancer.

    PubMed

    Cirillo, Francesca; Pellegrino, Michele; Malivindi, Rocco; Rago, Vittoria; Avino, Silvia; Muto, Luigina; Dolce, Vincenza; Vivacqua, Adele; Rigiracciolo, Damiano Cosimo; De Marco, Paola; Sebastiani, Anna; Abonante, Sergio; Nakajima, Miki; Lappano, Rosamaria; Maggiolini, Marcello

    2017-12-05

    The cytochrome P450 1B1 (CYP1B1) is a heme-thiolate monooxygenase involved in both estrogen biosynthesis and metabolism. For instance, CYP1B1 catalyzes the hydroxylation of E2 leading to the production of 4-hydroxyestradiol that may act as a potent carcinogenic agent. In addition, CYP1B1 is overexpressed in different tumors including breast cancer. In this scenario, it is worth mentioning that CYP1B1 expression is triggered by estrogens through the estrogen receptor (ER)α in breast cancer cells. In the present study, we evaluated whether the G protein estrogen receptor namely GPER may provide an alternate route toward the expression and function of CYP1B1 in ER-negative breast cancer cells, in main players of the tumor microenvironment as cancer associated fibroblasts (CAFs) that were obtained from breast cancer patients, in CAFs derived from a cutaneous metastasis of an invasive mammary ductal carcinoma and in breast tumor xenografts. Our results show that GPER along with the EGFR/ERK/c-Fos transduction pathway can lead to CYP1B1 regulation through the involvement of a half-ERE sequence located within the CYP1B1 promoter region. As a biological counterpart, we found that both GPER and CYP1B1 mediate growth effects in vitro and in vivo . Altogether, our data suggest that estrogens in ER-negative cell contexts may engage the alternate GPER signaling toward CYP1B1 regulation. Estrogen-CYP1B1 landscape via GPER should be taken into account in setting novel pharmacological approaches targeting breast cancer development.

  14. TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies.

    PubMed

    Pike, Kelly A; Tremblay, Michel L

    2016-06-01

    Lymphoid malignancies are characterized by an accumulation of genetic lesions that act co-operatively to perturb signaling pathways and alter gene expression programs. The Janus kinases (JAK)-signal transducers and activators of transcription (STATs) pathway is one such pathway that is frequently mutated in leukemia and lymphoma. In response to cytokines and growth factors, a cascade of reversible tyrosine phosphorylation events propagates the JAK-STAT pathway from the cell surface to the nucleus. Activated STAT family members then play a fundamental role in establishing the transcriptional landscape of the cell. In leukemia and lymphoma, somatic mutations have been identified in JAK and STAT family members, as well as, negative regulators of the pathway. Most recently, inactivating mutations in the protein tyrosine phosphatase (PTP) genes PTPN1 (PTP1B) and PTPN2 (TC-PTP) were sequenced in B cell lymphoma and T cell acute lymphoblastic leukemia (T-ALL) respectively. The loss of PTP1B and TC-PTP phosphatase activity is associated with an increase in cytokine sensitivity, elevated JAK-STAT signaling, and changes in gene expression. As inactivation mutations in PTPN1 and PTPN2 are restricted to distinct subsets of leukemia and lymphoma, a future challenge will be to identify in which cellular contexts do they contributing to the initiation or maintenance of leukemogenesis or lymphomagenesis. As well, the molecular mechanisms by which PTP1B and TC-PTP loss co-operates with other genetic aberrations will need to be elucidated to design more effective therapeutic strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. PPARγ and NF-κB regulate the gene promoter activity of their shared repressor, TNIP1

    PubMed Central

    Gurevich, Igor; Zhang, Carmen; Encarnacao, Priscilla C.; Struzynski, Charles P.; Livings, Sarah E.; Aneskievich, Brian J.

    2011-01-01

    Human TNFAIP3 interacting protein 1 (TNIP1) has diverse functions including support of HIV replication through its interaction with viral Nef and matrix proteins, reduction of TNFα-induced signaling through its interaction with NF-κB pathway proteins, and corepression of agonist-bound retinoic acid receptors and peroxisome proliferator-activated receptors (PPAR). The wide tissue distribution of TNIP1 provides the opportunity to influence numerous cellular responses in these roles and defining control of TNIP1 expression would be central to improved understanding of its impact on cell function. We cloned 6kb of the human TNIP1 promoter and performed predictive and functional analyses to identify regulatory elements. The promoter region proximal to the transcription start site is GC-rich without a recognizable TATA box. In contrast to this proximal ~500bp region, 6kb of the promoter increased reporter construct constitutive activity over five-fold. Throughout the 6kb length, in silico analysis identified several potential binding sites for both constitutive and inducible transcription factors; among the latter were candidate NF-κB binding sequences and peroxisome proliferator response elements (PPREs). We tested NF-κB and PPAR regulation of the endogenous TNIP1 gene and cloned promoter by expression studies, electrophoretic mobility shift assays, and chromatin immunoprecipitations. We validated NF-κB sites in the TNIP1 promoter proximal and distal regions as well as one PPRE in the distal region. The ultimate control of the TNIP1 promoter is likely to be a combination of constitutive transcription factors and those subject to activation such as NF-κB and PPAR. PMID:22001530

  16. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis.

    PubMed

    Mehta, Minal B; Shewale, Swapnil V; Sequeira, Raymond N; Millar, John S; Hand, Nicholas J; Rader, Daniel J

    2017-06-23

    Maintenance of whole-body glucose homeostasis is critical to glycemic function. Genetic variants mapping to chromosome 8p23.1 in genome-wide association studies have been linked to glycemic traits in humans. The gene of known function closest to the mapped region, PPP1R3B (protein phosphatase 1 regulatory subunit 3B), encodes a protein (G L ) that regulates glycogen metabolism in the liver. We therefore sought to test the hypothesis that hepatic PPP1R3B is associated with glycemic traits. We generated mice with either liver-specific deletion ( Ppp1r3b Δ hep ) or liver-specific overexpression of Ppp1r3b The Ppp1r3b deletion significantly reduced glycogen synthase protein abundance, and the remaining protein was predominantly phosphorylated and inactive. As a consequence, glucose incorporation into hepatic glycogen was significantly impaired, total hepatic glycogen content was substantially decreased, and mice lacking hepatic Ppp1r3b had lower fasting plasma glucose than controls. The concomitant loss of liver glycogen impaired whole-body glucose homeostasis and increased hepatic expression of glycolytic enzymes in Ppp1r3b Δ hep mice relative to controls in the postprandial state. Eight hours of fasting significantly increased the expression of two critical gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, above the levels in control livers. Conversely, the liver-specific overexpression of Ppp1r3b enhanced hepatic glycogen storage above that of controls and, as a result, delayed the onset of fasting-induced hypoglycemia. Moreover, mice overexpressing hepatic Ppp1r3b upon long-term fasting (12-36 h) were protected from blood ketone-body accumulation, unlike control and Ppp1r3b Δ hep mice. These findings indicate a major role for Ppp1r3b in regulating hepatic glycogen stores and whole-body glucose/energy homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Aurora-B/AIM-1 Regulates the Dynamic Behavior of HP1α at the G2–M Transition

    PubMed Central

    2006-01-01

    Heterochromatin protein 1 (HP1) plays an important role in heterochromatin formation and undergoes large-scale, progressive dissociation from heterochromatin in prophase cells. However, the mechanisms regulating the dynamic behavior of HP1 are poorly understood. In this study, the role of Aurora-B was investigated with respect to the dynamic behavior of HP1α. Mammalian Aurora-B, AIM-1, colocalizes with HP1α to the heterochromatin in G2. Depletion of Aurora-B/AIM-1 inhibited dissociation of HP1α from the chromosome arms at the G2–M transition. In addition, depletion of INCENP led to aberrant cellular localization of Aurora-B/AIM-1, but it did not affect heterochromatin targeting of HP1α. It was proposed in the binary switch hypothesis that phosphorylation of histone H3 at Ser-10 negatively regulates the binding of HP1α to the adjacent methylated Lys-9. However, Aurora-B/AIM-1-mediated phosphorylation of H3 induced dissociation of the HP1α chromodomain but not of the intact protein in vitro, indicating that the center and/or C-terminal domain of HP1α interferes with the effect of H3 phosphorylation on HP1α dissociation. Interestingly, Lys-9 methyltransferase SUV39H1 is abnormally localized together along the metaphase chromosome arms in Aurora-B/AIM-1–depleted cells. In conclusion, these results showed that Aurora-B/AIM-1 is necessary for regulated histone modifications involved in binding of HP1α by the N terminus of histone H3 during mitosis. PMID:16687578

  18. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    PubMed Central

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y.

    2013-01-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF-Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrfl attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. PMID:23623971

  19. MiR-181b regulates steatosis in nonalcoholic fatty liver disease via targeting SIRT1.

    PubMed

    Wang, Yunxia; Zhu, Kongxi; Yu, Weihua; Wang, Hongjuan; Liu, Lan; Wu, Qiong; Li, Shuai; Guo, Jianqiang

    2017-11-04

    Non-alcoholic fatty liver diseases (NAFLD) is one of the leading cause of chronic liver diseases in the world. However, the pathogenesis of NAFLD is still unclear. Emerging studies have demonstrated that microRNAs (miRs) are profoundly involved in NAFLD and related metabolic diseases. Here, we investigated the mechanisms by which miR-181b influences NAFLD via direct targeting SIRT1. The expression of miR181b was up-regulated while SIRT1 was down-regulated in both human NAFLD patients and high fat diet (HFD) induced NAFDL mice model. And palmitic acid (PA) treatment increased the miR-181b expression while decreased SIRT1 expression in HepG2 cells. Further, we identified that SIRT1 is a direct downstream target of miR-181b. Ectopic expression of miR-181b significantly repressed the 3'-UTR reporter activities of SIRT1 in a dose-dependent manner, while the effect of miR-181b was interrupted when the binding site of miR-181b within the SIRT1 3'-UTR was mutated. And overexpression of miR-181b reduced both the mRNA and protein levels of SIRT1 in HepG2 cells. We also found that inhibition of miR-181b expression alleviates hepatic steatosis both in vitro and in vivo. And the effect of miR-181b on steatosis was blocked by SIRT1 overexpression. Taken together, our data indicated that increased expression of miR-181b potentially contributes to altered lipid metabolism in NAFLD. Downregulation of miR-34a may be a therapeutic strategy against NAFLD by regulating its target SIRT1. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. E1B-55K mediated regulation of RNF4 STUbL promotes HAdV gene expression.

    PubMed

    Müncheberg, Sarah; Hay, Ron T; Ip, Wing H; Meyer, Tina; Weiß, Christina; Brenke, Jara; Masser, Sawinee; Hadian, Kamyar; Dobner, Thomas; Schreiner, Sabrina

    2018-04-25

    HAdV E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in non-permissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 Ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established.RNF4, a cellular SUMO-targeted Ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM, and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNAi resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies. IMPORTANCE Daxx is a PML-NB-associated transcription factor, which was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 Ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain productive viral life

  1. Heterochromatin protein 1 gamma and IκB kinase alpha interdependence during tumour necrosis factor gene transcription elongation in activated macrophages.

    PubMed

    Thorne, James L; Ouboussad, Lylia; Lefevre, Pascal F

    2012-09-01

    B kinase α (IKKα) is part of the cytoplasmic IKK complex regulating nuclear factor-κB (NF-κB) release and translocation into the nucleus in response to pro-inflammatory signals. IKKα can also be recruited directly to the promoter of NF-κB-dependent genes by NF-κB where it phosphorylates histone H3 at serine 10, triggering recruitment of the bromodomain-containing protein 4 and the positive transcription elongation factor b. Herein, we report that IKKα travels with the elongating form of ribonucleic acid polymerase II together with heterochromatin protein 1 gamma (HP1γ) at NF-κB-dependent genes in activated macrophages. IKKα binds to and phosphorylates HP1γ, which in turn controls IKKα binding to chromatin and phosphorylation of the histone variant H3.3 at serine 31 within transcribing regions. Downstream of transcription end sites, IKKα accumulates with its inhibitor the CUE-domain containing protein 2, suggesting a link between IKKα inactivation and transcription termination.

  2. bZIP transcription factor SmJLB1 regulates autophagy-related genes Smatg8 and Smatg4 and is required for fruiting-body development and vegetative growth in Sordaria macrospora.

    PubMed

    Voigt, Oliver; Herzog, Britta; Jakobshagen, Antonia; Pöggeler, Stefanie

    2013-12-01

    Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions

    PubMed Central

    Shimizu, Kiminori; Paul, Sanjoy; Ohba, Ayumi; Gonoi, Tohru; Watanabe, Akira; Gomi, Katsuya

    2017-01-01

    Successful treatment of aspergillosis caused by Aspergillus fumigatus is threatened by an increasing incidence of drug resistance. This situation is further complicated by the finding that strains resistant to azoles, the major antifungal drugs for aspergillosis, have been widely disseminated across the globe. To elucidate mechanisms underlying azole resistance, we identified a novel transcription factor that is required for normal azole resistance in Aspergillus fungi including A. fumigatus, Aspergillus oryzae, and Aspergillus nidulans. This fungal-specific Zn2-Cys6 type transcription factor AtrR was found to regulate expression of the genes related to ergosterol biosynthesis, including cyp51A that encodes a target protein of azoles. The atrR deletion mutant showed impaired growth under hypoxic conditions and attenuation of virulence in murine infection model for aspergillosis. These results were similar to the phenotypes for a mutant strain lacking SrbA that is also a direct regulator for the cyp51A gene. Notably, AtrR was responsible for the expression of cdr1B that encodes an ABC transporter related to azole resistance, whereas SrbA was not involved in the regulation. Chromatin immunoprecipitation assays indicated that AtrR directly bound both the cyp51A and cdr1B promoters. In the clinically isolated itraconazole resistant strain that harbors a mutant Cyp51A (G54E), deletion of the atrR gene resulted in a hypersensitivity to the azole drugs. Together, our results revealed that AtrR plays a pivotal role in a novel azole resistance mechanism by co-regulating the drug target (Cyp51A) and putative drug efflux pump (Cdr1B). PMID:28052140

  4. miR-133b down-regulates ABCC1 and enhances the sensitivity of CRC to anti-tumor drugs.

    PubMed

    Chen, Miao; Li, Daojiang; Gong, Ni; Wu, Hao; Su, Chen; Xie, Canbin; Xiang, Hong; Lin, Changwei; Li, Xiaorong

    2017-08-08

    Multidrug resistance (MDR) is the main cause of failed chemotherapy treatments. Therefore, preventing MDR is pivotal in treating colorectal cancer (CRC). In a previous study miR-133b was shown to be a tumor suppressor. Additionally, in CRC cells transfected with miR-133b, ATP-binding cassette (ABC) subfamily C member 1(ABCC1) was shown to be significantly down regulated. Whether miR-133b also enhances the chemosensitivity of drugs used to treat CRC by targeting ABCC1 is still unclear. Here, we utilized flow cytometry and high-performance liquid chromatography (HPLC) analysis to identify the ability of miR-133b to reserve MDR in CRC. We then used a dual-luciferase reporter assay to validate that miR-133b targets ABCC1. Further in vivo experiments were designed to validate the method in which miR-133b reversed MDR in CRC cells. The results demonstrated that the level of miR-133b was down-regulated and the expression of ABCC1 was up-regulated in drug-resistant CRC cells compared to non-drug-resistant CRC cells. The restoration of miR-133b expression in CRC drug-resistant cells in vitro resulted in reduced IC50s to chemotherapeutic drugs, significantly induced G1 accumulation, inhibited growth and promoted necrosis in combination with either 5-fluorouracil (5-FU) or vincristine (VCR), and decreased the expression of ABCC1. The dual-luciferase assay demonstrated that miR-133b directly targets ABCC1. The combination of agomiRNA-133b with chemotherapeutic drugs in vivo inhibited tumor growth induced by CRC drug-resistant cells. A xenograft from the in vivo model resulted in up-regulated levels of miR-133b and down-regulated levels of ABCC1. Therefore, miR-133b enhances the chemosensitivity of CRC cells to anti-tumor drugs by directly down-regulating ABCC1. This discovery provides a therapeutic strategy in which miR-133b is used as a potential sensitizer for drug-resistant CRC.

  5. Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP

    PubMed Central

    Galic, Sandra; Hauser, Christine; Kahn, Barbara B.; Haj, Fawaz G.; Neel, Benjamin G.; Tonks, Nicholas K.; Tiganis, Tony

    2005-01-01

    The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell. PMID:15632081

  6. PTP1B is a negative regulator of interleukin 4–induced STAT6 signaling

    PubMed Central

    Lu, Xiaoqing; Malumbres, Raquel; Shields, Benjamin; Jiang, Xiaoyu; Sarosiek, Kristopher A.; Natkunam, Yasodha

    2008-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed enzyme shown to negatively regulate multiple tyrosine phosphorylation-dependent signaling pathways. PTP1B can modulate cytokine signaling pathways by dephosphorylating JAK2, TYK2, and STAT5a/b. Herein, we report that phosphorylated STAT6 may serve as a cytoplasmic substrate for PTP1B. Overexpression of PTP1B led to STAT6 dephosphorylation and the suppression of STAT6 transcriptional activity, whereas PTP1B knockdown or deficiency augmented IL-4–induced STAT6 signaling. Pretreatment of these cells with the PTK inhibitor staurosporine led to sustained STAT6 phosphorylation consistent with STAT6 serving as a direct substrate of PTP1B. Furthermore, PTP1B-D181A “substrate-trapping” mutants formed stable complexes with phosphorylated STAT6 in a cellular context and endogenous PTP1B and STAT6 interacted in an interleukin 4 (IL-4)–inducible manner. We delineate a new negative regulatory loop of IL-4–JAK-STAT6 signaling. We demonstrate that IL-4 induces PTP1B mRNA expression in a phosphatidylinositol 3-kinase–dependent manner and enhances PTP1B protein stability to suppress IL-4–induced STAT6 signaling. Finally, we show that PTP1B expression may be preferentially elevated in activated B cell–like diffuse large B-cell lymphomas. These observations identify a novel regulatory loop for the regulation of IL-4–induced STAT6 signaling that may have important implications in both neoplastic and inflammatory processes. PMID:18716132

  7. Poly (ADP-Ribose) Polymerase-1 (PARP-1) Induction by Cocaine Is Post-Transcriptionally Regulated by miR-125b

    PubMed Central

    Dash, Sabyasachi; Balasubramaniam, Muthukumar; Godino, Arthur; Villalta, Fernando; Calipari, Erin S.; Dash, Chandravanu

    2017-01-01

    Abstract Cocaine exposure alters gene expression in the brain via methylation and acetylation of histones along with methylation of DNA. Recently, poly (ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation has been reported as an important regulator of cocaine-mediated gene expression. In this study, we report that the cellular microRNA “miR-125b” plays a key role for cocaine-induced PARP-1 expression. Acute and chronic cocaine exposure resulted in the downregulation of miR-125b concurrent with upregulation of PARP-1 in dopaminergic neuronal cells and nucleus accumbens (NAc) of mice but not in the medial prefrontal cortex (PFC) or ventral tegmental area (VTA). In silico analysis predicted a binding site of miR-125b in a conserved 3’-untranslated region (3’UTR) of the PARP-1 mRNA. Knockdown and overexpression studies showed that miR-125b levels negatively correlate with PARP-1 protein expression. Luciferase reporter assay using a vector containing the 3’UTR of PARP-1 mRNA confirmed regulation of PARP-1 by miR-125b. Specific nucleotide mutations within the binding site abrogated miR-125b’s regulatory effect on PARP-1 3’UTR. Finally, we established that downregulation of miR-125b and concurrent upregulation of PARP-1 is dependent on binding of cocaine to the dopamine transporter (DAT). Collectively, these results identify miR-125b as a post-transcriptional regulator of PARP-1 expression and establish a novel mechanism underlying the molecular effects of cocaine action. PMID:28828398

  8. Macrophage-derived LIF and IL1B regulate alpha(1,2)fucosyltransferase 2 (Fut2) expression in mouse uterine epithelial cells during early pregnancy.

    PubMed

    Jasper, Melinda J; Care, Alison S; Sullivan, Brad; Ingman, Wendy V; Aplin, John D; Robertson, Sarah A

    2011-01-01

    Macrophages accumulate within stromal tissue subjacent to the luminal epithelium in the mouse uterus during early pregnancy after seminal fluid exposure at coitus. To investigate their role in regulating epithelial cell expression of fucosylated structures required for embryo attachment and implantation, fucosyltransferase enzymes Fut1, Fut2 (Enzyme Commission number [EC] 2.4.1.69), and Fut4 (EC 2.4.1.214) and Muc1 and Muc4 mRNAs were quantified by quantitative real-time PCR in uterine epithelial cells after laser capture microdissection in situ or after epithelial cell coculture with macrophages or macrophage-secreted factors. When uterine macrophage recruitment was impaired by mating with seminal plasma-deficient males, epithelial cell Fut2 expression on Day 3.5 postcoitus (pc) was reduced compared to intact-mated controls. Epithelial cell Fut2 was upregulated in vitro by coculture with macrophages or macrophage-conditioned medium (MCM). Macrophage-derived cytokines LIF, IL1B, and IL12 replicated the effect of MCM on Fut2 mRNA expression, and MCM-stimulated expression was inhibited by anti-LIF and anti-IL1B neutralizing antibodies. The effects of acute macrophage depletion on fucosylated structures detected with lectins Ulex europaeus 1 (UEA-1) and Lotus tetragonolobus purpureas (LTP), or LewisX immunoreactivity, were quantified in vivo in Cd11b-dtr transgenic mice. Depletion of macrophages caused a 30% reduction in luminal epithelial UEA-1 staining and a 67% reduction in LewisX staining in uterine tissues of mice hormonally treated to mimic early pregnancy. Together, these data demonstrate that uterine epithelial Fut2 mRNA expression and terminal fucosylation of embryo attachment ligands is regulated in preparation for implantation by factors including LIF and IL1B secreted from macrophages recruited during the inflammatory response to insemination.

  9. Regulation of HTLV-1 Tax Stability, Cellular Trafficking and NF-κB Activation by the Ubiquitin-Proteasome Pathway

    PubMed Central

    Lavorgna, Alfonso; Harhaj, Edward William

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%–5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis. PMID:25341660

  10. LeERF-1, a novel AP2/ERF family gene within the B3 subcluster, is down-regulated by light signals in Lithospermum erythrorhizon.

    PubMed

    Zhang, W; Zou, A; Miao, J; Yin, Y; Tian, R; Pang, Y; Yang, R; Qi, J; Yang, Y

    2011-03-01

    We previously showed that ethylene might be involved in the process of shikonin biosynthesis regulated by light signals. Here, we cloned a full-length cDNA of LeERF-1, a putative ethylene response factor gene, from Lithospermum erythrorhizon using the RACE (rapid amplification of cDNA ends) method. Phylogenetic analysis revealed that LeERF-1 was classified in the B3 subfamily, together with ERF1 and ORA59 of Arabidopsis. Heterologous expression of LeERF-1 in Arabidopsis showed that LeERF-1:eGFP fusion protein was precisely localised to the nucleus, implying that it might function as a transcription factor. Detailed expression analysis with real-time PCR showed that LeERF-1 was significantly down-regulated by white, blue and red light, although the inhibitory effect of red light was relatively weak compared to other light conditions. Tissue-specific expression analysis also indicated that LeERF-1 was dominantly expressed in the roots, which grow in soil in darkness. These patterns are all consistent with the effects of different light signals on regulating formation of shikonin and its derivatives, indicating that LeERF-1 might be a crucial positive regulator, like other B3 subfamily proteins (such as ORCA3 and ORA59), in regulating biosynthesis of secondary metabolites. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Modulatory effect of silymarin on nuclear factor-erythroid-2-related factor 2 regulated redox status, nuclear factor-κB mediated inflammation and apoptosis in experimental gastric ulcer.

    PubMed

    Arafa Keshk, Walaa; Zahran, Samer Mahmoud; Katary, Mohamed Alaa; Abd-Elaziz Ali, Darin

    2017-08-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) consumption has been commonly associated with gastric mucosal lesions including gastric ulcer. Silymarin (SM) is a flavonoid mixture with anti-oxidant and anti-inflammatory activities which explain its protective role against hepatic and renal injuries. However, its impact on gastric ulcer has not yet been elucidated. Thus we went further to investigate the potential protective effects of SM against indomethacin-induced gastric injury in rats. Pretreatment with SM (50 mg/kg orally) attenuated the severity of gastric mucosal damage as evidenced by decreasing ulcer index (UI) and ulcer score, improvement of disturbed histopathologicl features to be insignificant with those induced by the reference anti-ulcer drug. Pretreatment with SM also suppressed gastric inflammation by decreasing myeloperoxidase activity, tumer necrosis factor-α (TNF- α) and interleukin 6 (IL6) levels along with nuclear factor kappa B p65 (NF-κB) expression. Meanwhile, SM prevent gastric oxidative stress via inhibition of lipid peroxides formation, enhancement of glutathione peroxidase, superoxide dismutase activities and up-regulation of nuclear factor-erythroid-2-related factor 2 (Nrf2), the redox-sensitive master regulator of oxidative stress signaling. In conclusion, the results herein revealed that SM has a gastro-protective effect which is mediated via suppression of gastric inflammation, oxidative stress, increased the anti-oxidant and the cyto-protective defense mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Institutional Communication Dynamics in Instructional Effectiveness: Development of a Student Self-Report Measure of FVP, LMX, and TMX in a Pedagogical Context

    ERIC Educational Resources Information Center

    Lucas, Aaron D.; Voss, Roger Alan; Krumwiede, Dennis W.

    2015-01-01

    Fractal vertical polarization (FVP) has joined leader-member exchange (LMX) and team member exchange (TMX) as one of the available models of communication dynamics based on complexity theory, which now all benefit from valid scales for use in organizational settings. The purpose of these models is to assess the quality of interpersonal information…

  13. Role of thrombospondin-1 and nuclear factor-kappa B signaling pathways in anti-angiogenesis of infantile hemangioma.

    PubMed

    Xu, Weili; Li, Suolin; Yu, Fengxue; Zhang, Yongting; Yang, Xiaofeng; An, Wenting; Wang, Wenbo; Sun, Chi

    2018-06-12

    Propranolol (PRO) is the first-line drug for infantile hemangioma treatment. However, its mechanism of action remains unclear. Nuclear factor-kappa B (NF-κB) is highly expressed in tumors, directly or indirectly promoting angiogenesis. Thrombospondin-1 (TSP-1) is the most important anti-angiogenesis protein in vivo. These proteins mediate signaling pathways, probably playing an important role in hemangioma treatment. This study explored the synergistic regulation of TSP-1 and NF-κB signaling pathways in the treatment of hemangioma with PRO. The hemangioma-derived endothelial cells (HemECs) were sorted out from the specimens of proliferative hemangioma by flow cytometry. Furthermore, a BALB/c nude mice hemangioma model was established. Viability and proliferation of HemECs, and the role of TSP-1 and NF-κB signaling pathways were observed after PRO administration in vitro and in vivo. The expressions of TSP-1 and its receptor cluster of differentiation 36 (CD36) in HemECs gradually increased with the increase in PRO concentration, while the expressions of NF-κBp65, phosphorylated inhibitor of kappa B alpha (p-IκBα), and phosphorylated inhibitor of NF-κB kinase beta (p-IκKβ) weakened gradually (p < 0.05). In vivo, the tumors shrank gradually after PRO treatment, with increase in TSP-1 and CD36, and decrease in NF-κBp65, p-IκBα, and p-IκKβ (p < 0.05). Glucocorticoid improved the anti-angiogenesis mediated by TSP-1/CD36 and inhibited the angiogenesis mediated by NF-κB/IκB (p < 0.05). Negative regulation occurred between the two signaling pathways. The treatment of infantile hemangioma with PRO is promising to promote TSP-1-mediated anti-angiogenesis and block NF-κB-mediated angiogenesis.

  14. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway.

    PubMed

    Li, Cheng-Zong; Jiang, Xiao-Jie; Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling

    2018-01-01

    Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental

  15. A positive feedback loop involving EGFR/Akt/mTORC1 and IKK/NF-κB regulates head and neck squamous cell carcinoma proliferation

    PubMed Central

    Li, Zhipeng; Yang, Zejia; Passaniti, Antonino; Lapidus, Rena G.; Liu, Xuefeng; Cullen, Kevin J.; Dan, Han C.

    2016-01-01

    The overexpression or mutation of epidermal growth factor receptor (EGFR) has been associated with a number of cancers, including head and neck squamous cell carcinoma (HNSCC). Increasing evidence indicates that both the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of Rapamycin (mTOR) and the nuclear factor-kappa B (NF-κB) are constitutively active and contribute to aggressive HNSCC downstream of EGFR. However, whether these two oncogenic signaling pathways exhibit molecular and functional crosstalk in HNSCC is unclear. Our results now reveal that mTORC1, not mTORC2, contributes to NF-κB activation downstream of EGFR/PI3K/Akt signaling. Mechanistically, mTORC1 enhances the inhibitor of nuclear factor kappa-B kinase (IKK) activity to accelerate NF-κB signaling. Concomitantly, activated NF-κB/IKK up-regulates EGFR expression through positive feedback regulation. Blockage of NF-κB/IKK activity by the novel IKKβ specific inhibitor, CmpdA, leads to significant inhibition of cell proliferation and induction of apoptosis. CmpdA also sensitizes intrinsic cisplatin-resistant HNSCC cells to cisplatin treatment. Our findings reveal a new mechanism by which EGFR/PI3K/Akt/mTOR signaling promotes head and neck cancer progression and underscores the need for developing a therapeutic strategy for targeting IKK/NF-κB either as a single agent or in combination with cisplatin in head and neck cancer. PMID:26895469

  16. Kinesin 1 regulates cilia length through an interaction with the Bardet-Biedl syndrome related protein CCDC28B.

    PubMed

    Novas, Rossina; Cardenas-Rodriguez, Magdalena; Lepanto, Paola; Fabregat, Matías; Rodao, Magela; Fariello, María Inés; Ramos, Mauricio; Davison, Camila; Casanova, Gabriela; Alfaya, Lucía; Lecumberry, Federico; González-Sapienza, Gualberto; Irigoín, Florencia; Badano, Jose L

    2018-02-14

    Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, polydactyly, renal disease and mental retardation. CCDC28B is a BBS-associated protein that we have previously shown plays a role in cilia length regulation whereby its depletion results in shortened cilia both in cells and Danio rerio (zebrafish). At least part of that role is achieved by its interaction with the mTORC2 component SIN1, but the mechanistic details of this interaction and/or additional functions that CCDC28B might play in the context of cilia remain poorly understood. Here we uncover a novel interaction between CCDC28B and the kinesin 1 molecular motor that is relevant to cilia. CCDC28B interacts with kinesin light chain 1 (KLC1) and the heavy chain KIF5B. Notably, depletion of these kinesin 1 components results in abnormally elongated cilia. Furthermore, through genetic interaction studies we demonstrate that kinesin 1 regulates ciliogenesis through CCDC28B. We show that kinesin 1 regulates the subcellular distribution of CCDC28B, unexpectedly, inhibiting its nuclear accumulation, and a ccdc28b mutant missing a nuclear localization motif fails to rescue the phenotype in zebrafish morphant embryos. Therefore, we uncover a previously unknown role of kinesin 1 in cilia length regulation that relies on the BBS related protein CCDC28B.

  17. Etsrp/Etv2 is directly regulated by Foxc1a/b in the zebrafish angioblast.

    PubMed

    Veldman, Matthew B; Lin, Shuo

    2012-01-20

    Endothelial cells are developmentally derived from angioblasts specified in the mesodermal germ cell layer. The transcription factor etsrp/etv2 is at the top of the known genetic hierarchy for angioblast development. The transcriptional events that induce etsrp expression and angioblast specification are not well understood. We generated etsrp:gfp transgenic zebrafish and used them to identify regulatory regions and transcription factors critical for etsrp expression and angioblast specification from mesoderm. To investigate the mechanisms that initiate angioblast cell transcription during embryogenesis, we have performed promoter analysis of the etsrp locus in zebrafish. We describe three enhancer elements sufficient for endothelial gene expression when place in front of a heterologous promoter. The deletion of all 3 regulatory regions led to a near complete loss of endothelial expression from the etsrp promoter. One of the enhancers, located 2.3 kb upstream of etsrp contains a consensus FOX binding site that binds Foxc1a and Foxc1b in vitro by EMSA and in vivo using ChIP. Combined knockdown of foxc1a/b, using morpholinos, led to a significant decrease in etsrp expression at early developmental stages as measured by quantitative reverse transcriptase-polymerase chain reaction and in situ hybridization. Decreased expression of primitive erythrocyte genes scl and gata1 was also observed, whereas pronephric gene pax2a was relatively normal in expression level and pattern. These findings identify mesodermal foxc1a/b as a direct upstream regulator of etsrp in angioblasts. This establishes a new molecular link in the process of mesoderm specification into angioblast.

  18. Subcellular targeting of p33ING1b by phosphorylation-dependent 14-3-3 binding regulates p21WAF1 expression.

    PubMed

    Gong, Wei; Russell, Michael; Suzuki, Keiko; Riabowol, Karl

    2006-04-01

    ING1 is a type II tumor suppressor that affects cell growth, stress signaling, apoptosis, and DNA repair by altering chromatin structure and regulating transcription. Decreased ING1 expression is seen in several human cancers, and mislocalization has been noted in diverse types of cancer cells. Aberrant targeting may, therefore, functionally inactivate ING1. Bioinformatics analysis identified a sequence between the nuclear localization sequence and plant homeodomain domains of ING1 that closely matched the binding motif of 14-3-3 proteins that target cargo proteins to specific subcellular locales. We find that the widely expressed p33(ING1b) splicing isoform of ING1 interacts with members of the 14-3-3 family of proteins and that this interaction is regulated by the phosphorylation status of ING1. 14-3-3 binding resulted in significant amounts of p33(ING1b) protein being tethered in the cytoplasm. As shown previously, ectopic expression of p33(ING1b) increased levels of the p21(Waf1) cyclin-dependent kinase inhibitor upon UV-induced DNA damage. Overexpression of 14-3-3 inhibited the up-regulation of p21(Waf1) by p33(ING1b), consistent with the idea that mislocalization blocks at least one of ING1's biological activities. These data support the idea that the 14-3-3 proteins play a crucial role in regulating the activity of p33(ING1b) by directing its subcellular localization.

  19. Redox Regulation of NF-κB p50 and M1 Polarization in Microglia

    PubMed Central

    Taetzsch, Thomas; Levesque, Shannon; McGraw, Constance; Brookins, Savannah; Luqa, Rafy; Bonini, Marcelo G.; Mason, Ronald P.; Oh, Unsong; Block, Michelle L.

    2014-01-01

    Redox-signaling is implicated in deleterious microglial activation underlying CNS disease, but how ROS program aberrant microglial function is unknown. Here, the oxidation of NF-κB p50 to a free radical intermediate is identified as a marker of dysfunctional M1 (pro-inflammatory) polarization in microglia. Microglia exposed to steady fluxes of H2O2 showed altered NF-κB p50 protein-protein interactions, decreased NF-κB p50 DNA binding, and augmented late-stage TNFα expression, indicating that H2O2 impairs NF-κB p50 function and prolongs amplified M1 activation. NF-κB p50−/− mice and cultures exhibited a disrupted M2 (alternative) response and impaired resolution of the M1 response. Persistent neuroinflammation continued 1 week after LPS (1mg/kg, IP) administration in the NF-κB p50−/− mice. However, peripheral inflammation had already resolved in both strains of mice. Treatment with the spin-trap DMPO mildly reduced LPS-induced 22 h TNFα in the brain in NF-κB p50+/+ mice. Interestingly, DMPO failed to reduce and strongly augmented brain TNFα production in NF-κB p50−/− mice, implicating a fundamental role for NF-κB p50 in the regulation of chronic neuroinflammation by free radicals. These data identify NF-κB p50 as a key redox-signaling mechanism regulating the M1/M2 balance in microglia, where loss of function leads to a CNS-specific vulnerability to chronic inflammation. PMID:25331559

  20. Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos

    PubMed Central

    Yeung, Fan; Chung, Eunhee; Guess, Martin G.; Bell, Matthew L.; Leinwand, Leslie A.

    2012-01-01

    The sarcomeric myosin gene, Myh7b, encodes an intronic microRNA, miR-499, which regulates cardiac and skeletal muscle biology, yet little is known about its transcriptional regulation. To identify the transcription factors involved in regulating Myh7b/miR-499 gene expression, we have mapped the transcriptional start sites and identified an upstream 6.2 kb region of the mouse Myh7b gene whose activity mimics the expression pattern of the endogenous Myh7b gene both in vitro and in vivo. Through promoter deletion analysis, we have mapped a distal E-box element and a proximal Ikaros site that are essential for Myh7b promoter activity in muscle cells. We show that the myogenic regulatory factors, MyoD, Myf5 and Myogenin, bind to the E-box, while a lymphoid transcription factor, Ikaros 4 (Eos), binds to the Ikaros motif. Further, we show that through physical interaction, MyoD and Eos form an active transcriptional complex on the chromatin to regulate the expression of the endogenous Myh7b/miR-499 gene in muscle cells. We also provide the first evidence that Eos can regulate expression of additional myosin genes (Myosin 1 and β-Myosin) via the miR-499/Sox6 pathway. Therefore, our results indicate a novel role for Eos in the regulation of the myofiber gene program. PMID:22638570

  1. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.

    PubMed

    Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte

    2016-01-01

    Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.

  2. Cell cycle-dependent regulation of Greatwall kinase by protein phosphatase 1 and regulatory subunit 3B.

    PubMed

    Ren, Dapeng; Fisher, Laura A; Zhao, Jing; Wang, Ling; Williams, Byron C; Goldberg, Michael L; Peng, Aimin

    2017-06-16

    Greatwall (Gwl) kinase plays an essential role in the regulation of mitotic entry and progression. Mitotic activation of Gwl requires both cyclin-dependent kinase 1 (CDK1)-dependent phosphorylation and its autophosphorylation at an evolutionarily conserved serine residue near the carboxyl terminus (Ser-883 in Xenopus ). In this study we show that Gwl associates with protein phosphatase 1 (PP1), particularly PP1γ, which mediates the dephosphorylation of Gwl Ser-883. Consistent with the mitotic activation of Gwl, its association with PP1 is disrupted in mitotic cells and egg extracts. During mitotic exit, PP1-dependent dephosphorylation of Gwl Ser-883 occurs prior to dephosphorylation of other mitotic substrates; replacing endogenous Gwl with a phosphomimetic S883E mutant blocks mitotic exit. Moreover, we identified PP1 regulatory subunit 3B (PPP1R3B) as a targeting subunit that can direct PP1 activity toward Gwl. PPP1R3B bridges PP1 and Gwl association and promotes Gwl Ser-883 dephosphorylation. Consistent with the cell cycle-dependent association of Gwl and PP1, Gwl and PPP1R3B dissociate in M phase. Interestingly, up-regulation of PPP1R3B facilitates mitotic exit and blocks mitotic entry. Thus, our study suggests PPP1R3B as a new cell cycle regulator that functions by governing Gwl dephosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Cystatin B and HIV regulate the STAT-1 signaling circuit in HIV-infected and INF-β-treated human macrophages.

    PubMed

    Rivera, L E; Kraiselburd, E; Meléndez, L M

    2016-10-01

    Cystatin B is a cysteine protease inhibitor that induces HIV replication in monocyte-derived macrophages (MDM). This protein interacts with signal transducer and activator of transcription (STAT-1) factor and inhibits the interferon (IFN-β) response in Vero cells by preventing STAT-1 translocation to the nucleus. Cystatin B also decreases the levels of tyrosine-phosphorylated STAT-1 (STAT-1PY). However, the mechanisms of cystatin B regulation on STAT-1 phosphorylation in MDM are unknown. We hypothesized that cystatin B inhibits IFN-β antiviral responses and induces HIV replication in macrophage reservoirs through the inhibition of STAT-1 phosphorylation. Macrophages were transfected with cystatin B siRNA prior to interferon-β treatment or infected with HIV-ADA to determine the effect of cystatin B modulation in STAT-1 localization and activation using immunofluorescence and proximity ligation assays. Cystatin B decreased STAT-1PY and its transportation to the nucleus, while HIV infection retained unphosphorylated STAT (USTAT-1) in the nucleus avoiding its exit to the cytoplasm for eventual phosphorylation. In IFN-β-treated MDM, cystatin B inhibited the nuclear translocation of both, USTAT-1 and STAT-1PY. These results demonstrate that cystatin B interferes with the STAT-1 signaling and IFN-β-antiviral responses perpetuating HIV in macrophage reservoirs.

  4. Nuclear factor erythroid-2-related factor regulates LRWD1 expression and cellular adaptation to oxidative stress in human embryonal carcinoma cells.

    PubMed

    Hung, Jui-Hsiang; Wee, Shi-Kae; Omar, Hany A; Su, Chia-Hui; Chen, Hsing-Yi; Chen, Pin-Shern; Chiu, Chien-Chih; Wu, Ming-Syuan; Teng, Yen-Ni

    2018-05-01

    Leucine-rich repeats and WD repeat domain-containing protein 1 (LRWD1) is implicated in the regulation of signal transduction, transcription, RNA processing and tumor development. However, LRWD1 transcriptional regulation is not fully understood. This study aimed to investigate the relationship between LRWD1 expression and reactive oxygen species (ROS) level in human embryonal carcinoma cell line, NT2/D1 cells, which will help in understanding the transcriptional regulatory role of ROS in cells. Results showed that the exposure of NT2/D1 cells to various concentrations of hydrogen peroxide (H 2 O 2 ) and the nitric oxide (NO) donor sodium nitroprusside (SNP) caused a significant increase in the mRNA and protein expression of LRWD1. In addition, LRWD1 promoter luciferase reporter assay, and Chromatin Immunoprecipitation assay (CHIP assay) showed that nuclear factor erythroid-2-related factor (Nrf2) was involved in the regulation of LRWD1 expression in response to oxidative stress. The involvement of Nrf2 was confirmed by shRNA-mediated knockdown of Nrf2 in NT2/D1 cells, which caused a significant decrease in LRWD1 expression in response to oxidative stress. Similarly, LRWD1 knockdown resulted in the accumulation of H 2 O 2 and superoxide anion radical (O2-). Blocking ROS production by N-acetyl cysteine (NAC) protected NT2/D1 shLRWD1cells from H 2 O 2 -induced cell death. Collectively, oxidative stress increased LRWD1 expression through a Nrf2-dependent mechanism, which plays an important role in cellular adaptation to oxidative stress. These results highlight an evidence, on the molecular level, about LRWD1 transcriptional regulation under oxidative stress. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. The C-Terminal Domain of Nrf1 Negatively Regulates the Full-Length CNC-bZIP Factor and Its Shorter Isoform LCR-F1/Nrf1β; Both Are Also Inhibited by the Small Dominant-Negative Nrf1γ/δ Isoforms that Down-Regulate ARE-Battery Gene Expression

    PubMed Central

    Zhang, Yiguo; Qiu, Lu; Li, Shaojun; Xiang, Yuancai; Chen, Jiayu; Ren, Yonggang

    2014-01-01

    The C-terminal domain (CTD, aa 686–741) of nuclear factor-erythroid 2 p45-related factor 1 (Nrf1) shares 53% amino acid sequence identity with the equivalent Neh3 domain of Nrf2, a homologous transcription factor. The Neh3 positively regulates Nrf2, but whether the Neh3-like (Neh3L) CTD of Nrf1 has a similar role in regulating Nrf1-target gene expression is unknown. Herein, we report that CTD negatively regulates the full-length Nrf1 (i.e. 120-kDa glycoprotein and 95-kDa deglycoprotein) and its shorter isoform LCR-F1/Nrf1β (55-kDa). Attachment of its CTD-adjoining 112-aa to the C-terminus of Nrf2 yields the chimaeric Nrf2-C112Nrf1 factor with a markedly decreased activity. Live-cell imaging of GFP-CTD reveals that the extra-nuclear portion of the fusion protein is allowed to associate with the endoplasmic reticulum (ER) membrane through the amphipathic Neh3L region of Nrf1 and its basic c-tail. Thus removal of either the entire CTD or the essential Neh3L portion within CTD from Nrf1, LCR-F1/Nrf1β and Nrf2-C112Nrf1, results in an increase in their transcriptional ability to regulate antioxidant response element (ARE)-driven reporter genes. Further examinations unravel that two smaller isoforms, 36-kDa Nrf1γ and 25-kDa Nrf1δ, act as dominant-negative inhibitors to compete against Nrf1, LCR-F1/Nrf1β and Nrf2. Relative to Nrf1, LCR-F1/Nrf1β is a weak activator, that is positively regulated by its Asn/Ser/Thr-rich (NST) domain and acidic domain 2 (AD2). Like AD1 of Nrf1, both AD2 and NST domain of LCR-F1/Nrf1β fused within two different chimaeric contexts to yield Gal4D:Nrf1β607 and Nrf1β:C270Nrf2, positively regulate their transactivation activity of cognate Gal4- and Nrf2-target reporter genes. More importantly, differential expression of endogenous ARE-battery genes is attributable to up-regulation by Nrf1 and LCR-F1/Nrf1β and down-regulation by Nrf1γ and Nrf1δ. PMID:25290918

  6. The C-terminal domain of Nrf1 negatively regulates the full-length CNC-bZIP factor and its shorter isoform LCR-F1/Nrf1β; both are also inhibited by the small dominant-negative Nrf1γ/δ isoforms that down-regulate ARE-battery gene expression.

    PubMed

    Zhang, Yiguo; Qiu, Lu; Li, Shaojun; Xiang, Yuancai; Chen, Jiayu; Ren, Yonggang

    2014-01-01

    The C-terminal domain (CTD, aa 686-741) of nuclear factor-erythroid 2 p45-related factor 1 (Nrf1) shares 53% amino acid sequence identity with the equivalent Neh3 domain of Nrf2, a homologous transcription factor. The Neh3 positively regulates Nrf2, but whether the Neh3-like (Neh3L) CTD of Nrf1 has a similar role in regulating Nrf1-target gene expression is unknown. Herein, we report that CTD negatively regulates the full-length Nrf1 (i.e. 120-kDa glycoprotein and 95-kDa deglycoprotein) and its shorter isoform LCR-F1/Nrf1β (55-kDa). Attachment of its CTD-adjoining 112-aa to the C-terminus of Nrf2 yields the chimaeric Nrf2-C112Nrf1 factor with a markedly decreased activity. Live-cell imaging of GFP-CTD reveals that the extra-nuclear portion of the fusion protein is allowed to associate with the endoplasmic reticulum (ER) membrane through the amphipathic Neh3L region of Nrf1 and its basic c-tail. Thus removal of either the entire CTD or the essential Neh3L portion within CTD from Nrf1, LCR-F1/Nrf1β and Nrf2-C112Nrf1, results in an increase in their transcriptional ability to regulate antioxidant response element (ARE)-driven reporter genes. Further examinations unravel that two smaller isoforms, 36-kDa Nrf1γ and 25-kDa Nrf1δ, act as dominant-negative inhibitors to compete against Nrf1, LCR-F1/Nrf1β and Nrf2. Relative to Nrf1, LCR-F1/Nrf1β is a weak activator, that is positively regulated by its Asn/Ser/Thr-rich (NST) domain and acidic domain 2 (AD2). Like AD1 of Nrf1, both AD2 and NST domain of LCR-F1/Nrf1β fused within two different chimaeric contexts to yield Gal4D:Nrf1β607 and Nrf1β:C270Nrf2, positively regulate their transactivation activity of cognate Gal4- and Nrf2-target reporter genes. More importantly, differential expression of endogenous ARE-battery genes is attributable to up-regulation by Nrf1 and LCR-F1/Nrf1β and down-regulation by Nrf1γ and Nrf1δ.

  7. Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2.

    PubMed Central

    Duckett, C S; Gedrich, R W; Gilfillan, M C; Thompson, C B

    1997-01-01

    CD30 is a lymphoid cell-specific surface receptor which was originally identified as an antigen expressed on Hodgkin's lymphoma cells. Activation of CD30 induces the nuclear factor kappaB (NF-kappaB) transcription factor. In this study, we define the domains in CD30 which are required for NF-kappaB activation. Two separate elements of the cytoplasmic domain which were capable of inducing NF-kappaB independently of one another were identified. The first domain (domain 1) mapped to a approximately 120-amino-acid sequence in the membrane-proximal region of the CD30 cytoplasmic tail, between residues 410 and 531. A second, more carboxy-terminal region (domain 2) was identified between residues 553 and 595. Domain 2 contains two 5- to 10-amino-acid elements which can mediate the binding of CD30 to members of the tumor necrosis factor receptor-associated factor (TRAF) family of signal transducing proteins. Coexpression of CD30 with TRAF1 or TRAF2 but not TRAF3 augmented NF-kappaB activation through domain 2 but not domain 1. NF-kappaB induction through domain 2 was inhibited by coexpression of either full-length TRAF3 or dominant negative forms of TRAF1 or TRAF2. In contrast, NF-kappaB induction by domain 1 was not affected by alterations in TRAF protein levels. Together, these data support a model in which CD30 can induce NF-kappaB by both TRAF-dependent and -independent mechanisms. TRAF-dependent induction of NF-kappaB appears to be regulated by the relative levels of individual TRAF proteins in the cell. PMID:9032281

  8. MicroRNA-130b targets Fmr1 and regulates embryonic neural progenitor cell proliferation and differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Xi; Zhang, Kunshan; Wang, Yanlu

    2013-10-04

    Highlights: •We found that the 3′ UTR of the Fmr1 mRNA is a target of miR-130b. •MiR-130b suppresses the expression of Fmr1 in mouse embryonic stem cell. •MiR-130b alters the proliferation of mouse embryonic stem cell. •MiR-130b alters fate specification of mouse embryonic stem cell. -- Abstract: Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by expansion of the CGG repeat in the 5′-untranslated region of the X-linked Fmr1 gene, which results in transcriptional silencing and loss of expression of its encoded protein FMRP. The loss of FMRP increases proliferation and alters fatemore » specification in adult neural progenitor cells (aNPCs). However, little is known about Fmr1 mRNA regulation at the transcriptional and post-transcriptional levels. In the present study, we report that miR-130b regulated Fmr1 expression by directly targeting its 3′-untranslated region (3′ UTR). Up-regulation of miR-130b in mouse embryonic neural progenitor cells (eNPCs) decreased Fmr1 expression, markedly increased eNPC proliferation and altered the differentiation tendency of eNPCs, suggesting that antagonizing miR-130b may be a new therapeutic entry point for treating Fragile X syndrome.« less

  9. Coordinated regulation of Arabidopsis microRNA biogenesis and red light signaling through Dicer-like 1 and phytochrome-interacting factor 4

    PubMed Central

    Sun, Zhenfei; Li, Min; Zhou, Ying; Guo, Tongtong; Liu, Yin; Zhang, Hui

    2018-01-01

    Light and microRNAs (miRNAs) are key external and internal signals for plant development, respectively. However, the relationship between the light signaling and miRNA biogenesis pathways remains unknown. Here we found that miRNA processer proteins DCL1 and HYL1 interact with a basic helix-loop-helix (bHLH) transcription factor, phytochrome-interacting factor 4 (PIF4), which mediates the destabilization of DCL1 during dark-to-red-light transition. PIF4 acts as a transcription factor for some miRNA genes and is necessary for the proper accumulation of miRNAs. DCL1, HYL1, and mature miRNAs play roles in the regulation of plant hypocotyl growth. These results uncovered a previously unknown crosstalk between miRNA biogenesis and red light signaling through the PIF4-dependent regulation of miRNA transcription and processing to affect red-light-directed plant photomorphogenesis. PMID:29522510

  10. Formononetin attenuates osteoclastogenesis via suppressing the RANKL-induced activation of NF-κB, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 signaling pathway.

    PubMed

    Huh, Jeong-Eun; Lee, Wong In; Kang, Jung Won; Nam, Dongwoo; Choi, Do-Young; Park, Dong-Suk; Lee, Sang Hoon; Lee, Jae-Dong

    2014-11-26

    Formononetin (1), a plant-derived phytoestrogen, possesses bone protective properties. To address the potential therapeutic efficacy and mechanism of action of 1, we investigated its antiosteoclastogenic activity and its effect on nuclear factor-kappaB ligand (RANKL)-induced bone-marrow-derived macrophages (BMMs). Compound 1 markedly inhibited RANKL-induced osteoclast differentiation in the absence of cytotoxicity, by regulating the expression of osteoprotegerin (OPG) and RANKL in BMMs and in cocultured osteoblasts. Compound 1 significantly inhibited RANKL-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated on activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) in a concentration-dependent manner. These effects were accompanied by a decrease in RANKL-induced activation of the NF-κB p65 subunit, degradation of inhibitor κBα (IκBα), induction of NF-κB, and phosphorylation of AKT, extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). NF-κB siRNA suppressed AKT, ERK, JNK, and p38 MAPK phosphorylation. Furthermore, 1 significantly suppressed c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key transcription factors during osteoclastogenesis. SP600125, a specific inhibitor of JNK, reduced RANKL-induced expression of phospho-c-Jun, c-Fos, and NFATc1 and inhibited osteoclast formation. These results suggested that 1 acted as an antiresorption agent by blocking osteoclast activation.

  11. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao

    Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth andmore » promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth.« less

  12. Regulation of the mammalian heat shock factor 1.

    PubMed

    Dayalan Naidu, Sharadha; Dinkova-Kostova, Albena T

    2017-06-01

    Living organisms are endowed with the capability to tackle various forms of cellular stress due to the presence of molecular chaperone machinery complexes that are ubiquitous throughout the cell. During conditions of proteotoxic stress, the transcription factor heat shock factor 1 (HSF1) mediates the elevation of heat shock proteins, which are crucial components of the chaperone complex machinery and function to ameliorate protein misfolding and aggregation and restore protein homeostasis. In addition, HSF1 orchestrates a versatile transcriptional programme that includes genes involved in repair and clearance of damaged macromolecules and maintenance of cell structure and metabolism, and provides protection against a broad range of cellular stress mediators, beyond heat shock. Here, we discuss the structure and function of the mammalian HSF1 and its regulation by post-translational modifications (phosphorylation, sumoylation and acetylation), proteasomal degradation, and small-molecule activators and inhibitors. © 2017 Federation of European Biochemical Societies.

  13. Parasite-mediated nuclear factor κB regulation in lymphoproliferation caused by Theileria parva infection

    PubMed Central

    Palmer, Guy H.; Machado, Joel; Fernandez, Paula; Heussler, Volker; Perinat, Therese; Dobbelaere, Dirk A. E.

    1997-01-01

    Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor κB (NFκB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFκB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IκB molecules which normally sequester NFκB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IκBα. However, IκBα reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFκB-mediated positive feedback loop which restores cytoplasmic IκBα. In contrast, T. parva mediated continuous degradation of IκBβ resulting in persistently low cytoplasmic IκBβ levels. Normal IκBβ levels were only restored following T. parva killing, indicating that viable parasites are required for IκBβ degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IκB degradation and consequent enhanced expression of NFκB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IκB levels or NFκB activation, indicating that the parasite subverts the normal IκB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function. PMID:9356483

  14. Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1).

    PubMed

    Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Fernández, Pablo; Pozner, Roberto G; Lang, Roland; Balboa, Luciana; Giambartolomei, Guillermo H; Barrionuevo, Paula

    2017-03-01

    Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4 + T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection. © Society for Leukocyte Biology.

  15. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation.

    PubMed

    Meyer, Mark B; Benkusky, Nancy A; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J Wesley

    2017-10-20

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D 3 to its hormonal form, 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1 , are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH) 2 D 3 -mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH) 2 D 3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH) 2 D 3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation

    PubMed Central

    Meyer, Mark B.; Benkusky, Nancy A.; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J. Wesley

    2017-01-01

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1. We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. PMID:28808057

  17. Synaptotagmin C2B Domain Regulates Ca2+-triggered Fusion in Vitro

    PubMed Central

    Gaffaney, Jon D.; Dunning, F. Mark; Wang, Zhao; Hui, Enfu; Chapman, Edwin R.

    2008-01-01

    Synaptotagmin (syt) 1 is localized to synaptic vesicles, binds Ca2+, and regulates neuronal exocytosis. Syt 1 harbors two Ca2+-binding motifs referred to as C2A and C2B. In this study we examine the function of the isolated C2 domains of Syt 1 using a reconstituted, SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor)-mediated, fusion assay. We report that inclusion of phosphatidylethanolamine into reconstituted SNARE vesicles enabled isolated C2B, but not C2A, to regulate Ca2+-triggered fusion. The isolated C2B domain had a 6-fold lower EC for Ca2+ 50-activated fusion than the intact cytosolic domain of Syt 1 (C2AB). Phosphatidylethanolamine increased both the rate and efficiency of C2AB- and C2B-regulated fusion without affecting their abilities to bind membrane-embedded syntaxin-SNAP-25 (t-SNARE) complexes. At equimolar concentrations, the isolated C2A domain was an effective inhibitor of C2B-, but not C2AB-regulated fusion; hence, C2A has markedly different effects in the fusion assay depending on whether it is tethered to C2B. Finally, scanning alanine mutagenesis of C2AB revealed four distinct groups of mutations within the C2B domain that play roles in the regulation of SNARE-mediated fusion. Surprisingly, substitution of Arg-398 with alanine, which lies on the opposite end of C2B from the Ca2+/membrane-binding loops, decreases C2AB t-SNARE binding and Ca2+-triggered fusion in vitro without affecting Ca2+-triggered interactions with phosphatidylserine or vesicle aggregation. In addition, some mutations uncouple the clamping and stimulatory functions of syt 1, suggesting that these two activities are mediated by distinct structural determinants in C2B. PMID:18784080

  18. Cooperative activity of GABP with PU.1 or C/EBPε regulates lamin B receptor gene expression, implicating their roles in granulocyte nuclear maturation1

    PubMed Central

    Malu, Krishnakumar; Garhwal, Rahul; Pelletier, Margery G. H.; Gotur, Deepali; Halene, Stephanie; Zwerger, Monika; Yang, Zhong-Fa; Rosmarin, Alan G.; Gaines, Peter

    2016-01-01

    Nuclear segmentation is a hallmark feature of mammalian neutrophil differentiation, but the mechanisms that control this process are poorly understood. Gene expression in maturing neutrophils requires combinatorial actions of lineage-restricted and more widely expressed transcriptional regulators. Examples include interactions of the widely expressed ETS transcription factor, GA-binding protein (GABP), with the relatively lineage-restricted ETS factor, PU.1, and with CCAAT enhancer binding proteins, C/EBPα and C/EBPε. Whether such cooperative interactions between these transcription factors also regulate the expression of genes encoding proteins that control nuclear segmentation is unclear. We investigated the roles of ETS and C/EBP family transcription factors in regulating the gene encoding the lamin B receptor (LBR), an inner nuclear membrane protein whose expression is required for neutrophil nuclear segmentation. Although C/EBPε was previously shown to bind the Lbr promoter, surprisingly, we found that neutrophils derived from Cebpe null mice exhibited normal Lbr gene and protein expression. Instead, GABP provided transcriptional activation through the Lbr promoter in the absence of C/EBPε, and activities supported by GABP were greatly enhanced by either C/EBPε or PU.1. Both GABP and PU.1 bound Ets sites in the Lbr promoter in vitro, and in vivo within both early myeloid progenitors and differentiating neutrophils. These findings demonstrate that GABP, PU.1, and C/EBPε cooperate to control transcription of the gene encoding LBR, a nuclear envelope protein that is required for the characteristic lobulated morphology of mature neutrophils. PMID:27342846

  19. VirF-Independent Regulation of Shigella virB Transcription is Mediated by the Small RNA RyhB

    PubMed Central

    Broach, William H.; Egan, Nicholas; Wing, Helen J.; Payne, Shelley M.; Murphy, Erin R.

    2012-01-01

    Infection of the human host by Shigella species requires the coordinated production of specific Shigella virulence factors, a process mediated largely by the VirF/VirB regulatory cascade. VirF promotes the transcription of virB, a gene encoding the transcriptional activator of several virulence-associated genes. This study reveals that transcription of virB is also regulated by the small RNA RyhB, and importantly, that this regulation is not achieved indirectly via modulation of VirF activity. These data are the first to demonstrate that the regulation of virB transcription can be uncoupled from the master regulator VirF. It is also established that efficient RyhB-dependent regulation of transcription is facilitated by specific nucleic acid sequences within virB. This study not only reveals RyhB-dependent regulation of virB transcription as a novel point of control in the central regulatory circuit modulating Shigella virulence, but also highlights the versatility of RyhB in controlling bacterial gene expression. PMID:22701677

  20. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells.

    PubMed

    Huygens, Caroline; Liénart, Stéphanie; Dedobbeleer, Olivier; Stockis, Julie; Gauthy, Emilie; Coulie, Pierre G; Lucas, Sophie

    2015-08-14

    Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. NF-κB1, NF-κB2 and c-Rel differentially regulate susceptibility to colitis-associated adenoma development in C57BL/6 mice.

    PubMed

    Burkitt, Michael D; Hanedi, Abdalla F; Duckworth, Carrie A; Williams, Jonathan M; Tang, Joseph M; O'Reilly, Lorraine A; Putoczki, Tracy L; Gerondakis, Steve; Dimaline, Rod; Caamano, Jorge H; Pritchard, D Mark

    2015-07-01

    NF-κB signalling is an important factor in the development of inflammation-associated cancers. Mouse models of Helicobacter-induced gastric cancer and colitis-associated colorectal cancer have demonstrated that classical NF-κB signalling is an important regulator of these processes. In the stomach, it has also been demonstrated that signalling involving specific NF-κB proteins, including NF-κB1/p50, NF-κB2/p52, and c-Rel, differentially regulate the development of gastric pre-neoplasia. To investigate the effect of NF-κB subunit loss on colitis-associated carcinogenesis, we administered azoxymethane followed by pulsed dextran sodium sulphate to C57BL/6, Nfkb1(-/-), Nfkb2(-/-), and c-Rel(-/-) mice. Animals lacking the c-Rel subunit were more susceptible to colitis-associated cancer than wild-type mice, developing 3.5 times more colonic polyps per animal than wild-type mice. Nfkb2(-/-) mice were resistant to colitis-associated cancer, developing fewer polyps per colon than wild-type mice (median 1 compared to 4). To investigate the mechanisms underlying these trends, azoxymethane and dextran sodium sulphate were administered separately to mice of each genotype. Nfkb2(-/-) mice developed fewer clinical signs of colitis and exhibited less severe colitis and an attenuated cytokine response compared with all other groups following DSS administration. Azoxymethane administration did not fully suppress colonic epithelial mitosis in c-Rel(-/-) mice and less colonic epithelial apoptosis was also observed in this genotype compared to wild-type counterparts. These observations demonstrate different functions of specific NF-κB subunits in this model of colitis-associated carcinogenesis. NF-κB2/p52 is necessary for the development of colitis, whilst c-Rel-mediated signalling regulates colonic epithelial cell turnover following DNA damage. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain

  2. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 frommore » phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.« less

  3. Serotonin 1B Receptors Regulate Prefrontal Function by Gating Callosal and Hippocampal Inputs.

    PubMed

    Kjaerby, Celia; Athilingam, Jegath; Robinson, Sarah E; Iafrati, Jillian; Sohal, Vikaas S

    2016-12-13

    Both medial prefrontal cortex (mPFC) and serotonin play key roles in anxiety; however, specific mechanisms through which serotonin might act on the mPFC to modulate anxiety-related behavior remain unknown. Here, we use a combination of optogenetics and synaptic physiology to show that serotonin acts presynaptically via 5-HT1B receptors to selectively suppress inputs from the contralateral mPFC and ventral hippocampus (vHPC), while sparing those from mediodorsal thalamus. To elucidate how these actions could potentially regulate prefrontal circuit function, we infused a 5-HT1B agonist into the mPFC of freely behaving mice. Consistent with previous studies that have optogenetically inhibited vHPC-mPFC projections, activating prefrontal 5-HT1B receptors suppressed theta-frequency mPFC activity (4-12 Hz), and reduced avoidance of anxiogenic regions in the elevated plus maze. These findings suggest a potential mechanism, linking specific receptors, synapses, patterns of circuit activity, and behavior, through which serotonin may regulate prefrontal circuit function, including anxiety-related behaviors. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Impact of the Regulators SigB, Rot, SarA and sarS on the Toxic Shock Tst Promoter and TSST-1 Expression in Staphylococcus aureus

    PubMed Central

    Villanueva, Maite; Renzoni, Adriana; Monod, Antoinette; Barras, Christine; Rodriguez, Natalia; Kelley, William L.

    2015-01-01

    Staphylococcus aureus is an important pathogen manifesting virulence through diverse disease forms, ranging from acute skin infections to life-threatening bacteremia or systemic toxic shock syndromes. In the latter case, the prototypical superantigen is TSST-1 (Toxic Shock Syndrome Toxin 1), encoded by tst(H), and carried on a mobile genetic element that is not present in all S. aureus strains. Transcriptional regulation of tst is only partially understood. In this study, we dissected the role of sarA, sarS (sarH1), RNAIII, rot, and the alternative stress sigma factor sigBB). By examining tst promoter regulation predominantly in the context of its native sequence within the SaPI1 pathogenicity island of strain RN4282, we discovered that σB emerged as a particularly important tst regulator. We did not detect a consensus σB site within the tst promoter, and thus the effect of σB is likely indirect. We found that σB strongly repressed the expression of the toxin via at least two distinct regulatory pathways dependent upon sarA and agr. Furthermore rot, a member of SarA family, was shown to repress tst expression when overexpressed, although its deletion had no consistent measurable effect. We could not find any detectable effect of sarS, either by deletion or overexpression, suggesting that this regulator plays a minimal role in TSST-1 expression except when combined with disruption of sarA. Collectively, our results extend our understanding of complex multifactorial regulation of tst, revealing several layers of negative regulation. In addition to environmental stimuli thought to impact TSST-1 production, these findings support a model whereby sporadic mutation in a few key negative regulators can profoundly affect and enhance TSST-1 expression. PMID:26275216

  5. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation.

    PubMed

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2008-08-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches.

  6. APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation

    PubMed Central

    Merluzzi, Sonia; Gri, Giorgia; Gattei, Valter; Pagano, Michele; Pucillo, Carlo

    2009-01-01

    Apurinic/apyrimidinic endonuclease-1/Redox factor-1, a multifunctional DNA base excision repair and redox regulation enzyme, plays an important role in oxidative signalling, transcription factor regulation, and cell cycle control. Recently, we have demonstrated that following the triggering of CD40 on B cells, APE/Ref-1 translocates from the cytoplasm to the nucleus and regulates the activity of B cell-specific transcription factors. In the present paper we investigate whether APE/Ref-1 plays a role in controlling CD40-mediated B cell proliferation too. We demonstrate a concurrent increase in proliferation and decrease in apoptosis of primary mouse B cells activated by CD40 cross-linking and transfected with functional APE/Ref-1 antisense oligonucleotide. Moreover, we provide evidence that a redox-mediated signalling mechanism is involved in this process and we propose that APE/Ref-1, controlling the intracellular redox state, may also affect the cell cycle by inducing nucleus-cytoplasm redistribution of p21. Together, these findings suggest that APE/Ref-1 could act as a negative regulator in an adaptive response to elevated ROS levels following CD40 cross-linking. Considering the important role of ROS and APE/Ref-1 in CD40-mediated B cell proliferation, our data will contribute to understand the mechanisms of tumor escape and suggest APE/Ref-1 as a novel target for tumor therapeutic approaches. PMID:18617267

  7. Regulation of B1 cell migration by signals through Toll-like receptors

    PubMed Central

    Ha, Seon-ah; Tsuji, Masayuki; Suzuki, Keiichiro; Meek, Bob; Yasuda, Nobutaka; Kaisho, Tsuneyasu; Fagarasan, Sidonia

    2006-01-01

    Peritoneal B1 cells are known to generate large amounts of antibodies outside their residential site. These antibodies play an important role in the early defense against bacteria and viruses, before the establishment of adaptive immune responses. Although many stimuli, including antigen, lipopolysaccharide, or cytokines, have been shown to activate B1 cells and induce their differentiation into plasma cells, the molecular signals required for their egress from the peritoneal cavity are not understood. We demonstrate here that direct signals through Toll-like receptors (TLRs) induce specific, rapid, and transient down-regulation of integrins and CD9 on B1 cells, which is required for detachment from local matrix and a high velocity movement of cells in response to chemokines. Thus, we revealed an unexpected role for TLRs in governing the interplay between integrins, tetraspanins, and chemokine receptors required for B1 cell egress and, as such, in facilitating appropriate transition from innate to adaptive immune responses. PMID:17060475

  8. Cell autonomous regulation of hippocampal circuitry via Aph1b-γ-secretase/neuregulin 1 signalling

    PubMed Central

    Fazzari, Pietro; Snellinx, An; Sabanov, Victor; Ahmed, Tariq; Serneels, Lutgarde; Gartner, Annette; Shariati, S Ali M; Balschun, Detlef; De Strooper, Bart

    2014-01-01

    Neuregulin 1 (NRG1) and the γ-secretase subunit APH1B have been previously implicated as genetic risk factors for schizophrenia and schizophrenia relevant deficits have been observed in rodent models with loss of function mutations in either gene. Here we show that the Aph1b-γ-secretase is selectively involved in Nrg1 intracellular signalling. We found that Aph1b-deficient mice display a decrease in excitatory synaptic markers. Electrophysiological recordings show that Aph1b is required for excitatory synaptic transmission and plasticity. Furthermore, gain and loss of function and genetic rescue experiments indicate that Nrg1 intracellular signalling promotes dendritic spine formation downstream of Aph1b-γ-secretase in vitro and in vivo. In conclusion, our study sheds light on the physiological role of Aph1b-γ-secretase in brain and provides a new mechanistic perspective on the relevance of NRG1 processing in schizophrenia. DOI: http://dx.doi.org/10.7554/eLife.02196.001 PMID:24891237

  9. The PBX1 lupus susceptibility gene regulates CD44 expression.

    PubMed

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A; Choi, Seung-Chul; Morel, Laurence

    2017-05-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4 + T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and shows that the lupus-associated isoform PBX1-d has unique molecular functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The PBX1 lupus susceptibility gene regulates CD44 expression

    PubMed Central

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence

    2017-01-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and show that the lupus-associated isoform PBX1-d has unique molecular functions. PMID:28257976

  11. The Arf-inducing Transcription Factor Dmp1 Encodes a Transcriptional Activator of Amphiregulin, Thrombospondin-1, JunB and Egr1

    PubMed Central

    Mallakin, Ali; Sugiyama, Takayuki; Kai, Fumitake; Taneja, Pankaj; Kendig, Robert D.; Frazier, Donna P.; Maglic, Dejan; Matise, Lauren A.; Willingham, Mark C.; Inoue, Kazushi

    2009-01-01

    Dmp1 (Dmtf1) encodes a Myb-like transcription factor implicated in tumor suppression through direct activation of the Arf-p53 pathway. The human DMP1 gene is frequently deleted in non-small cell lung cancers, especially those that retain wild-type INK4a/ARF and/or p53. To identify novel genes that are regulated by Dmp1, transcriptional profiles of lung tissue from Dmp1-null and wild-type mice were generated using the GeneChip Microarray. Comparative analysis of gene expression changes between the two groups resulted in identification of numerous genes that may be regulated by Dmp1. Notably, amphiregulin (Areg), thrombospondin-1 (Tsp-1), JunB, Egr1, adrenomedullin (Adm), Bcl-3 and methyl-CpG binding domain protein 1 (Mbd1) were downregulated in the lungs from Dmp1-null mice while Gas1 and Ect2 genes were upregulated. These target genes were chosen for further analyses since they are involved in cell proliferation, transcription, angiogenesis/metastasis, apoptosis, or DNA methylation, and thus could account for the tumor suppressor phenotype of Dmp1. Dmp1 directly bound to the genomic loci of Areg, Tsp-1, JunB and Egr1. Significant upregulation or downregulation of the novel Dmp1 target genes was observed upon transient expression of Dmp1 in alveolar epithelial cells, an effect which was nullified by the inhibition of de novo mRNA synthesis. Interestingly, these genes and their protein products were significantly downregulated or upregulated in the lungs from Dmp1-heterozygous mice as well. Identification of novel Dmp1 target genes not only provides insights into the effects of Dmp1 on global gene expression, but also sheds light on the mechanism of haploid insufficiency of Dmp1 in tumor suppression. PMID:19816943

  12. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport

    PubMed Central

    Chiasson, David M.; Loughlin, Patrick C.; Mazurkiewicz, Danielle; Mohammadidehcheshmeh, Manijeh; Fedorova, Elena E.; Okamoto, Mamoru; McLean, Elizabeth; Glass, Anthony D. M.; Smith, Sally E.; Bisseling, Ton; Tyerman, Stephen D.; Day, David A.; Kaiser, Brent N.

    2014-01-01

    Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH4+) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix–loop–helix (bHLH) DNA-binding transcription factor now renamed Glycine max bHLH membrane 1 (GmbHLHm1). In yeast, GmbHLHm1 enters the nucleus and transcriptionally activates a unique plasma membrane NH4+ channel Saccharomyces cerevisiae ammonium facilitator 1. Ammonium facilitator 1 homologs are present in soybean and other plant species, where they often share chromosomal microsynteny with bHLHm1 loci. GmbHLHm1 is important to the soybean rhizobium symbiosis because loss of activity results in a reduction of nodule fitness and growth. Transcriptional changes in nodules highlight downstream signaling pathways involving circadian clock regulation, nutrient transport, hormone signaling, and cell wall modification. Collectively, these results show that GmbHLHm1 influences nodule development and activity and is linked to a novel mechanism for NH4+ transport common to both yeast and plants. PMID:24707045

  13. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.

    PubMed

    Chiasson, David M; Loughlin, Patrick C; Mazurkiewicz, Danielle; Mohammadidehcheshmeh, Manijeh; Fedorova, Elena E; Okamoto, Mamoru; McLean, Elizabeth; Glass, Anthony D M; Smith, Sally E; Bisseling, Ton; Tyerman, Stephen D; Day, David A; Kaiser, Brent N

    2014-04-01

    Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH4(+)) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix-loop-helix (bHLH) DNA-binding transcription factor now renamed Glycine max bHLH membrane 1 (GmbHLHm1). In yeast, GmbHLHm1 enters the nucleus and transcriptionally activates a unique plasma membrane NH4(+) channel Saccharomyces cerevisiae ammonium facilitator 1. Ammonium facilitator 1 homologs are present in soybean and other plant species, where they often share chromosomal microsynteny with bHLHm1 loci. GmbHLHm1 is important to the soybean rhizobium symbiosis because loss of activity results in a reduction of nodule fitness and growth. Transcriptional changes in nodules highlight downstream signaling pathways involving circadian clock regulation, nutrient transport, hormone signaling, and cell wall modification. Collectively, these results show that GmbHLHm1 influences nodule development and activity and is linked to a novel mechanism for NH4(+) transport common to both yeast and plants.

  14. Etsrp/etv2 is directly regulated by foxc1a/b in the zebrafish angioblast

    PubMed Central

    Veldman, Matthew B.; Lin, Shuo

    2012-01-01

    Rationale Endothelial cells are developmentally derived from angioblasts specified in the mesodermal germ cell layer. The transcription factor etsrp/etv2 is at the top of the known genetic hierarchy for angioblast development. The transcriptional events that induce etsrp expression and angioblast specification are not well understood. Objective We generated etsrp:gfp transgenic zebrafish and used them to identify regulatory regions and transcription factors critical for etsrp expression and angioblast specification from mesoderm. Methods and Results To investigate the mechanisms that initiate angioblast cell transcription during embryogenesis, we have performed promoter analysis of the etsrp locus in zebrafish. We describe three enhancer elements sufficient for endothelial gene expression when place in front of a heterologous promoter. The deletion of all three regulatory regions led to a near complete loss of endothelial expression from the etsrp promoter. One of the enhancers, located 2.3 kb upstream of etsrp contains a consensus FOX binding site that binds Foxc1a and Foxc1b in vitro by EMSA and in vivo using ChIP. Combined knockdown of foxc1a/b, using morpholinos, led to a significant decrease in etsrp expression at early developmental stages as measured by quantitative RT-PCR and in situ hybridization. Decreased expression of primitive erythrocyte genes scl and gata1 was also observed while pronephric gene pax2a was relatively normal in expression level and pattern. Conclusions These findings identify mesodermal foxc1a/b as a direct upstream regulator of etsrp in angioblasts. This establishes a new molecular link in the process of mesoderm specification into angioblast. PMID:22135404

  15. Drosophila nuclear factor DREF regulates the expression of the mitochondrial DNA helicase and mitochondrial transcription factor B2 but not the mitochondrial translation factor B1

    PubMed Central

    Fernández-Moreno, Miguel A.; Hernández, Rosana; Adán, Cristina; Roberti, Marina; Bruni, Francesco; Polosa, Paola Loguercio; Cantatore, Palmiro; Matsushima, Yuichi; Kaguni, Laurie S.; Garesse, Rafael

    2016-01-01

    DREF [DRE (DNA replication-related element)-binding factor] controls the transcription of numerous genes in Drosophila, many involved in nuclear DNA (nDNA) replication and cell proliferation, three in mitochondrial DNA (mtDNA) replication and two in mtDNA transcription termination. In this work, we have analysed the involvement of DREF in the expression of the known remaining genes engaged in the minimal mtDNA replication (d-mtDNA helicase) and transcription (the activator d-mtTFB2) machineries and of a gene involved in mitochondrial mRNA translation (d-mtTFB1). We have identified their transcriptional initiation sites and DRE sequences in their promoter regions. Gel-shift and chromatin immunoprecipitation assays demonstrate that DREF interacts in vitro and in vivo with the d-mtDNA helicase and d-mtTFB2, but not with the d-mtTFB1 promoters. Transient transfection assays in Drosophila S2 cells with mutated DRE motifs and truncated promoter regions show that DREF controls the transcription of d-mtDNA helicase and d-mtTFB2, but not that of d-mtTFB1. RNA interference of DREF in S2 cells reinforces these results showing a decrease in the mRNA levels of d-mtDNA helicase and d-mtTFB2 and no changes in those of the d-mtTFB1. These results link the genetic regulation of nuclear DNA replication with the genetic control of mtDNA replication and transcriptional activation in Drosophila. PMID:23916463

  16. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway

    PubMed Central

    Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling

    2018-01-01

    Background Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. Methods The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. Results TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50

  17. CD22 regulates adaptive and innate immune responses of B cells.

    PubMed

    Kawasaki, Norihito; Rademacher, Christoph; Paulson, James C

    2011-01-01

    B cells sense microenvironments through the B cell receptor (BCR) and Toll-like receptors (TLRs). While signals from BCR and TLRs synergize to distinguish self from nonself, inappropriate regulation can result in development of autoimmune disease. Here we show that CD22, an inhibitory co-receptor of BCR, also negatively regulates TLR signaling in B cells. CD22-deficient (Cd22(-/-)) B cells exhibit hyperactivation in response to ligands of TLRs 3, 4 and 9. Evidence suggests that this results from impaired induction of suppressors of cytokine signaling 1 and 3, well-known suppressors of TLR signaling. Antibody-mediated sequestration of CD22 on wild-type (WT) B cells augments proliferation by TLR ligands. Conversely, expression of CD22 in a Cd22(-/-) B cell line blunts responses to TLR ligands. We also show that lipopolysaccharide-induced transcription by nuclear factor-κB is inhibited by ectopic expression of CD22 in a TLR4 reporter cell line. Taken together, these results suggest that negative regulation of TLR signaling is an intrinsic property of CD22. Since TLRs and BCR activate B cells through different signaling pathways, and are differentially localized in B cells, CD22 exhibits a broader regulation of receptors that mediate adaptive and innate immune responses of B cells than previously recognized. Copyright © 2010 S. Karger AG, Basel.

  18. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Seok; Chang, Jai Won; Han, Nam Jeong

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. Highmore » glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.« less

  19. Recent Progress on Liver Kinase B1 (LKB1): Expression, Regulation, Downstream Signaling and Cancer Suppressive Function

    PubMed Central

    Gan, Ren-You; Li, Hua-Bin

    2014-01-01

    Liver kinase B1 (LKB1), known as a serine/threonine kinase, has been identified as a critical cancer suppressor in many cancer cells. It is a master upstream kinase of 13 AMP-activated protein kinase (AMPK)-related protein kinases, and possesses versatile biological functions. LKB1 gene is mutated in many cancers, and its protein can form different protein complexes with different cellular localizations in various cell types. The expression of LKB1 can be regulated through epigenetic modification, transcriptional regulation and post-translational modification. LKB1 dowcnstream pathways mainly include AMPK, microtubule affinity regulating kinase (MARK), salt-inducible kinase (SIK), sucrose non-fermenting protein-related kinase (SNRK) and brain selective kinase (BRSK) signalings, etc. This review, therefore, mainly discusses recent studies about the expression, regulation, downstream signaling and cancer suppressive function of LKB1, which can be helpful for better understanding of this molecular and its significance in cancers. PMID:25244018

  20. Ubiquitin C-Terminal Hydrolase L1 (UCH-L1) Promotes Hippocampus-Dependent Memory via Its Deubiquitinating Effect on TrkB.

    PubMed

    Guo, Yun-Yun; Lu, Yi; Zheng, Yuan; Chen, Xiao-Rong; Dong, Jun-Lu; Yuan, Rong-Rong; Huang, Shu-Hong; Yu, Hui; Wang, Yue; Chen, Zhe-Yu; Su, Bo

    2017-06-21

    Multiple studies have established that brain-derived neurotrophic factor (BDNF) plays a critical role in the regulation of synaptic plasticity via its receptor, TrkB. In addition to being phosphorylated, TrkB has also been demonstrated to be ubiquitinated. However, the mechanisms of TrkB ubiquitination and its biological functions remain poorly understood. In this study, we demonstrate that ubiquitin C-terminal hydrolase L1 (UCH-L1) promotes contextual fear conditioning learning and memory via the regulation of ubiquitination of TrkB. We provide evidence that UCH-L1 can deubiquitinate TrkB directly. K460 in the juxtamembane domain of TrkB is the primary ubiquitination site and is regulated by UCH-L1. By using a peptide that competitively inhibits the association between UCH-L1 and TrkB, we show that the blockade of UCH-L1-regulated TrkB deubiquitination leads to increased BDNF-induced TrkB internalization and consequently directs the internalized TrkB to the degradation pathway, resulting in increased degradation of surface TrkB and attenuation of TrkB activation and its downstream signaling pathways. Moreover, injection of the peptide into the DG region of mice impairs hippocampus-dependent memory. Together, our results suggest that the ubiquitination of TrkB is a mechanism that controls its downstream signaling pathways via the regulation of its endocytosis and postendocytic trafficking and that UCH-L1 mediates the deubiquitination of TrkB and could be a potential target for the modulation of hippocampus-dependent memory. SIGNIFICANCE STATEMENT Ubiquitin C-terminal hydrolase L1 (UCH-L1) has been demonstrated to play important roles in the regulation of synaptic plasticity and learning and memory. TrkB, the receptor for brain-derived neurotrophic factor, has also been shown to be a potent regulator of synaptic plasticity. In this study, we demonstrate that UCH-L1 functions as a deubiquitinase for TrkB. The blockage of UCH-L1-regulated deubiquitination of TrkB

  1. DEC1/STRA13 is a key negative regulator of activation-induced proliferation of human B cells highly expressed in anergic cells.

    PubMed

    Camponeschi, Alessandro; Todi, Laura; Cristofoletti, Cristina; Lazzeri, Cristina; Carbonari, Maurizio; Mitrevski, Milica; Marrapodi, Ramona; Del Padre, Martina; Fiorilli, Massimo; Casato, Milvia; Visentini, Marcella

    2018-06-01

    The transcription factor DEC1/STRA13 (also known as BHLHE40 and SHARP2) is involved in a number of processes including inhibition of cell proliferation and delay of cell cycle, and is a negative regulator of B cell activation and development in mice. We show here that, unlike in mice, DEC1/STRA13 expression is induced in human naïve and memory resting B cells by activation through the B-cell receptor (BCR) or Toll-like receptor 9 (TLR9). siRNA silencing of DEC1/STRA13 increases the capacity of activated B cells to perform a high number of divisions after TLR9 ligation. This identifies DEC1/STRA13 as a critical negative regulator of clonal expansion of activated human B cells. We also show that DEC1/STRA13 is upregulated in human anergic CD21 low B cells clonally expanded in patients with HCV-associated mixed cryoglobulinemia, which fail to proliferate in response to BCR or TLR9 ligation. siRNA knockdown of DEC1/STRA13, however, fails to restore responsiveness to stimuli in these cells, although it might improve the proliferative capacity in a subset of anergic cells with less pronounced proliferative defect. Copyright © 2018 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  2. Oxidized Guanine Base Lesions Function in 8-Oxoguanine DNA Glycosylase-1-mediated Epigenetic Regulation of Nuclear Factor κB-driven Gene Expression*

    PubMed Central

    Pan, Lang; Hao, Wenjing; Ba, Xueqing

    2016-01-01

    A large percentage of redox-responsive gene promoters contain evolutionarily conserved guanine-rich clusters; guanines are the bases most susceptible to oxidative modification(s). Consequently, 7,8-dihydro-8-oxoguanine (8-oxoG) is one of the most abundant base lesions in promoters and is primarily repaired via the 8-oxoguanine DNA glycosylase-1 (OOG1)-initiated base excision repair pathway. In view of a prompt cellular response to oxidative challenge, we hypothesized that the 8-oxoG lesion and the cognate repair protein OGG1 are utilized in transcriptional gene activation. Here, we document TNFα-induced enrichment of both 8-oxoG and OGG1 in promoters of pro-inflammatory genes, which precedes interaction of NF-κB with its DNA-binding motif. OGG1 bound to 8-oxoG upstream from the NF-κB motif increased its DNA occupancy by promoting an on-rate of both homodimeric and heterodimeric forms of NF-κB. OGG1 depletion decreased both NF-κB binding and gene expression, whereas Nei-like glycosylase-1 and -2 had a marginal effect. These results are the first to document a novel paradigm wherein the DNA repair protein OGG1 bound to its substrate is coupled to DNA occupancy of NF-κB and functions in epigenetic regulation of gene expression. PMID:27756845

  3. MicroRNA-10b regulates the renewal of spermatogonial stem cells through Kruppel-like factor 4.

    PubMed

    Li, Jiang; Liu, Xiang; Hu, Xiaopeng; Tian, Geng G; Ma, Wenzhi; Pei, Xiuying; Wang, Yanrong; Wu, Ji

    2017-04-01

    MicroRNAs (miRs) are functionally important in spermatogenesis, which is the self-renewal or differentiation of spermatogonial stem cells (SSCs). Here, we report a novel role for miR-10b in regulating the self-renewal of mouse SSCs. We showed that miR-10b was highly expressed in mouse SSCs in vitro and enhanced SSC proliferation. Knockdown of miR-10b significantly increased the apoptosis of SSCs compared with controls. Kruppel-like factor 4 was found to be a target gene of miR-10b in the enhancement of SSC proliferation. These findings further our understanding of the self-renewal and differentiation of SSCs and provide a basis for the diagnosis, treatment, and prevention of male infertility. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Inhibitory effect on activator protein-1, nuclear factor-kappaB, and cell transformation by extracts of strawberries (Fragaria x ananassa Duch.).

    PubMed

    Wang, Shiow Y; Feng, Rentian; Lu, Yongju; Bowman, Linda; Ding, Min

    2005-05-18

    The inhibitory effects of strawberry (Fragaria x ananassa Duch.) antioxidant enzymes on tetradecanoylphorbol-13-acetate (TPA) or ultraviolet-B (UVB) induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) were studied. The inhibitory effects of strawberry extracts on the proliferation and transformation of human and mouse cancer cells were also evaluated. Strawberries had high activities of glutathione peroxidase, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase. Strawberry extracts inhibited the proliferation of human lung epithelial cancer cell line A549 and decreased TPA-induced neoplastic transformation of JB6 P+ mouse epidermal cells. Pretreatment of JB6 P+ mouse epidermal cells with strawberry extract resulted in the inhibition of both UVB- and TPA-induced AP-1 and NF-kappaB transactivation. Furthermore, strawberry extract also blocked TPA-induced phosphorylation of extracellular signal-regulated kinases (ERKs) and UVB-induced phosphorylation of ERKs and JNK kinase in JB6 P+ mouse epidermal cell culture. These results suggest that the ability of strawberries to block UVB- and TPA-induced AP-1 and NF-kappaB activation may be due to their antioxidant properties and their ability to reduce oxidative stress. The oxidative events that regulate AP-1 and NF-kappaB transactivation can be important molecular targets for cancer prevention. The strawberries may be highly effective as a chemopreventive agent that acts by targeting the down-regulation of AP-1 and NF-kappaB activities, blocking MAPK signaling, and suppressing cancer cell proliferation and transformation.

  5. Sda1, a Cys2-His2 Zinc Finger Transcription Factor, Is Involved in Polyol Metabolism and Fumonisin B1 Production in Fusarium verticillioides

    PubMed Central

    Malapi-Wight, Martha; Smith, Jonathon; Campbell, Jacquelyn; Bluhm, Burton H.; Shim, Won-Bo

    2013-01-01

    The ubiquitous ascomycete Fusarium verticillioides causes ear rot and stalk rot of maize, both of which reduce grain quality and yield. Additionally, F. verticillioides produces the mycotoxin fumonisin B1 (FB1) during infection of maize kernels, and thus potentially compromises human and animal health. The current knowledge is fragmentary regarding the regulation of FB1 biosynthesis, particularly when considering interplay with environmental factors such as nutrient availability. In this study, SDA1 of F. verticillioides, predicted to encode a Cys-2 His-2 zinc finger transcription factor, was shown to play a key role in catabolizing select carbon sources. Growth of the SDA1 knock-out mutant (Δsda1) was completely inhibited when sorbitol was the sole carbon source and was severely impaired when exclusively provided mannitol or glycerol. Deletion of SDA1 unexpectedly increased FB1 biosynthesis, but reduced arabitol and mannitol biosynthesis, as compared to the wild-type progenitor. Trichoderma reesei ACE1, a regulator of cellulase and xylanase expression, complemented the F. verticillioides Δsda1 mutant, which indicates that Ace1 and Sda1 are functional orthologs. Taken together, the data indicate that Sda1 is a transcriptional regulator of carbon metabolism and toxin production in F. verticillioides. PMID:23844049

  6. β-Cryptoxanthin ameliorates metabolic risk factors by regulating NF-κB and Nrf2 pathways in insulin resistance induced by high-fat diet in rodents.

    PubMed

    Sahin, Kazim; Orhan, Cemal; Akdemir, Fatih; Tuzcu, Mehmet; Sahin, Nurhan; Yılmaz, Ismet; Juturu, Vijaya

    2017-09-01

    The aim of this experiment was to determine the effects of β-cryptoxanthin (BCX) on the cardiometabolic health risk factors and NF-κB and Nrf2 pathway in insulin resistance induced by high-fat diet (HFD) in rodents. Twenty-eight Sprague-Dawley rats were allocated into four groups: (1) Control, rats fed a standard diet for 12 weeks; (2) BCX, rats fed a standard diet and supplemented with BCX (2.5 mg/kg BW) for 12 weeks; (3) HFD, rats fed a HFD for 12 weeks, (4) HFD + BCX, rats fed a HFD and supplemented with BCX for 12 weeks. BCX reduced cardio-metabolic health markers and decreased inflammatory markers (P < 0.001). Rats fed a HFD had the lower total antioxidant capacity and antioxidant enzymes activities and higher MDA concentration than control rats (P < 0.001 for all). Comparing with the HFD group, BCX in combination with HFD inhibited liver NF-κB and TNF-α expression by 22% and 14% and enhanced liver Nrf2, HO-1, PPAR-α, and p-IRS-1 by 1.43, 1.41, 3.53, and 1.33 fold, respectively (P < 0.001). Furthermore, in adipose tissue, BCX up-regulated Nrf2, HO-1, PPAR-α, and p-IRS-1 expression, whereas, down-regulated NF-κB and TNF-α expression. In conclusion, BCX decreased visceral fat and cardiometabolic health risk factors through modulating expressions of nuclear transcription factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. NF-κB RelB Negatively Regulates Osteoblast Differentiation and Bone Formation

    PubMed Central

    Yao, Zhenqiang; Li, Yanyun; Yin, Xiaoxiang; Dong, Yufeng; Xing, Lianping; Boyce, Brendan F.

    2013-01-01

    RelA-mediated NF-κB canonical signaling promotes mesenchymal progenitor cell (MPC) proliferation, but inhibits differentiation of mature osteoblasts (OBs) and thus negatively regulates bone formation. Previous studies suggest that NF-κB RelB may also negatively regulate bone formation through non-canonical signaling, but they involved a complex knockout mouse model and the molecular mechanisms involved were not investigated. Here, we report that RelB−/− mice develop age-related increased trabecular bone mass associated with increased bone formation. RelB−/− bone marrow stromal cells expanded faster in vitro and have enhanced OB differentiation associated with increased expression of the osteoblastogenic transcription factor, Runx2. In addition, RelB directly targeted the Runx2 promoter to inhibit its activation. Importantly, RelB−/− bone-derived MPCs formed bone more rapidly than wild-type cells after they were injected into a murine tibial bone defect model. Our findings indicate that RelB negatively regulates bone mass as mice age and limits bone formation in healing bone defects, suggesting that inhibition of RelB could reduce age-related bone loss and enhance bone repair. PMID:24115294

  8. Formononetin accelerates wound repair by the regulation of early growth response factor-1 transcription factor through the phosphorylation of the ERK and p38 MAPK pathways.

    PubMed

    Huh, Jeong-Eun; Nam, Dong-Woo; Baek, Young-Hyun; Kang, Jung Won; Park, Dong-Suk; Choi, Do-Young; Lee, Jae-Dong

    2011-01-01

    Formononetin, a phytoestrogen from the root of Astragalus membranaceus, is used as a blood enhancer and to improve blood microcirculation in complementary and alternative medicine. The present study investigated the influence of formononetin on the expression of early growth response factor-1 (Egr-1) and growth factors contributing to wound healing. Formononetin significantly increased growth factors such as transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) in human umbilical vein endothelial cells (HUVECs). Formononetin also increased the expression of Egr-1 transcription factor by 3.2- and 10.5-fold, compared with recombinant VEGF(125) in HUVECs. The formononetin-mediated 12%-43% increase induced endothelial cell proliferation and recovered the migration of wounded HUVECs. In an ex vivo angiogenesis assay, formononetin produced a larger capillary sprouting area than produced using recombinant VEGF(125). Cell proliferation and migration of HUVECs were also greater in the presence of formonectin than VEGF(125). Western blot analysis of scratch-wounded confluent HUVECs showed that formononetin induced the phosphorylation of extracellular signal-regulated kinase (ERK) and slightly inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The formononetin-mediated sustained activation of Egr-1 was suppressed by the ERK inhibitor PD98059 and the p38 inhibitor SB203580. PD98059 inhibited the formononetin-induced endothelial proliferation and repair in scratch-wounded HUVECs, SB203580 increased the cell proliferation and wound healing. Formononetin accelerate wound closure rate as early as day 3 after surgery and consistently observed until day 10 after in wound animal model. These data suggest that formononetin promotes endothelial repair and wound healing in a process involving the over-expression of Egr-1 transcription factor

  9. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris*

    PubMed Central

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-01-01

    The alcohol oxidase 1 (AOX1) promoter (PAOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of PAOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated PAOX1 in response to methanol, were bound to PAOX1 at different sites and did not interact with each other. However, these factors cooperatively activated PAOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (PMIT1), thus increasingly expressing Mit1 and subsequently activating PAOX1. PMID:26828066

  10. Forkhead transcription factor foxe1 regulates chondrogenesis in zebrafish.

    PubMed

    Nakada, Chisako; Iida, Atsumi; Tabata, Yoko; Watanabe, Sumiko

    2009-12-15

    Forkhead transcription factor (Fox) e1 is a causative gene for Bamforth-Lazarus syndrome, which is characterized by hypothyroidism and cleft palate. Applying degenerate polymerase chain reaction using primers specific for the conserved forkhead domain, we identified zebrafish foxe1 (foxe1). Foxe1 is expressed in the thyroid, pharynx, and pharyngeal skeleton during development; strongly expressed in the gill and weakly expressed in the brain, eye, and heart in adult zebrafish. A loss of function of foxe1 by morpholino antisense oligo (MO) exhibited abnormal craniofacial development, shortening of Meckel's cartilage and the ceratohyals, and suppressed chondrycytic proliferation. However, at 27 hr post fertilization, the foxe1 MO-injected embryos showed normal dlx2, hoxa2, and hoxb2 expression, suggesting that the initial steps of pharyngeal skeletal development, including neural crest migration and specification of the pharyngeal arch occurred normally. In contrast, at 2 dpf, a severe reduction in the expression of sox9a, colIIaI, and runx2b, which play roles in chondrocytic proliferation and differentiation, was observed. Interestingly, fgfr2 was strongly upregulated in the branchial arches of the foxe1 MO-injected embryos. Unlike Foxe1-null mice, normal thyroid development in terms of morphology and thyroid-specific marker expression was observed in foxe1 MO-injected zebrafish embryos. Taken together, our results indicate that Foxe1 plays an important role in chondrogenesis during development of the pharyngeal skeleton in zebrafish, probably through regulation of fgfr2 expression. Furthermore, the roles reported for FOXE1 in mammalian thyroid development may have been acquired during evolution. (c) 2009 Wiley-Liss, Inc.

  11. Nuclear IL-33 is a transcriptional regulator of NF-{kappa}B p65 and induces endothelial cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and ismore » involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.« less

  12. Up-Regulation of MicroRNA-190b Plays a Role for Decreased IGF-1 That Induces Insulin Resistance in Human Hepatocellular Carcinoma

    PubMed Central

    Hung, Tzu-Min; Ho, Cheng-Maw; Liu, Yen-Chun; Lee, Jia-Ling; Liao, Yow-Rong; Wu, Yao-Ming; Ho, Ming-Chih; Chen, Chien-Hung; Lai, Hong-Shiee; Lee, Po-Huang

    2014-01-01

    Background & Aims Insulin-like growth factor, (IGF)-1, is produced mainly by the liver and plays important roles in promoting growth and regulating metabolism. Previous study reported that development of hepatocellular carcinoma (HCC) was accompanied by a significant reduction in serum IGF-1 levels. Here, we hypothesized that dysregulation of microRNAs (miRNA) in HCC can modulate IGF-1 expression post-transcriptionally. Methods The miRNAs expression profiles in a dataset of 29 HCC patients were examined using illumina BeadArray. Specific miRNA (miR)-190b, which was significantly up-regulated in HCC tumor tissues when compared with paired non-tumor tissues, was among those predicted to interact with 3′-untranslated region (UTR) of IGF-1. In order to explore the regulatory effects of miR-190b on IGF-1 expression, luciferase reporter assay, quantitative real-time PCR, western blotting and immunofluorecence analysis were performed in HCC cells. Results Overexpression of miR-190b in Huh7 cells attenuated the expression of IGF-1, whereas inhibition of miR-190b resulted in up-regulation of IGF-1. Restoration of IGF-1 expression reversed miR-190b-mediated impaired insulin signaling in Huh7 cells, supporting that IGF-1 was a direct and functional target of miR-190b. Additionally, low serum IGF-1 level was associated with insulin resistance and poor overall survival in HCC patients. Conclusions Increased expression of miR-190 may cause decreased IGF-1 in HCC development. Insulin resistance appears to be a part of the physiopathologic significance of decreased IGF-1 levels in HCC progression. This study provides a novel miRNA-mediated regulatory mechanism for controlling IGF-1 expression in HCC and elucidates the biological relevance of this interaction in HCC. PMID:24586785

  13. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revet, Ingrid; Huizenga, Gerda; Chan, Alvin

    Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneuralmore » gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.« less

  14. The rice GERMINATION DEFECTIVE 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism

    PubMed Central

    Guo, Xiaoli; Hou, Xiaomei; Fang, Jun; Wei, Piwei; Xu, Bo; Chen, Mingluan; Feng, Yuqi; Chu, Chengcai

    2013-01-01

    It has been shown that seed development is regulated by a network of transcription factors in Arabidopsis including LEC1 (LEAFY COTYLEDON1), L1L (LEC1-like) and the B3 domain factors LEC2, FUS3 (FUSCA3) and ABI3 (ABA-INSENSITIVE3); however, molecular and genetic regulation of seed development in cereals is poorly understood. To understand seed development and seed germination in cereals, a large-scale screen was performed using our T–DNA mutant population, and a mutant germination-defective1 (gd1) was identified. In addition to the severe germination defect, the gd1 mutant also shows a dwarf phenotype and abnormal flower development. Molecular and biochemical analyses revealed that GD1 encodes a B3 domain-containing transcription factor with repression activity. Consistent with the dwarf phenotype of gd1, expression of the gibberelic acid (GA) inactivation gene OsGA2ox3 is increased dramatically, accompanied by reduced expression of GA biosynthetic genes including OsGA20ox1, OsGA20ox2 and OsGA3ox2 in gd1, resulting in a decreased endogenous GA4 level. Exogenous application of GA not only induced GD1 expression, but also partially rescued the dwarf phenotype of gd1. Furthermore, GD1 binds to the promoter of OsLFL1, a LEC2/FUS3-like gene of rice, via an RY element, leading to significant up-regulation of OsLFL1 and a large subset of seed maturation genes in the gd1 mutant. Plants over-expressing OsLFL1 partly mimic the gd1 mutant. In addition, expression of GD1 was induced under sugar treatment, and the contents of starch and soluble sugar are altered in the gd1 mutant. These data indicate that GD1 participates directly or indirectly in regulating GA and carbohydrate homeostasis, and further regulates rice seed germination and seedling development. PMID:23581288

  15. Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-{kappa}B pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Liping; Wang, Shixuan; Hu, Chaofeng

    2011-04-15

    Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor {kappa}B (NF-{kappa}B) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cellsmore » increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-{kappa}B activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-{kappa}B activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.« less

  16. Interleukin-5 regulates genes involved in B-cell terminal maturation.

    PubMed

    Horikawa, Keisuke; Takatsu, Kiyoshi

    2006-08-01

    Interleukin (IL)-5 induces CD38-activated splenic B cells to differentiate into immunoglobulin M-secreting cells and undergo micro to gamma 1 class switch recombination (CSR) at the DNA level, resulting in immunoglobulin G1 (IgG1) production. Interestingly, IL-4, a well-known IgG1-inducing factor does not induce immunoglobulin production or micro to gamma 1 CSR in CD38-activated B cells. In the present study, we implemented complementary DNA microarrays to investigate the contribution of IL-5-induced gene expression in CD38-stimulated B cells to immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR. IL-5 and IL-4 stimulation of CD38-activated B cells induced the expression of 418 and 289 genes, respectively, that consisted of several clusters. Surprisingly, IL-5-inducible 78 genes were redundantly regulated by IL-4. IL-5 and IL-4 also suppressed the gene expression of 319 and 325 genes, respectively, 97 of which were overlapped. Genes critically regulated by IL-5 include immunoglobulin-related genes such as J chain and immunoglobulinkappa, and genes involved in B-cell maturation such as BCL6, activation-induced cytidine deaminase (Aid) and B lymphocyte-induced maturation protein-1 (Blimp-1) and tend to be induced slowly after IL-5 stimulation. Intriguingly, among genes, the retroviral induction of Blimp-1 and Aid in CD38-activated B cells could induce IL-4-dependent maturation to Syndecan-1+ antibody-secreting cells and micro to gamma 1 CSR, respectively, in CD38-activated B cells. Taken together, preferential Aid and Blimp-1 expression plays a critical role in IL-5-induced immunoglobulin-secreting cell differentiation and micro to gamma 1 CSR in CD38-activated B cells.

  17. IRE1α links Nck1 deficiency to attenuated PTP1B expression in HepG2 cells.

    PubMed

    Li, Hui; Li, Bing; Larose, Louise

    2017-08-01

    PTP1B, a prototype of the non-receptor subfamily of the protein tyrosine phosphatase superfamily, plays a key role in regulating intracellular signaling from various receptor and non-receptor protein tyrosine kinases. Previously, we reported that silencing Nck1 in human hepatocellular carcinoma HepG2 cells enhances basal and growth factor-induced activation of the PI3K-Akt pathway through attenuating PTP1B expression. However, the underlying mechanism by which Nck1 depletion represses PTP1B expression remains unclear. In this study, we found that silencing Nck1 attenuates PTP1B expression in HepG2 cells through down-regulation of IRE1α. Indeed, we show that silencing Nck1 in HepG2 cells leads to decreased IRE1α expression and signaling. Accordingly, IRE1α depletion using siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation, reproducing the effects of silencing Nck1 on activation of this pathway. In addition, depletion of IRE1α also leads to reduced PTP1B expression, which was rescued by ectopic expression of IRE1α in Nck1-depleted cells. Mechanistically, we found that silencing either Nck1 or IRE1α in HepG2 cells decreases PTP1B mRNA levels and stability. However, despite miR-122 levels, a miRNA targeting PTP1B 3' UTR and inducing PTP1B mRNA degradation in HepG2 cells, are increased in both Nck1- and IRE1α-depleted HepG2 cells, a miR-122 antagomir did not rescue PTP1B expression in these cells. Overall, this study highlights an important role for Nck1 in fine-tuning IRE1α expression and signaling that regulate PTP1B expression and subsequent activation of the PI3K-Akt pathway in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Aspergillus fumigatus conidial melanin production is regulated by the bifunctional bHLH DevR and MADS-box RlmA transcription factors.

    PubMed

    Valiante, Vito; Baldin, Clara; Hortschansky, Peter; Jain, Radhika; Thywißen, Andreas; Straßburger, Maria; Shelest, Ekaterina; Heinekamp, Thorsten; Brakhage, Axel A

    2016-10-01

    Melanins play a crucial role in defending organisms against external stressors. In several pathogenic fungi, including the human pathogen Aspergillus fumigatus, melanin production was shown to contribute to virulence. A. fumigatus produces two different types of melanins, i.e., pyomelanin and dihydroxynaphthalene (DHN)-melanin. DHN-melanin forms the gray-green pigment characteristic for conidia, playing an important role in immune evasion of conidia and thus for fungal virulence. The DHN-melanin biosynthesis pathway is encoded by six genes organized in a cluster with the polyketide synthase gene pksP as a core element. Here, cross-species promoter analysis identified specific DNA binding sites in the DHN-melanin biosynthesis genes pksP-arp1 intergenic region that can be recognized by bHLH and MADS-box transcriptional regulators. Independent deletion of two genes coding for the transcription factors DevR (bHLH) and RlmA (MADS-box) interfered with sporulation and reduced the expression of the DHN-melanin gene cluster. In vitro and in vivo experiments proved that these transcription factors cooperatively regulate pksP expression acting both as repressors and activators in a mutually exclusive manner. The dual role executed by each regulator depends on specific DNA motifs recognized in the pksP promoter region. © 2016 John Wiley & Sons Ltd.

  19. Both alpha(1A)- and alpha(1B)-adrenergic receptors crosstalk to down regulate beta(1)-ARs in mouse heart: coupling to differential PTX-sensitive pathways.

    PubMed

    Rorabaugh, Boyd R; Gaivin, Robert J; Papay, Robert S; Shi, Ting; Simpson, Paul C; Perez, Dianne M

    2005-11-01

    Adrenergic receptors (ARs) play an important role in the regulation of cardiac function. Cardiac inotropy is primarily regulated by beta(1)-ARs. However, alpha(1)-ARs may play an important role in inotropy during heart failure. Previous work has suggested that the alpha(1B)-AR modulates beta(1)-AR function in the heart. The potential role of the alpha(1A)-AR has not been previously studied. We used transgenic mice that express constitutively active mutant (CAM) forms of the alpha(1A)-AR or alpha(1B)-AR regulated by their endogenous promoters. Expression of the CAM alpha(1A)-AR or CAM alpha(1B)-AR had no effect on basal cardiac function (developed pressure, +dP/dT, -dP/dT, heart rate, flow rate). However, both alpha(1)-AR subtypes significantly decreased isoproterenol-stimulated +dP/dT. Pertussis toxin had no effect on +dP/dT in CAM alpha(1A)-AR hearts but restored +dP/dT to non-transgenic values in CAM alpha(1B)-AR hearts. Radioligand binding indicated a selective decrease in the density of beta(1)-ARs in both CAM mice. However, G-proteins, cAMP, or the percentage of high and low affinity states were unchanged in either transgenic compared with control. These data demonstrate that CAM alpha(1A)- and alpha(1B)-ARs both down regulate beta(1)-AR-mediated inotropy in the mouse heart. However, alpha(1)-AR subtypes are coupled to different beta-AR mediated signaling pathways with the alpha(1B)-AR being pertussis toxin sensitive.

  20. Dexamethasone potently enhances phorbol ester-induced IL-1beta gene expression and nuclear factor NF-kappaB activation.

    PubMed

    Wang, Y; Zhang, J J; Dai, W; Lei, K Y; Pike, J W

    1997-07-15

    The synthetic glucocorticoid dexamethasone, an immunosuppressive and anti-inflammatory agent, was investigated for its effect on PMA-mediated expression of the inflammatory cytokine IL-1beta in the human monocytic leukemic cell line THP-1. PMA alone induced the production of low levels of IL-1beta in THP-1 cells, whereas dexamethasone alone had no effect. However, dexamethasone potently enhanced PMA-mediated IL-1beta production. Using a selective and potent inhibitor of protein kinase C, we found that synergistic interaction between PMA and dexamethasone requires protein kinase C activation. PMA has been known to activate nuclear factor NF-kappaB in THP-1 cells. Using an oligonucleotide probe corresponding to an NF-kappaB DNA-binding motif of the IL-1beta gene promoter in gel electrophoresis mobility shift assays, we demonstrated that PMA-induced NF-kappaB activation was greatly potentiated by dexamethasone. Our results indicate that glucocorticoids can be positive regulators of inflammatory cytokine gene expression during monocytic cell differentiation.

  1. bFGF Regulates PI3-Kinase-Rac1-JNK Pathway and Promotes Fibroblast Migration in Wound Healing

    PubMed Central

    Kanazawa, Shigeyuki; Fujiwara, Toshihiro; Matsuzaki, Shinsuke; Shingaki, Kenta; Taniguchi, Manabu; Miyata, Shingo; Tohyama, Masaya; Sakai, Yasuo; Yano, Kenji; Hosokawa, Ko; Kubo, Tateki

    2010-01-01

    Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration. PMID:20808927

  2. Turmeric (Curcuma longa) inhibits inflammatory nuclear factor (NF)-κB and NF-κB-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis

    PubMed Central

    Kim, Ji H.; Gupta, Subash C.; Park, Byoungduck; Yadav, Vivek R.; Aggarwal, Bharat B.

    2012-01-01

    Scope The incidence of cancer is significantly lower in regions where turmeric is heavily consumed. Whether lower cancer incidence is due to turmeric was investigated by examining its effects on tumor cell proliferation, on pro-inflammatory transcription factors NF-κB and STAT3, and on associated gene products. Methods and results Cell proliferation and cell cytotoxicity were measured by the MTT method, NF-κB activity by EMSA, protein expression by Western blot analysis, ROS generation by FACS analysis, and osteoclastogenesis by TRAP assay. Turmeric inhibited NF-κB activation and down-regulated NF-κB-regulated gene products linked to survival (Bcl-2, cFLIP, XIAP, and cIAP1), proliferation (cyclin D1 and c-Myc), and metastasis (CXCR4) of cancer cells. The spice suppressed the activation of STAT3, and induced the death receptors (DR)4 and DR5. Turmeric enhanced the production of ROS, and suppressed the growth of tumor cell lines. Furthermore, turmeric sensitized the tumor cells to chemotherapeutic agents capecitabine and taxol. Turmeric was found to be more potent than pure curcumin for cell growth inhibition. Turmeric also inhibited NF-κB activation induced by RANKL that correlated with the suppression of osteoclastogenesis. Conclusion Our results indicate that turmeric can effectively block the proliferation of tumor cells through the suppression of NF-κB and STAT3 pathways. PMID:22147524

  3. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris.

    PubMed

    Wang, Xiaolong; Wang, Qi; Wang, Jinjia; Bai, Peng; Shi, Lei; Shen, Wei; Zhou, Mian; Zhou, Xiangshan; Zhang, Yuanxing; Cai, Menghao

    2016-03-18

    The alcohol oxidase 1 (AOX1) promoter (P AOX1) of Pichia pastoris is the most powerful and commonly used promoter for driving protein expression. However, mechanisms regulating its transcriptional activity are unclear. Here, we identified a Zn(II)2Cys6-type methanol-induced transcription factor 1 (Mit1) and elucidated its roles in regulating PAOX1 activity in response to glycerol and methanol. Mit1 regulated the expression of many genes involved in methanol utilization pathway, including AOX1, but did not participate in peroxisome proliferation and transportation of peroxisomal proteins during methanol metabolism. Structural analysis of Mit1 by performing domain deletions confirmed its specific and critical role in the strict repression of P AOX1 in glycerol medium. Importantly, Mit1, Mxr1, and Prm1, which positively regulated P AOX1 in response to methanol, were bound to P AOX1 at different sites and did not interact with each other. However, these factors cooperatively activated P AOX1 through a cascade. Mxr1 mainly functioned during carbon derepression, whereas Mit1 and Prm1 functioned during methanol induction, with Prm1 transmitting methanol signal to Mit1 by binding to the MIT1 promoter (P MIT1), thus increasingly expressing Mit1 and subsequently activating P AOX1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Activation of the transcription factor nuclear factor-kappa B in uterine luminal epithelial cells by interleukin 1 Beta 2: a novel interleukin 1 expressed by the elongating pig conceptus.

    PubMed

    Mathew, Daniel J; Newsom, Emily M; Guyton, Jennifer M; Tuggle, Christopher K; Geisert, Rodney D; Lucy, Matthew C

    2015-04-01

    Conceptus mortality is greatest in mammals during the peri-implantation period, a time when conceptuses appose and attach to the uterine surface epithelium while releasing proinflammatory molecules. Interleukin 1 beta (IL1B), a master proinflammatory cytokine, is released by the primate, rodent, and pig blastocyst during the peri-implantation period and is believed to be essential for establishment of pregnancy. The gene encoding IL1B has duplicated in the pig, resulting in a novel gene. Preliminary observations indicate that the novel IL1B is specifically expressed by pig conceptuses during the peri-implantation period. To verify this, IL1B was cloned from mRNA isolated from Day 12 pig conceptuses and compared with IL1B cloned from mRNA isolated from pig peripheral blood leukocytes (PBLs). The pig conceptuses, but not the PBLs, expressed a novel IL1B, referred to here as interleukin 1 beta 2 (IL1B2). Porcine endometrium was treated with recombinant porcine interleukin 1 beta 1 (IL1B1), the prototypical cytokine, and IL1B2 proteins. Immunohistochemistry and real-time RT-PCR were used to measure activation of nuclear factor-kappa B (NFKB) and NFKB-regulated transcripts, respectively, within the endometrium. Both IL1B1 and IL1B2 activated NFKB in the uterine luminal epithelium within 4 h. The NFKB activation and related gene expression, however, were lower in endometrium treated with IL1B2, suggesting that the conceptus-derived cytokine may have reduced activity within the uterus. In conclusion, the peri-implantation pig conceptus expresses a novel IL1B that can activate NFKB within the uterine surface epithelium, likely creating a proinflammatory microenvironment during establishment of pregnancy in the pig. © 2015 by the Society for the Study of Reproduction, Inc.

  5. MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1.

    PubMed

    Liang, Bin; Wang, Xin; Song, Xiaosu; Bai, Rui; Yang, Huiyu; Yang, Zhiming; Xiao, Chuanshi; Bian, Yunfei

    2017-09-01

    ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in reverse cholesterol transport and exhibits anti-atherosclerosis effects. Some microRNAs (miRs) regulate ABCA1 expression, and recent studies have shown that miR-20a/b might play a critical role in atherosclerotic diseases. Here, we attempted to clarify the potential contribution of miR-20a/b in post-transcriptional regulation of ABCA1, cholesterol efflux, and atherosclerosis. We performed bioinformatics analysis and found that miR-20a/b was highly conserved and directly bound to ABCA1 mRNA with low binding free energy. Luciferase-reporter assay also confirmed that miR-20a/b significantly reduced luciferase activity associated with the ABCA1 3' untranslated region reporter construct. Additionally, miR-20a/b decreased ABCA1 expression, which, in turn, decreased cholesterol efflux and increased cholesterol content in THP-1 and RAW 264.7 macrophage-derived foam cells. In contrast, miR-20a/b inhibitors increased ABCA1 expression and cholesterol efflux, decreased cholesterol content, and inhibited foam-cell formation. Consistent with our in vitro results, miR-20a/b-treated ApoE -/- mice showed decreased ABCA1expression in the liver and reductions of reverse cholesterol transport in vivo. Furthermore, miR-20a/b regulated the formation of nascent high-density lipoprotein and promoted atherosclerotic development, whereas miR-20a/b knockdown attenuated atherosclerotic formation. miR-20 is a new miRNA capable of targeting ABCA1 and regulating ABCA1 expression. Therefore, miR-20 inhibition constitutes a new strategy for ABCA1-based treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. BDE47 induces rat CYP3A1 by targeting the transcriptional regulation of miR-23b

    NASA Astrophysics Data System (ADS)

    Sun, Zhenzhen; Zhang, Zhan; Ji, Minghui; Yang, Hongbao; Cromie, Meghan; Gu, Jun; Wang, Chao; Yang, Lu; Yu, Yongquan; Gao, Weimin; Wang, Shou-Lin

    2016-08-01

    Cytochrome P450 3A (CYP3A) is the most abundant CYP450 enzyme in the liver and is involved in the metabolism of over 50% of xenobiotics. Our previous studies revealed that 2,2‧,4,4‧-tetrabromodiphenyl ether (BDE47) could induce rat CYP3A1 expression, but the molecular basis remains unclear. Using in silico analysis, we identified a potential miR-23b recognition element (MRE23b) in the 3‧-UTR region of CYP3A1 mRNA, which was verified by the luciferase assay. The miR-23b mimic and inhibitor significantly down- and up-regulated the expression of CYP3A1, respectively. Additionally, BDE47 significantly down-regulated the expression of miR-23b in rats and in hepatic H4IIE cells. Induction or blockage of CYP3A1 by a miR-23b inhibitor or mimic could correspondingly alter BDE47-induced expression of CYP3A1 and cytotoxicity in H4IIE cells. Furthermore, LV-anti-miR-23b significantly decreased endogenous levels of miR-23b and increased the expression and activity of CYP3A1 in rat liver. LV-anti-miR-23b also significantly increased the hydroxylated metabolites of BDE47 (3-OH-BDE47, 4-OH-BDE42, and 4‧-OH-BDE49) in rat serum. In conclusion, we first found that BDE47 induced rat CYP3A1 expression by targeting the transcriptional regulation of miR-23b. This study helps provide a better understanding of CYP3A regulation and offers novel clues for the role of miRNAs in the metabolism and distribution of environmental pollutants.

  7. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor–κB in osteoblasts

    PubMed Central

    Qu, Liu; Yu, Yaqiong; Qiu, Lihong; Yang, Di; Yan, Lu; Guo, Jiajie; Jahan, Rabita

    2017-01-01

    ABSTRACT Porphyromonas endodontalis lipopolysaccharide (P.e LPS) is an important initiating factor for periapical inflammation and bone destruction. Matrix metalloproteinase-13 (MMP-13) has been shown to participate in the formation and diffusion of periapical bone lesion in chronic apical periodontitis. Sirtuin 1 (SIRT1) is a key regulator of inflammation in mammalian cells which suppresses the release of inflammatory mediators. This study aimed to explore the role of SIRT1 in regulating MMP-13 expression induced by P.e LPS in osteoblasts. P.e LPS stimulated MMP-13 expression in MC3T3-E1 cells. Knockdown of SIRT1 reinforced the increase of MMP-13mRNA expression induced by P.e LPS. SIRT1 activator resveratrol significantly reduced the expression of MMP-13 and SIRT1 inhibitor EX-527 enhanced the expression of MMP-13. Moreover, SIRT1 activation with resveratrol inhibited acetylation of NF-κB p65 and NF-κB transcriptional activity, which were enhanced by P.e LPS. In addition, NF-κB p65 was involved in P.e LPS-induced MMP-13 expression via directly binding to the MMP-13 promoter. However, SIRT1 activation significantly interfered with this binding. These findings strongly suggest that P.e LPS induces MMP-13 expression in osteoblasts, and SIRT1 suppresses this expression of MMP-13 through targeting NF-κB p65. This provides new insights into understanding the actions of SIRT1 on anti-inflammatory and anti-bone resorption activity. PMID:28473882

  8. Altered regulation of ELAVL1/HuR in HLA-B27-expressing U937 monocytic cells.

    PubMed

    Sahlberg, Anna S; Ruuska, Marja; Granfors, Kaisa; Penttinen, Markus A

    2013-01-01

    To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP) Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα) important in inflammatory response. U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock), wild type HLA-B27, or mutated HLA-B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2) were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC). Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response.

  9. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism

    PubMed Central

    Payyavula, Raja S.; Navarre, Duroy A.

    2013-01-01

    Much remains unknown about how transcription factors and sugars regulate phenylpropanoid metabolism in tuber crops like potato (Solanum tuberosum). Based on phylogeny and protein similarity to known regulators of phenylpropanoid metabolism, 15 transcription factors were selected and their expression was compared in white, yellow, red, and purple genotypes with contrasting phenolic and anthocyanin profiles. Red and purple genotypes had increased phenylalanine ammonia lyase (PAL) enzyme activity, markedly higher levels of phenylpropanoids, and elevated expression of most phenylpropanoid structural genes, including a novel anthocyanin O-methyltransferase. The transcription factors Anthocyanin1 (StAN1), basic Helix Loop Helix1 (StbHLH1), and StWD40 were more strongly expressed in red and purple potatoes. Expression of 12 other transcription factors was not associated with phenylpropanoid content, except for StMYB12B, which showed a negative relationship. Increased expression of AN1, bHLH1, and WD40 was also associated with environmentally mediated increases in tuber phenylpropanoids. Treatment of potato plantlets with sucrose induced hydroxycinnamic acids, flavonols, anthocyanins, structural genes, AN1, bHLH1, WD40, and genes encoding the sucrose-hydrolysing enzymes SUSY1, SUSY4, and INV2. Transient expression of StAN1 in tobacco leaves induced bHLH1, structural genes, SUSY1, SUSY4, and INV1, and increased phenylpropanoid amounts. StAN1 infiltration into tobacco leaves decreased sucrose and glucose concentrations. In silico promoter analysis revealed the presence of MYB and bHLH regulatory elements on sucrolytic gene promoters and sucrose-responsive elements on the AN1 promoter. These findings reveal an interesting dynamic between AN1, sucrose, and sucrose metabolic genes in modulating potato phenylpropanoids. PMID:24098049

  10. Punicalagin, a PTP1B inhibitor, induces M2c phenotype polarization via up-regulation of HO-1 in murine macrophages.

    PubMed

    Xu, Xiaolong; Guo, Yuhong; Zhao, Jingxia; He, Shasha; Wang, Yan; Lin, Yan; Wang, Ning; Liu, Qingquan

    2017-09-01

    Current data have shown that punicalagin (PUN), an ellagitannin isolated from pomegranate, possesses anti-inflammatory and anti-oxidant properties; however, its direct targets have not yet been reported. This is the first report that PTP1B serves as a direct target of PUN, with IC 50 value of 1.04μM. Results from NPOI further showed that the K on and K off of PUN-PTP1B complex were 3.38e2M -1 s -1 and 4.13e-3s -1 , respectively. The active site Arg24 of PTP1B was identified as a key binding site of PUN by computation simulation and point mutation. Moreover, inhibition of PTP1B by PUN promoted an M2c-like macrophage polarization and enhanced anti-inflammatory cytokines expression, including IL-10 and M-CSF. Based on gene expression profile, we elucidated that PUN treatment significantly up-regulated 275 genes and down-regulated 1059 genes. M1-like macrophage marker genes, such as Tlr4, Irf1/2, Hmgb1, and Stat1 were down-regulated, while M2 marker genes, including Tmem171, Gpr35, Csf1, Il1rn, Cebpb, Fos, Vegfα, Slc11a1, and Bhlhe40 were up-regulated in PUN-treated macrophages. Hmox-1, a gene encoding HO-1 protein, was preferentially expressed with 16-fold change. Inhibition of HO-1 obviously restored PUN-induced M2 polarization and IL-10 secretion. In addition, phosphorylation of both Akt and STAT3 contributed to PUN-induced HO-1 expression. This study provided new insights into the mechanisms of PUN-mediated anti-inflammatory and anti-oxidant activities and provided new therapeutic strategies for inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Thyroid Hormones Are Transport Substrates and Transcriptional Regulators of Organic Anion Transporting Polypeptide 2B1.

    PubMed

    Meyer Zu Schwabedissen, Henriette E; Ferreira, Celio; Schaefer, Anima M; Oufir, Mouhssin; Seibert, Isabell; Hamburger, Matthias; Tirona, Rommel G

    2018-07-01

    Levothyroxine replacement therapy forms the cornerstone of hypothyroidism management. Variability in levothyroxine oral absorption may contribute to the well-recognized large interpatient differences in required dose. Moreover, levothyroxine-drug pharmacokinetic interactions are thought to be caused by altered oral bioavailability. Interestingly, little is known regarding the mechanisms contributing to levothyroxine absorption in the gastrointestinal tract. Here, we aimed to determine whether the intestinal drug uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1) may be involved in facilitating intestinal absorption of thyroid hormones. We also explored whether thyroid hormones regulate OATP2B1 gene expression. In cultured Madin-Darby Canine Kidney II/OATP2B1 cells and in OATP2B1-transfected Caco-2 cells, thyroid hormones were found to inhibit OATP2B1-mediated uptake of estrone-3-sulfate. Competitive counter-flow experiments evaluating the influence on the cellular accumulation of estrone-3-sulfate in the steady state indicated that thyroid hormones were substrates of OATP2B1. Additional evidence that thyroid hormones were OATP2B1 substrates was provided by OATP2B1-dependent stimulation of thyroid hormone receptor activation in cell-based reporter assays. Bidirectional transport studies in intestinal Caco-2 cells showed net absorptive flux of thyroid hormones, which was attenuated by the presence of the OATP2B1 inhibitor, atorvastatin. In intestinal Caco-2 and LS180 cells, but not in liver Huh-7 or HepG2 cells, OATP2B1 expression was induced by treatment with thyroid hormones. Reporter gene assays revealed thyroid hormone receptor α -mediated transactivation of the SLCO2B1 1b and the SLCO2B1 1e promoters. We conclude that thyroid hormones are substrates and transcriptional regulators of OATP2B1. These insights provide a potential mechanistic basis for oral levothyroxine dose variability and drug interactions. Copyright © 2018 by The American

  12. Functional Impairment of Myeloid Dendritic Cells during Advanced Stage of HIV-1 Infection: Role of Factors Regulating Cytokine Signaling.

    PubMed

    Sachdeva, Meenakshi; Sharma, Aman; Arora, Sunil K

    2015-01-01

    Severely immunocompromised state during advanced stage of HIV-1 infection has been linked to functionally defective antigen presentation by dendritic cells (DCs). The molecular mechanisms behind DC impairment are still obscure. We investigated changes in DC function and association of key regulators of cytokine signaling during different stages of HIV-1 infection and following antiretroviral therapy (ART). Phenotypic and functional characteristics of circulating myeloid DCs (mDCs) in 56 ART-naive patients (23 in early and 33 in advanced stage of disease), 36 on ART and 24 healthy controls were evaluated. Sixteen patients were studied longitudinally prior-to and 6 months after the start of ART. For functional studies, monocyte-derived DCs (Mo-DCs) were evaluated for endocytosis, allo-stimulation and cytokine secretion. The expression of suppressor of cytokine signaling (SOCS)-1 and other regulators of cytokine signaling was evaluated by real-time RT-PCR. The ability to respond to an antigenic stimulation was severely impaired in patients in advanced HIV-1 disease which showed partial recovery in the treated group. Mo-DCs from patients with advanced HIV-disease remained immature with low allo-stimulation and reduced cytokine secretion even after TLR-4 mediated stimulation ex-vivo. The cells had an increased expression of negative regulatory factors like SOCS-1, SOCS-3, SH2-containing phosphatase (SHP)-1 and a reduced expression of positive regulators like Janus kinase (JAK)2 and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)1. A functional recovery after siRNA mediated silencing of SOCS-1 in these mo-DCs confirms the role of negative regulatory factors in functional impairment of these cells. Functionally defective DCs in advanced stage of HIV-1 infection seems to be due to imbalanced state of negative and positive regulatory gene expression. Whether this is a cause or effect of increased viral replication at this stage of disease, needs

  13. Inhibition of NFκB and Pancreatic Cancer Cell and Tumor Growth by Curcumin Is Dependent on Specificity Protein Down-regulation*

    PubMed Central

    Jutooru, Indira; Chadalapaka, Gayathri; Lei, Ping; Safe, Stephen

    2010-01-01

    Curcumin activates diverse anticancer activities that lead to inhibition of cancer cell and tumor growth, induction of apoptosis, and antiangiogenic responses. In this study, we observed that curcumin inhibits Panc28 and L3.6pL pancreatic cancer cell and tumor growth in nude mice bearing L3.6pL cells as xenografts. In addition, curcumin decreased expression of p50 and p65 proteins and NFκB-dependent transactivation and also decreased Sp1, Sp3, and Sp4 transcription factors that are overexpressed in pancreatic cancer cells. Because both Sp transcription factors and NFκB regulate several common genes such as cyclin D1, survivin, and vascular endothelial growth factor that contribute to the cancer phenotype, we also investigated interactions between Sp and NFκB transcription factors. Results of Sp1, Sp3, and Sp4 knockdown by RNA interference demonstrate that both p50 and p65 are Sp-regulated genes and that inhibition of constitutive or tumor necrosis factor-induced NFκB by curcumin is dependent on down-regulation of Sp1, Sp3, and Sp4 proteins by this compound. Curcumin also decreased mitochondrial membrane potential and induced reactive oxygen species in pancreatic cancer cells, and this pathway is required for down-regulation of Sp proteins in these cells, demonstrating that the mitochondriotoxic effects of curcumin are important for its anticancer activities. PMID:20538607

  14. Tumour Necrosis Factor-alpha and Nuclear Factor-kappa B Gene Variants in Sepsis.

    PubMed

    Acar, Leyla; Atalan, Nazan; Karagedik, E Hande; Ergen, Arzu

    2018-01-20

    The humoral system is activated and various cytokines are released due to infections in tissues and traumatic damage. Nuclear factor-kappa B dimers are encoded by nuclear factor-kappa B genes and regulate transcription of several crucial proteins of inflammation such as tumour necrosis factor-alpha. To investigate the possible effect of polymorphisms on tumour necrosis factor-alpha serum levels with clinical and prognostic parameters of sepsis by determining the nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A) gene polymorphisms and tumour necrosis factor-alpha serum levels. Case-control study. Seventy-two patients with sepsis and 104 healthy controls were included in the study. In order to determine the polymorphisms of nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A), polymerase chain reaction-restriction fragment length polymorphism analysis was performed and serum tumour necrosis factor-alpha levels were determined using an enzyme-linked immunosorbent assay. We observed no significant differences in tumour necrosis factor-alpha serum levels between the study groups. In the patient group, an increase in the tumour necrosis factor-alpha serum levels in patients carrying the tumour necrosis factor-alpha (-308 G/A) A allele compared to those without the A allele was found to be statistically significant. Additionally, an increase in the tumour necrosis factor-alpha serum levels in patients carrying tumour necrosis factor-alpha (-308 G/A) AA genotype compared with patients carrying the AG or GG genotypes was statistically significant. No significant differences were found in these 2 polymorphisms between the patient and control groups (p>0.05). Our results showed the AA genotype and the A allele of the tumour necrosis factor-alpha (-308 G/A) polymorphism may be used as a predictor of elevated tumour necrosis factor-alpha levels in patients with sepsis.

  15. Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine

    PubMed Central

    Jando, Julia; Camargo, Simone M. R.; Herzog, Brigitte

    2017-01-01

    Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary

  16. Euphorbia factor L1 inhibits osteoclastogenesis by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast.

    PubMed

    Hong, Seong-Eun; Lee, Jiae; Seo, Dong-Hyun; In Lee, Hye; Ri Park, Doo; Lee, Gong-Rak; Jo, You-Jin; Kim, Narae; Kwon, Minjung; Shon, Hansem; Kyoung Seo, Eun; Kim, Han-Sung; Young Lee, Soo; Jeong, Woojin

    2017-11-01

    Excessive bone resorption caused by increased osteoclast number or activity leads to a variety of bone diseases including osteoporosis, rheumatoid arthritis and periodontitis. Thus, the therapeutic strategy for these diseases has been focused primarily on the inhibition of osteoclast formation and function. This study shows that euphorbia factor L1 (EFL1), a diterpenoid isolated from Euphorbia lathyris, inhibited osteoclastogenesis and induced osteoclast apoptosis. EFL1 suppressed osteoclast formation and bone resorption at both initial and terminal differentiation stages. EFL1 inhibited receptor activator of NF-κB ligand (RANKL)-induced NFATc1 induction with attenuated NF-κB activation and c-Fos expression. EFL1 decreased the level of reactive oxygen species by scavenging them or activating Nrf2, and inhibited PGC-1β that regulates mitochondria biogenesis. In addition, EFL1 induced apoptosis in differentiated osteoclasts by increasing Fas ligand expression followed by caspase activation. Moreover, EFL1 inhibited inflammation-induced bone erosion and ovariectomy-induced bone loss in mice. These findings suggest that EFL1 inhibits osteoclast differentiation by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast, and may provide therapeutic potential for preventing or treating bone-related diseases caused by excessive osteoclast. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism

    DTIC Science & Technology

    2015-08-01

    in ~60% of peaks and the AR half-site motif (Figure 4B) in ~75% of peaks. Figure 4 shows motif logos of SAFB1 and AR bining motifs from MEME ...chain reaction. Drug Metab Dispos. 2009;37: 32-40. 12. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. Nucleic Acids Res. 2015;43: W39- 49...binding regions of SAFB1, AR, and EZH2 Software used: MEME , DREME 6-15 Dr. You Milestone(s) Achieved: Determination of (1) the overlapping target

  18. Regulation of Epigenetic Modifiers, Including KDM6B, by Interferon-γ and Interleukin-4 in Human Macrophages.

    PubMed

    Yıldırım-Buharalıoğlu, Gökçe; Bond, Mark; Sala-Newby, Graciela B; Hindmarch, Charles C T; Newby, Andrew C

    2017-01-01

    Interferon-γ (IFN-γ) or interleukin-4 (IL-4) drives widely different transcriptional programs in macrophages. However, how IFN-γ and IL-4 alter expression of histone-modifying enzymes involved in epigenetic regulation and how this affects the resulting phenotypic polarization is incompletely understood. We investigated steady-state messenger RNA levels of 84 histone-modifying enzymes and related regulators in colony-stimulating factor-1 differentiated primary human macrophages using quantitative polymerase chain reaction. IFN-γ or IL-4 treatment for 6-48 h changed 11 mRNAs significantly. IFN-γ increased CIITA, KDM6B, and NCOA1, and IL-4 also increased KDM6B by 6 h. However, either cytokine decreased AURKB, ESCO2, SETD6, SUV39H1, and WHSC1, whereas IFN-γ alone decreased KAT2A, PRMT7, and SMYD3 mRNAs only after 18 h, which coincided with decreased cell proliferation. Rendering macrophages quiescent by growth factor starvation or adenovirus-mediated overexpression of p27 kip1 inhibited expression of AURKB, ESCO2, SUV39H1, and WHSC1, and mRNA levels were restored by overexpressing the S-phase transcription factor E2F1, implying their expression, at least partly, depended on proliferation. However, CIITA, KDM6B, NCOA1, KAT2A, PRMT7, SETD6, and SMYD3 were regulated independently of effects on proliferation. Silencing KDM6B, the only transcriptional activator upregulated by both IFN-γ and IL-4, pharmacologically or with short hairpin RNA, blunted a subset of responses to each cytokine. These findings demonstrate that IFN-γ or IL-4 can regulate the expression of histone acetyl transferases and histone methyl transferases independently of effects on proliferation and that upregulation of the histone demethylase, KDM6B, assists phenotypic polarization by both cytokines.

  19. Potential role of follicle-stimulating hormone (FSH) and transforming growth factor (TGFβ1) in the regulation of ovarian angiogenesis.

    PubMed

    Kuo, Shih-Wei; Ke, Ferng-Chun; Chang, Geen-Dong; Lee, Ming-Ting; Hwang, Jiuan-Jiuan

    2011-06-01

    Angiogenesis occurs during ovarian follicle development and luteinization. Pituitary secreted FSH was reported to stimulate the expression of endothelial mitogen VEGF in granulosa cells. And, intraovarian cytokine transforming growth factor (TGF)β1 is known to facilitate FSH-induced differentiation of ovarian granulosa cells. This intrigues us to investigate the potential role of FSH and TGFβ1 regulation of granulosa cell function in relation to ovarian angiogenesis. Granulosa cells were isolated from gonadotropin-primed immature rats and treated once with FSH and/or TGFβ1 for 48 h, and the angiogenic potential of conditioned media (granulosa cell culture conditioned media; GCCM) was determined using an in vitro assay with aortic ring embedded in collagen gel and immunoblotting. FSH and TGFβ1 increased the secreted angiogenic activity in granulosa cells (FSH + TGFβ1 > FSH ≈ TGFβ1 >control) that was partly attributed to the increased secretion of pro-angiogenic factors VEGF and PDGF-B. This is further supported by the evidence that pre-treatment with inhibitor of VEGF receptor-2 (Ki8751) or PDGF receptor (AG1296) throughout or only during the first 2-day aortic ring culture period suppressed microvessel growth in GCCM-treated groups, and also inhibited the FSH + TGFβ1-GCCM-stimulated release of matrix remodeling-associated gelatinase activities. Interestingly, pre-treatment of AG1296 at late stage suppressed GCCM-induced microvessel growth and stability with demise of endothelial and mural cells. Together, we provide original findings that both FSH and TGFβ1 increased the secretion of VEGF and PDGF-B, and that in turn up-regulated the angiogenic activity in rat ovarian granulosa cells. This implicates that FSH and TGFβ1 play important roles in regulation of ovarian angiogenesis during follicle development. Copyright © 2010 Wiley-Liss, Inc.

  20. The nuclear factor kappa B (NF-κB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Fei, E-mail: zhufei@zju.edu.cn; Yue, Wanfu; Wang, Yongxia

    Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor which controls the expression of various genes involved in immune responses. However, it is not clear whether NF-κB activation is critical for phagocytosis when Staphylococcus aureus is the pathogen. Using oligonucleotide microarrays, we investigated whether NF-κB cascade genes are altered in a mouse leukemic monocyte macrophage cell line (RAW 264.7) when the cells were stimulated to activate a host innate immune response against live S. aureus or heat-inactivated S. aureus (HISA). NF-κB cascade genes such as Nfκb1, Nfκbiz, Nfκbie, Rel, Traf1 and Tnfaip3 were up-regulated by all treatments at onemore » hour after incubation. NF-κB play an important role in activating phagocytosis in RAW 264.7 cells infected with S. aureus. Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus and decreased the expression of NFκB1, IL1α, IL1β and TLR2 in this cell line. Our results demonstrate that S. aureus may activate the NF-κB pathway and that NF-κB activation is required for phagocytosis of S. aureus by macrophages. - Highlights: • NF-κB cascade genes such as Nfκb1 and Traf1 were up-regulated by heat-inactivated S. aureus. • Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus. • NF-κB activation is required for phagocytosis of S. aureus by macrophages.« less

  1. Amphetamine manipulates monoamine oxidase-A level and behavior using theranostic aptamers of transcription factors AP-1/NF-kB.

    PubMed

    Liu, Christina H; Ren, Jiaqian; Liu, Philip K

    2016-02-03

    Monoamine oxidase (MAO) enzymes play a critical role in controlling the catabolism of monoamine neurotransmitters and biogenic trace amines and behavior in humans. However, the mechanisms that regulate MAO are unclear. Several transcription factor proteins are proposed to modulate the transcription of MAO gene, but evidence supporting these hypotheses is controversial. We aimed to investigate the mechanism of gene transcription regulator proteins on amphetamine-induced behavior. We applied aptamers containing a DNA binding sequence, as well as a random sequence (without target) to study the modulation of amphetamine-induced MAO levels and hyperactivity in living mice. We pretreated in adult male C57black6 mice (Taconic Farm, Germantown, NY) (n ≥ 3 litters at a time), 2 to 3 months of age (23 ± 2 gm body weight) with double-stranded (ds) DNA aptamers with sequence specific to activator protein-1 (5ECdsAP1), nuclear factor-kappa beta (5ECdsNF-kB), special protein-1 (5ECdsSP-1) or cyclicAMP responsive element binding (5ECdsCreB) protein binding regions, 5ECdsRan [a random sequence without target], single-stranded AP-1 (5ECssAP-1) (8 nmol DNA per kg) or saline (5 μl, intracerebroventricular [icv] injection) control before amphetamine administration (4 mg/kg, i.p.). We then measured and analyzed locomotor activities and the level of MAO-A and MAO-B activity. In the pathological condition of amphetamine exposure, we showed here that pretreatment with 5ECdsAP1 and 5ECdsNF-kB reversed the decrease of MAO-A activity (p < 0.05, t test), but not activity of the B isomer (MAO-B), in the ventral tegmental area (VTA) and substantia nigra (SN) of C57black6 mice. The change in MAO-A level coincided with a reversed amphetamine-induced restless behavior of mice. Pretreatments with saline, 5ECdsCreB, 5ECdsSP-1, 5ECdsRan or 5ECssAP-1 had no effect. Our data lead us to conclude that elevation of AP-1 or NF-kB indirectly decreases MAO-A protein levels which, in turn

  2. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells

    PubMed Central

    Mencalha, Andre L.; Ferreira, Gerson M.; de Souza, Waldemir F.; Morgado-Díaz, José A.; Maia, Amanda M.; Corrêa, Stephany; Abdelhay, Eliana S. F. W.

    2017-01-01

    The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment. PMID:28107418

  3. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells.

    PubMed

    Pires, Bruno R B; Mencalha, Andre L; Ferreira, Gerson M; de Souza, Waldemir F; Morgado-Díaz, José A; Maia, Amanda M; Corrêa, Stephany; Abdelhay, Eliana S F W

    2017-01-01

    The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment.

  4. SHORT HYPOCOTYL 1 encodes a SMARCA3-like chromatin remodeling factor regulating elongation

    USDA-ARS?s Scientific Manuscript database

    Understanding the mechanisms and control of hypocotyl elongation is important for greenhouse vegetable crop production. In this study, we identified SHORT HYPOCOTYL1 (SH1) in cucumber which regulates low-dosage ultraviolet B (LDUVB)-dependent hypocotyl elongation by recruiting the cucumber UVR8 sign...

  5. Vimentin, a Novel NF-κB Regulator, Is Required for Meningitic Escherichia coli K1-Induced Pathogen Invasion and PMN Transmigration across the Blood-Brain Barrier.

    PubMed

    Huang, Sheng-He; Chi, Feng; Peng, Liang; Bo, Tao; Zhang, Bao; Liu, Li-Qun; Wu, Xuedong; Mor-Vaknin, Nirit; Markovitz, David M; Cao, Hong; Zhou, Yan-Hong

    NF-κB activation, pathogen invasion, polymorphonuclear leukocytes (PMN) transmigration (PMNT) across the blood-brain barrier (BBB) are the pathogenic triad hallmark features of bacterial meningitis, but the mechanisms underlying these events remain largely unknown. Vimentin, which is a novel NF-κB regulator, is the primary receptor for the major Escherichia coli K1 virulence factor IbeA that contributes to the pathogenesis of neonatal bacterial sepsis and meningitis (NSM). We have previously shown that IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PTB-associated splicing factor (PSF) is required for pathogen penetration and leukocyte transmigration across the BBB. This is the first in vivo study to demonstrate how vimentin and related factors contributed to the pathogenic triad of bacterial meningitis. The role of vimentin in IbeA+ E. coli K1-induced NF-κB activation, pathogen invasion, leukocyte transmigration across the BBB has now been demonstrated by using vimentin knockout (KO) mice. In the in vivo studies presented here, IbeA-induced NF-κB activation, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the BBB were significantly reduced in Vim-/- mice. Decreased neuronal injury in the hippocampal dentate gyrus was observed in Vim-/- mice with meningitis. The major inflammatory regulator α7 nAChR and several signaling molecules contributing to NF-κB activation (p65 and p-CamKII) were significantly reduced in the brain tissues of the Vim-/- mice with E. coli meningitis. Furthermore, Vim KO resulted in significant reduction in neuronal injury and in α7 nAChR-mediated calcium signaling. Vimentin, a novel NF-κB regulator, plays a detrimental role in the host defense against meningitic infection by modulating the NF-κB signaling pathway to increase pathogen invasion, PMN recruitment, BBB permeability and neuronal inflammation. Our findings provide the first evidence for Vim

  6. Vimentin, a Novel NF-κB Regulator, Is Required for Meningitic Escherichia coli K1-Induced Pathogen Invasion and PMN Transmigration across the Blood-Brain Barrier

    PubMed Central

    Zhang, Bao; Liu, Li-Qun; Wu, Xuedong; Mor-Vaknin, Nirit; Markovitz, David M.; Cao, Hong; Zhou, Yan-Hong

    2016-01-01

    Background NF-κB activation, pathogen invasion, polymorphonuclear leukocytes (PMN) transmigration (PMNT) across the blood-brain barrier (BBB) are the pathogenic triad hallmark features of bacterial meningitis, but the mechanisms underlying these events remain largely unknown. Vimentin, which is a novel NF-κB regulator, is the primary receptor for the major Escherichia coli K1 virulence factor IbeA that contributes to the pathogenesis of neonatal bacterial sepsis and meningitis (NSM). We have previously shown that IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PTB-associated splicing factor (PSF) is required for pathogen penetration and leukocyte transmigration across the BBB. This is the first in vivo study to demonstrate how vimentin and related factors contributed to the pathogenic triad of bacterial meningitis. Methodology/Principal Findings The role of vimentin in IbeA+ E. coli K1-induced NF-κB activation, pathogen invasion, leukocyte transmigration across the BBB has now been demonstrated by using vimentin knockout (KO) mice. In the in vivo studies presented here, IbeA-induced NF-κB activation, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the BBB were significantly reduced in Vim-/- mice. Decreased neuronal injury in the hippocampal dentate gyrus was observed in Vim-/- mice with meningitis. The major inflammatory regulator α7 nAChR and several signaling molecules contributing to NF-κB activation (p65 and p-CamKII) were significantly reduced in the brain tissues of the Vim-/- mice with E. coli meningitis. Furthermore, Vim KO resulted in significant reduction in neuronal injury and in α7 nAChR-mediated calcium signaling. Conclusion/Significance Vimentin, a novel NF-κB regulator, plays a detrimental role in the host defense against meningitic infection by modulating the NF-κB signaling pathway to increase pathogen invasion, PMN recruitment, BBB permeability and neuronal

  7. Turmeric (Curcuma longa) inhibits inflammatory nuclear factor (NF)-κB and NF-κB-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis.

    PubMed

    Kim, Ji H; Gupta, Subash C; Park, Byoungduck; Yadav, Vivek R; Aggarwal, Bharat B

    2012-03-01

    The incidence of cancer is significantly lower in regions where turmeric is heavily consumed. Whether lower cancer incidence is due to turmeric was investigated by examining its effects on tumor cell proliferation, on pro-inflammatory transcription factors NF-κB and STAT3, and on associated gene products. Cell proliferation and cell cytotoxicity were measured by the MTT method, NF-κB activity by EMSA, protein expression by Western blot analysis, ROS generation by FACS analysis, and osteoclastogenesis by TRAP assay. Turmeric inhibited NF-κB activation and down-regulated NF-κB-regulated gene products linked to survival (Bcl-2, cFLIP, XIAP, and cIAP1), proliferation (cyclin D1 and c-Myc), and metastasis (CXCR4) of cancer cells. The spice suppressed the activation of STAT3, and induced the death receptors (DR)4 and DR5. Turmeric enhanced the production of ROS, and suppressed the growth of tumor cell lines. Furthermore, turmeric sensitized the tumor cells to chemotherapeutic agents capecitabine and taxol. Turmeric was found to be more potent than pure curcumin for cell growth inhibition. Turmeric also inhibited NF-κB activation induced by RANKL that correlated with the suppression of osteoclastogenesis. Our results indicate that turmeric can effectively block the proliferation of tumor cells through the suppression of NF-κB and STAT3 pathways. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rice homeobox transcription factor HOX1a positively regulates gibberellin responses by directly suppressing EL1.

    PubMed

    Wen, Bi-Qing; Xing, Mei-Qing; Zhang, Hua; Dai, Cheng; Xue, Hong-Wei

    2011-11-01

    Homeobox transcription factors are involved in various aspects of plant development, including maintenance of the biosynthesis and signaling pathways of different hormones. However, few direct targets of homeobox proteins have been identified. We here show that overexpression of rice homeobox gene HOX1a resulted in enhanced gibberellin (GA) response, indicating a positive effect of HOX1a in GA signaling. HOX1a is induced by GA and encodes a homeobox transcription factor with transcription repression activity. In addition, HOX1a suppresses the transcription of early flowering1 (EL1), a negative regulator of GA signaling, and further electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that HOX1a directly bound to the promoter region of EL1 to suppress its expression and stimulate GA signaling. These results demonstrate that HOX1a functions as a positive regulator of GA signaling by suppressing EL1, providing informative hints on the study of GA signaling. © 2011 Institute of Botany, Chinese Academy of Sciences.

  9. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew1

    PubMed Central

    Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-01-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. PMID:26813794

  10. Novel mechanism and factor for regulation by HIV-1 Tat.

    PubMed Central

    Zhou, Q; Sharp, P A

    1995-01-01

    Tat regulation of human immunodeficiency virus (HIV) transcription is unique because of its specificity for an RNA target, TAR, and its ability to increase the efficiency of elongation by polymerase. A reconstituted reaction that is Tat-specific and TAR-dependent for activation of HIV transcription has been used to identify and partially purify a cellular activity that is required for trans-activation by Tat, but not by other activators. In the reaction, Tat stimulates the efficiency of elongation by polymerase, whereas Sp1 and other DNA sequence-specific transcription factors activate the rate of initiation. Furthermore, while TATA binding protein (TBP)-associated factors (TAFs) in the TFIID complex are required for activation by transcription factors, they are dispensable for Tat function. Thus, Tat acts through a novel mechanism, which is mediated by a specific host cellular factor, to stimulate HIV-1 gene expression. Images PMID:7835343

  11. Interleukin-21 regulates expression of key Epstein-Barr virus oncoproteins, EBNA2 and LMP1, in infected human B cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konforte, Danijela; Department of Immunology, University of Toronto, Toronto, M5S 1A8; Simard, Nathalie

    Epstein-Barr virus (EBV) persists for the life of the host by accessing the long-lived memory B cell pool. It has been proposed that EBV uses different combinations of viral proteins, known as latency types, to drive infected B cells to make the transition from resting B cells to memory cells. This process is normally antigen-driven. A major unresolved question is what factors coordinate expression of EBV latency proteins. We have recently described novel type III latency EBV{sup +} B cell lines (OCI-BCLs) that were induced to differentiate into late plasmablasts/early plasma cells in culture with interleukin-21 (IL-21), mimicking normal Bmore » cell development. The objective of this study was to determine whether IL-21-mediated signals also regulate the expression of key EBV latent proteins during this window of development. Here we show that IL-21-reduced gene and protein expression of growth-transforming EBV nuclear antigen 2 (EBNA2) in OCI-BCLs. By contrast, the expression of CD40-like, latent membrane protein 1 (LMP1) strongly increased in these cells suggesting an EBNA2-independent mode of regulation. Same results were also observed in Burkitt's lymphoma line Jijoye and B95-8 transformed lymphoblastoid cell lines. The effect of IL-21 on EBNA2 and LMP1 expression was attenuated by a pharmacological JAK inhibitor indicating involvement of JAK/STAT signalling in this process. Our study also shows that IL-21 induced transcription of ebna1 from the viral Q promoter (Qp)« less

  12. Clusterin and COMMD1 Independently Regulate Degradation of the Mammalian Copper ATPases ATP7A and ATP7B*

    PubMed Central

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2012-01-01

    ATP7A and ATP7B are copper-transporting P1B-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and COMMD1 were previously identified as interacting partners of these Cu-ATPases. In this study, we confirmed that clusterin and COMMD1 interact to down-regulate both ATP7A and ATP7B. Overexpression and knockdown of clusterin/COMMD1 decreased and increased, respectively, endogenous levels of ATP7A and ATP7B, consistent with a role in facilitating Cu-ATPase degradation. We demonstrate that whereas the clusterin/ATP7B interaction was enhanced by oxidative stress or mutation of ATP7B, the COMMD1/ATP7B interaction did not change under oxidative stress conditions, and only increased with ATP7B mutations that led to its misfolding. Clusterin and COMMD1 facilitated the degradation of ATP7B containing the same Wilson disease-causing C-terminal mutations via different degradation pathways, clusterin via the lysosomal pathway and COMMD1 via the proteasomal pathway. Furthermore, endogenous ATP7B existed in a complex with clusterin and COMMD1, but these interactions were neither competitive nor cooperative and occurred independently of each other. Together these data indicate that clusterin and COMMD1 represent alternative and independent systems regulating Cu-ATPase quality control, and consequently contributing to the maintenance of copper homeostasis. PMID:22130675

  13. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    PubMed

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species

  14. Regulation of RE1 Protein Silencing Transcription Factor (REST) Expression by HIP1 Protein Interactor (HIPPI)*

    PubMed Central

    Datta, Moumita; Bhattacharyya, Nitai P.

    2011-01-01

    Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease. PMID:21832040

  15. Regulation of RE1 protein silencing transcription factor (REST) expression by HIP1 protein interactor (HIPPI).

    PubMed

    Datta, Moumita; Bhattacharyya, Nitai P

    2011-09-30

    Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease.

  16. Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1.

    PubMed

    Ruthenborg, Robin J; Ban, Jae-Jun; Wazir, Anum; Takeda, Norihiko; Kim, Jung-Whan

    2014-09-01

    Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.

  17. Down-regulation of Homer1b/c protects against chemically induced seizures through inhibition of mTOR signaling.

    PubMed

    Cao, Lei; Tian, Ye; Jiang, Yi; Zhang, Ge-Juan; Lei, Hui; Di, Zheng-Li

    2015-01-01

    Homer is a family of post synaptic density proteins functionally and physically attached to target proteins at proline-rich sequences. Reducing Homer1b/c expression has been shown in previous studies to be protective against excitotoxic insults, implicating Homer1b/c in the physiological regulation of aberrant neuronal excitability. To test the efficacy of a Homer1b/c reducing therapy for disorders with a detrimental hyperexcitability profile in mice, we used small interfere RNA (siRNA) to decrease endogenous Homer1b/c expression in mouse hippocampus. The baseline motor and cognitive behavior was measured by sensorimotor tests, Morris water maze and elevated plus maze tasks. The anti-epileptic effects of Homer1b/c knockdown were determined in two chemically induced seizure models induced by Picrotoxin (PTX) or pentylenetetrazole (PTZ) administration. The results of sensorimotor tests, Morris water maze and elevated plus maze tasks showed that Homer1b/c reduction had no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced Homerb/c protein had less severe seizures than control mice. Total Homer1b/c protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of Homer1b/c. In addition, the phosphorylation of mammalian target of rapamycin (mTOR) and its target protein S6 was significantly inhibited in Homer1b/c down-regulated mice. Homer1b/c knockdown-induced inhibition of mTOR pathway was partially ablated by the metabotropic glutamate receptor 5 (mGluR5) agonist CHPG. Our results demonstrate that endogenous Homer1b/c is integral for regulating neuronal hyperexcitability in adult animals and suggest that reduction of Homer1b/c could protect against chemically induced seizures through inhibition mTOR pathway. © 2015 S. Karger AG, Basel.

  18. B-cell subset alterations and correlated factors in HIV-1 infection.

    PubMed

    Pensieroso, Simone; Galli, Laura; Nozza, Silvia; Ruffin, Nicolas; Castagna, Antonella; Tambussi, Giuseppe; Hejdeman, Bo; Misciagna, Donatella; Riva, Agostino; Malnati, Mauro; Chiodi, Francesca; Scarlatti, Gabriella

    2013-05-15

    During HIV-1 infection, the development, phenotype, and functionality of B cells are impaired. Transitional B cells and aberrant B-cell populations arise in blood, whereas a declined percentage of resting memory B cells is detected. Our study aimed at pinpointing the demographic, immunological, and viral factors driving these pathological findings, and the role of antiretroviral therapy in reverting these alterations. B-cell phenotype and correlating factors were evaluated. Variations in B-cell subsets were evaluated by flow cytometry in HIV-1-infected individuals naive to therapy, elite controllers, and patients treated with antiretroviral drugs (virological control or failure). Multivariable analysis was performed to identify variables independently associated with the B-cell alterations. Significant differences were observed among patients' groups in relation to all B-cell subsets. Resting memory B cells were preserved in patients naive to therapy and elite controllers, but reduced in treated patients. Individuals naive to therapy and experiencing multidrug failure, as well as elite controllers, had significantly higher levels of activated memory B cells compared to healthy controls. In the multivariate analysis, plasma viral load and nadir CD4 T cells independently correlated with major B-cell alterations. Coinfection with hepatitis C but not hepatitis B virus also showed an impact on specific B-cell subsets. Successful protracted antiretroviral treatment led to normalization of all B-cell subsets with exception of resting memory B cells. Our results indicate that viremia and nadir CD4 T cells are important prognostic markers of B-cell perturbations and provide evidence that resting memory B-cell depletion during chronic infection is not reverted upon successful antiretroviral therapy.

  19. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu

    2006-05-26

    We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hotmore » pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.« less

  20. KH-type splicing regulatory protein is regulated by nuclear factor-κB signaling to mediate innate immunity in Caco-2 cells infected by Salmonella enteritidis.

    PubMed

    Nie, Yuanyang; Cao, Mei; Wu, Daoyan; Li, Ningzhe; Peng, Jingshan; Yi, Sijun; Yang, Xiaofan; Zhang, Mao; Hu, Guoku; Zhao, Jian

    2018-05-04

    Salmonella enteritidis infection occurs in enterogenous diseases, such as gastroenteritis and parenteral focal infection, which often involve inflammation of intestinal epithelial cells. The nuclear factor kappa B (NF-κB) pathway participates in the innate immune response to many gram-negative pathogenic bacteria and initiates inflammation in epithelial cells. KH-type splicing regulatory protein (KSRP) is a multi-domain RNA-binding protein that recruits the exosome-containing mRNA degradation complex to mRNAs coding for inflammatory response factors. However, it remains unclear whether KSRP is regulated by NF-κB signaling pathway in response to S. enteritidis infection and affects the development of inflammation. Accordingly, in this study, we investigated the role of KSRP in mediating the response to S. enteritidis in Caco-2 cells. The data revealed that S. enteritidis infection decreased KSRP expression, which was suppressed by blocking the NF-κB pathway. Additionally, S. enteritidis infection significantly increased the expression of inducible nitric oxide synthase and cyclooxygenase-2. Overexpression of KSRP reduced the expression levels of inflammatory factors in Caco-2 cells. KSRP was regulated by the NF-κB signaling pathway and participated in mediating the innate immune response to S. enteritidis infection in Caco-2 cells, and KSRP acted as a negative regulator of inflammatory gene expression.

  1. Basic Helix-Loop-Helix Transcription Factor Bmsage Is Involved in Regulation of fibroin H-chain Gene via Interaction with SGF1 in Bombyx mori

    PubMed Central

    Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You

    2014-01-01

    Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix–loop–helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells. PMID:24740008

  2. The forkhead-like transcription factor (Fhl1p) maintains yeast replicative lifespan by regulating ribonucleotide reductase 1 (RNR1) gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Akiko; Kamei, Yuka; Mukai, Yukio

    In eukaryotes, numerous genetic factors contribute to the lifespan including metabolic enzymes, signal transducers, and transcription factors. As previously reported, the forkhead-like transcription factor (FHL1) gene was required for yeast replicative lifespan and cell proliferation. To determine how Fhl1p regulates the lifespan, we performed a DNA microarray analysis of a heterozygous diploid strain deleted for FHL1. We discovered numerous Fhl1p-target genes, which were then screened for lifespan-regulating activity. We identified the ribonucleotide reductase (RNR) 1 gene (RNR1) as a regulator of replicative lifespan. RNR1 encodes a large subunit of the RNR complex, which consists of two large (Rnr1p/Rnr3p) and twomore » small (Rnr2p/Rnr4p) subunits. Heterozygous deletion of FHL1 reduced transcription of RNR1 and RNR3, but not RNR2 and RNR4. Chromatin immunoprecipitation showed that Fhl1p binds to the promoter regions of RNR1 and RNR3. Cells harboring an RNR1 deletion or an rnr1-C428A mutation, which abolishes RNR catalytic activity, exhibited a short lifespan. In contrast, cells with a deletion of the other RNR genes had a normal lifespan. Overexpression of RNR1, but not RNR3, restored the lifespan of the heterozygous FHL1 mutant to the wild-type (WT) level. The Δfhl1/FHL1 mutant conferred a decrease in dNTP levels and an increase in hydroxyurea (HU) sensitivity. These findings reveal that Fhl1p regulates RNR1 gene transcription to maintain dNTP levels, thus modulating longevity by protection against replication stress. - Highlights: • Fhl1p regulates replicative lifespan and transcription of RNR large subunit genes. • Rnr1p uniquely acts as a lifespan regulator independent of the RNR complex. • dNTP levels modulate longevity by protection against replication stress.« less

  3. Ectodomain shedding of TNF receptor 1 induced by protein synthesis inhibitors regulates TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Hirotsugu; Tsukumo, Yoshinori; Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501

    2008-04-01

    The transcription factor nuclear factor {kappa}B (NF-{kappa}B) plays a major role in the inducible resistance to death receptor-mediated apoptosis. It has been established that the protein synthesis inhibitor cycloheximide (CHX) sensitizes many types of cells to tumor necrosis factor (TNF)-{alpha}-induced apoptosis, mainly due to its ability to block de novo synthesis of cellular FLICE-inhibitory protein (c-FLIP). Nevertheless, we have surprisingly found that CHX, as well as its structural analogue acetoxycycloheximide (Ac-CHX), prevents TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8 in human lung carcinoma A549 cells. Both CHX and Ac-CHX reduced the expression of cell surface TNF receptor 1 (TNF-R1) in amore » dose-dependent manner, while Ac-CHX was approximately 100-fold more effective than CHX. Consistent with this observation, Ac-CHX induced the proteolytic cleavage of TNF-R1 and its release into the culture medium. CHX and Ac-CHX profoundly decreased constitutive and inducible expression of c-FLIP, whereas these compounds potentiated TNF-{alpha}-induced caspase-8 activation only when metalloprotease inhibitors were present. Thus, our results indicate that ectodomain shedding of TNF-R1 induced by protein synthesis inhibitors regulates TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8.« less

  4. Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis

    PubMed Central

    Zhou, Xiaoli; Chen, Kai; Wang, Yongjun; Schuman, Mariano; Lei, Han

    2016-01-01

    Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate–limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/−) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency–induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/−) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency–induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis. PMID:26471128

  5. Vitamin B12–dependent taurine synthesis regulates growth and bone mass

    PubMed Central

    Roman-Garcia, Pablo; Quiros-Gonzalez, Isabel; Mottram, Lynda; Lieben, Liesbet; Sharan, Kunal; Wangwiwatsin, Arporn; Tubio, Jose; Lewis, Kirsty; Wilkinson, Debbie; Santhanam, Balaji; Sarper, Nazan; Clare, Simon; Vassiliou, George S.; Velagapudi, Vidya R.; Dougan, Gordon; Yadav, Vijay K.

    2014-01-01

    Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass. PMID:24911144

  6. Pancreatic and Duodenal Homeobox Protein 1 (Pdx-1) Maintains Endoplasmic Reticulum Calcium Levels through Transcriptional Regulation of Sarco-endoplasmic Reticulum Calcium ATPase 2b (SERCA2b) in the Islet β Cell*

    PubMed Central

    Johnson, Justin S.; Kono, Tatsuyoshi; Tong, Xin; Yamamoto, Wataru R.; Zarain-Herzberg, Angel; Merrins, Matthew J.; Satin, Leslie S.; Gilon, Patrick; Evans-Molina, Carmella

    2014-01-01

    Although the pancreatic duodenal homeobox 1 (Pdx-1) transcription factor is known to play an indispensable role in β cell development and secretory function, recent data also implicate Pdx-1 in the maintenance of endoplasmic reticulum (ER) health. The sarco-endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b) pump maintains a steep Ca2+ gradient between the cytosol and ER lumen. In models of diabetes, our data demonstrated loss of β cell Pdx-1 that occurs in parallel with altered SERCA2b expression, whereas in silico analysis of the SERCA2b promoter revealed multiple putative Pdx-1 binding sites. We hypothesized that Pdx-1 loss under inflammatory and diabetic conditions leads to decreased SERCA2b levels and activity with concomitant alterations in ER health. To test this, siRNA-mediated knockdown of Pdx-1 was performed in INS-1 cells. The results revealed reduced SERCA2b expression and decreased ER Ca2+, which was measured using fluorescence lifetime imaging microscopy. Cotransfection of human Pdx-1 with a reporter fused to the human SERCA2 promoter increased luciferase activity 3- to 4-fold relative to an empty vector control, and direct binding of Pdx-1 to the proximal SERCA2 promoter was confirmed by chromatin immunoprecipitation. To determine whether restoration of SERCA2b could rescue ER stress induced by Pdx-1 loss, Pdx1+/− mice were fed a high-fat diet. Isolated islets demonstrated an increased spliced-to-total Xbp1 ratio, whereas SERCA2b overexpression reduced the Xbp1 ratio to that of wild-type controls. Together, these results identify SERCA2b as a novel transcriptional target of Pdx-1 and define a role for altered ER Ca2+ regulation in Pdx-1-deficient states. PMID:25271154

  7. The Semaphorin 4D- Plexin-B1- RhoA signaling axis recruits pericytes and regulates vascular permeability through endothelial production of PDGF-B and ANGPTL4

    PubMed Central

    Zhou, Hua; Yang, Ying-Hua; Basile, John R.

    2013-01-01

    Semaphorin 4D (SEMA4D) is a member of a family of transmembrane and secreted proteins that have been shown to act through its receptor Plexin-B1 to regulate axon growth cone guidance, lymphocyte activation, and bone density. SEMA4D is also overexpressed by some malignancies and plays a role in tumor-induced angiogenesis similar to vascular endothelial growth factor (VEGF), a protein that has been targeted as part of some cancer therapies. In an attempt to examine the different effects on tumor growth and vascularity for these two pro-angiogenic factors, we previously noted that while inhibition of both VEGF and SEMA4D restricted tumor vascularity and size, vessels forming under conditions of VEGF blockade retained their association with pericytes while those arising in a background of SEMA4D/ Plexin-B1 deficiency did not, an intriguing finding considering that alteration in pericyte association with endothelial cells is an emerging aspect of anti-angiogenic intervention in the treatment of cancer. Here we show through array analysis, immunoblots, migration and co-culture assays and VE-cadherin immunohistochemistry that SEMA4D production by head and neck carcinoma tumor cells induces expression of platelet-derived growth factor-B (PDGF-B) and angiopoietin-like protein 4 (ANGPTL4) from endothelial cells in a Plexin-B1/ Rho-dependent manner, thereby influencing proliferation and differentiation of pericytes and vascular permeability, whereas VEGF lacks these effects. These results partly explain the differences observed between SEMA4D and VEGF in pathological angiogenesis and suggest that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of solid tumors. PMID:24114199

  8. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1}more » knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is

  9. Integration Host Factor Is Required for RpoN-Dependent hrpL Gene Expression and Controls Motility by Positively Regulating rsmB sRNA in Erwinia amylovora.

    PubMed

    Lee, Jae Hoon; Zhao, Youfu

    2016-01-01

    Erwinia amylovora requires an hrp-type III secretion system (T3SS) to cause disease. It has been reported that HrpL, the master regulator of T3SS, is transcriptionally regulated by sigma factor 54 (RpoN), YhbH, and HrpS. In this study, the role of integration host factor (IHF) in regulating hrpL and T3SS gene expression was investigated. IHF is a nucleoid-associated protein that regulates gene expression by influencing nucleoid structure and DNA bending. Our results showed that both ihfA and ihfB mutants of E. amylovora did not induce necrotic lesions on pear fruits. Growth of both mutants was greatly reduced, and expression of the hrpL and T3SS genes was significantly down-regulated as compared with those of the wild type. In addition, expression of the ihfA, but not the ihfB gene, was under auto-suppression by IHF. Furthermore, both ihfA and ihfB mutants were hypermotile, due to significantly reduced expression of small RNA (sRNA) rsmB. Electrophoresis mobility shift assay further confirmed that IHF binds to the promoters of the hrpL and ihfA genes, as well as the rsmB sRNA gene. These results indicate that IHF is required for RpoN-dependent hrpL gene expression and virulence, and controls motility by positively regulating the rsmB sRNA in E. amylovora.

  10. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3.

    PubMed

    Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H

    1994-11-15

    Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.

  11. Surface association and the MreB cytoskeleton regulate pilus production, localization and function in Pseudomonas aeruginosa.

    PubMed

    Cowles, Kimberly N; Gitai, Zemer

    2010-06-01

    Spatial organization of bacterial proteins influences many cellular processes, including division, chromosome segregation and motility. Virulence-associated proteins also localize to specific destinations within bacterial cells. However, the functions and mechanisms of virulence factor localization remain largely unknown. In this work, we demonstrate that polar assembly of the Pseudomonas aeruginosa PAO1 type IV pilus is regulated by surface association in a manner that affects gene transcription, protein levels and protein localization. We also uncover one mechanism for this regulation that acts through the actin homologue MreB. Inactivation of MreB leads to mislocalization of the pilus retraction ATPase PilT, mislocalization of the pili themselves and a reduction in motility. Furthermore, the role of MreB in polar localization of PilT is modulated by surface association, corroborating our results that environmental factors influence the regulation of pilus production. Specifically, MreB mediates both the initiation and maintenance of PilT localization when cells are grown in suspension but only affects the initiation of localization when cells are grown on a surface. Together, these results suggest that the bacterial cytoskeleton provides a mechanism for the polar localization of P. aeruginosa pili and demonstrate that protein localization may represent an important aspect of virulence factor regulation in bacterial pathogens.

  12. L-2-Oxothiazolidine-4-Carboxylic Acid or α-Lipoic Acid Attenuates Airway Remodeling: Involvement of Nuclear Factor-κB (NF-κB), Nuclear Factor Erythroid 2p45-Related Factor-2 (Nrf2), and Hypoxia-Inducible Factor (HIF)

    PubMed Central

    Park, Seoung Ju; Lee, Kyung Sun; Lee, Su Jeong; Kim, So Ri; Park, Seung Yong; Jeon, Myoung Shin; Lee, Heung Bum; Lee, Yong Chul

    2012-01-01

    Reactive oxygen species (ROS) play a crucial role in the pathogenesis of acute and chronic respiratory diseases. Antioxidants have been found to ameliorate airway inflammation and hyperresponsiveness in animal models employing short-term exposure to allergen. However, little data are available on the effect of antioxidants on airway remodeling and signaling pathways in chronic asthma. In the present study, we used a long-term exposure murine model of allergic airway disease to evaluate the effects of an antioxidant, L-2-oxothiazolidine-4-carboxylic acid (OTC) or α-lipoic acid (LA) on airway remodeling, focusing on the ROS-related hypoxia-inducible signaling. Long-term challenge of ovalbumin (OVA) increased ROS production, airway inflammation, and airway hyperresponsiveness, and developed features of airway remodeling such as excessive mucus secretion, subepithelial fibrosis, and thickening of the peribronchial smooth muscle layer. Administration of OTC or LA reduced these features of asthma, including airway remodeling, which was accompanied by suppression of transforming growth factor1, vascular endothelial growth factor, and T-helper 2 cytokines. In addition, OVA-induced activation of nuclear factor-κB (NF-κB), nuclear factor erythroid 2p45-related factor-2 (Nrf2), hypoxia-inducible factor (HIF)-1α, and HIF-2α was reduced by OTC or LA. Our results also showed that OTC or LA down-regulated phosphoinositide 3-kinase activity and decreased phosphorylation of p38 mitogen-activated protein kinase but not extracellular signal-regulated kinase 1/2 or c-Jun N-terminal kinase. These findings demonstrate that OTC and LA can inhibit activation of NF-κB, Nrf2, and HIF, leading to attenuate allergen-induced airway remodeling. PMID:22942681

  13. NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope.

    PubMed

    Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido

    2004-03-01

    The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.

  14. 17β-Estradiol regulates cyclin A1 and cyclin B1 gene expression in adult rat seminiferous tubules.

    PubMed

    Bois, Camille; Delalande, Christelle; Bouraïma-Lelong, Hélène; Durand, Philippe; Carreau, Serge

    2012-04-01

    Spermatogenesis, which is the fundamental mechanism allowing male gamete production, is controlled by several factors, and among them, estrogens are likely concerned. In order to enlighten the potential role of estrogen in rat spermatogenesis, seminiferous tubules (ST) from two groups of seminiferous epithelium stages (II-VIII and IX-I) were treated with either 17β-estradiol (E(2)) agonists or antagonists for estrogen receptors (ESRs). In this study, we show that cyclin A1 and cyclin B1 gene expression is controlled by E(2) at a concentration of 10(-9) M only in stages IX-I. This effect is mimicked by a treatment with the G-protein coupled estrogen receptor (GPER) agonist G1 and is abolished by treatment with the ESR antagonist ICI 182 780. Moreover, using letrozole, a drug that blocks estrogen synthesis, we demonstrate that these genes are under the control of E(2) within rat ST. Thus, germ cell differentiation may be regulated by E(2) which acts through ESRs and GPER, expressed in adult rat ST.

  15. The metabolic sensors FXRα, PGC-1α, and SIRT1 cooperatively regulate hepatitis B virus transcription.

    PubMed

    Curtil, Claire; Enache, Liviu S; Radreau, Pauline; Dron, Anne-Gaëlle; Scholtès, Caroline; Deloire, Alexandre; Roche, Didier; Lotteau, Vincent; André, Patrice; Ramière, Christophe

    2014-03-01

    Hepatitis B virus (HBV) genome transcription is highly dependent on liver-enriched, metabolic nuclear receptors (NRs). Among others, NR farnesoid X receptor α (FXRα) enhances HBV core promoter activity and pregenomic RNA synthesis. Interestingly, two food-withdrawal-induced FXRα modulators, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and deacetylase SIRT1, have been found to be associated with HBV genomes ex vivo. Whereas PGC-1α induction was shown to increase HBV replication, the effect of SIRT1 on HBV transcription remains unknown. Here, we showed that, in hepatocarcinoma-derived Huh-7 cells, combined activation of FXRα by GW4064 and SIRT1 by activator 3 increased HBV core promoter-controlled luciferase expression by 25-fold, compared with a 10-fold increase with GW4064 alone. Using cell lines differentially expressing FXRα in overexpression and silencing experiments, we demonstrated that SIRT1 activated the core promoter in an FXRα- and PGC-1α-dependent manner. Maximal activation (>150-fold) was observed in FXRα- and PGC-1α-overexpressing Huh-7 cells treated with FXRα and SIRT1 activators. Similarly, in cells transfected with full-length HBV genomes, maximal induction (3.5-fold) of core promoter-controlled synthesis of 3.5-kb RNA was observed in the same conditions of transfection and treatments. Thus, we identified a subnetwork of metabolic factors regulating HBV replication, strengthening the hypothesis that transcription of HBV and metabolic genes is similarly controlled.

  16. Differential epigenetic and transcriptional response of the skeletal muscle carnitine palmitoyltransferase 1B (CPT1B) gene to lipid exposure with obesity

    PubMed Central

    Maples, Jill M.; Brault, Jeffrey J.; Witczak, Carol A.; Park, Sanghee; Hubal, Monica J.; Weber, Todd M.; Houmard, Joseph A.

    2015-01-01

    The ability to increase fatty acid oxidation (FAO) in response to dietary lipid is impaired in the skeletal muscle of obese individuals, which is associated with a failure to coordinately upregulate genes involved with FAO. While the molecular mechanisms contributing to this metabolic inflexibility are not evident, a possible candidate is carnitine palmitoyltransferase-1B (CPT1B), which is a rate-limiting step in FAO. The present study was undertaken to determine if the differential response of skeletal muscle CPT1B gene transcription to lipid between lean and severely obese subjects is linked to epigenetic modifications (DNA methylation and histone acetylation) that impact transcriptional activation. In primary human skeletal muscle cultures the expression of CPT1B was blunted in severely obese women compared with their lean counterparts in response to lipid, which was accompanied by changes in CpG methylation, H3/H4 histone acetylation, and peroxisome proliferator-activated receptor-δ and hepatocyte nuclear factor 4α transcription factor occupancy at the CPT1B promoter. Methylation of specific CpG sites in the CPT1B promoter that correlated with CPT1B transcript level blocked the binding of the transcription factor upstream stimulatory factor, suggesting a potential causal mechanism. These findings indicate that epigenetic modifications may play important roles in the regulation of CPT1B in response to a physiologically relevant lipid mixture in human skeletal muscle, a major site of fatty acid catabolism, and that differential DNA methylation may underlie the depressed expression of CPT1B in response to lipid, contributing to the metabolic inflexibility associated with severe obesity. PMID:26058865

  17. Altered Regulation of ELAVL1/HuR in HLA-B27–Expressing U937 Monocytic Cells

    PubMed Central

    Sahlberg, Anna S.; Ruuska, Marja; Granfors, Kaisa; Penttinen, Markus A.

    2013-01-01

    Objective To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP) Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα) important in inflammatory response. Methods U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock), wild type HLA–B27, or mutated HLA–B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2) were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. Results Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC). Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. Conclusion Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response. PMID:23894643

  18. Epstein-Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Jie; Murakami, Masanao; Verma, Subhash C.

    Resistance to apoptosis is an important component of the overall mechanism which drives the tumorigenic process. EBV is a ubiquitous human gamma-herpesvirus which preferentially establishes latent infection in viral infected B-lymphocytes. EBNA1 is typically expressed in most forms of EBV-positive malignancies and is important for replication of the latent episome in concert with replication of the host cells. Here, we investigate the effects of EBNA1 on survivin up-regulation in EBV-infected human B-lymphoma cells. We present evidence which demonstrates that EBNA1 forms a complex with Sp1 or Sp1-like proteins bound to their cis-element at the survivin promoter. This enhances the activitymore » of the complex and up-regulates survivin. Knockdown of survivin and EBNA1 showed enhanced apoptosis in infected cells and thus supports a role for EBNA1 in suppressing apoptosis in EBV-infected cells. Here, we suggest that EBV encoded EBNA1 can contribute to the oncogenic process by up-regulating the apoptosis suppressor protein, survivin in EBV-associated B-lymphoma cells.« less

  19. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat

    PubMed Central

    Jiang, Wenhui; Liu, Tianxiang; Nan, Wenzhi; Jeewani, Diddugodage Chamila; Niu, Yanlu; Li, Chunlian; Shi, Xue; Wang, Cong; Wang, Jiahuan; Li, Yang; Wang, Zhonghua

    2018-01-01

    Abstract Purple pericarps of bread wheat (Triticum aestivum L.) are a useful source of dietary anthocyanins. Previous mapping results indicated that the purple pericarp trait is controlled by two complementary genes located on chromosomes 7D and 2A. However, the identity of the genes and the mechanisms by which they regulate the trait are unknown. In this study, two transcription factors were characterised as anthocyanin activators in purple pericarps: TaPpm1 (purple pericarp-MYB 1) and TaPpb1 (purple pericarp-bHLH 1). Three non-functional variants were detected in the coding sequence of TaPpm1 from non-purple seed lines, in which the function of TaPpm1 was destroyed either by insertion-induced frame shifts or truncated peptides. There were six 261-bp tandem repeats in the promoter region of TaPpb1 in the purple-grained varieties, while there was only one repeat unit present in the non-purple varieties. Furthermore, using yeast two-hybrid, dual luciferase, yeast one-hybrid, and transient assays, we were able to demonstrate that the interaction of TaPpm1 and TaPpb1 co-regulates the synthesis of anthocyanin. Overall, our results provide a better understanding of the molecular basis of anthocyanin synthesis in the wheat pericarp and indicate the existence of an integrated regulatory mechanism that controls production. PMID:29562292

  20. C/EBPβ (CCAAT/enhancer-binding protein β) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1).

    PubMed

    Mizutani, Tetsuya; Ju, Yunfeng; Imamichi, Yoshitaka; Osaki, Tsukasa; Yazawa, Takashi; Kawabe, Shinya; Ishikane, Shin; Matsumura, Takehiro; Kanno, Masafumi; Kamiki, Yasue; Kimura, Kohei; Minamino, Naoto; Miyamoto, Kaoru

    2014-06-15

    The transcription factor SF-1 (steroidogenic factor-1) is a master regulator of steroidogenesis. Previously, we have found that SF-1 induces the differentiation of mesenchymal stem cells into steroidogenic cells. To elucidate the molecular mechanisms of SF-1-mediated functions, we attempted to identify protein components of the SF-1 nuclear protein complex in differentiated cells. SF-1 immunoaffinity chromatography followed by MS/MS analysis was performed, and 24 proteins were identified. Among these proteins, we focused on C/EBPβ (CCAAT/enhancer-binding protein β), which is an essential transcription factor for ovulation and luteinization, as the transcriptional mechanisms of C/EBPβ working together with SF-1 are poorly understood. C/EBPβ knockdown attenuated cAMP-induced progesterone production in granulosa tumour-derived KGN cells by altering STAR (steroidogenic acute regulatory protein), CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and HSD3B2 (hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 2) expression. EMSA and ChIP assays revealed novel C/EBPβ-binding sites in the upstream regions of the HSD3B2 and CYP11A1 genes. These interactions were enhanced by cAMP stimulation. Luciferase assays showed that C/EBPβ-responsive regions were found in each promoter and C/EBPβ is involved in the cAMP-induced transcriptional activity of these genes together with SF-1. These results indicate that C/EBPβ is an important mediator of progesterone production by working together with SF-1, especially under tropic hormone-stimulated conditions.

  1. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    PubMed Central

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  2. Maternal Rest/Nrsf Regulates Zebrafish Behavior through snap25a/b

    PubMed Central

    Moravec, Cara E.; Samuel, John; Weng, Wei; Wood, Ian C.

    2016-01-01

    During embryonic development, regulation of gene expression is key to creating the many subtypes of cells that an organism needs throughout its lifetime. Recent work has shown that maternal genetics and environmental factors have lifelong consequences on diverse processes ranging from immune function to stress responses. The RE1-silencing transcription factor (Rest) is a transcriptional repressor that interacts with chromatin-modifying complexes to repress transcription of neural-specific genes during early development. Here we show that in zebrafish, maternally supplied rest regulates expression of target genes during larval development and has lifelong impacts on behavior. Larvae deprived of maternal rest are hyperactive and show atypical spatial preferences. Adult male fish deprived of maternal rest present with atypical spatial preferences in a novel environment assay. Transcriptome sequencing revealed 158 genes that are repressed by maternal rest in blastula stage embryos. Furthermore, we found that maternal rest is required for target gene repression until at least 6 dpf. Importantly, disruption of the RE1 sites in either snap25a or snap25b resulted in behaviors that recapitulate the hyperactivity phenotype caused by absence of maternal rest. Both maternal rest mutants and snap25a RE1 site mutants have altered primary motor neuron architecture that may account for the enhanced locomotor activity. These results demonstrate that maternal rest represses snap25a/b to modulate larval behavior and that early Rest activity has lifelong behavioral impacts. SIGNIFICANCE STATEMENT Maternal factors deposited in the oocyte have well-established roles during embryonic development. We show that, in zebrafish, maternal rest (RE1-silencing transcription factor) regulates expression of target genes during larval development and has lifelong impacts on behavior. The Rest transcriptional repressor interacts with chromatin-modifying complexes to limit transcription of neural

  3. PARP-1 regulates the expression of caspase-11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Lang; Hong, Seokheon; Shin, Ki Soon

    2011-05-13

    Highlights: {yields} Knockdown of PARP-1 suppresses the LPS-induced expression of caspase-11. {yields} Knockdown of PARP-1 suppresses the caspase-11 promoter activity following LPS stimulation. {yields} PARP-1 is recruited to the caspase-11 promoter region containing NF-{kappa}B-binding sites following LPS stimulation. {yields} PARP-1 inhibitors cannot suppress the caspase-11 induction. {yields} PARP-1 does not suppress IFN-{gamma}-induced expression of caspase-11. -- Abstract: Poly(ADP-ribose) polymerase-1 (PARP-1) is a multifunctional enzyme that regulates DNA repair, cell death and transcription of inflammatory proteins. In the present study, we present evidence that PARP-1 regulates the expression of caspase-11 following lipopolysaccharide (LPS) stimulation. Knockdown of PARP-1 suppressed the LPS-induced expressionmore » of caspase-11 at both mRNA and protein levels as well as caspase-11 promoter activity. Importantly, PARP-1 was recruited to the caspase-11 promoter region containing predicted nuclear factor (NF)-{kappa}B-binding sites when examined by chromatin immunoprecipitation assay. However, knockdown of PARP-1 did not suppress the expression of caspase-11 induced by interferon-{gamma} that activates signal transducer and activator of transcription 1 but not NF-{kappa}B. PARP-1 enzymatic activity was not required for the caspase-11 upregulation since pharmacological inhibitors of PARP-1 did not suppress the induction of caspase-11. Our results suggest that PARP-1, as a transcriptional cofactor for NF-{kappa}B, regulates the induction of caspase-11 at a transcriptional level.« less

  4. Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4

    PubMed Central

    Ochiai, Kyoko; Maienschein-Cline, Mark; Simonetti, Giorgia; Chen, Jianjun; Rosenthal, Rebecca; Brink, Robert; Chong, Anita S.; Klein, Ulf; Dinner, Aaron R.; Singh, Harinder; Sciammas, Roger

    2013-01-01

    Summary The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 co-bound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of “kinetic control” in which signaling induced dynamics of IRF4 in activated B cells control their cell fate outcomes. PMID:23684984

  5. Ro52-mediated Monoubiquitination of IKKβ Down-regulates NF-κB Signalling

    PubMed Central

    Wada, Keiji; Niida, Motoko; Tanaka, Makoto; Kamitani, Tetsu

    2009-01-01

    Upon activation, NF-κB translocates into the nucleus and initiates biological events. This NF-κB signalling is mainly regulated by the protein kinase IKKβ. Early in this signalling pathway, IKKβ is phosphorylated for activation by several factors, such as pro-inflammatory cytokines and the Tax oncoprotein of HTLV-1. In cells infected by HTLV-1, IKKβ is persistently phosphorylated and conjugated with monoubiquitin due to Tax expression. Although this Tax-induced monoubiquitination appears to be an important regulation system for IKKβ, how the monoubiquitination occurs is unknown and its role in NF-κB signalling is still unclear. Here, we show that an E3-ubiquitin ligase Ro52 interacts weakly with wild-type IKKβ but strongly with a phosphomimetic mutant IKKβ to conjugate monoubiquitin in cooperation with an E2-ubiquitin-conjugating enzyme UbcH5B. These results suggest that the Tax-induced phosphorylation of IKKβ causes an interaction with Ro52 for the subsequent monoubiquitination. NF-κB reporter assays have shown that the IKKβ activity is suppressed by wild-type Ro52, but not by its inactive mutant. In addition, monoubiquitin fusion of IKKβ reduced its activity for NF-κB signalling. We also found that Ro52 dramatically reduces the level of Tax. These results suggest that Ro52 down-regulates Tax-induced NF-κB signalling by monoubiquitinating IKKβ and by reducing the level of Tax. PMID:19675099

  6. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis

    PubMed Central

    de Jong, Petrus R.; Takahashi, Naoki; Harris, Alexandra R.; Lee, Jihyung; Bertin, Samuel; Jeffries, James; Jung, Michael; Duong, Jen; Triano, Amy I.; Lee, Jongdae; Niv, Yaron; Herdman, David S.; Taniguchi, Koji; Kim, Chang-Whan; Dong, Hui; Eckmann, Lars; Stanford, Stephanie M.; Bottini, Nunzio; Corr, Maripat; Raz, Eyal

    2014-01-01

    The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis. PMID:25083990

  7. Long noncoding RNA FTX regulates cardiomyocyte apoptosis by targeting miR-29b-1-5p and Bcl2l2.

    PubMed

    Long, Bo; Li, Na; Xu, Xi-Xia; Li, Xiao-Xin; Xu, Xin-Jie; Guo, Dan; Zhang, Dong; Wu, Zhi-Hong; Zhang, Shu-Yang

    2018-01-01

    Cardiomyocyte apoptosis correlates with the pathogenesis of heart disease. Long noncoding RNA (LncRNA) emerges as a class of noncoding RNAs that regulate gene expression and participate in various cellular processes. However, the role of lncRNAs in cardiomyocyte apoptosis remains to be elucidated. In our study, we found that lncRNA FTX is significantly down-regulated upon ischemia/reperfusion injury and hydrogen peroxide treatment. Enhanced expression of FTX inhibits cardiomyocyte apoptosis induced by hydrogen peroxide. miR-29b-1-5p was found to interact with FTX and regulate the expression of Bcl2l2. Inhibition of miR-29b-1-5p attenuated cardiomyocyte apoptosis upon hydrogen peroxide treatment. We then found that FTX functions as endogenous sponge for miR-29b-1-5p and regulates the activity of miR-29b-1-5p. The results demonstrate that FTX regulates cardiomyocyte apoptosis through modulating the expression of Bcl2l2 which is mediated by miR-29b-1-5p. Our findings reveal a novel regulatory model which is composed of FTX, miR-29b-1-5p and Bcl2l2. Manipulating of their levels may become a new approach to tackling cardiomyocyte apoptosis related heart diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation bymore » n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.« less

  9. Open Reading Frame 3 of Genotype 1 Hepatitis E Virus Inhibits Nuclear Factor-κappa B Signaling Induced by Tumor Necrosis Factor-α in Human A549 Lung Epithelial Cells

    PubMed Central

    Tian, Deying; Wang, Jingjing; Zheng, Zizheng; Xia, Ningshao

    2014-01-01

    Hepatitis E virus (HEV) is one of the primary causative agents of acute hepatitis, and represents a major cause of severe public health problems in developing countries. The pathogenesis of HEV is not well characterized, however, primarily due to the lack of well-defined cell and animal models. Here, we investigated the effects of genotype 1 HEV open reading frame 3 (ORF3) on TNF-α-induced nucleus factor-κappa B (NF-κB) signaling. Human lung epithelial cells (A549) were transiently transfected with ORF3 containing plasmids. These cells were then stimulated with TNF-α and the nucleus translocation of the p65 NF-κB subunit was assessed using western blot and laser confocal microscopy. DNA-binding activity of p65 was also examined using electrophoretic mobility shift assay (EMSA), and the suppression of NF-κB target genes were detected using real-time RT-PCR and ELISA. These results enabled us to identify the decreased phosphorylation levels of IKBα. We focused on the gene of negative regulation of NF-κB, represented by TNF-α-induced protein 3 (TNFAIP3, also known as A20). Reducing the levels of A20 with siRNAs significantly enhances luciferase activation of NF-κB. Furthermore, HEV ORF3 regulated A20 primarily via activating transcription factor 6 (ATF6), involved in unfolded protein response (UPR), resulting in the degradation or inactivation of the receptor interacting protein 1 (RIP1), a major upstream activator of IKB kinase compounds (IKKs). Consequently, the phosphorylation of IKBα and the nucleus translocation of p65 are blocked, which contributes to diminished NF-κB DNA-binding activation and NF-κB-dependent gene expression. The findings suggest that genotype 1 HEV, through ORF3, may transiently activate NF-κB through UPR in early stage, and subsequently inhibit TNF-α-induced NF-κB signaling in late phase so as to create a favorable virus replication environment. PMID:24959724

  10. Identification of novel non-coding RNA-based negative feedback regulating the expression of the oncogenic transcription factor GLI1.

    PubMed

    Villegas, Victoria E; Rahman, Mohammed Ferdous-Ur; Fernandez-Barrena, Maite G; Diao, Yumei; Liapi, Eleni; Sonkoly, Enikö; Ståhle, Mona; Pivarcsi, Andor; Annaratone, Laura; Sapino, Anna; Ramírez Clavijo, Sandra; Bürglin, Thomas R; Shimokawa, Takashi; Ramachandran, Saraswathi; Kapranov, Philipp; Fernandez-Zapico, Martin E; Zaphiropoulos, Peter G

    2014-07-01

    Non-coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non-coding RNA located head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer-associated signaling pathways. The expression of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels. siRNAs knockdown of GLI1AS up-regulated GLI1 and increased cellular proliferation and tumor growth in a xenograft model system. Conversely, GLI1AS overexpression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of the GLI1 transcription factor. Activation of TGFβ and Hedgehog signaling, two known regulators of GLI1 expression, conferred a concordant up-regulation of GLI1 and GLI1AS in cancer cells. Finally, analysis of the mechanism underlying the interplay between GLI1 and GLI1AS indicates that the non-coding RNA elicits a local alteration of chromatin structure by increasing the silencing mark H3K27me3 and decreasing the recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate the existence of a novel non-coding RNA-based negative feedback loop controlling GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of this oncogenic transcription factor. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Dual effects of fructose on ChREBP and FoxO1/3α are responsible for AldoB up-regulation and vascular remodelling.

    PubMed

    Cao, Wei; Chang, Tuanjie; Li, Xiao-Qiang; Wang, Rui; Wu, Lingyun

    2017-02-01

    Increased production of methylglyoxal (MG) in vascular tissues is one of the causative factors for vascular remodelling in different subtypes of metabolic syndrome, including hypertension and insulin resistance. Fructose-induced up-regulation of aldolase B (AldoB) contributes to increased vascular MG production but the underlying mechanisms are unclear. Serum levels of MG and fructose were determined in diabetic patients with hypertension. MG level had significant positive correlations with blood pressure and fructose level respectively. C57BL/6 mice were fed with control or fructose-enriched diet for 3 months and ultrasonographic and histologic analyses were performed to evaluate arterial structural changes. Fructose-fed mice exhibited hypertension and high levels of serum MG with normal glucose level. Fructose intake increased blood vessel wall thickness and vascular smooth muscle cell (VSMC) proliferation. Western blotting and real-time PCR analysis revealed that AldoB level was significantly increased in both the aorta of fructose-fed mice and the fructose-treated VSMCs, whereas aldolase A (AldoA) expression was not changed. The knockdown of AldoB expression prevented fructose-induced MG overproduction and VSMC proliferation. Moreover, fructose significantly increased carbohydrate-responsive element-binding protein (ChREBP), phosphorylated FoxO1/3α and Akt1 levels. Fructose induced translocation of ChREBP from the cytosol to nucleus and activated AldoB gene expression, which was inhibited by the knockdown of ChREBP. Meanwhile, fructose caused FoxO1/3α shuttling from the nucleus to cytosol and inhibited its binding to AldoB promoter region. Fructose-induced AldoB up-regulation was suppressed by Akt1 inhibitor but enhanced by FoxO1/3α siRNA. Collectively, fructose activates ChREBP and inactivates FoxO1/3α pathways to up-regulate AldoB expression and MG production, leading to vascular remodelling. © 2017 The Author(s). published by Portland Press Limited on

  12. Osthole inhibits intimal hyperplasia by regulating the NF-κB and TGF-β1/Smad2 signalling pathways in the rat carotid artery after balloon injury.

    PubMed

    Li, Yi-Qi; Wang, Jun-Yi; Qian, Zhi-Qiang; Li, Ye-Li; Li, Wen-Na; Gao, Yang; Yang, Dan-Li

    2017-09-15

    Osthole (7-methoxy-8-isopentenoxy-coumarin), a compound extracted from Cnidiummonnieri (L.) Cusson seeds, has been found to exhibit potent therapeutic effects in cancer due to its ability to inhibit inflammation and cell proliferation. However, its effects on arterial wall hypertrophy-related diseases remain unclear. Therefore, in this study, we aimed to investigate the effects of Osthole on intimal hyperplasia in a rat model of carotid artery balloon injury. We established the balloon-induced carotid artery injury rat model in male Sprague-Dawley rats, after which we administered Osthole (20mg/kg/day or 40mg/kg/day) or volume-matched normal saline orally by gavage for 14 consecutive days. Intimal hyperplasia and the degree of vascular smooth muscle cell proliferation were then evaluated by histopathological examination of the changes in the carotid artery, as well as by examination of proliferating cell nuclear antigen (PCNA) expression. Tumour necrosis factor-ɑ (TNF-α), interleukin-1β (IL-1β), transforming growth factor-beta (TGF-β1) and PCNA mRNA expression levels were examined by real-time RT-PCR, while nuclear factor-κB (NF-κB (p65)), IκB-α, TGF-β1 and phospho-Smad2 (p-Smad2) protein expression levels were analysed by immunohistochemistry or western blot analysis. We found that Osthole significantly attenuated neointimal thickness and decreased the elevations in PCNA protein expression induced by balloon injury. Moreover, Osthole down-regulated the pro-inflammatory factors TNF-α and IL-1β and NF-κB (p65), whose expression had been upregulated after balloon injury. Moreover, IκB-α protein expression levels increased following Osthole treatment. In addition, the elevations in TGF-β1 and p-Smad2 protein expression induced by balloon injury were both significantly attenuated by Osthole administration. We concluded that Osthole significantly inhibited neointimal hyperplasia in balloon-induced rat carotid artery injury and that the mechanism by which

  13. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-κB activation and endothelial cell inflammation

    PubMed Central

    Leonard, Antony; Marando, Catherine; Rahman, Arshad

    2013-01-01

    Endothelial cell (EC) inflammation is a central event in the pathogenesis of many pulmonary diseases such as acute lung injury and its more severe form acute respiratory distress syndrome. Alterations in actin cytoskeleton are shown to be crucial for NF-κB regulation and EC inflammation. Previously, we have described a role of actin binding protein cofilin in mediating cytoskeletal alterations essential for NF-κB activation and EC inflammation. The present study describes a dynamic mechanism in which LIM kinase 1 (LIMK1), a cofilin kinase, and slingshot-1Long (SSH-1L), a cofilin phosphatase, are engaged by procoagulant and proinflammatory mediator thrombin to regulate these responses. Our data show that knockdown of LIMK1 destabilizes whereas knockdown of SSH-1L stabilizes the actin filaments through modulation of cofilin phosphorylation; however, in either case thrombin-induced NF-κB activity and expression of its target genes (ICAM-1 and VCAM-1) is inhibited. Further mechanistic analyses reveal that knockdown of LIMK1 or SSH-1L each attenuates nuclear translocation and thereby DNA binding of RelA/p65. In addition, LIMK1 or SSH-1L depletion inhibited RelA/p65 phosphorylation at Ser536, a critical event conferring transcriptional competency to the bound NF-κB. However, unlike SSH-1L, LIMK1 knockdown also impairs the release of RelA/p65 by blocking IKKβ-dependent phosphorylation/degradation of IκBα. Interestingly, LIMK1 or SSH-1L depletion failed to inhibit TNF-α-induced RelA/p65 nuclear translocation and proinflammatory gene expression. Thus this study provides evidence for a novel role of LIMK1 and SSH-1L in selectively regulating EC inflammation associated with intravascular coagulation. PMID:24039253

  14. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-κB activation and endothelial cell inflammation.

    PubMed

    Leonard, Antony; Marando, Catherine; Rahman, Arshad; Fazal, Fabeha

    2013-11-01

    Endothelial cell (EC) inflammation is a central event in the pathogenesis of many pulmonary diseases such as acute lung injury and its more severe form acute respiratory distress syndrome. Alterations in actin cytoskeleton are shown to be crucial for NF-κB regulation and EC inflammation. Previously, we have described a role of actin binding protein cofilin in mediating cytoskeletal alterations essential for NF-κB activation and EC inflammation. The present study describes a dynamic mechanism in which LIM kinase 1 (LIMK1), a cofilin kinase, and slingshot-1Long (SSH-1L), a cofilin phosphatase, are engaged by procoagulant and proinflammatory mediator thrombin to regulate these responses. Our data show that knockdown of LIMK1 destabilizes whereas knockdown of SSH-1L stabilizes the actin filaments through modulation of cofilin phosphorylation; however, in either case thrombin-induced NF-κB activity and expression of its target genes (ICAM-1 and VCAM-1) is inhibited. Further mechanistic analyses reveal that knockdown of LIMK1 or SSH-1L each attenuates nuclear translocation and thereby DNA binding of RelA/p65. In addition, LIMK1 or SSH-1L depletion inhibited RelA/p65 phosphorylation at Ser(536), a critical event conferring transcriptional competency to the bound NF-κB. However, unlike SSH-1L, LIMK1 knockdown also impairs the release of RelA/p65 by blocking IKKβ-dependent phosphorylation/degradation of IκBα. Interestingly, LIMK1 or SSH-1L depletion failed to inhibit TNF-α-induced RelA/p65 nuclear translocation and proinflammatory gene expression. Thus this study provides evidence for a novel role of LIMK1 and SSH-1L in selectively regulating EC inflammation associated with intravascular coagulation.

  15. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis.

    PubMed

    McGlashon, Jacob M; Gorecki, Michelle C; Kozlowski, Amanda E; Thirnbeck, Caitlin K; Markan, Kathleen R; Leslie, Kirstie L; Kotas, Maya E; Potthoff, Matthew J; Richerson, George B; Gillum, Matthew P

    2015-05-05

    Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids. Serotonin (5-HT) neurons in the CNS are essential for thermoregulation and accordingly may control metabolic activity of thermogenic fat. To test this, we generated mice in which the human diphtheria toxin receptor (DTR) was selectively expressed in central 5-HT neurons. Treatment with diphtheria toxin (DT) eliminated 5-HT neurons and caused loss of thermoregulation, brown adipose tissue (BAT) steatosis, and a >50% decrease in uncoupling protein 1 (Ucp1) expression in BAT and inguinal white adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold, and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1b(f/f)ePet1(Cre) mice in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating glucose and lipid homeostasis, in part through recruitment and metabolic activation of brown and beige adipocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling

    PubMed Central

    Vasileiou, Georgia; Ekici, Arif B.; Uebe, Steffen; Zweier, Christiane; Hoyer, Juliane; Engels, Hartmut; Behrens, Jürgen; Reis, André; Hadjihannas, Michel V.

    2015-01-01

    The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway. PMID:26340334

  17. Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans.

    PubMed

    van der Voort, R; Keehnen, R M; Beuling, E A; Spaargaren, M; Pals, S T

    2000-10-16

    Recently, biochemical, cell biological, and genetic studies have converged to reveal that integral membrane heparan sulfate proteoglycans (HSPGs) are critical regulators of growth and differentiation of epithelial and connective tissues. As a large number of cytokines involved in lymphoid tissue homeostasis or inflammation contain potential HS-binding domains, HSPGs presumably also play important roles in the regulation of the immune response. In this report, we explored the expression, regulation, and function of HSPGs on B lymphocytes. We demonstrate that activation of the B cell antigen receptor (BCR) and/or CD40 induces a strong transient expression of HSPGs on human tonsillar B cells. By means of these HSPGs, the activated B cells can bind hepatocyte growth factor (HGF), a cytokine that regulates integrin-mediated B cell adhesion and migration. This interaction with HGF is highly selective since the HSPGs did not bind the chemokine stromal cell-derived factor (SDF)-1 alpha, even though the affinities of HGF and SDF-1alpha for heparin are similar. On the activated B cells, we observed induction of a specific HSPG isoform of CD44 (CD44-HS), but not of other HSPGs such as syndecans or glypican-1. Interestingly, the expression of CD44-HS on B cells strongly promotes HGF-induced signaling, resulting in an HS-dependent enhanced phosphorylation of Met, the receptor tyrosine kinase for HGF, as well as downstream signaling molecules including Grb2-associated binder 1 (Gab1) and Akt/protein kinase B (PKB). Our results demonstrate that the BCR and CD40 control the expression of HSPGs, specifically CD44-HS. These HSPGs act as functional coreceptors that selectively promote cytokine signaling in B cells, suggesting a dynamic role for HSPGs in antigen-specific B cell differentiation.

  18. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice

    PubMed Central

    Banno, Ryoichi; Zimmer, Derek; De Jonghe, Bart C.; Atienza, Marybless; Rak, Kimberly; Yang, Wentian; Bence, Kendra K.

    2010-01-01

    Protein tyrosine phosphatase 1B (PTP1B) and SH2 domain–containing protein tyrosine phosphatase–2 (SHP2) have been shown in mice to regulate metabolism via the central nervous system, but the specific neurons mediating these effects are unknown. Here, we have shown that proopiomelanocortin (POMC) neuron–specific deficiency in PTP1B or SHP2 in mice results in reciprocal effects on weight gain, adiposity, and energy balance induced by high-fat diet. Mice with POMC neuron–specific deletion of the gene encoding PTP1B (referred to herein as POMC-Ptp1b–/– mice) had reduced adiposity, improved leptin sensitivity, and increased energy expenditure compared with wild-type mice, whereas mice with POMC neuron–specific deletion of the gene encoding SHP2 (referred to herein as POMC-Shp2–/– mice) had elevated adiposity, decreased leptin sensitivity, and reduced energy expenditure. POMC-Ptp1b–/– mice showed substantially improved glucose homeostasis on a high-fat diet, and hyperinsulinemic-euglycemic clamp studies revealed that insulin sensitivity in these mice was improved on a standard chow diet in the absence of any weight difference. In contrast, POMC-Shp2–/– mice displayed impaired glucose tolerance only secondary to their increased weight gain. Interestingly, hypothalamic Pomc mRNA and α–melanocyte-stimulating hormone (αMSH) peptide levels were markedly reduced in POMC-Shp2–/– mice. These studies implicate PTP1B and SHP2 as important components of POMC neuron regulation of energy balance and point to what we believe to be a novel role for SHP2 in the normal function of the melanocortin system. PMID:20160350

  19. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery.

    PubMed

    Choy, Meng S; Li, Yang; Machado, Luciana E S F; Kunze, Micha B A; Connors, Christopher R; Wei, Xingyu; Lindorff-Larsen, Kresten; Page, Rebecca; Peti, Wolfgang

    2017-02-16

    Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs

    PubMed Central

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-01-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.—Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. PMID:27451412

  1. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs.

    PubMed

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-10-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.-Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. © The Author(s).

  2. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohareer, Krishnaveni; Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046; Sahdev, Sudhir

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors,more » which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.« less

  3. Expression and associations of TRAF1, BMI-1, ALDH1, and Lin28B in oral squamous cell carcinoma.

    PubMed

    Wu, Tian-Fu; Li, Yi-Cun; Ma, Si-Rui; Bing-Liu; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-04-01

    Tumor necrosis factor receptor-associated factor 1, an adaptor protein of tumor necrosis factor 2, is involved in classical nuclear factor (NF)-κB activation and lymphocyte recruitment. However, less is known about the expression and association of tumor necrosis factor receptor-associated factor 1 with cancer stem cell markers in oral squamous cell carcinoma. This study aimed to investigate the expression of tumor necrosis factor receptor-associated factor 1 and stem cell characteristic markers (lin28 homolog B, B cell-specific Moloney murine leukemia virus integration site 1, and aldehyde dehydrogenase 1) in oral squamous cell carcinoma and analyze their relations. Paraffin-embedded tissues of 78 oral squamous cell carcinomas, 39 normal oral mucosa, and 12 oral dysplasia tissues were employed in tissue microarrays, and the expression of tumor necrosis factor receptor-associated factor 1, B cell-specific Moloney murine leukemia virus integration site 1, aldehyde dehydrogenase 1, and lin28 homolog B was measured by immunohistostaining and digital pathological analysis. The expression of tumor necrosis factor receptor-associated factor 1 was higher in the oral squamous cell carcinoma group as compared with the expression in the oral mucosa (p < 0.01) and oral dysplasia (p < 0.001) groups. In addition, the expression of tumor necrosis factor receptor-associated factor 1 was associated with those of B cell-specific Moloney murine leukemia virus integration site 1, aldehyde dehydrogenase 1, and lin28 homolog B (p = 0.032, r 2  = 0.109; p < 0.0001, r 2  = 0.64; and p < 0.001, r 2  = 0.16) in oral squamous cell carcinoma. The patient survival rate was lower in the highly expressed tumor necrosis factor receptor-associated factor 1 group, although the difference was not significant. The clustering analysis showed that tumor necrosis factor receptor-associated factor 1 was most related to aldehyde dehydrogenase 1. These findings suggest

  4. Neuroendocrine mediators up-regulate alpha1b- and alpha1d-adrenergic receptor subtypes in human monocytes.

    PubMed

    Rouppe van der Voort, C; Kavelaars, A; van de Pol, M; Heijnen, C J

    1999-03-01

    Beta2- and alpha2-adrenergic receptors (AR) are thought to be the main AR subtypes to exert the effects of catecholamines on the immune system. However, in the present study, we demonstrate that another subtype of AR can be induced in human monocytes. Expression of alpha1b- and alpha1d-AR mRNA can be obtained by culturing freshly isolated human peripheral blood monocytes with the neuroendocrine mediators dexamethasone or the beta2-AR agonist terbutaline. Using the human monocytic cell line THP-1, we demonstrate that increased levels of alpha1b- and alpha1d-mRNA are accompanied by increased levels of receptor protein as determined by Western blot analysis and radioligand binding assays. This study describes for the first time regulated expression of alpha1-AR subtypes in human monocytes.

  5. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sub

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain tomore » be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the

  6. Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis.

    PubMed

    Zhou, Xiaoli; Chen, Kai; Wang, Yongjun; Schuman, Mariano; Lei, Han; Sun, Zhongjie

    2016-06-01

    Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate-limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/-) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency-induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/-) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency-induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis. Copyright © 2016 by the American Society of Nephrology.

  7. DISC1, PDE4B, and NDE1 at the centrosome and synapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, Nicholas J.; Ogawa, Fumiaki; Antolin-Fontes, Beatriz

    Disrupted-In-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and other major mental illnesses. Its protein binding partners include the Nuclear Distribution Factor E Homologs (NDE1 and NDEL1), LIS1, and phosphodiesterases 4B and 4D (PDE4B and PDE4D). We demonstrate that NDE1, NDEL1 and LIS1, together with their binding partner dynein, associate with DISC1, PDE4B and PDE4D within the cell, and provide evidence that this complex is present at the centrosome. LIS1 and NDEL1 have been previously suggested to be synaptic, and we now demonstrate localisation of DISC1, NDE1, and PDE4B at synapses in cultured neurons. NDE1 is phosphorylated by cAMP-dependantmore » Protein Kinase A (PKA), whose activity is, in turn, regulated by the cAMP hydrolysis activity of phosphodiesterases, including PDE4. We propose that DISC1 acts as an assembly scaffold for all of these proteins and that the NDE1/NDEL1/LIS1/dynein complex is modulated by cAMP levels via PKA and PDE4.« less

  8. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling.

    PubMed

    Vasileiou, Georgia; Ekici, Arif B; Uebe, Steffen; Zweier, Christiane; Hoyer, Juliane; Engels, Hartmut; Behrens, Jürgen; Reis, André; Hadjihannas, Michel V

    2015-09-03

    The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Role of IκB kinase β in regulating the remodeling of the CARMA1-Bcl10-MALT1 complex.

    PubMed

    Karim, Zubair A; Hensch, Nicole R; Qasim, Hanan; Alshbool, Fatima Z; Khasawneh, Fadi T

    2018-06-02

    The current work investigates the notion that inducible clustering of signaling mediators of the IKK pathway is important for platelet activation. Thus, while the CARMA1, Bcl10, and MALT1 (CBM) complex is essential for triggering IKK/NF-κB activation upon platelet stimulation, the signals that elicit its formation and downstream effector activation remain elusive. We demonstrate herein that IKKβ is involved in membrane fusion, and serves as a critical protein kinase required for initial formation and the regulation of the CARMA1/MALT1/Bcl10/CBM complex in platelets. We also show that IKKβ regulates these processes via modulation of phosphorylation of Bcl10 and IKKγ polyubiquitination. Collectively, our data demonstrate that IKKβ regulates membrane fusion and the remodeling of the CBM complex formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway

    PubMed Central

    Xie, Yuan; Yu, Nian; Chen, Yan; Zhang, Kang; Ma, Hai-Yan; Di, Qing

    2017-01-01

    Overexpression of P-glycoprotein (P-gp) in the brain is an important mechanism involved in drug-resistant epilepsy (DRE). High-mobility group box 1 (HMGB1), an inflammatory cytokine, significantly increases following seizures and may be involved in upregulation of P-gp. However, the underlying mechanisms remain elusive. The aim of the present study was to evaluate the role of HMGB1 and its downstream signaling components, receptor for advanced glycation end-product (RAGE) and nuclear factor-κB (NF-κB), on P-gp expression in rat brains during status epilepticus (SE). Small interfering RNA (siRNA) was administered to rats prior to induction of SE by pilocarpine, to block transcription of the genes encoding HMGB1 and RAGE, respectively. An inhibitor of NF-κB, pyrrolidinedithiocarbamic acid (PDTC), was utilized to inhibit activation of NF-κB. The expression levels of HMGB1, RAGE, phosphorylated-NF-κB p65 (p-p65) and P-gp were detected by western blotting. The relative mRNA expression levels of the genes encoding these proteins were measured using reverse transcription-quantitative polymerase chain reaction and the cellular localization of the proteins was determined by immunofluorescence. Pre-treatment with HMGB1 siRNA reduced the expression levels of RAGE, p-p65 and P-gp. PDTC reduced the expression levels of P-gp. These findings suggested that overexpression of P-gp during seizures may be regulated by HMGB1 via the RAGE/NF-κB signaling pathway, and may be a novel target for treating DRE. PMID:28627626

  11. Macrophage migration inhibitory factor counter-regulates dexamethasone-induced annexin 1 expression and influences the release of eicosanoids in murine macrophages.

    PubMed

    Sun, Yu; Wang, Yu; Li, Jia-Hui; Zhu, Shi-Hui; Tang, Hong-Tai; Xia, Zhao-Fan

    2013-10-01

    Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine and glucocorticoid (GC) counter-regulator, has emerged as an important modulator of inflammatory responses. However, the molecular mechanisms of MIF counter-regulation of GC still remain incomplete. In the present study, we investigated whether MIF mediated the counter-regulation of the anti-inflammatory effect of GC by affecting annexin 1 in RAW 264.7 macrophages. We found that stimulation of RAW 264.7 macrophages with lipopolysaccharide (LPS) resulted in down-regulation of annexin 1, while GC dexamethasone (Dex) or Dex plus LPS led to significant up-regulation of annexin 1 expression. RNA interference-mediated knockdown of intracellular MIF increased annexin 1 expression with or without incubation of Dex, whereas Dex-induced annexin 1 expression was counter-regulated by the exogenous application of recombinant MIF. Moreover, recombinant MIF counter-regulated, in a dose-dependent manner, inhibition of cytosolic phospholipase A2α (cPLA2α) activation and prostaglandin E2 (PGE2 ) and leukotriene B4 (LTB4 ) release by Dex in RAW 264.7 macrophages stimulated with LPS. Endogenous depletion of MIF enhanced the effects of Dex, reflected by further decease of cPLA2α expression and lower PGE2 and LTB4 release in RAW 264.7 macrophages. Based on these data, we suggest that MIF counter-regulates Dex-induced annexin 1 expression, further influencing the activation of cPLA2α and the release of eicosanoids. These findings will add new insights into the mechanisms of MIF counter-regulation of GC. © 2013 John Wiley & Sons Ltd.

  12. Leishmania major Infection Activates NF-κB and Interferon Regulatory Factors 1 and 8 in Human Dendritic Cells▿

    PubMed Central

    Jayakumar, Asha; Donovan, Michael J.; Tripathi, Vinita; Ramalho-Ortigao, Marcelo; McDowell, Mary Ann

    2008-01-01

    The salient feature of dendritic cells (DC) is the initiation of appropriate adaptive immune responses by discriminating between pathogens. Using a prototypic model of intracellular infection, we previously showed that Leishmania major parasites prime human DC for efficient interleukin-12 (IL-12) secretion. L. major infection is associated with self-limiting cutaneous disease and powerful immunity. In stark contrast, the causative agent of visceral leishmaniasis, Leishmania donovani, does not prime human DC for IL-12 production. Here, we report that DC priming by L. major infection results in the early activation of NF-κB transcription factors and the up-regulation and nuclear translocation of interferon regulatory factor 1 (IRF-1) and IRF-8. The inhibition of NF-κB activation by the pretreatment of DC with caffeic acid phenethyl ester blocks L. major-induced IRF-1 and IRF-8 activation and IL-12 expression. We further demonstrate that IRF-1 and IRF-8 obtained from L. major-infected human DC specifically bind to their consensus binding sites on the IL-12p35 promoter, indicating that L. major infection either directly stimulates a signaling cascade or induces an autocrine pathway that activates IRF-1 and IRF-8, ultimately resulting in IL-12 transcription. PMID:18316378

  13. 48 CFR 1801.105-2 - Arrangement of regulations. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Arrangement of regulations. (NASA supplements paragraph (b)) 1801.105-2 Section 1801.105-2 Federal Acquisition Regulations System..., Authority, Issuance 1801.105-2 Arrangement of regulations. (NASA supplements paragraph (b)) (b)(1)(A...

  14. 48 CFR 1801.105-2 - Arrangement of regulations. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Arrangement of regulations. (NASA supplements paragraph (b)) 1801.105-2 Section 1801.105-2 Federal Acquisition Regulations System..., Authority, Issuance 1801.105-2 Arrangement of regulations. (NASA supplements paragraph (b)) (b)(1)(A...

  15. 48 CFR 1801.105-2 - Arrangement of regulations. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Arrangement of regulations. (NASA supplements paragraph (b)) 1801.105-2 Section 1801.105-2 Federal Acquisition Regulations System..., Authority, Issuance 1801.105-2 Arrangement of regulations. (NASA supplements paragraph (b)) (b)(1)(A...

  16. 48 CFR 1801.105-2 - Arrangement of regulations. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Arrangement of regulations. (NASA supplements paragraph (b)) 1801.105-2 Section 1801.105-2 Federal Acquisition Regulations System..., Authority, Issuance 1801.105-2 Arrangement of regulations. (NASA supplements paragraph (b)) (b)(1)(A...

  17. 48 CFR 1801.105-2 - Arrangement of regulations. (NASA supplements paragraph (b))

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Arrangement of regulations. (NASA supplements paragraph (b)) 1801.105-2 Section 1801.105-2 Federal Acquisition Regulations System..., Authority, Issuance 1801.105-2 Arrangement of regulations. (NASA supplements paragraph (b)) (b)(1)(A...

  18. Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts

    PubMed Central

    Ma, Zhengqiang

    2013-01-01

    Rht-B1c, allelic to the DELLA protein-encoding gene Rht-B1a, is a natural mutation documented in common wheat (Triticum aestivum). It confers variation to a number of traits related to cell and plant morphology, seed dormancy, and photosynthesis. The present study was conducted to examine the sequence variations of Rht-B1c and their functional impacts. The results showed that Rht-B1c was partially dominant or co-dominant for plant height, and exhibited an increased dwarfing effect. At the sequence level, Rht-B1c differed from Rht-B1a by one 2kb Veju retrotransposon insertion, three coding region single nucleotide polymorphisms (SNPs), one 197bp insertion, and four SNPs in the 1kb upstream sequence. Haplotype investigations, association analyses, transient expression assays, and expression profiling showed that the Veju insertion was primarily responsible for the extreme dwarfing effect. It was found that the Veju insertion changed processing of the Rht-B1c transcripts and resulted in DELLA motif primary structure disruption. Expression assays showed that Rht-B1c caused reduction of total Rht-1 transcript levels, and up-regulation of GATA-like transcription factors and genes positively regulated by these factors, suggesting that one way in which Rht-1 proteins affect plant growth and development is through GATA-like transcription factor regulation. PMID:23918966

  19. Lack of galectin-3 up-regulates IgA expression by peritoneal B1 lymphocytes during B cell differentiation.

    PubMed

    Oliveira, Felipe L; Bernardes, Emerson S; Brand, Camila; dos Santos, Sofia N; Cabanel, Mariana P; Arcanjo, Kátia D; Brito, José M; Borojevic, Radovan; Chammas, Roger; El-Cheikh, Márcia C

    2016-02-01

    Galectin-3 is a β-galactoside-binding protein with an inhibitory role in B cell differentiation into plasma cells in distinct lymphoid tissues. We use a model of chronic schistosomiasis, a well-characterized experimental disease hallmarked by polyclonal B cell activation, in order to investigate the role of galectin-3 in controlling IgA production through peritoneal B1 cells. Chronically infected, galectin-3-deficient mice (Lgals3(-/-)) display peritoneal fluid hypercellularity, increased numbers of atypical peritoneal IgM(+)/IgA(+) B1a and B1b lymphocytes and histological disturbances in plasma cell niches when compared with Lgals3(+/+) mice. Similar to our infection model, peritoneal B1 cells from uninfected Lgals3(-/-) mice show enhanced switching to IgA after in vitro treatment with interleukin-5 plus transforming growth factor-β (IL-5 + TGF-β1). A higher number of IgA(+) B1a lymphocytes was found in the peritoneal cavity of Lgals3(-/-)-uninfected mice at 1 week after i.p. injection of IL-5 + TGF-β1; this correlates with the increased levels of secreted IgA detected in the peritoneal fluid of these mice after cytokine treatment. Interestingly, a higher number of degranulated mast cells is present in the peritoneal cavity of uninfected and Schistosoma mansoni-infected Lgals3(-/-) mice, indicating that, at least in part, mast cells account for the enhanced differentiation of B1 into IgA-producing B cells found in the absence of galectin-3. Thus, a novel role is revealed for galectin-3 in controlling the expression of surface IgA by peritoneal B1 lymphocytes; this might have important implications for manipulating the mucosal immune response.

  20. The alternative complement component factor B regulates UV-induced oedema, systemic suppression of contact and delayed hypersensitivity, and mast cell infiltration into the skin.

    PubMed

    Byrne, Scott N; Hammond, Kirsten J L; Chan, Carling Y-Y; Rogers, Linda J; Beaugie, Clare; Rana, Sabita; Marsh-Wakefield, Felix; Thurman, Joshua M; Halliday, Gary M

    2015-04-01

    Ultraviolet (UV) wavelengths in sunlight are the prime cause of skin cancer in humans with both the UVA and UVB wavebands making a contribution to photocarcinogenesis. UV has many different biological effects on the skin that contribute to carcinogenesis, including suppression of adaptive immunity, sunburn and altering the migration of mast cells into and away from irradiated skin. Many molecular mechanisms have been identified as contributing to skin responses to UV. Recently, using gene set enrichment analysis of microarray data, we identified the alternative complement pathway with a central role for factor B (fB) in UVA-induced immunosuppression. In the current study we used mice genetically deficient in fB (fB-/- mice) to study the functional role of the alternative complement pathway in skin responses to UV. We found that fB is required for not only UVA but also UVB-induced immunosuppression and solar-simulated UV induction of the oedemal component of sunburn. Factor B-/- mice had a larger number of resident skin mast cells than control mice, but unlike the controls did not respond to UV by increasing mast cell infiltration into the skin. This study provides evidence for a function role for fB in skin responses to UV radiation. Factor B regulates UVA and UVB induced immunosuppression, UV induced oedema and mast cell infiltration into the skin. The alternative complement pathway is therefore an important regulator of skin responses to UV.

  1. VIP1 is very important/interesting protein 1 regulating touch responses of Arabidopsis.

    PubMed

    Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo

    2016-06-02

    VIP1 (VIRE2-INTERACTING PROTEIN 1) is a bZIP transcription factor in Arabidopsis thaliana. VIP1 and its close homologs (i.e., Arabidopsis group I bZIP proteins) are present in the cytoplasm under steady conditions, but are transiently localized to the nucleus when cells are exposed to hypo-osmotic conditions, which mimic mechanical stimuli such as touch. Recently we have reported that overexpression of a repression domain-fused form of VIP1 represses the expression of some touch-responsive genes, changes structures and/or local auxin responses of the root cap cells, and enhances the touch-induced root waving. This raises the possibility that VIP1 suppresses touch-induced responses. VIP1 should be useful to further characterize touch responses of plants. Here we discuss 2 seemingly interesting perspectives about VIP1: (1) What factors are involved in regulating the nuclear localization of VIP1?; (2) What can be done to further characterize the physiological functions of VIP1 and other Arabidopsis group I bZIP proteins?

  2. Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation

    PubMed Central

    2011-01-01

    Background There are two selenophosphate synthetases (SPSs) in higher eukaryotes, SPS1 and SPS2. Of these two isotypes, only SPS2 catalyzes selenophosphate synthesis. Although SPS1 does not contain selenophosphate synthesis activity, it was found to be essential for cell growth and embryogenesis in Drosophila. The function of SPS1, however, has not been elucidated. Results Differentially expressed genes in Drosophila SL2 cells were identified using two-way analysis of variance methods and clustered according to their temporal expression pattern. Gene ontology analysis was performed against differentially expressed genes and gene ontology terms related to vitamin B6 biosynthesis were found to be significantly affected at the early stage at which megamitochondria were not formed (day 3) after SPS1 knockdown. Interestingly, genes related to defense and amino acid metabolism were affected at a later stage (day 5) following knockdown. Levels of pyridoxal phosphate, an active form of vitamin B6, were decreased by SPS1 knockdown. Treatment of SL2 cells with an inhibitor of pyridoxal phosphate synthesis resulted in both a similar pattern of expression as that found by SPS1 knockdown and the formation of megamitochondria, the major phenotypic change observed by SPS1 knockdown. Conclusions These results indicate that SPS1 regulates vitamin B6 synthesis, which in turn impacts various cellular systems such as amino acid metabolism, defense and other important metabolic activities. PMID:21864351

  3. SETDB1 HISTONE METHYLTRANSFERASE REGULATES MOOD-RELATED BEHAVIORS AND EXPRESSION OF THE NMDA RECEPTOR SUBUNIT NR2B

    PubMed Central

    Jiang, Yan; Jakovcevski, Mira; Bharadwaj, Rahul; Connor, Caroline; Schroeder, Frederick A.; Lin, Cong L.; Straubhaar, Juerg; Martin, Gilles; Akbarian, Schahram

    2010-01-01

    Histone methyltransferases specific for the histone H3-lysine 9 (H3K9) residue, including Setdb1 (Set domain, bifurcated 1)/Eset/Kmt1e are associated with repressive chromatin remodeling and expressed in adult brain, but potential effects on neuronal function and behavior remain unexplored. Here, we report that transgenic mice with increased Setdb1 expression in adult forebrain neurons show antidepressant-like phenotypes in behavioral paradigms for anhedonia, despair and learned helplessness. Chromatin immunoprecipitation in conjunction with DNA tiling arrays (ChIP-chip) revealed that genomic occupancies of neuronal Setdb1 are limited to less than 1% of annotated genes, which include the NMDA receptor subunit NR2B/Grin2B and other ionotropic glutamate receptor genes. Chromatin conformation capture (“3C”) and Setdb1-ChIP revealed a loop formation tethering the NR2B/Grin2b promoter to the Setdb1 target site positioned 30Kb downstream of the transcription start site. In hippocampus and ventral striatum, two key structures in the neuronal circuitry regulating mood-related behaviors, Setdb1-mediated repressive histone methylation at NR2B/Grin2b was associated with decreased NR2B expression and EPSP insensitivity to pharmacological blockade of NR2B, and accelerated NMDA receptor desensitization consistent with a shift in NR2A/B subunit ratios. In wildtype mice, systemic treatment with the NR2B antagonist, Ro-256981, and hippocampal siRNA-mediated NR2B/Grin2b knockdown, resulted in behavioral changes similar to those elicited by the Setdb1 transgene. Together, these findings point to a role for neuronal Setdb1 in the regulation of affective and motivational behaviors through repressive chromatin remodeling at a select set of target genes, resulting in altered NMDA receptor subunit composition and other molecular adaptations. PMID:20505083

  4. Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1)

    PubMed Central

    Liu, Xiaobin; Xavier, Christy; Jann, Jamieson; Wu, Hongli

    2016-01-01

    Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H2O2-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H2O2-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage. PMID:27827892

  5. Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes1[OPEN

    PubMed Central

    Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang

    2016-01-01

    The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665

  6. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer.

    PubMed

    Zou, Wei; Ma, Xiangdong; Yang, Hong; Hua, Wei; Chen, Biliang; Cai, Guoqing

    2017-03-01

    Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in

  7. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus

    PubMed Central

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O’Connor, Sarah E.; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-01-01

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  8. Deletion of protein tyrosine phosphatase 1B obliterates endoplasmic reticulum stress-induced myocardial dysfunction through regulation of autophagy.

    PubMed

    Wang, Shuyi; Chen, Xiyao; Nair, Sreejayan; Sun, Dongdong; Wang, Xiaoming; Ren, Jun

    2017-12-01

    Endoplasmic reticulum (ER) stress has been demonstrated to prompt various cardiovascular risks although the underlying mechanism remains elusive. Protein tyrosine phosphatase-1B (PTP1B) serves as an essential negative regulator for insulin signaling. This study examined the role of PTP1B in ER stress-induced myocardial anomalies and underlying mechanism involved with a focus on autophagy. WT and PTP1B knockout mice were subjected to the ER stress inducer tunicamycin (1mg/kg). Cardiac function was evaluated with echocardiography and an Ion-Optix MyoCam system. Western blot analysis was used to monitor the levels of ER stress, autophagy and insulin signaling including insulin receptor substrate (IRS), tribbles homolog 3 (TRIB3), Atg5/7, p62 and LC3-II. Our results showed that ER stress resulted in compromised echocardiographic and cardiomyocyte contractile function, intracellular Ca 2+ mishandling, ER stress, O 2 - production, apoptosis, the effects of which (with the exception of ER stress) were significantly attenuated or negated by PTP1B ablation. Levels of serine phosphorylation of IRS-1, TRIB3, Atg5/7, LC3B and the autophagy adaptor p62 were significantly upregulated while IRS-1 tyrosine phosphorylation was reduced by tunicamycin, the effect of which were obliterated by PTP1B ablation. In vitro study revealed that the autophagy inducer rapamycin and TRIB3 overexpression cancelled PTP1B ablation-offered beneficial effects on cardiomyocyte function or O 2 - production in murine cardiomyocytes or H9C2 myoblasts. Antioxidant or gene silencing of TRIB3 mimicked PTP1B ablation-induced protective effects. These findings collectively suggested that PTP1B ablation protects against ER stress-induced cardiac anomalies through regulation of autophagy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics.

    PubMed

    Yu, Corey H; Yang, Nan; Bothe, Jameson; Tonelli, Marco; Nokhrin, Sergiy; Dolgova, Natalia V; Braiterman, Lelita; Lutsenko, Svetlana; Dmitriev, Oleg Y

    2017-11-03

    The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by apo -Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death.

    PubMed

    Acunzo, Julie; Katsogiannou, Maria; Rocchi, Palma

    2012-10-01

    Hsp27, αB-crystallin and HSP22 are ubiquitous small heat shock proteins (sHsp) whose expression is induced in response to a wide variety of unfavorable physiological and environmental conditions. These sHsp protect cells from otherwise lethal conditions mainly by their involvement in cell death pathways such as necrosis, apoptosis or autophagy. At a molecular level, the mechanisms accounting for sHsp functions in cell death are (1) prevention of denatured proteins aggregation, (2) regulation of caspase activity, (3) regulation of the intracellular redox state, (4) function in actin polymerization and cytoskeleton integrity and (5) proteasome-mediated degradation of selected proteins. In cancer cells, these sHsp are often overexpressed and associated with increased tumorigenicity, cancer cells metastatic potential and resistance to chemotherapy. Altogether, these properties suggest that Hsp27, αB-crystallin and Hsp22 are appropriate targets for modulating cell death pathways. In the present, we briefly review recent reports showing molecular evidence of cell death regulation by these sHsp and co-chaperones. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. FGFR1 is essential for N-acetyl-seryl-aspartyl-lysyl-proline regulation of mitochondrial dynamics by upregulating microRNA let-7b-5p.

    PubMed

    Hu, Qiongying; Li, Jinpeng; Nitta, Kyoko; Kitada, Munehiro; Nagai, Takako; Kanasaki, Keizo; Koya, Daisuke

    2018-01-15

    Fibroblast growth factor receptor (FGFR) 1 plays a key role in endothelial homeostasis by inducing microRNA (miR) let-7. Our previous paper showed that anti-fibrotic effects of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) were associated with restoring diabetes-suppressed expression of FGFR1 and miR let-7, the key contributor of mitochondrial biogenesis, which is regulated by mitochondrial membrane GTPase proteins (MFN2 and OPA1). Here, we found that the FGFR1 signaling pathway was critical for AcSDKP in maintaining endothelial mitochondrial biogenesis through induction of miR let-7b-5p. In endothelial cells, AcSDKP restored the triple cytokines (TGF-β2, interleukin-1β, tumor necrosis factor-α)-suppressed miR let-7b-5p and protein levels of the mitochondrial membrane GTPase. This effect of AcSDKP was lost with either fibroblast growth factor receptor substrate 2 (FRS2) siRNA or neutralizing FGFR1-treated cells. Similarly, AcSDKP had no effect on the miR let-7b-5p inhibitor-suppressed GTPase levels in endothelial cells. In addition, a miR let-7b-5p mimic restored the levels of FRS2 siRNA-reduced GTPases in endothelial cells. These findings were also confirmed using MitoTracker Green and an immunofluorescence assay. Our results demonstrated that the AcSDKP-FGFR1 signaling pathway is critical for maintaining mitochondrial dynamics by control of miR let-7b-5p in endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The miR-29b-Sirt1 axis regulates self-renewal of mouse embryonic stem cells in response to reactive oxygen species.

    PubMed

    Xu, Zengguang; Zhang, Lei; Fei, Xuejie; Yi, Xiuwen; Li, Wenxian; Wang, Qingxiu

    2014-07-01

    Endogenous reactive oxygen species (ROS) control is important for the maintenance of self-renewal of embryonic stem (ES) cells. Although miRNAs have been found to be critically involved in the regulation of the self-renewal, whether miRNAs can regulate the signaling axis to control ROS in ES cells is unclear. Here we show that miR-29b specifically regulates the self-renewal of mouse ES cells in response to ROS generated by antioxidant-free culture. Sirt1 is the direct target of miR-29b and can also make mES cells sensitive to ROS and regulate the self-renewal of mES cells during the response of ROS. We further found that Sirt1 could attenuate the miR-29b function in regulating mES cells' self-renewal in response to ROS. Our results determined that miR-29b-Sirt1 axis regulates self-renewal of mES cells in response to ROS. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The transcription factor WIN1/SHN1 regulates Cutin biosynthesis in Arabidopsis thaliana.

    PubMed

    Kannangara, Rubini; Branigan, Caroline; Liu, Yan; Penfield, Teresa; Rao, Vijaya; Mouille, Grégory; Höfte, Herman; Pauly, Markus; Riechmann, José Luis; Broun, Pierre

    2007-04-01

    The composition and permeability of the cuticle has a large influence on its ability to protect the plant against various forms of biotic and abiotic stress. WAX INDUCER1 (WIN1) and related transcription factors have recently been shown to trigger wax production, enhance drought tolerance, and modulate cuticular permeability when overexpressed in Arabidopsis thaliana. We found that WIN1 influences the composition of cutin, a polyester that forms the backbone of the cuticle. WIN1 overexpression induces compositional changes and an overall increase in cutin production in vegetative and reproductive organs, while its downregulation has the opposite effect. Changes in cutin composition are preceded by the rapid and coordinated induction of several genes known or likely to be involved in cutin biosynthesis. This transcriptional response is followed after a delay by the induction of genes associated with wax biosynthesis, suggesting that the regulation of cutin and wax production by WIN1 is a two-step process. We demonstrate that at least one of the cutin pathway genes, which encodes long-chain acyl-CoA synthetase LACS2, is likely to be directly targeted by WIN1. Overall, our results suggest that WIN1 modulates cuticle permeability in Arabidopsis by regulating genes encoding cutin pathway enzymes.

  14. IL-27 induces the production of IgG1 by human B cells.

    PubMed

    Boumendjel, Amel; Tawk, Lina; Malefijt, René de Waal; Boulay, Vera; Yssel, Hans; Pène, Jérôme

    2006-12-01

    It has been reported that IL-27 specifically induces the production of IgG2a by mouse B cells and inhibits IL-4-induced IgG1 synthesis. Here, we show that human naïve cord blood expresses a functional IL-27 receptor, consisting of the TCCR and gp130 subunits, although at lower levels as compared to naïve and memory splenic B cells. IL-27 does not induce proliferative responses and does not increase IgG1 production by CD19(+)CD27(+) memory B cells. However, it induces a low, but significant production of IgG1 by naïve CD19(+)CD27(-)IgD(+)IgG(-) spleen and cord blood B cells, activated via CD40, whereas it has no effect on the production of the other IgG subclasses. In addition, IL-27 induces the differentiation of a population of B cells that express high levels of CD38, in association with a down-regulation of surface IgD expression, and that are surface IgG(+/int), CD20(low), CD27(high), indicating that IL-27 promotes isotype switching and plasma cell differentiation of naive B cells. However, as compared to the effects of IL-21 and IL-10, both switch factors for human IgG1 and IgG3, those of IL-27 are modest and regulate exclusively the production of IgG1. Finally, although IL-27 has no effect on IL-4 and anti-CD40-induced Cepsilon germline promoter activity, it up-regulates IL-4-induced IgE production by naive B cells. These results point to a partial redundancy of switch factors regulating the production of IgG1 in humans, and furthermore indicate the existence of a common regulation of the human IgG1and murine IgG2a isotypes by IL-27.

  15. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1)

    PubMed Central

    Wolfe, Andrew; Divall, Sara; Wu, Sheng

    2014-01-01

    The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. PMID:24929098

  16. Regulation of the Pollen-Specific Actin-Depolymerizing Factor LlADF1

    PubMed Central

    Allwood, Ellen G.; Anthony, Richard G.; Smertenko, Andrei P.; Reichelt, Stefanie; Drobak, Bjorn K.; Doonan, John H.; Weeds, Alan G.; Hussey, Patrick J.

    2002-01-01

    Pollen tube growth is dependent on a dynamic actin cytoskeleton, suggesting that actin-regulating proteins are involved. We have examined the regulation of the lily pollen-specific actin-depolymerizing factor (ADF) LlADF1. Its actin binding and depolymerizing activity is pH sensitive, inhibited by certain phosphoinositides, but not controlled by phosphorylation. Compared with its F-actin binding properties, its low activity in depolymerization assays has been used to explain why pollen ADF decorates F-actin in pollen grains. This low activity is incompatible with a role in increasing actin dynamics necessary to promote pollen tube growth. We have identified a plant homolog of actin-interacting protein, AIP1, which enhances the depolymerization of F-actin in the presence of LlADF1 by ∼60%. Both pollen ADF and pollen AIP1 bind F-actin in pollen grains but are mainly cytoplasmic in pollen tubes. Our results suggest that together these proteins remodel actin filaments as pollen grains enter and exit dormancy. PMID:12417710

  17. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Jana V., E-mail: Jana.maier@kit.edu; Volz, Yvonne; Berger, Caroline

    2010-10-22

    Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulatemore » the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.« less

  18. Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimers, Kerstin; Buchholz, Katja; Werchau, Hermann

    2005-01-20

    Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-{kappa}B). The activation of NF-{kappa}B has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-{kappa}B in A549 cells. Electromobility shift assays show increased NF-{kappa}B complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cellsmore » revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-{kappa}B depends on the C-terminus of the RSV M2-1 protein, as shown by NF-{kappa}B-induced gene expression of a reporter gene construct.« less

  19. The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits

    PubMed Central

    Bastías, Adriana; Osorio, Sonia; Casaretto, José A.

    2014-01-01

    Tomato fruit development is regulated both by the action of plant hormones and by tight genetic control. Recent studies suggest that abscisic acid (ABA) signalling may affect different aspects of fruit maturation. Previously, it was shown that SlAREB1, an ABA-regulated transcription factor involved in stress-induced responses, is expressed in seeds and in fruit tissues in tomato. Here, the role of SlAREB1 in regulating the expression of genes relevant for primary metabolic pathways and affecting the metabolic profile of the fruit was investigated using transgenic tomato lines. Metabolite profiling using gas chromatography–time of flight mass spectrometry (GC-TOF-MS) and non-targeted liquid chromatography–mass spectrometry (LC-MS) was performed on pericarp tissue from fruits harvested at three stages of fruit development. Principal component analysis of the data could distinguish the metabolite profiles of non-transgenic fruits from those that overexpress and down-regulate SlAREB1. Overexpression of SlAREB1 resulted in increased content of organic acids, hexoses, hexose-phosphates, and amino acids in immature green, mature green, and red ripe fruits, and these modifications correlated with the up-regulation of enzyme-encoding genes involved in primary carbohydrate and amino acid metabolism. A non-targeted LC-MS analysis indicated that the composition of secondary metabolites is also affected in transgenic lines. In addition, gene expression data revealed that some genes associated with fruit ripening are also up-regulated in SlAREB1-overexpressing lines compared with wild-type and antisense lines. Taken together, the results suggest that SlAREB1 participates in the regulation of the metabolic programming that takes place during fruit ripening and that may explain part of the role of ABA in fruit development in tomato. PMID:24659489

  20. Porcine coronin 1A contributes to nuclear factor-kappa B (NF-κB) inactivation during Haemophilus parasuis infection.

    PubMed

    Liu, Chong; Wang, Yang; Zhang, Hengling; Cheng, Shuang; Charreyre, Catherine; Audonnet, Jean Christophe; Chen, Pin; He, Qigai

    2014-01-01

    Haemophilus parasuis (H.parasuis) is the etiological agent of porcine polyserositis and arthritis (Glässer's disease) characterized by fibrinous polyserositis, meningitis and polyarthritis, causing severe economic losses to the swine industry. Currently, the molecular basis of this infection is largely unkonwn. Coronin 1A (Coro1A) plays important roles in host against bacterial infection, yet little is known about porcine Coro1A. In this study, we investigated the molecular characterization of porcine Coro1A, revealing that porcine Coro1A was widely expressed in different tissues. Coro1A could be induced by lipopolysaccharide (LPS), polyinosinic acid-polycytidylic acid [poly (I:C)] and H.parasuis in porcine kidney-15 (PK-15) cells. Functional analyses revealed that porcine Coro1A suppressed the NF-κB activation during H.parasuis infection by inhibiting the degradation of IκBα and nuclear translocation of p65. Overexpression of porcine Coro1A inhibited the transcription of NF-κB-mediated downstream genes [Interleukin-6 (IL-6), Interleukin-8 (IL-8) and COX-2] through down-regulation of NF-κB. The results indicated that porcine Coro1A is an important immunity related gene that helps to inhibit NF-kB activation during H. parasuis infection.

  1. Pax8 and Pax2a function synergistically in otic specification, downstream of the Foxi1 and Dlx3b transcription factors.

    PubMed

    Hans, Stefan; Liu, Dong; Westerfield, Monte

    2004-10-01

    The vertebrate inner ear arises from an ectodermal thickening, the otic placode, that forms adjacent to the presumptive hindbrain. Previous studies have suggested that competent ectodermal cells respond to Fgf signals from adjacent tissues and express two highly related paired box transcription factors Pax2a and Pax8 in the developing placode. We show that compromising the functions of both Pax2a and Pax8 together blocks zebrafish ear development, leaving only a few residual otic cells. This suggests that Pax2a and Pax8 are the main effectors downstream of Fgf signals. Our results further provide evidence that pax8 expression and pax2a expression are regulated by two independent factors, Foxi1 and Dlx3b, respectively. Combined loss of both factors eliminates all indications of otic specification. We suggest that the Foxi1-Pax8 pathway provides an early 'jumpstart' of otic specification that is maintained by the Dlx3b-Pax2a pathway.

  2. Prenatal Exposure of Mice to Diethylstilbestrol Disrupts T-Cell Differentiation by Regulating Fas/Fas Ligand Expression through Estrogen Receptor Element and Nuclear Factor-κB Motifs

    PubMed Central

    Singh, Narendra P.; Singh, Udai P.; Nagarkatti, Prakash S.

    2012-01-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions. PMID:22888145

  3. Prenatal exposure of mice to diethylstilbestrol disrupts T-cell differentiation by regulating Fas/Fas ligand expression through estrogen receptor element and nuclear factor-κB motifs.

    PubMed

    Singh, Narendra P; Singh, Udai P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2012-11-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions.

  4. Reprogramming of the MHC-I and its regulation by NFκB in human-induced pluripotent stem cells.

    PubMed

    Pick, Marjorie; Ronen, Daniel; Yanuka, Ofra; Benvenisty, Nissim

    2012-12-01

    The immunogenicity of human pluripotent stem cells plays a major role in their potential use in the clinic. We show that, during their reprogramming, human-induced pluripotent stem (iPS) cells downregulate expression of human leukocyte antigen (HLA)-A/B/C and β2 microglobulin (β2M), the two components of major histocompatibility complex-I (MHC-I). MHC-I expression in iPS cells can be restored by differentiation or treatment with interferon-gamma (IFNγ). To analyze the molecular mechanisms that regulate the expression of the MHC-I molecules in human iPS cells, we searched for correlation between the expression of HLA-A/B/C and β2M and the expression of transcription factors that bind to the promoter of these genes. Our results show a significant positive correlation between MHC-I expression and expression of the nuclear factors, nuclear factor kappa B 1 (NFκB1) and RelA, at the levels of RNA, protein and was confirmed by chromatin binding. Concordantly, we detected robust levels of NFκB1 and RelA proteins in the nucleus of somatic cells but not in the iPS cell derived from them. Overexpression of NFκB1 and RelA in undifferentiated pluripotent stem cells led to induction in expression of MHC-I, whereas silencing NFκB1 and RelA by small hairpin RNA decreased the expression of β2M after IFNγ treatment. Our data point to the critical role of NFκB proteins in regulating the MHC-I expression in human pluripotent stem cells. Copyright © 2012 AlphaMed Press.

  5. Heat shock factor 1 induces crystallin-αB to protect against cisplatin nephrotoxicity

    PubMed Central

    Lou, Qiang; Hu, Yanzhong; Ma, Yuanfang

    2016-01-01

    Cisplatin, a wildly used chemotherapy drug, induces nephrotoxicity that is characterized by renal tubular cell apoptosis. In response to toxicity, tubular cells can activate cytoprotective mechanisms, such as the heat shock response. However, the role and regulation of the heat shock response in cisplatin-induced nephrotoxicity remain largely unclear. In the present study, we demonstrated the induction of heat shock factor (Hsf)1 and the small heat shock protein crystallin-αB (CryAB) during cisplatin nephrotoxicity in mice. Consistently, cisplatin induced Hsf1 and CryAB in a cultured renal proximal tubular cells (RPTCs). RPTCs underwent apoptosis during cisplatin treatment, which was increased when Hsf1 was knocked down. Transfection or restoration of Hsf1 into Hsf1 knockdown cells suppressed cisplatin-induced apoptosis, further supporting a cytoprotective role of Hsf1 and its associated heat shock response. Moreover, Hsf1 knockdown increased Bax translocation to mitochondria and cytochrome c release into the cytosol. In RPTCs, Hsf1 knockdown led to a specific downregulation of CryAB. Transfection of CryAB into Hsf1 knockdown cells diminished their sensitivity to cisplatin-induced apoptosis, suggesting that CryAB may be a key mediator of the cytoprotective effect of Hsf1. Taken together, these results demonstrate a heat shock response in cisplatin nephrotoxicity that is mediated by Hsf1 and CryAB to protect tubular cells against apoptosis. PMID:27194715

  6. Monocyte B7 and Sialyl Lewis X modulates the efficacy of IL-10 down-regulation of LPS-induced monocyte tissue factor in whole blood.

    PubMed

    Warnes, G; Biggerstaff, J P; Francis, J L

    1998-07-01

    Recent studies have investigated the use of anti-inflammatory cytokine, interleukin 10 (IL-10) to control the development of disseminated intravascular coagulation (DIC) in sepsis by down-regulation of monocyte tissue factor (MTF) induced by lipopolysaccharide (LPS) in the initial phase of the disease. In vitro and in vivo human studies have shown that a minimal (<1 h) delay in IL-10 treatment significantly reduces the cytokines ability to inhibit LPS-induced MTF expression and the end products of coagulation. In this whole blood in vitro study we investigated the role of lymphocyte and platelet interactions with monocytes to up-regulate MTF expression in the presence of IL-10 in the initial phase of exposure to LPS. Individual blockade of monocyte B7 or platelet P-selectin significantly (35%) reduced MTF expression (P<0.05). IL-10 showed a dose-dependent inhibition of LPS (0.1 microg/ml) induced MTF expression, with 56% inhibition at 1 ng/ml, maximizing at 5 ng/ml IL-10 (75%; P<0.05). Simultaneous exposure to LPS and IL-10 (1 ng/ml) or addition of IL-10 1 h after LPS, with individual B7 and P-selectin blockade significantly enhanced the inhibition of MTF expression by IL-10 (P<0.05). We conclude that the efficacy of IL-10 to control DIC could be enhanced by a simultaneous B7 and P-selectin blockade.

  7. CD11b regulates antibody class switching via induction of AID.

    PubMed

    Park, Seohyun; Sim, Hyunsub; Kim, Hye-In; Jeong, Daecheol; Wu, Guang; Cho, Soo Young; Lee, Young Seek; Kwon, Hyung-Joo; Lee, Keunwook

    2017-07-01

    The integrin CD11b, which is encoded by the integrin subunit alpha M (ITGAM), is primarily expressed on the surface of innate immune cells. Genetic variations in ITGAM are among the strongest risk factors for systemic lupus erythematosus, an autoimmune disease characterized by the presence of autoantibodies. However, the regulatory function of CD11b in the antibody responses remains unclear. Here, we report the induction of CD11b in activated B2 B cells and define its unexpected role in immunoglobulin heavy chain class switch recombination (CSR). LPS-activated B cells lacking CD11b yielded fewer IgG subtypes such as IgG1 and IgG2a in vitro, and immunization-dependent CSR and affinity maturation of antibodies were severely impaired in CD11b-deficient mice. Notably, we observed the reduced expression of activation-induced cytidine deaminase (AID), an enzyme that initiates CSR and somatic hypermutation, and ectopic expression of AID was sufficient to rescue the defective CSR of CD11b-deficient B cells. LPS-induced phosphorylation of NF-κB p65 and IκBα was attenuated in CD11b-deficient B cells, and hyperactivation of IκB kinase 2 restored the defective AID expression and CSR, which implied that CD11b regulates the NF-κB-dependent induction of AID. Overall, our experimental evidence emphasized the function of CD11b in antibody responses and the role of CD11b as a vital regulator of CSR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Role of microRNA-130b in placental PGC-1α/TFAM mitochondrial biogenesis pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Shaoning; Teague, April M.; Tryggestad, Jeanie B.

    Diabetes during pregnancy is associated with abnormal placenta mitochondrial function and increased oxidative stress, which affect fetal development and offspring long-term health. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis and energy metabolism. The molecular mechanisms underlying the regulation of PGC-1α in placenta in the context of diabetes remain unclear. The present study examined the role of microRNA 130b (miR-130b-3p) in regulating PGC-1α expression and oxidative stress in a placental trophoblastic cell line (BeWo). Prolonged exposure of BeWo cells to high glucose mimicking hyperglycemia resulted in decreased protein abundance of PGC-1α and its downstream factor, mitochondrialmore » transcription factor A (TFAM). High glucose treatment increased the expression of miR-130b-3p in BeWo cells, as well as exosomal secretion of miR-130b-3p. Transfection of BeWo cells with miR-130b-3p mimic reduced the abundance of PGC-1α, whereas inhibition of miR-130b-3p increased PGC-1α expression in response to high glucose, suggesting a role for miR-130b-3p in mediating high glucose-induced down regulation of PGC-1α expression. In addition, miR-130b-3p anti-sense inhibitor increased TFAM expression and reduced 4-hydroxynonenal (4-HNE)-induced production of reactive oxygen species (ROS). Taken together, these findings reveal that miR-130b-3p down-regulates PGC-1α expression in placental trophoblasts, and inhibition of miR-130b-3p appears to improve mitochondrial biogenesis signaling and protect placental trophoblast cells from oxidative stress. - Highlights: • High glucose reduces PGC-1α and TFAM proteins in trophoblast BeWo cells. • miR-130b-3p mediates high glucose-induced decrease in PGC-1α abundance. • Inhibition of miR-130b-3p improves mitochondrial biogenesis signaling. • Inhibition of miR-130b-3p protects trophoblasts against oxidative stress.« less

  9. Circulating miR-200c is up-regulated in paediatric patients with familial hypercholesterolaemia and correlates with miR-33a/b levels: implication of a ZEB1-dependent mechanism.

    PubMed

    D'Agostino, Marco; Martino, Francesco; Sileno, Sara; Barillà, Francesco; Beji, Sara; Marchetti, Lorenza; Gangi, Fabio Maria; Persico, Luca; Picozza, Mario; Montali, Anna; Martino, Eliana; Zanoni, Cristina; Avitabile, Daniele; Parrotto, Sandro; Capogrossi, Maurizio Colognesi; Magenta, Alessandra

    2017-09-15

    Hypercholesterolaemia provokes reactive oxygen species (ROS) increase and is a major risk factor for cardiovascular disease (CVD) development. We previously showed that circulating miR-33a/b expression levels were up-regulated in children with familial hypercholesterolaemia (FH). miR-33a/b control cholesterol homoeostasis and recently miR-33b has been demonstrated to directly target the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1). The latter acts in a negative feedback loop with the miR-200 family. Our previous studies showed that the ROS-dependent miR-200c up-regulation induces endothelial dysfunction and provokes a ZEB1-dependent apoptosis and senescence. In the present study, we aimed to verify whether circulating miR-200c was induced in FH children, and whether a correlation existed with miR-33a/b Total RNA was extracted from plasma of 28 FH children and 25 age-matched healthy subjects (HS) and miR-200c levels were measured. We found that miR-200c was up-regulated in FH compared with HS (4.00 ± 0.48-fold increase, P <0.05) and exhibited a positive correlation with miR-33a/b. miR-200c did not correlate with plasma lipids, but correlated with C-reactive protein (CRP) plasma levels and glycaemia (GLI). Ordinary least squares (OLS) regression analysis revealed that miR-200c was significantly affected by GLI and by miR-33a ( P <0.01; P <0.001 respectively). Moreover, we found that miR-33 overexpression, in different cell lines, decreased ZEB1 expression and up-regulated both the intracellular and the extracellular miR-200c expression levels. In conclusion, circulating miR-200c is up-regulated in FH, probably due to oxidative stress and inflammation and via a miR-33a/b -ZEB1-dependent mechanism. The present study could provide the first evidence to point to the use of miR-33a/b and miR-200c , as early biomarkers of CVD, in paediatric FH. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Cystic Fibrosis Transmembrane Conductance Regulator Controls Lung Proteasomal Degradation and Nuclear Factor-κB Activity in Conditions of Oxidative Stress

    PubMed Central

    Boncoeur, Emilie; Roque, Telma; Bonvin, Elise; Saint-Criq, Vinciane; Bonora, Monique; Clement, Annick; Tabary, Olivier; Henrion-Caude, Alexandra; Jacquot, Jacky

    2008-01-01

    Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-κB/IκB-α signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr−/−) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr+/+) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-κB inhibitor IκB-α. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-κB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl− channel by CFTRinh-172 in the normal bronchial immortalized cell line 16HBE14o− increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-κB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl− channel activity is crucial for regulation of lung proteasomal degradation and NF-κB activity in conditions of oxidative stress. PMID:18372427

  11. Simultaneous stimulation with tumor necrosis factor-α and transforming growth factor1 induces epithelial-mesenchymal transition in colon cancer cells via the NF-κB pathway.

    PubMed

    Li, Yuanfei; Zhu, Guoqiang; Zhai, Huihong; Jia, Junmei; Yang, Wenhui; Li, Xiaoqing; Liu, Lixin

    2018-05-01

    Epithelial-mesenchymal transition (EMT) is critical in the progression of numerous types of carcinoma, and endows invasive and metastatic properties upon cancer cells. The tumor microenvironment facilitates tumor metastasis to distant organs. Various signaling pathways contribute to this process. In the present study, SW480 colon adenocarcinoma cells were treated with transforming growth factor1 (TGF-β1; 10 ng/ml) and tumor necrosis factor-α (TNF-α; 20 ng/ml), alone or in combination, for 72 h, and EMT was assessed using immunofluorescence, western blot analysis and migration assays. The functions of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB) pathways in EMT were examined. It was demonstrated that the cooperation of TGF-β1 and TNF-α signaling promoted the morphological conversion of the SW480 cells from an epithelial to a mesenchymal phenotype. Furthermore, simultaneous exposure to TNF-α and TGF-β1 downregulated the expression of E-cadherin (an epithelial marker) and increased the expression of N-cadherin and vimentin (mesenchymal markers). Additionally, the migratory capacity of the SW480 cells increased. The inhibition of p38 and ERK signaling exhibited no effect on EMT, whereas the inhibition of inhibitor of NF-κB kinase subunit β blocked the EMT induced by TGF-β1 and TNF-α. In conclusion, the results of the present study demonstrated that TNF-α and TGF-β1 synergistically promoted EMT in SW480 cells via the NF-κB pathway, independent of p38 activation and ERK1/2 signaling. These results suggest a novel function of TGF-β1 and TNF-α during EMT in colon carcinoma and, thus, provide insights into potential therapeutic interventions.

  12. BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism.

    PubMed

    Rodríguez, Andrea E; López-Crisosto, Camila; Peña-Oyarzún, Daniel; Salas, Daniela; Parra, Valentina; Quiroga, Clara; Morawe, Tobias; Chiong, Mario; Behl, Christian; Lavandero, Sergio

    2016-01-01

    Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells.

  13. BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism

    PubMed Central

    Rodríguez, Andrea E.; López-Crisosto, Camila; Peña-Oyarzún, Daniel; Salas, Daniela; Parra, Valentina; Quiroga, Clara; Morawe, Tobias; Chiong, Mario; Behl, Christian; Lavandero, Sergio

    2016-01-01

    ABSTRACT Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells. PMID:26654586

  14. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  15. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta.

  16. A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factor-κB pathway in skeletal muscle.

    PubMed

    Laure, Lydie; Danièle, Nathalie; Suel, Laurence; Marchand, Sylvie; Aubert, Sophie; Bourg, Nathalie; Roudaut, Carinne; Duguez, Stéphanie; Bartoli, Marc; Richard, Isabelle

    2010-10-01

    A multiprotein complex encompassing a transcription regulator, cardiac ankyrin repeat protein (CARP), and the calpain 3 protease was identified in the N2A elastic region of the giant sarcomeric protein titin. The present study aimed to investigate the function(s) of this complex in the skeletal muscle. We demonstrate that CARP subcellular localization is controlled by the activity of calpain 3: the higher the calpain 3, the more important the sarcomeric retention of CARP. This regulation would occur through cleavage of the N-terminal end of CARP by the protease. We show that, upon CARP over-expression, the transcription factor nuclear factor NF-κB p65 DNA-binding activity decreases. Taken as a whole, CARP and its regulator calpain 3 appear to occupy a central position in the important cell fate-governing NF-κB pathway. Interestingly, the expression of the atrophying protein MURF1, one of NF-κB main targets, remains unchanged in presence of CARP, suggesting that the pathway encompassing calpain 3/CARP/NF-κB does not play a role in muscle atrophy. With NF-κB also having anti-apoptotic effects, the inability of calpain 3 to lower CARP-driven inhibition of NF-κB could reduce muscle cell survival, hence partly accounting for the dystrophic pattern observed in limb girdle muscular dystrophy 2A, a pathology resulting from the protease deficiency. © 2010 The Authors Journal compilation © 2010 FEBS.

  17. Genetic and environmental risk factors for atherosclerosis regulate transcription of phosphatase and actin regulating gene PHACTR1.

    PubMed

    Reschen, Michael E; Lin, Da; Chalisey, Anil; Soilleux, Elizabeth J; O'Callaghan, Christopher A

    2016-07-01

    Coronary artery disease (CAD) risk is associated with non-coding genetic variants at the phosphatase and actin regulating protein 1(PHACTR1) gene locus. The PHACTR1 gene encodes an actin-binding protein with phosphatase regulating activity. The mechanism whereby PHACTR1 influences CAD risk is unknown. We hypothesized that PHACTR1 would be expressed in human cell types relevant to CAD and regulated by atherogenic or genetic factors. Using immunohistochemistry, we demonstrate that PHACTR1 protein is expressed strongly in human atherosclerotic plaque macrophages, lipid-laden foam cells, adventitial lymphocytes and endothelial cells. Using a combination of genomic analysis and molecular techniques, we demonstrate that PHACTR1 is expressed as multiple previously uncharacterized transcripts in macrophages, foam cells, lymphocytes and endothelial cells. Immunoblotting confirmed a total absence of PHACTR1 in vascular smooth muscle cells. Real-time quantitative PCR showed that PHACTR1 is regulated by atherogenic and inflammatory stimuli. In aortic endothelial cells, oxLDL and TNF-alpha both upregulated an intermediate length transcript. A short transcript expressed only in immune cells was upregulated in macrophages by oxidized low-density lipoprotein, and oxidized phospholipids but suppressed by lipopolysaccharide or TNF-alpha. In primary human macrophages, we identified a novel expression quantitative trait locus (eQTL) specific for this short transcript, whereby the risk allele at CAD risk SNP rs9349379 is associated with reduced PHACTR1 expression, similar to the effect of an inflammatory stimulus. Our data demonstrate that PHACTR1 is a key atherosclerosis candidate gene since it is regulated by atherogenic stimuli in macrophages and endothelial cells and we identify an effect of the genetic risk variant on PHACTR1 expression in macrophages that is similar to that of an inflammatory stimulus. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights

  18. A novel bZIP transcription factor ClrC positively regulates multiple stress responses, conidiation and cellulase expression in Penicillium oxalicum.

    PubMed

    Lei, Yunfeng; Liu, Guodong; Yao, Guangshan; Li, Zhonghai; Qin, Yuqi; Qu, Yinbo

    2016-06-01

    Cellulase production in filamentous fungi is largely regulated at the transcriptional level, and several transcription factors have been reported to be involved in this process. In this study, we identified ClrC, a novel transcription factor in cellulase production in Penicillium oxalicum. ClrC and its orthologs have a highly conserved basic leucine zipper (bZIP) DNA binding domain, and their biological functions have not been explored. Deletion of clrC resulted in pleiotropic effects, including altered growth, reduced conidiation and increased sensitivity to oxidative and cell wall stresses. In particular, the clrC deletion mutant ΔclrC showed 46.1% ± 8.1% and 58.0% ± 8.7% decreases in production of filter paper enzyme and xylanase activities in cellulose medium, respectively. In contrast, 57.4% ± 10.0% and 70.9% ± 19.4% increased production of filter paper enzyme, and xylanase was observed in the clrC overexpressing strain, respectively. The transcription levels of major cellulase genes, as well as two cellulase transcriptional activator genes, clrB and xlnR, were significantly downregulated in ΔclrC, but substantially upregulated in clrC overexpressing strains. Furthermore, we observed that the absence of ClrC reduced full induction of cellulase expression even in the clrB overexpressing strain. These results indicated that ClrC is a novel and efficient engineering target for improving cellulolytic enzyme production in filamentous fungi. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Conserved regulation of mesenchymal gene expression by Fgf-8 in face and limb development.

    PubMed

    Tucker, A S; Al Khamis, A; Ferguson, C A; Bach, I; Rosenfeld, M G; Sharpe, P T

    1999-01-01

    Clim-2 (NLI, Lbd1) is one of two related mouse proteins that interact with Lim-domain homeoproteins. In the mouse, embryonic expression of Clim-2 is particularly pronounced in facial ectomesenchyme and limb bud mesenchyme in association with Lim genes, Lhx-6 and Lmx-1 respectively. We show that in common with both these Lim genes, Clim-2 expression is regulated by signals from overlying epithelium. In both the developing face and the limb buds we identify Fgf-8 as the likely candidate signalling molecule that regulates Clim-2 expression. We show that in the mandibular arch, as in the limb, Fgf-8 functions in combination with CD44, a cell surface binding protein, and that blocking CD44 binding results in inhibition of Fgf8-induced expression of Clim-2 and Lhx-6. Regulation of gene expression by Fgf8 in association with CD44 is thus conserved between limb and mandibular arch development.

  20. Aurora Kinase B, a novel regulator of TERF1 binding and telomeric integrity

    PubMed Central

    Chan, Foong Lyn; Vinod, Benjamin; Novy, Karel; Schittenhelm, Ralf B.; Huang, Cheng; Udugama, Maheshi; Nunez-Iglesias, Juan; Lin, Jane I.; Hii, Linda; Chan, Julie; Pickett, Hilda A.; Daly, Roger J.

    2017-01-01

    Abstract AURKB (Aurora Kinase B) is a serine/threonine kinase better known for its role at the mitotic kinetochore during chromosome segregation. Here, we demonstrate that AURKB localizes to the telomeres in mouse embryonic stem cells, where it interacts with the essential telomere protein TERF1. Loss of AURKB function affects TERF1 telomere binding and results in aberrant telomere structure. In vitro kinase experiments successfully identified Serine 404 on TERF1 as a putative AURKB target site. Importantly, in vivo overexpression of S404-TERF1 mutants results in fragile telomere formation. These findings demonstrate that AURKB is an important regulator of telomere structural integrity. PMID:29040668

  1. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1).

    PubMed

    Wolfe, Andrew; Divall, Sara; Wu, Sheng

    2014-10-01

    The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Transforming Growth Factor β1 (TGFβ1) and Progesterone Regulate Matrix Metalloproteinases (MMP) in Human Endometrial Stromal Cells

    PubMed Central

    Itoh, Hiroko; Kishore, Annavarapu Hari; Lindqvist, Annika; Rogers, David E.

    2012-01-01

    Context: Menstruation is preceded by progesterone withdrawal and endometrial matrix remodeling predominantly through induction of matrix metalloproteinases (MMP) and recruitment of invading neutrophils. Design: Using endometrial tissues from women during various phases of the menstrual cycle, we found that MMP2, MMP9, and MMP11 were up-regulated in the late secretory phase/premenstrual phase. Because TGFβ-responsive genes were also up-regulated in endometrium during this time, we tested the hypothesis that TGFβ1 and progesterone regulate expression of MMP in human endometrial stromal cells (HESC). Results: Treatment of HESC with TGFβ1 resulted in marked increases in MMP2 and MMP11 mRNA and pro- and active MMP2 activity. Progesterone inhibited TGFβ1-induced stimulation of MMP2 and MMP11 through its nuclear hormone receptors. Interestingly, TGFβ1 also decreased progesterone receptor (PR)-A and PR-B in HESC with a more pronounced effect on PR-A. Conclusions: These data support the hypothesis that TGFβ1 has endogenous anti-progestational effects in HESC and that the opposing effects of progesterone and TGFβ1 are important in regulation of matrix integrity in human endometrium. PMID:22466340

  3. JunB is required for endothelial cell morphogenesis by regulating core-binding factor β

    PubMed Central

    Licht, Alexander H.; Pein, Oliver T.; Florin, Lore; Hartenstein, Bettina; Reuter, Hendrik; Arnold, Bernd; Lichter, Peter; Angel, Peter; Schorpp-Kistner, Marina

    2006-01-01

    The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis. PMID:17158955

  4. ATP1B3 Protein Modulates the Restriction of HIV-1 Production and Nuclear Factor κ Light Chain Enhancer of Activated B Cells (NF-κB) Activation by BST-2*

    PubMed Central

    Nishitsuji, Hironori; Sugiyama, Ryuichi; Abe, Makoto; Takaku, Hiroshi

    2016-01-01

    Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation. PMID:26694617

  5. A Cell Number Counting Factor Regulates Akt/Protein Kinase B To Regulate Dictyostelium discoideum Group Size

    PubMed Central

    Gao, Tong; Knecht, David; Tang, Lei; Hatton, R. Diane; Gomer, Richard H.

    2004-01-01

    Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of ∼20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin− cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB. PMID:15470246

  6. Overlapping and lineage-specific roles for the type-B response regulators of monocots and dicots.

    PubMed

    Kim, Hyo Jung; Kieber, Joseph J; Schaller, G Eric

    2012-09-01

    Cytokinins are plant hormones with profound roles in growth and development. Cytokinin signaling is mediated through a 'two-component' signaling system composed of histidine kinases, histidine-containing phosphotransfer proteins, and response regulators. Phylogenetic analysis of two-component signaling elements from the monocot rice and the dicot Arabidopsis reveals lineage-specific expansions of the type-B response regulators, transcription factors that act as positive regulators for the cytokinin signal. We recently reported in Plant Physiology on a functional analysis of rice type-B response regulators. A type-B response regulator from a subfamily comprised of both monocot and dicot type-B response regulators complemented an Arabidopsis type-B response regulator mutant, but a type-B response regulator from a monocot-specific subfamily generally did not. Here, we extend this analysis to demonstrate that the promoter of an Arabidopsis cytokinin primary response gene is induced by type-B response regulators from a shared subfamily, but not by one from a lineage-specific subfamily. These results support a model in which the type-B response regulators of monocots and dicots share conserved roles in the cytokinin signaling pathway but have also diverged to take on lineage-specific roles.

  7. The spatial expression and regulation of transcription factors IDEF1 and IDEF2

    PubMed Central

    Kobayashi, Takanori; Ogo, Yuko; Aung, May Sann; Nozoye, Tomoko; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Yamakawa, Takashi; Nishizawa, Naoko K.

    2010-01-01

    Background and Aims Under conditions of low iron availability, rice plants induce genes involved in iron uptake and utilization. The iron deficiency-responsive cis-acting element binding factors 1 and 2 (IDEF1 and IDEF2) regulate transcriptional response to iron deficiency in rice roots. Clarification of the functions of IDEF1 and IDEF2 could uncover the gene regulation mechanism. Methods Spatial patterns of IDEF1 and IDEF2 expression were analysed by histochemical staining of IDEF1 and IDEF2 promoter-GUS transgenic rice lines. Expression patterns of the target genes of IDEF1 and IDEF2 were analysed using transformants with induced or repressed expression of IDEF1 or IDEF2 grown in iron-rich or in iron-deficient solutions for 1 d. Key Results IDEF1 and IDEF2 were highly expressed in the basal parts of the lateral roots and vascular bundles. IDEF1 and IDEF2 expression was dominant in leaf mesophyll and vascular cells, respectively. These expression patterns were similar under both iron-deficient and iron-sufficient conditions. IDEF1 was strongly expressed in pollen, ovaries, the aleurone layer and embryo. IDEF2 was expressed in pollen, ovaries and the dorsal vascular region of the endosperm. During seed germination, IDEF1 and IDEF2 were expressed in the endosperm and embryo. Expression of IDEF1 target genes was regulated in iron-rich roots similar to early iron-deficiency stages. In addition, the expression patterns of IDEF2 target genes were similar between iron-rich conditions and early or subsequent iron deficiency. Conclusions IDEF1 and IDEF2 are constitutively expressed during both vegetative and reproductive stages. The spatial expression patterns of IDEF1 and IDEF2 overlap with their target genes in restricted cell types, but not in all cells. The spatial expression patterns and gene regulation of IDEF1 and IDEF2 in roots are generally conserved under conditions of iron sufficiency and deficiency, suggesting complicated interactions with unknown factors for

  8. p35 Regulates the CRM1-Dependent Nucleocytoplasmic Shuttling of Nuclear Hormone Receptor Coregulator-Interacting Factor 1 (NIF-1)

    PubMed Central

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W. Y.; Li, Zhen; Fu, Amy K. Y.; Ip, Nancy Y.

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators. PMID:25329792

  9. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    PubMed

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  10. CD147 regulates extrinsic apoptosis in spermatocytes by modulating NFκB signaling pathways

    PubMed Central

    Wang, Chaoqun; Fok, Kin Lam; Cai, Zhiming; Chen, Hao; Chan, Hsiao Chang

    2017-01-01

    CD147 null mutant male mice are infertile with arrested spermatogenesis and increased apoptotic germ cells. Our previous studies have shown that CD147 prevents apoptosis in mouse spermatocytes but not spermatogonia. However, the underlying mechanism remains elusive. In the present study, we aim to determine the CD147-regulated apoptotic pathway in mouse spermatocytes. Our results showed that immunodepletion of CD147 triggered apoptosis through extrinsic apoptotic pathway in mouse testis and spermatocyte cell line (GC-2 cells), accompanied by activation of non-canonical NFκB signaling and suppression of canonical NFκB signaling. Furthermore, CD147 was found to interact with TRAF2, a factor known to regulate NFκB and extrinsic apoptotic signaling, and interfering CD147 led to the decrease of TRAF2. Consistently, depletion of CD147 by CRISPR/Cas9 technique in GC-2 cells down-regulated TRAF2 and resulted in cell death with suppressed canonical NFκB and activated non-canonical NFκB signaling. On the contrary, interfering of CD147 had no effect on NFκB signaling pathways as well as TRAF2 protein level in mouse spermatogonia cell line (GC-1 cells). Taken together, these results suggested that CD147 plays a key role in reducing extrinsic apoptosis in spermatocytes, but not spermatogonia, through modulating NFκB signaling pathway. PMID:27902973

  11. CD147 regulates extrinsic apoptosis in spermatocytes by modulating NFκB signaling pathways.

    PubMed

    Wang, Chaoqun; Fok, Kin Lam; Cai, Zhiming; Chen, Hao; Chan, Hsiao Chang

    2017-01-10

    CD147 null mutant male mice are infertile with arrested spermatogenesis and increased apoptotic germ cells. Our previous studies have shown that CD147 prevents apoptosis in mouse spermatocytes but not spermatogonia. However, the underlying mechanism remains elusive. In the present study, we aim to determine the CD147-regulated apoptotic pathway in mouse spermatocytes. Our results showed that immunodepletion of CD147 triggered apoptosis through extrinsic apoptotic pathway in mouse testis and spermatocyte cell line (GC-2 cells), accompanied by activation of non-canonical NFκB signaling and suppression of canonical NFκB signaling. Furthermore, CD147 was found to interact with TRAF2, a factor known to regulate NFκB and extrinsic apoptotic signaling, and interfering CD147 led to the decrease of TRAF2. Consistently, depletion of CD147 by CRISPR/Cas9 technique in GC-2 cells down-regulated TRAF2 and resulted in cell death with suppressed canonical NFκB and activated non-canonical NFκB signaling. On the contrary, interfering of CD147 had no effect on NFκB signaling pathways as well as TRAF2 protein level in mouse spermatogonia cell line (GC-1 cells). Taken together, these results suggested that CD147 plays a key role in reducing extrinsic apoptosis in spermatocytes, but not spermatogonia, through modulating NFκB signaling pathway.

  12. Active Hexose-correlated Compound Down-regulates Heat Shock Factor 1, a Transcription Factor for HSP27, in Gemcitabine-resistant Human Pancreatic Cancer Cells.

    PubMed

    Tokunaga, Masayuki; Baron, Byron; Kitagawa, Takao; Tokuda, Kazuhiro; Kuramitsu, Yasuhiro

    2015-11-01

    Active hexose-correlated compound (AHCC) is an extract of a basidiomycete mushroom that enhances the therapeutic effects and reduces the side-effects of chemotherapy. Our previous studies demonstrated that heat-shock protein 27 (HSP27) was involved in gemcitabine-resistance of pancreatic cancer cells and it was down-regulated by AHCC-treatment. However, how AHCC down-regulated HSP27 is unknown. In the present study, we focused on two transcription factors reported to induce HSP27, heat shock factor 1 (HSF1) and high-mobility group box 1 (HMGB1) and investigated the effect of AHCC on their expression. KLM1-R cells were treated with AHCC and the protein expression of HSF1 and HMGB1 were analyzed by western blotting. The protein expression of HSF1 in KLM1-R was down-regulated by AHCC treatment. On the other hand, the protein expression of HMGB1 was not reduced in KLM1-R cells after AHCC treatment. The possibility that AHCC down-regulated HSP27 through down-regulation of the HSF1, was herein shown. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. The gga-let-7 family post-transcriptionally regulates TGFBR1 and LIN28B during the differentiation process in early chick development.

    PubMed

    Lee, Sang In; Jeon, Mi-Hyang; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2015-12-01

    Early chick embryogenesis is governed by a complex mechanism involving transcriptional and post-transcriptional regulation, although how post-transcriptional processes influence the balance between pluripotency and differentiation during early chick development have not been previously investigated. Here, we characterized the microRNA (miRNA) signature associated with differentiation in the chick embryo, and found that as expression of the gga-let-7 family increases through early development, expression of their direct targets, TGFBR1 and LIN28B, decreases; indeed, gga-let-7a-5p and gga-let-7b miRNAs directly bind to TGFBR1 and LIN28B transcripts. Our data further indicate that TGFBR1 and LIN28B maintain pluripotency by regulating POUV, NANOG, and CRIPTO. Therefore, gga-let-7 miRNAs act as post-transcriptional regulators of differentiation in blastodermal cells by repressing the expression of the TGFBR1 and LIN28B, which intrinsically controls blastodermal cell differentiation in early chick development. © 2015 Wiley Periodicals, Inc.

  14. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae

    PubMed Central

    Fermi, Beatrice; Bosio, Maria Cristina; Dieci, Giorgio

    2016-01-01

    In Saccharomyces cerevisiae, ribosomal protein gene (RPG) promoters display binding sites for either Rap1 or Abf1 transcription factors. Unlike Rap1-associated promoters, the small cohort of Abf1-dependent RPGs (Abf1-RPGs) has not been extensively investigated. We show that RPL3, RPL4B, RPP1A, RPS22B and RPS28A/B share a common promoter architecture, with an Abf1 site upstream of a conserved element matching the sequence recognized by Fhl1, a transcription factor which together with Ifh1 orchestrates Rap1-associated RPG regulation. Abf1 and Fhl1 promoter association was confirmed by ChIP and/or gel retardation assays. Mutational analysis revealed a more severe requirement of Abf1 than Fhl1 binding sites for RPG transcription. In the case of RPS22B an unusual Tbf1 binding site promoted both RPS22B and intron-hosted SNR44 expression. Abf1-RPG down-regulation upon TOR pathway inhibition was much attenuated at defective mutant promoters unable to bind Abf1. TORC1 inactivation caused the expected reduction of Ifh1 occupancy at RPS22B and RPL3 promoters, but unexpectedly it entailed largely increased Abf1 association with Abf1-RPG promoters. We present evidence that Abf1 recruitment upon nutritional stress, also observed for representative ribosome biogenesis genes, favours RPG transcriptional rescue upon nutrient replenishment, thus pointing to nutrient-regulated Abf1 dynamics at promoters as a novel mechanism in ribosome biogenesis control. PMID:27016735

  15. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    PubMed

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p < 0.05). The findings of the present study demonstrate that appropriate supplementation of culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast

  16. The bHLH Transcription Factor bHLH104 Interacts with IAA-LEUCINE RESISTANT3 and Modulates Iron Homeostasis in Arabidopsis

    PubMed Central

    Zhang, Jie; Liu, Bing; Li, Mengshu; Feng, Dongru; Jin, Honglei; Wang, Peng; Liu, Jun; Xiong, Feng; Wang, Jinfa; Wang, Hong-Bin

    2015-01-01

    Iron (Fe) is an indispensable micronutrient for plant growth and development. The regulation of Fe homeostasis in plants is complex and involves a number of transcription factors. Here, we demonstrate that a basic helix-loop-helix (bHLH) transcription factor, bHLH104, belonging to the IVc subgroup of bHLH family, acts as a key component positively regulating Fe deficiency responses. Knockout of bHLH104 in Arabidopsis thaliana greatly reduced tolerance to Fe deficiency, whereas overexpression of bHLH104 had the opposite effect and led to accumulation of excess Fe in soil-grown conditions. The activation of Fe deficiency-inducible genes was substantially suppressed by loss of bHLH104. Further investigation showed that bHLH104 interacted with another IVc subgroup bHLH protein, IAA-LEUCINE RESISTANT3 (ILR3), which also plays an important role in Fe homeostasis. Moreover, bHLH104 and ILR3 could bind directly to the promoters of Ib subgroup bHLH genes and POPEYE (PYE) functioning in the regulation of Fe deficiency responses. Interestingly, genetic analysis showed that loss of bHLH104 could decrease the tolerance to Fe deficiency conferred by the lesion of BRUTUS, which encodes an E3 ligase and interacts with bHLH104. Collectively, our data support that bHLH104 and ILR3 play pivotal roles in the regulation of Fe deficiency responses via targeting Ib subgroup bHLH genes and PYE expression. PMID:25794933

  17. The maize OST1 kinase homolog phosphorylates and regulates the maize SNAC1-type transcription factor.

    PubMed

    Vilela, Belmiro; Moreno-Cortés, Alicia; Rabissi, Agnese; Leung, Jeffrey; Pagès, Montserrat; Lumbreras, Victoria

    2013-01-01

    The Arabidopsis kinase OPEN STOMATA 1 (OST1) plays a key role in regulating drought stress signalling, particularly stomatal closure. We have identified and investigated the functions of the OST1 ortholog in Z. mays (ZmOST1). Ectopic expression of ZmOST1 in the Arabidopsis ost1 mutant restores the stomatal closure phenotype in response to drought. Furthermore, we have identified the transcription factor, ZmSNAC1, which is directly phosphorylated by ZmOST1 with implications on its localization and protein stability. Interestingly, ZmSNAC1 binds to the ABA-box of ZmOST1, which is conserved in SnRK2s activated by ABA and is part of the contact site for the negative-regulating clade A PP2C phosphatases. Taken together, our results indicate that ZmSNAC1 is a substrate of ZmOST1 and delineate a novel osmotic stress transcriptional pathway in maize.

  18. The Maize OST1 Kinase Homolog Phosphorylates and Regulates the Maize SNAC1-Type Transcription Factor

    PubMed Central

    Rabissi, Agnese; Leung, Jeffrey; Pagès, Montserrat; Lumbreras, Victoria

    2013-01-01

    The Arabidopsis kinase OPEN STOMATA 1 (OST1) plays a key role in regulating drought stress signalling, particularly stomatal closure. We have identified and investigated the functions of the OST1 ortholog in Z. mays (ZmOST1). Ectopic expression of ZmOST1 in the Arabidopsis ost1 mutant restores the stomatal closure phenotype in response to drought. Furthermore, we have identified the transcription factor, ZmSNAC1, which is directly phosphorylated by ZmOST1 with implications on its localization and protein stability. Interestingly, ZmSNAC1 binds to the ABA-box of ZmOST1, which is conserved in SnRK2s activated by ABA and is part of the contact site for the negative-regulating clade A PP2C phosphatases. Taken together, our results indicate that ZmSNAC1 is a substrate of ZmOST1 and delineate a novel osmotic stress transcriptional pathway in maize. PMID:23469147

  19. B Cell Receptor Activation Predominantly Regulates AKT-mTORC1/2 Substrates Functionally Related to RNA Processing

    PubMed Central

    Mohammad, Dara K.; Ali, Raja H.; Turunen, Janne J.; Nore, Beston F.; Smith, C. I. Edvard

    2016-01-01

    Protein kinase B (AKT) phosphorylates numerous substrates on the consensus motif RXRXXpS/T, a docking site for 14-3-3 interactions. To identify novel AKT-induced phosphorylation events following B cell receptor (BCR) activation, we performed proteomics, biochemical and bioinformatics analyses. Phosphorylated consensus motif-specific antibody enrichment, followed by tandem mass spectrometry, identified 446 proteins, containing 186 novel phosphorylation events. Moreover, we found 85 proteins with up regulated phosphorylation, while in 277 it was down regulated following stimulation. Up regulation was mainly in proteins involved in ribosomal and translational regulation, DNA binding and transcription regulation. Conversely, down regulation was preferentially in RNA binding, mRNA splicing and mRNP export proteins. Immunoblotting of two identified RNA regulatory proteins, RBM25 and MEF-2D, confirmed the proteomics data. Consistent with these findings, the AKT-inhibitor (MK-2206) dramatically reduced, while the mTORC-inhibitor PP242 totally blocked phosphorylation on the RXRXXpS/T motif. This demonstrates that this motif, previously suggested as an AKT target sequence, also is a substrate for mTORC1/2. Proteins with PDZ, PH and/or SH3 domains contained the consensus motif, whereas in those with an HMG-box, H15 domains and/or NF-X1-zinc-fingers, the motif was absent. Proteins carrying the consensus motif were found in all eukaryotic clades indicating that they regulate a phylogenetically conserved set of proteins. PMID:27487157

  20. Nuclear Import of the Parsley bZIP Transcription Factor CPRF2 Is Regulated by Phytochrome Photoreceptors

    PubMed Central

    Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus

    1999-01-01

    In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448

  1. 44 CFR 1.7 - Regulations agendas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Regulations agendas. 1.7... HOMELAND SECURITY GENERAL RULEMAKING; POLICY AND PROCEDURES General § 1.7 Regulations agendas. (a) The FEMA... Regulations published in April and October of each year. (b) In accordance with 5 U.S.C. 605, the regulatory...

  2. 44 CFR 1.7 - Regulations agendas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Regulations agendas. 1.7... HOMELAND SECURITY GENERAL RULEMAKING; POLICY AND PROCEDURES General § 1.7 Regulations agendas. (a) The FEMA... Regulations published in April and October of each year. (b) In accordance with 5 U.S.C. 605, the regulatory...

  3. CC2D1A and CC2D1B regulate degradation and signaling of EGFR and TLR4.

    PubMed

    Deshar, Rakesh; Cho, Eun-Bee; Yoon, Sungjoo Kim; Yoon, Jong-Bok

    2016-11-11

    Signaling through many transmembrane receptors is terminated by their sorting to the intraluminal vesicles (ILVs) of multivescular bodies (MVBs) and subsequent lysosomal degradation. ILV formation requires the endosomal sorting complex required for transport (ESCRT) machinery. CC2D1A and CC2D1B interact with the CHMP4 family of proteins, the major subunit of the ESCRT-III complex, however, their roles in receptor degradation and signaling are poorly defined. Here, we report that CC2D1A binds to CHMP4B polymers formed on endosomes to regulate the endosomal sorting pathway. We show that depletion of CC2D1A and B accelerates degradation of EGFR and elicits rapid termination of its downstream signaling through ERK1 and 2. Depletion of CC2D1A and B promotes sorting of EGFR to ILV leading to its rapid lysosomal degradation. In addition, we show that knockdown of CC2D1A and B has similar effects on degradation and downstream signaling of another membrane receptor, TLR4. Thus, these findings suggest that CC2D1A and B may have broad effects on transmembrane receptors by preventing premature ILV sorting and termination of signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Down-regulation of TGF-b1, TGF-b receptor 2, and TGF-b-associated microRNAs, miR-20a and miR-21, in skin lesions of sulfur mustard-exposed Iranian war veterans.

    PubMed

    Valizadeh, Mohadeseh; Mirzaei, Behnaz; Tavallaei, Mahmood; Noorani, Mohammad Reza; Amiri, Mojtaba; Soroush, Mohammad Reza; Mowla, Seyed Javad

    2015-01-01

    Sulfur mustard (SM) affects divergent cellular pathways including cell cycle, apoptosis, necrosis, and inflammatory responses. SM-induced lesions in skin include late-onset hyper-pigmentation, xerosis, and atrophy. It seems that TGF-b signaling pathway is a major player for SM pathogenesis. Here, we have employed a real-time polymerase chain reaction (PCR) approach to evaluate the expression alterations of all TGF-b variants and their receptors in skin biopsies obtained from 10 Iran-Iraq war veterans. Using specific LNA primers, the expression alteration of a TGF-bR2 regulator, miR-20a, and TGF-b downstream target, miR-21, was also assessed in the same samples Our real-time PCR data revealed a significant down-regulation of TGF-b1 and TGF-bR2, the major mediators of TGF-b signaling pathway, in skin biopsies of SM-exposed patients (p = 0.0015 and p = 0.0115, respectively). Down-regulation of TGF-b signaling pathway seems to contribute in severe inflammation observed in SM-exposed patients' tissues. MiR-20a and miR-21, as two important TGF-b associated microRNAs (miRNAs), were also down-regulated in SM-exposed skin lesions, compared to those of control group (p = 0.0003). Based on our findings, these miRNAs could be directly or indirectly involve in the pathogenesis of SM. Altogether, our data suggest the suitability of TGF-b1, TGF-bR2, as well as miR-20a and miR-21 as potential biomarkers for diagnosis and treatment of SM-exposed patients.

  5. Free factor XIII activation peptide (fAP-FXIII) is a regulator of factor XIII activity via factor XIII-B.

    PubMed

    Dodt, Johannes; Pasternack, Ralf; Seitz, Rainer; Volkers, Peter

    2016-02-01

    In a factor XIIIa (FXIIIa) generation assay with recombinant FXIII-A2 (rFXIII-A2 ) free FXIII activation peptide (fAP-FXII) prolonged the time to peak (TTP) but did not affect the area under the curve (AUC) or concentration at peak (CP). Addition of recombinant factorXIII-B2 (rFXIII-B2 ) restored the characteristics of the FXIIIa generation parameters (AUC, TTP and CP) to those observed for plasma FXIII (FXIII-A2 B2 ). FXIII-A2 B2 reconstituted from rFXIII-A2 and rFXIII-B2 showed a similar effect on AUC, TTP and CP in the presence of fAP-FXII as observed for plasma FXIII-A2 B2 , indicating a role for FXIII-B in this observation. An effect of fAP-FXIII on thrombin, the proteolytic activator of FXIII, was excluded by thrombin generation assays and clotting experiments. In a purified system, fAP-FXIII did not interfere with the FXIIIa activity development of thrombin-cleaved rFXIII-A2 (rFXIII-A2 ') also excluding direct inhibition of FXIIIa. However, FXIIIa activity development of FXIII-A2 'B2 was inhibited in a concentration-dependent manner by fAP-FXIII, indicating that an interaction between AP-FXIII and FXIII-B2 contributes to the overall stability of FXIII-A2 'B2 . In addition to its well-known role, FXIII-B also contributes to FXIII-A2 B2 stability or dissociation depending on fAP-FXIII and calcium concentrations. © 2015 John Wiley & Sons Ltd.

  6. Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells

    PubMed Central

    Schmitz, Michael H. A.; Held, Michael; Janssens, Veerle; Hutchins, James R. A.; Hudecz, Otto; Ivanova, Elitsa; Goris, Jozef; Trinkle-Mulcahy, Laura; Lamond, Angus I.; Poser, Ina; Hyman, Anthony A.; Mechtler, Karl; Peters, Jan-Michael; Gerlich, Daniel W.

    2013-01-01

    When vertebrate cells exit mitosis various cellular structures are re-organized to build functional interphase cells1. This depends on Cdk1 (cyclin dependent kinase 1) inactivation and subsequent dephosphorylation of its substrates2–4. Members of the protein phosphatase 1 and 2A (PP1 and PP2A) families can dephosphorylate Cdk1 substrates in biochemical extracts during mitotic exit5,6, but how this relates to postmitotic reassembly of interphase structures in intact cells is not known. Here, we use a live-cell imaging assay and RNAi knockdown to screen a genome-wide library of protein phosphatases for mitotic exit functions in human cells. We identify a trimeric PP2A–B55α complex as a key factor in mitotic spindle breakdown and postmitotic reassembly of the nuclear envelope, Golgi apparatus and decondensed chromatin. Using a chemically induced mitotic exit assay, we find that PP2A–B55α functions downstream of Cdk1 inactivation. PP2A–B55α isolated from mitotic cells had reduced phosphatase activity towards the Cdk1 substrate, histone H1, and was hyper-phosphorylated on all subunits. Mitotic PP2A complexes co-purified with the nuclear transport factor importin-β1, and RNAi depletion of importin-β1 delayed mitotic exit synergistically with PP2A–B55α. This demonstrates that PP2A–B55α and importin-β1 cooperate in the regulation of postmitotic assembly mechanisms in human cells. PMID:20711181

  7. 76 FR 6792 - Federal Management Regulation; FMR Bulletin PBS-2011-B1; Redesignations of Federal Buildings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... Management Regulation; FMR Bulletin PBS-2011-B1; Redesignations of Federal Buildings AGENCY: Public Buildings... announces the redesignations of three Federal buildings. DATES: Expiration Date: This bulletin announcement expires June 30, 2011. The building redesignations remain in effect until canceled or superseded by...

  8. SHORT HYPOCOTYL1 Encodes a SMARCA3-Like Chromatin Remodeling Factor Regulating Elongation1[OPEN

    PubMed Central

    Bo, Kailiang; Behera, Tusar K.; Pandey, Sudhakar; Wen, Changlong; Wang, Yuhui; Simon, Philipp W.; Li, Yuhong

    2016-01-01

    In Arabidopsis (Arabidopsis thaliana), the UVR8-mediated signaling pathway is employed to attain UVB protection and acclimation to deal with low-dosage UVB (LDUVB)-induced stresses. Here, we identified SHORT HYPOCOTYL1 (SH1) in cucumber (Cucumis sativus), which regulates LDUVB-dependent hypocotyl elongation by modulating the UVR8 signaling pathway. We showed that hypocotyl elongation in cucumbers carrying the recessive sh1 allele was LDUVB insensitive and that Sh1 encoded a human SMARCA3-like chromatin remodeling factor. The allele frequency and distribution pattern at this locus among natural populations supported the wild cucumber origin of sh1 for local adaptation, which was under selection during domestication. The cultivated cucumber carries predominantly the Sh1 allele; the sh1 allele is nearly fixed in the semiwild Xishuangbanna cucumber, and the wild cucumber population is largely at Hardy-Weinberg equilibrium for the two alleles. The SH1 protein sequence was highly conserved among eukaryotic organisms, but its regulation of hypocotyl elongation in cucumber seems to be a novel function. While Sh1 expression was inhibited by LDUVB, its transcript abundance was highly correlated with hypocotyl elongation rate and the expression level of cell-elongation-related genes. Expression profiling of key regulators in the UVR8 signaling pathway revealed significant differential expression of CsHY5 between two near isogenic lines of Sh1. Sh1 and CsHY5 acted antagonistically at transcriptional level. A working model was proposed in which Sh1 regulates LDUVB-dependent hypocotyl elongation in cucumber through changing the chromatin states and thus the accessibility of CsHY5 in the UVR8 signaling pathway to promoters of LDUVB-responsive genes for hypocotyl elongation. PMID:27559036

  9. The Arrestin-selective Angiotensin AT1 Receptor Agonist [Sar1,Ile4,Ile8]-AngII Negatively Regulates Bradykinin B2 Receptor Signaling via AT1-B2 Receptor Heterodimers*

    PubMed Central

    Wilson, Parker C.; Lee, Mi-Hye; Appleton, Kathryn M.; El-Shewy, Hesham M.; Morinelli, Thomas A.; Peterson, Yuri K.; Luttrell, Louis M.; Jaffa, Ayad A.

    2013-01-01

    The renin-angiotensin and kallikrein-kinin systems are key regulators of vascular tone and inflammation. Angiotensin II, the principal effector of the renin-angiotensin system, promotes vasoconstriction by activating angiotensin AT1 receptors. The opposing effects of the kallikrein-kinin system are mediated by bradykinin acting on B1 and B2 bradykinin receptors. The renin-angiotensin and kallikrein-kinin systems engage in cross-talk at multiple levels, including the formation of AT1-B2 receptor heterodimers. In primary vascular smooth muscle cells, we find that the arrestin pathway-selective AT1 agonist, [Sar1,Ile4,Ile8]-AngII, but not the neutral AT1 antagonist, losartan, inhibits endogenous B2 receptor signaling. In a transfected HEK293 cell model that recapitulates this effect, we find that the actions of [Sar1,Ile4, Ile8]-AngII require the AT1 receptor and result from arrestin-dependent co-internalization of AT1-B2 heterodimers. BRET50 measurements indicate that AT1 and B2 receptors efficiently heterodimerize. In cells expressing both receptors, pretreatment with [Sar1,Ile4,Ile8]-AngII blunts B2 receptor activation of Gq/11-dependent intracellular calcium influx and Gi/o-dependent inhibition of adenylyl cyclase. In contrast, [Sar1,Ile4,Ile8]-AngII has no effect on B2 receptor ligand affinity or bradykinin-induced arrestin3 recruitment. Both radioligand binding assays and quantitative microscopy-based analysis demonstrate that [Sar1,Ile4,Ile8]-AngII promotes internalization of AT1-B2 heterodimers. Thus, [Sar1,Ile4,Ile8]-AngII exerts lateral allosteric modulation of B2 receptor signaling by binding to the orthosteric ligand binding site of the AT1 receptor and promoting co-sequestration of AT1-B2 heterodimers. Given the opposing roles of the renin-angiotensin and kallikrein-kinin systems in vivo, the distinct properties of arrestin pathway-selective and neutral AT1 receptor ligands may translate into different pharmacologic actions. PMID:23661707

  10. The arrestin-selective angiotensin AT1 receptor agonist [Sar1,Ile4,Ile8]-AngII negatively regulates bradykinin B2 receptor signaling via AT1-B2 receptor heterodimers.

    PubMed

    Wilson, Parker C; Lee, Mi-Hye; Appleton, Kathryn M; El-Shewy, Hesham M; Morinelli, Thomas A; Peterson, Yuri K; Luttrell, Louis M; Jaffa, Ayad A

    2013-06-28

    The renin-angiotensin and kallikrein-kinin systems are key regulators of vascular tone and inflammation. Angiotensin II, the principal effector of the renin-angiotensin system, promotes vasoconstriction by activating angiotensin AT1 receptors. The opposing effects of the kallikrein-kinin system are mediated by bradykinin acting on B1 and B2 bradykinin receptors. The renin-angiotensin and kallikrein-kinin systems engage in cross-talk at multiple levels, including the formation of AT1-B2 receptor heterodimers. In primary vascular smooth muscle cells, we find that the arrestin pathway-selective AT1 agonist, [Sar(1),Ile(4),Ile(8)]-AngII, but not the neutral AT1 antagonist, losartan, inhibits endogenous B2 receptor signaling. In a transfected HEK293 cell model that recapitulates this effect, we find that the actions of [Sar(1),Ile(4), Ile(8)]-AngII require the AT1 receptor and result from arrestin-dependent co-internalization of AT1-B2 heterodimers. BRET50 measurements indicate that AT1 and B2 receptors efficiently heterodimerize. In cells expressing both receptors, pretreatment with [Sar(1),Ile(4),Ile(8)]-AngII blunts B2 receptor activation of Gq/11-dependent intracellular calcium influx and Gi/o-dependent inhibition of adenylyl cyclase. In contrast, [Sar(1),Ile(4),Ile(8)]-AngII has no effect on B2 receptor ligand affinity or bradykinin-induced arrestin3 recruitment. Both radioligand binding assays and quantitative microscopy-based analysis demonstrate that [Sar(1),Ile(4),Ile(8)]-AngII promotes internalization of AT1-B2 heterodimers. Thus, [Sar(1),Ile(4),Ile(8)]-AngII exerts lateral allosteric modulation of B2 receptor signaling by binding to the orthosteric ligand binding site of the AT1 receptor and promoting co-sequestration of AT1-B2 heterodimers. Given the opposing roles of the renin-angiotensin and kallikrein-kinin systems in vivo, the distinct properties of arrestin pathway-selective and neutral AT1 receptor ligands may translate into different pharmacologic

  11. Identification and characterization of the BmCyclin L1-BmCDK11A/B complex in relation to cell cycle regulation.

    PubMed

    Liu, Tai-Hang; Wu, Yun-Fei; Dong, Xiao-Long; Pan, Cai-Xia; Du, Guo-Yu; Yang, Ji-Gui; Wang, Wei; Bao, Xi-Yan; Chen, Peng; Pan, Min-Hui; Lu, Cheng

    2017-05-03

    Cyclin proteins are the key regulatory and activity partner of cyclin-dependent kinases (CDKs), which play pivotal regulatory roles in cell cycle progression. In the present study, we identified a Cyclin L1 and 2 CDK11 2 CDK11 splice variants, CDK11A and CDK11B, from silkworm, Bombyx mori. We determined that both Cyclin L1 and CDK11A/B are nuclear proteins, and further investigations were conducted to elucidate their spatiofunctional features. Cyclin L1 forms a complex with CDK11A/B and were co-localized to the nucleus. Moreover, the dimerization of CDK11A and CDK11B and the effects of Cyclin L1 and CDK11A/B on cell cycle regulation were also investigated. Using overexpression or RNA interference experiments, we demonstrated that the abnormal expression of Cyclin L1 and CDK11A/B leads to cell cycle arrest and cell proliferation suppression. Together, these findings indicate that CDK11A/B interacts with Cyclin L1 to regulate the cell cycle.

  12. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice.

    PubMed

    Yamaji, Naoki; Huang, Chao Feng; Nagao, Sakiko; Yano, Masahiro; Sato, Yutaka; Nagamura, Yoshiaki; Ma, Jian Feng

    2009-10-01

    Aluminum (Al) toxicity is the major limiting factor of crop production on acid soils, but some plant species have evolved ways of detoxifying Al. Here, we report a C2H2-type zinc finger transcription factor ART1 (for Al resistance transcription factor 1), which specifically regulates the expression of genes related to Al tolerance in rice (Oryza sativa). ART1 is constitutively expressed in the root, and the expression level is not affected by Al treatment. ART1 is localized in the nucleus of all root cells. A yeast one-hybrid assay showed that ART1 has a transcriptional activation potential and interacts with the promoter region of STAR1, an important factor in rice Al tolerance. Microarray analysis revealed 31 downstream transcripts regulated by ART1, including STAR1 and 2 and a couple of homologs of Al tolerance genes in other plants. Some of these genes were implicated in both internal and external detoxification of Al at different cellular levels. Our findings shed light on comprehensively understanding how plants detoxify aluminum to survive in an acidic environment.

  13. [Isolation and function of genes regulating aphB expression in Vibrio cholerae].

    PubMed

    Chen, Haili; Zhu, Zhaoqin; Zhong, Zengtao; Zhu, Jun; Kan, Biao

    2012-02-04

    We identified genes that regulate the expression of aphB, the gene encoding a key virulence regulator in Vibrio cholerae O1 E1 Tor C6706(-). We constructed a transposon library in V. cholerae C6706 strain containing a P(aphB)-luxCDABE and P(aphB)-lacZ transcriptional reporter plasmids. Using a chemiluminescence imager system, we rapidly detected aphB promoter expression level at a large scale. We then sequenced the transposon insertion sites by arbitrary PCR and sequencing analysis. We obtained two candidate mutants T1 and T2 which displayed reduced aphB expression from approximately 40,000 transposon insertion mutants. Sequencing analysis shows that Tn inserted in vc1585 reading frame in the T1 mutant and Tn inserted in the end of coding sequence of vc1602 in the T2 mutant. By using a genetic screen, we identified two potential genes that may involve in regulation of the expression of the key virulence regulator AphB. This study sheds light on our further investigation to fully understand V. cholerae virulence gene regulatory cascades.

  14. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway.

    PubMed

    Wang, Hao; Sun, Xiaoxu; Zhang, Ning; Ji, Zhouye; Ma, Zhanqiang; Fu, Qiang; Qu, Rong; Ma, Shiping

    2017-12-01

    Cognitive impairment has been recognized as a typical characteristic of neurodegenerative disease in diabetes mellitus (DM) and this cognitive dysfunction may be a risk factor for Alzheimer's disease (AD). Ferulic acid, a phenolic compound commonly found in a range of plants, has emerged various properties including anti-inflammatory and neuroprotective effects. In the present study, the protective activities and relevant mechanisms of ferulic acid were evaluated in diabetic rats with cognitive deficits, which were induced by a high-glucose-fat (HGF) diet and low dose of streptozotocin (STZ). It was observed that ferulic acid significantly increased body weight and decreased blood glucose levels. Meanwhile, ferulic acid could markedly ameliorate spatial memory of diabetic rats in Morris water maze (MWM) and decrease AD-like pathologic changes (Aβ deposition and Tau phosphorylation) in the hippocampus, which might be correlated with the inhibition of inflammatory cytokines release and reduction of protein tyrosine phosphatase 1B (PTP1B) expression. Moreover, the levels of brain insulin signal molecules p-IRS, p-Akt and p-GSK3β were also investigated. We found that ferulic acid administration restored the alterations in insulin signaling. In conclusion, ferulic acid exhibited beneficial effects on diabetes-induced cognition lesions, which was involved in the regulation of PTP1B and insulin signaling pathway. We suppose that PTP1B inhibition may represent a promising approach to correct abnormal signaling linked to diabetes-induced cognitive impairment. Copyright © 2017. Published by Elsevier Inc.

  15. Role of PTP1B in POMC neurons during chronic high-fat diet: sex differences in regulation of liver lipids and glucose tolerance.

    PubMed

    Aberdein, Nicola; Dambrino, Robert J; do Carmo, Jussara M; Wang, Zhen; Mitchell, Laura E; Drummond, Heather A; Hall, John E

    2018-03-01

    Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of leptin receptor signaling and may contribute to leptin resistance in diet-induced obesity. Although PTP1B inhibition has been suggested as a potential weight loss therapy, the role of specific neuronal PTP1B signaling in cardiovascular and metabolic regulation and the importance of sex differences in this regulation are still unclear. In this study, we investigated the impact of proopiomelanocortin (POMC) neuronal PTP1B deficiency in cardiometabolic regulation in male and female mice fed a high-fat diet (HFD). When compared with control mice (PTP1B flox/flox ), male and female mice deficient in POMC neuronal PTP1B (PTP1B flox/flox /POMC-Cre) had attenuated body weight gain (males: -18%; females: -16%) and fat mass (males: -33%; female: -29%) in response to HFD. Glucose tolerance was improved by 40%, and liver lipid accumulation was reduced by 40% in PTP1B/POMC-Cre males but not in females. When compared with control mice, deficiency of POMC neuronal PTP1B did not alter mean arterial pressure (MAP) in male or female mice (males: 112 ± 1 vs. 112 ± 1 mmHg in controls; females: 106 ± 3 vs. 109 ± 3 mmHg in controls). Deficiency of POMC neuronal PTP1B also did not alter MAP response to acute stress in males or females compared with control mice (males: Δ32 ± 0 vs. Δ29 ± 4 mmHg; females: Δ22 ± 2 vs. Δ27 ± 4 mmHg). These data demonstrate that POMC-specific PTP1B deficiency improved glucose tolerance and attenuated diet-induced fatty liver only in male mice and attenuated weight gain in males and females but did not enhance the MAP and HR responses to a HFD or to acute stress.

  16. To NFκB or not to NFκB: The Dilemma on How to Inhibit a Cancer Cell Fate Regulator

    PubMed Central

    Sorriento, Daniela; Illario, Maddalena; Finelli, Rosa; Iaccarino, Guido

    2012-01-01

    Nuclear factor κB (NFκB) is a transcription factor that plays an important role in carcinogenesis as well as in the regulation of inflammatory response. NFκB is constitutively expressed in tumours where it induces the expression of genes which promote cell proliferation, apoptotic events, angiogenesis, invasion and metastasis. Furthermore, many cancer cells show aberrant or constitutive NFκB activation that mediates resistance to chemo- and radio-therapy. Therefore, the inhibition of NFκB activity appears a potential therapeutic strategy for cancer treatment. In this review, we focus on the role of NFκB in carcinogenesis and summarize actual inhibitors of NFκB that could be potential therapeutic target in cancer therapy. PMID:23905066

  17. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple.

    PubMed

    An, Jian-Ping; Qu, Feng-Jia; Yao, Ji-Fang; Wang, Xiao-Na; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-01-01

    The basic leucine zipper (bZIP) transcription factor HY5 plays a multifaceted role in plant growth and development. Here the apple MdHY5 gene was cloned based on its homology with Arabidopsis HY5 . Expression analysis demonstrated that MdHY5 transcription was induced by light and abscisic acid treatments. Electrophoretic mobility shift assays and transient expression assays subsequently showed that MdHY5 positively regulated both its own transcription and that of MdMYB10 by binding to E-box and G-box motifs, respectively. Furthermore, we obtained transgenic apple calli that overexpressed the MdHY5 gene, and apple calli coloration assays showed that MdHY5 promoted anthocyanin accumulation by regulating expression of the MdMYB10 gene and downstream anthocyanin biosynthesis genes. In addition, the transcript levels of a series of nitrate reductase genes and nitrate uptake genes in both wild-type and transgenic apple calli were detected. In association with increased nitrate reductase activities and nitrate contents, the results indicated that MdHY5 might be an important regulator in nutrient assimilation. Taken together, these results indicate that MdHY5 plays a vital role in anthocyanin accumulation and nitrate assimilation in apple.

  18. Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression

    PubMed Central

    Rao, Jasti S.

    2013-01-01

    Cancer-initiating cells comprise a heterogeneous population of undifferentiated cells with the capacity for self-renewal and high proliferative potential. We investigated the role of uPAR and cathepsin B in the maintenance of stem cell nature in glioma-initiating cells (GICs). Simultaneous knockdown of uPAR and cathepsin B significantly reduced the expression of CD133, Nestin, Sox2 and Bmi1 at the protein level and GLI1 and GLI2 at the messenger RNA level. Also, knockdown of uPAR and cathepsin B resulted in a reduction in the number of GICs as well as sphere size. These changes are mediated by Sox2 and Bmi1, downstream of hedgehog signaling. Addition of cyclopamine reduced the expression of Sox2 and Bmi1 along with GLI1 and GLI2 expression, induced differentiation and reduced subsphere formation of GICs thereby indicating that hedgehog signaling acts upstream of Sox2 and Bmi1. Further confirmation was obtained from increased luciferase expression under the control of a GLI-bound Sox2 and Bmi1 luciferase promoter. Simultaneous knockdown of uPAR and cathepsin B also reduced the expression of Nestin Sox2 and Bmi1 in vivo. Thus, our study highlights the importance of uPAR and cathepsin B in the regulation of malignant stem cell self-renewal through hedgehog components, Bmi1 and Sox2. PMID:23222817

  19. PBP1a/LpoA but Not PBP1b/LpoB Are Involved in Regulation of the Major β-Lactamase Gene blaA in Shewanella oneidensis

    PubMed Central

    Yin, Jianhua; Sun, Yiyang; Mao, Yinting; Jin, Miao

    2015-01-01

    β-Lactamase production is one of the most important strategies for Gram-negative bacteria to combat β-lactam antibiotics. Studies of the regulation of β-lactamase expression have largely been focused on the class C β-lactamase AmpC, whose induction by β-lactams requires LysR-type regulator AmpR and permease AmpG-dependent peptidoglycan recycling intermediates. In Shewanella, which is ubiquitous in aquatic environments and is a reservoir for antibiotic resistance, production of the class D β-lactamase BlaA confers bacteria with natural resistance to many β-lactams. Expression of the blaA gene in the genus representative Shewanella oneidensis is distinct from the AmpC paradigm because of the lack of an AmpR homologue and the presence of an additional AmpG-independent regulatory pathway. In this study, using transposon mutagenesis, we identify proteins that are involved in blaA regulation. Inactivation of mrcA and lpoA, which encode penicillin binding protein 1a (PBP1a) and its lipoprotein cofactor, LpoA, respectively, drastically enhances blaA expression in the absence of β-lactams. Although PBP1b and its cognate, LpoB, also exist in S. oneidensis, their roles in blaA induction are dispensable. We further show that the mrcA-mediated blaA expression is independent of AmpG. PMID:25824223

  20. (-)-7(S)-hydroxymatairesinol protects against tumor necrosis factor-α-mediated inflammation response in endothelial cells by blocking the MAPK/NF-κB and activating Nrf2/HO-1.

    PubMed

    Yang, Di; Xiao, Chen-Xi; Su, Zheng-Hua; Huang, Meng-Wei; Qin, Ming; Wu, Wei-Jun; Jia, Wan-Wan; Zhu, Yi-Zhun; Hu, Jin-Feng; Liu, Xin-Hua

    2017-08-15

    Endothelial inflammation is an increasingly prevalent condition in the pathogenesis of many cardiovascular diseases. (-)-7(S)-hydroxymatairesinol (7-HMR), a naturally occurring plant lignan, possesses both antioxidant and anti-cancer properties and therefore would be a good strategy to suppress tumor necrosis factor-α (TNF-α)-mediated inflammation in vascular endothelial cells (VECs). The objective of this study is to evaluate for its anti-inflammatory effect on TNF-α-stimulated VECs and underling mechanisms. The effect of the 7-HMR on suppression of TNF-α-induced inflammation mediators in VECs were determined by qRT-PCR and Western blot. MAPKs and phosphorylation of Akt, HO-1 and NF-κB p65 were examined using Western blot. Nuclear localisation of NF-κB was also examined using Western blot and immunofluorescence. Here we found that 7-HMR could suppress TNF-α-induced inflammatory mediators, such as vascularcelladhesion molecule-1, interleukin-6 and inducible nitric oxide synthase expression both in mRNA and protein levels, and concentration-dependently attenuated reactive oxidase species generation. We further identified that 7-HMR remarkably induced superoxide dismutase and heme oxygenase-1 expression associated with degradation of Kelch-like ECH-associated protein 1 (keap1) and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, 7-HMR time- and concentration-dependently attenuated TNF-α-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) and Akt, but not p38, or c-Jun N-terminal kinase 1/2. Moreover, 7-HMR significantly suppressed TNF-α-mediated nuclear factor-κB (NF-κB) activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. Our results demonstrated that 7-HMR inhibited TNF-α-stimulated endothelial inflammation, at least in part, through inhibition of NF-κB activation and upregulation of Nrf2-antioxidant response element signaling pathway, suggesting 7-HMR might be used as a