Sample records for factor mitf tyrosinase

  1. [Mechanism for synergistic effect of IRF4 and MITF on tyrosinase promoter].

    PubMed

    Song, Jian; Liu, Xueming; Li, Jiada; Liu, Huadie; Peng, Zhen; Chen, Hongsheng; Mei, Lingyun; He, Chufeng; Feng, Yong

    2018-05-28

    To investigate the mechanism for the synergistic effect of interferon regulatory factor 4 (IRF4) and microphthalmia-associated transcription factor (MITF) on tyrosinase (TYR) promoter.
 Methods: The synergistic transcriptional effect, subcellular localization, and protein-protein interaction for IRF4 and MITF were observed by luciferase assay, immunofluorescence, GST-pull down, and co-immunoprecipitation, respectively.
 Results: IRF4 and MITF proteins were co-expressed in the cell nucleus. IRF4 augmented the transcriptional function of MITF (but not the mutant MITF) to activate the expression of the TYR promoter, but with no effect on other MITF-specific target promoters. IRF4 alone did not affect TYR promoter significantly. No direct interaction between the two proteins was noted.
 Conclusion: IRF4 and MITF exert a specifically synergistic effect on activation of TYR promoter through IRF4-mediated upregulation of transcriptional function of MITF. This synergistic effect is mainly regulated by MITF; DNA might be involved in the interaction between the two proteins.

  2. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway.

    PubMed

    Chiang, Hsiu-Mei; Chien, Yin-Chih; Wu, Chieh-Hsi; Kuo, Yueh-Hsiung; Wu, Wan-Chen; Pan, Yu-Yun; Su, Yu-Han; Wen, Kuo-Ching

    2014-03-01

    We investigated the effects of an aqueous alcohol extract of Rhodiola rosea (R. rosea) and its hydrolysate on melanin synthesis and the mechanisms mediating the activity. The ratio of tyrosol to salidroside was 2.3 in hydroalcoholic extract, and 51.0 in hydrolysate. We found that R. rosea extract and its hydrolysate inhibited melanin synthesis and tyrosinase activity in mouse melanoma cells (B16F0 cells). R. rosea extract also inhibited gene and protein expression of melanocortin 1 receptor (MC1R) and inhibited c-AMP response element binding protein (CREB) phosphorylation, suppressed the activation of AKT and glycogen synthase kinase-3 beta (GSK3β), and inhibited the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related protein 1 (TRP-1). R. rosea hydrolysate inhibited the phosphorylation of CREB, the activation of AKT and GSK3β, and the expression of MITF and tyrosinase. Our results suggest that R. rosea extract is a novel tyrosinase inhibitor and that it exerts its effects by regulating the CREB/MITF/tyrosinase pathway in B16F0. Further in vivo studies are needed to determine the effectiveness of R. rosea extract as a skin whitening agent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF) Expression

    PubMed Central

    Lee, Shu-Mei; Chen, Yi-Shyan; Lin, Chih-Chien; Chen, Kuan-Hung

    2015-01-01

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future. PMID:25584612

  4. Agmatine modulates melanogenesis via MITF signaling pathway.

    PubMed

    Kwon, Eun-Jeong; Kim, Moon-Moo

    2017-01-01

    Agmatine contained in soybean is also found in Manaca, an anti-aging plant, inhabited in Amazon and induces vasodilation by the promotion of NO synthesis in blood vessel. However, the research of agmatine on melanin synthesis related to hair greying is lacking. The aim of this study was to investigate the melanogenic effect of agmatine via regulation of MITF signaling pathway in B16F1 cells. It was determined whether agmatine regulates melanin synthesis at cellular level in addition to the effect of agmatine on mushroom tyrosinase in vitro in the presence of different concentrations of agmatine. Furthermore, the effect of agmatine on the protein expressions of tyrosinase, TRP-1, TRP-2, BMP-4, BMP-6, C-KIT, p-p38, MITF and C-FOS were examined by western blot analysis. In addition, immunofluorescence staining was carried out to visualize the location of MITF expression in cell. Agmatine at 256μM or more increased melanin synthesis as well as tyrosinase activity. Moreover, whereas agmatine increased the expression levels of TRP-1, BMP-6, p-p38 and MITF, it reduced the expression level of BMP-4. It was also found that agmatine enhanced the expression level of MITF in nucleus. These results suggest that agmatine could induce melanin synthesis though the regulation of MITF transcription factor via BMP-6/p38 signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Disulfanyl peptide decreases melanin synthesis via receptor-mediated ERK activation and the subsequent downregulation of MITF and tyrosinase.

    PubMed

    Choi, H-R; Kang, Y-A; Lee, H-S; Park, K-C

    2016-06-01

    Bioactive peptides are commonly used in cosmeceutical purpose. This study was performed to search for an effective and short hypopigmenting peptide using normal human melanocytes as a screening model. A peptide that exhibits multitarget activities will be a promising peptide. Depigmenting effects were tested in normal human melanocytes. One peptide was selected, and signalling mechanism was investigated by Western blotting and immunofluorescent microscopic examination. A novel hypopigmenting peptide (dSHP) has been found to inhibit the production of melanin. This peptide significantly decreases tyrosinase activity but was not effective in a direct in vitro assay. It also induces the prolonged activation of ERK, and subsequently downregulates the levels of MITF. PD98059 abolished the dSHP-induced downregulation of MITF. These findings indicate that the dSHP-induced activation of ERK contributes to a reduced melanin synthesis via the downregulation of MITF. Fluorescent microscopic studies were consistent with such findings. Pertussis toxin reverses the downregulation of MITF, which means that the receptor-mediated ERK activation is involved. Moreover, it was also found that downregulation of MITF was clearly inhibited by lysosomal inhibitor (chloroquine). Novel tetrapeptide dSHP reduces the melanin synthesis by a receptor-mediated pathway. Furthermore, dSHP works by ERK activation and key transcription factor MITF degradation. Thus, it may be a good candidate as an effective hypopigmenting cosmetic agent. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance.

    PubMed

    Takeda, K; Takemoto, C; Kobayashi, I; Watanabe, A; Nobukuni, Y; Fisher, D E; Tachibana, M

    2000-01-01

    MITF (microphthalmia-associated transcription factor) is a basic-helix-loop-helix-leucine zipper (bHLHZip) factor which regulates expression of tyrosinase and other melanocytic genes via a CATGTG promoter sequence, and is involved in melanocyte differentiation. Mutations of MITF in mice or humans with Waardenburg syndrome type 2 (WS2) often severely disrupt the bHLHZip domain, suggesting the importance of this structure. Here, we show that Ser298, which locates downstream of the bHLHZip and was previously found to be mutated in individuals with WS2, plays an important role in MITF function. Glycogen synthase kinase 3 (GSK3) was found to phosphorylate Ser298 in vitro, thereby enhancing the binding of MITF to the tyrosinase promoter. The same serine was found to be phosphorylated in vivo, and expression of dominant-negative GSK3beta selectively suppressed the ability of MITF to transactivate the tyrosinase promoter. Moreover, mutation of Ser298, as found in a WS2 family, disabled phos-phorylation of MITF by GSK3beta and impaired MITF function. These findings suggest that the Ser298 is important for MITF function and is phosphorylated probably by GSK3beta.

  7. [6]-Shogaol inhibits α-MSH-induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated MITF degradation.

    PubMed

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation.

  8. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression.

    PubMed

    Kim, Hyo Jung; Kim, Il Soon; Dong, Yin; Lee, Ik-Soo; Kim, Jin Sook; Kim, Jong-Sang; Woo, Je-Tae; Cha, Byung-Yoon

    2015-04-20

    The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP) 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF) after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.

  9. Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16 F10 melanoma.

    PubMed

    Kim, Sang Suk; Kim, Min-Jin; Choi, Young Hun; Kim, Byung Kok; Kim, Kwang Sik; Park, Kyung Jin; Park, Suk Man; Lee, Nam Ho; Hyun, Chang-Gu

    2013-08-01

    To investigate the suitability of citrus-press cakes, by-products of the juice industry as a source for the whitening agents for cosmetic industry. Ethylacetate extracts of citrus-press cakes (CCE) were examined for their anti-melanogenic potentials in terms of the inhibition of melanin production and mechanisim of melanogenesis by using Western Blot analysis with tyrosinese, tyrosinase-related protein-1 (TRP-1), TRP2, and microphthalmia-associated transcription factor (MITF) proteins. To apply the topical agents, citrus-press cakes was investigated the safety in human skin cell line. Finally flavonoid analysis of CCE was also determined by HPLC analysis. Results indicated that CCE were shown to down-regulate melanin content in a dose-dependent pattern. The CCE inhibited tyrosinase, TRP-2, and MITF expressions in a dose-dependent manner. To test the applicability of CCE to human skin, we used MTT assay to assess the cytotoxic effects of CCE on human keratinocyte HaCaT cells. The CCE exhibited low cytotoxicity at 50 µg/mL. Characterization of the citrus-press cakes for flavonoid contents using HPLC showed varied quantity of rutin, narirutin, and hesperidin. Considering the anti-melanogenic activity and human safety, CCE is considered as a potential anti-melanogenic agent and may be effective for topical application for treating hyperpigmentation disorders.

  10. [6]-Shogaol Inhibits α-MSH-Induced Melanogenesis through the Acceleration of ERK and PI3K/Akt-Mediated MITF Degradation

    PubMed Central

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation. PMID:25045707

  11. N-(4-bromophenethyl) Caffeamide Inhibits Melanogenesis by Regulating AKT/Glycogen Synthase Kinase 3 Beta/Microphthalmia-associated Transcription Factor and Tyrosinase-related Protein 1/Tyrosinase.

    PubMed

    Kuo, Yueh-Hsiung; Chen, Chien-Chia; Lin, Ping; You, Ya-Jhen; Chiang, Hsiu-Mei

    2015-01-01

    Skin color is primarily produced by melanin, which is a crucial pigment that protects the skin from UV-induced damage and prevents carcinogenesis. However, accumulated melanin in the skin may cause hyperpigmentation and related disorders. Melanin synthesis comprises consecutive oxidative reactions, and tyrosinase is the enzyme that catalyzes the rate-limiting process of melanogenesis. In this study, tyrosinase-related protein 1 (TRP-1) and TRP-2 contributed to melanin formation. N-(4-bromophenethyl) caffeamide ((E)-N-(4-bromophenethyl)-3-(3,4-dihydroxyphenyl)acrylamide; K36H), a caffeic acid phenyl amide derivative, inhibited α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity in B16F0 cells. In addition, K36H reduced the protein expression of the phospho-cAMP response element binding protein (p-CREB), microphthalmia-associated transcription factor (MITF), tyrosinase, and TRP-1. Moreover, K36H promoted AKT and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, thereby inhibiting MITF transcription activity. Thus, K36H attenuated α-MSH-induced cAMP pathways, contributing to hypopigmentation. The results of a safety assay revealed that K36H did not exhibit cytotoxicity or irritate the skin or eyes. According to these results, K36H may have the potential to be used as a whitening agent in the cosmetic and pharmaceutical industries.

  12. Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16 F10 melanoma

    PubMed Central

    Kim, Sang Suk; Kim, Min-Jin; Choi, Young Hun; Kim, Byung Kok; Kim, Kwang Sik; Park, Kyung Jin; Park, Suk Man; Lee, Nam Ho; Hyun, Chang-Gu

    2013-01-01

    Objective To investigate the suitability of citrus-press cakes, by-products of the juice industry as a source for the whitening agents for cosmetic industry. Methods Ethylacetate extracts of citrus-press cakes (CCE) were examined for their anti-melanogenic potentials in terms of the inhibition of melanin production and mechanisim of melanogenesis by using Western Blot analysis with tyrosinese, tyrosinase-related protein-1 (TRP-1), TRP2, and microphthalmia-associated transcription factor (MITF) proteins. To apply the topical agents, citrus-press cakes was investigated the safety in human skin cell line. Finally flavonoid analysis of CCE was also determined by HPLC analysis. Results Results indicated that CCE were shown to down-regulate melanin content in a dose-dependent pattern. The CCE inhibited tyrosinase, TRP-2, and MITF expressions in a dose-dependent manner. To test the applicability of CCE to human skin, we used MTT assay to assess the cytotoxic effects of CCE on human keratinocyte HaCaT cells. The CCE exhibited low cytotoxicity at 50 µg/mL. Characterization of the citrus-press cakes for flavonoid contents using HPLC showed varied quantity of rutin, narirutin, and hesperidin. Conclusions Considering the anti-melanogenic activity and human safety, CCE is considered as a potential anti-melanogenic agent and may be effective for topical application for treating hyperpigmentation disorders. PMID:23905018

  13. Phytol suppresses melanogenesis through proteasomal degradation of MITF via the ROS-ERK signaling pathway.

    PubMed

    Ko, Gyeong-A; Cho, Somi Kim

    2018-04-25

    Phytol (3,7,11,15-tetramethyl-2-hexadecen-1-ol) is an acyclic monounsaturated diterpene alcohol generated from chlorophyll metabolism that exerts anti-inflammatory, antithrombotic, antimicrobial, and antitumor effects. However, the effect of phytol on melanogenesis and the underlying molecular mechanisms of its inhibition remain unknown. Here, we found that phytol suppressed α-melanocyte-stimulating hormone-induced melanogenesis in B16F10 murine melanoma cells without any toxic effects. Phytol significantly attenuated melanin production by reducing the expression of tyrosinase and tyrosinase related protein 1. Treatment with phytol inhibited the expression of microphthalmia-associated transcription factor (MITF) by phosphorylating extracellular signal-regulated protein kinase (ERK). The ERK inhibitor PD98059 restored MITF expression and prevented the anti-melanogenic effect of phytol. We found that the ERK inhibitor coincidently abrogated MITF ubiquitination and degradation, suggesting that the ERK pathway is involved in phytol-induced ubiquitination of MITF. Furthermore, our data show that reactive oxygen species (ROS) production was increased in cells treated with phytol. Consistently, a ROS scavenger inhibited ERK phosphorylation and restored MITF degradation. Accordingly, the intermediary role of ROS was confirmed in phytol-induced MITF degradation. Taken together, these results demonstrate that phytol stimulates ROS production and modulates ERK-mediated proteasomal degradation of MITF in B16F10 murine melanoma cells. These findings suggest that phytol may have potential to be utilized as a whitening agent in cosmetics and as a therapy for skin hyperpigmentation. Copyright © 2018. Published by Elsevier B.V.

  14. Hypopigmentary action of dihydropyranocoumarin D2, a decursin derivative, as a MITF-degrading agent.

    PubMed

    Kim, Dong-Seok; Park, So-Hee; Lee, Hyun-Kyung; Choo, Soo-Jin; Lee, Jee Hyun; Song, Gyu Yong; Yoo, Ick-Dong; Kwon, Sun-Bang; Na, Jung-Im; Park, Kyoung-Chan

    2010-05-28

    In this study, the decursin derivative dihydropyranocoumarin D2 (1) was selected for its effects on melanogenesis using a spontaneously immortalized mouse melanocyte cell line (Mel-Ab). The results showed that 1 effectively inhibited melanin synthesis in a concentration-dependent manner, but that it did not inhibit tyrosinase in a cell-free system. In addition, the changes in ERK, Akt, and microphthalmia-associated transcription factor (MITF) in response to treatment with 1 were assessed. The results revealed that ERK was dramatically up-regulated and MITF was down-regulated in response to treatment with 1, but that Akt was unchanged. Therefore, the effects of 1 on melanogenesis were examined in the absence or presence of PD98059 (a specific inhibitor of the ERK pathway). PD98059 restored hypopigmentation and the down-regulation of MITF induced by 1. Finally, MITF down-regulation by 1 was clearly restored by both chloroquine, a lysosomal proteolysis inhibitor, and MG132, a proteasome inhibitor.

  15. FGF21 regulates melanogenesis in alpaca melanocytes via ERK1/2-mediated MITF downregulation.

    PubMed

    Wang, Ruiwei; Chen, Tianzhi; Zhao, Bingling; Fan, Ruiwen; Ji, Kaiyuan; Yu, Xiuju; Wang, Xianjun; Dong, Changsheng

    2017-08-19

    Fibroblast growth factor 21 (FGF21) is known as a metabolic regulator to regulate the metabolism of glucose and lipids. However, the underlying mechanism of FGF21 on melanin synthesis remains unknown. Therefore, the current study investigates the effect of FGF21 on melanogenesis in alpaca melanocytes. We transfected the FGF21 into alpaca melanocytes, then detected the melanin contents, protein and mRNA levels of pigmentation-related genes in order to determine the melanogenesis-regulating pathway of FGF21. The results showed that FGF21 overexpression suppressed melanogenesis and decreased the expression of the major target genes termed microphthalmia-associated transcription factor (MITF) and its downstream genes, including tyrosinase (TYR) and tyrosinase-related protein 2 (TRP2). However FGF21 increased the expression of phospho-extracellular signal-regulated kinase (p-Erk1/2). In contrast, FGF21-siRNA, a small interference RNA mediating FGF21 silencing, abolished the inhibition of melanogenesis. Altogether, FGF21 may decrease melanogenesis in alpaca melanocytes via ERK activation and subsequent MITF downregulation, which is then followed by the suppression of melanogenic enzymes and melanin production. Copyright © 2017. Published by Elsevier Inc.

  16. [Mutation screening of MITF gene in patients with Waardenburg syndrome type 2].

    PubMed

    Chen, Jing; Yang, Shu-Zhi; Liu, Jun; Han, Bing; Wang, Guo-Jian; Zhang, Xin; Kang, Dong-Yang; Dai, Pu; Young, Wie-Yen; Yuan, Hui-Jun

    2008-04-01

    Warrgenburg syndrome type 2 (WS2) is the most common autosomal dominantly-inherited syndrome with hearing loss. MITF (microphthalmia associated transcription factor)is a basic-helix-loop-helix-luecine zipper (bHLHZip) factor which regulates expression of tyrosinase, and is involved in melanocyte differentiation. Mutations in MITF associated with WS2 have been identified in some but not all affected families. Here, we report a three-generation Chinese family with a point mutation in the MITF gene causing WS2. The proband exhibits congenital severe sensorineural hearing loss, heterochromia iridis and facial freckles. One of family members manifests sensorineural deafness, and the other patients show premature greying or/and freckles. This mutation, heterozygous deletion c.639delA, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking normal interaction with its target DNA motif. This mutation is a novel mutation and the third case identified in exon 7 of MITF in WS2. Though there is only one base pair distance between this novel mutation and the other two documented cases and similar amino acids change, significant difference is seen in clinical phenotype, which suggests genetic background may play an important role.

  17. Liver X receptor activation inhibits melanogenesis through the acceleration of ERK-mediated MITF degradation.

    PubMed

    Lee, Chang Seok; Park, Miyoung; Han, Jiwon; Lee, Ji-Hae; Bae, Il-Hong; Choi, Hyunjung; Son, Eui Dong; Park, Young-Ho; Lim, Kyung-Min

    2013-04-01

    Liver X receptors (LXRs) are nuclear receptors that act as ligand-activated transcription factors regulating lipid metabolism and inflammation. In the skin, activation of LXRs stimulates differentiation of keratinocytes and augments lipid synthesis in sebocytes. However, the function of LXRs in melanocytes remains largely unknown. We investigated whether LXR activation would affect melanogenesis. In human primary melanocytes, MNT-1, and B16 melanoma cells, TO901317, a synthetic LXR ligand, inhibited melanogenesis. Small interfering RNA (siRNA) experiments revealed the dominant role of LXRβ in TO901317-mediated antimelanogenesis. Enzymatic activities of tyrosinase were unaffected, but the expression of tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2 was suppressed by TO901317. Expressions of microphthalmia-associated transcription factor (MITF), a master transcriptional regulator of melanogenesis, and cAMP-responsive element-binding activation were not affected. It is noteworthy that the degradation of MITF was accelerated by TO901317. Extracellular signal-regulated kinase (ERK) contributed to TO901317-induced antimelanogenesis, which was evidenced by recovery of melanogenesis with ERK inhibitor. Other LXR ligands, 22(R)-hydroxycholesterol (22(R)HC) and GW3965, also activated ERK and suppressed melanogenesis. The intermediary role of Ras was confirmed in TO901317-induced ERK phosphorylation. Finally, antimelanogenic effects of TO901317 were confirmed in vivo in UVB-tanning model in brown guinea pigs, providing a previously unreported line of evidence that LXRs may be important targets for antimelanogenesis.

  18. TGF-β Negatively Regulates Mitf-E Expression and Canine Osteoclastogenesis.

    PubMed

    Asai, Kumiko; Hisasue, Masaharu; Shimokawa, Fumie; Funaba, Masayuki; Murakami, Masaru

    2018-04-21

    With longevity, the prevalence of osteoporosis, which occurs when the activity of osteoclast surpasses that of osteoblasts, has increased in dogs. However, limited information is available on canine osteoclastogenesis. We herein described culture conditions to induce osteoclasts from canine bone marrow cells, and identified factors affecting canine osteoclastogenesis. Tartrate-resistant acid phosphatase-positive multinucleated cells were efficiently formed in a culture of bone marrow mononuclear cells with macrophage colony-stimulating factor (M-CSF 25 ng/mL) for 3 days and a subsequent culture in the presence of M-CSF (25 ng/mL) and soluble receptor activator of NF-κB ligand (RANKL 50 ng/mL) for 4 days. We previously reported in a murine cell system that gene induction of the E isoform of microphthalmia-associated transcription factor (Mitf-E) was required and sufficient for osteoclastogenesis, while transforming growth factor-β (TGF-β) enhanced RANKL-induced Mitf-E expression and osteoclastogenesis. Mitf-E expression also increased during RANKL-induced osteoclastogenesis in canine cells; however, TGF-β down-regulated Mitf-E expression and osteoclastogenesis, indicating a species-dependent response. The results of the present study show that, consistent with murine cells, M-CSF and soluble RANKL enable canine bone marrow cells to differentiate into osteoclasts, and Mitf-E expression is induced during osteoclastogenesis. However, the role of TGF-β in osteoclast formation is distinct between murine and canine cells, suggesting the necessity of analyses using canine cells to examine the factors affecting canine osteoclastogenesis.

  19. Lactoferrin inhibits melanogenesis by down-regulating MITF in melanoma cells and normal melanocytes.

    PubMed

    Ishii, Nanase; Ryu, Mizuyuki; Suzuki, Yasushi A

    2017-02-01

    The aim of this study was to evaluate the effect of bovine lactoferrin (bLf) on melanin-producing cells and to elucidate its mechanism of action. We tested the anti-melanogenic effect of bLf on a 3-dimensional cultured pigmentation skin model and confirmed a 20% reduction in pigmentation, suggesting that bLf was transdermally absorbed and it suppressed melanin production. Treatment of human melanoma cells with bLf resulted in a significant, dose-dependent suppression of melanin production. Apo-bLf and holo-bLf suppressed melanogenesis to the same degree as bLf. The key feature behind this anti-melanogenic effect of bLf was the down-regulation of the microphthalmia-associated transcription factor (MITF), leading to the suppression of tyrosinase activity. Treatment with bLf resulted in both decreased expression of MITF mRNA and enhanced degradation of MITF protein. However, the primary effector was enhanced phosphorylation of extracellular signal-regulated kinase (ERK), leading to the phosphorylation and degradation of MITF. Our finding that bLf suppresses melanin production in melanocytes indicates that bLf is a possible candidate for application as a skin-whitening agent.

  20. Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.

    PubMed

    Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne

    2010-10-01

    We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.

  1. Antimelanogenic effect of c-phycocyanin through modulation of tyrosinase expression by upregulation of ERK and downregulation of p38 MAPK signaling pathways

    PubMed Central

    2011-01-01

    Background Pigmentation is one of the essential defense mechanisms against oxidative stress or UV irradiation; however, abnormal hyperpigmentation in human skin may pose a serious aesthetic problem. C-phycocyanin (Cpc) is a phycobiliprotein from spirulina and functions as an antioxidant and a light harvesting protein. Though it is known that spirulina has been used to reduce hyperpigmentation, little literature addresses the antimelanogenic mechanism of Cpc. Herein, we investigated the rationale for the Cpc-induced inhibitory mechanism on melanin synthesis in B16F10 melanoma cells. Methods Cpc-induced inhibitory effects on melanin synthesis and tyrosinase expression were evaluated. The activity of MAPK pathways-associated molecules such as MAPK/ERK and p38 MAPK, were also examined to explore Cpc-induced antimelanogenic mechanisms. Additionally, the intracellular localization of Cpc was investigated by confocal microscopic analysis to observe the migration of Cpc. Results Cpc significantly (P < 0.05) reduced both tyrosinase activity and melanin production in a dose-dependent manner. This phycobiliprotein elevated the abundance of intracellular cAMP leading to the promotion of downstream ERK1/2 phosphorylation and the subsequent MITF (the transcription factor of tyrosinase) degradation. Further, Cpc also suppressed the activation of p38 causing the consequent disturbed activation of CREB (the transcription factor of MITF). As a result, Cpc negatively regulated tyrosinase gene expression resulting in the suppression of melanin synthesis. Moreover, the entry of Cpc into B16F10 cells was revealed by confocal immunofluorescence localization and immunoblot analysis. Conclusions Cpc exerted dual antimelanogenic mechanisms by upregulation of MAPK/ERK-dependent degradation of MITF and downregulation of p38 MAPK-regulated CREB activation to modulate melanin formation. Cpc may have potential applications in biomedicine, food, and cosmetic industries. PMID:21988805

  2. A role for tyrosinase-related protein 1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo.

    PubMed

    Manga, Prashiela; Sheyn, David; Yang, Fan; Sarangarajan, Rangaprasad; Boissy, Raymond E

    2006-11-01

    Vitiligo presents with depigmented cutaneous lesions following localized melanocyte death. Multiple factors contribute to cell death, including genetically determined susceptibility to trauma, and environmental factors, such as exposure to 4-tert-butylphenol (4-TBP). We demonstrate that 4-TBP induces oxidative stress that is more readily overcome by melanocytes from normally pigmented individuals than from two individuals with vitiligo. The antioxidant catalase selectively and significantly reduced death of melanocytes derived from two individuals with vitiligo, indicating a role for oxidative stress in vitiligo pathogenesis. In normal melanocytes, oxidative stress results in reduced expression of microphthalmia-associated transcription factor (MITF). Melanocyte-stimulating hormone-induced expression of MITF protein caused increased sensitivity to 4-TBP, whereas sensitivity of melanomas correlated with MITF expression. MITF stimulates melanin synthesis by up-regulating expression of melanogenic enzymes such as tyrosinase-related protein-1 (Tyrp1). Although melanin content per se did not affect sensitivity to 4-TBP, expression of Tyrp1 significantly increased sensitivity. Melanocytes and melanomas that express functional Tyrp1 were significantly more sensitive to 4-TBP than Tyrp1-null cells. Thus, normal melanocytes respond to 4-TBP by reducing expression of MITF and Tyrp1. We hypothesize that melanocytes in vitiligo demonstrate reduced ability to withstand oxidative stress due, partly, to a disruption in MITF regulation of Tyrp1.

  3. Microphthalmia-associated transcription factor as the molecular target of cadmium toxicity in human melanocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chantarawong, Wipa; Inter Departmental Multidisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok; Takeda, Kazuhisa

    Highlights: • In human melanocytes, cadmium decreases the expression of MITF-M and tyrosinase and their mRNAs. • In human melanoma cells, cadmium decreases the expression of MITF-M protein and tyrosinase mRNA. • Expression of MITF-H is less sensitive to cadmium toxicity in melanocyte-linage cells. • Cadmium does not decrease the expression of MITF-H in retinal pigment epithelial cells. • MITF-M is the molecular target of cadmium toxicity in melanocytes. - Abstract: Dietary intake of cadmium is inevitable, causing age-related increase in cadmium accumulation in many organs, including hair, choroid and retinal pigment epithelium (RPE). Cadmium has been implicated in themore » pathogenesis of hearing loss and macular degeneration. The functions of cochlea and retina are maintained by melanocytes and RPE, respectively, and the differentiation of these pigment cells is regulated by microphthalmia-associated transcription factor (MITF). In the present study, we explored the potential toxicity of cadmium in the cochlea and retina by using cultured human melanocytes and human RPE cell lines. MITF consists of multiple isoforms, including melanocyte-specific MITF-M and widely expressed MITF-H. Levels of MITF-M protein and its mRNA in human epidermal melanocytes and HMV-II melanoma cells were decreased significantly by cadmium. In parallel with the MITF reduction, mRNA levels of tyrosinase, the key enzyme of melanin biosynthesis that is regulated by MITF-M, were also decreased. In RPE cells, however, the levels of total MITF protein, constituting mainly MITF-H, were not decreased by cadmium. We thus identify MITF-M as the molecular target of cadmium toxicity in melanocytes, thereby accounting for the increased risk of disability from melanocyte malfunction, such as hearing and vision loss among people with elevated cadmium exposure.« less

  4. Dual inhibition of γ-oryzanol on cellular melanogenesis: inhibition of tyrosinase activity and reduction of melanogenic gene expression by a protein kinase A-dependent mechanism.

    PubMed

    Jun, Hee-jin; Lee, Ji Hae; Cho, Bo-Ram; Seo, Woo-Duck; Kang, Hang-Won; Kim, Dong-Woo; Cho, Kang-Jin; Lee, Sung-Joon

    2012-10-26

    The in vitro effects on melanogenesis of γ-oryzanol (1), a rice bran-derived phytosterol, were investigated. The melanin content in B16F1 cells was significantly and dose-dependently reduced (-13% and -28% at 3 and 30 μM, respectively). Tyrosinase enzyme activity was inhibited by 1 both in a cell-free assay and when analyzed based on the measurement of cellular tyrosinase activity. Transcriptome analysis was performed to investigate the biological pathways altered by 1, and it was found that gene expression involving protein kinase A (PKA) signaling was markedly altered. Subsequent analyses revealed that 1 stimulation in B16 cells reduced cytosolic cAMP concentrations, PKA activity (-13% for cAMP levels and -40% for PKA activity), and phosphorylation of the cAMP-response element binding protein (-57%), which, in turn, downregulated the expression of microphthalmia-associated transcription factor (MITF; -59% for mRNA and -64% for protein), a key melanogenic gene transcription factor. Accordingly, tyrosinase-related protein 1 (TRP-1; -69% for mRNA and -82% for protein) and dopachrome tautomerase (-51% for mRNA and -92% for protein) in 1-stimulated B16F1 cells were also downregulated. These results suggest that 1 has dual inhibitory activities for cellular melanogenesis by inhibiting tyrosinase enzyme activity and reducing MITF and target genes in the PKA-dependent pathway.

  5. Subcellular localization of Mitf in monocytic cells.

    PubMed

    Lu, Ssu-Yi; Wan, Hsiao-Ching; Li, Mengtao; Lin, Yi-Ling

    2010-06-01

    Microphthalmia-associated transcription factor (Mitf) is a transcription factor that plays an important role in regulating the development of several cell lineages. The subcellular localization of Mitf is dynamic and is associated with its transcription activity. In this study, we examined factors that affect its subcellular localization in cells derived from the monocytic lineage since Mitf is present abundantly in these cells. We identified a domain encoded by Mitf exon 1B1b to be important for Mitf to commute between the cytoplasm and the nucleus. Deletion of this domain disrupts the shuttling of Mitf to the cytoplasm and results in its retention in the nucleus. M-CSF and RANKL both induce nuclear translocation of Mitf. We showed that Mitf nuclear transport is greatly influenced by ratio of M-CSF/Mitf protein expression. In addition, cell attachment to a solid surface also is needed for the nuclear transport of Mitf.

  6. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells.

    PubMed

    Laurette, Patrick; Strub, Thomas; Koludrovic, Dana; Keime, Céline; Le Gras, Stéphanie; Seberg, Hannah; Van Otterloo, Eric; Imrichova, Hana; Siddaway, Robert; Aerts, Stein; Cornell, Robert A; Mengus, Gabrielle; Davidson, Irwin

    2015-03-24

    Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.

  7. [Analysis of nuclear localization and signal function of MITF protein predisposing to Warrdenburg syndrome].

    PubMed

    Zhang, Hua; Feng, Juan; Chen, Hongsheng; Li, Jiada; Luo, Hunjin; Feng, Yong

    2015-12-01

    To study the role of dysfunction of nuclear localization signals (NLS) of MITF protein in the pathogenesis of Waardenburg syndrome. Eukaryotic expression plasmid pCMV-MITF-Flag was used as a template to generate mutant plasmid pCMV-MITF△NLS-Flag by molecular cloning technique in order to design the mutagenic primers. The UACC903 cells were transfected transiently with MITF and MITF△NLS plasmids, and the luciferase activity assays were performed to determine their impact on the transcriptional activities of target gene tyrosinase (TYR). The oligonucleotide 5'-GAACGAAGAAGAAGATTT-3' was subcloned into pEGFP-N1 to generate recombinant eukaryotic expression plasmid pEGFP-N1-MITF-NLS. The NIH3T3 cells were transfected separately with MITF, MITF△NLS, pEGFP-N1 and pEGFP-N1-NLS plasmids, and their subcellular distribution was observed by immunoflorescence assays. Expression plasmids for the mutant MITF△NLS with loss of core NLS sequence and pEGFP-N1-NLS coupled with MITF△NLS were successfully generated. Compared with the wild-type MITF, MITF△NLS was not able to transactivate the transcriptional activities of promoter TYR and did not affect the normal function of MITF. MITF△NLS was only localized in the cytoplasm and pEGFP-N1 was found in both the cytoplasm and nucleus, whereas pEGFP-N1-NLS was mainly located in the nucleus. This study has confirmed the localization function of NLS sequence 213ERRRRF218 within the MITF protein. Mutant MITF with loss of NLS has failed to transactivate the transcriptional activities of target gene TYR, which can result in melanocyte defects and cause WS.

  8. Functionality study of santalin as tyrosinase inhibitor: A potential depigmentation agent.

    PubMed

    Hridya, Hemachandran; Amrita, Anantharaman; Mohan, Sankari; Gopalakrishnan, Mohan; Dakshinamurthy, Thirumal Kumar; Doss, George Priya; Siva, Ramamoorthy

    2016-05-01

    Excessive melanin production leads to hyperpigmentation disorders which results in distressing aesthetic values. Though there are some synthetic depigmentation agents available it has been reported to possess cytotoxic and mutagenic effects. Hence there is a need for the development of safe and non toxic natural tyrosinase inhibitors. Here we report the role of santalin, the chief constituent of Pterocarpus santalinus in inhibition of tyrosinase and melanin synthesis. Santalin inhibited tyrosinase activity dose dependently. Inhibitory kinetic studies revealed mixed type of inhibition with reversible mechanism. Santalin was found to interact with the fluorophore amino acid residue of tyrosinase. Analysis of circular dichroism spectra showed the binding of santalin to tyrosinase which induced the loss of secondary helical structure. Molecular docking result suggested that santalin interact with the catalytic core of tyrosinase through strong hydrogen and hydrophobic bonding. The results of in vitro studies showed santalin inhibited melanogenesis through down regulation of MITF, tyrosinase, TRP-1 and TRP-2 without any cytotoxic effects towards B16F0 melanoma cells. Therefore, our results suggested that santalin possesses anti-tyrosinase activity, which could be utilized as a safe depigmentation agent in the cosmetic field for the treatment of hyperpigmentation disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf.

    PubMed

    Hornyak, T J; Hayes, D J; Chiu, L Y; Ziff, E B

    2001-03-01

    A transgenic mouse model was used to examine the roles of the murine transcription factors Pax-3 and Mitf in melanocyte development. Transgenic mice expressing beta-galactosidase from the dopachrome tautomerase (Dct) promoter were generated and found to express the transgene in developing melanoblasts as early as embryonic day (E) 9.5. These mice express the transgene in a pattern characteristic of endogenous Dct expression. Transgenic mice were intercrossed with two murine coat color mutants, Splotch (Sp), containing a mutation in the murine Pax3 gene, and Mitf(mi), with a mutation in the basic-helix-loop-helix-leucine zipper gene Mitf. Transgenic heterozygous mutant animals were crossed to generate transgenic embryos for analysis. Examination of beta-galactosidase-expressing melanoblasts in mutant embryos reveals that Mitf is required in vivo for survival of melanoblasts up to the migration staging area in neural crest development. Examination of Mitf(mi)/+ embryos shows that there are diminished numbers of melanoblasts in the heterozygous state early in melanocyte development, consistent with a gene dosage-dependent effect upon cell survival. However, quantification and analysis of melanoblast growth during the migratory phase suggests that melanoblasts then increase in number more rapidly in the heterozygous embryo. In contrast to Mitf(mi)/Mitf(mi) embryos, Sp/Sp embryos exhibit melanoblasts that have migrated to characteristic locations along the melanoblast migratory pathway, but are greatly reduced in number compared to control littermates. Together, these results support a model for melanocyte development whereby Pax3 is required to expand a pool of committed melanoblasts or restricted progenitor cells early in development, whereas Mitf facilitates survival of the melanoblast in a gene dosage-dependent manner within and immediately after emigration from the dorsal neural tube, and may also directly or indirectly affect the rate at which melanoblast number

  10. Antioxidant and Anti-tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by cAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells.

    PubMed

    Sun, Liping; Guo, Yan; Zhang, Yanxin; Zhuang, Yongliang

    2017-01-01

    Rape bee pollen possesses many nutritional and therapeutic properties because of its abundant nutrimental and bioactive components. In this study, free (FPE) and bound (BPE) phenolic extracts of rape bee pollen were obtained, phenolic and flavonoid contents were determined, and composition of phenolic acids was analyzed. In vitro antioxidant and anti-tyrosinase (TYR) activities of FPE and BPE were compared, and inhibitory melanogenesis of FPE was further evaluated. Results showed FPE and BPE contain total phenolic contents of 11.76 and 0.81 mg gallic acid equivalents/g dry weight (DW) and total flavonoid contents of 19.24 and 3.65 mg rutin equivalents/g DW, respectively. Phenolic profiling showed FPE and BPE fractions contained 12 and 9 phenolic acids, respectively. FPE contained the highest rutin content of 774.87 μg/g. FPE and BPE showed the high antioxidant properties in vitro and high inhibitory activities for mushroom TYR. Higher activities of FPE than those of BPE can be attributed to difference in their phenolic compositions. Inhibitory melanogenesis activities of FPE against B16 were further evaluated. Results showed suppressed intracellular TYR activity, reduced melanin content, and promoted glutathione synthesis ( p < 0.05) in FPE-treated cells. FPE reduced mRNA expression of TYR, TYR-related protein (TRP)-1 and TRP-2, and significantly suppressed cyclic adenosine monophosphate (cAMP) levels through down-regulation of melanocortin 1 receptor gene expression ( p < 0.05). FPE reduced mRNA expression of microphthalmia-associated transcription factor (MITF), significantly inhibiting intracellular melanin synthesis ( p < 0.05). Hence, FPE regulates melanogenesis of B16 cells involved in cAMP/MITF/TYR pathway. These results revealed that FPE can be used as pharmaceutical agents and cosmetics to protect cells from abnormal melanogenesis.

  11. Depigmenting effect of argan press-cake extract through the down-regulation of Mitf and melanogenic enzymes expression in B16 murine melanoma cells.

    PubMed

    Bourhim, Thouria; Villareal, Myra O; Gadhi, Chemseddoha; Hafidi, Abdellatif; Isoda, Hiroko

    2018-06-26

    Oil extraction from the kernels of Argania spinosa (L.) Skeels (Sapotaceae), an endemic tree of Morocco, produces argan press-cake (APC) used as a shampoo and to treat sprains, scabies, and for healing wounds. We have previously reported that argan oil has antimelanogenesis effect. Here, we determined if the by-product, APC, has melanogenesis regulatory effect using B16 murine melanoma cells. The effect of APC ethanol extract on cell proliferation and melanin content of B16 cells were measured, and to elucidate the mechanism involved, the expression level of melanogenic enzymes tyrosinase (TYR), dopachrome tautomerase (DCT), and tyrosinase-related protein 1 (TRP1) were determined and mRNA expression level of microphthalmia- associated transcription factor (Mitf) and Tyr genes were quantified. APC ethanol extract showed a significant melanin biosynthesis inhibitory effect on B16 cells in a time-dependent manner without cytotoxicity, which could be due to the decreased expression of TYR, TRP1, and DCT in a time-dependent manner. APC extract down regulated Mitf and Tyr. Decreased TRP1 and DCT levels could be due to post-translational modifications. These results suggest that APC extract may be used as a new source of natural whitening products and may be introduced as an important pharmacological agent for the treatment of hyperpigmentation disorders.

  12. Inhibitory effect of Cinnamomum osmophloeum Kanehira ethanol extracts on melanin synthesis via repression of tyrosinase expression.

    PubMed

    Lee, Shih-Chieh; Chen, Chun-Hao; Yu, Chih-Wen; Chen, Hsiao Ling; Huang, Wei-Tung; Chang, Yun-Shiang; Hung, Shu-Hsien; Lee, Tai-Lin

    2016-09-01

    Melanin contributes to skin color, and tyrosinase is the enzyme that catalyzes the initial steps of melanin formation. Therefore, tyrosinase inhibitors may contribute to the control of skin hyperpigmentation. The inhibition of tyrosinase activity by Cinnamomum zeylanicum extracts was previously reported. In this report, we test the hypothesis that Cinnamomum osmophloeum Kanehira, an endemic plant to Taiwan, contains compounds that inhibit tyrosinase activity, similar to C. zeylanicum. The cytotoxicity of three sources of C. osmophloeum Kanehira ethanol extracts was measured in B16-F10 cells using a methyl thiazolyl tetrazolium bromide (MTT) assay. At concentrations greater than 21.25 μg/mL, the ethanol extracts were toxic to the cells; therefore, 21.25 μg/mL was selected to test the tyrosinase activities. At this concentration, all three ethanol extracts decreased the melanin content by 50% in IBMX-induced B16-F10 cells. In addition to the melanin content, greater than 20% of the tyrosinase activity was inhibited by these ethanol extracts. The RT-PCR results showed that tyrosinase and transcription factor MITF mRNAs expression were down-regulated. Consistent with the mRNA results, greater than 40% of the human tyrosinase promoter activity was inhibited based on the reporter assay. Furthermore, our results demonstrate that the ethanol extracts protect cells from UV exposure. C. osmophloeum Kanehira neutralized the IBMX-induced increase in melanin content in B16-F10 cells by inhibiting tyrosinase gene expression at the level of transcription. Moreover, the ethanol extracts also partially inhibited UV-induced cell damage and prevented cell death. Taken together, we conclude that C. osmophloeum Kanehira is a potential skin-whitening and protective agent. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Involvement of transcription factor encoded by the mouse mi locus (MITF) in apoptosis of cultured mast cells induced by removal of interleukin-3.

    PubMed Central

    Tsujimura, T.; Hashimoto, K.; Morii, E.; Tunio, G. M.; Tsujino, K.; Kondo, T.; Kanakura, Y.; Kitamura, Y.

    1997-01-01

    Mast cells develop when spleen cells of mice are cultured in the medium containing interleukin (IL)-3. Cultured mast cells (CMCs) show apoptosis when they are incubated in the medium without IL-3. We obtained CMCs from tg/tg mice that did not express the transcription factor encoded by the mi gene (MITF) due to the integration of a transgene at its 5' flanking region. MITF is a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors. We investigated the effect of MITF on the apoptosis of CMCs after removal of IL-3. When cDNA encoding normal MITF ((+)-MITF) was introduced into tg/tg CMCs with the retroviral vector, the apoptosis of tg/tg CMCs was significantly accelerated. The mutant mi allele represents a deletion of an arginine at the basic domain of MITF. The apoptosis of tg/tg CMCs was not accelerated by the introduction of cDNA encoding mi-MITF. The overexpression of (+)-MITF was not prerequisite to the acceleration of the apoptosis, as the apoptotic process proceeded faster in +/+ CMCs than in mi/mi CMCs. The Ba/F3 lymphoid cell line is also dependent on IL-3, and Ba/F3 cells show apoptosis after removal of IL-3. The c-myc gene encodes another transcription factor of the bHLH-Zip family, and the overexpression of the c-myc gene accelerated the apoptosis of Ba/F3 cells. However, the overexpression of (+)-MITF did not accelerate the apoptosis of Ba/F3 cells. The (+)-MITF appeared to play some roles for the acceleration of the apoptosis specifically in the mast cell lineage. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9327738

  14. Dysregulated Expression of MITF in Subsets of Hepatocellular Carcinoma and Cholangiocarcinoma.

    PubMed

    Nooron, Nattakarn; Ohba, Koji; Takeda, Kazuhisa; Shibahara, Shigeki; Chiabchalard, Anchalee

    2017-08-01

    Cholangiocarcinoma represents the second most common primary liver tumor after hepatocellular carcinoma. Mahanine, a carbazole alkaloid derived from Murraya koenigii (Linn.) Spreng, has been used as folk medicine in Thailand, where the liver fluke-associated cholangiocarcinoma is common. The expression of microphthalmia-associated transcription factor (MITF) is maintained at immunohistochemically undetectable levels in hepatocytes and cholangiocytes. To explore the regulation of MITF expression in the liver, we immunohistochemically analyzed the MITF expression using hepatocellular carcinoma and cholangiocarcinoma specimens of the human liver cancer tissue array. MITF immunoreactivity was detected in subsets of hepatocellular carcinoma (6 out of 38 specimens; 16%) and cholangiocarcinoma (2/7 specimens; 29%). Moreover, immunoreactivity for glioma-associated oncogene 1 (GLI1), a transcription factor of the Hedgehog signaling pathway, was detected in 55% of hepatocellular carcinoma (21/38 specimens) and 86% of cholangiocarcinoma (6/7 specimens). Importantly, MITF was detectable only in the GLI1-positive hepatocellular carcinoma and cholangiocarcinoma, and MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. Subsequently, the effect of mahanine was analyzed in HepG2 human hepatocellular carcinoma and HuCCT1 and KKU-100 human cholangiocarcinoma cells. Mahanine (25 µM) showed the potent cytotoxicity in these hepatic cancer cell lines, which was associated with increased expression levels of MITF, as judged by Western blot analysis. MITF is over-expressed in subsets of hepatocellular carcinoma and cholangiocarcinoma, and detectable MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. MITF expression levels may be determined in hepatic cancer cells by the balance between the Hedgehog signaling and the cellular stress.

  15. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells.

    PubMed

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-11-09

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.

  16. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells

    PubMed Central

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-01-01

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment. PMID:27827420

  17. Role of microRNA508-3p in melanogenesis by targeting microphthalmia transcription factor in melanocytes of alpaca.

    PubMed

    Zhang, J; Liu, Y; Zhu, Z; Yang, S; Ji, K; Hu, S; Liu, X; Yao, J; Fan, R; Dong, C

    2017-02-01

    It has been demonstrated that microRNAs (miRNAs) play important roles in the control of melanogenesis and hair color in mammals. By comparing miRNA expression profiles between brown and white alpaca skin, we previously identified miR508-3p as a differentially expressed miRNA suggesting its potential role in melanogenesis and hair color formation. The present study was conducted to determine the role of miR508-3p in melanogenesis in alpaca melanocytes. In situ hybridization showed that miR508-3p is abundantly present in the cytoplasma of alpaca melanocytes. miR508-3p was predicted to target the gene encoding microphthalmia transcription factor (MITF) and a luciferase reporter assay indicated that miR508-3p regulates MITF expression by directly targeting its 3'UTR. Overexpression of miR508-3p in alpaca melanocytes down-regulated MITF expression both at the messenger RNA and protein level and resulted in decreased expression of key melanogenic genes including tyrosinase and tyrosinase-related protein 2. Overexpression of miR508-3p in melanocytes also resulted in decreased melanin production including total alkali-soluble melanogenesis, eumelanogenesis and pheomelanogenesis. Results support a functional role of miR508-3p in regulating melanogenesis in alpaca melanocytes by directly targeting MITF.

  18. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma.

    PubMed

    Müller, Judith; Krijgsman, Oscar; Tsoi, Jennifer; Robert, Lidia; Hugo, Willy; Song, Chunying; Kong, Xiangju; Possik, Patricia A; Cornelissen-Steijger, Paulien D M; Geukes Foppen, Marnix H; Kemper, Kristel; Goding, Colin R; McDermott, Ultan; Blank, Christian; Haanen, John; Graeber, Thomas G; Ribas, Antoni; Lo, Roger S; Peeper, Daniel S

    2014-12-15

    Increased expression of the Microphthalmia-associated transcription factor (MITF) contributes to melanoma progression and resistance to BRAF pathway inhibition. Here we show that the lack of MITF is associated with more severe resistance to a range of inhibitors, while its presence is required for robust drug responses. Both in primary and acquired resistance, MITF levels inversely correlate with the expression of several activated receptor tyrosine kinases, most frequently AXL. The MITF-low/AXL-high/drug-resistance phenotype is common among mutant BRAF and NRAS melanoma cell lines. The dichotomous behaviour of MITF in drug response is corroborated in vemurafenib-resistant biopsies, including MITF-high and -low clones in a relapsed patient. Furthermore, drug cocktails containing AXL inhibitor enhance melanoma cell elimination by BRAF or ERK inhibition. Our results demonstrate that a low MITF/AXL ratio predicts early resistance to multiple targeted drugs, and warrant clinical validation of AXL inhibitors to combat resistance of BRAF and NRAS mutant MITF-low melanomas.

  19. Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway.

    PubMed

    Bouché, Valentina; Espinosa, Alma Perez; Leone, Luigi; Sardiello, Marco; Ballabio, Andrea; Botas, Juan

    2016-01-01

    An evolutionarily conserved gene network regulates the expression of genes involved in lysosome biogenesis, autophagy, and lipid metabolism. In mammals, TFEB and other members of the MiTF-TFE family of transcription factors control this network. Here we report that the lysosomal-autophagy pathway is controlled by Mitf gene in Drosophila melanogaster. Mitf is the single MiTF-TFE family member in Drosophila and prior to this work was known only for its function in eye development. We show that Mitf regulates the expression of genes encoding V-ATPase subunits as well as many additional genes involved in the lysosomal-autophagy pathway. Reduction of Mitf function leads to abnormal lysosomes and impairs autophagosome fusion and lipid breakdown during the response to starvation. In contrast, elevated Mitf levels increase the number of lysosomes, autophagosomes and autolysosomes, and decrease the size of lipid droplets. Inhibition of Drosophila MTORC1 induces Mitf translocation to the nucleus, underscoring conserved regulatory mechanisms between Drosophila and mammalian systems. Furthermore, we show Mitf-mediated clearance of cytosolic and nuclear expanded ATXN1 (ataxin 1) in a cellular model of spinocerebellar ataxia type 1 (SCA1). This remarkable observation illustrates the potential of the lysosomal-autophagy system to prevent toxic protein aggregation in both the cytoplasmic and nuclear compartments. We anticipate that the genetics of the Drosophila model and the absence of redundant MIT transcription factors will be exploited to investigate the regulation and function of the lysosomal-autophagy gene network.

  20. MITF E318K's effect on melanoma risk independent of, but modified by, other risk factors.

    PubMed

    Berwick, Marianne; MacArthur, Jamie; Orlow, Irene; Kanetsky, Peter; Begg, Colin B; Luo, Li; Reiner, Anne; Sharma, Ajay; Armstrong, Bruce K; Kricker, Anne; Cust, Anne E; Marrett, Loraine D; Gruber, Stephen B; Anton-Culver, Hoda; Zanetti, Roberto; Rosso, Stefano; Gallagher, Richard P; Dwyer, Terence; Venn, Alison; Busam, Klaus; From, Lynn; White, Kirsten; Thomas, Nancy E

    2014-05-01

    A rare germline variant in the microphthalmia-associated transcription factor (MITF) gene, E318K, has been reported as associated with melanoma. We confirmed its independent association with melanoma [odds ratio (OR) 1.7, 95% confidence interval (CI) = 1.1, 2.7, P = 0.03]; adjusted for age, sex, center, age × sex interaction, pigmentation characteristics, family history of melanoma, and nevus density). In stratified analyses, carriage of MITF E318K was associated with melanoma more strongly in people with dark hair than fair hair (P for interaction, 0.03) and in those with no moles than some or many moles (P for interaction, <0.01). There was no evidence of interaction between MC1R 'red hair variants' and MITF E318K. Moreover, risk of melanoma among carriers with 'low risk' phenotypes was as great or greater than among those with 'at risk' phenotypes with few exceptions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines

    PubMed Central

    Noguchi, Ken; Dalton, Annamarie C.; Howley, Breege V.; McCall, Buckley J.; Yoshida, Akihiro; Diehl, J. Alan

    2017-01-01

    ILEI (FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell biological process that confers metastatic properties to a tumor cell. Initially, we found that ILEI mRNA is highly expressed in melanoma metastases but not in primary tumors, suggesting that ILEI contributes to the malignant properties of melanoma. While melanoma is not an epithelial cell-derived tumor and does not undergo a traditional EMT, melanoma undergoes a similar process known as phenotype switching in which high (micropthalmia-related transcription factor) MITF expressing (MITF-high) proliferative cells switch to a low expressing (MITF-low) invasive state. We observed that MITF-high proliferative cells express low levels of ILEI (ILEI-low) and MITF-low invasive cells express high levels of ILEI (ILEI-high). We found that inducing phenotype switching towards the MITF-low invasive state increases ILEI mRNA expression, whereas phenotype switching towards the MITF-high proliferative state decreases ILEI mRNA expression. Next, we used in vitro assays to show that knockdown of ILEI attenuates invasive potential but not MITF expression or chemoresistance. Finally, we used gene expression analysis to show that ILEI regulates several genes involved in the MITF-low invasive phenotype including JARID1B, HIF-2α, and BDNF. Gene set enrichment analysis suggested that ILEI-regulated genes are enriched for JUN signaling, a known regulator of the MITF-low invasive phenotype. In conclusion, we demonstrate that phenotype switching regulates ILEI expression, and that ILEI regulates partial phenotype switching in MITF-low melanoma cell lines. PMID:28545079

  2. MITF and PAX3 Play Distinct Roles in Melanoma Cell Migration; Outline of a "Genetic Switch" Theory Involving MITF and PAX3 in Proliferative and Invasive Phenotypes of Melanoma.

    PubMed

    Eccles, Michael R; He, Shujie; Ahn, Antonio; Slobbe, Lynn J; Jeffs, Aaron R; Yoon, Han-Seung; Baguley, Bruce C

    2013-09-11

    Melanoma is a very aggressive neoplasm with a propensity to undergo progression and invasion early in its evolution. The molecular pathways underpinning invasion in melanoma are now just beginning to be elucidated, but a clear understanding of the transition from non-invasive to invasive melanoma cells remains elusive. Microphthalmia-associated transcription factor (MITF), is thought to be a central player in melanoma biology, and it controls many aspects of the phenotypic expression of the melanocytic lineage. However, recently the paired box transcription factor PAX3 was shown to transcriptionally activate POU3F2/BRN2, leading to direct repression of MITF expression. Here we present a theory to explain melanoma phenotype switching and discuss the predictions that this theory makes. One prediction is that independent and opposing roles for MITF and PAX3 in melanoma would be expected, and we present empirical evidence supporting this: in melanoma tissues PAX3 expression occurs independently of MITF, and PAX3 does not play a key role in melanoma cell proliferation. Furthermore, we show that knockdown of PAX3 inhibits cell migration in a group of "lower MITF" melanoma cell lines, while knockdown of MITF promotes cell migration in a complementary "higher MITF" group of melanoma cell lines. Moreover, the morphological effects of knocking down PAX3 versus MITF in melanoma cells were found to differ. While these data support the notion of independent roles for MITF and PAX3, additional experiments are required to provide robust examination of the proposed genetic switch theory. Only upon clear delineation of the mechanisms associated with progression and invasion of melanoma cells will successful treatments for invasive melanoma be developed.

  3. N-(4-methoxyphenyl) caffeamide-induced melanogenesis inhibition mechanisms.

    PubMed

    Kuo, Yueh-Hsiung; Chen, Chien-Chia; Wu, Po-Yuan; Wu, Chin-Sheng; Sung, Ping-Jyun; Lin, Chien-Yih; Chiang, Hsiu-Mei

    2017-01-23

    The derivative of caffeamide exhibits antioxidant and antityrosinase activity. The activity and mechanism of N-(4-methoxyphenyl) caffeamide (K36E) on melanogenesis was investigated. B16F0 cells were treated with various concentrations of K36E; the melanin contents and related signal transduction were studied. Western blotting assay was applied to determine the protein expression, and spectrophotometry was performed to identify the tyrosinase activity and melanin content. Our results indicated that K36E reduced α-melanocyte-stimulating hormone (α-MSH)-induced melanin content and tyrosinase activity in B16F0 cells. In addition, K36E inhibited the expression of phospho-cyclic adenosine monophosphate (cAMP)-response element-binding protein, microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1 (TRP-1). K36E activated the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3 beta (GSK3β), leading to the inhibition of MITF transcription activity. K36E attenuated α-MSH induced cAMP pathways, contributing to hypopigmentation. K36E regulated melanin synthesis through reducing the expression of downstream proteins including p-CREB, p-AKT, p-GSK3β, tyrosinase, and TRP-1, and activated the transcription factor, MITF. K36E may have the potential to be developed as a skin whitening agent.

  4. Emodin isolated from Polygoni Multiflori Ramulus inhibits melanogenesis through the liver X receptor-mediated pathway.

    PubMed

    Kim, Mi Ok; Park, Yong Seek; Nho, Youn Hwa; Yun, Seok Kyun; Kim, Youngsoo; Jung, Eunsun; Paik, Jean Kyung; Kim, Minhee; Cho, Il-Hoon; Lee, Jongsung

    2016-04-25

    Melanogenesis is a physiological process that results in the synthesis of melanin pigments, which play a crucial protective role against skin photocarcinogenesis. We investigated the effects of a Polygoni Multiflori Ramulus extract on melanogenesis and isolated emodin from Polygoni Multiflori as an active compound. In addition, the possible mechanisms of action were examined. We found that emodin inhibited both melanin content and tyrosinase activity concentration and time dependently. Tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 mRNA levels decreased following emodin treatment. However, while the mRNA levels of microphthalmia-associated transcription factor (MITF) were not affected by emodin, emodin reduced MITF protein levels. Furthermore, expression of the liver X-receptor (LXR) α gene, but not the LXR β gene was upregulated by emodin. Moreover, emodin regulated melanogenesis by promoting degradation of the MITF protein by upregulating the LXR α gene. The emodin effects on MITF was found to be mediated by phosphorylation of p42/44 MAPK. Taken together, these findings indicate that the inhibition of melanogenesis by emodin occurs through reduced MITF protein expression, which is mediated by upregulation of the LXR α gene and suggest that emodin may be useful as a hyperpigmentation inhibitor. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. MITF suppression improves the sensitivity of melanoma cells to a BRAF inhibitor.

    PubMed

    Aida, Satoshi; Sonobe, Yukiko; Tanimura, Hiromi; Oikawa, Nobuhiro; Yuhki, Munehiro; Sakamoto, Hiroshi; Mizuno, Takakazu

    2017-11-28

    Microphthalmia-associated transcription factor (MITF) is expressed in melanomas and has a critical role in melanocyte development and transformation. Because inhibition of MITF inhibits cell growth in melanoma, MITF is a potential therapeutic target molecule. Here, we report the identification of CH6868398, which has a novel chemical structure and suppresses MITF expression at the protein level in melanoma cells. CH6868398 showed cell growth inhibition activity against MITF-dependent melanoma cells both with and without BRAF mutation and also exhibited anti-tumor efficacy in a melanoma xenograft model. Because selective BRAF inhibitors are standard therapeutics for BRAF-mutated melanoma, we investigated the effect of CH6868398 with a BRAF inhibitor, PLX4720, on cell growth inhibition. The addition of CH6868398 enhanced the cell growth inhibition activity of PLX4720 in melanoma cell lines. Furthermore, combination of CH6868398 and PLX4720 efficiently suppressed MITF protein and enhanced cleavage of Caspase3 and poly (ADP-ribose) polymerase (PARP) in melanoma cell lines. These data support the therapeutic potential of CH6868398 as an anti-melanoma agent that reduces MITF protein levels in combination with BRAF inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside suppresses melanin synthesis by augmenting p38 MAPK and CREB signaling pathways and subsequent cAMP down-regulation in murine melanoma cells.

    PubMed

    Jung, Hyun Gug; Kim, Han Hyuk; Paul, Souren; Jang, Jae Yoon; Cho, Yong Hun; Kim, Hyeon Jeong; Yu, Jae Myo; Lee, Eun Su; An, Bong Jeun; Kang, Sun Chul; Bang, Byung Ho

    2015-11-01

    In this study, the effect of purified quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosid (QCGG) on melanogenesis was investigated. QCGG was isolated from the calyx of a traditional Korean medicinal herb, Persimmon (Diospyros kaki). The hypopigmentation effects of QCGG were determined by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay, and Western blotting of α-MSH-stimulated B16F10 mouse melanoma cells. Our results showed that QCGG inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner as well as significantly reduced the expression of melanogenic proteins such as microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1, tyrosinase-related protein-2, and tyrosinase. Moreover, QCGG inhibited intracellular cAMP levels, cAMP response element-binding protein (CREB), and p38 MAPK expression in α-MSH-stimulated B16F10 cells. Taken together, the suppressive effects of QCGG on melanogenesis may involve down-regulation of MITF and its downstream signaling pathway via phosphorylation of p38 MAPK and CREB along with reduced cAMP levels. These results indicate that QCGG reduced melanin synthesis by reducing expression of tyrosine and tyrosine-related proteins via extracellular signal-related protein kinase (ERK) activation, followed by down-regulation of CREB, p38, and MITF.

  7. AVS-1357 inhibits melanogenesis via prolonged ERK activation.

    PubMed

    Kim, Dong-Seok; Lee, Hyun-Kyung; Park, Seo-Hyoung; Chae, Chong Hak; Park, Kyoung-Chan

    2009-08-01

    In this study, we demonstrated that a derivative of imidazole, AVS-1357, is a novel skin-whitening compound. AVS-1357 was found to significantly inhibit melanin production in a dose-dependent manner; however, it did not directly inhibit tyrosinase. Furthermore, we found that AVS-1357 induced prolonged activation of extracellular signal-regulated kinase (ERK) and Akt, while it downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase. It has been reported that the activation of ERK and/or Akt is involved in melanogenesis. Therefore, we examined the effects of AVS-1357 on melanogenesis in the absence or presence of PD98059 (a specific inhibitor of the ERK pathway) and/or LY294002 (a specific inhibitor of the Akt pathway). PD98059 dramatically increased melanogenesis, whereas LY294002 had no effect. Furthermore, PD98059 attenuated AVS-1357 induced ERK activation, as well as the downregulation of MITF and tyrosinase. These findings suggest that the effects of AVS-1357 occur via downregulation of MITF and tyrosinase, which is caused by AVS-1357-induced prolonged ERK activation. Taken together, our results indicate that AVS-1357 has the potential as a new skin whitening agent.

  8. Wnt signaling pathway involvement in genotypic and phenotypic variations in Waardenburg syndrome type 2 with MITF mutations.

    PubMed

    Wang, Xue-Ping; Liu, Ya-Lan; Mei, Ling-Yun; He, Chu-Feng; Niu, Zhi-Jie; Sun, Jie; Zhao, Yu-Lin; Feng, Yong; Zhang, Hua

    2018-05-01

    Mutation in the gene encoding microphthalmia-associated transcription factor (MITF) lead to Waardenburg syndrome 2 (WS2), an autosomal dominantly inherited syndrome with auditory-pigmentary abnormalities, which is clinically and genetically heterogeneous. Haploinsufficiency may be the underlying mechanism for WS2. However, the mechanisms explaining the genotypic and phenotypic variations in WS2 caused by MITF mutations are unclear. A previous study revealed that MITF interacts with LEF-1, an important factor in the Wnt signaling pathway, to regulate its own transcription through LEF-1-binding sites on the MITF promoter. In this study, four different WS2-associated MITF mutations (p.R217I, p.R217G, p.R255X, p.R217del) that are associated with highly variable clinical features were chosen. According to the results, LEF-1 can activate the expression of MITF on its own, but MITF proteins inhibited the activation. This inhibition weakens when the dosage of MITF is reduced. Except for p.R217I, p.R255X, p.R217G, and p.R217del lose the ability to activate TYR completely and do not inhibit the LEF-1-mediated activation of the MITF-M promoter, and the haploinsufficiency created by mutant MITF can be overcome; correspondingly, the mutants' associated phenotypes are less severe than that of p.R217I. The dominant negative of p.R217del made it have a second-most severe phenotype. This study's data imply that MITF has a negative feedback loop of regulation to stabilize MITF gene dosage that involves the Wnt signaling pathway and that the interaction of MITF mutants with this pathway drives the genotypic and phenotypic differences observed in Waardenburg syndrome type 2 associated with MITF mutations.

  9. PGC-1 Coactivators Regulate MITF and the Tanning Response

    PubMed Central

    Shoag, Jonathan; Haq, Rizwan; Zhang, Mingfeng; Liu, Laura; Rowe, Glenn C.; Jiang, Aihua; Koulisis, Nicole; Farrel, Caitlin; Amos, Christopher I.; Wei, Qingyi; Lee, Jeffrey E.; Zhang, Jiangwen; Kupper, Thomas S.; Qureshi, Abrar A.; Cui, Rutao; Han, Jiali; Fisher, David E.; Arany, Zoltan

    2013-01-01

    SUMMARY The production of pigment by melanocytes tans the skin and protects against skin cancers. UV-exposed keratinocytes secrete α-MSH, which then activates melanin formation in melanocytes by inducing the microphthalmia-associated transcription factor (MITF). We show that PPAR-γ coactivator (PGC)-1α and PGC-1β are critical components of this melanogenic system in melanocytes. α-MSH signaling strongly induces PGC-1α expression and stabilizes both PGC-1α and PGC-1β proteins. The PGC-1s in turn activate the MITF promoter, and their expression correlates strongly with that of MITF in human melanoma cell lines and biopsy specimens. Inhibition of PGC-1α and PGC-1β blocks the α-MSH-mediated induction of MITF and melanogenic genes. Conversely, overexpression of PGC-1α induces pigment formation in cell culture and transgenic animals. Finally, polymorphism studies reveal expression quantitative trait loci in the PGC-1β gene that correlate with tanning ability and protection from melanoma in humans. These data identify PGC-1 coactivators as regulators of human tanning. PMID:23201126

  10. Mediator MED23 Links Pigmentation and DNA Repair through the Transcription Factor MITF.

    PubMed

    Xia, Min; Chen, Kun; Yao, Xiao; Xu, Yichi; Yao, Jiaying; Yan, Jun; Shao, Zhen; Wang, Gang

    2017-08-22

    DNA repair is related to many physiological and pathological processes, including pigmentation. Little is known about the role of the transcriptional cofactor Mediator complex in DNA repair and pigmentation. Here, we demonstrate that Mediator MED23 plays an important role in coupling UV-induced DNA repair to pigmentation. The loss of Med23 specifically impairs the pigmentation process in melanocyte-lineage cells and in zebrafish. Med23 deficiency leads to enhanced nucleotide excision repair (NER) and less DNA damage following UV radiation because of the enhanced expression and recruitment of NER factors to chromatin for genomic stability. Integrative analyses of melanoma cells reveal that MED23 controls the expression of a melanocyte master regulator, Mitf, by modulating its distal enhancer activity, leading to opposing effects on pigmentation and DNA repair. Collectively, the Mediator MED23/MITF axis connects DNA repair to pigmentation, thus providing molecular insights into the DNA damage response and skin-related diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Ssanghwa-tang, an oriental herbal cocktail, exerts anti-melanogenic activity by suppression of the p38 MAPK and PKA signaling pathways in B16F10 cells

    PubMed Central

    2013-01-01

    Background Ssanghwa-tang (SHT) is a widely used medication for the treatment of fatigue, pain, inflammation, hypothermia, erectile dysfunction, cancer, and osteoporosis in Asia, however, role of SHT on the melanin synthesis has not been checked previously. Thus, the present study was designed to determine the effect of SHT on α-melanocyte stimulating hormone (α-MSH)-induced melanogensis and its mechanisms of action in murine B16F10 melanoma cells. Method Cellular melanin content and tyrosinase activity in murine B16F10 melanoma cells were determined after α-MSH stimulation with or without pre-treatment of SHT at the concentration of 250 and 500 μg/ml. Expression level of tyrosinase, tyrosinase-related protein 1 (TRP-1), TRP-2, microphthalmia-associated transcription factor (MITF), and activation of c-AMP-dependent protein kinase (PKA), c-AMP-related element binding protein (CREB), and mitogen-activated protein kinases (MAPKs) were examined by Western blot analysis. Results SHT significantly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of MITF, tyrosinase, and TRP-1. In addition, SHT remarkably suppressed tyrosinase, CRE, and MITF luciferase reporter activity in a resting state as well as in α-MSH-stimulating condition. Phosphorylation of p38 MAPK by α-MSH stimulation was efficiently blocked by SHT pre-treatment. Moreover, SHT as an herbal cocktail showed synergistic anti-melanogenic effect compared with that of each single constituent herb. Conclusion SHT efficiently inhibited c-AMP-induced melanin synthesis in B16F10 cells via suppression of PKA and p38 MAPK signaling pathways and subsequently decreased the level of CREB phosphorylation, MITF, and melanogenic enzymes. These results indicate that SHT may be useful as herbal medicine for treating hyperpigmentation and cosmetics as a skin-whitening agent. PMID:23981281

  12. YY1 Regulates Melanocyte Development and Function by Cooperating with MITF

    PubMed Central

    Bell, Robert J. A.; Tran, Thanh-Nga T.; Haq, Rizwan; Liu, Huifei; Love, Kevin T.; Langer, Robert; Anderson, Daniel G.; Larue, Lionel; Fisher, David E.

    2012-01-01

    Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcription factor, YY1 interacts with M-MITF, the Waardenburg Syndrome IIA gene and a master transcriptional regulator of melanocytes. YY1 cooperates with M-MITF in regulating the expression of piebaldism gene KIT and multiple additional pigmentation genes. Moreover, ChIP–seq identified genome-wide YY1 targets in the melanocyte lineage. These studies mechanistically link genes implicated in human conditions of melanocyte deficiency and reveal how a ubiquitous factor (YY1) gains lineage-specific functions by co-regulating gene expression with a lineage-restricted factor (M-MITF)—a general mechanism which may confer tissue-specific gene expression in multiple lineages. PMID:22570637

  13. Quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside suppresses melanin synthesis by augmenting p38 MAPK and CREB signaling pathways and subsequent cAMP down-regulation in murine melanoma cells

    PubMed Central

    Jung, Hyun Gug; Kim, Han Hyuk; Paul, Souren; Jang, Jae Yoon; Cho, Yong Hun; Kim, Hyeon Jeong; Yu, Jae Myo; Lee, Eun Su; An, Bong Jeun; Kang, Sun Chul; Bang, Byung Ho

    2015-01-01

    In this study, the effect of purified quercetin-3-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosid (QCGG) on melanogenesis was investigated. QCGG was isolated from the calyx of a traditional Korean medicinal herb, Persimmon (Diospyros kaki). The hypopigmentation effects of QCGG were determined by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay, and Western blotting of α-MSH-stimulated B16F10 mouse melanoma cells. Our results showed that QCGG inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner as well as significantly reduced the expression of melanogenic proteins such as microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1, tyrosinase-related protein-2, and tyrosinase. Moreover, QCGG inhibited intracellular cAMP levels, cAMP response element-binding protein (CREB), and p38 MAPK expression in α-MSH-stimulated B16F10 cells. Taken together, the suppressive effects of QCGG on melanogenesis may involve down-regulation of MITF and its downstream signaling pathway via phosphorylation of p38 MAPK and CREB along with reduced cAMP levels. These results indicate that QCGG reduced melanin synthesis by reducing expression of tyrosine and tyrosine-related proteins via extracellular signal-related protein kinase (ERK) activation, followed by down-regulation of CREB, p38, and MITF. PMID:26586997

  14. Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells.

    PubMed

    Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Yung Hyun; Kim, Byung Woo; Shin, Hwa Kyoung; Choi, Byung Tae

    2012-05-07

    Semen cuscutae has been used traditionally to treat pimples and alleviate freckles and melasma in Korea. The present study aimed to investigate the inhibitory effect of Cuscuta japonica Choisy seeds on alpha-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. The aqueous fraction from Semen cuscutae (AFSC) was used to determine anti-melanogenic effects by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay and Western blot analysis for melanin synthesis-related signaling proteins in B16F10 mouse melanoma cells. AFSC markedly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related proteins (TRPs). Moreover, AFSC significantly decreased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK) signaling through the down-regulation of α-MSH-induced cAMP. Furthermore, we confirmed that the specific inhibitor of p38 MAPK (SB203580)-mediated suppressed melanin synthesis and tyrosinase activity was further attenuated by AFSC. AFSC also further decreased SB203580-mediated suppression of MITF and TRP expression. These results indicate that AFSC inhibits p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression, which results in a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Gomisin N Inhibits Melanogenesis through Regulating the PI3K/Akt and MAPK/ERK Signaling Pathways in Melanocytes

    PubMed Central

    Chae, Jae Kyoung; Subedi, Lalita; Jeong, Minsun; Park, Yong Un; Kim, Chul Young; Kim, Hakwon; Kim, Sun Yeou

    2017-01-01

    Gomisin N, one of the lignan compounds found in Schisandra chinensis has been shown to possess anti-oxidative, anti-tumorigenic, and anti-inflammatory activities in various studies. Here we report, for the first time, the anti-melenogenic efficacy of Gomisin N in mammalian cells as well as in zebrafish embryos. Gomisin N significantly reduced the melanin content without cellular toxicity. Although it was not capable of modulating the catalytic activity of mushroom tyrosinase in vitro, Gomisin N downregulated the expression levels of key proteins that function in melanogenesis. Gomisin N downregulated melanocortin 1 receptor (MC1R), adenylyl cyclase 2, microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). In addition, Gomisin N-treated Melan-A cells exhibited increased p-Akt and p-ERK levels, which implies that the activation of the PI3K/Akt and MAPK/ERK pathways may function to inhibit melanogenesis. We also validated that Gomisin N reduced melanin production by repressing the expression of MITF, tyrosinase, TRP-1, and TRP-2 in mouse and human cells as well as in developing zebrafish embryos. Collectively, we conclude that Gomisin N inhibits melanin synthesis by repressing the expression of MITF and melanogenic enzymes, probably through modulating the PI3K/Akt and MAPK/ERK pathways. PMID:28241436

  16. Depigmenting Effect of Resveratrol Is Dependent on FOXO3a Activation without SIRT1 Activation.

    PubMed

    Kwon, Soon-Hyo; Choi, Hye-Ryung; Kang, Youn-A; Park, Kyoung-Chan

    2017-06-07

    Resveratrol exhibits not only anti-melanogenic property by inhibiting microphthalmia-associated transcription factor (MITF), but also anti-aging property by activating sirtuin-1 (SIRT1). In this study, the relationship between depigmenting effect of resveratrol and SIRT1/forkhead box O (FOXO) 3a activation and was investigated. Resveratrol suppressed melanogenesis by the downregulation of MITF and tyrosinase via ERK pathway. Results showed that the expression of both SIRT1 and FOXO3a were increased. It is reported that SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. However in our study, FOXO3a activation appeared earlier than that of SIRT1. Furthermore, the effect of resveratrol on the levels of MITF and tyrosinase was suppressed when melanocytes were pre-treated with SP600125 (JNK inhibitor). However, pre-treatment with SIRT1 inhibitor (EX527, or sirtinol) did not affect the levels of MITF and tyrosinase. Therefore, resveratrol inhibits melanogenesis through the activation of FOXO3a but not by the activation of SIRT1. Although SIRT1 activation by resveratrol is a well-known mechanism of resveratrol-induced antiaging effects, our study showed that not SIRT1 but FOXO3a activation is involved in depigmenting effects of resveratrol.

  17. The intracellular domain of teneurin-1 induces the activity of microphthalmia-associated transcription factor (MITF) by binding to transcriptional repressor HINT1.

    PubMed

    Schöler, Jonas; Ferralli, Jacqueline; Thiry, Stéphane; Chiquet-Ehrismann, Ruth

    2015-03-27

    Teneurins are large type II transmembrane proteins that are necessary for the normal development of the CNS. Although many studies highlight the significance of teneurins, especially during development, there is only limited information known about the molecular mechanisms of function. Previous studies have shown that the N-terminal intracellular domain (ICD) of teneurins can be cleaved at the membrane and subsequently translocates to the nucleus, where it can influence gene transcription. Because teneurin ICDs do not contain any intrinsic DNA binding sequences, interaction partners are required to affect transcription. Here, we identified histidine triad nucleotide binding protein 1 (HINT1) as a human teneurin-1 ICD interaction partner in a yeast two-hybrid screen. This interaction was confirmed in human cells, where HINT1 is known to inhibit the transcription of target genes by directly binding to transcription factors at the promoter. In a whole transcriptome analysis of BS149 glioblastoma cells overexpressing the teneurin-1 ICD, several microphthalmia-associated transcription factor (MITF) target genes were found to be up-regulated. Directly comparing the transcriptomes of MITF versus TEN1-ICD-overexpressing BS149 cells revealed 42 co-regulated genes, including glycoprotein non-metastatic b (GPNMB). Using real-time quantitative PCR to detect endogenous GPNMB expression upon overexpression of MITF and HINT1 as well as promoter reporter assays using GPNMB promoter constructs, we could demonstrate that the teneurin-1 ICD binds HINT1, thus switching on MITF-dependent transcription of GPNMB. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Inhibitory Effects of Adlay Extract on Melanin Production and Cellular Oxygen Stress in B16F10 Melanoma Cells

    PubMed Central

    Huang, Huey-Chun; Hsieh, Wan-Yu; Niu, Yu-Lin; Chang, Tsong-Min

    2014-01-01

    The aim of this study was to determine the effects of adlay extract on melanin production and the antioxidant characteristics of the extract. The seeds were extracted by the supercritical fluid CO2 extraction (SFE) method. The effect of adlay extract on melanin production was evaluated using mushroom tyrosinase activity assay, intracellular tyrosinase activity, antioxidant properties and melanin content. Those assays were performed spectrophotometrically. In addition, the expression of melanogenesis-related proteins was determined by western blotting. The results revealed that the adlay extract suppressed intracellular tyrosinase activity and decreased the amount of melanin in B16F10 cells. The adlay extract decreased the expression of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2). The extract also exhibited antioxidant characteristics such as free radical scavenging capacity and reducing power. It effectively decreased intracellular reactive oxygen species (ROS) levels in B16F10 cells. We concluded that the adlay extract inhibits melanin production by down-regulation of MITF, tyrosinase, TRP-1 and TRP-2. The antioxidant properties of the extract may also contribute to the inhibition of melanogenesis. The adlay extract can therefore be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products. PMID:25244016

  19. Functional analysis of a nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome type 2

    PubMed Central

    Sun, Jie; Hao, Ziqi; Luo, Hunjin; He, Chufeng; Mei, Lingyun; Liu, Yalan; Wang, Xueping; Niu, Zhijie; Chen, Hongsheng; Li, Jia-Da; Feng, Yong

    2017-01-01

    Waardenburg syndrome (WS) is an autosomal dominant inherited neurogenic disorder with the combination of various degrees of sensorineural deafness and pigmentary abnormalities affecting the skin, hair and eye. The four subtypes of WS were defined on the basis of the presence or absence of additional symptoms. Mutation of human microphthalmia-associated transcription factor (MITF) gene gives rise to WS2. Here, we identified a novel WS-associated mutation at the stop codon of MITF (p.X420Y) in a Chinese WS2 patient. This mutation resulted in an extension of extra 33 amino-acid residues in MITF. The mutant MITF appeared in both the nucleus and the cytoplasm, whereas the wild-type MITF was localized in the nucleus exclusively. The mutation led to a reduction in the transcriptional activities, whereas the DNA-binding activity was not altered. We show that the foremost mechanism was haploinsufficiency for the mild phenotypes of WS2 induced in X420Y MITF. PMID:28356565

  20. Functional analysis of a nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome type 2.

    PubMed

    Sun, Jie; Hao, Ziqi; Luo, Hunjin; He, Chufeng; Mei, Lingyun; Liu, Yalan; Wang, Xueping; Niu, Zhijie; Chen, Hongsheng; Li, Jia-Da; Feng, Yong

    2017-07-01

    Waardenburg syndrome (WS) is an autosomal dominant inherited neurogenic disorder with the combination of various degrees of sensorineural deafness and pigmentary abnormalities affecting the skin, hair and eye. The four subtypes of WS were defined on the basis of the presence or absence of additional symptoms. Mutation of human microphthalmia-associated transcription factor (MITF) gene gives rise to WS2. Here, we identified a novel WS-associated mutation at the stop codon of MITF (p.X420Y) in a Chinese WS2 patient. This mutation resulted in an extension of extra 33 amino-acid residues in MITF. The mutant MITF appeared in both the nucleus and the cytoplasm, whereas the wild-type MITF was localized in the nucleus exclusively. The mutation led to a reduction in the transcriptional activities, whereas the DNA-binding activity was not altered. We show that the foremost mechanism was haploinsufficiency for the mild phenotypes of WS2 induced in X420Y MITF.

  1. Association of MITF and other melanosome-related proteins with chemoresistance in melanoma tumors and cell lines.

    PubMed

    Hertzman Johansson, Carolina; Azimi, Alireza; Frostvik Stolt, Marianne; Shojaee, Seyedmehdi; Wiberg, Henning; Grafström, Eva; Hansson, Johan; Egyházi Brage, Suzanne

    2013-10-01

    Previous studies in cell lines have suggested a role for melanosomes and related protein trafficking pathways in melanoma drug response. We have investigated the expression of six proteins related to melanosomes and melanogenesis (MITF, GPR143, gp100/PMEL, MLANA, TYRP1, and RAB27A) in pretreatment metastases from melanoma patients (n = 52) with different response to dacarbazine/temozolomide. Microphthalmia-associated transcription factor (MITF) and G-protein coupled receptor 143 (GPR143) showed significantly higher expression in nonresponders compared with responders. The premelanosome protein (gp100/PMEL) has been indicated previously in resistance to cisplatin in melanoma cells, but the expression levels of gp100/PMEL showed no association with response to dacarbazine/temozolomide in our clinical material. We also investigated the effects on chemosensitivity of siRNA inhibition of gp100/PMEL in the MNT-1 melanoma cell line. As expected from the study of the tumor material, no effect was detected with respect to response to temozolomide. However, knockdown of gp100/PMEL sensitized the cells to both paclitaxel and cisplatin. Overall, our results suggest that MITF, and several MITF-regulated factors, are associated with resistance to chemotherapy in melanoma and that different MITF targets can be of importance for different drugs.

  2. Inhibition of melanogenesis by Xanthium strumarium L.

    PubMed

    Li, Hailan; Min, Young Sil; Park, Kyoung-Chan; Kim, Dong-Seok

    2012-01-01

    Xanthium strumarium L. (Asteraceae) is traditionally used in Korea to treat skin diseases. In this study, we investigated the effects of a X. strumarium stem extract on melanin synthesis. It inhibited melanin synthesis in a concentration-dependent manner, but it did not directly inhibit tyrosinase, the rate-limiting melanogenic enzyme, and instead downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase expression. MITF, the master regulator of pigmentation, is a target of the Wnt signaling pathway, which includes glycogen synthase kinase 3β (GSK3β) and β-catenin. Hence, the influence of X. strumarium stem extract on GSK3β and β-catenin was further investigated. X. strumarium induced GSK3β phosphorylation (inactivation), but the level of β-catenin did not change. Moreover, a specific GSK3β inhibitor restored X. strumarium-induced melanin reduction. Hence, we suggest that X. strumarium inhibits melanin synthesis through downregulation of tyrosinase via GSK3β phosphorylation.

  3. Anti-Melanogenic Effect of Oenothera laciniata Methanol Extract in Melan-a Cells.

    PubMed

    Kim, Su Eun; Lee, Chae Myoung; Kim, Young Chul

    2017-01-01

    We evaluated the antioxidant activity and anti-melanogenic effects of Oenothera laciniata methanol extract (OLME) in vitro by using melan-a cells. The total polyphenol and flavonoid content of OLME was 66.3 and 19.0 mg/g, respectively. The electron-donating ability, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity, and superoxide dismutase (SOD)-like activity of OLME (500 μg/mL) were 94.5%, 95.6%, and 63.6%, respectively. OLME and arbutin treatment at 50 μg/mL significantly decreased melanin content by 35.5% and 14.2%, respectively, compared to control ( p < 0.05). OLME and arbutin treatment at 50 μg/mL significantly inhibited intra-cellular tyrosinase activity by 22.6% and 12.6%, respectively, compared to control ( p < 0.05). OLME (50 μg/mL) significantly decreased tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor-M (MITF-M) mRNA expression by 57.1%, 67.3%, 99.0%, and 77.0%, respectively, compared to control ( p < 0.05). Arbutin (50 μg/mL) significantly decreased tyrosinase, TRP-1, and TRP-2 mRNA expression by 24.2%, 42.9%, and 48.5%, respectively, compared to control ( p < 0.05). However, arbutin (50 μg/mL) did not affect MITF-M mRNA expression. Taken together, OLME showed a good antioxidant activity and anti-melanogenic effect in melan-a cells that was superior to that of arbutin, a well-known skin-whitening agent. The potential mechanism underlying the anti-melanogenic effect of OLME was inhibition of tyrosinase activity and down-regulation of tyrosinase, TRP-1, TRP-2, and MITF-M mRNA expression.

  4. Anti-Melanogenic Effect of Oenothera laciniata Methanol Extract in Melan-a Cells

    PubMed Central

    Kim, Su Eun; Lee, Chae Myoung; Kim, Young Chul

    2017-01-01

    We evaluated the antioxidant activity and anti-melanogenic effects of Oenothera laciniata methanol extract (OLME) in vitro by using melan-a cells. The total polyphenol and flavonoid content of OLME was 66.3 and 19.0 mg/g, respectively. The electron-donating ability, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity, and superoxide dismutase (SOD)-like activity of OLME (500 μg/mL) were 94.5%, 95.6%, and 63.6%, respectively. OLME and arbutin treatment at 50 μg/mL significantly decreased melanin content by 35.5% and 14.2%, respectively, compared to control (p < 0.05). OLME and arbutin treatment at 50 μg/mL significantly inhibited intra-cellular tyrosinase activity by 22.6% and 12.6%, respectively, compared to control (p < 0.05). OLME (50 μg/mL) significantly decreased tyrosinase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor-M (MITF-M) mRNA expression by 57.1%, 67.3%, 99.0%, and 77.0%, respectively, compared to control (p < 0.05). Arbutin (50 μg/mL) significantly decreased tyrosinase, TRP-1, and TRP-2 mRNA expression by 24.2%, 42.9%, and 48.5%, respectively, compared to control (p < 0.05). However, arbutin (50 μg/mL) did not affect MITF-M mRNA expression. Taken together, OLME showed a good antioxidant activity and anti-melanogenic effect in melan-a cells that was superior to that of arbutin, a well-known skin-whitening agent. The potential mechanism underlying the anti-melanogenic effect of OLME was inhibition of tyrosinase activity and down-regulation of tyrosinase, TRP-1, TRP-2, and MITF-M mRNA expression. PMID:28133514

  5. Menadione (Vitamin K3) decreases melanin synthesis through ERK activation in Mel-Ab cells.

    PubMed

    Kim, Eun-Hyun; Kim, Myo-Kyoung; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Park, Kyoung-Chan; Kim, Dong-Seok

    2013-10-15

    Menadione is a synthetic vitamin K3 derivative. Here, we examined the effects of menadione on melanogenesis and its related signaling pathways. Our results showed that melanin content was significantly reduced after menadione treatment in a dose-dependent manner. However, menadione treatment did not reduce tyrosinase activity directly. Wnt signaling is known to play a major role in the control of melanin synthesis. Thus, we tested the effects of menadione treatment on GSK3β and β-catenin signaling, but found that menadione did not influence either of these signaling pathways. We also investigated changes in the phosphorylation of ERK, which is related to melanin regulation. These results indicated that menadione treatment led to the phosphorylation of ERK. Additionally, menadione treatment reduced both MITF and tyrosinase protein levels. Treatment with PD98059, a specific ERK pathway inhibitor, restored menadione-induced melanin reduction and also prevented MITF and tyrosinase downregulation by menadione. These results suggest that the hypopigmentary action of menadione is due to MITF and tyrosinase downregulation by ERK activation. © 2013 Elsevier B.V. All rights reserved.

  6. The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcepsilonRI-activated mast cells.

    PubMed

    Lee, Yu-Nee; Nechushtan, Hovav; Figov, Navah; Razin, Ehud

    2004-02-01

    The involvement of microphthalmia transcription factor (MITF) in the function of mast cells, melanocytes, and osteoclasts has recently started to be investigated in depth. In a previous study, we found Hint to be associated with MITF in mast cells and showed that it suppresses MITF's transcriptional activity. Here, we have found that lysyl-tRNA synthetase (LysRS) is also associated with MITF and forms a multicomplex with MITF and Hint. We have also shown that Ap4A, an endogenous molecule consisting of two adenosine linked by four phosphate which is known to be synthesized by LysRS, is accumulated intracellularily above 700 microM in IgE-Ag-activated mast cells, binds to Hint, liberates MITF, and thus leads to the activation of MITF-dependent gene expression. This implies that LysRS plays a key role via Ap4A as an important signaling molecule in MITF transcriptional activity.

  7. [6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway

    PubMed Central

    Yao, Cheng; Oh, Jang-hee; Oh, Inn Gyung; Park, Chi-hyun; Chung, Jin Ho

    2013-01-01

    Aim: To investigate the effect of [6]-shogaol, an active ingredient in ginger, on melanogenesis and the underlying mechanisms. Methods: B16F10 mouse melanoma cells were tested. Cell viability was determined with the MTT assay. Melanin content and tyrosinase activity were analyzed with a spectrophotometer. The protein expression of tyrosinase and microphthalmia associated transcription factor (MITF), as well as phosphorylated or total ERK1/2 and Akt were measured using Western blot. Results: Treatment of the cells with [6]-shogaol (1, 5, 10 μmol/L) reduced the melanin content in a concentration-dependent manner. [6]-Shogaol (5 and 10 μmol/L) significantly decreased the intracellular tyrosinase activity, and markedly suppressed the expression levels of tyrosinase and MITF proteins in the cells. Furthermore, [6]-shogaol (10 μmol/L) activated ERK, which was known to negatively regulate melanin synthesis in these cells. Pretreatment with the specific ERK pathway inhibitor PD98059 (20 μmol/L) greatly attenuated the inhibition of melanin synthesis by [6]-shogaol (10 μmol/L). Conclusion: The results demonstrate that [6]-shogaol inhibits melanogenesis in B16F10 mouse melanoma cells via activating the ERK pathway. PMID:23123645

  8. [6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway.

    PubMed

    Yao, Cheng; Oh, Jang-hee; Oh, Inn Gyung; Park, Chi-hyun; Chung, Jin Ho

    2013-02-01

    To investigate the effect of [6]-shogaol, an active ingredient in ginger, on melanogenesis and the underlying mechanisms. B16F10 mouse melanoma cells were tested. Cell viability was determined with the MTT assay. Melanin content and tyrosinase activity were analyzed with a spectrophotometer. The protein expression of tyrosinase and microphthalmia associated transcription factor (MITF), as well as phosphorylated or total ERK1/2 and Akt were measured using Western blot. Treatment of the cells with [6]-shogaol (1, 5, 10 μmol/L) reduced the melanin content in a concentration-dependent manner. [6]-Shogaol (5 and 10 μmol/L) significantly decreased the intracellular tyrosinase activity, and markedly suppressed the expression levels of tyrosinase and MITF proteins in the cells. Furthermore, [6]-shogaol (10 μmol/L) activated ERK, which was known to negatively regulate melanin synthesis in these cells. Pretreatment with the specific ERK pathway inhibitor PD98059 (20 μmol/L) greatly attenuated the inhibition of melanin synthesis by [6]-shogaol (10 μmol/L). The results demonstrate that [6]-shogaol inhibits melanogenesis in B16F10 mouse melanoma cells via activating the ERK pathway.

  9. Phenotypic characterization of nevus and tumor patterns in MITF E318K mutation carrier melanoma patients.

    PubMed

    Sturm, Richard A; Fox, Carly; McClenahan, Phil; Jagirdar, Kasturee; Ibarrola-Villava, Maider; Banan, Parastoo; Abbott, Nicola C; Ribas, Gloria; Gabrielli, Brian; Duffy, David L; Peter Soyer, H

    2014-01-01

    A germline polymorphism of the microphthalmia transcription factor (MITF) gene encoding a SUMOylation-deficient E318K-mutated protein has recently been described as a medium-penetrance melanoma gene. In a clinical assessment of nevi from 301 volunteers taken from Queensland, we identified six individuals as MITF E318K mutation carriers. The phenotype for 5 of these individuals showed a commonality of fair skin, body freckling that varied over a wide range, and total nevus count between 46 and 430; in addition, all were multiple primary melanoma patients. The predominant dermoscopic signature pattern of nevi was reticular, and the frequency of globular nevi in carriers varied, which does not suggest that the MITF E318K mutation acts to force the continuous growth of nevi. Excised melanocytic lesions were available for four MITF E318K carrier patients and were compared with a matched range of wild-type (WT) melanocytic lesions. The MITF staining pattern showed a predominant nuclear signal in all sections, with no significant difference in the nuclear/cytoplasmic ratio between mutation-positive or -negative samples. A high incidence of amelanotic melanomas was found within the group, with three of the five melanomas from one patient suggesting a genetic interaction between the MITF E318K allele and an MC1R homozygous red hair color (RHC) variant genotype.

  10. Up-regulation of melanin synthesis by the antidepressant fluoxetine.

    PubMed

    Liao, Sha; Shang, Jing; Tian, Xiaoli; Fan, Xueqi; Shi, Xiupu; Pei, Siran; Wang, Qian; Yu, Boyang

    2012-08-01

    Fluoxetine, a member of the class of selective serotonin reuptake inhibitors, is a potent antidepressant commonly used in clinical practice. Here, we report that fluoxetine increases cellular tyrosinase (TYR) activity, enhances the protein levels of microphthalmia-associated transcription factor (MITF), TYR and tyrosinase-related protein-1 (TRP-1) and eventually leads to a dramatic increase in melanin production in both murine B16F10 melanoma cells and normal human melanocytes (NHMCs). In well-characterized C57BL/6 mouse models, systemic application of fluoxetine increased hair pigmentation by up-regulating hair follicular MITF, TYR, TRP-1 and tyrosinase-related protein-2 (TRP-2) protein levels. Using a serotonin 1A receptor (SR1A) antagonist and RNA interference (RNAi) technique, we revealed that SR1A appears to be one of the involved pathways in the fluoxetine-induced melanogenesis in B16F10 cells. These results suggest that fluoxetine may hold a significant therapeutic potential for treating skin hypopigmentation disorders, and SR1A may serve as a novel target in modulating melanogenesis. © 2012 John Wiley & Sons A/S.

  11. Inhibitory Effect of Dried Pomegranate Concentration Powder on Melanogenesis in B16F10 Melanoma Cells; Involvement of p38 and PKA Signaling Pathways

    PubMed Central

    Kang, Su Jin; Choi, Beom Rak; Lee, Eun Kyoung; Kim, Seung Hee; Yi, Hae Yeon; Park, Hye Rim; Song, Chang Hyun; Lee, Young Joon; Ku, Sae Kwang

    2015-01-01

    Plants rich in antioxidant substances may be useful for preventing skin aging. Pomegranates, containing flavonoids and other polyphenolic compounds, are widely consumed due to their beneficial properties. We examined the underlying mechanisms of dried pomegranate concentrate powder (PCP) on melanin synthesis in B16F10 melanoma cells. The antioxidant effects of PCP were determined by measuring free radical scavenging capacity and transcript levels of antioxidant enzymes. To explore the inhibitory effects of PCP on melanin synthesis, we measured tyrosinase activity and melanin content in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. In addition, the levels of tyrosinase-related protein-1 (TRP-1), TRP-2, tyrosinase, and microphthalmia-associated transcription factor (MITF) expression were determined by Western blotting. Changes in the phosphorylation status of protein kinase A (PKA), cAMP response element-binding protein (CREB), mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase Akt, and glycogen kinase 3β (GSK3β) were also examined. The free radical scavenging activity of PCP increased in a dose-dependent manner. In PCP-treated B16F10 cells, transcript levels of glutathione peroxidase-1 (GPx-1) were increased compared with α-MSH-stimulated cells. In addition, PCP led to the down-regulation of phospho-p38, phospho-PKA, phospho-CREB, phospho-GSK3β, MITF, and TRP-1 compared with α-MSH-stimulated B16F10 cells. We believe this effect may be associated with PCP activity, which leads to the inhibition of melanin production and tyrosinase activity. These results suggest that PCP decreases tyrosinase activity and melanin production via inactivation of the p38 and PKA signaling pathways, and subsequently decreases phosphorylation of CREB, MITF, and melanogenic enzymes. These observations provided new insights on the molecular mechanisms of the skin-whitening property of PCP. PMID:26473849

  12. PGE2 is a UVR-inducible autocrine factor for human melanocytes that stimulates tyrosinase activation

    PubMed Central

    Starner, Renny J.; McClelland, Lindy; Abdel-Malek, Zalfa; Fricke, Alex; Scott, Glynis

    2013-01-01

    Melanocyte proliferation, dendrite formation, and pigmentation are controlled by paracrine factors, particularly following exposure to ultraviolet radiation (UVR). Little is known about autocrine factors for melanocytes. Prostaglandins activate signaling pathways involved in growth, differentiation and apoptosis. Prostaglandin E2 (PGE2) is the most abundant prostaglandin released by keratinocytes following UVR, and stimulates the formation of dendrites in melanocytes. Synthesis of PGE2 is controlled by cPLA2, which releases arachidonic acid from membranes, and COX-2 and prostaglandin E2 synthases (PGES), which convert arachidonic acid to PGH2 and PGH2 to PGE2, respectively. In this report we show that multiple irradiations of human melanocytes with UVR stimulates tyrosinase activity, independent of expression of a functional melanocortin 1 receptor, suggesting the presence of a non-melanocortin autocrine factor. Irradiation of melanocytes activated cPLA2, the rate-limiting step in eicosanoid synthesis, and stimulated PGE2 secretion. PGE2 increased cAMP production, tyrosinase activity and proliferation in melanocytes. PGE2 binds to four distinct G-protein coupled receptors (EP1–4). We show that EP4 receptor signaling stimulates cAMP production in melanocytes. Conversely, stimulation of the EP3 receptor lowered basal cAMP levels. These data suggest that relative levels or activity of these receptors controls effects of PGE2 on cAMP in melanocytes. The data are the first to identify PGE2 as an UVR-inducible autocrine factor for melanocytes that stimulates tyrosinase activity and proliferation, and to show that EP3 and EP4 receptor signaling have opposing effects on cAMP production, a critical signaling pathway that regulates proliferation and melanogenesis in melanocytes. PMID:20500768

  13. Inhibitory effects of 1-O-methyl-fructofuranose from Schisandra chinensis fruit on melanogenesis in B16F0 melanoma cells.

    PubMed

    Oh, Eun Young; Jang, Ji Yeon; Choi, Yung Hyun; Choi, Young Whan; Choi, Byung Tae

    2010-10-28

    1-O-methyl-fructofuranose (1-O-MFF) from the fruit of Schisandra chinensis is a traditional Korean medicinal herb that has a variety of beneficial properties. The effect of purified 1-O-MFF on melanogenesis including the activation of related signaling pathways was investigated. The inhibitory activities of 1-O-MFF were examined by melanin synthesis, tyrosinase activity assay, Western blot and flow cytometric analyses in B16F0 mouse melanoma cells. 1-O-MFF significantly inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner, and reduced the expression of melanogenic proteins including microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein-1. 1-O-MFF phosphorylated and activated melanogenesis inhibitory proteins such as mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and Akt. Flow cytometry confirmed that 1-O-MFF phosphorylated ERK and Akt proteins and recovered partially phosphorylated forms in cells treated with the MEK/ERK inhibitor compound PD98059 and the phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor compound LY294002. The suppressive effects of 1-O-MFF on melanogenesis may involve down-regulation of MITF and its downstream signal pathway via the activation of MEK/ERK or PI3K/Akt. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Heterogeneity of Metastatic Melanoma:  Correlation of MITF With Its Transcriptional Targets MLSN1, PEDF, HMB-45, and MART-1.

    PubMed

    Zand, Sarvenaz; Buzney, Elizabeth; Duncan, Lyn M; Dadras, Soheil S

    2016-09-01

    Histologic and molecular heterogeneity is well recognized in malignant melanoma; however, the diversity of expression of new and classic melanoma markers has not been correlated in serial sections of metastases. We examined and correlated the expression of microphthalmia transcription factor (MITF) with its transcriptional targets, including melastatin (MLSN1/TRPM1), pigment epithelium-derived factor (SERPINF1/PEDF), SILV/PMEL17/GP100 (human melanoma black 45 [HMB-45]), and melanoma antigen recognized by T cells 1 (MART-1)/MLANA, in 13 melanoma metastases in lymph nodes of 13 patients. The expression levels and patterns of marker expression were recorded by a semiquantitative, 4-point ordinal reactivity method. Our results showed a consistently robust and diffuse expression of MITF protein in 12 (92%) of 13 metastatic tumors compared with variable expression of MLSN1 (46%) messenger RNA or PEDF (75%), HMB-45 (54%), and MART-1 (46%) proteins. Overall, in melanoma lymph node metastases, MITF protein expression was not tightly correlated with its gene targets. Moreover, the immunoreactivity for MITF, compared with MART-1 and HMB-45, was retained, supporting immunohistochemical detection of MITF as a more sensitive method of detecting metastatic melanoma. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Suppression of Melanin Production by Expression of HSP70*

    PubMed Central

    Hoshino, Tatsuya; Matsuda, Minoru; Yamashita, Yasuhiro; Takehara, Masaya; Fukuya, Masayo; Mineda, Kazutaka; Maji, Daisuke; Ihn, Hironobu; Adachi, Hiroaki; Sobue, Gen; Funasaka, Yoko; Mizushima, Tohru

    2010-01-01

    Skin hyperpigmentation disorders due to abnormal melanin production induced by ultraviolet (UV) irradiation are both a clinical and cosmetic problem. UV irradiation stimulates melanin production in melanocytes by increasing intracellular cAMP. Expression of heat shock proteins (HSPs), especially HSP70, is induced by various stressors, including UV irradiation, to provide cellular resistance to such stressors. In this study we examined the effect of expression of HSP70 on melanin production both in vitro and in vivo. 3-Isobutyl-1-methylxanthine (IBMX), a cAMP-elevating agent, stimulated melanin production in cultured mouse melanoma cells, and this stimulation was suppressed in cells overexpressing HSP70. IBMX-dependent transcriptional activation of the tyrosinase gene was also suppressed in HSP70-overexpressing cells. Expression of microphthalmia-associated transcription factor (MITF), which positively regulates transcription of the tyrosinase gene, was up-regulated by IBMX; however, this up-regulation was not suppressed in HSP70-overexpressing cells. On the other hand, immunoprecipitation and immunostaining analyses revealed a physical interaction between and co-localization of MITF and HSP70, respectively. Furthermore, the transcription of tyrosinase gene in nuclear extract was inhibited by HSP70. In vivo, UV irradiation of wild-type mice increased the amount of melanin in the basal layer of the epidermis, and this increase was suppressed in transgenic mice expressing HSP70. This study provides the first evidence of an inhibitory effect of HSP70 on melanin production both in vitro and in vivo. This effect seems to be mediated by modulation of MITF activity through a direct interaction between HSP70 and MITF. PMID:20177067

  16. Genetic variation in the MITF promoter affects skin colour and transcriptional activity in black-boned chickens.

    PubMed

    Wang, G; Liao, J; Tang, M; Yu, S

    2018-02-01

    1. Microphthalmia-associated transcription factor (MITF) plays a pivotal role in melanocyte development by regulating the transcription of major pigmentation enzymes (e.g. TYR, TYRP1 and DCT). A single-nucleotide polymorphism (SNP), c.-638T>C, was identified in the MITF promoter, and genotyping of a population (n = 426) revealed that SNP c.-638T>C was associated with skin colour in black-boned chickens. 2. Individuals with genotypes CC and TC exhibited greater MTIF expression than those with genotype TT. Luciferase assays also revealed that genotype CC and TC promoters had higher activity levels than genotype TT. Expression of melanogenesis-related gene (TYR) was higher in the skin of chickens with the CC and CT genotype compared to TT chickens (P < 0.05). 3. Transcription factor-binding site analyses showed that the c.-638C allele contains a putative binding site for transcription factor sterol regulatory element-binding transcription factor 2, aryl hydrocarbon receptor nuclear translocator, transcription factor binding to IGHM enhancer 3 and upstream transcription factor 2. In contrast, the c.-638T allele contains binding sites for Sp3 transcription factor and Krüppel-like factor 1. 4. It was concluded that MITF promoter polymorphisms affected chicken skin colour. SNP c.-638T>C could be used for the marker-assisted selection of skin colour in black-boned chicken breeding.

  17. NFATc2 is an intrinsic regulator of melanoma dedifferentiation.

    PubMed

    Perotti, V; Baldassari, P; Molla, A; Vegetti, C; Bersani, I; Maurichi, A; Santinami, M; Anichini, A; Mortarini, R

    2016-06-02

    Melanoma dedifferentiation, characterized by the loss of MITF and MITF regulated genes and by upregulation of stemness markers as CD271, is implicated in resistance to chemotherapy, target therapy and immunotherapy. The identification of intrinsic mechanisms fostering melanoma dedifferentiation may provide actionable therapeutic targets to improve current treatments. Here, we identify NFATc2 transcription factor as an intrinsic regulator of human melanoma dedifferentiation. In panels of melanoma cell lines, NFATc2 expression correlated inversely with MITF at both mRNA and protein levels. NFATc2(+/Hi) melanoma cell lines were CD271(+) and deficient for expression of melanocyte differentiation antigens (MDAs) MART-1, gp100, tyrosinase and of GPNMB, PGC1-α and Rab27a, all regulated by MITF. Targeting of NFATc2 by small interfering RNA, short hairpin RNA and by an NFATc2 inhibitor upregulated MITF, MDAs, GPNMB, PGC-1α, tyrosinase activity and pigmentation and suppressed CD271. Mechanistically, we found that NFATc2 controls melanoma dedifferentiation by inducing expression in neoplastic cells of membrane-bound tumor necrosis factor-α (mTNF-α) and that melanoma-expressed TNF-α regulates a c-myc-Brn2 axis. Specifically, NFATc2, mTNF-α and expression of TNF receptors were significantly correlated in panels of cell lines. NFATc2 silencing suppressed TNF-α expression, and neutralization of melanoma-expressed TNF-α promoted melanoma differentiation. Moreover, silencing of NFATc2 and TNF-α neutralization downmodulated c-myc and POU3F2/Brn2. Brn2 was strongly expressed in NFATc2(+/Hi) MITF(Lo) cell lines and its silencing upregulated MITF. Targeting of c-myc, by silencing or by a c-myc inhibitor, suppressed Brn2 and upregulated MITF and MART-1 in melanoma cells. The relevance of NFATc2-dependent melanoma dedifferentiation for immune escape was shown by cytolytic T-cell assays. NFATc2(Hi) MITF(Lo) MDA(Lo) HLA-A2.1(+) melanoma cells were poorly recognized by MDA

  18. Antioxidative and Anti-Melanogenic Activities of Bamboo Stems (Phyllostachys nigra variety henosis) via PKA/CREB-Mediated MITF Downregulation in B16F10 Melanoma Cells.

    PubMed

    Choi, Moon-Hee; Jo, Han-Gyo; Yang, Ji Hye; Ki, Sung Hwan; Shin, Hyun-Jae

    2018-01-30

    Phyllostachys nigra var. henosis, a domestic bamboo species, has been attracting much attention; its bioactive compounds (especially in the leaf) show antioxidant, anti-inflammatory, and anti-obesity activities. Little information is available on the antioxidative and anti-melanogenetic activities of the bioactive compounds in bamboo stems. The anti-melanogenic and antioxidative activities of the EtOAc fraction (PN3) of a P. nigra stem extract were investigated in a cell-free system and in B16F10 melanoma cells. PN3 consisted of a mixture of flavonoids, such as catechin, chlorogenic acid, caffeic acid, and p -coumaric acid. The antioxidant activity (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)), and hydroxyl radical scavenging) was evaluated, as well as the inhibition of reactive oxygen species (ROS) produced by the Fenton reaction. PN3 showed in vitro tyrosinase inhibition activity with the half maximal inbihitory concentration (IC 50 ) values of 240 μg/mL, and in vivo cytotoxic concentration ranges > 100 μg/mL. The protein expression levels and mRNA transcription levels of TYR , TRP-1 , and MITF were decreased in a dose-dependent manner by the treatment with PN3. PN3 interfered with the phosphorylation of intracellular protein kinase A (PKA)/cAMP response element-binding protein (CREB), demonstrating potent anti-melanogenic effects. PN3 could inhibit PKA/CREB and the subsequent degradation of microphthalmia-associated transcription factor (MITF), resulting in the suppression of melanogenic enzymes and melanin production, probably because of the presence of flavonoid compounds. These properties make it a candidate as an additive to whitening cosmetics.

  19. Antioxidative and Anti-Melanogenic Activities of Bamboo Stems (Phyllostachys nigra variety henosis) via PKA/CREB-Mediated MITF Downregulation in B16F10 Melanoma Cells

    PubMed Central

    Choi, Moon-Hee; Jo, Han-Gyo; Yang, Ji Hye; Ki, Sung Hwan

    2018-01-01

    Phyllostachys nigra var. henosis, a domestic bamboo species, has been attracting much attention; its bioactive compounds (especially in the leaf) show antioxidant, anti-inflammatory, and anti-obesity activities. Little information is available on the antioxidative and anti-melanogenetic activities of the bioactive compounds in bamboo stems. The anti-melanogenic and antioxidative activities of the EtOAc fraction (PN3) of a P. nigra stem extract were investigated in a cell-free system and in B16F10 melanoma cells. PN3 consisted of a mixture of flavonoids, such as catechin, chlorogenic acid, caffeic acid, and p-coumaric acid. The antioxidant activity (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)), and hydroxyl radical scavenging) was evaluated, as well as the inhibition of reactive oxygen species (ROS) produced by the Fenton reaction. PN3 showed in vitro tyrosinase inhibition activity with the half maximal inbihitory concentration (IC50) values of 240 μg/mL, and in vivo cytotoxic concentration ranges > 100 μg/mL. The protein expression levels and mRNA transcription levels of TYR, TRP-1, and MITF were decreased in a dose-dependent manner by the treatment with PN3. PN3 interfered with the phosphorylation of intracellular protein kinase A (PKA)/cAMP response element-binding protein (CREB), demonstrating potent anti-melanogenic effects. PN3 could inhibit PKA/CREB and the subsequent degradation of microphthalmia-associated transcription factor (MITF), resulting in the suppression of melanogenic enzymes and melanin production, probably because of the presence of flavonoid compounds. These properties make it a candidate as an additive to whitening cosmetics. PMID:29385729

  20. Inhibitory mechanisms of glabridin on tyrosinase

    NASA Astrophysics Data System (ADS)

    Chen, Jianmin; Yu, Xiaojing; Huang, Yufeng

    2016-11-01

    Tyrosinase is an oxidase that is the rate-limiting enzyme for controlling the production of melanin in the human body. Overproduction of melanin could lead to a variety of skin disorders. Glabridin, an isoflavan, isolated from the root of Glycyrrhiza glabra Linn, has exhibited several pharmacological activities, including excellent inhibitory effects on tyrosinase. In this paper, the inhibitory kinetics of glabridin on tyrosinase and their binding mechanisms were determined using spectroscopic, zebrafish model and molecular docking techniques. The results indicate that glabridin reversibly inhibits tyrosinase in a noncompetitive manner through a multiphase kinetic process with the IC50 of 0.43 μmol/L. It has been shown that glabridin had a strong ability to quench the intrinsic fluorescence of tyrosinase mainly through a static quenching procedure, suggesting a stable glabridin-tyrosinase complex may be generated. The results of molecular docking suggest that glabridin did not directly bind to the active site of tyrosinase. Moreover, according to the results of zebrafish model system, glabridin shows no effects on melanin synthesis in zebrafish but presents toxicity to zebrafish embryo. The possible inhibitory mechanisms, which will help to design and search for tyrosinase inhibitors especially for glabridin analogues, were proposed.

  1. Mushroom tyrosinase: recent prospects.

    PubMed

    Seo, Sung-Yum; Sharma, Vinay K; Sharma, Niti

    2003-05-07

    Tyrosinase, also known as polyphenol oxidase, is a copper-containing enzyme, which is widely distributed in microorganisms, animals, and plants. Nowadays mushroom tyrosinase has become popular because it is readily available and useful in a number of applications. This work presents a study on the importance of tyrosinase, especially that derived from mushroom, and describes its biochemical character and inhibition and activation by the various chemicals obtained from natural and synthetic origins with its clinical and industrial importance in the recent prospects.

  2. Activation of neurokinin-1 receptor by substance P inhibits melanogenesis in B16-F10 melanoma cells.

    PubMed

    Ping, Fengfeng; Shang, Jing; Zhou, Jia; Song, Jing; Zhang, Luyong

    2012-12-01

    Skin pigmentation plays a number of valuable roles and its regulation is a complex process that is controlled by different factors. Substance P (SP) regulates many biological functions, including neurogenic inflammation, pain, and stress. However, to date, the regulatory role of SP in the control of melanogenesis has not been elucidated. The present study was designed to investigate the effects of SP on melanogenesis and to elucidate its underlying mechanism(s). After treatment for 48 h in mouse B16-F10 melanoma cells, SP (1 and 10nM) significantly down-regulated tyrosinase activity and melanin content. Importantly, western blot analysis revealed the presence of neurokinin-1 receptor (NK-1 R) in B16-F10 cells and the activation of it after SP treatment. It was also found that preincubation with NK-1 receptor antagonist Spantide I could partially reversed SP-induced down-regulations of tyrosinase activity, melanin content and the expression of tyrosinase and tyrosinase-related protein 1. Furthermore, SP could remarkably inhibit the expressions of microphtalmia-associated transcription factor (MITF) and p-p38 MAPK and stimulated p-p70 S6K1. These effects could also be partially reversed by the pretreatment with Spantide I. These results collectively suggested that SP inhibited melanogenesis in B16-F10 cells, which might be attributed to the fact that SP induces the activation of NK-1 receptor, stimulates the phosphorylation of p70 S6K1 and inhibits that of p38 MAPK, decreases the tyrosinase and tyrosinase-related protein 1 expression through MITF, finally resulting in the suppression of melanogenesis. These observations in vitro indicated that the regulation of the SP/NK-1 receptor system might be a useful novel management for skin pigmentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Novel gene fusion of PRCC-MITF defines a new member of MiT family translocation renal cell carcinoma: clinicopathological analysis and detection of the gene fusion by RNA sequencing and FISH.

    PubMed

    Xia, Qiu-Yuan; Wang, Xiao-Tong; Ye, Sheng-Bing; Wang, Xuan; Li, Rui; Shi, Shan-Shan; Fang, Ru; Zhang, Ru-Song; Ma, Heng-Hui; Lu, Zhen-Feng; Shen, Qin; Bao, Wei; Zhou, Xiao-Jun; Rao, Qiu

    2018-04-01

    MITF, TFE3, TFEB and TFEC belong to the same microphthalmia-associated transcription factor family (MiT). Two transcription factors in this family have been identified in two unusual types of renal cell carcinoma (RCC): Xp11 translocation RCC harbouring TFE3 gene fusions and t(6;11) RCC harbouring a MALAT1-TFEB gene fusion. The 2016 World Health Organisation classification of renal neoplasia grouped these two neoplasms together under the category of MiT family translocation RCC. RCCs associated with the other two MiT family members, MITF and TFEC, have rarely been reported. Herein, we identify a case of MITF translocation RCC with the novel PRCC-MITF gene fusion by RNA sequencing. Histological examination of the present tumour showed typical features of MiT family translocation RCCs, overlapping with Xp11 translocation RCC and t(6;11) RCC. However, this tumour showed negative results in TFE3 and TFEB immunochemistry and split fluorescence in-situ hybridisation (FISH) assays. The other MiT family members, MITF and TFEC, were tested further immunochemically and also showed negative results. RNA sequencing and reverse transcription-polymerase chain reaction confirmed the presence of a PRCC-MITF gene fusion: a fusion of PRCC exon 5 to MITF exon 4. We then developed FISH assays covering MITF break-apart probes and PRCC-MITF fusion probes to detect the MITF gene rearrangement. This study both proves the recurring existence of MITF translocation RCC and expands the genotype spectrum of MiT family translocation RCCs. © 2017 John Wiley & Sons Ltd.

  4. A novel mutation in the MITF may be digenic with GJB2 mutations in a large Chinese family of Waardenburg syndrome type II.

    PubMed

    Yan, Xukun; Zhang, Tianyu; Wang, Zhengmin; Jiang, Yi; Chen, Yan; Wang, Hongyan; Ma, Duan; Wang, Lei; Li, Huawei

    2011-12-20

    Waardenburg syndrome type II (WS2) is associated with syndromic deafness. A subset of WS2, WS2A, accounting for approximately 15% of patients, is attributed to mutations in the microphthalmia-associated transcription factor (MITF) gene. We examined the genetic basis of WS2 in a large Chinese family. All 9 exons of the MITF gene, the single coding exon (exon 2) of the most common hereditary deafness gene GJB2 and the mitochondrial DNA (mtDNA) 12S rRNA were sequenced. A novel heterozygous mutation c.[742_743delAAinsT;746_747delCA] in exon 8 of the MITF gene co-segregates with WS2 in the family. The MITF mutation results in a premature termination codon and a truncated MITF protein with only 247 of the 419 wild type amino acids. The deaf proband had this MITF gene heterozygous mutation as well as a c.[109G>A]+[235delC] compound heterozygous pathogenic mutation in the GJB2 gene. No pathogenic mutation was found in mtDNA 12S rRNA in this family. Thus, a novel compound heterozygous mutation, c.[742_743delAAinsT;746_747delCA] in MITF exon 8 was the key genetic reason for WS2 in this family, and a digenic effect of MITF and GJB2 genes may contribute to deafness of the proband. Copyright © 2011. Published by Elsevier Ltd.

  5. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma

    PubMed Central

    Yokoyama, Satoru; Woods, Susan L.; Boyle, Glen M.; Aoude, Lauren G.; MacGregor, Stuart; Zismann, Victoria; Gartside, Michael; Cust, Anne E.; Haq, Rizwan; Harland, Mark; Taylor, John C.; Duffy, David L.; Holohan, Kelly; Dutton-Regester, Ken; Palmer, Jane M.; Bonazzi, Vanessa; Stark, Mitchell S.; Symmons, Judith; Law, Matthew H.; Schmidt, Christopher; Lanagan, Cathy; O’Connor, Linda; Holland, Elizabeth A.; Schmid, Helen; Maskiell, Judith A.; Jetann, Jodie; Ferguson, Megan; Jenkins, Mark A.; Kefford, Richard F.; Giles, Graham G.; Armstrong, Bruce K.; Aitken, Joanne F.; Hopper, John L.; Whiteman, David C.; Pharoah, Paul D.; Easton, Douglas F.; Dunning, Alison M.; Newton-Bishop, Julia A.; Montgomery, Grant W.; Martin, Nicholas G.; Mann, Graham J.; Bishop, D. Timothy; Tsao, Hensin; Trent, Jeffrey M.; Fisher, David E.; Hayward, Nicholas K.; Brown, Kevin M.

    2012-01-01

    So far, two familial melanoma genes have been identified, accounting for a minority of genetic risk in families. Mutations in CDKN2A account for approximately 40% of familial cases1, and predisposing mutations in CDK4 have been reported in a very small number of melanoma kindreds2. To identify other familial melanoma genes, here we conducted whole-genome sequencing of probands from several melanoma families, identifying one individual carrying a novel germline variant (coding DNA sequence c.G1075A; protein sequence p.E318K; rs149617956) in the melanoma-lineage-specific oncogene microphthalmia-associated transcription factor (MITF). Although the variant co-segregated with melanoma in some but not all cases in the family, linkage analysis of 31 families subsequently identified to carry the variant generated a log odds ratio (lod) score of 2.7 under a dominant model, indicating E318K as a possible intermediate risk variant. Consistent with this, the E318K variant was significantly associated with melanoma in a large Australian case–control sample. Likewise, it was similarly associated in an independent case–control sample from the United Kingdom. In the Australian sample, the variant allele was significantly over-represented in cases with a family history of melanoma, multiple primary melanomas, or both. The variant allele was also associated with increased naevus count and non-blue eye colour. Functional analysis of E318K showed that MITF encoded by the variant allele had impaired sumoylation and differentially regulated several MITF targets. These data indicate that MITF is a melanoma-predisposition gene and highlight the utility of whole-genome sequencing to identify novel rare variants associated with disease susceptibility. PMID:22080950

  6. Neural stem cells inhibit melanin production by activation of Wnt inhibitors.

    PubMed

    Hwang, Insik; Park, Ju-Hwang; Park, Hang-Soo; Choi, Kyung-Ah; Seol, Ki-Cheon; Oh, Seung-Ick; Kang, Seongman; Hong, Sunghoi

    2013-12-01

    Melanin for skin pigmentation is synthesized from tyrosine via an enzymatic cascade that is controlled by tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase/tyrosinase related protein 2 (Dct/TRP2), which are the targets of microphthalmia-associated transcription factor (MITF). MITF is a master regulator of pigmentation and a target of β-catenin in Wnt/β-catenin signaling during melanocyte differentiation. Stem cells have been used in skin pigmentation studies, but the mechanisms were not determined for the conditioned medium (CM)-mediated effects. In this study, the inhibition and mechanisms of melanin synthesis were elucidated in B16 melanoma cells and UV-B irradiated C57/BL-6 mice that were treated with human neural stem cell-conditioned medium (NSC-CM). B16-F10 melanoma cells (1.5×10(4)cells/well) and the shaved dorsal skin of mice were pretreated with various amount (5, 10, 20, 50, and 100%) of NSC-CM. Melanin contents and TYR activity were measured by a Spectramax spectrophotometer. The expression of TYR, TRP1, Dct/TRP2, MITF, β-catenin and Wnt inhibitors were evaluated by RT-PCR and western blot. The dorsal skin samples were analyzed by immunofluorescence with various antibodies and compared with that control of tissues. Marked decreases were evident in melanin content and TYR, TRP1, DCT/TRP2, MITF, and β-catenin expression in B16 cells and C57/BL-6 mice. NSC-CM negatively regulated Wnt/β-catenin signaling by decreasing the expression of β-catenin protein, which resulted from robust expression of Wnt inhibitors Dickkopf-1 (DKK1) and secreted frizzled-related protein 2 (sFRP2). These results demonstrate that NSC-CM suppresses melanin production in vitro and in vivo, suggesting that factors in NSC-CM may play an important role in deregulation of epidermal melanogenesis. Copyright © 2013 Japanese Society for Investigative Dermatology. All rights reserved.

  7. Physiological factors that regulate skin pigmentation

    PubMed Central

    Yamaguchi, Yuji; Hearing, Vincent J.

    2009-01-01

    More than 150 genes have been identified that affect skin color either directly or indirectly, and we review current understanding of physiological factors that regulate skin pigmentation. We focus on melanosome biogenesis, transport and transfer, melanogenic regulators in melanocytes and factors derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells and nerves. Enzymatic components of melanosomes include tyrosinase, tyrosinase-related protein 1 and dopachrome tautomerase, which depend on the functions of OA1, P, MATP, ATP7A and BLOC-1 to synthesize eumelanins and pheomelanins. The main structural component of melanosomes is Pmel17/gp100/Silv, whose sorting involves adaptor protein 1A (AP1A), AP1B, AP2 and spectrin, as well as a chaperone-like component, MART-1. During their maturation, melanosomes move from the perinuclear area toward the plasma membrane. Microtubules, dynein, kinesin, actin filaments, Rab27a, melanophilin, myosin Va and Slp2-a are involved in melanosome transport. Foxn1 and p53 up-regulate skin pigmentation via bFGF and POMC derivatives including α-MSH and ACTH, respectively. Other critical factors that affect skin pigmentation include MC1R, CREB, ASP, MITF, PAX3, SOX9/10, LEF-1/TCF, PAR-2, DKK1, SCF, HGF, GM-CSF, endothelin-1, prostaglandins, leukotrienes, thromboxanes, neurotrophins and neuropeptides. UV radiation up-regulates most factors that increase melanogenesis. Further studies will elucidate the currently unknown functions of many other pigment genes/proteins. PMID:19449448

  8. Thiopurine Drugs Repositioned as Tyrosinase Inhibitors

    PubMed Central

    Choi, Joonhyeok; Lee, You-Mie; Jee, Jun-Goo

    2017-01-01

    Drug repositioning is the application of the existing drugs to new uses and has the potential to reduce the time and cost required for the typical drug discovery process. In this study, we repositioned thiopurine drugs used for the treatment of acute leukaemia as new tyrosinase inhibitors. Tyrosinase catalyses two successive oxidations in melanin biosynthesis: the conversions of tyrosine to dihydroxyphenylalanine (DOPA) and DOPA to dopaquinone. Continuous efforts are underway to discover small molecule inhibitors of tyrosinase for therapeutic and cosmetic purposes. Structure-based virtual screening predicted inhibitor candidates from the US Food and Drug Administration (FDA)-approved drugs. Enzyme assays confirmed the thiopurine leukaemia drug, thioguanine, as a tyrosinase inhibitor with the inhibitory constant of 52 μM. Two other thiopurine drugs, mercaptopurine and azathioprine, were also evaluated for their tyrosinase inhibition; mercaptopurine caused stronger inhibition than thioguanine did, whereas azathioprine was a poor inhibitor. The inhibitory constant of mercaptopurine (16 μM) was comparable to that of the well-known inhibitor kojic acid (13 μM). The cell-based assay using B16F10 melanoma cells confirmed that the compounds inhibit mammalian tyrosinase. Particularly, 50 μM thioguanine reduced the melanin content by 57%, without apparent cytotoxicity. Cheminformatics showed that the thiopurine drugs shared little chemical similarity with the known tyrosinase inhibitors. PMID:29283382

  9. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

    PubMed

    Kim, Eun Sung; Jeon, Hong Bae; Lim, Hoon; Shin, Ji Hyun; Park, So Jung; Jo, Yoon Kyung; Oh, Wonil; Yang, Yoon Sun; Cho, Dong-Hyung; Kim, Ju-Yeon

    2015-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM) derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF) expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

  10. Repositioning of Thiourea-Containing Drugs as Tyrosinase Inhibitors.

    PubMed

    Choi, Joonhyeok; Jee, Jun-Goo

    2015-12-02

    Tyrosinase catalyzes two distinct sequential reactions in melanin biosynthesis: The hydroxylation of tyrosine to dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to dopaquinone. Developing functional modulators of tyrosinase is important for therapeutic and cosmetic purposes. Given the abundance of thiourea moiety in known tyrosinase inhibitors, we studied other thiourea-containing drugs as potential tyrosinase inhibitors. The thiourea-containing drugs in clinical use were retrieved and tested for their ability to inhibit tyrosinase. We observed that methimazole, thiouracil, methylthiouracil, propylthiouracil, ambazone, and thioacetazone inhibited mushroom tyrosinase. Except for methimazole, there was limited information regarding the activity of other drugs against tyrosinase. Both thioacetazone and ambazone significantly inhibited tyrosinase, with IC50 of 14 and 15 μM, respectively. Ambazone decreased melanin content without causing cellular toxicity at 20 μM in B16F10 cells. The activity of ambazone was stronger than that of kojic acid both in enzyme and melanin content assays. Kinetics of enzyme inhibition assigned the thiourea-containg drugs as non-competitive inhibitors. The complex models by docking simulation suggested that the intermolecular hydrogen bond via the nitrogen of thiourea and the contacts via thione were equally important for interacting with tyrosinase. These data were consistent with the results of enzyme assays with the analogues of thiourea.

  11. Quantitative comparison of MiTF, Melan-A, HMB-45 and Mel-5 in solar lentigines and melanoma in situ.

    PubMed

    Kim, Jinah; Taube, Janis M; McCalmont, Timothy H; Glusac, Earl J

    2011-10-01

    It is often challenging to reliably assess the number of lesional melanocytes in intraepidermal melanocytic proliferations involving sun-damaged skin. Therefore, dermatopathologists routinely use immunostains to help differentiate melanocytes from surrounding keratinocytes. Forty-three cases of solar lentigo or melanoma in situ (of the lentigo maligna type) were retrospectively chosen (20 melanomas in situ and 23 solar lentigo). Microphthalmia transcription factor (MiTF), HMB-45, Melan-A and Mel-5 immunostains were performed with an Azure blue counterstain, and the mean melanocyte counts were calculated within a 1-mm segment of epidermis. In solar lentigines, the mean melanocyte counts were 27 (MiTF), 23 (HMB-45 and Mel-5) and 41 (Melan-A), as compared to hematoxylin and eosin (H&E) (25). In melanoma in situ, the mean melanocyte counts were 112 (MiTF), 149 (Melan-A), 111 (HMB-45) and 80 (Mel-5), as compared to H&E (109). These results show that Melan-A significantly overestimates the density of melanocytes within dermatoheliotic skin. Compared to other tested stains, nuclear staining MiTF allowed greater distinction of melanocytes from keratinocytes with melanized cytoplasm. These findings indicate that MiTF is a superior marker for quantification of melanocytes in the evaluation of subtle intraepidermal melanocytic proliferations and in the differential diagnosis of solar lentigo. Copyright © 2011 John Wiley & Sons A/S.

  12. Retinal network adaptation to bright light requires tyrosinase.

    PubMed

    Page-McCaw, Patrick S; Chung, S Clare; Muto, Akira; Roeser, Tobias; Staub, Wendy; Finger-Baier, Karin C; Korenbrot, Juan I; Baier, Herwig

    2004-12-01

    The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish sdy gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the sdy mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in sdy. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in sdy mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.

  13. Inhibition of human melanoma cell growth by dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased Mitf levels

    PubMed Central

    Syed, Deeba N.; Afaq, Farrukh; Maddodi, Nityanand; Johnson, Jeremy J.; Sarfaraz, Sami; Ahmad, Adeel; Setaluri, Vijayasaradhi; Mukhtar, Hasan

    2011-01-01

    The prognosis of advanced melanoma remains poor in spite of treatment advances, emphasizing the importance of additional preventive measures. Flavonoids, natural components of our diet are being investigated for their chemopreventive/therapeutic properties. Microphthalmia-associated transcription factor (Mitf), downstream of Wnt/β-catenin pathway has become an important prognostic marker of melanoma. Here, we show that treatment of 451Lu melanoma cells with the dietary flavonoid fisetin resulted in decreased cell viability with G1-phase arrest and disruption of Wnt/β-catenin signaling. This was accompanied with a decrease in expression of Wnt protein and its co-receptors and a parallel increase in the expression of endogenous Wnt inhibitors. Fisetin-treated cells showed increased cytosolic levels of Axin and β-TrCP and decreased phosphorylation of GSK3-β assocaited with decreased β-catenin stabilization. Fisetin-mediated interference with the functional cooperation between β-catenin and LEF/TCF-2 resulted in downregulation of positively regulated TCF targets such as c-myc, Brn-2 and Mitf. Flowcytometric analysis of Mitf overexpressing cells showed that fisetin repressed Mitf-induced cell proliferation. Finally, administration of fisetin to 451Lu xenografted nude mice resulted in inhibition of tumor development and decreased Mitf expression. Our data suggest that fisetin can be developed as an effective agent against melanoma due to its potential inhibitory effect on β-catenin/Mitf signaling. PMID:21346776

  14. Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis.

    PubMed

    Bae, Young-An

    2017-04-01

    Codon usage bias (CUB) is a unique property of genomes and has contributed to the better understanding of the molecular features and the evolution processes of particular gene. In this study, genetic indices associated with CUB, including relative synonymous codon usage and effective numbers of codons, as well as the nucleotide composition, were investigated in the Clonorchis sinensis tyrosinase genes and their platyhelminth orthologs, which play an important role in the eggshell formation. The relative synonymous codon usage patterns substantially differed among tyrosinase genes examined. In a neutrality analysis, the correlation between GC 12 and GC 3 was statistically significant, and the regression line had a relatively gradual slope (0.218). NC-plot, i.e., GC 3 vs effective number of codons (ENC), showed that most of the tyrosinase genes were below the expected curve. The codon adaptation index (CAI) values of the platyhelminth tyrosinases had a narrow distribution between 0.685/0.714 and 0.797/0.837, and were negatively correlated with their ENC. Taken together, these results suggested that CUB in the tyrosinase genes seemed to be basically governed by selection pressures rather than mutational bias, although the latter factor provided an additional force in shaping CUB of the C. sinensis and Opisthorchis viverrini genes. It was also apparent that the equilibrium point between selection pressure and mutational bias is much more inclined to selection pressure in highly expressed C. sinensis genes, than in poorly expressed genes.

  15. Physiological factors that regulate skin pigmentation.

    PubMed

    Yamaguchi, Yuji; Hearing, Vincent J

    2009-01-01

    More than 150 genes have been identified that affect skin color either directly or indirectly, and we review current understanding of physiological factors that regulate skin pigmentation. We focus on melanosome biogenesis, transport and transfer, melanogenic regulators in melanocytes, and factors derived from keratinocytes, fibroblasts, endothelial cells, hormones, inflammatory cells, and nerves. Enzymatic components of melanosomes include tyrosinase, tyrosinase-related protein 1, and dopachrome tautomerase, which depend on the functions of OA1, P, MATP, ATP7A, and BLOC-1 to synthesize eumelanins and pheomelanins. The main structural component of melanosomes is Pmel17/gp100/Silv, whose sorting involves adaptor protein 1A (AP1A), AP1B, AP2, and spectrin, as well as a chaperone-like component, MART-1. During their maturation, melanosomes move from the perinuclear area toward the plasma membrane. Microtubules, dynein, kinesin, actin filaments, Rab27a, melanophilin, myosin Va, and Slp2-a are involved in melanosome transport. Foxn1 and p53 up-regulate skin pigmentation via bFGF and POMC derivatives including alpha-MSH and ACTH, respectively. Other critical factors that affect skin pigmentation include MC1R, CREB, ASP, MITF, PAX3, SOX9/10, LEF-1/TCF, PAR-2, DKK1, SCF, HGF, GM-CSF, endothelin-1, prostaglandins, leukotrienes, thromboxanes, neurotrophins, and neuropeptides. UV radiation up-regulates most factors that increase melanogenesis. Further studies will elucidate the currently unknown functions of many other pigment genes/proteins. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.

  16. New halogenated phenylcoumarins as tyrosinase inhibitors.

    PubMed

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Delogu, Giovanna; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2011-06-01

    With the aim to find out structural features for the tyrosinase inhibitory activity, in the present communication we report the synthesis and pharmacological evaluation of a new series of phenylcoumarin derivatives with different number of hydroxyl or ether groups and bromo substituent in the scaffold. The synthesized compounds 5-12 were evaluated as mushroom tyrosinase inhibitors showing, two of them, lower IC(50) than the umbelliferone. Compound 12 (IC(50)=215 μM) is the best tyrosinase inhibitor of this series. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Detection of Misdistribution of Tyrosinase from Melanosomes to Lysosomes and Its Upregulation under Psoralen/Ultraviolet A with a Melanosome-Targeting Tyrosinase Fluorescent Probe.

    PubMed

    Zhou, Jin; Shi, Wen; Li, Lihong; Gong, Qiuyu; Wu, Xiaofeng; Li, Xiaohua; Ma, Huimin

    2016-04-19

    Tyrosinase is regarded as an important biomarker of melanoma cancer, and its metabolism is closely related to some severe skin diseases such as vitiligo. Since tyrosinase is mainly located in the melanosomes of melanocytes, a probe that can specifically detect and image tysosinase in melanosomes would be in urgent demand to study the behavior of the enzyme in cells, but unfortunately, no melanosome-targeting tyrosinase fluorescent probe has been reported so far to the best of our knowledge. In this work, we have developed such a new probe, Mela-TYR, which bears morpholine as a melanosome-targeting group and 4-aminophenol as a tyrosinase reaction group. The probe exhibits not only a highly sensitive and selective off-on response to tyrosinase via oxidization cleavage, but also an accurate targeting ability toward the acidic organelles of melanosomes and lyososomes, which is validated by colocalization experiments with mCherry-tagged melanosomes as well as DND-99 (a commercial dye). The probe has been used to image the relative contents of tyrosinase in different cells. Notably, because of the tyrosinase deficiency in normal lysosomes, the probe only fluoresces in melanosomes in principle although it can accumulate in other acidic organelles like lysosomes. By virtue of this property, the misdistribution of tyrosinase from melanosomes to lysosomes in murine melanoma B16 cells under the stimulation of inulavosin is imaged in real time for the first time. Moreover, the upregulation of melanosomal tyrosinase in live B16 cells under the stimulation of psoralen/ultraviolet A is detected with our probe, and this upregulation is further verified by standard colorimetric assay. The probe provides a simple, visual method to study the metabolism of tyrosinase in cells and shows great potential in clinical diagnosis and treatments of tyrosinase-associated diseases.

  18. Double heterozygous mutations of MITF and PAX3 result in Waardenburg syndrome with increased penetrance in pigmentary defects.

    PubMed

    Yang, T; Li, X; Huang, Q; Li, L; Chai, Y; Sun, L; Wang, X; Zhu, Y; Wang, Z; Huang, Z; Li, Y; Wu, H

    2013-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentary defects of the hair, skin, and iris. Heterozygous mutations of MITF and its transactivator gene PAX3 are associated with Waardenburg syndrome type II (WS2) and type I (WS1), respectively. Most patients with MITF or PAX3 mutations, however, show variable penetrance of WS-associated phenotypes even within families segregating the same mutation, possibly mediated by genetic background or specific modifiers. In this study, we reported a rare Waardenburg syndrome simplex family in which a pair of WS parents gave birth to a child with double heterozygous mutations of MITF and PAX3. Compared to his parents who carried a single mutation in either MITF or PAX3, this child showed increased penetrance of pigmentary defects including white forelock, white eyebrows and eyelashes, and patchy facial depigmentation. This observation suggested that the expression level of MITF is closely correlated to the penetrance of WS, and variants in transcription regulator genes of MITF may modify the relevant clinical phenotypes. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  19. An Updated Review of Tyrosinase Inhibitors

    PubMed Central

    Chang, Te-Sheng

    2009-01-01

    Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed. PMID:19582213

  20. Melanoma cells present high levels of HLA-A2-tyrosinase in association with instability and aberrant intracellular processing of tyrosinase.

    PubMed

    Michaeli, Yael; Sinik, Keren; Haus-Cohen, Maya; Reiter, Yoram

    2012-04-01

    Short-lived protein translation products are proposed to be a major source of substrates for major histocompatibility complex (MHC) class I antigen processing and presentation; however, a direct link between protein stability and the presentation level of MHC class I-peptide complexes has not been made. We have recently discovered that the peptide Tyr((369-377)) , derived from the tyrosinase protein is highly presented by HLA-A2 on the surface of melanoma cells. To examine the molecular mechanisms responsible for this presentation, we compared characteristics of tyrosinase in melanoma cells lines that present high or low levels of HLA-A2-Tyr((369-377)) complexes. We found no correlation between mRNA levels and the levels of HLA-A2-Tyr((369-377)) presentation. Co-localization experiments revealed that, in cell lines presenting low levels of HLA-A2-Tyr((369-377)) complexes, tyrosinase co-localizes with LAMP-1, a melanosome marker, whereas in cell lines presenting high HLA-A2-Tyr((369-377)) levels, tyrosinase localizes to the endoplasmic reticulum. We also observed differences in tyrosinase molecular weight and glycosylation composition as well as major differences in protein stability (t(1/2) ). By stabilizing the tyrosinase protein, we observed a dramatic decrease in HLA-A2-tyrosinase presentation. Our findings suggest that aberrant processing and instability of tyrosinase are responsible for the high presentation of HLA-A2-Tyr((369-377)) complexes and thus shed new light on the relationship between intracellular processing, stability of proteins, and MHC-restricted peptide presentation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tyrosinase-catalyzed oxidation of fluorophenols.

    PubMed

    Battaini, Giuseppe; Monzani, Enrico; Casella, Luigi; Lonardi, Emanuela; Tepper, Armand W J W; Canters, Gerard W; Bubacco, Luigi

    2002-11-22

    The activity of the type 3 copper enzyme tyrosinase toward 2-, 3-, and 4-fluorophenol was studied by kinetic methods and (1)H and (19)F NMR spectroscopy. Whereas 3- and 4-fluorophenol react with tyrosinase to give products that undergo a rapid polymerization process, 2-fluorophenol is not reactive and actually acts as a competitive inhibitor in the enzymatic oxidation of 3,4-dihydroxyphenylalanine (L-dopa). The tyrosinase-mediated polymerization of 3- and 4-fluorophenols has been studied in detail. It proceeds through a phenolic coupling pathway in which the common reactive fluoroquinone, produced stereospecifically by tyrosinase, eliminates an inorganic fluorine ion. The enzymatic reaction studied as a function of substrate concentration shows a prominent lag that is completely depleted in the presence of L-dopa. The kinetic parameters of the reactions can be correlated to the electronic and steric effects of the fluorine substituent position. Whereas the fluorine electron withdrawing effect appears to control the binding of the substrates (K(m) for 3- and 4-fluorophenols and K(I) for 2-fluorophenol), the k(cat) parameters do not follow the expected trend, indicating that in the transition state some additional steric effect rules the reactivity.

  2. Tyrosinase inhibitory flavonoid from Juniperus communis fruits.

    PubMed

    Jegal, Jonghwan; Park, Sang-A; Chung, KiWung; Chung, Hae Young; Lee, Jaewon; Jeong, Eun Ju; Kim, Ki Hyun; Yang, Min Hye

    2016-12-01

    The fruits of Juniperus communis have been traditionally used in the treatment of skin diseases. In our preliminary experiment, the MeOH extract of J. communis effectively suppressed mushroom tyrosinase activity. Three monoflavonoids and five biflavonoids were isolated from J. communis by bioassay-guided isolation and their inhibitory effect against tyrosinase was evaluated. According to the results of all isolates, hypolaetin 7-O-β-xylopyranoside isolated from J. communis exhibited most potent effect of decreasing mushroom tyrosinase activity with an IC 50 value of 45.15 μM. Further study provided direct experimental evidence for hypolaetin 7-O-β-D-xylopyranoside-attenuated tyrosinase activity in α-MSH-stimulated B16F10 murine melanoma cell. Hypolaetin 7-O-β-D-xylopyranoside from the EtOAc fraction of J. communis was also effective at suppressing α-MSH-induced melanin synthesis. This is the first report of the enzyme tyrosinase inhibition by J. communis and its constituent. Therapeutic attempts with J. communis and its active component, hypolaetin 7-O-β-D-xylopyranoside, might be useful in treating melanin pigmentary disorders.

  3. Effect of the tyrosinase inhibitor (S)-N-trans-feruloyloctopamine from garlic skin on tyrosinase gene expression and melanine accumulation in melanoma cells.

    PubMed

    Wu, Yan; Wu, Zheng-Rong; Chen, Peng; Yang-Li; Deng, Wan-Rong; Wang, You-Quan; Li, Hong-Yu

    2015-04-01

    In our searching for novel tyrosinase inhibitors from natural sources, (S)-N-trans-feruloyloctopamine isolated from garlic skin was found to be a potential mushroom tyrosinase inhibitor. Here, we examined the effects of the potential tyrosinase inhibitor in B16F10 cells on intracellular melanin contents, cytotoxicity, and the signaling mechanism involved in the expression of tyrosinase. The results showed the inhibitor displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin contents in a dose-dependent manner in the α-MSH-stimulated B16F10 cells. Real-time PCR and Western blot analysis showed that it inhibits melanogenesis signaling by down-regulates mRNA and protein expression levels of tyrosinase, which leads to a lower melanin contents. These results suggested that (S)-N-trans-feruloyloctopamine was an ideal tyrosinase inhibitor, and could be used in food and medical industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Antioxidative characteristics and inhibition of alpha-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare.

    PubMed

    Chou, Tzung-Han; Ding, Hsiou-Yu; Hung, Wei Jing; Liang, Chia-Hua

    2010-08-01

    The antioxidant activities of vanillin and vanillic acid isolated from Origanum vulgare are investigated. These compounds may serve as agents for antimelanogenesis. Vanillic acid is a stronger antioxidant than vanillin, in terms of free radical scavenging activity, reducing power and inhibition of lipid peroxidation. The inhibition of cellular reactive oxygen species (ROS) in H(2)O(2)-treated BNLCL2 cells by vanillic acid exceeds that of ascorbic acid (AA) or trolox. In B16F0 cells stimulated with alpha-melanocyte-stimulating hormone (alpha-MSH), vanillic acid reduced cellular tyrosinase activity, DOPA oxidase and melanin contents, as well as down-regulated expressions of melanocortin-1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related proteins 2 (TRP-2) and TRP-1. Vanillin did not express inhibition of tyrosinase activity. These results supported that vanillic acid is a significantly stronger antioxidant than vanillin and exhibited stronger antimelanogenesis performance because of the structural presence of the carboxyl group.

  5. Betaxanthins as Substrates for Tyrosinase. An Approach to the Role of Tyrosinase in the Biosynthetic Pathway of Betalains1

    PubMed Central

    Gandía-Herrero, Fernando; Escribano, Josefa; García-Carmona, Francisco

    2005-01-01

    Tyrosinase or polyphenol oxidase (EC 1.14.18.1) is the key enzyme in melanin biosynthesis and in the enzymatic browning of fruits and vegetables. The role of tyrosinase in the secondary metabolism of plants still remains unclear, but its implication in betalain biosynthesis has been proposed. Betalains are an important class of water-soluble pigments, characteristic of plants belonging to the order Caryophyllales. In this article, the betaxanthins, tyrosine-betaxanthin (portulacaxanthin II) and dopaxanthin, are reported to be physiological substrates for tyrosinase. The direct activity of tyrosinase on selected betaxanthins is characterized in depth, and conversion of tyrosine-betaxanthin to dopaxanthin and its further oxidation to a series of compounds are described. Identity of the reaction products was studied by high-performance liquid chromatography and electrospray ionization-mass spectrometry. Masses determined for the reaction products were the same in all cases, 389 m/z ([M + H]+) and equal to that determined for betanidin. Data indicate that dopaxanthin-quinone is obtained and evolves to more stable species by intramolecular cyclization. Kinetic parameters for tyrosinase acting on dopaxanthin were evaluated, showing a high affinity for this substrate (Km = 84.3 μm). The biosynthetic scheme of betalains is reviewed and a branch is proposed based on the description of physiological substrates for tyrosinase. Lampranthus productus, Glottiphylum oligocarpum, and Glottiphylum pigmaeum are described as sources of stereopure (2S/S)-dopaxanthin. PMID:15805475

  6. Novel and recurrent non-truncating mutations of the MITF basic domain: genotypic and phenotypic variations in Waardenburg and Tietz syndromes

    PubMed Central

    Léger, Sandy; Balguerie, Xavier; Goldenberg, Alice; Drouin-Garraud, Valérie; Cabot, Annick; Amstutz-Montadert, Isabelle; Young, Paul; Joly, Pascal; Bodereau, Virginie; Holder-Espinasse, Muriel; Jamieson, Robyn V; Krause, Amanda; Chen, Hongsheng; Baumann, Clarisse; Nunes, Luis; Dollfus, Hélène; Goossens, Michel; Pingault, Véronique

    2012-01-01

    The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor, which regulates melanocyte development and the biosynthetic melanin pathway. A notable relationship has been described between non-truncating mutations of its basic domain and Tietz syndrome, which is characterized by albinoid-like hypopigmentation of the skin and hair, rather than the patchy depigmentation seen in Waardenburg syndrome, and severe hearing loss. Twelve patients with new or recurrent non-truncating mutations of the MITF basic domain from six families were enrolled in this study. We observed a wide range of phenotypes and some unexpected features. All the patients had blue irides and pigmentation abnormalities that ranged from diffuse hypopigmentation to Waardenburg-like patches. In addition, they showed congenital complete hearing loss, diffuse hypopigmentation of the skin, freckling and ocular abnormalities, more frequently than patients with MITF mutations outside the basic domain. In conclusion, the non-truncating mutations of the basic domain do not always lead to Tietz syndrome but rather to a large range of phenotypes. Sun-exposed freckles are interestingly observed more frequently in Asian populations. This variability argues for the possible interaction with modifier loci. PMID:22258527

  7. Extracts of Artocarpus communis Decrease α-Melanocyte Stimulating Hormone-Induced Melanogenesis through Activation of ERK and JNK Signaling Pathways

    PubMed Central

    Fu, Yi-Tzu; Lee, Chiang-Wen; Ko, Horng-Huey; Yen, Feng-Lin

    2014-01-01

    Artocarpus communis is an agricultural plant that is also used in folk medicine to prevent skin diseases, including acne and dermatitis. Extracts of A. communis have been used to effectively inhibit melanogenesis; however, the antimelanogenesis mechanism of these extracts has not yet been investigated. The present study utilized a cell-free tyrosinase assay as well as α-melanocyte stimulating hormone- (-MSH-) induced tyrosinase assay conducted in B16F10 cells, performed a cytotoxicity assay, and determined cellular melanin content to examine the effects of a methanolic extract of A. communis (ACM) and various organic partition fractions of A. communis on melanogenesis. In addition, we performed western blot analysis to elucidate the mechanism of their antimelanogenesis effect. Our results indicated that, except for the n-hexane extract, ACM and the various partition extracts at noncytotoxic concentrations effectively decreased melanin content and tyrosinase activity by downregulating microphthalmia-associated transcription factor (MITF) and phosphorylated cAMP response element-binding protein (p-CREB). Moreover, ACM and the partition fractions activated phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) to inhibit the synthesis of MITF and finally to decrease melanin production. In conclusion, we suggest that noncytotoxic concentrations of ACM and the various partition fractions may be useful as references for developing skin-lighting agents for use in medicines or cosmetics. PMID:24737988

  8. Promotion of tyrosinase folding in COS 7 cells by calnexin.

    PubMed

    Toyofuku, K; Wada, I; Hirosaki, K; Park, J S; Hori, Y; Jimbow, K

    1999-01-01

    To understand the process of expression of tyrosinase, a key enzyme of melanogenesis, we examined its maturation in the endoplasmic reticulum (ER) by using a heterogeneous expression system. When human tyrosinase cDNA was introduced into COS 7 cells, tyrosinase activity was minimally detected. Immunofluorescence study revealed that tyrosinase was immunolocalized in the nuclear rim, the reticular network, and the punctuated structures. Because a cytoplasmic tail of tyrosinase-gene family protein functions as a lysosomal targeting signal in non-melanocytic cells, and immature and/or misfolded molecules are selectively retained in the ER, the observed localization suggested the inefficient maturation in the COS 7 cells. We thus examined if supplementation of calnexin, a membrane-bound chaperone with affinity for oligosaccharide-processing intermediates containing monoglucose, could improve the process. As expected, the activity was enhanced approximately 2-fold by co-transfection of cDNA encoding calnexin. In contrast, co-transfection of the cytosolic tail-free calnexin, which inhibits calnexin function by allowing premature egress of its ligands from the ER, suppressed expression of this enhanced tyrosinase activity. When alpha-glucosidase activity, which is required for calnexin function, was inhibited by castanospermine (CST) treatment, expression of tyrosinase activity was completely abolished. To confirm the direct involvement of calnexin in tyrosinase maturation, the interaction of calnexin with tyrosinase was examined. Immunoprecipitation of calnexin from extracts of [35S]methionine labeled cells with anti-calnexin antibody revealed that the association is highest immediately after the pulse and that nascent tyrosinase is gradually dissociated upon chase. The association was completely inhibited when CST was included in the medium. Hence, we suggest that the proper folding of tyrosinase is largely dependent on its direct interaction with calnexin for the

  9. Tyrosine-like condensed derivatives as tyrosinase inhibitors.

    PubMed

    Matos, Maria João; Santana, Lourdes; Uriarte, Eugenio; Serra, Silvia; Corda, Marcella; Fadda, Maria Benedetta; Era, Benedetta; Fais, Antonella

    2012-05-01

    We report the pharmacological evaluation of a new series of 3-aminocoumarins differently substituted with hydroxyl groups, which have been synthesized because they include in their structures the tyrosine fragment (tyrosine-like compounds), with the aim of discovering structural features necessary for tyrosinase inhibitory activity. The synthesized compounds 4 and 7-9 were evaluated in vitro as mushroom tyrosinase inhibitors. Two of the described compounds showed lower IC50 (concentration giving 50% inhibition of tyrosinase activity) than umbelliferone, used as a reference compound. Compound 7 (IC50=53µm) was the best tyrosinase inhibitor of this small series, having an IC50 value 10-fold lower than umbelliferone. Compound 7 (3-amino-7-hydroxycoumarin) had amino and hydroxyl groups precisely mimicking the same positions that both groups occupy on the tyrosine molecule. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  10. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids.

    PubMed

    Fais, Antonella; Corda, Marcella; Era, Benedetta; Fadda, M Benedetta; Matos, Maria Joao; Quezada, Elias; Santana, Lourdes; Picciau, Carmen; Podda, Gianni; Delogu, Giovanna

    2009-07-13

    In the present work we report on the contribution of the coumarin moiety to tyrosinase inhibition. Coumarin-resveratrol hybrids 1-8 have been resynthesized to investigate the structure-activity relationships and the IC(50) values of these compounds were measured. The results showed that these compounds exhibited tyrosinase inhibitory activity. Compound 3-(3',4',5'-trihydroxyphenyl)-6,8-dihydroxycoumarin (8)is the most potentcompound (0.27 mM), more so than umbelliferone (0.42 mM), used as reference compound. The kinetic studies revealed that compound 8 caused non-competitive tyrosinase inhibition.

  11. Myriocin, a serine palmitoyltransferase inhibitor, increases melanin synthesis in Mel-Ab cells and a skin equivalent model.

    PubMed

    Li, Hailan; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Park, Kyoung-Chan; Kim, Dong-Seok

    2014-03-01

    The purpose of this study was to investigate effects of myriocin, an inhibitor of serine palmitoyltransferase, on melanogenesis. It was found that myriocin increased melanin synthesis in a concentration-dependent manner. Moreover, myriocin up-regulated microphthalmia-associated transcription factor (MITF) and tyrosinase expression via phosphorylation of CREB, but it did not directly activate tyrosinase, a rate-limiting melanogenic enzyme. Furthermore, we demonstrated increased melanin synthesis with myriocin on a pigmented skin equivalent model established using Cervi cornus Colla (deer antler glue). One and 5 microM of myriocin darkened the color of the skin equivalent. These results suggest that myriocin may have potential effects for the treatment of hypopigmentary skin diseases like vitiligo or for sunless tanning.

  12. Hearing dysfunction in heterozygous Mitf(Mi-wh) /+ mice, a model for Waardenburg syndrome type 2 and Tietz syndrome.

    PubMed

    Ni, Christina; Zhang, Deming; Beyer, Lisa A; Halsey, Karin E; Fukui, Hideto; Raphael, Yehoash; Dolan, David F; Hornyak, Thomas J

    2013-01-01

    The human deafness-pigmentation syndromes, Waardenburg syndrome (WS) type 2a, and Tietz syndrome are characterized by profound deafness but only partial cutaneous pigmentary abnormalities. Both syndromes are caused by mutations in MITF. To illuminate differences between cutaneous and otic melanocytes in these syndromes, their development and survival in heterozygous Microphthalmia-White (Mitf(Mi-wh) /+) mice were studied and hearing function of these mice characterized. Mitf(Mi-wh) /+ mice have a profound hearing deficit, characterized by elevated auditory brainstem response thresholds, reduced distortion product otoacoustic emissions, absent endocochlear potential, loss of outer hair cells, and stria vascularis abnormalities. Mitf(Mi-wh) /+ embryos have fewer melanoblasts during embryonic development than their wild-type littermates. Although cochlear melanocytes are present at birth, they disappear from the Mitf(Mi-wh) /+ cochlea between P1 and P7. These findings may provide insight into the mechanism of melanocyte and hearing loss in human deafness-pigmentation syndromes such as WS and Tietz syndrome and illustrate differences between otic and follicular melanocytes. © 2012 John Wiley & Sons A/S.

  13. Purification and characterization of RNA allied extracellular tyrosinase from Aspergillus species.

    PubMed

    Inamdar, Shrirang; Joshi, Swati; Bapat, Vishwas; Jadhav, Jyoti

    2014-02-01

    Production of L-DOPA, an anti-Parkinson's drug, using biological sources is widely studied in which tyrosinase is known to play a vital role. Tyrosinase is an omnipresent type 3 copper enzyme participating in many essential biological functions. Understanding properties of tyrosinase is essential for developing useful tyrosinase-based applications. Hence, extracellular tyrosinase from Aspergillus flavus UWFP 570 was purified using ammonium sulphate precipitation and DEAE ion exchange chromatography up to 8.3-fold. Purified protein was a riboprotein in nature containing significant amount of RNA which was confirmed colorimetrically and by electrophoresis. Removal of RNA reduced the activity and altered the conformation of tyrosinase as suggested by spectroflurometric results. Optimum pH and temperature of this 140 kDa protein were 7 and 40 °C, respectively. Copper sulphate and magnesium chloride enhanced the activity whereas in contrast FeCl₃ inhibited the activity completely. Purified tyrosinase transformed L-tyrosine (5 mM) to L-DOPA within 5 h.

  14. Tyrosinase-containing chitosan gels: A combined catalyst and sorbent for selective phenol removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, W.Q.; Payne, G.F.

    There are a series of examples in which phenols appear as contaminants in process streams and their selective removal is required for waste minimization. For the selective removal of a phenol from a mixture, the authors are exploiting the substrate specificity of the enzyme tyrosinase to convert phenols into reactive o-quinones which are then adsorbed onto the amine-containing polymer chitosan. To effectively package the enzyme and sorbent, tyrosinase was immobilized between two chitosan gel films. The entrapment of tyrosinase between the films led to little loss of activity during immobilization, while tyrosinase leakage during incubation was limited. The chitosan gelsmore » rapidly adsorb the tyrosinase-generated product(s) of phenol oxidation while the capacity of the gels is substantially greater than the capacity of chitosan flakes. The performance of tyrosinase-containing chitosan gels significantly depends on the ratio of tyrosinase-to-chitosan. High tyrosinase-to-chitosan ratios result in less efficient use of tyrosinase, presumably due to suicide inactivation. However, the efficiency of chitosan use increases with increased tyrosinase-to-chitosan ratios.« less

  15. Kinetic characterization of oxyresveratrol as a tyrosinase substrate.

    PubMed

    Ortiz-Ruiz, Carmen Vanessa; Ballesta de Los Santos, Manuel; Berna, Jose; Fenoll, Jose; Garcia-Ruiz, Pedro Antonio; Tudela, Jose; Garcia-Canovas, Francisco

    2015-11-01

    Oxyresveratrol is a stilbenoid described as a powerful inhibitor of tyrosinase and proposed as skin-whitening and anti-browning agent. However, the enzyme is capable of acting on it, considering it as a substrate, as it has been proved in the case of its analogous resveratrol. Tyrosinase hydroxylates the oxyresveratrol to an o-diphenol and oxidizes the latter to an o-quinone, which finally isomerizes to p-quinone. For these reactions to take place the presence of the Eox (oxy-tyrosinase) form is necessary. The kinetic analysis of the proposed mechanism has allowed the kinetic characterization of this molecule as a substrate of tyrosinase, affording a catalytic constant of 5.39 ± 0.21 sec(-1) and a Michaelis constant of 8.65 ± 0.73 µM. © 2015 International Union of Biochemistry and Molecular Biology.

  16. Tyrosinase-catalyzed hydroxylation of hydroquinone, a depigmenting agent, to hydroxyhydroquinone: A kinetic study.

    PubMed

    García-Molina, María del Mar; Muñoz Muñoz, Jose Luis; Martinez-Ortiz, Francisco; Martinez, José Rodriguez; García-Ruiz, Pedro Antonio; Rodriguez-López, José Neptuno; García-Cánovas, Francisco

    2014-07-01

    Hydroquinone (HQ) is used as a depigmenting agent. In this work we demonstrate that tyrosinase hydroxylates HQ to 2-hydroxyhydroquinone (HHQ). Oxy-tyrosinase hydroxylates HQ to HHQ forming the complex met-tyrosinase-HHQ, which can evolve in two different ways, forming deoxy-tyrosinase and p-hydroxy-o-quinone, which rapidly isomerizes to 2-hydroxy-p-benzoquinone or on the other way generating met-tyrosinase and HHQ. In the latter case, HHQ is rapidly oxidized by oxygen to generate 2-hydroxy-p-benzoquinone, and therefore, it cannot close the enzyme catalytic cycle for the lack of reductant (HHQ). However, in the presence of hydrogen peroxide, met-tyrosinase (inactive on hydroquinone) is transformed into oxy-tyrosinase, which is active on HQ. Similarly, in the presence of ascorbic acid, HQ is transformed into 2-hydroxy-p-benzoquinone by the action of tyrosinase; however, in this case, ascorbic acid reduces met-tyrosinase to deoxy-tyrosinase, which after binding to oxygen, originates oxy-tyrosinase. This enzymatic form is now capable of reacting with HQ to generate p-hydroxy-o-quinone, which rapidly isomerizes to 2-hydroxy-p-benzoquinone. The formation of HHQ during the action of tyrosinase on HQ is demonstrated by means of high performance liquid chromatography mass spectrometry (HPLC-MS) by using hydrogen peroxide and high ascorbic acid concentrations. We propose a kinetic mechanism for the tyrosinase oxidation of HQ which allows us the kinetic characterization of the process. A possible explanation of the cytotoxic effect of HQ is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The functional property of egg yolk phosvitin as a melanogenesis inhibitor.

    PubMed

    Jung, Samooel; Kim, Dong Hee; Son, Jun Ho; Nam, Kichang; Ahn, Dong Uk; Jo, Cheorun

    2012-12-01

    Phosvitin is a phosphoglycoprotein present in egg yolk. More than half of the amino acids in phosvitin molecule are serine, of which >90% are phosphorylated. Therefore, phosvitin has a strong metal binding capability. The aim of this study was to investigate the effect of phosvitin on the inhibition of melanogenesis in melanoma cells. The results showed that phosvitin inhibited the activity of mushroom tyrosinase. Addition of phosvitin at a concentration of 50μg/ml, to B16F10 melanoma cells inhibited tyrosinase activity by approximately 42% and melanin synthesis by 17% compared to those in a control without phosvitin. Phosvitin inhibited the expression of tyrosinase, tyrosinase-related protein 1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF) in B16F10 melanoma cells. In addition, phosvitin reduced the cellular cAMP concentration in B16F10 melanoma cells. These results indicate that phosvitin has the potential to be used as a melanogenesis inhibitor in the food and cosmetics industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. [Phylogenetic analysis of tyrosinase gene family in the Pacific oyster (Crassostrea gigas Thunberg)].

    PubMed

    Yu, Xue; Yu, Hong; Kong, Lingfeng; Li, Qi

    2014-02-01

    The deduced amino acid sequence characteristics, classification and phylogeny of tyrosinase gene family in the Pacific oyster (Crassostrea gigas Thunberg) were analyzed using bioinformatics methods. The results showed that gene duplication was the major cause of tyrosinase gene expansion in the Pacific oyster. The tyrosinase gene family in the Pacific oyster can be further classified into three types: secreted form (Type A), cytosolic form (Type B) and membrane-bound form (Type C). Based on the topology of the phylogenetic tree of the Pacific oyster tyrosinases, among Type A isoforms, tyr18 seemed divergent from other Type A tyrosinases early, while tyr2 and tyr9 appeared divergent early in Type B. In Type C tyrosinses, tyr8 was divergent early. The cluster of the Pacific oyster tyrosinasesis determined by their classifications and positions in the scaffolds. Further analysis suggested that Type A tyrosinases of C. gigas clustered with those from cephalopods and then with nematodes and cnidarians. Type B tyrosinases were generally clustered with the same type of tyrosinases from molluscas and nematodes, and then with those from platyhelminths, cnidarians and chordates. Type A tyrosinases in the Pacific oyster and the Pearl oyster expanded independently and were divergent from membrane-bound form of tyrosinases in chordata, platyhelminthes and annelida. These observations suggested that Type C tyrosinases in the bivalve had a distinct evolution direction.

  19. D-tyrosine negatively regulates melanin synthesis by competitively inhibiting tyrosinase activity.

    PubMed

    Park, Jisu; Jung, Hyejung; Kim, Kyuri; Lim, Kyung-Min; Kim, Ji-Young; Jho, Eek-Hoon; Oh, Eok-Soo

    2018-05-01

    Although L-tyrosine is well known for its melanogenic effect, the contribution of D-tyrosine to melanin synthesis was previously unexplored. Here, we reveal that, unlike L-tyrosine, D-tyrosine dose-dependently reduced the melanin contents of human MNT-1 melanoma cells and primary human melanocytes. In addition, 500 μM of D-tyrosine completely inhibited 10 μM L-tyrosine-induced melanogenesis, and both in vitro assays and L-DOPA staining MNT-1 cells showed that tyrosinase activity is reduced by D-tyrosine treatment. Thus, D-tyrosine appears to inhibit L-tyrosine-mediated melanogenesis by competitively inhibiting tyrosinase activity. Furthermore, we found that D-tyrosine inhibited melanogenesis induced by α-MSH treatment or UV irradiation, which are the most common environmental factors responsible for melanin synthesis. Finally, we confirmed that D-tyrosine reduced melanin synthesis in the epidermal basal layer of a 3D human skin model. Taken together, these data suggest that D-tyrosine negatively regulates melanin synthesis by inhibiting tyrosinase activity in melanocyte-derived cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Inhibition of melanin production by a combination of Siberian larch and pomegranate fruit extracts.

    PubMed

    Diwakar, Ganesh; Rana, Jatinder; Scholten, Jeffrey D

    2012-09-01

    In an effort to find botanicals containing polyphenolic compounds with the capacity to inhibit melanin biosynthesis, we identified a novel combination of Siberian larch (Larix sibirica) extract, standardized to 80% taxifolin, and pomegranate fruit (Punica granatum) extract, containing 20% punicalagins, that demonstrates a synergistic reduction of melanin biosynthesis in Melan-a cells. The combination of Siberian larch and pomegranate extracts (1:1) produced a 2-fold reduction in melanin content compared to Siberian larch or pomegranate extracts alone with no corresponding effect on cell viability. Siberian larch and pomegranate fruit extracts inhibited expression of melanocyte specific genes, tyrosinase (Tyr), microphthalmia transcription factor (Mitf), and melanosome structural proteins (Pmel17 and Mart1) but did not inhibit tyrosinase enzyme activity. These results suggest that the mechanism of inhibition of melanin biosynthesis by Siberian larch and pomegranate extracts, alone and in combination, is through downregulation of melanocyte specific genes and not due to inhibition of tyrosinase enzyme activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Inhibitory effects of naphthols on the activity of mushroom tyrosinase.

    PubMed

    Lin, Yi-Fen; Hu, Yong-Hua; Jia, Yu-Long; Li, Zhi-Cong; Guo, Yun-Ji; Chen, Qing-Xi; Lin, He-Tong

    2012-01-01

    Tyrosinase (EC 1.14.18.1), a copper-containing multifunctional oxidase, was known to be a key enzyme for biosynthesis in fungi, plants and animals. In this work, the inhibition properties α-naphthol and β-naphthol toward the activity of tyrosinase have been evaluated, and the effects of α-naphthol and β-naphthol on monophenolase and diphenolase activity of tyrosinase have been investigated. The results showed that both α-naphthol and β-naphthol could potently inhibit both monophenolase activity and diphenolase activity of mushroom tyrosinase, and that β-naphthol exhibited stronger inhibitory effect against tyrosinase than α-naphthol. For monophenolase activity, β-naphthol could not only lengthen the lag time but also decrease the steady-state activity, while α-naphthol just only decreased the steady-state activity. For diphenolase activity, both α-naphthol and β-naphthol displayed revisible inhibition. Kinetic analyses showed that both α-naphthol and β-naphthol were competetive inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Cosmetic applications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple (Acer rubrum) leaves extract: inhibition of melanogenesis via down-regulation of tyrosinase and melanogenic gene expression in B16F10 melanoma cells.

    PubMed

    Ma, Hang; Xu, Jialin; DaSilva, Nicholas A; Wang, Ling; Wei, Zhengxi; Guo, Liangran; Johnson, Shelby L; Lu, Wei; Xu, Jun; Gu, Qiong; Seeram, Navindra P

    2017-05-01

    The red maple (Acer rubrum) is a rich source of phenolic compounds which possess galloyl groups attached to different positions of a 1,5-anhydro-D-glucitol core. While these glucitol-core containing gallotannins (GCGs) have reported anti-oxidant and anti-glycative effects, they have not yet been evaluated for their cosmetic applications. Herein, the anti-tyrosinase and anti-melanogenic effects of a proprietary phenolic-enriched red maple leaves extract [Maplifa ™ ; contains ca. 45% ginnalin A (GA) along with other GCGs] were investigated using enzyme and cellular assays. The GCGs showed anti-tyrosinase activity with IC 50 values ranging from 101.4 to 1047.3 μM and their mechanism of tyrosinase inhibition (using GA as a representative GCG) was evaluated by chelating and computational/modeling studies. GA reduced melanin content in murine melanoma B16F10 cells by 79.1 and 56.7% (at non-toxic concentrations of 25 and 50 μM, respectively), and its mechanisms of anti-melanogenic effects were evaluated by using methods including fluorescent probe (DCF-DA), real-time PCR, and western blot experiments. These data indicated that GA was able to: (1) reduce the levels of reactive oxygen species, (2) down-regulate the expression of MITF, TYR, TRP-1, and TRP-2 gene levels in a time-dependent manner, and (3) significantly reduce protein expression of the TRP-2 gene. Therefore, the anti-melanogenic effects of red maple GCGs warrant further investigation of this proprietary natural product extract for potential cosmetic applications.

  3. Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor.

    PubMed

    Funaba, Masayuki; Ikeda, Teruo; Murakami, Masaru; Ogawa, Kenji; Tsuchida, Kunihiro; Sugino, Hiromu; Abe, Matanobu

    2003-12-26

    Previous studies have revealed that activin A and transforming growth factor-beta1 (TGF-beta1) induced migration and morphological changes toward differentiation in bone marrow-derived cultured mast cell progenitors (BMCMCs). Here we show up-regulation of mouse mast cell protease-7 (mMCP-7), which is expressed in differentiated mast cells, by activin A and TGF-beta1 in BMCMCs, and the molecular mechanism of the gene induction of mmcp-7. Smad3, a signal mediator of the activin/TGF-beta pathway, transcriptionally activated mmcp-7. Microphthalmia-associated transcription factor (MITF), a tissue-specific transcription factor predominantly expressed in mast cells, melanocytes, and heart and skeletal muscle, inhibited Smad3-mediated mmcp-7 transcription. MITF associated with Smad3, and the C terminus of MITF and the MH1 and linker region of Smad3 were required for this association. Complex formation between Smad3 and MITF was neither necessary nor sufficient for the inhibition of Smad3 signaling by MITF. MITF inhibited the transcriptional activation induced by the MH2 domain of Smad3. In addition, MITF-truncated N-terminal amino acids could associate with Smad3 but did not inhibit Smad3-mediated transcription. The level of Smad3 was decreased by co-expression of MITF but not of dominant-negative MITF, which resulted from proteasomal protein degradation. The changes in the level of Smad3 protein were paralleled by those in Smad3-mediated signaling activity. These findings suggest that MITF negatively regulates Smad-dependent activin/TGF-beta signaling in a tissue-specific manner.

  4. Evidence suggesting digenic inheritance of Waardenburg syndrome type II with ocular albinism.

    PubMed

    Chiang, Pei-Wen; Spector, Elaine; McGregor, Tracy L

    2009-12-01

    Waardenburg syndrome (WS) is a series of auditory-pigmentary disorders inherited in an autosomal dominant manner. In most patients, WS2 results from mutations in the MITF gene. MITF encodes a basic helix-loop-helix transcription factor that activates transcription of tyrosinase and other melanocyte proteins. The clinical presentation of WS is highly variable, and we believe that Tietz syndrome and WS2 with ocular albinism (OA) are likely two variations of WS2 due to the presence of modifiers. One family with a molecular diagnosis of WS2 co-segregating with OA has previously been reported. A digenic mutation mechanism including both a MITF mutation and the TYR(R402Q) hypomorphic allele was proposed to be the cause of OA in this family. Here, we present a second WS2 family with OA and provide evidence suggesting the TYR(R402Q) allele does not cause OA in this family. We hypothesize the presence of a novel OCA3 mutation together with the MITF del p.R217 mutation account for the OA phenotype in this family. Since MITF is a transcription factor for pigmentation genes, a mutation in MITF plus a heterozygous mutation in OCA3 together provide an adverse effect crossing a quantitative threshold; therefore, WS2 with OA occurs. We have hypothesized previously that the clinical spectrum and mutation mechanism of OCA depend on the pigmentation threshold of an affected individual. This unique family has provided further evidence supporting this hypothesis. We suggest that by studying OCA patients alongside WS patients with various pigmentation profiles we can facilitate further understanding of the pigmentation pathway.

  5. Inducible expression of photoacoustic reporter gene tyrosinase in cells using a single plasmid

    NASA Astrophysics Data System (ADS)

    Paproski, Robert J.; Zemp, Roger J.

    2012-02-01

    We have previously demonstrated that tyrosinase is a reporter gene for photoacoustic imaging since tyrosinase is the rate-limiting step in the synthesis of melanin, a pigment capable of producing strong photoacoustic signals. We previously created a cell line capable of inducible tyrosinase expression (important due to toxicity of melanin) by stably transfecting tyrosinase in MCF-7 Tet-OnR cell line (Clontech) which expresses a doxycycline-controlled transactivator. Unfortunately, Clontech provides few Tet-On Advanced cell lines making it difficult to have inducible tyrosinase expression in cell lines not provided by Clontech. In order to simplify the creation of cell lines with inducible expression of tyrosinase, we created a single plasmid that encodes both the transactivator as well as tyrosinase. PCR was used to amplify both the transactivator and tyrosinase from the Tet-OnR Advanced and pTRE-Tight-TYR plasmids, respectively. Both PCR products were cloned into the pEGFP-N1 plasmid and the newly created plasmid was transfected into ZR-75-1, MCF-7, and MIA PaCa-1 cells using lipofectamine. After several days, brown melanin was only observed in cells incubated with doxycycline, suggesting that the newly created single plasmid allowed inducible tyrosinase expression in many different cells lines.

  6. Inhibitory effect of brazilein on tyrosinase and melanin synthesis: Kinetics and in silico approach.

    PubMed

    Hridya, Hemachandran; Amrita, Anantharaman; Sankari, Mohan; George Priya Doss, C; Gopalakrishnan, Mohan; Gopalakrishnan, Chandrasekaran; Siva, Ramamoorthy

    2015-11-01

    In our present study, the inhibitory effect of brazilein from Caesalpinia sappan on tyrosinase activity was investigated through multi-spectroscopic and molecular docking techniques. The result has shown that brazilein reversibly inhibited tyrosinase in a mixed type manner. The interaction of brazilein with the amino acid residues of tyrosinase has been validated through fluorescence quenching studies. Copper interaction studies suggested that brazilein could bind with copper ions of the enzyme. Circular dichroism analysis confirmed that brazilein induced secondary structural changes in tyrosinase. Docking studies further authenticate that brazilein forms hydrophobic and hydrogen bonding with the active site residues of tyrosinase. Moreover, in vitro studies confirmed that the inhibitory mechanism of cellular tyrosinase and melanin synthesis by brazilein in B16F0 melanoma cells. These results suggested that brazilein act as a potential tyrosinase inhibitor and it would contribute as a of novel tyrosinase inhibitor in food, cosmetic and pharmaceutical industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. New animal models to study the role of tyrosinase in normal retinal development.

    PubMed

    Lavado, Alfonso; Montoliu, Lluis

    2006-01-01

    Albino animals display a hypopigmented phenotype associated with several visual abnormalities, including rod photoreceptor cell deficits, abnormal patterns of connections between the eye and the brain and a general underdevelopment of central retina. Oculocutaneous albinism type I, a common form of albinism, is caused by mutations in the tyrosinase gene. In mice, the albino phenotype can be corrected by functional tyrosinase transgenes. Tyrosinase transgenic animals not only show normal pigmentation but the correction of all visual abnormalities associated with albinism, confirming a role of tyrosinase, a key enzyme in melanin biosynthesis, in normal retinal development. Here, we will discuss recent work carried out with new tyrosinase transgenic mouse models, to further analyse the role of tyrosinase in retinal development. We will first report a transgenic model with inducible tyrosinase expression that has been used to address the regulated activation of this gene and its associated effects on the development of the visual system. Second, we will comment on an interesting yeast artificial chromosome (YAC)-tyrosinase transgene, lacking important regulatory elements, that has highlighted the significance of local interactions between the retinal pigment epithelium (RPE) and developing neural retina.

  8. Inhibition kinetics and molecular simulation of p-substituted cinnamic acid derivatives on tyrosinase.

    PubMed

    Cui, Yi; Hu, Yong-Hua; Yu, Feng; Zheng, Jing; Chen, Lin-Shan; Chen, Qing-Xi; Wang, Qin

    2017-02-01

    This study was to investigate the inhibition effects of para-substituted cinnamic acid derivatives (4-chlorocinnamic acid, 4-ethoxycinnamic acid and 4-nitrocinnamic acid) on tyrosinase catalyzing the substrates, with the purpose of elucidating the inhibition mechanism of the tested derivatives on tyrosinase by the UV-vis spectrum, fluorescence spectroscopy, copper interacting and molecular docking, respectively. The native-PAGE results showed that 4-chlorocinnamic acid (4-CCA), 4-ethoxycinnamic acid (4-ECA) and 4-nitrocinnamic acid (4-NCA) had inhibitory effects on tyrosinase. Spectrophotometric analysis used to determine the inhibition capabilities of these compounds on tyrosinase catalyzing L-tyrosine (L-Tyr) and L-3,4-Dihydroxyphenylalanine (L-DOPA) as well. The IC 50 values and inhibition constants were further determined. Moreover, quenching mechanisms of tested compounds to tyrosinase belonged to static type and a red shift on fluorescence emission peak occurred when 4-NCA added. Copper interacting and molecular docking demonstrated that 4-CCA could not bind directly to the copper, but it could interact with residues in the active center of tyrosinase. Meanwhile, 4-ECA and 4-NCA could chelate a copper ion of tyrosinase. Anti-tyrosinase activities of para-substituted cinnamic acid derivatives would lay scientific foundation for their utilization in designing of novel tyrosinase inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Inhibitory effect of apocarotenoids on the activity of tyrosinase: Multi-spectroscopic and docking studies.

    PubMed

    Anantharaman, Amrita; Hemachandran, Hridya; Priya, Rajendra Rao; Sankari, Mohan; Gopalakrishnan, Mohan; Palanisami, Nallasamy; Siva, Ramamoorthy

    2016-01-01

    In this present study, the inhibitory mechanism of three selected apocarotenoids (bixin, norbixin and crocin) on the diphenolase activity of tyrosinase has been investigated. The preliminary screening results indicated that apocarotenoids inhibited tyrosinase activity in a dose-dependent manner. Kinetic analysis revealed that apocarotenoids reversibly inhibited tyrosinase activity. Analysis of fluorescence spectra showed that apocarotenoids quenched the intrinsic fluorescence intensity of the tyrosinase. Further, molecular docking results implied that apocarotenoids were allosterically bound to tyrosinase through hydrophobic interactions. The results of the in vitro studies suggested that higher concentrations of bixin and norbixin inhibited tyrosinase activity in B16F0 melanoma cells. Our results suggested that apocarotenoids could form the basis for the design of novel tyrosinase inhibitors. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Mutations in MITF and PAX3 cause "splashed white" and other white spotting phenotypes in horses.

    PubMed

    Hauswirth, Regula; Haase, Bianca; Blatter, Marlis; Brooks, Samantha A; Burger, Dominik; Drögemüller, Cord; Gerber, Vincent; Henke, Diana; Janda, Jozef; Jude, Rony; Magdesian, K Gary; Matthews, Jacqueline M; Poncet, Pierre-André; Svansson, Vilhjálmur; Tozaki, Teruaki; Wilkinson-White, Lorna; Penedo, M Cecilia T; Rieder, Stefan; Leeb, Tosso

    2012-01-01

    During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The "splashed white" pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes.

  11. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes.

    PubMed

    Lin, Rong-Dih; Chen, Mei-Chuan; Liu, Yan-Ling; Lin, Yi-Tzu; Lu, Mei-Kuang; Hsu, Feng-Lin; Lee, Mei-Hsien

    2015-12-02

    Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2'-O-β-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver-Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics.

  12. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes

    PubMed Central

    Lin, Rong-Dih; Chen, Mei-Chuan; Liu, Yan-Ling; Lin, Yi-Tzu; Lu, Mei-Kuang; Hsu, Feng-Lin; Lee, Mei-Hsien

    2015-01-01

    Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata) Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9) and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13), as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics. PMID:26633381

  13. Screening of MITF and SOX10 Regulatory Regions in Waardenburg Syndrome Type 2

    PubMed Central

    Baral, Viviane; Chaoui, Asma; Watanabe, Yuli; Goossens, Michel; Attie-Bitach, Tania; Marlin, Sandrine; Pingault, Veronique; Bondurand, Nadege

    2012-01-01

    Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE) and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy. PMID:22848661

  14. Screening of MITF and SOX10 regulatory regions in Waardenburg syndrome type 2.

    PubMed

    Baral, Viviane; Chaoui, Asma; Watanabe, Yuli; Goossens, Michel; Attie-Bitach, Tania; Marlin, Sandrine; Pingault, Veronique; Bondurand, Nadege

    2012-01-01

    Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE) and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy.

  15. Oxidation of monohydric phenol substrates by tyrosinase. An oximetric study.

    PubMed

    Naish-Byfield, S; Riley, P A

    1992-11-15

    The purity of commercially available mushroom tyrosinase was investigated by non-denaturing PAGE. Most of the protein in the preparation migrated as a single band under these conditions. This band contained both tyrosinase and dopa oxidase activity. No other activity of either classification was found in the preparation. Oxygen consumption by tyrosinase during oxidation of the monohydric phenol substrates tyrosine and 4-hydroxyanisole (4HA) was monitored by oximetry in order to determine the stoichiometry of the reactions. For complete oxidation, the molar ratio of oxygen: 4HA was 1:1. Under identical conditions, oxidation of tyrosine required 1.5 mol of oxygen/mol of tyrosine. The additional oxygen uptake during tyrosine oxidation is due to the internal cyclization of dopaquinone to form cyclodopa, which undergoes a redox reaction with dopaquinone to form dopachrome and dopa, which is then oxidized by the enzyme, leading to an additional 0.5 mol of oxygen/mol of original substrate. Oxygen consumption for complete oxidation of 200 nmol of 4HA was constant over a range of concentrations of tyrosinase of 33-330 units/ml of substrate. The maximum rate of reaction was directly proportional to the concentration of tyrosinase, whereas the length of the lag phase decreased non-linearly with increasing tyrosinase concentration. Activation of the enzyme by exposure to citrate was not seen, nor was the lag phase abolished by exposure of the enzyme to low pH. Michaelis-Menten analysis of tyrosinase in which the lag phase is abolished by pre-exposure of the enzyme to a low concentration of dithiothreitol gave Km values for tyrosine and 4HA of 153 and 20 microM respectively.

  16. New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion.

    PubMed

    Margue, Christiane; Philippidou, Demetra; Reinsbach, Susanne E; Schmitt, Martina; Behrmann, Iris; Kreis, Stephanie

    2013-01-01

    The non-coding microRNAs (miRNA) have tissue- and disease-specific expression patterns. They down-regulate target mRNAs, which likely impacts on most fundamental cellular processes. Differential expression patterns of miRNAs are currently being exploited for identification of biomarkers for early disease diagnosis, prediction of progression for melanoma and other cancers and as promising drug targets, since they can easily be inhibited or replaced in a given cellular context. Before successfully manipulating miRNAs in clinical settings, their precise expression levels, endogenous functions and thus their target genes have to be determined. MiR-211, a melanocyte lineage-specific small non-coding miRNA, is located in an intron of TRPM1, a target gene of the microphtalmia-associated transcription factor (MITF). By transcriptionally up-regulating TRPM1, MITF, which is critical for both melanocyte differentiation and survival and for melanoma progression, indirectly drives the expression of miR-211. Expression of this miRNA is often reduced in melanoma samples. Here, we investigated functional roles of miR-211 by identifying and studying new target genes. We show that MITF-correlated miR-211 expression levels are mostly but not always reduced in a panel of 11 melanoma cell lines and in primary and metastatic melanoma compared to normal melanocytes and nevi, respectively. MiR-211 itself only marginally impacted on cell invasion and migration, while perturbation of some new miR-211 target genes, such as AP1S2, SOX11, IGFBP5, and SERINC3 significantly increased invasion. These results and the variable expression levels of miR-211 raise serious doubts on the value of miR-211 as a melanoma tumor-suppressing miRNA and/or as a biomarker for melanoma.

  17. The functional property of royal jelly 10-hydroxy-2-decenoic acid as a melanogenesis inhibitor.

    PubMed

    Peng, Chi-Chung; Sun, Hui-Tzu; Lin, I-Ping; Kuo, Ping-Chung; Li, Jen-Chieh

    2017-08-09

    It has been reported that royal jelly would reduce melanin synthesis and inhibit the expression of melanogensis related proteins and genes. In this study, we evaluate the anti-melanogenic and depigmenting activity of 10-hydroxy-2-decenoic acid (10-HDA) from royal jelly of Apis mellifera. In this study, we assesses the 10-HDA whitening activity in comparison with the changes in the intracellular tyrosinase activity, melanin content and melanin production related protein levles in B16F1 melanoma cells after treating with 10-HDA. Furthermore, the skin whitening effect was evaluated by applying a cream product containing with 0.5%, 1% and 2% of 10-HDA onto the skin of mice (C57BL/6 J) for 3 week to observe the effect of DL*-values. The results showed that 10-HDA inhibited the MITF protein expression (IC50 0.86 mM) in B16F1 melanoma cells. Western blot analysis revealed that 10-HDA inhibited the activity of tyrosinase and the expression of tyrosinase-related protein 1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF) in B16F1 melanoma cells. In addition, the 10-HDA was applied on the skin of mice show significantly increased the average skin-whitening index (L value). The validation data indicated the potential of 10-HDA for use in suppressing skin pigmentation. The 10-HDA is proposed as a candidate to inhibit melanogenesis, thus it could be developed as cosmetics skin care products.

  18. Inhibition of Melanogenesis by Gallic Acid: Possible Involvement of the PI3K/Akt, MEK/ERK and Wnt/β-Catenin Signaling Pathways in B16F10 Cells

    PubMed Central

    Su, Tzu-Rong; Lin, Jen-Jie; Tsai, Chi-Chu; Huang, Tsu-Kei; Yang, Zih-Yan; Wu, Ming-O; Zheng, Yu-Qing; Su, Ching-Chyuan; Wu, Yu-Jen

    2013-01-01

    Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin synthesis and tyrosinase activity in a dose- and time-dependent manner, and decreased the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and dopachrome tautomerase (Dct). In addition, gallic acid also acts by phosphorylating and activating melanogenesis inhibitory proteins such as Akt and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK). Using inhibitors against PI3K/Akt (LY294002) or MEK/ERK-specific (PD98059), the hypopigmentation effect was suppressed, and the gallic acid-initiated activation of MEK/ERK and PI3K/Akt was also revoked. Gallic acid also increased GSK3β and p-β-catenin expression but down-regulated p-GSK3β. Moreover, GSK3β-specific inhibitor (SB216763) restored gallic acid-induced melanin reduction. These results suggest that activation of the MEK/ERK, PI3K/Akt, and inhibition of Wnt/β-catenin signaling pathways is involved in the melanogenesis signaling cascade, and that activation by gallic acid reduces melanin synthesis via down-regulation of MITF and its downstream signaling pathway. In conclusion, gallic acid may be a potentially agent for the treatment of certain skin conditions. PMID:24129178

  19. Skin protective effect of guava leaves against UV-induced melanogenesis via inhibition of ORAI1 channel and tyrosinase activity.

    PubMed

    Lee, Dong-Ung; Weon, Kwon Yeon; Nam, Da-Yeong; Nam, Joo Hyun; Kim, Woo Kyung

    2016-12-01

    Ultraviolet (UV) irradiation is a major environmental factor affecting photoageing, which is characterized by skin wrinkle formation and hyperpigmentation. Although many factors are involved in the photoageing process, UV irradiation is thought to play a major role in melanogenesis. Tyrosinase is the key enzyme in melanin synthesis; therefore, many whitening agents target tyrosinase through various mechanisms, such as direct interference of tyrosinase catalytic activity or inhibition of tyrosinase mRNA expression. Furthermore, the highly selective calcium channel ORAI1 has been shown to be associated with UV-induced melanogenesis. Thus, ORAI1 antagonists may have applications in the prevention of melanogenesis. Here, we aimed to identify the antimelanogenesis agents from methanolic extract of guava leaves (Psidium guajava) that can inhibit tyrosinase and ORAI1 channel. The n-butanol (47.47%±7.503% inhibition at 10 μg/mL) and hexane (57.88%±7.09% inhibition at 10 μg/mL) fractions were found to inhibit ORAI1 channel activity. In addition, both fractions showed effective tyrosinase inhibitory activity (68.3%±0.50% and 56.9%±1.53% inhibition, respectively). We also confirmed that the hexane fraction decreased the melanin content induced by UVB irradiation and the ET-1-induced melanogenesis in murine B16F10 melanoma cells. These results suggest that the leaves of P. guajava can be used to protect against direct and indirect UV-induced melanogenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Effects of Ganodermanondiol, a New Melanogenesis Inhibitor from the Medicinal Mushroom Ganoderma lucidum

    PubMed Central

    Kim, Ji-Woong; Kim, Hong-Il; Kim, Jong-Hyeon; Kwon, O-Chul; Son, Eun-Suk; Lee, Chang-Soo; Park, Young-Jin

    2016-01-01

    Ganoderma lucidum, a species of the Basidiomycetes class, has been attracting international attention owing to its wide variety of biological activities and great potential as an ingredient in skin care cosmetics including “skin-whitening” products. However, there is little information available on its inhibitory effect against tyrosinase activity. Therefore, the objectives of this study were to investigate the chemical composition of G. lucidum and its inhibitory effects on melanogenesis. We isolated the active compound from G. lucidum using ethanol extraction and ethyl acetate fractionation. In addition, we assayed its inhibitory effects on tyrosinase activity and melanin biosynthesis in B16F10 melanoma cells. In this study, we identified a bioactive compound, ganodermanondiol, which inhibits the activity and expression of cellular tyrosinase and the expression of tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF), thereby decreasing melanin production. Furthermore, ganodermanondiol also affected the mitogen-activated protein kinase (MAPK) cascade and cyclic adenosine monophosphate (cAMP)-dependent signaling pathway, which are involved in the melanogenesis of B16F10 melanoma cells. The finding that ganodermanondiol from G. lucidum exerts an inhibitory effect on tyrosinase will contribute to the use of this mushroom in the preparation of skin care products in the future. PMID:27801787

  1. Effects of Ganodermanondiol, a New Melanogenesis Inhibitor from the Medicinal Mushroom Ganoderma lucidum.

    PubMed

    Kim, Ji-Woong; Kim, Hong-Il; Kim, Jong-Hyeon; Kwon, O-Chul; Son, Eun-Suk; Lee, Chang-Soo; Park, Young-Jin

    2016-10-27

    Ganoderma lucidum , a species of the Basidiomycetes class, has been attracting international attention owing to its wide variety of biological activities and great potential as an ingredient in skin care cosmetics including "skin-whitening" products. However, there is little information available on its inhibitory effect against tyrosinase activity. Therefore, the objectives of this study were to investigate the chemical composition of G. lucidum and its inhibitory effects on melanogenesis. We isolated the active compound from G. lucidum using ethanol extraction and ethyl acetate fractionation. In addition, we assayed its inhibitory effects on tyrosinase activity and melanin biosynthesis in B16F10 melanoma cells. In this study, we identified a bioactive compound, ganodermanondiol, which inhibits the activity and expression of cellular tyrosinase and the expression of tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF), thereby decreasing melanin production. Furthermore, ganodermanondiol also affected the mitogen-activated protein kinase (MAPK) cascade and cyclic adenosine monophosphate (cAMP)-dependent signaling pathway, which are involved in the melanogenesis of B16F10 melanoma cells. The finding that ganodermanondiol from G. lucidum exerts an inhibitory effect on tyrosinase will contribute to the use of this mushroom in the preparation of skin care products in the future.

  2. Effective L-Tyrosine Hydroxylation by Native and Immobilized Tyrosinase

    PubMed Central

    Lewańczuk, Marcin; Koźlecki, Tomasz; Liesiene, Jolanta; Bryjak, Jolanta

    2016-01-01

    Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity. PMID:27711193

  3. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts.

    PubMed

    Di Petrillo, Amalia; González-Paramás, Ana Maria; Era, Benedetta; Medda, Rosaria; Pintus, Francesca; Santos-Buelga, Celestino; Fais, Antonella

    2016-11-09

    Asphodelus microcarpus belongs to the family Liliaceae that include several medicinal plants. In the traditional medicine plants of the genus Asphodelus are used to treat skin disorders such as ectodermal parasites, psoriasis, microbial infection and for lightening freckles. In order to find novel skin depigmenting agents, the present work was carry out to evaluate antioxidant activity and tyrosinase inhibitory potential of leaves, flowers and tubers extracts of A. microcarpus. The phytochemical composition of the active extract was also evaluated. Three different extracts (water, methanol and ethanol) from leaves, flowers and tubers of A. microcarpus were evaluated for their inhibitory effect on tyrosinase activity using L-3,4-dihydroxyphenylalanine (L-DOPA) as substrate. Inhibition of cellular tyrosinase activity and melanin production was also investigated in melanoma B16F10 cells. Antioxidant activity, total phenolic and flavonoids contents were determined using standard in vitro methods. HPLC-DAD-MS was used to identify phenolic profile of the active extract. The results showed that all extracts have a direct inhibitory anti-tyrosinase activity, with ethanolic extract from flowers (FEE) exhibiting the stronger effect. Kinetic analysis revealed that FEE acts as an uncompetitive inhibitor with a Ki value of 0.19 mg/mL. The same effect was observed in murine melanoma B16F10 cells. Cellular tyrosinase activity as well as melanin content were reduced in FEE-treated cells. The results were comparable to that of the standard tyrosinase inhibitor (kojic acid). Furthermore, the same extract showed the highest antioxidant activity and an elevated levels of total phenolics and flavonoid content. Eleven phenolic components were identified as chlorogenic acid, luteolin derivates, naringenin and apigenin. Our findings showed that FEE from A. microcarpus inhibits tyrosinase and exerted antimelanogenesis effect in B16F10 cells. This extract also showed the highest scavenging

  4. Quantitative structure activity relationship studies of mushroom tyrosinase inhibitors

    NASA Astrophysics Data System (ADS)

    Xue, Chao-Bin; Luo, Wan-Chun; Ding, Qi; Liu, Shou-Zhu; Gao, Xing-Xiang

    2008-05-01

    Here, we report our results from quantitative structure-activity relationship studies on tyrosinase inhibitors. Interactions between benzoic acid derivatives and tyrosinase active sites were also studied using a molecular docking method. These studies indicated that one possible mechanism for the interaction between benzoic acid derivatives and the tyrosinase active site is the formation of a hydrogen-bond between the hydroxyl (aOH) and carbonyl oxygen atoms of Tyr98, which stabilized the position of Tyr98 and prevented Tyr98 from participating in the interaction between tyrosinase and ORF378. Tyrosinase, also known as phenoloxidase, is a key enzyme in animals, plants and insects that is responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the bioactivities of 48 derivatives of benzaldehyde, benzoic acid, and cinnamic acid compounds were used to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models using comparative molecular field (CoMFA) and comparative molecular similarity indices (CoMSIA) analyses. After superimposition using common substructure-based alignments, robust and predictive 3D-QSAR models were obtained from CoMFA ( q 2 = 0.855, r 2 = 0.978) and CoMSIA ( q 2 = 0.841, r 2 = 0.946), with 6 optimum components. Chemical descriptors, including electronic (Hammett σ), hydrophobic (π), and steric (MR) parameters, hydrogen bond acceptor (H-acc), and indicator variable ( I), were used to construct a 2D-QSAR model. The results of this QSAR indicated that π, MR, and H-acc account for 34.9, 31.6, and 26.7% of the calculated biological variance, respectively. The molecular interactions between ligand and target were studied using a flexible docking method (FlexX). The best scored candidates were docked flexibly, and the interaction between the benzoic acid derivatives and the tyrosinase active site was elucidated in detail. We believe

  5. Apparent digenic inheritance of Waardenburg syndrome type 2 (WS2) and autosomal recessive ocular albinism (AROA).

    PubMed

    Morell, R; Spritz, R A; Ho, L; Pierpont, J; Guo, W; Friedman, T B; Asher, J H

    1997-05-01

    Waardenburg syndrome (WS) is a clinically and genetically heterogeneous disease accounting for >2% of the congenitally deaf population. It is characterized by deafness in association with pigmentary anomalies and various defects of neural crest-derived tissues. At least four types are recognized (WS1, WS2, WS3 and WS4) on the basis of clinical and genetic criteria. Two previously described families seemed to delineate a new subtype characterized by WS2 in conjunction with ocular albinism (OA). Since mutations in the MITF gene are responsible for some instances of WS2, we screened for mutations in one of the WS2-OA families and discovered a 1 bp deletion in exon 8 of MITF. OA previously has been associated with compound heterozygosity for a mutant TYR allele and the TYR(R402Q) allele, a functionally significant polymorphism that is associated with moderately reduced tyrosinase catalytic activity. In this family, all of the individuals with the OA phenotype are either homozygous or heterozygous for TYR(R402Q), and heterozyous for the 1 bp deletion in MITF This suggests that the WS2-OA phenotype may result from digenic interaction between a gene for a transcription factor (MITF) and a gene that it regulates (TYR).

  6. Production of o-diphenols by immobilized mushroom tyrosinase.

    PubMed

    Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio

    2009-01-15

    The o-diphenols 4-tert-butyl-catechol, 4-methyl-catechol, 4-methoxy-catechol, 3,4-dihydroxyphenylpropionic acid and 3,4-dihydroxyphenylacetic acid were produced from the corresponding monophenols (4-tert-butyl-phenol, 4-methyl-phenol, 4-methoxy-phenol, p-hydroxyphenylpropionic acid and p-hydroxyphenylacetic acid) using immobilized mushroom tyrosinase from Agaricus bisporus. In all cases the yield was R(diphenol)> or =88-96%, which, according to the literature, is the highest yield so far, obtained using tyrosinase. The reaction was carried out in 0.5M borate buffer pH 9.0 which was used to minimize the diphenolase activity of tyrosinase by complexing the o-diphenols generated. Hydroxylamine and ascorbic acid were also present in the reaction medium, the former being used to reduce mettyrosinase to deoxytyrosinase, closing the catalytic cycle, and the latter to reduce the o-quinone produced to o-diphenol. Inactivation of the tyrosinase by ascorbic acid was also minimized due to the formation of an ascorbic acid-borate complex. Concentrations of the o-diphenolic compounds obtained at several reaction times were determined by gas chromatography-mass spectrometry (GC-MS) and UV-vis spectroscopy. The experimental results are discussed.

  7. Tyrosinase-catalyzed site-specific immobilization of engineered C-phycocyanin to surface

    PubMed Central

    Faccio, Greta; Kämpf, Michael M.; Piatti, Chiara; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Enzymatic crosslinking of proteins is often limited by the steric availability of the target residues, as of tyrosyl side chains in the case of tyrosinase. Carrying an N-terminal peptide-tag containing two tyrosine residues, the fluorescent protein C-phycocyanin HisCPC from Synechocystis sp. PCC6803 was crosslinked to fluorescent high-molecular weight forms with tyrosinase. Crosslinking with tyrosinase in the presence of L-tyrosine produced non fluorescent high-molecular weight products. Incubated in the presence of tyrosinase, HisCPC could also be immobilized to amino-modified polystyrene beads thus conferring a blue fluorescence. Crosslinking and immobilization were site-specific as both processes required the presence of the N-terminal peptide in HisCPC. PMID:24947668

  8. Identifying 8-hydroxynaringenin as a suicide substrate of mushroom tyrosinase.

    PubMed

    Chang, Te-Sheng; Lin, Meng-Yi; Lin, Hsuan-Jung

    2010-01-01

    A biotransformed metabolite of naringenin was isolated from the fermentation broth of Aspergillus oryzae, fed with naringenin, and identified as 8-hydroxynaringenin based on the mass and (1)H- and (13)C-NMR spectral data. The compound showed characteristics of both an irreversible inhibitor and a substrate of mushroom tyrosinase in preincubation and HPLC analysis. These results demonstrate that 8-hydroxynaringenin belongs to a suicide substrate of mushroom tyrosinase. The partition ratio between the compound's molecules in the formation of product and in the inactivation of the enzyme was determined to be 283 +/- 21. The present study's results, together with our previous findings, which proved that both 8-hydroxydaidzein and 8-hydroxygenistein are suicide substrates of mushroom tyrosinase, show that 7,8,4'-trihydroxyl functional groups on flavonoids' skeletons play important roles in producing suicide substrate properties toward mushroom tyrosinase.

  9. Structural insight into the active site of mushroom tyrosinase using phenylbenzoic acid derivatives.

    PubMed

    Oyama, Takahiro; Yoshimori, Atsushi; Takahashi, Satoshi; Yamamoto, Tetsuya; Sato, Akira; Kamiya, Takanori; Abe, Hideaki; Abe, Takehiko; Tanuma, Sei-Ichi

    2017-07-01

    So far, many inhibitors of tyrosinase have been discovered for cosmetic and clinical agents. However, the molecular mechanisms underlying the inhibition in the active site of tyrosinase have not been well understood. To explore this problem, we examined here the inhibitory effects of 4'-hydroxylation and methoxylation of phenylbenzoic acid (PBA) isomers, which have a unique scaffold to inhibit mushroom tyrosinase. The inhibitory effect of 3-PBA, which has the most potent inhibitory activity among the isomers, was slightly decreased by 4'-hydroxylation and further decreased by 4'-methoxylation against mushroom tyrosinase. Surprisingly, 4'-hydroxylation but not methoxylation of 2-PBA appeared inhibitory activity. On the other hand, both 4'-hydroxylation and methoxylation of 4-PBA increased the inhibitory activity against mushroom tyrosinase. In silico docking analyses using the crystallographic structure of mushroom tyrosinase indicated that the carboxylic acid or 4'-hydroxyl group of PBA derivatives could chelate with cupric ions in the active site of mushroom tyrosinase, and that the interactions of Asn260 and Phe264 in the active site with the adequate-angled biphenyl group are involved in the inhibitory activities of the modified PBAs, by parallel and T-shaped π-π interactions, respectively. Furthermore, Arg268 could fix the angle of the aromatic ring of Phe264, and Val248 is supposed to interact with the inhibitors as a hydrophobic manner. These results may enhance the structural insight into mushroom tyrosinase for the creation of novel tyrosinase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of granulocyte-macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides.

    PubMed

    Scheibenbogen, Carmen; Schadendorf, Dirk; Bechrakis, Nikolaos E; Nagorsen, Dirk; Hofmann, Udo; Servetopoulou, Fotini; Letsch, Anne; Philipp, Armin; Foerster, Michael H; Schmittel, Alexander; Thiel, Eckhard; Keilholz, Ulrich

    2003-03-20

    Immunologic adjuvants are used to augment the immunogenicity of MHC class I-restricted peptide vaccines, but this effect has rarely been systematically evaluated in a clinical trial. We have investigated, in a phase I study, whether addition of the 2 adjuvants GM-CSF and KLH can enhance the T-cell response to MHC class I peptide vaccines. Forty-three high-risk melanoma patients who were clinically free of disease received 6 vaccinations with MHC class I-restricted tyrosinase peptides alone, with either GM-CSF or KLH or with a combination of both adjuvants. The primary end point was induction of tyrosinase-specific T cells, and serial T-cell monitoring was performed in unstimulated peripheral blood samples before and after the second, fourth and sixth vaccinations by ELISPOT assay. Tyrosinase-specific IFN-gamma-producing T cells were detected as early as 2 weeks after the second vaccination in 5 of 9 patients vaccinated with tyrosinase peptides in combination with GM-CSF and KLH but not in any patient vaccinated with tyrosinase peptides without adjuvants or in combination with either adjuvant alone. After 6 vaccinations, tyrosinase-specific T cells were found in patients immunized with peptides either without adjuvants (3 of 9 patients) or in combination with the single adjuvant GM-CSF (4 of 9 patients) but not with KLH (0 of 10 patients). Our results suggest that addition of either GM-CSF or KLH as a single adjuvant has little impact on the immunogenicity of tyrosinase peptides. The combined application of GM-CSF and KLH was associated with early induction of T-cell responses. Copyright 2003 Wiley-Liss, Inc.

  11. Design, synthesis and bioevaluation of novel umbelliferone analogues as potential mushroom tyrosinase inhibitors.

    PubMed

    Ashraf, Zaman; Rafiq, Muhammad; Seo, Sung-Yum; Babar, Mustafeez Mujtaba; Zaidi, Najam-Us-Sahar Sadaf

    2015-12-01

    A series of umbelliferone analogues were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. Especially, 2-oxo-2-[(2-oxo-2H-chromen-7-yl)oxy]ethyl-2,4-dihydroxybenzoate (4e) bearing 2,4-dihydroxy substituted phenyl ring exhibited the most potent tyrosinase inhibitory activity with IC50 value 8.96 µM and IC50 value of kojic acid is 16.69. The inhibition mechanism analyzed by Lineweaver-Burk plots revealed that the type of inhibition of compound 4e on tyrosinase was non-competitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compounds 4c and 4e showed the highest binding affinity with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compounds 4c and 4e may serve as a structural template for the design and development of novel tyrosinase inhibitors.

  12. Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity

    PubMed Central

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Shin, Misun; Nam, Yeon-Ju; Choi, Dong-Hwa; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2015-01-01

    The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH. PMID:26057890

  13. Mutations in MITF and PAX3 Cause “Splashed White” and Other White Spotting Phenotypes in Horses

    PubMed Central

    Blatter, Marlis; Brooks, Samantha A.; Burger, Dominik; Drögemüller, Cord; Gerber, Vincent; Henke, Diana; Janda, Jozef; Jude, Rony; Magdesian, K. Gary; Matthews, Jacqueline M.; Poncet, Pierre-André; Svansson, Vilhjálmur; Tozaki, Teruaki; Wilkinson-White, Lorna; Penedo, M. Cecilia T.; Rieder, Stefan; Leeb, Tosso

    2012-01-01

    During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The “splashed white” pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes. PMID:22511888

  14. Microwave-assisted synthesis and tyrosinase inhibitory activity of chalcone derivatives.

    PubMed

    Liu, Jinbing; Chen, Changhong; Wu, Fengyan; Zhao, Liangzhong

    2013-07-01

    A series of chalcones and their derivatives were synthesized, and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant inhibitory activity, and four compounds exhibited more potent tyrosinase inhibitory activity than the reference standard inhibitor kojic acid (5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one). Specifically, 1-(-1-(4-methoxyphen- yl)-3-phenylallylidene)thiosemicarbazide (18) exhibited the most potent tyrosinase inhibitory activity with IC₅₀ value of 0.274 μM. The inhibition mechanism analysis of 1-(-1-(2,4-dihydroxyphenyl)-3-phenylallylidene) thiosemicarbazide (16) and 1-(-1-(4-methoxyphenyl)-3-phenylallylidene) thiosemicarbazide (18) demonstrated that the inhibitory effects of the two compounds on the tyrosinase were irreversible. Preliminary structure activity relationships' analysis suggested that further development of such compounds might be of interest. © 2013 John Wiley & Sons A/S.

  15. Design and discovery of mushroom tyrosinase inhibitors and their therapeutic applications.

    PubMed

    Mendes, Eduarda; Perry, Maria de Jesus; Francisco, Ana Paula

    2014-05-01

    Tyrosinase inhibitors could have a huge importance in medicine, cosmetics and agriculture. Although many tyrosinase inhibitors are available, they have demonstrated only mild efficacy and safety concerns. This has led to the discovery of novel tyrosinase inhibitors that are more safe, potent and efficacious. The authors provide an overview of the recent scientific accounts describing the design of new molecules. These compounds belong to different chemical families. The review emphasizes the rationale behind the discovery, the study of structure-activity relationships, the study of the mechanism and kinetic of inhibition and the cellular effect of the inhibitors. The article is based on the literature published from 2007 onward related with the development of synthetic tyrosinase inhibitors. Although a great number of tyrosinase inhibitors have been published in the literature, none, as of yet, have reached the potency and safety requirements needed to enter clinical trials. The emergence of new in vitro and in vivo tests will finally allow the arrival of new compounds that are more potent and safe.

  16. A simple repeat polymorphism in the MITF-M promoter is a key regulator of white spotting in dogs.

    PubMed

    Baranowska Körberg, Izabella; Sundström, Elisabeth; Meadows, Jennifer R S; Rosengren Pielberg, Gerli; Gustafson, Ulla; Hedhammar, Åke; Karlsson, Elinor K; Seddon, Jennifer; Söderberg, Arne; Vilà, Carles; Zhang, Xiaolan; Åkesson, Mikael; Lindblad-Toh, Kerstin; Andersson, Göran; Andersson, Leif

    2014-01-01

    The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (s(w)). We have investigated four candidate mutations associated with the s(w) allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs.

  17. A Simple Repeat Polymorphism in the MITF-M Promoter Is a Key Regulator of White Spotting in Dogs

    PubMed Central

    Meadows, Jennifer R. S.; Rosengren Pielberg, Gerli; Gustafson, Ulla; Hedhammar, Åke; Karlsson, Elinor K.; Seddon, Jennifer; Söderberg, Arne; Vilà, Carles; Zhang, Xiaolan; Åkesson, Mikael; Lindblad-Toh, Kerstin; Andersson, Göran; Andersson, Leif

    2014-01-01

    The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (sw). We have investigated four candidate mutations associated with the sw allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs. PMID:25116146

  18. Activation mechanism of melB tyrosinase from Aspergillus oryzae by acidic treatment.

    PubMed

    Fujieda, Nobutaka; Murata, Michiaki; Yabuta, Shintaro; Ikeda, Takuya; Shimokawa, Chizu; Nakamura, Yukihiro; Hata, Yoji; Itoh, Shinobu

    2013-01-01

    The pro form of recombinant tyrosinase from Aspergillus oryzae (melB) shows no catalytic activity, but acid treatment (around pH 3.5) of protyrosinase activates it to induce tyrosinase activity. Circular dichroism spectra, gel filtration analysis, and colorimetric assay have indicated that acid treatment around pH 3.5 induced the disruption of the conformation of the C-terminal domain covering the enzyme active site. These structural changes induced by the acid treatment may open the entrance to the enzyme active site for substrate incorporation. To compare the mechanism of hydroxylation by the acid-treated tyrosinase with that by trypsin-treated tyrosinase, a detailed steady-state kinetic analysis of the phenolase activity was performed by monitoring the O(2)-consumption rate using a Clark-type oxygen electrode. The results clearly show that the phenolase activity (phenol hydroxylation) of the activated tyrosinase involves an electrophilic aromatic substitution mechanism as in the case of mushroom tyrosinase (Yamazaki and Itoh in J. Am. Chem. Soc. 125:13034-13035, 2003) and activated hemocyanin with urea (Morioka et al. in J. Am. Chem. Soc. 128:6788-6789, 2006).

  19. Development of an HTS-Compatible Assay for Discovery of Melanoma-Related Microphthalmia Transcription Factor Disruptors Using AlphaScreen Technology.

    PubMed

    Wang, Jing; Fang, Pengfei; Chase, Peter; Tshori, Sagi; Razin, Ehud; Spicer, Timothy P; Scampavia, Louis; Hodder, Peter; Guo, Min

    2017-01-01

    Microphthalmia transcription factor (MITF) is a master transcription factor expressed in melanocytes, essential for melanocyte survival, differentiation, and pigment formation, and is a key oncogenic factor in melanoma initiation, migration, and treatment resistance. Although identified as an important therapeutic target for melanoma, clinical inhibitors directly targeting the MITF protein are not available. Based on the functional state of MITF, we have designed an MITF dimerization-based AlphaScreen (MIDAS) assay that sensitively and specifically mirrors the dimerization of MITF in vitro. This assay is further exploited for identification of the MITF dimer disruptor for high-throughput screening. A pilot screen against a library of 1280 pharmacologically active compounds indicates that the MIDAS assay performance exhibits exceptional results with a Z' factor of 0.81 and a signal-to-background (S/B) ratio of 3.92 while identifying initial hit compounds that yield an ability to disrupt MITF-DNA interaction. The results presented demonstrate that the MIDAS assay is ready to screen large chemical libraries in order to discover novel modulators of MITF for potential melanoma treatment.

  20. Inhibitory effect on natural killer activity of microphthalmia transcription factor encoded by the mutant mi allele of mice.

    PubMed

    Ito, A; Kataoka, T R; Kim, D K; Koma , Y; Lee, Y M; Kitamura, Y

    2001-04-01

    The mouse mi locus encodes a basic-helix-loop-helix-leucine zipper-type transcription factor, microphthalmia transcription factor (MITF). Mice of mi/mi genotype express a mutant form of MITF (mi-MITF), whereas mice of tg/tg genotype have a transgene in the 5' flanking region of the mi gene and do not express MITF. Although the mi/mi mouse is deficient in natural killer (NK) activity, it was found that the tg/tg mouse was normal in this respect. To know the cause, spleen cells of both genotypes were compared. Although the proportion of spleen cells expressing an NK cell marker, NK1.1, was comparable in both mice, the proportion of large granular lymphocytes decreased only in mi/mi mice. The difference between mi/mi and tg/tg mice was reproducible in the culture supplemented with interleukin-2. Moreover, the perforin gene expression was reduced in mi/mi-cultured spleen cells. Wild-type (+) MITF transactivated, but mi-MITF suppressed, the perforin gene promoter through the NF-P motif, a strong cis-acting element. However, neither +-MITF nor mi-MITF bound the NF-P motif. Instead, 2 nuclear factors that bound the NF-P motif were retained in the cytoplasm of mi/mi-cultured spleen cells. In addition, overexpression of mi-MITF resulted in cytoplasmic retention of the 2 NF-P motif-binding factors in cytotoxic T lymphocytes. The presence of mi-MITF rather than the absence of +-MITF appeared to lead to poor transactivation of the NF-P motif by intercepting NF-P motif-binding factors. This inhibitory effect of mi-MITF may cause the deficient cytotoxicity of NK cells in mi/mi mice. (Blood. 2001;97:2075-2083)

  1. Effects of radix polygoni multiflori components on tyrosinase activity and melanogenesis.

    PubMed

    Guan, Shuyu; Su, Weiwei; Wang, Ning; Li, Peibo; Wang, Yonggang

    2008-04-01

    Radix Polygoni multiflori is a herb used effectively to prevent graying and treat skin depigmentation diseases in traditional Chinese medicine but its active ingredients have not been discovered yet. In this investigation, we tested six compounds isolated from Radix Polygoni multiflori, to discover the active component on melanogenesis. Three experiments were performed in the present investigation: mushroom tyrosinase activity, melanin content B16 cell proliferation assay. Among all the six components tested, THSG showed the most potent effects on tyrosinase activation and melanogenesis; it was shown to be a potent tyrosinase activator and a melanogenesis stimulator in this study. On the other hand, we found that gallic acid significantly inhibited tyrosinase and, in addition, anthraquinones were cytotoxic to melanoma cells. They were both harmful to melanogenesis. Therefore, we propose that THSG acts as the active ingredient of Radix Polygoni multiflori on melanogenesis.

  2. Molecular Cloning and Characteristic Features of a Novel Extracellular Tyrosinase from Aspergillus niger PA2.

    PubMed

    Agarwal, Pragati; Singh, Jyoti; Singh, R P

    2017-05-01

    Aspergillus niger PA2, a novel strain isolated from waste effluents of food industry, is a potential extracellular tyrosinase producer. Enzyme activity and L-DOPA production were maximum when glucose and peptone were employed as C source and nitrogen source respectively in the medium and enhanced notably when the copper was supplemented, thus depicting the significance of copper in tyrosinase activity. Tyrosinase-encoding gene from the fungus was cloned, and amplification of the tyrosinase gene yielded a 1127-bp DNA fragment and 374 amino acid residue long product that encoded for a predicted protein of 42.3 kDa with an isoelectric point of 4.8. Primary sequence analysis of A. niger PA2 tyrosinase had shown that it had approximately 99% identity with that of A. niger CBS 513.88, which was further confirmed by phylogenetic analysis. The inferred amino acid sequence of A. niger tyrosinase contained two putative copper-binding sites comprising of six histidines, a characteristic feature for type-3 copper proteins, which were highly conserved in all tyrosinases throughout the Aspergillus species. When superimposed onto the tertiary structure of A. oryzae tyrosinase, the conserved residues from both the organisms occupied same spatial positions to provide a di-copper-binding peptide groove.

  3. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid.

    PubMed

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Choi, Yun-Hyeok; Hong, Seong Su; Suh, Hwa-Jin; Park, Woncheol; Boo, Yong Chool

    2016-07-01

    Resveratrol is known to inhibit cellular melanin synthesis by multiple mechanisms. Glycolic acid (GA) is used in skin care products for its excellent skin penetration. The purpose of this study was to examine the anti-melanogenic effects of resveratryl triglycolate (RTG), a novel hybrid compound of resveratrol and GA, in comparison with resveratrol, GA, resveratryl triacetate (RTA) and arbutin. Resveratrol, RTG, and RTA inhibited the catalytic activity human tyrosinase (TYR) more potently than arbutin or GA did. Their cytotoxic and anti-melanogenic effects were examined using murine melanoma B16/F10 cells and human epidermal melanocytes (HEMs). The cytotoxicity of RTG was similar to that of resveratrol and RTA. RTG at 3-10 μM decreased melanin levels and cellular TYR activities in α-melanocyte-stimulating hormone-stimulated B16/F10 cells, and L-tyrosine-stimulated HEMs. RTG also suppressed mRNA and protein expression of TYR, tyrosinase-related protein 1, L-3,4-dihydroxyphenylalanine chrome tautomerase, and microphthalmia-associated transcription factor (MITF) in HEMs stimulated with L-tyrosine. This study suggests that, like resveratrol and RTA, RTG can attenuate cellular melanin synthesis effectively through the suppression of MITF-dependent expression of melanogenic enzymes and the inhibition of catalytic activity of TYR enzyme. RTG therefore has potential for use as a cosmeceutical ingredient for skin whitening.

  4. Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold.

    PubMed

    Hong, Yanqing; Zhu, Xueke; Wang, Ping; Fu, Haitian; Deng, Chao; Cui, Li; Wang, Qiang; Fan, Xuerong

    2016-04-01

    Elastin has characteristics of elasticity, biological activity, and mechanical stability. In the present work, tyrosinase-mediated construction of a bioscaffold with silk fibroin and elastin was carried out, aiming at developing a novel medical biomaterial. The efficiency of enzymatic oxidation of silk fibroin and the covalent reaction between fibroin and elastin were examined by spectrophotometry, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and size exclusion chromatography (SEC). The properties of composite air-dried and nanofiber scaffolds were investigated. The results reveal that elastin was successfully bonded to silk fibroins, resulting in an increase in molecular weight of fibroin proteins. ATR-FTIR spectra indicated that tyrosinase treatment impacted the conformational structure of fibroin-based membrane. The thermal behaviors and mechanical properties of the tyrosinase-treated scaffolds were also improved compared with the untreated group. NIH/3T3 cells exhibited optimum densities when grown on the nanofiber scaffold, implying that the nanofiber scaffold has enhanced biocompatibility compared to the air-dried scaffold. A biological nanofiber scaffold constructed from tyrosinase-treated fibroin and elastin could potentially be utilized in biomedical applications.

  5. Stereospecificity of mushroom tyrosinase immobilized on a chiral and a nonchiral support.

    PubMed

    Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Canovas, Francisco; García-Ruiz, Pedro Antonio

    2007-05-30

    Mushroom tyrosinase was immobilized from an extract onto glass beads covered with the cross-linked totally cinnamoylated derivates of d-sorbitol (sorbitol cinnamate) and glycerine (glycerine cinnamate). The enzyme was immobilized onto the support by direct adsorption, and the quantity of immobilized tyrosinase was higher for sorbitol cinnamate, the support with the higher number of esterified hydroxyls per unit of monosacharide, than for glycerine cinnamate. The results obtained from the stereospecificity study of the monophenolase and diphenolase activity of immobilized mushroom tyrosinase are reported. The enantiomers L-tyrosine, DL-tyrosine, D-tyrosine, L-dopa, DL-dopa, D-dopa, L-alpha-methyldopa, DL-alpha-methyldopa, L-isoprenaline, DL-isoprenaline, L-adrenaline, DL-adrenaline, L-noradrenaline, and D-noradrenaline were assayed with tyrosinase immobilized on a chiral support (sorbitol cinnamate), whereas L-tyrosine, DL-tyrosine, D-tyrosine, L-dopa, DL-dopa, D-dopa, L-alpha-methyldopa, and DL-alpha-methyldopa were assayed with tyrosinase immobilized on a nonchiral support (glycerine cinnamate). The same Vmax(app) values for each series of enantiomers were obtained. However, the Km(app) values were different, the l isomers showing lower values than the dl isomers, whereas the highest Km(app) value was obtained with d isomers. No difference was observed in the stereospecificity of tyrosinase immobilized on a chiral (sorbitol cinnamate) or nonchiral (glycerine cinnamate) support.

  6. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid

    PubMed Central

    Saghaie, L; Pourfarzam, M.; Fassihi, A.; Sartippour, B.

    2013-01-01

    Tyrosinase is a multifunctional oxidase that is widely distributed in nature. It is a key enzyme in melanin biosynthesis and is involved in determining the color of mammalian skin and hair. In addition it is responsible for the undesirable enzymatic browning that occurs in plant-derived foods, limiting the shelf-life of fresh-cut products with the resultant economic loss. In recent years there has been considerable interest to study the inhibitory activity of tyrosinase and a number of inhibitory compounds derived from natural sources or partly/fully synthetic have been described. However, the current conventional methods to control tyrosinase action are inadequate. Considering the significant industrial and economic impact of the inhibitors of tyrosinase, this study was set to seek new potent inhibitors of this enzyme. A series of 3-hydroxypyridine-4-one derivatives were prepared in high yield and evaluated for their inhibitory activity on tyrosinase enzyme using dopachrome method. Our results show that all synthesized compounds have inhibitory effect on tyrosinase activity for the oxidation of L-DOPA. Among compounds studied those containing two free hydroxyl group (ie Va and V’a) were more potent than their analogues with one hydroxyl group (ie Vb and V’b). Also substitution of a methyl group on position N1 of the hydroxypyridinone ring seems to confer more inhibitory potency. PMID:24082892

  7. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid.

    PubMed

    Saghaie, L; Pourfarzam, M; Fassihi, A; Sartippour, B

    2013-10-01

    Tyrosinase is a multifunctional oxidase that is widely distributed in nature. It is a key enzyme in melanin biosynthesis and is involved in determining the color of mammalian skin and hair. In addition it is responsible for the undesirable enzymatic browning that occurs in plant-derived foods, limiting the shelf-life of fresh-cut products with the resultant economic loss. In recent years there has been considerable interest to study the inhibitory activity of tyrosinase and a number of inhibitory compounds derived from natural sources or partly/fully synthetic have been described. However, the current conventional methods to control tyrosinase action are inadequate. Considering the significant industrial and economic impact of the inhibitors of tyrosinase, this study was set to seek new potent inhibitors of this enzyme. A series of 3-hydroxypyridine-4-one derivatives were prepared in high yield and evaluated for their inhibitory activity on tyrosinase enzyme using dopachrome method. Our results show that all synthesized compounds have inhibitory effect on tyrosinase activity for the oxidation of L-DOPA. Among compounds studied those containing two free hydroxyl group (ie Va and V'a) were more potent than their analogues with one hydroxyl group (ie Vb and V'b). Also substitution of a methyl group on position N(1) of the hydroxypyridinone ring seems to confer more inhibitory potency.

  8. Screening of tyrosinase inhibitors by capillary electrophoresis with immobilized enzyme microreactor and molecular docking.

    PubMed

    Cheng, Mengxia; Chen, Zilin

    2017-02-01

    A new method for screening tyrosinase inhibitors from traditional Chinese medicines (TCMs) was successfully developed by capillary electrophoresis with reliable online immobilized enzyme microreactor (IMER). In addition, molecular docking study has been used for supporting inhibition interaction between enzyme and inhibitors. The IMER of tyrosinase was constructed at the outlet of the capillary by using glutaraldehyde as cross-linker. The parameters including enzyme reaction, separation of the substrate and product, and the performance of immobilized tyrosinase were investigated systematically. Because of using short-end injection procedure, the product and substrate were effectively separated within 2 min. The immobilized tyrosinase could remain 80% active for 30 days at 4°C. The Michaelis-Menten constant of tyrosinase was determined as 1.78 mM. Kojic acid, a known tyrosinase inhibitor, was used as a model compound for the validation of the inhibitors screening method. The half-maximal inhibitory concentration of kojic acid was 5.55 μM. The method was successfully applied for screening tyrosinase inhibitors from 15 compounds of TCM. Four compounds including quercetin, kaempferol, bavachinin, and bakuchiol were found having inhibitory potentials. The results obtained in this work were supported by molecular docking study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mechanistic aspects of the tyrosinase oxidation of hydroquinone.

    PubMed

    Ramsden, Christopher A; Riley, Patrick A

    2014-06-01

    Contradictory reports on the behaviour of hydroquinone as a tyrosinase substrate are reconciled in terms of the ability of the initially formed ortho-quinone to tautomerise to the thermodynamically more stable para-quinone isomer. Oxidation of phenols by native tyrosinase requires activation by in situ formation of a catechol formed via an enzyme generated ortho-quinone. In the special case of hydroquinone, catechol formation is precluded by rapid tautomerisation of the ortho-quinone precursor to catechol formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A novel mutation of the MITF gene in a family with Waardenburg syndrome type 2: A case report

    PubMed Central

    SHI, YUNFANG; LI, XIAOZHOU; JU, DUAN; LI, YAN; ZHANG, XIULING; ZHANG, YING

    2016-01-01

    Waardenburg syndrome (WS) is an autosomal dominant disorder with varying degrees of sensorineural hearing loss, and accumulation of pigmentation in hair, skin and iris. There are four types of WS (WS1–4) with differing characteristics. Mutations in six genes [paired box gene 3 (PAX3), microphthalmia-associated transcription factor (MITF), endothelin 3 (END3), endothelin receptor type B (EDNRB), SRY (sex determining region Y)-box 10 (SOX10) and snail homolog 2 (SNAI2)] have been identified to be associated with the various types. This case report describes the investigation of genetic mutations in three patients with WS2 from a single family. Genomic DNA was extracted, and the six WS-related genes were sequenced using next-generation sequencing technology. In addition to mutations in PAX3, EDNRB and SOX10, a novel heterozygous MITF mutation, p.Δ315Arg (c.944_946delGAA) on exon 8 was identified. This is predicted to be a candidate disease-causing mutation that may affect the structure and function of the enzyme. PMID:27073475

  11. A novel mutation of the MITF gene in a family with Waardenburg syndrome type 2: A case report.

    PubMed

    Shi, Yunfang; Li, Xiaozhou; Ju, Duan; Li, Yan; Zhang, Xiuling; Zhang, Ying

    2016-04-01

    Waardenburg syndrome (WS) is an autosomal dominant disorder with varying degrees of sensorineural hearing loss, and accumulation of pigmentation in hair, skin and iris. There are four types of WS (WS1-4) with differing characteristics. Mutations in six genes [paired box gene 3 ( PAX3 ), microphthalmia-associated transcription factor ( MITF ), endothelin 3 ( END3 ), endothelin receptor type B ( EDNRB ), SRY (sex determining region Y)-box 10 ( SOX10 ) and snail homolog 2 ( SNAI2 )] have been identified to be associated with the various types. This case report describes the investigation of genetic mutations in three patients with WS2 from a single family. Genomic DNA was extracted, and the six WS-related genes were sequenced using next-generation sequencing technology. In addition to mutations in PAX3, EDNRB and SOX10, a novel heterozygous MITF mutation, p.Δ315Arg (c.944_946delGAA) on exon 8 was identified. This is predicted to be a candidate disease-causing mutation that may affect the structure and function of the enzyme.

  12. Tyrosinase autoactivation and the problem of the lag period.

    PubMed

    Naish-Byfield, S; Riley, P A

    1998-06-01

    Evidence is presented for the binding of the quinone oxidation product of the monohydric phenol substrate, 4-hydroxyanisole, to mushroom tyrosinase. Column chromatography and SDS-PAGE separation showed labelling of the enzyme when incubated with 14C ring-labelled 4-hydroxyanisole. It is proposed that covalent binding to the enzyme and other proteins is through reaction of accessible nucleophilic groups, including thiols and amino groups, with the anisylquinone. This reductive addition enables the indirect generation of the catecholic substrate, which acts as an electron donor for the bicupric active site of met-tyrosinase and explains the lag kinetics of tyrosinase oxidation of non-cyclizing substrates. The effects of diluting the enzyme or the addition of amino acids on the lag period was consistent with a mechanism involving indirect generation of the dihydric phenol, which acts as the met-enzyme-recruiting substrate.

  13. (2E,5E)-2,5-Bis(3-hydroxy-4-methoxybenzylidene) cyclopentanone Exerts Anti-Melanogenesis and Anti-Wrinkle Activities in B16F10 Melanoma and Hs27 Fibroblast Cells.

    PubMed

    Jung, Hee Jin; Lee, A Kyoung; Park, Yeo Jin; Lee, Sanggwon; Kang, Dongwan; Jung, Young Suk; Chung, Hae Young; Moon, Hyung Ryong

    2018-06-11

    Ultraviolet (UV) radiation exposure is the primary cause of extrinsic skin aging, which results in skin hyperpigmentation and wrinkling. In this study, we investigated the whitening effect of (2 E ,5 E )-2,5-bis(3-hydroxy-4-methoxybenzylidene)cyclopentanone (BHCP) on B16F10 melanoma and its anti-wrinkle activity on Hs27 fibroblasts cells. BHCP was found to potently inhibit tyrosinase, with 50% inhibition concentration (IC 50 ) values of 1.10 µM and 8.18 µM for monophenolase (l-tyrosine) and diphenolase (l-DOPA), and the enzyme kinetics study revealed that BHCP is a competitive-type tyrosinase inhibitor. Furthermore, BHCP significantly inhibited melanin content and cellular tyrosinase activity, and downregulated the levels of microphthalmia-associated transcription factor (MITF), phosphorylated levels of cAMP response element-binding (CREB) protein, and tyrosinase in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 melanoma cells. Moreover, BHCP inhibited the phosphorylation of p65 and expression of matrix metalloproteinases (MMP-1, MMP-9, MMP-12, and MMP-13) in Hs27 fibroblasts stimulated with UV radiation. Therefore, our results demonstrate that BHCP may be a good candidate for the development of therapeutic agents for diseases associated with hyperpigmentation and wrinkling.

  14. Tyrosinase inhibitors from the wood of Artocarpus heterophyllus.

    PubMed

    Nguyen, Nhan Trung; Nguyen, Mai Ha Khoa; Nguyen, Hai Xuan; Bui, Ngan Kim Nguyen; Nguyen, Mai Thanh Thi

    2012-11-26

    From the methanolic-soluble extract of the wood of Artocarpus heterophyllus, four new flavones, artocarmins A-D (1-4), and three new chalcones, artocarmitins A-C (5-7), have been isolated together with 13 known compounds. Their structures were determined on the basis of the spectroscopic data. Compounds 1-4, 6, 7, 9-16, and 20 displayed significant tyrosinase inhibitory activity. The most active compound, morachalcone A (12) (IC50, 0.013 μM), was 3000 times more active as a tyrosinase inhibitor than a positive control, kojic acid (IC50, 44.6 μM).

  15. l-tyrosine induces melanocyte differentiation in novel pink-eyed dilution castaneus mouse mutant showing age-related pigmentation.

    PubMed

    Hirobe, Tomohisa; Ishikawa, Akira

    2015-12-01

    The mouse pink-eyed dilution (oculocutaneous albinism II; p/Oca2(p)) locus is known to control tyrosinase activity, melanin content, and melanosome development in melanocytes. Pink-eyed dilution castaneus (p(cas)/Oca2(p-cas)) is a novel mutant allele on mouse chromosome 7 that arose spontaneously in Indonesian wild mice, Mus musculus castaneus. Mice homozygous for Oca2(p-cas) usually exhibit pink eyes and beige-colored coat on nonagouti C57BL/6 (B6) background. Recently, a novel spontaneous mutation occurred in the progeny between this mutant and B6 mice. The eyes of this novel mutant progressively become black from pink and the coat becomes dark gray from beige with aging. The aim of this study is to clarify whatever differences exist in melanocyte proliferation and differentiation between the ordinary (pink-eyed) and novel (black-eyed) mutant using serum-free primary culture system. The characteristics of melanocyte proliferation and differentiation were investigated by serum-free primary culture system using melanocyte-proliferation medium (MDMD). The proliferation of melanoblasts in MDMD did not differ between the two mice. However, when the epidermal cell suspensions were cultured with MDMD supplemented with l-tyrosine (Tyr), the differentiation of black-eyed melanocytes was greatly induced in a concentration-dependent manner compared with pink-eyed melanocytes. Immunocytochemistry demonstrated that the expression of tyrosinase and tyrosinase-related protein-1 (Tyrp1) was greatly induced or stimulated both in pink-eyed and black-eyed melanocytes, whereas the expression of microphthalmia-associated transcription factor (Mitf) was stimulated only in black-eyed melanocytes. These results suggest that the age-related coat darkening in black-eyed mutant may be caused by the increased ability of melanocyte differentiation dependent on l-Tyr through the upregulation of tyrosinase, Tyrp1, and Mitf. This mutant mouse may be useful for animal model to clarify the

  16. Point mutation in the MITF gene causing Waardenburg syndrome type II in a three-generation Indian family.

    PubMed

    Lalwani, A K; Attaie, A; Randolph, F T; Deshmukh, D; Wang, C; Mhatre, A; Wilcox, E

    1998-12-04

    Waardenburg syndrome (WS) is an autosomal-dominant neural crest cell disorder phenotypically characterized by hearing impairment and disturbance of pigmentation. A presence of dystopia canthorum is indicative of WS type 1, caused by loss of function mutation in the PAX3 gene. In contrast, type 2 WS (WS2) is characterized by normally placed medial canthi and is genetically heterogeneous; mutations in MITF (microphthalmia associated transcription factor) associated with WS2 have been identified in some but not all affected families. Here, we report on a three-generation Indian family with a point mutation in the MITF gene causing WS2. This mutation, initially reported in a Northern European family, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking the HLH-Zip or Zip structure necessary for normal interaction with its target DNA motif. Comparison of the phenotype between the two families demonstrates a significant difference in pigmentary disturbance of the eye. This family, with the first documented case of two unrelated WS2 families harboring identical mutations, provides additional evidence for the importance of genetic background on the clinical phenotype.

  17. Preparation of tyrosinase inhibitors and antibrowning agents using green technology.

    PubMed

    Dong, Xue; Zhang, Yinan; He, Jia-Liang; Zhang, Shuang; Zeng, Mao-Mao; Chen, Jie; Zheng, Zong-Ping

    2016-04-15

    Chalcones and their derivatives have attracted great interests in recent years for their comprehensive biological activities. In this study, 2,4,2',4'-tetrahydroxychalcone and its two derivatives, 1,3,5-tris-(2,4-dihydroxy-phenyl)pentane-1,5-dione (new compound) and 7,2',4'-trihydroxyflavanone, were synthesized through one-pot green procedure catalyzed by boric acid in polyethylene glycol 400. Their structures were identified by ESI-MS and NMR spectral. Tyrosinase inhibitory activity and antibrowning test results showed that compounds 1-3 exhibited strong tyrosinase inhibitory activities and significant antibrowning effects on the fresh-cut lotus root slices at room temperature in 48 h. Among them, 0.01% 1,3,5-tris-(2,4-dihydroxy-phenyl)pentane-1,5-dione combined with 0.5% VC showed the best antibrowning ability. In brief, this study offers a protocol for one-pot green synthesis of high efficiency tyrosinase inhibitors which may be suitable as antibrowning agents for fresh-cut vegetables. More important, this study developed a new type of 1,5-dione derivative which may serve as new lead structures for novel tyrosinase inhibitors discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A Novel Photoelectrochemical Biosensor for Tyrosinase and Thrombin Detection

    PubMed Central

    Chen, Jiexia; Liu, Yifan; Zhao, Guang-Chao

    2016-01-01

    A novel photoelectrochemical biosensor for step-by-step assay of tyrosinase and thrombin was fabricated based on the specific interactions between the designed peptide and the target enzymes. A peptide chain with a special sequence which contains a positively charged lysine-labeled terminal, tyrosine at the other end and a cleavage site recognized by thrombin between them was designed. The designed peptide can be fixed on surface of the CdTe quantum dots (QDs)-modified indium-tin oxide (ITO) electrode through electrostatic attraction to construct the photoelectrochemical biosensor. The tyrosinase target can catalyze the oxidization of tyrosine by oxygen into ortho-benzoquinone residues, which results in a decrease in the sensor photocurrent. Subsequently, the cleavage site could be recognized and cut off by another thrombin target, restoring the sensor photocurrent. The decrease or increase of photocurrent in the sensor enables us to assay tyrosinase and thrombin. Thus, the detection of tyrosinase and thrombin can be achieved in the linear range from 2.6 to 32 μg/mL and from 4.5 to 100 μg/mL with detection limits of 1.5 μg/mL and 1.9 μg/mL, respectively. Most importantly, this strategy shall allow us to detect different classes of enzymes simultaneously by designing various enzyme-specific peptide substrates. PMID:26805846

  19. Alternative splicing of the tyrosinase gene transcript in normal human melanocytes and lymphocytes.

    PubMed

    Fryer, J P; Oetting, W S; Brott, M J; King, R A

    2001-11-01

    We have identified and isolated ectopically expressed tyrosinase transcripts in normal human melanocytes and lymphocytes and in a human melanoma (MNT-1) cell line to establish a baseline for the expression pattern of this gene in normal tissue. Tyrosinase mRNA from human lymphoblastoid cell lines was reverse transcribed and amplified using specific "nested" primers. This amplification yielded eight identifiable transcripts; five that resulted from alternative splicing patterns arising from the utilization of normal and alternative splice sequences. Identical splicing patterns were found in transcripts from human primary melanocytes in culture and a melanoma cell line, indicating that lymphoblastoid cell lines provide an accurate reflection of transcript processing in melanocytes. Similar splicing patterns have also been found with murine melanocyte tyrosinase transcripts. Our results demonstrate that alternative splicing of human tyrosinase gene transcript produces a number of predictable and identifiable transcripts, and that human lymphoblastoid cell lines provide a source of ectopically expressed transcripts that can be used to study the biology of tyrosinase gene expression in humans.

  20. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein.

    PubMed

    Hosseini-Abari, Afrouzossadat; Kim, Byung-Gee; Lee, Sang-Hyuk; Emtiazi, Giti; Kim, Wooil; Kim, June-Hyung

    2016-12-01

    Tyrosinases, copper-containing monooxygenases, are widely used enzymes for industrial, medical, and environmental applications. We report the first functional surface display of Bacillus megaterium tyrosinase on Bacillus subtilis spores using CotE as an anchor protein. Flow Cytometry was used to verify surface expression of tyrosinase on the purified spores. Moreover, tyrosinase activity of the displayed enzyme on B. subtilis spores was monitored in the presence of L-tyrosine (substrate) and CuSO 4 (inducer). The stability of the spore-displayed tyrosinase was then evaluated after 15 days maintenance of the spores at room temperature, and no significant decrease in the enzyme activity was observed. In addition, the tyrosinase-expressing spores could be repeatedly used with 62% retained enzymatic activity after six times washing with Tris-HCl buffer. This genetically immobilized tyrosinase on the spores would make a new advance in industrial, medical, and environmental applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Crystal Structures of Copper-depleted and Copper-bound Fungal Pro-tyrosinase

    PubMed Central

    Fujieda, Nobutaka; Yabuta, Shintaro; Ikeda, Takuya; Oyama, Takuji; Muraki, Norifumi; Kurisu, Genji; Itoh, Shinobu

    2013-01-01

    Tyrosinase, a dinuclear copper monooxygenase/oxidase, plays a crucial role in the melanin pigment biosynthesis. The structure and functions of tyrosinase have so far been studied extensively, but the post-translational maturation process from the pro-form to the active form has been less explored. In this study, we provide the crystal structures of Aspergillus oryzae full-length pro-tyrosinase in the holo- and the apo-forms at 1.39 and 2.05 Å resolution, respectively, revealing that Phe513 on the C-terminal domain is accommodated in the substrate-binding site as a substrate analog to protect the dicopper active site from substrate access (proteolytic cleavage of the C-terminal domain or deformation of the C-terminal domain by acid treatment transforms the pro-tyrosinase to the active enzyme (Fujieda, N., Murata, M., Yabuta, S., Ikeda, T., Shimokawa, C., Nakamura, Y., Hata, Y., and Itoh, S. (2012) ChemBioChem. 13, 193–201 and Fujieda, N., Murata, M., Yabuta, S., Ikeda, T., Shimokawa, C., Nakamura, Y., Hata, Yl, and Itoh, S. (2013) J. Biol. Inorg. Chem. 18, 19–26). Detailed crystallographic analysis and structure-based mutational studies have shown that the copper incorporation into the active site is governed by three cysteines as follows: Cys92, which is covalently bound to His94 via an unusual thioether linkage in the holo-form, and Cys522 and Cys525 of the CXXC motif located on the C-terminal domain. Molecular mechanisms of the maturation processes of fungal tyrosinase involving the accommodation of the dinuclear copper unit, the post-translational His-Cys thioether cross-linkage formation, and the proteolytic C-terminal cleavage to produce the active tyrosinase have been discussed on the basis of the detailed structural information. PMID:23749993

  2. Chemical components and tyrosinase inhibitors from the twigs of Artocarpus heterophyllus.

    PubMed

    Zheng, Zong-Ping; Chen, Sibao; Wang, Shiyun; Wang, Xia-Chang; Cheng, Ka-Wing; Wu, Jia-Jun; Yang, Dajiang; Wang, Mingfu

    2009-08-12

    An HPLC method was developed and validated to compare the chemical profiles and tyrosinase inhibitors in the woods, twigs, roots, and leaves of Artocarpus heterophyllus . Five active tyrosinase inhibitors including dihydromorin, steppogenin, norartocarpetin, artocarpanone, and artocarpesin were used as marker compounds in this HPLC method. It was discovered that the chemical profiles of A. heterophyllus twigs and woods are quite different. Systematic chromatographic methods were further applied to purify the chemicals in the twigs of A. heterophyllus. Four new phenolic compounds, including one isoprenylated 2-arylbenzofuran derivative, artoheterophyllin A (1), and three isoprenylated flavonoids, artoheterophyllin B (2), artoheterophyllin C (3), and artoheterophyllin D (4), together with 16 known compounds, were isolated from the ethanol extract of the twigs of A. heterophyllus. The structures of compounds 1-4 were elucidated by spectroscopic analysis. However, the four new compounds did not show significant inhibitory activities against mushroom tyrosinase compared to kojic acid. It was found that similar compounds, such as norartocarpetin and artocarpesin in the twigs and woods of A. heterophyllus, contributed to their tyrosinase inhibitory activity.

  3. Generation Mechanism of Radical Species by Tyrosine-Tyrosinase Reaction

    PubMed Central

    Tada, Mika; Kohno, Masahiro; Kasai, Shigenobu; Niwano, Yoshimi

    2010-01-01

    Alleviated melanin formation in the skin through inhibition of tyrosine-tyrosinase reaction is one of the major targets of cosmetics for whitening ability. Since melanin has a pivotal role for photoprotection, there are pros and cons of inhibition of melanin formation. This study applying electron spin resonance (ESR)-spin trapping method revealed that •H and •OH are generated through tyrosine-tyrosinase reaction. When deuterium water was used instead of H2O, the signal of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-H (a spin adduct of DMPO and •H) greatly decreased, whilst DMPO-OH (a spin adduct of DMPO and •OH) did not. Thus, it is suggested that •H was derived from H2O, and •OH through oxidative catalytic process of tyrosine to dopaquinone. Our study suggests that tyrosinase inhibitors might contribute to alleviate the oxidative damage of the skin by inhibiting •OH generation via the enzyme reaction. PMID:20838572

  4. A new insight into mushroom tyrosinase inhibitors: docking, pharmacophore-based virtual screening, and molecular modeling studies.

    PubMed

    Bagherzadeh, Kowsar; Shirgahi Talari, Faezeh; Sharifi, Amirhossein; Ganjali, Mohammad Reza; Saboury, Ali Akbar; Amanlou, Massoud

    2015-01-01

    Tyrosinase, a widely spread enzyme in micro-organisms, animals, and plants, participates in two rate-limiting steps in melanin formation pathway which is responsible for skin protection against UV lights' harm whose functional deficiency result in serious dermatological diseases. This enzyme seems to be responsible for neuromelanin formation in human brain as well. In plants, the enzyme leads the browning pathway which is commonly observed in injured tissues that is economically very unfavorable. Among different types of tyrosinase, mushroom tyrosinase has the highest homology with the mammalian tyrosinase and the only commercial tyrosinase available. In this study, ligand-based pharmacophore drug discovery method was applied to rapidly identify mushroom tyrosinase enzyme inhibitors using virtual screening. The model pharmacophore of essential interactions was developed and refined studying already experimentally discovered potent inhibitors employing Docking analysis methodology. After pharmacophore virtual screening and binding modes prediction, 14 compounds from ZINC database were identified as potent inhibitors of mushroom tyrosinase which were classified into five groups according to their chemical structures. The inhibition behavior of the discovered compounds was further studied through Classical Molecular Dynamic Simulations and the conformational changes induced by the presence of the studied ligands were discussed and compared to those of the substrate, tyrosine. According to the obtained results, five novel leads are introduced to be further optimized or directly used as potent inhibitors of mushroom tyrosinase.

  5. Crude ethanol extracts from grape seeds and peels exhibit anti-tyrosinase activity.

    PubMed

    Hsu, Cheng-Kuang; Chou, Su-Tze; Huang, Pai-Jane; Mong, Mei-Chin; Wang, Chien-Kuo; Hsueh, Yu-Pin; Jhan, Jyun-Kai

    2012-01-01

    This study aimed to evaluate the anti-tyrosinase activities of ethanol extracts from the peels and the seeds of Kyoho grapes and Red Globe grapes (KG-PEE, KG-SEE, RGG-PEE, and RGG-SEE). The total phenolic content in KG-SEE and RGG-SEE was 400 +/- 11 and 339 +/- 7 mg gallic acid equivalent/g, respectively, about 22 times and 13 times that in KG-PEE and RGG-PEE, respectively. Both seed extracts showed significantly higher anti-tyrosinase activity than the peel extracts due to their high total phenolic content. The gallic acid content in RGG-SEE was twice that in KG-SEE, and gallic acid showed high anti-tyrosinase activity; thus, RGG-SEE had higher anti-tyrosinase activity than KG-SEE. Lineweaver-Burk plots revealed that the inhibitory mechanism of the ethanol extracts from the grapes was a mix-type inhibition. Grape seed has a greater total phenolic content and has potential as a skin-lighting agent.

  6. Metabolomics-based optimal koji fermentation for tyrosinase inhibition supplemented with Astragalus radix.

    PubMed

    Kim, Ah Jin; Choi, Jung Nam; Kim, Jiyoung; Yeo, Soo Hwan; Choi, Ji Ho; Lee, Choong Hwan

    2012-01-01

    The present study was focused on improving the quality of rice koji by fermentation with a selected Aspergillus oryzae strain and a plant Astragalus radix. A. oryzae KCCM 60345 was used as main inoculant and the Astragalus radix was added as supplement in rice koji preparation. LC-MS based metabolite analysis and tyrosinase inhibitory activities were studied for different time periods. A. oryzae KCCM 60345 fermented rice koji supplemented with Astragalus showed higher tyrosinase inhibition activity at 4 d of fermentation and metabolite analysis with PCA and PLS-DA indicated differences in kojic acid, calycosin-7-O-β-D-glucoside, ononin, calycosin, and formononetin as compared with other forms of rice koji fermentation. By correlation analysis between metabolites and tyrosinase inhibitory activity, calycosin and kojic acid were identified as major tyrosinase inhibitors. Based on these results, we concluded that A. oryzae KCCM 60345 supplemented with Astragalus radix is useful for whitening effects, and we identified optimal conditions for rice koji preparation.

  7. Supercritical Fluid Extract of Spent Coffee Grounds Attenuates Melanogenesis through Downregulation of the PKA, PI3K/Akt, and MAPK Signaling Pathways

    PubMed Central

    Huang, Huey-Chun; Wei, Chien-Mei; Siao, Jen-Hung; Tsai, Tsang-Chi; Ko, Wang-Ping; Chang, Kuei-Jen; Hii, Choon-Hoon; Chang, Tsong-Min

    2016-01-01

    The mode of action of spent coffee grounds supercritical fluid CO2 extract (SFE) in melanogenesis has never been reported. In the study, the spent coffee grounds were extracted by the supercritical fluid CO2 extraction method; the chemical constituents of the SFE were investigated by gas chromatography-mass spectrometry (GC-MS). The effects of the SFE and its major fatty acid components on melanogenesis were evaluated by mushroom tyrosinase activity assay and determination of intracellular tyrosinase activity and melanin content. The expression level of melanogenesis-related proteins was analyzed by western blotting assay. The results revealed that the SFE of spent coffee grounds (1–10 mg/mL) and its major fatty acids such as linoleic acid and oleic acid (6.25–50 μM) effectively suppressed melanogenesis in the B16F10 murine melanoma cells. Furthermore, the SFE decreased the expression of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). The SFE also decreased the protein expression levels of p-JNK, p-p38, p-ERK, and p-CREB. Our results revealed that the SFE of spent coffee grounds attenuated melanogenesis in B16F10 cells by downregulation of protein kinase A (PKA), phosphatidylinositol-3-kinase (PI3K/Akt), and mitogen-activated protein kinases (MAPK) signaling pathways, which may be due to linoleic acid and oleic acid. PMID:27375763

  8. Supercritical Fluid Extract of Spent Coffee Grounds Attenuates Melanogenesis through Downregulation of the PKA, PI3K/Akt, and MAPK Signaling Pathways.

    PubMed

    Huang, Huey-Chun; Wei, Chien-Mei; Siao, Jen-Hung; Tsai, Tsang-Chi; Ko, Wang-Ping; Chang, Kuei-Jen; Hii, Choon-Hoon; Chang, Tsong-Min

    2016-01-01

    The mode of action of spent coffee grounds supercritical fluid CO2 extract (SFE) in melanogenesis has never been reported. In the study, the spent coffee grounds were extracted by the supercritical fluid CO2 extraction method; the chemical constituents of the SFE were investigated by gas chromatography-mass spectrometry (GC-MS). The effects of the SFE and its major fatty acid components on melanogenesis were evaluated by mushroom tyrosinase activity assay and determination of intracellular tyrosinase activity and melanin content. The expression level of melanogenesis-related proteins was analyzed by western blotting assay. The results revealed that the SFE of spent coffee grounds (1-10 mg/mL) and its major fatty acids such as linoleic acid and oleic acid (6.25-50 μM) effectively suppressed melanogenesis in the B16F10 murine melanoma cells. Furthermore, the SFE decreased the expression of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). The SFE also decreased the protein expression levels of p-JNK, p-p38, p-ERK, and p-CREB. Our results revealed that the SFE of spent coffee grounds attenuated melanogenesis in B16F10 cells by downregulation of protein kinase A (PKA), phosphatidylinositol-3-kinase (PI3K/Akt), and mitogen-activated protein kinases (MAPK) signaling pathways, which may be due to linoleic acid and oleic acid.

  9. The Microphthalmia Transcription Factor (Mitf) Controls Expression of the Ocular Albinism Type 1 Gene: Link between Melanin Synthesis and Melanosome Biogenesis

    PubMed Central

    Vetrini, Francesco; Auricchio, Alberto; Du, Jinyan; Angeletti, Barbara; Fisher, David E.; Ballabio, Andrea; Marigo, Valeria

    2004-01-01

    Melanogenesis is the process that regulates skin and eye pigmentation. Albinism, a genetic disease causing pigmentation defects and visual disorders, is caused by mutations in genes controlling either melanin synthesis or melanosome biogenesis. Here we show that a common transcriptional control regulates both of these processes. We performed an analysis of the regulatory region of Oa1, the murine homolog of the gene that is mutated in the X-linked form of ocular albinism, as Oa1's function affects melanosome biogenesis. We demonstrated that Oa1 is a target of Mitf and that this regulatory mechanism is conserved in the human gene. Tissue-specific control of Oa1 transcription lies within a region of 617 bp that contains the E-box bound by Mitf. Finally, we took advantage of a virus-based system to assess tissue specificity in vivo. To this end, a small fragment of the Oa1 promoter was cloned in front of a reporter gene in an adeno-associated virus. After we injected this virus into the subretinal space, we observed reporter gene expression specifically in the retinal pigment epithelium, confirming the cell-specific expression of the Oa1 promoter in the eye. The results obtained with this viral system are a preamble to the development of new gene delivery approaches for the treatment of retinal pigment epithelium defects. PMID:15254223

  10. Synthesis, molecular docking studies of coumarinyl-pyrazolinyl substituted thiazoles as non-competitive inhibitors of mushroom tyrosinase.

    PubMed

    Saeed, Aamer; Mahesar, Parvez Ali; Channar, Pervaiz Ali; Abbas, Qamar; Larik, Fayaz Ali; Hassan, Mubashir; Raza, Hussain; Seo, Sung-Yum

    2017-10-01

    A series of coumarinyl-pyrazolinyl substituted thiazoles derivatives were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that all of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. In particular, 3-(5-(4-(benzyloxy)-3-methoxyphenyl)-1-(4-(4-bromophenyl)thiazol-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)-2H-chromen-2-one (7j) exhibited the most potent tyrosinase inhibitory activity with IC 50 value 0.00458±0.00022μM compared with the IC 50 value of kojic acid is 16.84±0.052μM. The inhibition mechanism analyzed by Lineweaver-Burk plots revealed that the type of inhibition of compound 7j on tyrosinase was noncompetitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compound 7a showed the highest binding affinity (-10.20kcal/mol) with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compound 7j may serve asa structural template for the design and development of novel tyrosinase inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Tyrosinase, a new innate humoral immune parameter in large yellow croaker ( Pseudosciaena crocea R)

    NASA Astrophysics Data System (ADS)

    Wang, Shuhong; Wang, Yilei; Zhang, Ziping; Xie, Fangjing; Lin, Peng; Tai, Zhengang

    2009-09-01

    We evaluated the immune response to infection with a pathogen in large yellow croaker ( Pseudosciaena crocea Richardson). The fish were given an intraperitoneal (i.p.) injection of Vibrio parahaemolyticus or sterile sea water (control). We collected blood sera from the fish 0.17, 1, 2, 4, 8, 12, or 16 d after injection (dpi). We measured tyrosinase activity and the concentrations of lysozyme, NOS, and antibodies. Serum tyrosinase activity was significantly higher at 0.17 and 4 dpi than in the control group, and peaked at 8 dpi. Lysozyme activity was significantly higher at 2 and 12 dpi than in the control group, but lower at 16 dpi. There is no statistical difference in the level of nitric oxides synthase (NOS) activity or antibodies between the control and injection groups. This is the first report of the tyrosinase activity in the serum of large yellow croaker. Our results indicate that tyrosinase plays an important role in the immediate immune defense against V. parahaemolyticus in large yellow croaker. Tyrosinase is a candidate parameter for investigation of fish innate immune defense.

  12. Induction of Melanogenesis by Rapamycin in Human MNT-1 Melanoma Cells

    PubMed Central

    Hah, Young-Sool; Cho, Hee Young; Lim, Tae-Yeon; Park, Dong Hwa; Kim, Hwa Mi; Yoon, Jimi; Kim, Jin Gu; Kim, Chi Yeon

    2012-01-01

    Background Melanogenesis is one of the characteristic parameters of differentiation in melanocytes and melanoma cells. Specific inhibitors of phosphatidylinositol 3-kinase (PI3K), such as wortmannin and LY294002, stimulate melanin production in mouse and in human melanoma cells, suggesting that PI3K and mammalian target of rapamycin (mTOR) might be involved in the regulation of melanogenesis. Objective The involvement of the mTOR pathway in regulating melanogenesis was examined using human MNT-1 melanoma cells, and the effects of the potent inhibitor of mTOR, rapamycin, in the presence or absence of α-melanocyte-stimulating hormone (α-MSH) were evaluated. Methods In cells treated with rapamycin, cell viability, melanin content, and tyrosinase (TYR) activity were measured and compared with untreated controls. Protein levels of TYR, tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) were also analyzed by Western blot. Results In rapamycin-treated cells, the melanin content increased concomitantly with an elevation in TYR activity, which plays a major role in melanogenesis. There was also an up-regulation of TYR, TYRP-1, and MITF proteins. Combined treatment with rapamycin or wortmannin and α-MSH increased melanogenesis more strongly than α-MSH alone. Conclusion Rapamycin-induced melanin formation may be mediated through the up-regulation of TYR protein and activity. Furthermore, rapamycin and wortmannin, inhibitors of mTOR and PI3K, respectively, have co-stimulatory effects with α-MSH in enhancing melanogenesis in melanocyte cells. PMID:22577264

  13. Induction of melanogenesis by rapamycin in human MNT-1 melanoma cells.

    PubMed

    Hah, Young-Sool; Cho, Hee Young; Lim, Tae-Yeon; Park, Dong Hwa; Kim, Hwa Mi; Yoon, Jimi; Kim, Jin Gu; Kim, Chi Yeon; Yoon, Tae-Jin

    2012-05-01

    Melanogenesis is one of the characteristic parameters of differentiation in melanocytes and melanoma cells. Specific inhibitors of phosphatidylinositol 3-kinase (PI3K), such as wortmannin and LY294002, stimulate melanin production in mouse and in human melanoma cells, suggesting that PI3K and mammalian target of rapamycin (mTOR) might be involved in the regulation of melanogenesis. The involvement of the mTOR pathway in regulating melanogenesis was examined using human MNT-1 melanoma cells, and the effects of the potent inhibitor of mTOR, rapamycin, in the presence or absence of α-melanocyte-stimulating hormone (α-MSH) were evaluated. In cells treated with rapamycin, cell viability, melanin content, and tyrosinase (TYR) activity were measured and compared with untreated controls. Protein levels of TYR, tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) were also analyzed by Western blot. In rapamycin-treated cells, the melanin content increased concomitantly with an elevation in TYR activity, which plays a major role in melanogenesis. There was also an up-regulation of TYR, TYRP-1, and MITF proteins. Combined treatment with rapamycin or wortmannin and α-MSH increased melanogenesis more strongly than α-MSH alone. Rapamycin-induced melanin formation may be mediated through the up-regulation of TYR protein and activity. Furthermore, rapamycin and wortmannin, inhibitors of mTOR and PI3K, respectively, have co-stimulatory effects with α-MSH in enhancing melanogenesis in melanocyte cells.

  14. In vivo imaging of inducible tyrosinase gene expression with an ultrasound array-based photoacoustic system

    NASA Astrophysics Data System (ADS)

    Harrison, Tyler; Paproski, Robert J.; Zemp, Roger J.

    2012-02-01

    Tyrosinase, a key enzyme in the production of melanin, has shown promise as a reporter of genetic activity. While green fluorescent protein has been used extensively in this capacity, it is limited in its ability to provide information deep in tissue at a reasonable resolution. As melanin is a strong absorber of light, it is possible to image gene expression using tyrosinase with photoacoustic imaging technologies, resulting in excellent resolutions at multiple-centimeter depths. While our previous work has focused on creating and imaging MCF-7 cells with doxycycline-controlled tyrosinase expression, we have now established the viability of these cells in a murine model. Using an array-based photoacoustic imaging system with 5 MHz center frequency, we capture interleaved ultrasound and photoacoustic images of tyrosinase-expressing MCF-7 tumors both in a tissue mimicking phantom, and in vivo. Images of both the tyrosinase-expressing tumor and a control tumor are presented as both coregistered ultrasound-photoacoustic B-scan images and 3-dimensional photoacoustic volumes created by mechanically scanning the transducer. We find that the tyrosinase-expressing tumor is visible with a signal level 12dB greater than that of the control tumor in vivo. Phantom studies with excised tumors show that the tyrosinase-expressing tumor is visible at depths in excess of 2cm, and have suggested that our imaging system is sensitive to a transfection rate of less than 1%.

  15. Pleiotrophin inhibits melanogenesis via Erk1/2-MITF signaling in normal human melanocytes.

    PubMed

    Choi, Woo Jong; Kim, Misun; Park, Ji-Youn; Park, Tae Jun; Kang, Hee Young

    2015-01-01

    Pleiotrophin (PTN) is a secreted heparin-binding protein that is involved in various biological functions of cell growth and differentiation. Little is known about the effects of PTN on the melanocyte function and skin pigmentation. In this study, we investigated whether PTN would affect melanogenesis. PTN was expressed in melanocytes and fibroblasts of human skin. Transfection studies revealed that PTN decreased melanogenesis, probably through MITF degradation via Erk1/2 activation in melanocytes. The inhibitory action of PTN in pigmentation was further confirmed in ex vivo cultured skin and in the melanocytes cocultured with fibroblasts. These findings suggest that PTN is a crucial factor for the regulation of melanogenesis in the skin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. The roles of Microphthalmia Transcription Factor and pigmentation in melanoma

    PubMed Central

    Hsiao, Jennifer J; Fisher, David E

    2014-01-01

    MITF and pigmentation play important roles in both normal melanocyte and transformed melanoma cell biology. MITF is regulated by many pathways and it also regulates many targets, some of which are still being discovered and functionally validated. MITF is involved in a wide range of processes in melanocytes, including pigment synthesis and lineage survival. Pigmentation itself plays an important role as the interface between genetic and environmental factors that contribute to melanoma. PMID:25111671

  17. Inhibitory effect of red koji extracts on mushroom tyrosinase.

    PubMed

    Wu, Li-Chen; Chen, Yun-Chen; Ho, Ja-An Annie; Yang, Chung-Shi

    2003-07-16

    Red koji has been recognized as a cholesterol-lowering diet supplement because of it contains fungi metabolites, monacolins, which reduce cholesterol synthesis by inhibiting HMG-CoA reductase. In this study, water extracts of red koji were loaded onto a C(18) cartridge, and the acetonitrile eluate was collected as test fraction. Red koji water extracts and its C(18) cartridge acetonitrile eluent had total phenols concentrations of 5.57 and 1.89 mg/g of red koji and condensed tannins concentrations of 2.71 and 1.20 mg/g of red koji, respectively. Both exhibited an antioxidant activity and an inhibitory activity to mushroom tyrosinase. The higher antioxidant activity of the red koji acetonitrile eluent was due to the existence of a high percentage of condensed tannins. The results from the kinetic study for inhibition of mushroom tyrosinase by red koji extracts showed that the compounds in the extracts competitively inhibited the oxidation of tyrosine catalyzed by mushroom tyrosinase with an ID(50) of 5.57 mg/mL.

  18. The effects of IGF1 on the melanogenesis in alpaca melanocytes in vitro.

    PubMed

    Hu, Shuaipeng; Liu, Yu; Yang, Shanshan; Ji, Kaiyuan; Liu, Xuexian; Zhang, Junzhen; Fan, Ruiwen; Dong, Changsheng

    2016-09-01

    In order to investigate the effects of the insulin-like growth factor 1(IGF-1) on alpaca melanocyte in vitro, different dosees of IGF1 (0, 10, 20, 40 ng/ml) were added in the medium of alpaca melanocyte. The RTCA machine was used to monitor the proliferation, quantitative real-time PCR, and western blot to test the relative gene expression, ELISA to test cAMP production, and spectrum method to test the melanin production. The results showed that compared to the normal melanocyte, the proliferation of melanocytes was increased within 60 h following adding IGF1. It also showed that cAMP content produced by melanocytes was increased, microphthalmia-associtated transcription factor (MITF), tyrosinase (TYR) and tyrosinase-related protein 2 (TYRP2) expression was increased, and melanin production with most obvious change in 10 ng/ml supplementary group, when compared with the control group. The results suggested that IGF1 with the dose of 10 ng/ml had the important effects on the melanogenesis in alpaca melanocyte by the cAMP pathway.

  19. Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to MelanosomesD⃞

    PubMed Central

    Theos, Alexander C.; Tenza, Danièle; Martina, José A.; Hurbain, Ilse; Peden, Andrew A.; Sviderskaya, Elena V.; Stewart, Abigail; Robinson, Margaret S.; Bennett, Dorothy C.; Cutler, Daniel F.; Bonifacino, Juan S.; Marks, Michael S.; Raposo, Graça

    2005-01-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies. PMID:16162817

  20. 4-Hydroxy cinnamic acid as mushroom preservation: Anti-tyrosinase activity kinetics and application.

    PubMed

    Hu, Yong-Hua; Chen, Qing-Xi; Cui, Yi; Gao, Huan-Juan; Xu, Lian; Yu, Xin-Yuan; Wang, Ying; Yan, Chong-Ling; Wang, Qin

    2016-05-01

    Tyrosinase is a key enzyme in post-harvest browning of fruit and vegetable. To control and inhibit its activity is the most effective method for delaying the browning and extend the shelf life. In this paper, the inhibitory kinetics of 4-hydroxy cinnamic acid on mushroom tyrosinase was investigated using the kinetics method of substrate reaction. The results showed that the inhibition of tyrosinase by 4-hydroxy cinnamic acid was a slow, reversible reaction with fractional remaining activity. The microscopic rate constants were determined for the reaction on 4-hydroxy cinnamic acid with tyrosinase. Furthermore, the molecular docking was used to simulate 4-hydroxy cinnamic acid dock with tyrosinase. The results showed that 4-hydroxy cinnamic acid interacted with the enzyme active site mainly through the hydroxy competed with the substrate hydroxy group. The cytotoxicity study of 4-hydroxy cinnamic acid indicated that it had no effects on the proliferation of normal liver cells. Moreover, the results of effects of 4-hydroxy cinnamic acid on the preservation of mushroom showed that it could delay the mushroom browning. These results provide a comprehensive underlying the inhibitory mechanisms of 4-hydroxy cinnamic acid and its delaying post-harvest browning, that is beneficial for the application of this compound. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol

    PubMed Central

    Uchida, Ryuji; Ishikawa, Seiko; Tomoda, Hiroshi

    2014-01-01

    2-Hydroxytyrosol (2-HT), originally reported as a synthetic compound, was isolated for the first time as a fungal metabolite. 2-HT was found to inhibit mushroom tyrosinase with an IC50 value of 13.0 µmol/L. Furthermore, 2-HT dose-dependently inhibited tyrosinase activity (IC50, 32.5 µmol/L) in the cell-free extract of B16 melanoma cells and α-melanocyte stimulating hormone (α-MSH)-stimulated melanin formation in intact B16 melanoma cells. PMID:26579376

  2. Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol.

    PubMed

    Uchida, Ryuji; Ishikawa, Seiko; Tomoda, Hiroshi

    2014-04-01

    2-Hydroxytyrosol (2-HT), originally reported as a synthetic compound, was isolated for the first time as a fungal metabolite. 2-HT was found to inhibit mushroom tyrosinase with an IC50 value of 13.0 µmol/L. Furthermore, 2-HT dose-dependently inhibited tyrosinase activity (IC50, 32.5 µmol/L) in the cell-free extract of B16 melanoma cells and α-melanocyte stimulating hormone (α-MSH)-stimulated melanin formation in intact B16 melanoma cells.

  3. KHG26792 Inhibits Melanin Synthesis in Mel-Ab Cells and a Skin Equivalent Model

    PubMed Central

    Li, Hailan; Kim, Jandi; Hahn, Hoh-Gyu; Yun, Jun; Jeong, Hyo-Soon; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Min, Young Sil; Park, Kyoung-Chan

    2014-01-01

    The purpose of this study is to characterize the effects of KHG26792 (3-(naphthalen-2-yl(propoxy) methyl)azetidine hydrochloride), a potential skin whitening agent, on melanin synthesis and identify the underlying mechanism of action. Our data showed that KHG26792 significantly reduced melanin synthesis in a dose-dependent manner. Additionally, KHG26792 downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase, the rate-limiting enzyme in melanogenesis, although tyrosinase was not inhibited directly. KHG26792 activated extracellular signal-regulated kinase (ERK), whereas an ERK pathway inhibitor, PD98059, rescued KHG26792-induced hypopigmentation. These results suggest that KHG26792 decreases melanin production via ERK activation. Moreover, the hypopigmentary effects of KHG26792 were confirmed in a pigmented skin equivalent model using Cervi cornus Colla (deer antler glue), in which the color of the pigmented artificial skin became lighter after treatment with KHG26792. In summary, our findings suggest that KHG26792 is a novel skin whitening agent. PMID:24976765

  4. KHG26792 Inhibits Melanin Synthesis in Mel-Ab Cells and a Skin Equivalent Model.

    PubMed

    Li, Hailan; Kim, Jandi; Hahn, Hoh-Gyu; Yun, Jun; Jeong, Hyo-Soon; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Min, Young Sil; Park, Kyoung-Chan; Kim, Dong-Seok

    2014-06-01

    The purpose of this study is to characterize the effects of KHG26792 (3-(naphthalen-2-yl(propoxy) methyl)azetidine hydrochloride), a potential skin whitening agent, on melanin synthesis and identify the underlying mechanism of action. Our data showed that KHG26792 significantly reduced melanin synthesis in a dose-dependent manner. Additionally, KHG26792 downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase, the rate-limiting enzyme in melanogenesis, although tyrosinase was not inhibited directly. KHG26792 activated extracellular signal-regulated kinase (ERK), whereas an ERK pathway inhibitor, PD98059, rescued KHG26792-induced hypopigmentation. These results suggest that KHG26792 decreases melanin production via ERK activation. Moreover, the hypopigmentary effects of KHG26792 were confirmed in a pigmented skin equivalent model using Cervi cornus Colla (deer antler glue), in which the color of the pigmented artificial skin became lighter after treatment with KHG26792. In summary, our findings suggest that KHG26792 is a novel skin whitening agent.

  5. The expression of KRT2 and its effect on melanogenesis in alpaca skins.

    PubMed

    Cui, Yucong; Song, Yajun; Geng, Qingling; Ding, Zengfeng; Qin, Yilong; Fan, Ruiwen; Dong, Changsheng; Geng, Jianjun

    2016-06-01

    In order to investigate the effects of the keratin 2 (KRT2) on alpaca melanocyte in vivo and vitro, the immunohistochemistry (IHC), quantitative real-time PCR (qPCR), Western blot, and alpaca melanocytes transfection methods were used. The results showed that mRNA and protein expression of KRT2 was highly expressed in brown skin in comparison with that in white skin. Moreover, we found that KRT2 was expressed in alpaca melanocytes in vitro by immunocytochemistry. After transfection with KRT2 in alpaca melanocytes, the relative mRNA and protein expression of KRT2, microphthalmia-associtated transcription factor (MITF), tyrosinase (TYR) and tyrosinase-related protein 1 (TYRP1) in alpaca skin melanocytes was increased with significant differences; a further result was the increase of melanin production. The results suggested that KRT2 functions in alpaca hair color formation, which offered an essential theoretical basis for further exploration of the role of melanogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Influence of plasma-activated compounds on melanogenesis and tyrosinase activity

    PubMed Central

    Ali, Anser; Ashraf, Zaman; Kumar, Naresh; Rafiq, Muhammad; Jabeen, Farukh; Park, Ji Hoon; Choi, Ki Hong; Lee, SeungHyun; Seo, Sung-Yum; Choi, Eun Ha; Attri, Pankaj

    2016-01-01

    Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine. PMID:26931617

  7. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues.

    PubMed

    Ochiai, Akihito; Tanaka, Seiya; Imai, Yuta; Yoshida, Hisashi; Kanaoka, Takumi; Tanaka, Takaaki; Taniguchi, Masayuki

    2016-06-01

    Tyrosinase, a rate-limiting enzyme in melanin biosynthesis, catalyzes the hydroxylation of l-tyrosine to 3,4-dihydroxy-l-phenylalanine (l-dopa) (monophenolase reaction) and the subsequent oxidation of l-dopa to l-dopaquinone (diphenolase reaction). Thus, tyrosinase inhibitors have been proposed as skin-lightening agents; however, many of the existing inhibitors cannot be widely used in the cosmetic industry due to their high cytotoxicity and instability. On the other hand, some tyrosinase inhibitory peptides have been reported as safe. In this study, we found that the peptide TH10, which has a similar sequence to the characterized inhibitory peptide P4, strongly inhibits the monophenolase reaction with a half-maximal inhibitory concentration of 102 μM. Seven of the ten amino acid residues in TH10 were identical to P4; however, TH10 possesses one N-terminal tyrosine, whereas P4 contains three tyrosine residues located at its N-terminus, center, and C-terminus. Subsequent analysis using sequence-shuffled variants indicated that the tyrosine residues located at the N-terminus and center of P4 have little to no contribution to its inhibitory activity. Furthermore, docking simulation analysis of these peptides with mushroom tyrosinase demonstrated that the active tyrosine residue was positioned close to copper ions, suggesting that TH10 and P4 bind to tyrosinase as a substrate analogue. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Microbial Tyrosinases: Promising Enzymes for Pharmaceutical, Food Bioprocessing, and Environmental Industry

    PubMed Central

    Zaidi, Kamal Uddin; Ali, Ayesha S.; Ali, Sharique A.; Naaz, Ishrat

    2014-01-01

    Tyrosinase is a natural enzyme and is often purified to only a low degree and it is involved in a variety of functions which mainly catalyse the o-hydroxylation of monophenols into their corresponding o-diphenols and the oxidation of o-diphenols to o-quinones using molecular oxygen, which then polymerizes to form brown or black pigments. The synthesis of o-diphenols is a potentially valuable catalytic ability and thus tyrosinase has attracted a lot of attention with respect to industrial applications. In environmental technology it is used for the detoxification of phenol-containing wastewaters and contaminated soils, as biosensors for phenol monitoring, and for the production of L-DOPA in pharmaceutical industries, and is also used in cosmetic and food industries as important catalytic enzyme. Melanin pigment synthesized by tyrosinase has found applications for protection against radiation cation exchangers, drug carriers, antioxidants, antiviral agents, or immunogen. The recombinant V. spinosum tryosinase protein can be used to produce tailor-made melanin and other polyphenolic materials using various phenols and catechols as starting materials. This review compiles the recent data on biochemical and molecular properties of microbial tyrosinases, underlining their importance in the industrial use of these enzymes. After that, their most promising applications in pharmaceutical, food processing, and environmental fields are presented. PMID:24895537

  9. Inhibition of tyrosinase by 4H-chromene analogs: Synthesis, kinetic studies, and computational analysis.

    PubMed

    Brasil, Edikarlos M; Canavieira, Luciana M; Cardoso, Érica T C; Silva, Edilene O; Lameira, Jerônimo; Nascimento, José L M; Eifler-Lima, Vera L; Macchi, Barbarella M; Sriram, Dharmarajan; Bernhardt, Paul V; Silva, José Rogério Araújo; Williams, Craig M; Alves, Cláudio N

    2017-11-01

    Inhibition of mushroom tyrosinase was observed with synthetic dihydropyrano[3,2-b]chromenediones. Among them, DHPC04 displayed the most potent tyrosinase inhibitory activity with a K i value of 4 μm, comparable to the reference standard inhibitor kojic acid. A kinetic study suggested that these synthetic heterocyclic compounds behave as competitive inhibitors for the L-DOPA binding site of the enzyme. Furthermore, molecular modeling provided important insight into the mechanism of binding interactions with the tyrosinase copper active site. © 2017 John Wiley & Sons A/S.

  10. Kinetic study of the oxidation of 4-hydroxyanisole catalyzed by tyrosinase.

    PubMed

    Espín, J C; Varón, R; Tudela, J; García-Cánovas, F

    1997-05-01

    Despite the importance of the substrate 4-hydroxyanisole in melanoma therapy, the kinetics of its oxidation catalyzed by tyrosinase has never been properly characterized. This approach is reported here for the first time. The applicability to 4-hydroxyanisole of the reaction mechanism of tyrosinase previously proposed for other monophenols has been corroborated. The Michaelis constant for the oxidation of 4-hydroxyanisole catalyzed by mushroom tyrosinase was (62 +/- 1.5) microM at pH 7 and increased when the pH decreased, reaching a value of (195 +/- 5) microM at pH 5.5. However the maximum steady-state rate, whose value was (0.54 +/- 0.01) microM/min, did not change with the pH. The apparent catalytic constant was (184 +/- 5) s-1, around twenty three times higher than that previously described for L-tyrosine (8 s-1).

  11. New nitrosoureas and their spin-labeled derivatives influence dopa-oxidase activity of tyrosinase.

    PubMed

    Rachkova, M; Raikova, E; Raikov, Z

    1991-06-01

    Tyrosinase is a key enzyme in melanine biosynthesis. The modulating effect of cytostatic agents on DOPA-oxidase activity of tyrosinase could be linked with the drug treatment of melanoma tumors. Two groups of nitrosoureas which influence DOPA-oxidase activity of tyrosinase were studied: new nitrosoureas and their spin-labeled derivatives synthesized in our laboratory. Using Burnett's spectrophotometric method (Burnett et al., 1967) the following effects were established: inhibition by CCNU, inhibition and the activating effects of the other investigated nitrosoureas depend on their physicochemical half-life. The predominant activating effect of the spin-labeled derivatives is due to the nitroxyl radical present in these compounds.

  12. Potent microbial and tyrosinase inhibitors from stem bark of Bauhinia rufescens (Fabaceae).

    PubMed

    Muhammad, Aminu; Sirat, Hasnah Mohd

    2013-10-01

    The stem bark extracts of Bauhinia rufescens Lam. (Fabaceae) yielded 6-methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, alpha-amyrin acetate, beta-sitosterol 3-O-beta-D-xylopyranoside, 4-(2'-Hydroxyphenethyl)-5-methoxy-2-methylphenol, menisdaurin and sequoyitol. Their structures were determined using spectroscopic methods and comparisons with the literature data. For the antimicrobial assay Gram-positive and Gram-negative bacterial and fungal strains were tested, while the tyrosinase inhibition assay utilized L-DOPA as a substrate for the tyrosinase enzyme. 6-Methoxy-7-methyl-8-hydroxydibenz[b,f]oxepin, a-amyrin acetate, beta-sitosterol 3-O-D-xylopyranoside, menisdaurin and sequoyitol showed weak to moderate activities with minimum inhibition concentration (MIC) values in the range of 112.5-900 microg/mL against all bacterial strains, while the MIC values for the fungal strains were in the range of 28.1-450 microg/mL. In the tyrosinase inhibition assay, a-amyrin acetate was found to be moderately active against tyrosinase with an inhibition of 62% at 0.1 mg/mL. This activity was lower than that of the positive control, kojic acid (85%).

  13. 4-n-butylresorcinol, a depigmenting agent used in cosmetics, reacts with tyrosinase.

    PubMed

    Garcia-Jimenez, Antonio; Teruel-Puche, Jose Antonio; Ortiz-Ruiz, Carmen Vanessa; Berna, Jose; Tudela, Jose; Garcia-Canovas, Francisco

    2016-08-01

    4-n-Butylresorcinol (BR) is considered the most potent inhibitor of tyrosinase, which is why it is used in cosmetics as a depigmenting agent. However, this work demonstrates that BR is a substrate of this enzyme. The Em (met-tyrosinase) form is not active on BR, but Eox (oxy-tyrosinase) can act on this molecule, hydroxylating it to o-diphenol. In turn, this is oxidized to an o-quinone, which isomerizes to a red p-quinone. Thus, for tyrosinase to act on this compound, a mechanism to generate Eox in the medium is required, which can be achieved by means of hydrogen peroxide or ascorbic acid. A kinetic analysis of the proposed mechanism allows its kinetic characterization: catalytic constant kcatBR (8.49 ± 0.20 s(-1) ) and Michaelis-constant KMBR (60.26 ± 8.76 μM). These findings are compared with those for other monophenolic substrates of tyrosinase. Studies of BR docking to the Em form of the enzyme show that the hydroxyl group in C-1 position is oriented toward the copper atom A (CuA), as in it is L-tyrosine. As regards Eox , BR is oriented with the carbon in C-6 position ready to be hydroxylated. The reaction of BR originates o-quinones, which isomerize to p-quinones, which in turn, could react with thiol compounds, a finding that could have important implications for pharmacology and the cosmetic industry. © 2016 IUBMB Life, 68(8):663-672, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  14. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase.

    PubMed

    Ashraf, Zaman; Rafiq, Muhammad; Seo, Sung-Yum; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf

    2015-09-01

    The purpose of the present study was to discover the extent of contribution to antityrosinase activity by adding hydroxy substituted benzoic acid, cinnamic acid and piperazine residues to vanillin. The study showed the transformation of vanillin into esters as shown in (4a-4d), (6a-6b), and (8a-8b). In addition, the relationship between structures of these esters and their mushroom tyrosinase inhibitory activity was explored. The kinetics of inhibition on mushroom tyrosinase by these esters was also investigated. It was found that hydroxyl substituted benzoic acid derivatives were weak inhibitors; however hydroxy or chloro substituted cinnamic acid and piperazine substituted derivatives were able to induce significant tyrosinase inhibition. The mushroom tyrosinase (PDBID 2ZWE) was docked with synthesized vanillin derivatives and their calculated binding energies were compared with experimental IC50 values which provided positive correlation. The most potent derivative 2-(4-formyl-2-methoxyphenoxy)-2-oxoethyl (2E)-3-(4-hydroxyphenyl)prop-2-enoate (6a) possesses hydroxy substituted cinnamic acid scaffold having IC50 value 16.13 μM with binding energy of -7.2 kcal/mol. The tyrosinase inhibitory activity of (6a) is comparable with standard kojic acid. Kinetic analysis indicated that compound 6a was mixed-type tyrosinase inhibitor with inhibition constant values Ki (13 μM) and Ki' (53 μM) and formed reversible enzyme inhibitor complex. The active vanillin analog (6a) was devoid of toxic effects as shown in cytotoxic studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Novel Virtual Screening Approach for the Discovery of Human Tyrosinase Inhibitors

    PubMed Central

    Ai, Ni; Welsh, William J.; Santhanam, Uma; Hu, Hong; Lyga, John

    2014-01-01

    Tyrosinase is the key enzyme involved in the human pigmentation process, as well as the undesired browning of fruits and vegetables. Compounds inhibiting tyrosinase catalytic activity are an important class of cosmetic and dermatological agents which show high potential as depigmentation agents used for skin lightening. The multi-step protocol employed for the identification of novel tyrosinase inhibitors incorporated the Shape Signatures computational algorithm for rapid screening of chemical libraries. This algorithm converts the size and shape of a molecule, as well its surface charge distribution and other bio-relevant properties, into compact histograms (signatures) that lend themselves to rapid comparison between molecules. Shape Signatures excels at scaffold hopping across different chemical families, which enables identification of new actives whose molecular structure is distinct from other known actives. Using this approach, we identified a novel class of depigmentation agents that demonstrated promise for skin lightening product development. PMID:25426625

  16. Novel virtual screening approach for the discovery of human tyrosinase inhibitors.

    PubMed

    Ai, Ni; Welsh, William J; Santhanam, Uma; Hu, Hong; Lyga, John

    2014-01-01

    Tyrosinase is the key enzyme involved in the human pigmentation process, as well as the undesired browning of fruits and vegetables. Compounds inhibiting tyrosinase catalytic activity are an important class of cosmetic and dermatological agents which show high potential as depigmentation agents used for skin lightening. The multi-step protocol employed for the identification of novel tyrosinase inhibitors incorporated the Shape Signatures computational algorithm for rapid screening of chemical libraries. This algorithm converts the size and shape of a molecule, as well its surface charge distribution and other bio-relevant properties, into compact histograms (signatures) that lend themselves to rapid comparison between molecules. Shape Signatures excels at scaffold hopping across different chemical families, which enables identification of new actives whose molecular structure is distinct from other known actives. Using this approach, we identified a novel class of depigmentation agents that demonstrated promise for skin lightening product development.

  17. Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies.

    PubMed

    Ashraf, Zaman; Rafiq, Muhammad; Nadeem, Humaira; Hassan, Mubashir; Afzal, Samina; Waseem, Muhammad; Afzal, Khurram; Latip, Jalifah

    2017-01-01

    The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy).Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM) than standard kojic acid (IC50 16.69μM). The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM) and (IC50 16.69μM) respectively.Lineweaver-Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-7.90 kcal/mol) as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.

  18. Inhibitory Effect of Arctigenin from Fructus Arctii Extract on Melanin Synthesis via Repression of Tyrosinase Expression

    PubMed Central

    Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Kim, Mi Yoon; Ma, Jin Yeul

    2013-01-01

    To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content. PMID:23781272

  19. Novel mutations of PAX3, MITF, and SOX10 genes in Chinese patients with type I or type II Waardenburg syndrome.

    PubMed

    Chen, Hongsheng; Jiang, Lu; Xie, Zhiguo; Mei, Lingyun; He, Chufeng; Hu, Zhengmao; Xia, Kun; Feng, Yong

    2010-06-18

    Waardenburg syndrome (WS) is a rare disorder characterized by distinctive facial features, pigment disturbances, and sensorineural deafness. There are four WS subtypes. WS1 is mostly caused by PAX3 mutations, while MITF, SNAI2, and SOX10 mutations are associated with WS2. More than 100 different disease-causing mutations have been reported in many ethnic groups, but the data from Chinese patients with WS remains poor. Herein we report 18 patients from 15 Chinese WS families, in which five cases were diagnosed as WS1 and the remaining as WS2. Clinical evaluation revealed intense phenotypic variability in Chinese WS patients. Heterochromia iridis and sensorineural hearing loss were the most frequent features (100% and 88.9%, respectively) of the two subtypes. Many brown freckles on normal skin could be a special subtype of cutaneous pigment disturbances in Chinese WS patients. PAX3, MITF, SNAI2, and SOX10 genes mutations were screened for in all the patients. A total of nine mutations in 11 families were identified and seven of them were novel. The SOX10 mutations in WS2 were first discovered in the Chinese population, with an estimated frequency similar to that of MITF mutations, implying SOX10 is an important pathogenic gene in Chinese WS2 cases and should be considered for first-step analysis in WS2, as well as MITF. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  20. Design, Synthesis and Biological Evaluation of Oxindole-Based Chalcones as Small-Molecule Inhibitors of Melanogenic Tyrosinase.

    PubMed

    Suthar, Sharad Kumar; Bansal, Sumit; Narkhede, Niteen; Guleria, Manju; Alex, Angel Treasa; Joseph, Alex

    2017-01-01

    The enzyme tyrosinase regulates melanogenesis and skin hyperpigmentation by converting L-3,4-dihydroxyphenylalanine (L-DOPA) into dopaquinone, a key step in the melanin biosynthesis. The present work deals with design and synthesis of various oxindole-based chalcones as monophenolase and diphenolase activity inhibitors of tyrosinase. Among the screened compounds, 4-hydroxy-3-methoxybenzylidene moiety bearing chalcone (7) prepared by one pot reaction of oxindole and vanillin displayed the highest activity against tyrosinase with IC 50 s of 63.37 and 59.71 µM in monophenolase and diphenolase activity assays, respectively. In molecular docking studies, chalcone 7 also showed the highest binding affinity towards the enzyme tyrosinase while exhibiting the lowest estimated free energy of binding, among all the ligands docked.

  1. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vachtenheim, Jiri, E-mail: jivach@upn.anet.cz; Ondrusova, Lubica; Borovansky, Jan

    2010-02-12

    The microphthalmia-associated transcription factor (MITF) is required for melanocyte development, maintenance of the melanocyte-specific transcription, and survival of melanoma cells. MITF positively regulates expression of more than 25 genes in pigment cells. Recently, it has been demonstrated that expression of several MITF downstream targets requires the SWI/SNF chromatin remodeling complex, which contains one of the two catalytic subunits, Brm or Brg1. Here we show that the expression of MITF itself critically requires active SWI/SNF. In several Brm/Brg1-expressing melanoma cell lines, knockdown of Brg1 severely compromised MITF expression with a concomitant dowregulation of MITF targets and decreased cell proliferation. Although Brmmore » was able to substitute for Brg1 in maintaining MITF expression and melanoma cell proliferation, sequential knockdown of both Brm and Brg1 in 501mel cells abolished proliferation. In Brg1-null SK-MEL-5 melanoma cells, depletion of Brm alone was sufficient to abrogate MITF expression and cell proliferation. Chromatin immunoprecipitation confirmed the binding of Brg1 or Brm to the promoter of MITF. Together these results demonstrate the essential role of SWI/SNF for expression of MITF and suggest that SWI/SNF may be a promissing target in melanoma therapy.« less

  2. Kushenol A and 8-prenylkaempferol, tyrosinase inhibitors, derived from Sophora flavescens.

    PubMed

    Kim, Jang Hoon; Cho, In Sook; So, Yang Kang; Kim, Hyeong-Hwan; Kim, Young Ho

    2018-12-01

    Tyrosinase is known for an enzyme that plays a key role in producing the initial precursor of melanin biosynthesis. Inhibition of the catalytic reaction of this enzyme led to some advantage such as skin-whitening and anti-insect agents. To find a natural compound with inhibitory activity towards tyrosinase, the five flavonoids of kushenol A (1), 8-prenylkaempferol (2), kushenol C (3), formononetin (4) and 8-prenylnaringenin (5) were isolated by column chromatography from a 95% methanol extract of Sophora flavescens. The ability of these flavonoids to block the conversion of L-tyrosine to L-DOPA by tyrosinase was tested in vitro. Compounds 1 and 2 exhibited potent inhibitory activity, with IC50 values less than 10 µM. Furthermore, enzyme kinetics and molecular docking analysis revealed the formation of a binary encounter complex between compounds 1-4 and the enzyme. Also, all of the isolated compounds (1-5) were confirmed to possess antioxidant activity.

  3. Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene.

    PubMed

    Shang, Yanfang; Duan, Zhibing; Huang, Wei; Gao, Qiang; Wang, Chengshu

    2012-01-01

    Insect pathogenic fungi like Beauveria bassiana have been developed as environmentally friendly biocontrol agents against arthropod pests. However, restrictive environmental factors, including solar ultraviolet (UV) radiation frequently lead to inconsistent field performance. To improve resistance to UV damage, we used Agrobacterium-mediated transformation to engineer B. bassiana with an exogenous tyrosinase gene. The results showed that the mitotically stable transformants produced larger amounts of yellowish pigments than the wild-type strain, and these imparted significantly increased UV-resistance. The virulence of the transgenic isolate was also significantly increased against the silkworm Bombyx mori and the mealworm Tenebrio molitor. This study demonstrated that genetic engineering of B. bassiana with a tyrosinase gene is an effective way to improve fungal tolerance against UV damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation.

    PubMed

    Kim, Nam Young; Kwon, Hee Souk; Lee, Hyeon Yong

    2017-09-01

    This work presents the first report that A. rugosa could have tyrosinase and melanogenesis inhibition and that its activities also be improved by fermentation with Lactobacillus rhamnosus and Lactobacillus paracasei. It was found that the tyrosinase and melanogenesis inhibition was correlated with antioxidant activity of acacetin, the major biologically active substances in A. rugosa. we pursued an improvement in tyrosinase and melanogenesis inhibition of A. rugosa extract by fermentation process. A. rugosa was extracted by lactic acid fermentation process; we measured antioxidant activities and tyrosinase and melanogenesis inhibition of A. rugosa extracts. In particular, reducing power of the extract from fermentation process (FE) was measured as 0.562 (O.D.), whereas reducing power of the extracts from 70% ethanol extraction (EE) was lower than the FE as 0.496 (O.D.). Polyphenols and flavonoids in the FE were higher than the EE: 69.3 mg/g vs. 60.5 mg/g, and 187 mg/g vs. 138 mg/g. The FE was estimated as 51.04% tyrosinase inhibition and 41.88% for the EE. Similarly, melanin inhibition in melanocyte B16F10 was observed as 66.60% vs. 42.23% for the FE and EE. The increase in tyrosinase and melanogenesis inhibition activity was confirmed by high elution of acacetin through fermentation process such as 289.97 mg/100 g vs. 198.04 mg/100 g in the FE and EE. These results indicate that tyrosinase and melanogenesis inhibition activities of the extracts should be associated with antioxidant activity because acacetin is known to have strong antioxidant activity, which can also positively affect whitening activities. © 2016 Wiley Periodicals, Inc.

  5. Effects of the immobilization supports on the catalytic properties of immobilized mushroom tyrosinase: a comparative study using several substrates.

    PubMed

    Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio

    2007-09-30

    Mushroom tyrosinase was immobilized from an extract onto glass beads covered with one of the following compounds: the crosslinked totally cinnamoylated derivatives of glycerine, D-sorbitol, D-manitol, 1,2-O-isopropylidene-alpha-D-glucofuranose, D-glucuronic acid, D-gulonic acid, sucrose, D-glucosone, D-arabinose, D-fructose, D-glucose, ethyl-D-glucopyranoside, inuline, dextrine, dextrane or starch, or the partially cinnamoylated derivative 3,5,6-tricinnamoyl-D-glucofuranose which was obtained by the acid hydrolysis of 1,2-O-isopropylidene-alpha-d-glucofuranose. The enzyme was immobilized by direct adsorption onto the support and the quantity of tyrosinase immobilized was found to increase with the hydrophobicity of the supports. The kinetic constants of immobilized tyrosinase acting on the substrates, 4-tert-butylcatechol, dopamine and DL-dopa, were studied. When immobilized tyrosinase acted on 4-tert-butylcatechol, the values of K(m)(app) were lower than these obtained for tyrosinase in solution while, when dopamine and DL-dopa were used, the K(m)(app) were higher. The order of the substrates as regards their ionizable groups, DL-dopa (two ionizable groups)>dopamine (one ionizable group)>4-tert-butylcatechol (no ionizable group) coincided with the order of the K(m)(app) values shown by tyrosinase immobilized on the hydrophobic supports, and was the inverse of that observed for tyrosinase in solution. The K(m)(app) values of immobilized tyrosinase were in all cases higher than those of soluble tyrosinase and depended on the nature of the support and the hydrophobicity of the substrate, meaning that it is possible to design supports with different degrees of selectivity towards a mixture of enzyme substrates in the reaction medium.

  6. Human tyrosinase produced in insect cells: a landmark for the screening of new drugs addressing its activity.

    PubMed

    Fogal, Stefano; Carotti, Marcello; Giaretta, Laura; Lanciai, Federico; Nogara, Leonardo; Bubacco, Luigi; Bergantino, Elisabetta

    2015-01-01

    Human tyrosinase is the first enzyme of the multistep process of melanogenesis. It catalyzes the hydroxylation of L-tyrosine to L-dihydroxyphenylalanine and the following oxidation of o-diphenol to the corresponding quinone, L-dopaquinone. In spite of its biomedical relevance, its reactivity is far from being fully understood, mostly because of the lack of a suitable expression system. Indeed, until now, studies on substrates and inhibitors of tyrosinases have been performed in vitro almost exclusively using mushroom or bacterial enzymes. We report on the production of a recombinant human tyrosinase in insect cells (Sf9 line). Engineering the protein, improving cell culture conditions, and setting a suitable purification protocol optimized product yield. The obtained active enzyme was truthfully characterized with a number of substrate and inhibitor molecules. These results were compared to those gained from a parallel analysis of the bacterial (Streptomyces antibioticus) enzyme and those acquired from the literature for mushroom tyrosinase, showing that the reactivity of the human enzyme appears unique and pointing out the great bias introduced when using non-human tyrosinases to measure the inhibitory efficacy of new molecules. The described enzyme is therefore an indispensable paradigm in testing pharmaceutical or cosmetic agents addressing tyrosinase activity.

  7. Determination of the Bridging Ligand in the Active Site of Tyrosinase.

    PubMed

    Zou, Congming; Huang, Wei; Zhao, Gaokun; Wan, Xiao; Hu, Xiaodong; Jin, Yan; Li, Junying; Liu, Junjun

    2017-10-28

    Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA) calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule.

  8. Association analysis of KIT, MITF, and PAX3 variants with white markings in Spanish horses.

    PubMed

    Negro, S; Imsland, F; Valera, M; Molina, A; Solé, M; Andersson, L

    2017-06-01

    Several variants in the KIT, PAX3 and MITF genes have previously been associated with white markings in horses. In this study, we examined eight variants of these genes in 70 Menorca Purebred horses (PRMe, only black solid-coloured horses) and 70 Spanish Purebred horses (PRE, different coat colour patterns) that were scored for the extent of white markings. A maximum-likelihood chi-square test, logistic regression model and ridge regression analyses showed that a missense mutation (p.Arg682His) in KIT was associated with white facial markings (P < 0.05) and with total white markings (P < 0.05) in PRMe horses. The relative contribution of this variant to white markings in PRMe horses was estimated at 47.6% (head) and 43.4% (total score). In PRE horses, this variant was also associated with hindlimb scores (P < 0.05) with a relative contribution of 41.2%. The g.20147039C>T intronic variant located 29.9 kb downstream from the transcription start site of the MITF gene was associated with less white markings on forelimbs (P < 0.05) in PRMe horses, with a relative contribution of 63.9%, whereas in PRE horses this variant was associated with white facial markings (P < 0.05), with a relative contribution of 63.9%. No significant associations were found for PAX3 variants in these breeds. These results show that KIT and MITF variants are involved in the white marking patterns of both PRMe and PRE horses, providing breeders with an opportunity to use genetic testing to aid in breeding for their desired level of white markings. © 2017 Stichting International Foundation for Animal Genetics.

  9. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    PubMed

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC 50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  10. Tietz/Waardenburg type 2A syndrome associated with posterior microphthalmos in two unrelated patients with novel MITF gene mutations.

    PubMed

    Cortés-González, Vianney; Zenteno, Juan Carlos; Guzmán-Sánchez, Martín; Giordano-Herrera, Verónica; Guadarrama-Vallejo, Dalia; Ruíz-Quintero, Narlly; Villanueva-Mendoza, Cristina

    2016-12-01

    Tietz syndrome and Waardenburg syndrome type 2A are allelic conditions caused by MITF mutations. Tietz syndrome is inherited in an autosomal dominant pattern and is characterized by congenital deafness and generalized skin, hair, and eye hypopigmentation, while Waardenburg syndrome type 2A typically includes variable degrees of sensorineural hearing loss and patches of de-pigmented skin, hair, and irides. In this paper, we report two unrelated families with MITF mutations. The first family showed an autosomal dominant pattern and variable expressivity. The second patient was isolated. MITF gene analysis in the first family demonstrated a c.648A>C heterozygous mutation in exon 8 c.648A>C; p. (R216S), while in the isolated patient, an apparently de novo heterozygous c.1183_1184insG truncating mutation was demonstrated in exon 10. All patients except one had bilateral reduced ocular anteroposterior axial length and a high hyperopic refractive error corresponding to posterior microphthalmos, features that have not been described as part of the disease. Our results suggest that posterior microphthalmos might be part of the clinical characteristics of Tietz/Waardenburg syndrome type 2A and expand both the clinical and molecular spectrum of the disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Lineage-specific expansion and loss of tyrosinase genes across platyhelminths and their induction profiles in the carcinogenic oriental liver fluke, Clonorchis sinensis.

    PubMed

    Kim, Seon-Hee; Bae, Young-An

    2017-09-01

    Tyrosinase provides an essential activity during egg production in diverse platyhelminths by mediating sclerotization of eggshells. In this study, we investigated the genomic and evolutionary features of tyrosinases in parasitic platyhelminths whose genomic information is available. A pair of paralogous tyrosinases was detected in most trematodes, whereas they were lost in cyclophyllidean cestodes. A pseudophyllidean cestode displaying egg biology similar to that of trematodes possessed an orthologous gene. Interestingly, one of the paralogous tyrosinases appeared to have been multiplied into three copies in Clonorchis sinensis and Opisthorchis viverrini. In addition, a fifth tyrosinase gene that was minimally transcribed through all developmental stages was further detected in these opisthorchiid genomes. Phylogenetic analyses demonstrated that the tyrosinase gene has undergone duplication at least three times in platyhelminths. The additional opisthorchiid gene arose from the first duplication. A paralogous copy generated from these gene duplications, except for the last one, seemed to be lost in the major neodermatans lineages. In C. sinensis, tyrosinase gene expressions were initiated following sexual maturation and the levels were significantly enhanced by the presence of O2 and bile. Taken together, our data suggest that tyrosinase has evolved lineage-specifically across platyhelminths related to its copy number and induction mechanism.

  12. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyaji, Akimitsu; Kohno, Masahiro; Inoue, Yoshihiro

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that {sup 1}O{sub 2} generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte.more » - Highlights: • Generation of singlet oxygen was observed during tyrosinase-catalyzed tyrosine oxidation. • The singlet oxygen generated when tyrosine was converted into dopachrome. • The amount of singlet oxygen is not sufficient for cell toxicity. • It decreased when the hydroxyl radicals and/or superoxide anions were trapped.« less

  13. The effect of oxaloacetic acid on tyrosinase activity and structure: Integration of inhibition kinetics with docking simulation.

    PubMed

    Gou, Lin; Lee, Jinhyuk; Hao, Hao; Park, Yong-Doo; Zhan, Yi; Lü, Zhi-Rong

    2017-08-01

    Oxaloacetic acid (OA) is naturally found in organisms and well known as an intermediate of citric acid cycle producing ATP. We evaluated the effects of OA on tyrosinase activity and structure via integrating methods of enzyme kinetics and computational simulations. OA was found to be a reversible inhibitor of tyrosinase and its induced mechanism was the parabolic non-competitive inhibition type (IC 50 =17.5±0.5mM and K i =6.03±1.36mM). Kinetic measurements by real-time interval assay showed that OA induced multi-phasic inactivation process composing with fast (k 1 ) and slow (k 2 ) phases. Spectrofluorimetry studies showed that OA mainly induced regional changes in the active site of tyrosinase accompanying with hydrophobic disruption at high dose. The computational docking simulations further revealed that OA could interact with several residues near the tyrosinase active site pocket such as HIS61, HIS259, HIS263, and VAL283. Our study provides insight into the mechanism by which energy producing intermediate such as OA inhibit tyrosinase and OA is a potential natural anti-pigmentation agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Poria cocos Wolf extracts represses pigmentation in vitro and in vivo.

    PubMed

    Lee, HyunKyung; Cha, Hwa Jun

    2018-04-30

    In skin, melanocytes determine skin color using melanogenesis, which induces protective mechanism to oxidative stress and UV damage. However, when melanin is excessive produced by the various stimulus, the accumulated melanin induces hyperpigmentation disease such as melasma, freckles, Melanism ware induced. Therefore, it is implicated to finding potential agents for whitening to be used in cosmetic products. In our present study, we show that Poria cocos Wolf extracts decreased melanin synthesis in B16F10. And then this inhibition of melanogenesis was provoked by regulation of tyrosinase activity and tyrosinase and MITF expression. Moreover, Poria cocos Wolf extracts contained cream improved skin tone using increase of bright value. Overall, these results provide evidence to potential agent for whitening to be used in cosmetic products.

  15. Identification of tyrosinase specific inhibitors from Xanthium strumarium fruit extract using ultrafiltration-high performance liquid chromatography.

    PubMed

    Wang, Zhiqiang; Hwang, Seung Hwan; Huang, Bo; Lim, Soon Sung

    2015-10-01

    In this study, a strategy based on ultrafiltration-high performance liquid chromatography coupled with diode array detection (UF-HPLC-DAD) was proposed for screening tyrosinase specific inhibitors in Xanthii fructus. The false negatives were distinguished by optimizing the UF-HPLC-DAD parameters to reduce the background noise; the false positives were distinguished by introducing a blocked tyrosinase in the control group for comparison. To obtain the best blocker, the competitive experiments were performed using various known ligands. Using this strategy, three competitive inhibitors (protocatechuic acid; 3,5-di-O-caffeoylquinic acid; and 1,5-di-O-caffeoylquinic acid) and one mixed-type inhibitor (chlorogenic acid) were identified. These results were verified using tyrosinase inhibition assay, kinetic analysis, and structural simulation of the complex. Our experimental results suggest that the proposed strategy could be useful for high-throughput identification of tyrosinase specific inhibitors in natural products. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Condensed Tannins from Longan Bark as Inhibitor of Tyrosinase: Structure, Activity, and Mechanism.

    PubMed

    Chai, Wei-Ming; Huang, Qian; Lin, Mei-Zhen; Ou-Yang, Chong; Huang, Wen-Yang; Wang, Ying-Xia; Xu, Kai-Li; Feng, Hui-Ling

    2018-01-31

    In this study, the content, structure, antityrosinase activity, and mechanism of longan bark condensed tannins were evaluated. The findings obtained from mass spectrometry demonstrated that longan bark condensed tannins were mixtures of procyanidins, propelargonidins, prodelphinidins, and their acyl derivatives (galloyl and p-hydroxybenzoate). The enzyme analysis indicated that these mixtures were efficient, reversible, and mixed (competitive is dominant) inhibitor of tyrosinase. What's more, the mixtures showed good inhibitions on proliferation, intracellular enzyme activity and melanogenesis of mouse melanoma cells (B 16 ). From molecular docking, the results showed the interactions between inhibitors and tyrosinase were driven by hydrogen bond, electrostatic, and hydrophobic interactions. In addition, high levels of total phenolic and extractable condensed tannins suggested that longan bark might be a good source of tyrosinase inhibitor. This study would offer theoretical basis for the development of longan bark condensed tannins as novel food preservatives and medicines of skin diseases.

  17. Tyrosinase inhibitory constituents from a polyphenol enriched fraction of rose oil distillation wastewater.

    PubMed

    Solimine, Jessica; Garo, Eliane; Wedler, Jonas; Rusanov, Krasimir; Fertig, Orlando; Hamburger, Matthias; Atanassov, Ivan; Butterweck, Veronika

    2016-01-01

    During the water steam distillation process of rose flowers, the non-volatile phenolic compounds remain in the waste. We recently developed a strategy to separate rose oil distillation water (RODW) into a polyphenol depleted water fraction and a polyphenol enriched fraction (RF20-SP207). Bioassay-guided investigation of RF20-SP207 led to the isolation of quercetin, kaempferol and ellagic acid. Their structures were elucidated by spectroscopic analysis as well as by comparison with literature data. Tyrosinase inhibition studies were performed with RF20-SP207, fractions I-IV, and the isolated compounds of the most active fraction. RF20-SP207 strongly inhibited the enzyme with an IC50 of 0.41 μg/mL. From the tested fractions only fraction IV (IC50=5.81 μg/mL) exhibited strong anti-tyrosinase activities. Quercetin, kaempferol and ellagic acid were identified in fraction IV and inhibited mushroom tyrosinase with IC50 values of 4.2 μM, 5.5 μM and 5.2 μM, respectively, which is approximately 10 times more potent than that of the positive control kojic acid (56.1μM). The inhibition kinetics, analyzed by Lineweaver-Burk plots, indicated that RF20-SP207 and fraction IV are uncompetitive inhibitors of tyrosinase when l-tyrosine is used as a substrate. A mixed inhibition was determined for ellagic acid, and a competitive inhibition for quercetin and kaempferol. In conclusion, the recovered polyphenol fraction RF20-SP207 from RODW was found to be a potent tyrosinase inhibitor. This value-added product could be used as an active ingredient in cosmetic products related to hyperpigmentation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Amino acid sequence of tyrosinase from Neurospora crassa.

    PubMed Central

    Lerch, K

    1978-01-01

    The amino-acid sequence of tyrosinase from Neurospora crassa (monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) is reported. This copper-containing oxidase consists of a single polypeptide chain of 407 amino acids. The primary structure was determined by automated and manual sequence analysis on fragments produced by cleavage with cyanogen bromide and on peptides obtained by digestion with trypsin, pepsin, thermolysin, or chymotrypsin. The amino terminus of the protein is acetylated and the single cysteinyl residue 96 is covalently linked via a thioether bridge to histidyl residue 94. The formation and the possible role of this unusual structure in Neurospora tyrosinase is discussed. Dye-sensitized photooxidation of apotyrosinase and active-site-directed inactivation of the native enzyme indicate the possible involvement of histidyl residues 188, 192, 289, and 305 or 306 as ligands to the active-site copper as well as in the catalytic mechanism of this monooxygenase. PMID:151279

  19. Novel synthetic kojic acid-methimazole derivatives inhibit mushroom tyrosinase and melanogenesis.

    PubMed

    Chen, Ming-Jen; Hung, Chih-Chuan; Chen, Yan-Ru; Lai, Shih-Ting; Chan, Chin-Feng

    2016-12-01

    In this study, two kojic acid-methimazole (2-mercapto-1-methylimidazole, MMI, 1) derivatives, 5-hydroxy-2-{[(1-methyl-1H-imidazol-2-yl)thio]methyl}-4H-pyran-4-one (compound 4) and 5-methoxy-2-{[(1-methyl-1H-imidazol-2-yl)thio]methyl}-4H-pyran-4-one (compound 5), were synthesized to examine their inhibitory kinetics on mushroom tyrosinase. Compound 4 exhibited a potent inhibitory effect on monophenolase activity in a dose-dependent manner, with an IC 50 value of 0.03 mM. On diphenolase activity, compound 4 exhibited a less inhibitory effect (IC 50  = 1.29 mM) but was stronger than kojic acid (IC 50  = 1.80 mM). Kinetic analysis indicated that compound 4 was both as a noncompetitive monophenolase and diphenolase inhibitor. By contrast, compound 5 exhibited no inhibitory effects on mushroom tyrosinase activity. The IC 50 value of compound 4 for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was 4.09 mM, being much higher than the IC 50 of compound 4 for inhibiting the tyrosinase activity. The results indicated that the antioxidant activity of compound 4 may be partly related to the potent inhibitory effect on mushroom tyrosinase. Compound 4 also exerted a potent inhibitory effect on intracellular melanin formation in B16/F10 murine melanoma cells, and caused no cytotoxicity. Furthermore, compound 4 induced no adverse effects on the Hen's egg test-chorioallantoic membrane (HET-CAM). Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Tyrosinase, could it be a missing link in ochronosis in alkaptonuria?

    PubMed

    Taylor, Adam M; Kammath, Vishnu; Bleakley, Aaron

    2016-06-01

    The hypothesis that is proposed is that tyrosinase, an enzyme widely found within the human body is implicated in the ochronosis that occurs in alkaptonuria; an autosomal recessive condition first used by Archibald Garrod to describe the theory of "Inborn Errors of Metabolism." The disease results from the absence of a single enzyme in the liver that breaks down homogentisic acid; this molecule becomes systemically elevated in sufferers. The condition is characterised by a clinical triad of symptoms; homogentisic aciduria from birth, ochronosis (darkening) of collagenous tissues (from ∼30years of age) and ochronotic osteoarthropathy in weight bearing joints due to long term ochronosis in them (from ∼40years of age). Tyrosinase, a polyphenol oxidase has been shown in many species to contribute to the darkening of tissues in many organisms; including humans in the production of melanin. Tyrosinase under the right conditions shows alterations in its substrate specificity and may contribute to the darkening seen in AKU where it moves away from polymerising tyrosine but also homogentisic acid, the causative molecule in alkaptonuria, that is present in excess. Copyright © 2016. Published by Elsevier Ltd.

  1. Evaluation of the Antioxidant Activities and Tyrosinase Inhibitory Property from Mycelium Culture Extracts

    PubMed Central

    Park, Ki Moon; Kwon, Kyung Min; Lee, Seung Ho

    2015-01-01

    Since mushrooms have many bioactive components, they have been used as components in folk medicine. Because mycelium has an advantage when it comes to large-scale production, this study aimed to evaluate the antioxidant properties and anti-tyrosinase activity from 55 mycelia in culture media. Relatively high 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity was detected from the ethanol extract of culture media including mycelium (EECiM) of Morchella esculenta var. esculenta (MEVE), Auricularia polytricha (APO), Tremella aurantia (TAU), Volvariella bombycina (VBO), and Oudemansiella sp. (Osp), which also showed strong reducing power and inhibitory activity in relation to the thiobarbituric acid (TBA) value. On the other hand, relatively high tyrosinase inhibitory activity was detected in Inonotus mikadoi (IMI), Coriolus versicolor (CVE), Volvariella volvacea (VVO), Panellus serotinus (PSE), Auricularia auricula (AAU), and Fomitopsis sp. (Fsp). Interestingly, the APO EECiM exhibited the highest DPPH radical scavenging rate (77.5 ± 4.3%) and reducing power (1.18 ± 0.041), while the highest inhibitory power of the TBA value and antityrosinase activity were detected in that of TAU (64.5 ± 4.1%) and IMI (46.0 ± 7.5%), respectively. Overall, our study suggested potential candidates for EECiMs that exhibited powerful antioxidant and tyrosinase inhibitory properties and might be used as natural antioxidant tyrosinase inhibitor. PMID:26345142

  2. DeoxyArbutin: a novel reversible tyrosinase inhibitor with effective in vivo skin lightening potency.

    PubMed

    Boissy, Raymond E; Visscher, Marty; DeLong, Mitchell A

    2005-08-01

    Modulation of melanogenesis in the melanocytes can be achieved using chemicals that share structural homologies with the substrate tyrosine and as thus competitively inhibit the catalytic function of tyrosinase. We have developed a new tyrosinase inhibitor, deoxyArbutin (dA), based on this premise. DeoxyArbutin demonstrates effective inhibition of mushroom tyrosinase in vitro with a Ki that is 10-fold lower that hydroquinone (HQ) and 350-fold lower than arbutin. In a hairless, pigmented guinea pig model, dA demonstrated rapid and sustained skin lightening that was completely reversible within 8 weeks after halt in topical application. In contrast, HQ induced a short but unsustained skin lightening effect whereas kojic acid and arbutin exhibit no skin lightening effect. Results from a panel of safety tests supported the overall establishment of dA as an actionable molecule. In a human clinical trial, topical treatment of dA for 12 weeks resulted in a significant or slight reduction in overall skin lightness and improvement of solar lentigines in a population of light skin or dark skin individuals, respectively. These data demonstrate that dA has potential tyrosinase inhibitory activity that can result in skin lightening and may be used to ameliorate hyperpigmentary lesions.

  3. Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship

    NASA Astrophysics Data System (ADS)

    Akhtar, Muhammad Nadeem; Sakeh, Nurshafika M.; Zareen, Seema; Gul, Sana; Lo, Kong Mun; Ul-Haq, Zaheer; Shah, Syed Adnan Ali; Ahmad, Syahida

    2015-04-01

    Browning of fruits and vegetables is a serious issue in the food industry, as it damages the organoleptic properties of the final products. Overproduction of melanin causes aesthetic problems such as melisma, freckles and lentigo. In this study, a series of chalcones (1-10) have been synthesized and examined for their tryrosinase inhibitory activity. The results showed that flavokawain B (1), flavokawain A (2) and compound 3 were found to be potential tyrosinase inhibitors, indicating IC50 14.20-14.38 μM values. This demonstrates that 4-substituted phenolic compound especially at ring A exhibited significant tyrosinase inhibition. Additionally, molecular docking results showed a strong binding affinity for compounds 1-3 through chelation between copper metal and ligands. The detailed molecular docking and SARs studies correlate well with the tyrosinase inhibition studies in vitro. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and single X-ray crystallographic techniques. These findings could lead to design and discover of new tyrosinase inhibitors to control the melanine overproduction and overcome the economic loss of food industry.

  4. Tyrosinase overexpression promotes ATM-dependent p53 phosphorylation by quercetin and sensitizes melanoma cells to dacarbazine.

    PubMed

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Limesand, Kirsten H; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr(+) cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 microM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 microM). Both pcDNA3 and Tyr(+) DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr(+) cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr(+) cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase.

  5. Tyrosinase Overexpression Promotes ATM-Dependent p53 Phosphorylation by Quercetin and Sensitizes Melanoma Cells to Dacarbazine

    PubMed Central

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; H. Limesand, Kirsten; Burd, Randy

    2008-01-01

    Dacarbazine (DTIC) has been used for the treatment of melanoma for decades. However, monotherapy with this chemotherapeutic agent results only in moderate response rates. To improve tumor response to DTIC current clinical trials in melanoma focus on combining a novel targeted agent with chemotherapy. Here, we demonstrate that tyrosinase which is commonly overexpressed in melanoma activates the bioflavonoid quercetin (Qct) and promotes an ataxia telangiectasia mutated (ATM)-dependent DNA damage response. This response sensitizes melanoma cells that overexpress tyrosinase to DTIC. In DB-1 melanoma cells that overexpress tyrosinase (Tyr cells), the threshold for phosphorylation of ATM and p53 at serine 15 was observed at a low dose of Qct (25 μM) when compared to the mock transfected pcDNA3 cells, which required a higher dose (75 μM). Both pcDNA3 and Tyr DB-1 cells demonstrated similar increases in phosphorylation of p53 at other serine sites, but in the Tyr cells, DNApk expression was found to be reduced compared to control cells, indicating a shift towards an ATM-mediated response. The DB-1 control cells were resistant to DTIC, but were sensitized to apoptosis with high dose Qct, while Tyr cells were sensitized to DTIC with low or high dose Qct. Qct also sensitized SK Mel 5 (p53 wildtype) and 28 (p53 mutant) cells to DTIC. However, when SK Mel 5 cells were transiently transfected with tyrosinase and treated with Qct plus DTIC, SK Mel 5 cells demonstrated a more than additive induction of apoptosis. Therefore, this study demonstrates that tyrosinase overexpression promotes an ATM-dependent p53 phosphorylation by Qct treatment and sensitizes melanoma cells to dacarbazine. In conclusion, these results suggest that Qct or Qct analogues may significantly improve DTIC response rates in tumors that express tyrosinase. PMID:18791269

  6. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.

    PubMed

    Ismaya, Wangsa T; Rozeboom, Henriëtte J; Weijn, Amrah; Mes, Jurriaan J; Fusetti, Fabrizia; Wichers, Harry J; Dijkstra, Bauke W

    2011-06-21

    Tyrosinase catalyzes the conversion of phenolic compounds into their quinone derivatives, which are precursors for the formation of melanin, a ubiquitous pigment in living organisms. Because of its importance for browning reactions in the food industry, the tyrosinase from the mushroom Agaricus bisporus has been investigated in depth. In previous studies the tyrosinase enzyme complex was shown to be a H(2)L(2) tetramer, but no clues were obtained of the identities of the subunits, their mode of association, and the 3D structure of the complex. Here we unravel this tetramer at the molecular level. Its 2.3 Å resolution crystal structure is the first structure of the full fungal tyrosinase complex. The complex comprises two H subunits of ∼392 residues and two L subunits of ∼150 residues. The H subunit originates from the ppo3 gene and has a fold similar to other tyrosinases, but it is ∼100 residues larger. The L subunit appeared to be the product of orf239342 and has a lectin-like fold. The H subunit contains a binuclear copper-binding site in the deoxy-state, in which three histidine residues coordinate each copper ion. The side chains of these histidines have their orientation fixed by hydrogen bonds or, in the case of His85, by a thioether bridge with the side chain of Cys83. The specific tyrosinase inhibitor tropolone forms a pre-Michaelis complex with the enzyme. It binds near the binuclear copper site without directly coordinating the copper ions. The function of the ORF239342 subunits is not known. Carbohydrate binding sites identified in other lectins are not conserved in ORF239342, and the subunits are over 25 Å away from the active site, making a role in activity unlikely. The structures explain how calcium ions stabilize the tetrameric state of the enzyme.

  7. Characterization of a New Flavone and Tyrosinase Inhibition Constituents from the Twigs of Morus alba L.

    PubMed

    Zhang, Long; Tao, Guanjun; Chen, Jie; Zheng, Zong-Ping

    2016-09-02

    The twigs of Morus alba L. were found to show strong tyrosinase inhibition activity, and the responsible active components in the extract were further investigated in this study. A flavone, named morusone (1), and sixteen known compounds 2-17 were isolated from M. alba twigs and their structures were identified by interpretation of the corresponding ESI-MS and NMR spectral data. In the tyrosinase inhibitory test, the compounds steppogenin (IC50 0.98 ± 0.01 µM), 2,4,2',4'-tetrahydroxychalcone (IC50 0.07 ± 0.02 µM), morachalcone A (IC50 0.08 ± 0.02 µM), oxyresveratrol (IC50 0.10 ± 0.01 µM), and moracin M (8.00 ± 0.22 µM) exhibited significant tyrosinase inhibition activities, much stronger than that of the positive control kojic acid. These results suggest that M. alba twig extract should served as a good source of natural tyrosinase inhibitors for use in foods as antibrowning agents or in cosmetics as skin-whitening agents.

  8. Alleviation effect of arbutin on oxidative stress generated through tyrosinase reaction with l-tyrosine and l-DOPA

    PubMed Central

    2014-01-01

    Background Hydroxyl radical that has the highest reactivity among reactive oxygen species (ROS) is generated through l-tyrosine-tyrosinase reaction. Thus, the melanogenesis might induce oxidative stress in the skin. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside), a well-known tyrosinase inhibitor has been widely used for the purpose of skin whitening. The aim of the present study was to examine if arbutin could suppress the hydroxyl radical generation via tyrosinase reaction with its substrates, l-tyrosine and l-DOPA. Results The hydroxyl radical, which was determined by an electron spin resonance-spin trapping technique, was generated by the addition of not only l-tyrosine but l-DOPA to tyrosinase in a concentration dependent manner. Arbutin could inhibit the hydroxyl radical generation in the both reactions. Conclusion It is presumed that arbutin could alleviate oxidative stress derived from the melanogenic pathway in the skin in addition to its function as a whitening agent in cosmetics. PMID:25297374

  9. Immobilization of tyrosinase in carboxylic and carbonyl group-modified MWNT electrode and its application for sensing phenolics in red wines.

    PubMed

    Kim, Kyo-Il; Lee, Jae-Chan; Robards, Kevin; Choi, Seong-Ho

    2010-06-01

    Tyrosinase-immobilized biosensor was fabricated based on PAAc-g-MWNT and PMAn-g-MWNT, respectively. The poly(acrylic acid)-grafted multi-wall carbon nanotubes, PAAc-g-MWNT, and poly(maleic anhydride)-grafted multi-wall carbon nanotube, PMAn-g-MWNT, were prepared by radiation-induced graft polymerization of acrylic acid (AAc) and maleic anhydride (MAn) on the surface of MWNT. The biosensor was prepared on ITO glass electrode by coating of chitosan solution with tyrosinase-immobilized PAAc-g-MWNT and PMAn-g-MWNT, respectively. The sensing ranges of the tyrosinase-immobilized biosensor based on PAAc-g-MWNT and PMAn were in the range of 0.2-0.9 mM concentration and in the range of 0.1-0.5 mM for phenol in phosphate buffer solution, respectively. Optimal pH and temperature conditions for sensing various phenolic compounds with tyrosinase-immobilized biosensor were determined. Total phenolic content for three commercial red wines on tyrosinase-immobilized biosensor were also determined.

  10. Extracts of Morus nigra L. Leaves Standardized in Chlorogenic Acid, Rutin and Isoquercitrin: Tyrosinase Inhibition and Cytotoxicity

    PubMed Central

    Fontes, Pedro Ribeiro; Souza, Paula Monteiro; William Fagg, Christopher; Neves Silva Guerra, Eliete; de Medeiros Nóbrega, Yanna Karla; Silveira, Damaris; Fonseca-Bazzo, Yris; Simeoni, Luiz Alberto; Homem-de-Mello, Maurício; Oliveira Magalhães, Pérola

    2016-01-01

    Melanogenesis is a process responsible for melanin production, which is stored in melanocytes containing tyrosinase. Inhibition of this enzyme is a target in the cosmetics industry, since it controls undesirable skin conditions such as hyperpigmentation due to the overproduction of melanin. Species of the Morus genus are known for the beneficial uses offered in different parts of its plants, including tyrosinase inhibition. Thus, this project aimed to study the inhibitory activity of tyrosinase by extracts from Morus nigra leaves as well as the characterization of its chromatographic profile and cytotoxicity in order to become a new therapeutic option from a natural source. M. nigra leaves were collected, pulverized, equally divided into five batches and the standardized extract was obtained by passive maceration. There was no significant difference between batches for total solids content, yield and moisture content, which shows good reproducibility of the extraction process. Tyrosinase enzymatic activity was determined for each batch, providing the percentage of enzyme inhibition and IC50 values obtained by constructing dose-response curves and compared to kojic acid, a well-known tyrosinase inhibitor. High inhibition of tyrosinase activity was observed (above 90% at 15.625 μg/mL). The obtained IC50 values ranged from 5.00 μg/mL ± 0.23 to 8.49 μg/mL ± 0.59 and were compared to kojic acid (3.37 μg/mL ± 0.65). High Performance Liquid Chromatography analysis revealed the presence of chlorogenic acid, rutin and, its major compound, isoquercitrin. The chromatographic method employed was validated according to ICH guidelines and the extract was standardized using these polyphenols as markers. Cytotoxicity, assessed by MTT assay, was not observed on murine melanomas, human keratinocytes and mouse fibroblasts in tyrosinase IC50 values. This study demonstrated the potential of M. nigra leaf extract as a promising whitening agent of natural source against skin

  11. Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities.

    PubMed

    Thitimuta, Surached; Pithayanukul, Pimolpan; Nithitanakool, Saruth; Bavovada, Rapepol; Leanpolchareanchai, Jiraporn; Saparpakorn, Patchreenart

    2017-03-04

    The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE) ( Camellia sinensis L.). The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl₄-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA) oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE's principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl₄-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl₄ intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins.

  12. Antimicrobial lubricant formulations containing poly(hydroxybenzene)-trimethoprim conjugates synthesized by tyrosinase.

    PubMed

    Gonçalves, Idalina; Botelho, Cláudia M; Teixeira, Ana; Abreu, Ana S; Hilliou, Loïc; Silva, Carla; Cavaco-Paulo, Artur

    2015-05-01

    Poly(hydroxybenzene)-trimethoprim conjugates were prepared using methylparaben as substrate of the oxidative enzyme tyrosinase. MALDI-TOF MS analysis showed that the enzymatic oxidation of methylparaben alone leads to the poly(hydroxybenzene) formation. In the presence of trimethoprim, the methylparaben tyrosinase oxidation leads poly(hydroxybenzene)-trimethoprim conjugates. All of these compounds were incorporated into lubricant hydroxyethyl cellulose/glycerol mixtures. Poly(hydroxybenzene)-trimethoprim conjugates were the most effective phenolic structures against the bacterial growth reducing by 96 and 97% of Escherichia coli and Staphylococcus epidermidis suspensions, respectively (after 24 h). A novel enzymatic strategy to produce antimicrobial poly(hydroxybenzene)-antibiotic conjugates is proposed here for a wide range of applications on the biomedical field.

  13. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase.

    PubMed

    Miyaji, Akimitsu; Kohno, Masahiro; Inoue, Yoshihiro; Baba, Toshihide

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that (1)O2 generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Chemometric profile, antioxidant and tyrosinase inhibitory activity of Camel's foot creeper leaves (Bauhinia vahlii).

    PubMed

    Panda, Pritipadma; Dash, Priyanka; Ghosh, Goutam

    2018-03-01

    The present study is the first effort to a comprehensive evaluation of antityrosinase activity and chemometric analysis of Bauhinia vahlii. The experimental results revealed that the methanol extract of Bauhinia vahlii (BVM) possesses higher polyphenolic compounds and total antioxidant activity than those reported elsewhere for other more conventionally and geographically different varieties. The BVM contain saturated fatty acids such as hexadecanoic acid (10.15%), octadecanoic acid (1.97%), oleic acid (0.61%) and cis-vaccenic acid (2.43%) along with vitamin E (12.71%), α-amyrin (9.84%), methyl salicylate (2.39%) and β-sitosterol (17.35%), which were mainly responsible for antioxidant as well as tyrosinase inhibitory activity. Tyrosinase inhibitory activity of this extract was comparable to that of Kojic acid. These findings suggested that the B. vahlii leaves could be exploited as potential source of natural antioxidant and tyrosinase inhibitory agent, as well.

  15. Toxin detection using a tyrosinase-coupled oxygen electrode.

    PubMed

    Smit, M H; Rechnitz, G A

    1993-02-15

    An enzyme-based "electrochemical canary" is described for the detection of cyanide. The sensing system imitates cyanide's site of toxicity in the mitochondria. The terminal sequence of electron transfer in aerobic respiration is mimicked by mediator coupling of tyrosinase catalysis to an electro-chemical system. An enzyme-coupled oxygen electrode is created which is sensitive to selective poisoning. Biocatalytic reduction of oxygen is promoted by electrochemically supplying tyrosinase with electrons. Thus, ferrocyanide is generated at a cathode and mediates the enzymatic reduction of oxygen to water. An enzyme-dependent reductive current can be monitored which is inhibited by cyanide in a concentration-dependent manner. Oxygen depletion in the reaction layer can be minimized by addressing enzyme activity using a potential pulsing routine. Enzyme activity is electrochemically initiated and terminated and the sensor becomes capable of continuous monitoring. Cyanide poisoning of the biological component is reversible, and it can be reused after rinsing. The resulting sensor detects cyanide based on its biological activity rather than its physical or chemical properties.

  16. Inhibitory effects of constituents of Morinda citrifolia seeds on elastase and tyrosinase.

    PubMed

    Masuda, Megumi; Murata, Kazuya; Fukuhama, Akiko; Naruto, Shunsuke; Fujita, Tadashi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2009-07-01

    A 50% ethanolic extract (MCS-ext) from seeds of Morinda citrifolia ("noni" seeds) showed more potent in vitro inhibition of elastase and tyrosinase, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than extracts of M. citrifolia leaves or flesh. Activity-guided fractionation of MCS-ext using in vitro assays led to the isolation of ursolic acid as an active constituent of elastase inhibitory activity. 3,3'-Bisdemethylpinoresinol, americanin A, and quercetin were isolated as active constituents having both tyrosinase inhibitory and radical scavenging activities. Americanin A and quercetin also showed superoxide dismutase (SOD)-like activity. These active compounds were isolated from noni seeds for the first time.

  17. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.

    PubMed

    Schweikardt, Thorsten; Olivares, Concepción; Solano, Francisco; Jaenicke, Elmar; García-Borrón, José Carlos; Decker, Heinz

    2007-10-01

    Tyrosinases are the first and rate-limiting enzymes in the synthesis of melanin pigments responsible for colouring hair, skin and eyes. Mutation of tyrosinases often decreases melanin production resulting in albinism, but the effects are not always understood at the molecular level. Homology modelling of mouse tyrosinase based on recently published crystal structures of non-mammalian tyrosinases provides an active site model accounting for loss-of-function mutations. According to the model, the copper-binding histidines are located in a helix bundle comprising four densely packed helices. A loop containing residues M374, S375 and V377 connects the CuA and CuB centres, with the peptide oxygens of M374 and V377 serving as hydrogen acceptors for the NH-groups of the imidazole rings of the copper-binding His367 and His180. Therefore, this loop is essential for the stability of the active site architecture. A double substitution (374)MS(375) --> (374)GG(375) or a single M374G mutation lead to a local perturbation of the protein matrix at the active site affecting the orientation of the H367 side chain, that may be unable to bind CuB reliably, resulting in loss of activity. The model also accounts for loss of function in two naturally occurring albino mutations, S380P and V393F. The hydroxyl group in S380 contributes to the correct orientation of M374, and the substitution of V393 for a bulkier phenylalanine sterically impedes correct side chain packing at the active site. Therefore, our model explains the mechanistic necessity for conservation of not only active site histidines but also adjacent amino acids in tyrosinase.

  18. Designing Tyrosinase siRNAs by Multiple Prediction Algorithms and Evaluation of Their Anti-Melanogenic Effects.

    PubMed

    Kwon, Ok-Seon; Kwon, Soo-Jung; Kim, Jin Sang; Lee, Gunbong; Maeng, Han-Joo; Lee, Jeongmi; Hwang, Gwi Seo; Cha, Hyuk-Jin; Chun, Kwang-Hoon

    2018-05-01

    Melanin is a pigment produced from tyrosine in melanocytes. Although melanin has a protective role against UVB radiation-induced damage, it is also associated with the development of melanoma and darker skin tone. Tyrosinase is a key enzyme in melanin synthesis, which regulates the rate-limiting step during conversion of tyrosine into DOPA and dopaquinone. To develop effective RNA interference therapeutics, we designed a melanin siRNA pool by applying multiple prediction programs to reduce human tyrosinase levels. First, 272 siRNAs passed the target accessibility evaluation using the RNAxs program. Then we selected 34 siRNA sequences with ΔG ≥-34.6 kcal/mol, i-Score value ≥65, and siRNA scales score ≤30. siRNAs were designed as 19-bp RNA duplexes with an asymmetric 3' overhang at the 3' end of the antisense strand. We tested if these siRNAs effectively reduced tyrosinase gene expression using qRT-PCR and found that 17 siRNA sequences were more effective than commercially available siRNA. Three siRNAs further tested showed an effective visual color change in MNT-1 human cells without cytotoxic effects, indicating these sequences are anti-melanogenic. Our study revealed that human tyrosinase siRNAs could be efficiently designed using multiple prediction algorithms.

  19. Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity.

    PubMed

    Jhan, J-K; Chung, Y-C; Chen, G-H; Chang, C-H; Lu, Y-C; Hsu, C-K

    2016-06-01

    The seed coat of black soya bean (SCBS) contains high amount of anthocyanins and shows antioxidant and anti-mushroom tyrosinase activities. The objectives of this study were to analyse the anthocyanins in SCBS with different solvents and to find the relationship between anthocyanin profile with anti-human and anti-mushroom tyrosinase activities. SCBS was extracted with hot water, 50 and 80% ethanol, 50 and 80% acetone and 50 and 80% acidified acetone. Total phenol and total flavonoid contents in the extracts were determined. Anthocyanins in the extracts were analysed using HPLC and LC/MS/MS. A genetically engineered human tyrosinase was used to evaluate the anti-tyrosinase potential of the extracts from SCBS. 80% acetone extract from SCBS obtained the highest total phenol, total flavonoid and cyanidin-3-O-glucoside (C3G) contents among all the extracts, whereas the hot water extract showed the lowest antioxidant contents. Three anthocyanin compounds were found in all the extracts from SCBS, and the analysis of HPLC and LC/MS/MS indicated that they were C3G, delphinidin-3-O-glucoside (D3G) and peonidin-3-O-glucoside (P3G). The ratios of C3G (2.84 mg g(-1) ), D3G (0.34 mg g(-1) ) and P3G (0.35 mg g(-1) ) in 80% acidified acetone extract were 76.6, 9.1 and 9.3%, respectively. All the extracts from SCBS possessed anti-human tyrosinase activity. Moreover, a good correlation was found between the anti-human tyrosinase activities and C3G contents in the extracts. Antioxidants in SCBS also possess anti-human and anti-mushroom tyrosinase activities. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  20. New insights into highly potent tyrosinase inhibitors based on 3-heteroarylcoumarins: Anti-melanogenesis and antioxidant activities, and computational molecular modeling studies.

    PubMed

    Pintus, Francesca; Matos, Maria J; Vilar, Santiago; Hripcsak, George; Varela, Carla; Uriarte, Eugenio; Santana, Lourdes; Borges, Fernanda; Medda, Rosaria; Di Petrillo, Amalia; Era, Benedetta; Fais, Antonella

    2017-03-01

    Melanogenesis is a physiological pathway for the formation of melanin. Tyrosinase catalyzes the first step of this process and down-regulation of its activity is responsible for the inhibition of melanogenesis. The search for molecules capable of controlling hyperpigmentation is a trend topic in health and cosmetics. A series of heteroarylcoumarins have been synthesized and evaluated. Compounds 4 and 8 exhibited higher tyrosinase inhibitory activities (IC 50 =0.15 and 0.38μM, respectively), than the reference compound, kojic acid (IC 50 =17.9μM). Compound 4 acts as competitive, while compound 8 as uncompetitive inhibitor of mushroom tyrosinase. Furthermore, compounds 2 and 8 inhibited tyrosinase activity and melanin production in B16F10 cells. In addition, compounds 2-4 and 8 proved to have an interesting antioxidant profile in both ABTS and DPPH radicals scavenging assays. Docking experiments were carried out in order to study the interactions between these heteroarylcoumarins and mushroom tyrosinase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of tyrosinase-based reporter genes for preclinical photoacoustic imaging of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Ruschke, Karen; Dortay, Hakan; Schreiber, Isabelle; Sass, Andrea; Qazi, Taimoor; Pumberger, Matthias; Laufer, Jan

    2014-03-01

    The capability to image stem cells in vivo in small animal models over extended periods of time is important to furthering our understanding of the processes involved in tissue regeneration. Photoacoustic imaging is suited to this application as it can provide high resolution (tens of microns) absorption-based images of superficial tissues (cm depths). However, stem cells are rare, highly migratory, and can divide into more specialised cells. Genetic labelling strategies are therefore advantageous for their visualisation. In this study, methods for the transfection and viral transduction of mesenchymal stem cells with reporter genes for the co-expression of tyrosinase and a fluorescent protein (mCherry). Initial photoacoustic imaging experiments of tyrosinase expressing cells in small animal models of tissue regeneration were also conducted. Lentiviral transduction methods were shown to result in stable expression of tyrosinase and mCherry in mesenchymal stem cells. The results suggest that photoacoustic imaging using reporter genes is suitable for the study of stem cell driven tissue regeneration in small animals.

  2. Removal of p-alkylphenols from aqueous solutions by combined use of mushroom tyrosinase and chitosan beads.

    PubMed

    Yamada, Kazunori; Inoue, Tomoaki; Akiba, Yuji; Kashiwada, Ayumi; Matsuda, Kiyomi; Hirata, Mitsuo

    2006-10-01

    Enzymatic removal of p-alkylphenols from aqueous solutions was investigated through the two-step approach, the quinone conversion of p-alkylphenols with mushroom tyrosinase (EC 1.14.18.1) and the subsequent adsorption of quinone derivatives enzymatically generated on chitosan beads at pH 7.0 and 45 degrees C as the optimum conditions. This technique is quite effective for removal of various p-alkylphenols from an aqueous solution. The % removal values of 97-100% were obtained for p-n-alkylphenols with carbon chain lengths of 5 to 9. In addition, removal of other p-alkylphenols was enhanced by increasing either the tyrosinase concentration or the amount of added chitosan beads, and their % removal values reached >93 except for 4-tert-pentylphenol. This technique was also applicable to remove 4-n-octylphenol (4NOP) and 4-n-nonylphenol (4NNP) as suspected endocrine disrupting chemicals. The reaction of quinone derivatives enzymatically generated with the chitosan's amino groups was confirmed by the appearance of peaks for UV-visible spectrum measurements of the chitosan films incubated in the p-alkylphenol and tyrosinase mixture solutions. In addition, 4-tert-pentylphenol underwent tyrosinase-catalyzed oxidation in the presence of hydrogen peroxide.

  3. Astaxanthin and withaferin A block paracrine cytokine interactions between UVB-exposed human keratinocytes and human melanocytes via the attenuation of endothelin-1 secretion and its downstream intracellular signaling.

    PubMed

    Niwano, Takao; Terazawa, Shuko; Nakajima, Hiroaki; Wakabayashi, Yuki; Imokawa, Genji

    2015-06-01

    of tyrosinase in melanocytes. Western blot analysis of intracellular signaling factors revealed that withaferin A but not astaxanthin significantly abolished the endothelin-1-stimulated phosphorylation of Raf-1, MEK, ERK, MITF and CREB in human melanocytes. These results demonstrate that this co-culture system is an appropriate model to characterize melanogenic paracrine interactions and that astaxanthin and withaferin A serve as potent inhibitors of those interactions. Their effects are caused not only by down-regulating the increased secretion of an intrinsic melanogenic cytokine, endothelin-1, by UVB-exposed human keratinocytes, but also by interrupting the endothelin-1-triggered downstream intracellular signaling between protein kinase C and Raf-1 in human melanocytes (only for withaferin A). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Hydroxylation of p-substituted phenols by tyrosinase: Further insight into the mechanism of tyrosinase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Munoz, Jose Luis; Berna, Jose; Garcia-Molina, Maria del Mar

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer The action the copper complexes and tyrosinase on phenols is equivalent. Black-Right-Pointing-Pointer Isotope effect showed that nucleophilic attack to copper atom may be the slower step. Black-Right-Pointing-Pointer The value of {rho} (Hammett constant) supports an electrophilic aromatic substitution. Black-Right-Pointing-Pointer Data obtained in steady state pH 7 conditions support the mechanism of Scheme 1SM. -- Abstract: A study of the monophenolase activity of tyrosinase by measuring the steady state rate with a group of p-substituted monophenols provides the following kinetic information: k{sub cat}{sup m} and the Michaelis constant, K{sub M}{sup m}. Analysis of these data taking into account chemicalmore » shifts of the carbon atom supporting the hydroxyl group ({delta}) and {sigma}{sub p}{sup +}, enables a mechanism to be proposed for the transformation of monophenols into o-diphenols, in which the first step is a nucleophilic attack on the copper atom on the form E{sub ox} (attack of the oxygen of the hydroxyl group of C-1 on the copper atom) followed by an electrophilic attack (attack of the hydroperoxide group on the ortho position with respect to the hydroxyl group of the benzene ring, electrophilic aromatic substitution with a reaction constant {rho} of -1.75). These steps show the same dependency on the electronic effect of the substituent groups in C-4. Furthermore, a study of a solvent deuterium isotope effect on the oxidation of monophenols by tyrosinase points to an appreciable isotopic effect. In a proton inventory study with a series of p-substituted phenols, the representation of k{sub cat}{sup f{sub n}}/k{sub cat}{sup f{sub 0}} against n (atom fractions of deuterium), where k{sub cat}{sup f{sub n}} is the catalytic constant for a molar fraction of deuterium (n) and k{sub cat}{sup f{sub 0}} is the corresponding kinetic parameter in a water solution, was linear for all substrates. These results indicate

  5. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves.

    PubMed

    Cespedes, Carlos L; Balbontin, Cristian; Avila, Jose G; Dominguez, Mariana; Alarcon, Julio; Paz, Cristian; Burgos, Viviana; Ortiz, Leandro; Peñaloza-Castro, Ignacio; Seigler, David S; Kubo, Isao

    2017-11-01

    It is reported in this study the effect of isolates from leaves of Aristotelia chilensis as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes. The aim of the paper was to evaluate the activity of A. chilensis towards different enzymes. In addition to pure compounds, extracts rich in alkaloids and phenolics were tested. The most active F5 inhibited AChE (79.5% and 89.8% at 10.0 and 20.0 μg/mL) and against BChE (89.5% and 97.8% at 10.0 and 20.0 μg/mL), showing a strong mixed-type inhibition against AChE and BChE. F3 (a mixture of flavonoids and phenolics acids), showed IC 50 of 90.7 and 59.6 μg/mL of inhibitory activity against AChE and BChE, inhibiting the acetylcholinesterase competitively. Additionally, F3 showed and high potency as tyrosinase inhibitor with IC 50 at 8.4 μg/mL. Sample F4 (anthocyanidins and phenolic composition) presented a complex, mixed-type inhibition of tyrosinase with a IC 50 of 39.8 μg/mL. The findings in this investigation show that this natural resource has a strong potential for future research in the search of new phytotherapeutic treatments for cholinergic deterioration ailments avoiding the side effects of synthetic drugs. This is the first report as cholinesterases and tyrosinase inhibitors of alkaloids and phenolics from A. chilensis leaves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. In vitro assessment of the structure-activity relationship of tyrosinase-dependent cytotoxicity of a series of substituted phenols.

    PubMed

    Naish-Byfield, S; Cooksey, C J; Latter, A M; Johnson, C I; Riley, P A

    1991-01-01

    The rate of oxidation by purified mushroom tyrosinase of 30 compounds was measured by oximetry, and the tyrosinase-dependent cytotoxicity of each estimated in an in vitro assay using exposure of non-melanogenic cells to the agents in the presence and absence of tyrosinase. Cytotoxicity was estimated by immediate inhibition of DNA synthesis; 4-hydroxyanisole was used as the reference material. Compounds that were not oxidized by tyrosinase were found to be non-toxic but there was no direct relationship between the rate of oxidation and the relative cytotoxicity of those materials that acted as substrates for the enzyme. Thioethers were found to be more cytotoxic than the corresponding phenoxyethers. This was partly due to their greater rate of oxidation by tyrosinase and, in the case of propylthiophenol, the consequence of higher effective toxicity of the lipophilic species. The optimum chain length for the side chain of the oxyethers was three saturated carbon atoms and the toxicity appeared to be influenced by the lipophilicity of the compounds, possibly reflecting the relative lipid solubility of the putative toxic ortho-quinones generated from them. The maximum tyrosinase-dependent toxicity observed was in the range 5-6 times the relative toxicity of 4-hydroxyanisole. Sulphinyl and sulphonyl derivatives were inactive. In addition to oxyethers and thioethers, esters and glycosides of oxyethers were also examined and were found to be toxic in the presence of tyrosinase when hydrolysed. The succinates were found to be oxidized and toxic in our test system, suggesting that they rapidly underwent spontaneous hydrolysis. Oximetry data suggest that slight spontaneous hydrolysis of the other compounds occurs but they were not toxic in our assay. Ring-methylated phenoxyethers were oxidized relatively slowly and were non-toxic. Fluorine-substituted phenoxyethers were oxidized slightly more rapidly and exhibited clear toxicity in our system. Sesamol was oxidized to a black

  7. Heterologous expression of tyrosinase recapitulates the misprocessing and mistrafficking in oculocutaneous albinism type 2: effects of altering intracellular pH and pink-eyed dilution gene expression.

    PubMed

    Ni-Komatsu, Li; Orlow, Seth J

    2006-03-01

    The processing and trafficking of tyrosinase, a melanosomal protein essential for pigmentation, was investigated in a human epithelial 293 cell line that stably expresses the protein. The effects of the pink-eyed dilution (p) gene product, in which mutations result in oculocutaneous albinism type 2 (OCA2), on the processing and trafficking of tyrosinase in this cell line were studied. The majority of tyrosinase was retained in the endoplasmic reticulum-Golgi intermediate compartment and the early Golgi compartment in the 293 cells expressing the protein. Coexpression of p could partially correct the mistrafficking of tyrosinase in 293 cells. Tyrosinase was targeted to the late endosomal and lysosomal compartments after treatment of the cells with compounds that correct the tyrosinase mistrafficking in albino melanocytes, most likely through altering intracellular pH, while the substrate tyrosine had no effect on the processing of tyrosinase. Remarkably, this heterologous expression system recapitulates the defective processing and mistrafficking of tyrosinase observed in OCA2 albino melanocytes and certain amelanotic melanoma cells. Coexpression of other melanosomal proteins in this heterologous system may further aid our understanding of the details of normal and pathologic processing of melanosomal proteins.

  8. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.

    PubMed

    Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-07-25

    Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.

  9. A novel melanin inhibitor: hydroperoxy traxastane-type triterpene from flowers of Arnica montana.

    PubMed

    Maeda, Kazuhisa; Naitou, Tomoko; Umishio, Kenichi; Fukuhara, Tadao; Motoyama, Akira

    2007-05-01

    We isolated a novel inhibitor of melanin biosynthesis from the flowers of Arnica montana L. (Compositae), and identified it as a traxastane-type triterpene (3beta,16beta-dihydroxy-21alpha-hydroperoxy-20(30)-taraxastene) [1] by means of 1D or 2D-NMR and liquid chromatography/high-resolution mass spectrometry (LC-HR-MS). Compound [1] at the concentration of 0.53 muM completely inhibited melanin accumulation in cultured B16 melanoma cells. It is one of the most potent among known plant inhibitors of melanin biosynthesis in cultured cells, being 50 times more potent than 4-methoxyphenol, which is used as an anti-pigmentation agent. Its mechanism of action is considered to involve inhibition of transcriptional factor MITF-M (melanocyte-type isoform of microphthalmia-associated transcription factor), which would lead to a decrease of tyrosinase and related genes. We confirmed that compound [1] decreased the protein levels of tyrosinase and its related proteins in B16 melanoma cells. Further study revealed that a similar hydroperoxy triterpene also suppressed the melanin pigment accumulation of B16 melanoma cells. These results indicate that the hydroperoxy group may play an important role in the suppression of the melanin accumulation by compound [1].

  10. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.

    PubMed

    Kwon, Ho Joon; Lee, Yunki; Phuong, Le Thi; Seon, Gyeung Mi; Kim, Eunsuk; Park, Jong Chul; Yoon, Hyunjin; Park, Ki Dong

    2017-10-01

    Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on

  11. Mutations of the tyrosinase gene in patients with oculocutaneous albinism from various ethnic groups in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershoni-Baruch, R.; Rosenmann, A.; Droetto, S.

    1994-04-01

    The authors have analyzed the tyrosinase (TYR) gene in 38 unrelated patients with oculocutaneous albinism (OCA), derived from several different ethnic groups of the diverse population of Israel. They detected TYR gene mutations in 23 of the 34 patients with apparent type I (i.e., tyrosinase-deficient) OCA and in none of the patients with other clinical forms of albinism. Among Moroccan Jews with type IA (i.e., tyrosinase-negative) OCA, they detected a highly predominant mutant allele containing a missense substitution, Gly47Asp (G47D). This mutation occurs on the same haplotype as in patients from the Canary Islands and Puerto Rico, suggesting that themore » G47D mutation in these ethnically distinct populations may stem from a common origin. 28 refs., 1 fig., 2 tabs.« less

  12. Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase.

    PubMed

    Muñoz-Muñoz, Jose Luis; Garcia-Molina, Francisco; Garcia-Ruiz, Pedro Antonio; Varon, Ramon; Tudela, Jose; Rodriguez-Lopez, Jose N; Garcia-Canovas, Francisco

    2011-12-01

    The kinetics of tyrosinase acting on o-aminophenols and aromatic amines as substrates was studied. The catalytic constants of aromatic monoamines and o-diamines were both low, these results are consistent with our previous mechanism in which the slow step is the transfer of a proton by a hydroxyl to the peroxide in oxy-tyrosinase (Fenoll et al., Biochem. J. 380 (2004) 643-650). In the case of o-aminophenols, the hydroxyl group indirectly cooperates in the transfer of the proton and consequently the catalytic constants in the action of tyrosinase on these compounds are higher. In the case of aromatic monoamines, the Michaelis constants are of the same order of magnitude than for monophenols, which suggests that the monophenols bind better (higher binding constant) to the enzyme to facilitate the π-π interactions between the aromatic ring and a possible histidine of the active site. In the case of aromatic o-diamines, both the catalytic and Michaelis constants are low, the values of the catalytic constants being lower than those of the corresponding o-diphenols. The values of the Michaelis constants of the aromatic o-diamines are slightly lower than those of their corresponding o-diphenols, confirming that the aromatic o-diamines bind less well (lower binding constant) to the enzyme. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Pyocyanin as anti-tyrosinase and anti tinea corporis: A novel treatment study.

    PubMed

    El-Zawawy, Nessma A; Ali, Sameh S

    2016-11-01

    The aim of this study was to evaluate the efficiency of pyocyanin pigment as a novel compound active against tyrosinase with its depigmentation efficiency for combating Trichophyton rubrum which could be a major causative agent of tinea corporis. Fifty swabs of fungal tinea corporis infections were collected and identified. Five MDRPA isolates were tested for their levels of pyocyanin production. The purified extracted pyocyanin was characterized by UV spectrum and FT-IR analysis. Pyocyanin activity against tyrosinase was determined by dopachrome micro-plate. In addition, the antidermatophytic activity of pyocyanin against T. rubrum was detected by radial growth technique. In vivo novel trial was conducted to evaluate the efficiency and safety of pyocyanin as an alternative natural therapeutic compound against T. rubrum causing tinea corporis. Purified pyocyanin showed highly significant inhibitory activity against tyrosinase and T. rubrum. In vivo topical treatments with pyocyanin ointment revealed the efficiency of pyocyanin (MIC 2000 μg/ml) to cure tinea corporis compared to fluconazole, which showed a partial curing at a higher concentration (MIC 3500 μg/ml) after two weeks of treatment. In addition, the results revealed complete healing and disappear of hyperpigmentation by testing the safety of pyocyanin ointment and its histopathological efficiency in the skin treatment without any significant toxic effect. Pyocyanin pigment could be a promising anti-tyrosinase and a new active compound against T. rubrum, which could be a major causative agent of tinea corporis. In fact, if pyocyanin secondary metabolite is going to be used in practical medication, it will support the continuous demand of novel antimycotic natural agents against troublesome fungal infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Oxidation of monohydric phenol substrates by tyrosinase: effect of dithiothreitol on kinetics.

    PubMed

    Naish-Byfield, S; Cooksey, C J; Riley, P A

    1994-11-15

    The effect of thiol compounds on the monophenolase activity of tyrosinase was investigated using 4-hydroxyanisole as the substrate and dithiothreitol (DTT) as the model thiol compound. We have demonstrated three actions of DTT on tyrosinase-catalysed reactions: (1) direct reduction of the copper at the active site of the enzyme; (2) generation of secondary, oxidizable species by adduct formation with the o-quinone reaction product, 4-MOB, which leads to an increase in the total oxygen utilization by the reaction system; and (3) reversible inhibition of the enzyme. We confirm our previous observation that, at approx. 10 mol of DTT/mol of enzyme, the lag phase associated with monohydric phenol oxidation by tyrosinase is abolished. We suggest that this is due to reduction of the copper at the active site of the enzyme by DTT, since (a) reduction of active-site copper in situ by DTT was demonstrated by [Cu(I)]2-carbon monoxide complex formation and (b) abolition of the lag at low DTT concentration occurs without effect on the maximum rate of reaction or on the total amount of oxygen utilized. At concentrations of DTT above that required to abolish the lag, we found that the initial velocity of the reaction increased with increasing DTT, with a concomitant increase in the total oxygen utilization. This is due to the formation of DTT-4-methoxy-o-benzoquinone (4-MOB) adducts which provide additional dihydric phenol substrate either directly or by reducing nascent 4-MOB. We present n.m.r. evidence for the formation of mono- and di-aromatic DTT adducts with 4-MOB, consistent with a suggested reoxidation scheme in the presence of tyrosinase. Inhibition of the enzyme at concentrations of DTT above 300 pmol/unit of enzyme was released on exhaustion of DTT by adduct formation with 4-MOB as it was generated.

  15. Coumestrol Down-Regulates Melanin Production in Melan-a Murine Melanocytes through Degradation of Tyrosinase.

    PubMed

    Hwang, Jeong Ah; Park, Nok Hyun; Na, Yong Joo; Lee, Hae Kwang; Lee, John Hwan; Kim, Yong Jin; Lee, Chang Seok

    2017-01-01

    Pigmentation reflects skin darkening caused by melanin production, but excessive melanin synthesis may cause problems, such as melasma, solar lentigo, dark spots, and freckles. Considerable effort has been devoted to alleviating these undesired symptoms through the development of safe and effective depigmenting agents. Coumestrol, a plant-derived natural isoflavone with an estrogen-like structure and actions, is known to have anti-aging ability, but its potential depigmenting efficacy has not been evaluated. In the present study, we investigated the effects of coumestrol on melanin synthesis in normal melan-a murine melanocytes. Coumestrol significantly reduced melanin synthesis in a concentration-dependent manner up to a concentration of 25 µM without causing cytotoxicity. It also brightened tissue in an artificial skin model (MelanoDerm) that incorporates both human keratinocytes and melanocytes. Interestingly, although coumestrol did not inhibit tyrosinase activity or transcript level in melan-a cells, it clearly decreased the expression level of tyrosinase protein at a concentration of 25 µM. This coumestrol-induced reduction in tyrosinase protein levels was prevented by pretreatment with the proteasome inhibitor MG-132 or the lysosomal proteolysis inhibitor chloroquine. Collectively, our findings indicate that coumestrol exerts an inhibitory effect on melanin synthesis in melan-a cells, at least in part, through degradation of tyrosinase. These findings suggest that coumestrol is a good candidate for use in depigmentary reagents from a cosmetic and clinical perspective.

  16. Designing Tyrosinase siRNAs by Multiple Prediction Algorithms and Evaluation of Their Anti-Melanogenic Effects

    PubMed Central

    Kwon, Ok-Seon; Kwon, Soo-Jung; Kim, Jin Sang; Lee, Gunbong; Maeng, Han-Joo; Lee, Jeongmi; Hwang, Gwi Seo; Cha, Hyuk-Jin; Chun, Kwang-Hoon

    2018-01-01

    Melanin is a pigment produced from tyrosine in melanocytes. Although melanin has a protective role against UVB radiation-induced damage, it is also associated with the development of melanoma and darker skin tone. Tyrosinase is a key enzyme in melanin synthesis, which regulates the rate-limiting step during conversion of tyrosine into DOPA and dopaquinone. To develop effective RNA interference therapeutics, we designed a melanin siRNA pool by applying multiple prediction programs to reduce human tyrosinase levels. First, 272 siRNAs passed the target accessibility evaluation using the RNAxs program. Then we selected 34 siRNA sequences with ΔG ≥−34.6 kcal/mol, i-Score value ≥65, and siRNA scales score ≤30. siRNAs were designed as 19-bp RNA duplexes with an asymmetric 3′ overhang at the 3′ end of the antisense strand. We tested if these siRNAs effectively reduced tyrosinase gene expression using qRT-PCR and found that 17 siRNA sequences were more effective than commercially available siRNA. Three siRNAs further tested showed an effective visual color change in MNT-1 human cells without cytotoxic effects, indicating these sequences are anti-melanogenic. Our study revealed that human tyrosinase siRNAs could be efficiently designed using multiple prediction algorithms. PMID:29223142

  17. Identification of geranic acid, a tyrosinase inhibitor in lemongrass (Cymbopogon citratus).

    PubMed

    Masuda, Toshiya; Odaka, Yuka; Ogawa, Natsuko; Nakamoto, Katsuo; Kuninaga, Hideki

    2008-01-23

    Lemongrass is a popular Asian herb having a lemon-like flavor. Very recently, potent tyrosinase inhibitory activity has been found in lemongrass in addition to various biological activities reported in the literature. The aim of the present study is to identify the active compounds in the lemongrass. An assay-guided purification revealed that one of the active substances was geranic acid. Geranic acid has two stereoisomers, which are responsible for the trans and cis geometry on the conjugated double bond. Both isomers are present in the active ethyl acetate-soluble extract of the lemongrass, and their IC50 values were calculated to be 0.14 and 2.3 mM, respectively. The structure requirement of geranic acid for the potent tyrosinase inhibitory activity was investigated using geranic acid-related compounds.

  18. Tangeretin triggers melanogenesis through the activation of melanogenic signaling proteins and sustained extracellular signal- regulated kinase in B16/F10 murine melanoma cells.

    PubMed

    Yoon, Hoon Seok; Ko, Hee-Chul; Kim, Sang Suk; Park, Kyung Jin; An, Hyun Joo; Choi, Young Hun; Kim, Se-Jae; Lee, Nam-Ho; Hyun, Chang-Gu

    2015-03-01

    In order to test the effectiveness of tangeretin at ameliorating melanoma and melanoma-associated depigmentation, western blotting was used to assess the melanin content of treated melanoma cells. Tangeretin, a 4',5,6,7,8-pentamethoxyflavone, was found to trigger intracellular melanin production in a concentration-dependent manner in B16/F10 murine melanoma cells. Melanin content increased 1.74-fold in response to treatment with 25 μM of tangeretin, compared to that in non-treated cells. Examination of melanogenic protein expression showed that tyrosinase, tyrosinase-related protein (TRP)-1, and extracellular signal-regulated kinase (ERK) 1/2 levels increased in a dose-dependent manner. Furthermore, the expression of cyclic adenosine monophosphate response element binding protein (CREB) and microphthalmia transcription factor (MITF) was increased by tangeretin in 1 h and 4 h, respectively. Tangeretin- upregulated melanogenesis was suppressed by ERK 1/2 inhibitor and not by ERK1 inhibitor. These results suggest that tangeretin has therapeutic potential for melanoma and melanoma-associated depigmentation because it can induce hyperpigmentation through the activation of melanogenic signaling proteins and initiation of sustained ERK2 expression.

  19. A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells.

    PubMed

    Takahashi, Makoto; Takara, Kensaku; Toyozato, Tomonao; Wada, Koji

    2012-01-01

    The methanol extract of Morus australis (shimaguwa) acts as a whitening agent due to the inhibition of tyrosinase activity. In order to explore the mechanism(s) of the whitening action, constituents of the 95% methanol extract from the dried stems of shimaguwa were isolated and their skin-whitening capacity was examined. Bioassay-guided fractionation of the methanol soluble extract of shimaguwa led to the isolation of 2, 4, 2', 4'-hydroxycalcone (chalcone 1) and three analogues of chalcone 1 with 3'-substituted resorcinol moieties (chalcones 2-4). Chalcone derivative 4 proved to be a novel compound and was fully characterized. Chalcones 1-4 were evaluated for inhibition activity on mushroom tyrosinase using L-tyrosine as the substrate. The parent chalcone 1 was a highly effective inhibitor of tyrosinase activity (IC₅₀ = 0.21 μM) compared to arbutin (IC₅₀ = 164 μM). Compared to chalcone 1, chalcones 2 and 3, which possess 3'-substituted isoprenyl or bulky 2-benzoylbiphenyl, showed significantly decreased tyrosinase activity, while chalcone 4, possessing 3'-substituted 2-hydroxy-1-pentene group, showed slightly increased activity.The effects of chalcones 1-4 on melanin synthesis, without affecting cell growth, were assayed in melanin-producing B16 murine melanoma cells. Chalcone 3 significantly reduced cell viability before reaching the IC₅₀ value for melanin synthesis. In contrast, the inhibitory effects of chalcones 1, 2 and 4 were more than 100-fold greater than that of arbutin, with little or no cytotoxicity. More significantly, chalcone 2, which exhibited less tyrosinase inhibitory activity compared to the parent chalcone 1, showed the highest inhibition of melanin synthesis in B16 cells among the chalcones tested. Accordingly, chalcones 1 and 2, and the novel chalcone 4 might be the active components responsible for the whitening ability of shimaguwa. Moreover, whitening ability was not exclusively due to tyrosinase inhibition.

  20. Composite electrochemical biosensors: a comparison of three different electrode matrices for the construction of amperometric tyrosinase biosensors.

    PubMed

    Serra, B; Jiménez, S; Mena, M L; Reviejo, A J; Pingarrón, J M

    2002-03-01

    A comparison of the behaviour of three different rigid composite matrices for the construction of amperometric tyrosinase biosensors, which are widely used for the detection of phenolic compounds, is reported. The composite electrode matrices were, graphite-Teflon; reticulated vitreous carbon (RVC)-epoxy resin; and graphite-ethylene/propylene/diene (EPD) terpolymer. After optimization of the experimental conditions, different aspects regarding the stability of the three composite tyrosinase electrode designs were considered and compared. A better reproducibility of the amperometric responses was found with the graphite-EPD electrodes, whereas a longer useful lifetime was observed for the graphite-Teflon electrodes. The kinetic parameters of the tyrosinase reaction were calculated for eight different phenolic compounds, as well as their corresponding calibration plots. The general trend in sensitivity was graphite-EPD>graphite-Teflon>RVC-epoxy resin. A correlation between sensitivity and the catalytic efficiency of the enzyme reaction for each phenolic substrate was found. Furthermore, differences in the sensitivity order for the phenolic compounds were observed among the three biocomposite electrodes, which suggests that the nature of the electrode matrix influences the interactions in the tyrosinase catalytic cycle.

  1. SCREEN-PRINTED TYROSINASE-CONTAINING ELECTRODES FOR THE BIOSENSING OF ENZYME INHIBITORS

    EPA Science Inventory

    Disposal amperometric inhibition biosensors have been microfabricated by screen printing a tyrosinase-containing carbon ink. The decrease in the substrate (catechol) steady-state current, caused by the addition of various pesticides and herbicides, offers convenient quantitation ...

  2. TLC-bioautographic evaluation of in vitro anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil.

    PubMed

    Misra, Biswapriya B; Dey, Satyahari

    2013-02-01

    Sandalwood oil, rich in sesquiterpenoid alcohols, has been used in traditional medicinal systems as a relaxant and coolant. Besides, sandalwood oil is used as an ingredient in numerous skin fairness enhancing cosmetics. However, there is no available information on biological activities that relate to the above applications. Hence, the anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil were probed by both TLC-bioautographic and colorimetric methods. Results obtained from colorimetric assays indicated that sandalwood oil is a potent inhibitor of tyrosinase (IC50 = 171 microg mL(-1)) and cholinesterases (IC50 = 4.8-58 microg mL(-1)), in comparison with the positive controls used in the assays, kojic acid and physostigmine, respectively. The TLC-bioautographic assays indicated that alpha-santalol, the major constituent of the oil, is a strong inhibitor of both tyrosinase and cholinesterase. These in vitro results indicate that there is a great potential of this essential oil for use in the treatment of Alzheimer's disease, as well as in skin-care.

  3. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    PubMed Central

    Florescu, Monica; David, Melinda

    2017-01-01

    A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA). For increased selectivity, gold electrodes were previously modified with cobalt (II)-porphyrin (CoP) film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr) was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA), with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%), and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum. PMID:28590453

  4. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency.

    PubMed

    Reish, O; Townsend, D; Berry, S A; Tsai, M Y; King, R A

    1995-07-01

    Deficiency of cystathionine beta-synthase (CBS) is a genetic disorder of transsulfuration resulting in elevated plasma homocyst(e)ine and methionine and decreased cysteine. Affected patients have multisystem involvement, which may include light skin and hair. Reversible hypopigmentation in treated homocystinuric patients has been infrequently reported, and the mechanism is undefined. Two CBS-deficient homocystinuric patients manifested darkening of their hypopigmented hair following treatment that decreased plasma homocyst(e)ine. We hypothesized that homocyst(e)ine inhibits tyrosinase, the major pigment enzyme. The activity of tyrosinase extracted from pigmented human melanoma cells (MNT-1) that were grown in the presence of homocysteine was reduced in comparison to that extracted from cells grown without homocysteine. Copper sulfate restored homocyst(e)ine-inhibited tyrosinase activity when added to the culture cell media at a proportion of 1.25 mol of copper sulfate per 1 mol of DL-homocysteine. Holo-tyrosinase activity was inhibited by adding DL-homocysteine to the assay reaction mixture, and the addition of copper sulfate to the reaction mixture prevented this inhibition. Other tested compounds, L-cystine and betaine did not affect tyrosinase activity. Our data suggest that reversible hypopigmentation in homocystinuria is the result of tyrosinase inhibition by homocyst(e)ine and that the probable mechanism of this inhibition is the interaction of homocyst(e)ine with copper at the active site of tyrosinase.

  5. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency.

    PubMed Central

    Reish, O; Townsend, D; Berry, S A; Tsai, M Y; King, R A

    1995-01-01

    Deficiency of cystathionine beta-synthase (CBS) is a genetic disorder of transsulfuration resulting in elevated plasma homocyst(e)ine and methionine and decreased cysteine. Affected patients have multisystem involvement, which may include light skin and hair. Reversible hypopigmentation in treated homocystinuric patients has been infrequently reported, and the mechanism is undefined. Two CBS-deficient homocystinuric patients manifested darkening of their hypopigmented hair following treatment that decreased plasma homocyst(e)ine. We hypothesized that homocyst(e)ine inhibits tyrosinase, the major pigment enzyme. The activity of tyrosinase extracted from pigmented human melanoma cells (MNT-1) that were grown in the presence of homocysteine was reduced in comparison to that extracted from cells grown without homocysteine. Copper sulfate restored homocyst(e)ine-inhibited tyrosinase activity when added to the culture cell media at a proportion of 1.25 mol of copper sulfate per 1 mol of DL-homocysteine. Holo-tyrosinase activity was inhibited by adding DL-homocysteine to the assay reaction mixture, and the addition of copper sulfate to the reaction mixture prevented this inhibition. Other tested compounds, L-cystine and betaine did not affect tyrosinase activity. Our data suggest that reversible hypopigmentation in homocystinuria is the result of tyrosinase inhibition by homocyst(e)ine and that the probable mechanism of this inhibition is the interaction of homocyst(e)ine with copper at the active site of tyrosinase. Images Figure 1 PMID:7611281

  6. Biological activity and molecular docking studies of curcumin-related α,β-unsaturated carbonyl-based synthetic compounds as anticancer agents and mushroom tyrosinase inhibitors.

    PubMed

    Bukhari, Syed Nasir Abbas; Jantan, Ibrahim; Unsal Tan, Oya; Sher, Muhammad; Naeem-Ul-Hassan, M; Qin, Hua-Li

    2014-06-18

    Hyperpigmentation in human skin and enzymatic browning in fruits, which are caused by tyrosinase enzyme, are not desirable. Investigations in the discovery of tyrosinase enzyme inhibitors and search for improved cytotoxic agents continue to be an important line in drug discovery and development. In present work, a new series of 30 compounds bearing α,β-unsaturated carbonyl moiety was designed and synthesized following curcumin as model. All compounds were evaluated for their effects on human cancer cell lines and mushroom tyrosinase enzyme. Moreover, the structure-activity relationships of these compounds are also explained. Molecular modeling studies of these new compounds were carried out to explore interactions with tyrosinase enzyme. Synthetic curcumin-like compounds (2a-b) were identified as potent anticancer agents with 81-82% cytotoxicity. Five of these newly synthesized compounds (1a, 8a-b, 10a-b) emerged to be the potent inhibitors of mushroom tyrosinase, providing further insight into designing compounds useful in fields of food, health, and agriculture.

  7. Anti-Melanogenic Activity of Gagunin D, a Highly Oxygenated Diterpenoid from the Marine Sponge Phorbas sp., via Modulating Tyrosinase Expression and Degradation

    PubMed Central

    Lee, Ho Yeon; Jang, Eun Jeong; Bae, Song Yi; Jeon, Ju-eun; Park, Hyen Joo; Shin, Jongheon; Lee, Sang Kook

    2016-01-01

    Tyrosinase is the rate-limiting enzyme critical for melanin synthesis and controls pigmentation in the skin. The inhibition of tyrosinase is currently the most common approach for the development of skin-whitening cosmetics. Gagunin D (GD), a highly oxygenated diterpenoid isolated from the marine sponge Phorbas sp., has exhibited cytotoxicity toward human leukemia cells. However, the effect of GD on normal cells and the molecular mechanisms remain to be elucidated. In the present study, we identified for the first time the anti-melanogenic activity of GD and its precise underlying mechanisms in mouse melan-a cells. GD significantly inhibited melanin synthesis in the melan-a cells and a reconstructed human skin model. Further analysis revealed that GD suppressed the expression of tyrosinase and increased the rate of tyrosinase degradation. GD also inhibited tyrosinase enzymatic activity. In addition, GD effectively suppressed the expression of proteins associated with melanosome transfer. These findings suggest that GD is a potential candidate for cosmetic formulations due to its multi-functional properties. PMID:27869664

  8. Amperometric detection of catechol using tyrosinase modified electrodes enhanced by the layer-by-layer assembly of gold nanocubes and polyelectrolytes.

    PubMed

    Karim, Md Nurul; Lee, Ji Eun; Lee, Hye Jin

    2014-11-15

    A novel amperometric biosensor for catechol was developed using the layer-by-layer (LbL) self-assembly of positively charged hexadecyltrimethylammonium stabilized gold nanocubes (AuNCs), negatively charged poly(sodium 4-styrenesulfonate) and tyrosinase on a screen printed carbon electrode (SPCE). A carboxylic acid terminated alkanethiol assembled on electrochemically deposited Au nanoparticles on a SPCE was used as a platform for LbL assembly. Each SPCE sensor surface was terminated with tyrosinase and the electrocatalytic response due to the tyrosinase reaction with catechol was measured using cyclic voltammetry and square wave voltammetry (SWV). The effect of introducing AuNCs into the LbL assembly to further enhance the catechol detection performance was then investigated by comparing the SWV results to those from biosensors created using both the tyrosinase modified LbL assembly in the absence of NCs and the covalent attachment of tyrosinase. A wide dynamic range from 10nM to 80 µM of catechol with an excellent sensitivity of 13.72 A/M and a detection limit of 0.4 nM were both achieved alongside a good selectivity and reproducibility for the AuNC-modified electrodes. As a demonstration, the optimized biosensor design was applied to determine catechol concentrations in tea samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. (Z)-5-(2,4-Dihydroxybenzylidene)thiazolidine-2,4-dione Prevents UVB-Induced Melanogenesis and Wrinkle Formation through Suppressing Oxidative Stress in HRM-2 Hairless Mice

    PubMed Central

    Lee, Bonggi; Moon, Kyoung Mi; Kim, Seong Jin; Kim, So Hee; Kim, Dae Hyun; An, Hye Jin; Jeong, Ji Won; Kim, Ye Ra; Son, Sujin; Kim, Min Jo; Chung, Ki Wung; Lee, Eun Kyeong; Chun, Pusoon; Ha, Young Mi; Kim, Min-Sun; Mo, Sang Hyun; Moon, Hyung Ryong; Chung, Hae Young

    2016-01-01

    Background. Uncontrolled melanogenesis and wrinkle formation are an indication of photoaging. Our previous studies demonstrated that (Z)-5-(2,4-dihydroxybenzylidene)thiazolidine-2,4-dione (MHY498) inhibited tyrosinase activity and melanogenesis in vitro. Objective. To examine in vivo effects of MHY498 as an antiaging compound on UVB-induced melanogenesis and wrinkle formation, we topically applied MHY498 on dorsal skin of HRM-2 hairless mice. Methods. Using histological analysis, we evaluated effects of MHY498 on melanogenesis and wrinkle formation after UVB exposure. In addition, related molecular signaling pathways were examined using western blotting, fluorometric assay, and enzyme-linked immunosorbent assay. Results. MHY498 suppressed UVB-induced melanogenesis by inhibiting phosphorylation of CREB and translocation of MITF protein into the nucleus, which are key factors for tyrosinase expression. Consistently, tyrosinase protein levels were notably reduced in the dorsal skin of the hairless mice by MHY498 treatment. Furthermore, MHY498 inhibited UVB-induced wrinkle formation and collagen fiber destruction by increasing type 1 procollagen concentration and decreasing protein expression levels of MMPs, which play an essential role in collagen fiber degradation. As a mechanism, MHY498 notably ameliorated UVB-induced oxidative stress and NF-κB activation in the dermal skin of the hairless mice. Conclusion. Our study suggests that MHY498 can be used as a therapeutic or cosmetic agent for preventing uncontrolled melanogenesis and wrinkle formation. PMID:27242917

  10. Microplate based optical biosensor for L-Dopa using tyrosinase from Amorphophallus campanulatus.

    PubMed

    Saini, Amardeep Singh; Kumar, Jitendra; Melo, Jose Savio

    2014-11-07

    Developing a biosensor which is capable of simultaneously monitoring l-Dopa levels in multiple samples besides requiring small reaction volume is of great value. The present study describes the detection of l-Dopa using tyrosinase enzyme extracted from Amorphophallus campanulatus and immobilized on the surface of the microplate wells. Among the different approaches used for immobilizing tyrosinase onto the microplate wells, glutaraldehyde treatment was found to be most effective. Besides enzyme activity, ESEM-EDS (environmental scanning electron microscope-energy dispersive system) and Atomic Force Microscopy (AFM) were also carried out to confirm the immobilization of tyrosinase enzyme onto the microplate well surface. This immobilized biocomponent was then integrated with an optical transducer for l-Dopa detection and it showed good reproducibility. The sensing property of the system was studied by measuring the initial rate of dopachrome formation at 475 nm. The calibration plot gave a linear range of detection from 10-1000 μM and the detection limit was calculated to be 3 μM. The immobilized biocomponent was stable for 41 days and was reused up to nine times. Spiked samples (blood plasma) were also analyzed using this biocomponent. This microplate based biosensor thus provides a convenient system for detection of multiple samples in a single run. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Variation in Phenolics, Flavanoids, Antioxidant and Tyrosinase Inhibitory Activity of Peach Blossoms at Different Developmental Stages.

    PubMed

    Liu, Jie-Chao; Jiao, Zhong-Gao; Yang, Wen-Bo; Zhang, Chun-Ling; Liu, Hui; Lv, Zhen-Zhen

    2015-11-18

    Peach blossoms were harvested and classified into six developmental stages: (I) bud emerging stage; (II) middle bud stage; (III) large bud stage; (IV) initial-flowering stage; (V) full-flowering stage; and (VI) end-flowering stage. The contents of total phenolics, flavanoids, individual phenolic compounds as well as antioxidant and tyrosinase inhibitory activity of peach blossoms at different developmental stages were investigated. The total phenolic contents varied from 149.80 to 74.80 mg chlorogenic acid equivalents/g dry weight (DW), and the total flavanoid contents ranged from 93.03 to 44.06 mg rutin equivalents/g DW. Both the contents of total phenolics and flavanoids decreased during blossom development. Chlorogenic acid was the predominant component, accounting for 62.08%-71.09% of the total amount of identified phenolic compounds in peach blossom. The antioxidant capacities determined by different assays and tyrosinase inhibitory activity also showed descending patterns during blossom development. Significant correlations were observed between antioxidant capacities with contents of total phenolics and total flavanoids as well as chlorogenic acid, cinnamic acid and kaempferol-3-O-galactoside, while the tyrosinase inhibitory activity had lower correlations with total phenolics and total flavanoids as well as chlorogenic acid, quercetin-3-O-rhamnoside, kaempferol-3-O-galactoside and cinnamic acid. The antioxidant activities of peach blossom seemed to be more dependent on the phenolic compounds than tyrosinase inhibitory activity.

  12. A Novel Pathogenic Variant in the MITF Gene Segregating with a Unique Spectrum of Ocular Findings in an Extended Iranian Waardenburg Syndrome Kindred

    PubMed Central

    Jalilian, Nazanin; Tabatabaiefar, Mohammad A.; Bahrami, Tayyeb; Karbasi, Golaleh; Bahramian, Mohammad H.; Salimpoor, Abdolrahman; Noori-Daloii, Mohammad R.

    2017-01-01

    Waardenburg syndrome (WS) is a rare genetic disorder characterized by abnormal pigmentation of the hair, skin, and iris as well as sensorineural hearing loss. WS is subdivided into 4 major types (WS1–4), where WS2 is characterized by the absence of dystopia canthorum. This study was launched to investigate clinical and molecular characteristics of WS in an extended Iranian WS2 family. A comprehensive clinical investigation was performed. Peripheral blood samples were collected and genomic DNA was extracted. Affected members of the family were studied for possible mutations within the SOX10, MITF, and SNAI2 genes. Six WS2 individuals affected from a large Iranian WS2 kindred were enrolled. All affected members carried the novel substitution c.877C>T at exon 9 in the MITF gene, which resulted in p.Arg293* at the protein level. None of the healthy members and also of 50 ethnically matched controls had this variant. In addition, a spectrum of unique ocular findings, including nystagmus, chorioretinal degeneration, optic disc hypoplasia, astigmatism, and myopia, was segregated with the mutant allele in the pedigree. Our data provide insight into the genotypic and phenotypic spectrum of WS2 in an Iranian family and could further expand the spectrum of MITF mutations and have implications for genetic counseling on WS in Iran. PMID:28690485

  13. A Novel Pathogenic Variant in the MITF Gene Segregating with a Unique Spectrum of Ocular Findings in an Extended Iranian Waardenburg Syndrome Kindred.

    PubMed

    Jalilian, Nazanin; Tabatabaiefar, Mohammad A; Bahrami, Tayyeb; Karbasi, Golaleh; Bahramian, Mohammad H; Salimpoor, Abdolrahman; Noori-Daloii, Mohammad R

    2017-06-01

    Waardenburg syndrome (WS) is a rare genetic disorder characterized by abnormal pigmentation of the hair, skin, and iris as well as sensorineural hearing loss. WS is subdivided into 4 major types (WS1-4), where WS2 is characterized by the absence of dystopia canthorum. This study was launched to investigate clinical and molecular characteristics of WS in an extended Iranian WS2 family. A comprehensive clinical investigation was performed. Peripheral blood samples were collected and genomic DNA was extracted. Affected members of the family were studied for possible mutations within the SOX10 , MITF , and SNAI2 genes. Six WS2 individuals affected from a large Iranian WS2 kindred were enrolled. All affected members carried the novel substitution c.877C>T at exon 9 in the MITF gene, which resulted in p.Arg293* at the protein level. None of the healthy members and also of 50 ethnically matched controls had this variant. In addition, a spectrum of unique ocular findings, including nystagmus, chorioretinal degeneration, optic disc hypoplasia, astigmatism, and myopia, was segregated with the mutant allele in the pedigree. Our data provide insight into the genotypic and phenotypic spectrum of WS2 in an Iranian family and could further expand the spectrum of MITF mutations and have implications for genetic counseling on WS in Iran.

  14. Identification of p-hydroxybenzyl alcohol, tyrosol, phloretin and its derivate phloridzin as tyrosinase substrates.

    PubMed

    Ortiz-Ruiz, Carmen Vanessa; Berna, Jose; Garcia-Molina, Maria Del Mar; Tudela, Jose; Tomas, Virginia; Garcia-Canovas, Francisco

    2015-07-01

    In recent years, the hydroxyalkylphenols p-hydroxybenzyl alcohol and tyrosol, and the compound phloretin and its derivate phloridzin have been described as inhibitors of the enzyme tyrosinase. When the monophenolase and the diphenolase activities of tyrosinase on its physiological substrates l-dopa and/or l-tyrosine are measured in the presence of these compounds, the rate of action of the enzyme decreases. These findings led to the identification of these compounds as inhibitors. However, these molecules show an unusual behavior as inhibitors of the enzyme indeed, in this study, we demonstrate that they are not true inhibitors but alternative substrates of the enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 9-cis Retinoic Acid is the ALDH1A1 Product that Stimulates Melanogenesis

    PubMed Central

    Paterson, Elyse K.; Ho, Hsiang; Kapadia, Rubina; Ganesan, Anand K.

    2013-01-01

    Aldehyde dehydrogenase 1A1 (ALDH1A1), an enzyme that catalyzes the conversion of lipid aldehydes to lipid carboxylic acids, plays pleiotropic roles in UV-radiation resistance, melanogenesis, and stem cell maintenance. In this study, a combination of RNAi and pharmacologic approaches were used to determine which ALDH1A1 substrates and products regulate melanogenesis. Initial studies revealed that neither the UV-induced lipid aldehyde 4-hydroxy-2-nonenal nor the ALDH1A1 product all-trans retinoic acid appreciably induced melanogenesis. In contrast, both the ALDH1A1 substrate 9-cis retinal and its corresponding product 9-cis retinoic acid potently induced the accumulation of MITF mRNA, Tyrosinase mRNA, and melanin. ALDH1A1 depletion inhibited the ability of 9-cis retinal but not 9-cis retinoic acid to stimulate melanogenesis, indicating that ALDH1A1 regulates melanogenesis by catalyzing the conversion of 9-cis retinal to 9-cis retinoic acid. The addition of potent ALDH1A inhibitors (cyanamide or Angeli’s salt) suppressed Tyrosinase and MITF mRNA accumulation in vitro and also melanin accumulation in skin equivalents, suggesting that 9-cis retinoids regulate melanogenesis in the intact epidermis. Taken together, these studies not only identify cyanamide as a potential novel treatment for hyperpigmentary disorders, but also identify 9-cis retinoic acid as a pigment stimulatory agent that may have clinical utility in the treatment of hypopigmentary disorders, such as vitiligo. PMID:23489423

  16. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities.

    PubMed

    Chlapanidas, Theodora; Faragò, Silvio; Lucconi, Giulia; Perteghella, Sara; Galuzzi, Marta; Mantelli, Melissa; Avanzini, Maria Antonietta; Tosca, Marta Cecilia; Marazzi, Mario; Vigo, Daniele; Torre, Maria Luisa; Faustini, Massimo

    2013-07-01

    Some biological properties of Bombyx mori sericins from twenty strains were investigated, fourteen fed with artificial diet, two with fresh mulberry leaves and four with both diets. Sericin exhibited ROS-scavenging, anti-tyrosinase and anti-elastase properties, the strain significantly influenced these properties, while diet only influenced the anti-tyrosinase activity. Sericins were clustered into 5 groups and one sericin from each group was further studied: sericins showed anti-proliferative activity on in vitro stimulated peripheral blood mononuclear cells; some strains decreased in vitro secretion of IFNγ, while no effects were observed on TNFα and IL10 release. Therefore, a mixture of sericins extracted from the most promising strains may be useful for dermatological and cosmetic use. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Tyrosinase kinetics: failure of acceleration in oxidation of ring-blocked monohydric phenol substrate.

    PubMed

    Naish-Byfield, S; Riley, P A

    1998-04-01

    When 2,5,6-trimethyl-4-hydroxyanisole is used as substrate for mushroom tyrosinase the oxidation rate is slow and the kinetics do not exhibit an initial acceleration (lag period), in contrast to the kinetics of oxidation of the parent compound, 4-hydroxyanisole. This finding is interpreted as evidence that the acceleration of oxidation of 4-hydroxyanisole is indirectly contingent on a reductive nucleophile addition to the orthoquinone product of the monohydric phenol, which is prevented by ring methylation. Such a view is consistent with the proposal that the lag-phase characteristic of the kinetics of monohydric phenol oxidation by tyrosinase is due to the activation of previously inactive enzyme by electron donation from an orthodiphenol substrate formed from the orthoquinone oxidation product.

  18. Inhibitory effect of burdock leaves on elastase and tyrosinase activity.

    PubMed

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-10-01

    Burdock ( Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30-50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the

  19. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    PubMed Central

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the

  20. Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia transcription factor.

    PubMed

    Sharkia, Israa; Hadad Erlich, Tal; Landolina, Nadine; Assayag, Miri; Motzik, Alex; Rachmin, Inbal; Kay, Gillian; Porat, Ziv; Tshori, Sagi; Berkman, Neville; Levi-Schaffer, Francesca; Razin, Ehud

    2017-07-01

    We have recently observed that oxidative phosphorylation-mediated ATP production is essential for mast cell function. Pyruvate dehydrogenase (PDH) is the main regulator of the Krebs cycle and is located upstream of the electron transport chain. However, the role of PDH in mast cell function has not been described. Microphthalmia transcription factor (MITF) regulates the development, number, and function of mast cells. Localization of MITF to the mitochondria and its interaction with mitochondrial proteins has not been explored. We sought to explore the role played by PDH in mast cell exocytosis and to determine whether MITF is localized in the mitochondria and involved in regulation of PDH activity. Experiments were performed in vitro by using human and mouse mast cells, as well as rat basophil leukemia cells, and in vivo in mice. The effect of PDH inhibition on mast cell function was examined. PDH interaction with MITF was measured before and after immunologic activation. Furthermore, mitochondrial localization of MITF and its effect on PDH activity were determined. PDH is essential for immunologically mediated degranulation of mast cells. After activation, PDH is serine dephosphorylated. In addition, for the first time, we show that MITF is partially located in the mitochondria and interacts with PDH. This interaction is dependent on the phosphorylation state of PDH. Furthermore, mitochondrial MITF regulates PDH activity. The association of mitochondrial MITF with PDH emerges as an important regulator of mast cell function. Our findings indicate that PDH could arise as a new target for the manipulation of allergic diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1.

    PubMed

    De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela

    2017-02-01

    Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Postnatal ocular expression of tyrosinase and related proteins: disruption by the pink-eyed unstable (p(un)) mutation.

    PubMed

    Chiu, E; Lamoreux, M L; Orlow, S J

    1993-09-01

    Ocular pigmentation in the mouse occurs primarily postnatally as a result of the melanization of neural crest-derived melanocytes. Using immunologic and biochemical techniques, we demonstrate that in normal mice the expression of tyrosinase and the related proteins TRP-1 and TRP-2, rises during the first week of life, remains elevated for a week, and then steadily declines to low levels by adulthood. Sucrose gradient density centrifugation demonstrates that tyrosinase, TRP-1 and TRP-2 are present in high molecular weight forms in the eyes of wild-type mice. The normal time course is disrupted in mice carrying the pink-eyed unstable (p(un)) mutation at the P-locus, a model for tyrosinase-positive albinism in man. Tyrosinase and TRP-2 are present at wild-type levels in the eyes of p(un)/p(un) mice at birth, but, rather than rising, their levels rapidly decline over the first week of life. TRP-1 is almost undetectable, even at birth. High molecular weight complexes could not be detected in eyes of p(un)/p(un) mice. Our results suggest that postnatal ocular melanogenesis in the mouse presents an attractive model for the study of the orderly expression and action of the proteins involved in eumelanin synthesis, and that the p(un) mutation disrupts this temporally controlled process.

  3. Development and application of a tyrosinase-based time-temperature indicator (TTI) for determining the quality of turbot sashimi

    NASA Astrophysics Data System (ADS)

    Xu, Fengjuan; Ge, Lei; Li, Zhenxing; Lin, Hong; Mao, Xiangzhao

    2017-10-01

    Time-temperature indicators (TTIs) are convenient intuitive devices that are widely used to predict food quality. The aim of this study is to develop a new simple device which can be attached to food packages as a quality indicator for turbot sashimi. In this study, a solid TTI based on the reaction between tyrosinase and tyrosine was developed. The Arrhenius behavior of this enzymatic TTI was studied. The kinetics of the tyrosinase-based TTI was investigated in the form of color change from colorless to dark black induced by the enzymatic reaction. The mathematical formula for the color alterations as a function of time and temperature was established. The longest indication time for the developed TTI was 50 hours at 4°C. The activation energy of the tyrosinase-based TTI was 0.409 kJ mol-1. The suitability of the tyrosinase-based TTI was validated for turbot sashimi using total plate count. The feasibility of using this TTI as a quality indicator for turbot sashimi was assessed based on the activation energy and indication time. Therefore, the tyrosinasebased TTI system developed in this study could be used as an effective tool for monitoring the quality changes of turbot sashimi during the distribution and storage.

  4. Regional Fluctuation in the Functional Consequence of LINE-1 Insertion in the Mitf Gene: The Black Spotting Phenotype Arisen from the Mitfmi-bw Mouse Lacking Melanocytes.

    PubMed

    Takeda, Kazuhisa; Hozumi, Hiroki; Ohba, Koji; Yamamoto, Hiroaki; Shibahara, Shigeki

    2016-01-01

    Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided

  5. Regional Fluctuation in the Functional Consequence of LINE-1 Insertion in the Mitf Gene: The Black Spotting Phenotype Arisen from the Mitfmi-bw Mouse Lacking Melanocytes

    PubMed Central

    Yamamoto, Hiroaki; Shibahara, Shigeki

    2016-01-01

    Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided

  6. ULK1 Regulates Melanin Levels in MNT-1 Cells Independently of mTORC1

    PubMed Central

    Tooze, Sharon A.

    2013-01-01

    Melanosomes are lysosome-related organelles that serve as specialized sites of melanin synthesis and storage in melanocytes. The progression of melanosomes through the different stages of their formation requires trafficking of specific proteins and membrane constituents in a sequential manner, which is likely to deploy ubiquitous cellular machinery along with melanocyte-specific proteins. Recent evidence revealed a connection between melanogenesis and the autophagy machinery, suggesting a novel role for members of the latter in melanocytes. Here we focused on ULK1, a key autophagy protein which is negatively regulated by mTORC1, to assess its potential role in melanogenesis in MNT-1 cells. We found that ULK1 depletion causes an increase in melanin levels, suggesting an inhibitory function for this protein in melanogenesis. Furthermore, this increase was accompanied by increased transcription of MITF (microphthalmia-associated transcription factor) and tyrosinase and by elevated protein levels of tyrosinase, the rate-limiting factor in melanin biogenesis. We also provide evidence to show that ULK1 function in this context is independent of the canonical ULK1 autophagy partners, ATG13 and FIP200. Furthermore we show that regulation of melanogenesis by ULK1 is independent of mTORC1 inhibition. Our data thus provide intriguing insights regarding the involvement of the key regulatory autophagy machinery in melanogenesis. PMID:24066173

  7. ULK1 regulates melanin levels in MNT-1 cells independently of mTORC1.

    PubMed

    Kalie, Eyal; Razi, Minoo; Tooze, Sharon A

    2013-01-01

    Melanosomes are lysosome-related organelles that serve as specialized sites of melanin synthesis and storage in melanocytes. The progression of melanosomes through the different stages of their formation requires trafficking of specific proteins and membrane constituents in a sequential manner, which is likely to deploy ubiquitous cellular machinery along with melanocyte-specific proteins. Recent evidence revealed a connection between melanogenesis and the autophagy machinery, suggesting a novel role for members of the latter in melanocytes. Here we focused on ULK1, a key autophagy protein which is negatively regulated by mTORC1, to assess its potential role in melanogenesis in MNT-1 cells. We found that ULK1 depletion causes an increase in melanin levels, suggesting an inhibitory function for this protein in melanogenesis. Furthermore, this increase was accompanied by increased transcription of MITF (microphthalmia-associated transcription factor) and tyrosinase and by elevated protein levels of tyrosinase, the rate-limiting factor in melanin biogenesis. We also provide evidence to show that ULK1 function in this context is independent of the canonical ULK1 autophagy partners, ATG13 and FIP200. Furthermore we show that regulation of melanogenesis by ULK1 is independent of mTORC1 inhibition. Our data thus provide intriguing insights regarding the involvement of the key regulatory autophagy machinery in melanogenesis.

  8. Crystallization and preliminary X-ray crystallographic analysis of latent isoform PPO4 mushroom (Agaricus bisporus) tyrosinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauracher, Stephan Gerhard; Molitor, Christian; Al-Oweini, Rami

    Polyphenol oxidase 4 (PPO4) from the natural source A. bisporus was crystallized in its latent precursor form (pro-tyrosinase; Ser2–Thr565) using the 6-tungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}]·22H{sub 2}O as a crystallization additive. Tyrosinase exhibits catalytic activity for the ortho-hydroxylation of monophenols to diphenols as well as their subsequent oxidation to quinones. Owing to polymerization of these quinones, brown-coloured high-molecular-weight compounds called melanins are generated. The latent precursor form of polyphenol oxidase 4, one of the six tyrosinase isoforms from Agaricus bisporus, was purified to homogeneity and crystallized. The obtained crystals belonged to space group C121 (two molecules per asymmetric unit)more » and diffracted to 2.78 Å resolution. The protein only formed crystals under low-salt conditions using the 6-tungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}]·22H{sub 2}O as a co-crystallization agent.« less

  9. Direct immobilization of tyrosinase enzyme from natural mushrooms (Agaricus bisporus) on D-sorbitol cinnamic ester.

    PubMed

    Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio

    2006-11-10

    Mushroom tyrosinase was immobilized from an extract onto the totally cinnamoylated derivative of D-sorbitol by direct adsorption as a result of the intense hydrophobic interactions that took place. The immobilization pH value and mass of lyophilized mushrooms were important parameters that affected the immobilization efficiency, while the immobilization time and immobilization support concentration were not important in this respect. The extracted/immobilized enzyme could best be measured above pH 3.5 and the optimum measuring temperature was 55 degrees C. The apparent Michaelis constant using 4-tert-butylcatechol as substrate was 0.38+/-0.02 mM, which was lower than for the soluble enzyme from Sigma (1.41+/-0.20 mM). Immobilization stabilized the extracted enzyme against thermal inactivation and made it less susceptible to activity loss during storage. The operational stability was higher than in the case of the tyrosinase supplied by Sigma and immobilized on the same support. The results show that the use of p-nitrophenol as enzyme-inhibiting substrate during enzyme extraction and immobilization made the use of ascorbic acid unnecessary and is a suitable method for extracting and immobilizing the tyrosinase enzyme, providing good enzymatic activity and stability.

  10. Tyrosol and its analogues inhibit alpha-melanocyte-stimulating hormone induced melanogenesis.

    PubMed

    Wen, Kuo-Ching; Chang, Chih-Shiang; Chien, Yin-Chih; Wang, Hsiao-Wen; Wu, Wan-Chen; Wu, Chin-Sheng; Chiang, Hsiu-Mei

    2013-11-28

    Melanin is responsible for skin color and plays a major role in defending against harmful external factors such as ultraviolet (UV) irradiation. Tyrosinase is responsible for the critical steps of melanogenesis, including the rate-limiting step of tyrosine hydroxylation. The mechanisms of action of skin hypopigmenting agents are thought to be based on the ability of a given agent to inhibit the activity of tyrosinase and, hence, down regulate melanin synthesis. Tyrosol and its glycoside, salidroside, are active components of Rhodiola rosea, and in our preliminary study we found that Rhodiola rosea extract inhibited melanogenesis. In this study, we examined the effects of tyrosol and its analogues on melanin synthesis. We found that treatment of B16F0 cells to tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), 2-hydroxyphenylacetic acid (7), or salidroside (11) resulted in a reduction in melanin content and inhibition of tyrosinase activity as well as its expression. Tyrosol (1), 4-hydroxyphenylacetic acid (5) and 2-hydroxyphenylacetic acid (7) suppressed MC1R expression. Tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), and 2-hydroxyphenylacetic acid (7) inhibited α-MSH induced TRP-1 expression, but salidroside (11) did not. All the compounds did not affect MITF and TRP-2 expression. Furthermore, we found that the cell viability of tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), and 2-hydroxyphenylacetic acid (7) at concentrations below 4 mM and salidroside (11) at concentrations below 0.5 mM were higher than 90%. The compounds exhibited metal-coordinating interactions with copper ion in molecular docking with tyrosinase. Our results suggest that tyrosol, 4-hydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 2-hydroxyphenylacetic acid, and salidroside are potential hypopigmenting agents.

  11. Tyrosol and Its Analogues Inhibit Alpha-Melanocyte-Stimulating Hormone Induced Melanogenesis

    PubMed Central

    Wen, Kuo-Ching; Chang, Chih-Shiang; Chien, Yin-Chih; Wang, Hsiao-Wen; Wu, Wan-Chen; Wu, Chin-Sheng; Chiang, Hsiu-Mei

    2013-01-01

    Melanin is responsible for skin color and plays a major role in defending against harmful external factors such as ultraviolet (UV) irradiation. Tyrosinase is responsible for the critical steps of melanogenesis, including the rate-limiting step of tyrosine hydroxylation. The mechanisms of action of skin hypopigmenting agents are thought to be based on the ability of a given agent to inhibit the activity of tyrosinase and, hence, down regulate melanin synthesis. Tyrosol and its glycoside, salidroside, are active components of Rhodiola rosea, and in our preliminary study we found that Rhodiola rosea extract inhibited melanogenesis. In this study, we examined the effects of tyrosol and its analogues on melanin synthesis. We found that treatment of B16F0 cells to tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), 2-hydroxyphenylacetic acid (7), or salidroside (11) resulted in a reduction in melanin content and inhibition of tyrosinase activity as well as its expression. Tyrosol (1), 4-hydroxyphenylacetic acid (5) and 2-hydroxyphenylacetic acid (7) suppressed MC1R expression. Tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), and 2-hydroxyphenylacetic acid (7) inhibited α-MSH induced TRP-1 expression, but salidroside (11) did not. All the compounds did not affect MITF and TRP-2 expression. Furthermore, we found that the cell viability of tyrosol (1), 4-hydroxyphenylacetic acid (5), 3-hydroxyphenylacetic acid (6), and 2-hydroxyphenylacetic acid (7) at concentrations below 4 mM and salidroside (11) at concentrations below 0.5 mM were higher than 90%. The compounds exhibited metal-coordinating interactions with copper ion in molecular docking with tyrosinase. Our results suggest that tyrosol, 4-hydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 2-hydroxyphenylacetic acid, and salidroside are potential hypopigmenting agents. PMID:24287915

  12. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract

    PubMed Central

    2012-01-01

    Background This study evaluated, using in vitro assays, the antibacterial, antioxidant, and tyrosinase-inhibition activities of methanolic extracts from peels of seven commercially grown pomegranate cultivars. Methods Antibacterial activity was tested on Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia) using a microdilution method. Several potential antioxidant activities, including radical-scavenging ability (RSA), ferrous ion chelating (FIC) and ferric ion reducing antioxidant power (FRAP), were evaluated. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin and kojic acid as positive controls. Furthermore, phenolic contents including total flavonoid content (TFC), gallotannin content (GTC) and total anthocyanin content (TAC) were determined using colourimetric methods. HPLC-ESI/MSn analysis of phenolic composition of methanolic extracts was also performed. Results Methanolic peel extracts showed strong broad-spectrum activity against Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentrations (MIC) ranging from 0.2 to 0.78 mg/ml. At the highest concentration tested (1000 μg/ml), radical scavenging activities were significantly higher in Arakta (83.54%), Ganesh (83.56%), and Ruby (83.34%) cultivars (P< 0.05). Dose dependent FIC and FRAP activities were exhibited by all the peel extracts. All extracts also exhibited high inhibition (>50%) against monophenolase and diphenolase activities at the highest screening concentration. The most active peel extract was the Bhagwa cultivar against monophenolase and the Arakta cultivar against diphenolase with IC50 values of 3.66 μg/ml and 15.88 μg/ml, respectively. High amounts of phenolic compounds were found in peel extracts with the highest and lowest total phenolic contents of 295.5 (Ganesh) and 179.3 mg/g dry extract (Molla de Elche), respectively

  13. Mushroom Tyrosinase: A Model System to Combine Experimental Investigation of Enzyme-Catalyzed Reactions, Data Handling Using R, and Enzyme-Inhibitor Structural Studies

    ERIC Educational Resources Information Center

    Nairn, Robert; Cresswell, Will; Nairn, Jacqueline

    2015-01-01

    The activity of mushroom tyrosinase can be measured by monitoring the conversion of phenolic compounds into quinone derivatives using spectrophotometry. This article describes a series of experiments which characterize the functional properties of tyrosinase, the analysis of the resulting data using R to determine the kinetic parameters, and the…

  14. Bond-based 2D TOMOCOMD-CARDD approach for drug discovery: aiding decision-making in 'in silico' selection of new lead tyrosinase inhibitors.

    PubMed

    Marrero-Ponce, Yovani; Khan, Mahmud Tareq Hassan; Casañola-Martín, Gerardo M; Ather, Arjumand; Sultankhodzhaev, Mukhlis N; García-Domenech, Ramón; Torrens, Francisco; Rotondo, Richard

    2007-04-01

    In this paper, we present a new set of bond-level TOMOCOMD-CARDD molecular descriptors (MDs), the bond-based bilinear indices, based on a bilinear map similar to those defined in linear algebra. These novel MDs are used here in Quantitative Structure-Activity Relationship (QSAR) studies of tyrosinase inhibitors, for finding functions that discriminate between the tyrosinase inhibitor compounds and inactive ones. In total 14 models were obtained and the best two discriminant functions (Eqs. 32 and 33) shown globally good classification of 91.00% and 90.17%, respectively, in the training set. The test set had accuracies of 93.33% and 88.89% for the models 32 and 33, correspondingly. A simulated virtual screening was also carried out to prove the quality of the determined models. In a final step, the fitted models were used in the biosilico identification of new synthesized tetraketones, where a good agreement could be observed between the theoretical and experimental results. Four compounds of the novel bioactive chemicals discovered as tyrosinase inhibitors: TK10 (IC(50) = 2.09 microM), TK11 (IC(50) = 2.61 microM), TK21 (IC(50) = 2.06 microM), TK23 (IC(50) = 3.19 microM), showed more potent activity than L-mimose (IC(50) = 3.68 microM). Besides, for this study a heterogeneous database of tyrosinase inhibitors was collected, and could be a useful tool for the scientist in the domain of tyrosinase enzyme researches. The current report could help to shed some clues in the identification of new chemicals that inhibits enzyme tyrosinase, for entering in the pipeline of drug discovery development.

  15. Secretion of the Streptomyces tyrosinase is mediated through its trans-activator protein, MelC1.

    PubMed

    Leu, W M; Chen, L Y; Liaw, L L; Lee, Y H

    1992-10-05

    The tyrosinase of Streptomyces antibioticus is encoded by the second open reading frame, melC2 of the melanin operon (melC). The upstream open reading frame melC1 specifies a 146-amino acid protein with a typical NH2-terminal signal-peptide characteristic of a secretory protein. The MelC1 protein is involved in the transfer of copper ion to apotyrosinase MelC2 via binary complex formation (Lee, Y.-H. W., Chen, B.-F., Wu, S.-Y., Leu, W.-M., Lin, J.-J., Chen, C. W., and Lo, S. J. (1988) Gene (Amst.) 65, 71-81; Chen, L.-Y., Leu, W.-M., Wang, K.-T., and Lee, Y.-H.W. (1992) J. Biol. Chem. 267, 20100-20107). To investigate whether the export of tyrosinase is also dependent on MelC1, a mutational study of its signal-peptide sequence was performed. Four different mutants were obtained. Mutation at the positively charged region (mutant M-6LE, Arg6-Arg7----Leu6-Glu7) or the hydrophobic region (mutant M-16D, Val16----Asp16) led to Mel- phenotypes. These lesions caused a severe 7-10-fold reduction of the export of both the MelC1 and MelC2 proteins and a concomitant accumulation of the two proteins in the cytosolic fraction. The cell-associated tyrosinase activity in M-6LE but not in the M-16D mutant was dramatically reduced to 4% of the activity found in the wild type strain, suggesting that the basic NH2 terminus of MelC1 is also important for the trans-activation function of this protein. Nevertheless, the defects on the trans-activation and/or secretory functions of MelC1 in mutants M-6LE and M-16D are not due to the impairment of the formation of the MelC1.MelC2 complex. The translation of melanin operon genes in these two mutants also decreased. In contrast, the tyrosinase activity and the secretion of MelC2 were not affected if the mutations occurred at the putative cleavage site of the signal peptidase (e.g. mutant M-29SM, Arg29-Ala30----Ser29-Met30 or mutant 29-SMG, Arg29-Ala30-Asp31----Ser29-Med30-Gly31+ ++). Additionally, tyrosinase activity and its export were

  16. Tyrosinase Inhibitory Activities of Carissa opaca Stapf ex Haines Roots Extracts and Their Phytochemical Analysis

    PubMed Central

    Malik, Wajeeha; Ahmed, Dildar; Izhar, Sania

    2017-01-01

    Objective: Carissa opaca is a medicinal plant with rich folkloric applications. The present research was conducted to explore the tyrosinase inhibitory potential of aqueous decoction (AD) and methanolic extract (ME) of roots of C. opaca and its fractions in various solvents and their phytochemical analysis. Materials and Methods: AD of the dried powdered roots of C. opaca was prepared by boiling in water. ME was prepared by cold maceration. Its fractions were obtained in solvents of increasing polarity, i.e., hexane, chloroform, ethyl acetate, n-butanol, and water. The biomass left after extraction with methanol was boiled in water to get its decoction Biomass aqueous decoction (BAD). Tyrosinase inhibitory activities of the samples were studied according to a reported method. Chemical compounds in the samples were identified by gas chromatography-mass spectrometry (GC-MS). Results: The AD, BAD, and ME and its fractions displayed remarkable tyrosinase inhibitory activity. The IC50 of AD was 23.33 μg/mL as compared to 15.80 μg/mL of the standard arbutin and that of BAD was 21.24 μg/mL. The IC50 of ME was 34.76 μg/mL while that of hexane, chloroform, ethyl acetate, n-butanolic, and aqueous fractions was 21.0, 44.73, 43.40, 27.66, and 25.06 μg/mL, respectively. The hexane fraction was thus most potent followed by aqueous fraction. By phytochemical analysis, campesterol, stigmasterol, gamma-sitosterol, alpha-amyrin, 9,19-cyclolanostan-3-ol, 24-methylene-,(3 β)-, lupeol, lup-20(29)-en-3-one, lup-20(29)-en-3-ol, acetate,(3 β)-, 2(1H) naphthalenone, 3,5,6,7,8,8a-hexahydro-4,8a-dimethyl-6-(1-methylethenyl)-, and 2,3,3-trimethyl-2-(3-methylbuta-1,3-dienyl)-6-methylenecyclohexanone were identified in the extracts by GC-MS. Other compounds included fatty acids and their esters. Some of these compounds are being first time reported here from this plant. Conclusions: The roots extracts exhibited considerable tyrosinase inhibitory activities, alluding to a possible

  17. Resveratrol-Enriched Rice Down-Regulates Melanin Synthesis in UVB-Induced Guinea Pigs Epidermal Skin Tissue

    PubMed Central

    Lee, Taek Hwan; Seo, Jae Ok; Do, Moon Ho; Ji, Eunhee; Baek, So-Hyeon; Kim, Sun Yeou

    2014-01-01

    Synthetic compounds that are used in the clinic to regulate skin hyperpigmentation, such as arbutin, hydroquinone, and kojic acid, are only moderately effective. But, their use is limited by side effects. As part of an effort to overcome the limitations, we developed resveratrol-enriched rice (RR) using genetic engineering technique. Each of resveratrol and rice has been reported to produce anti-melanogenic effects. Therefore, we hypothesized that RR would show more anti-melanogenic effects than those of resveratrol or rice alone. Anti-melanogenic effect of RR was done by using melan-a mouse melanocytes. The depigmenting efficacy was then observed following topical application of the RR to UVB-stimulated hyperpigmented dorsal skin of guinea pigs. Treatment with RR extract resulted a 21.4 ± 0.7% decrease in tyrosinase expression at melan-a cells. Colorimetric analysis showed a significantly lower depigmenting value by day 9 following treatment with RR in UVB-irradiated guinea pigs the dorsal skin (p<0.01), indicating that RR produced a depigmentation effect. By staining with Fontana-Masson stain, we found that the RR-treated group had more effect histopathologically in epidermal melanin production than resveratrol or rice alone-treated group. RR was associated with reduction in the levels of microphthalmia-associated transcription factor (MITF), and downregulation of tyrosinase and tyrosinase-related protein (TRP-2) expression, leading to inhibit epidermal melanin production by western blot analysis. This study suggests that the resveratrol-enriched rice may be a promising candidate in regulating skin pigmentation with UVB exposure. PMID:25414774

  18. Kinetic study of the oxidation of 3-hydroxyanisole catalysed by tyrosinase.

    PubMed

    Fenoll, L G; Rodríguez-López, J N; Varón, R; García-Ruiz, P A; García-Cánovas, F; Tudela, J

    2000-02-14

    Tyrosinase hydroxylates 3-hydroxyanisole in the 4-position. The reaction product accumulates in the reaction medium with a lag time (tau) which diminishes with increasing concentrations of enzyme and lengthens with increasing concentrations of substrate, thus fulfilling all the predictions of the mechanism proposed by us for 4-hydroxyphenols. The kinetic constants obtained, kcatM = (46.87 +/- 2.06) s-1 and KmM = (5.40 +/- 0.60) mM, are different from those obtained with 4-hydroxyanisole, kcatM = (184.20 +/- 6.1) s-1 and KmM = (0.08 +/- 0.004) mM. The catalytic efficiency, kcatM/KmM is, therefore, 265.3 times greater with 4-hydroxyanisole. The possible rate-determining steps for the reaction mechanism of tyrosinase on 3- and 4-hydroxyanisole, based on the NMR spectra of both monophenols, are discussed. These possible rate-determining steps are the nucleophilic attack of hydroxyl's oxygen on the copper and the electrophilic attack of the peroxide on the aromatic ring. Both steps may be of similar magnitude, i.e. take place in the same time scale.

  19. Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine

    PubMed Central

    Apetrei, Irina Mirela; Apetrei, Constantin

    2013-01-01

    A biosensor comprising tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode has been developed. The sensitive element, ie, tyrosinase, was immobilized using a drop-and-dry method followed by cross-linking. Tyrosinase maintained high bioactivity on this nanomaterial, catalyzing the oxidation of epinephrine to epinephrine-quinone, which was electrochemically reduced (−0.07 V versus Ag/AgCl) on the biosensor surface. Under optimum conditions, the biosensor showed a linear response in the range of 10–110 μM. The limit of detection was calculated to be 2.54 μM with a correlation coefficient of 0.977. The repeatability, expressed as the relative standard deviation for five consecutive determinations of 10−5 M epinephrine solution was 3.4%. A good correlation was obtained between results obtained by the biosensor and those obtained by ultraviolet spectrophotometric methods. PMID:24348034

  20. Design, synthesis, kinetic mechanism and molecular docking studies of novel 1-pentanoyl-3-arylthioureas as inhibitors of mushroom tyrosinase and free radical scavengers.

    PubMed

    Larik, Fayaz Ali; Saeed, Aamer; Channar, Pervaiz Ali; Muqadar, Urooj; Abbas, Qamar; Hassan, Mubashir; Seo, Sung-Yum; Bolte, Michael

    2017-12-01

    A series of novel 1-pentanoyl-3-arylthioureas was designed as new mushroom tyrosinase inhibitors and free radical scavengers. The title compounds were obtained in excellent yield and characterized by FTIR, 1 H NMR, 13 C NMR and X-ray crystallography in case of compound (4a). The inhibitory effects on mushroom tyrosinase and DPPH were evaluated and it was observed that 1-Pentanoyl-3-(4-methoxyphenyl) thiourea (4f) showed tyrosinase inhibitory activity (IC 50 1.568 ± 0.01 mM) comparable to Kojic acid (IC 50 16.051 ± 1.27 mM). Interestingly compound 4f exhibited higher antioxidant potential compared to other derivatives. The docking studies of synthesized 1-Pentanoyl-3-arylthioureas analogues were also carried out against tyrosinase protein (PDBID 2ZMX) to compare the binding affinities with IC 50 values. The predicted binding affinities are in good agreement with the IC 50 values as compound (4f) showed highest binding affinity (-7.50 kcal/mol) compared to others derivatives. The kinetic mechanism analyzed by Line-weavere Burk plots exhibited that compound (4f) inhibit the enzyme inhibits the tyrosinase non-competitively to form an enzyme inhibitor complex. The inhibition constants Ki calculated from Dixon plots for compound (4f) is 1.10 μM. It was also found from kinetic analysis that derivative 4f irreversible enzyme inhibitor complex. It is proposed on the basis of our investigation that title compound (4f) may serve as lead structure for the design of more potent tyrosinase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Critical review of Ayurvedic Varṇya herbs and their tyrosinase inhibition effect

    PubMed Central

    Sharma, Khemchand; Joshi, Namrata; Goyal, Chinky

    2015-01-01

    Introduction: The aspiration for light skin (fair complexion) is becoming pronounced in a greater number of people in the present times with natural products being more in demand than their synthetic counterparts. Research in the area of skin-lightening agents is an expanding field with the knowledge being updated regularly. In Ayurveda, varṇya, raktaprasādana, tvacya are few terms specifying skin lightening with respect to its modern counterpart i.e., Tyrosinase inhibition, the most commonly reported method of skin lightening. Aim: The present review is undertaken for screening twenty herbs from Varṇya Mahākaṣāya, Lodhrādi varṇya gaṇa, Elādi varṇa prasādana gaṇa and few varṇya formulations to evaluate their probable modes of action through which the skin lightening is effected as per both Ayurveda and biomedical concepts. Materials and Methods: Critical review of herbs to show varṇya property is compiled from various Ayurvedic texts as well as from multiple articles on the internet to justify their skin lightening property on the basis of data collected. Result and Conclusion: All the twenty herbs reviewed are found to act as varṇya directly (citation as varṇya) or indirectly (alleviation of pitta and rakta) as per Ayurveda and to interfere in melanogenesis pathway through tyrosinase inhibition as per biomedicine. This shows their potential to act as good skin whitening agents. Śuṇṭhi being a part of many varṇya formulations, is the only herb among all reviewed in the present study found to exhibit tyrosinase inhibition without any Ayurvedic citation of varṇya property. PMID:26600663

  2. Structural insight with mutational impact on tyrosinase and PKC-β interaction from Homo sapiens: Molecular modeling and docking studies for melanogenesis, albinism and increased risk for melanoma.

    PubMed

    Banerjee, Arundhati; Ray, Sujay

    2016-10-30

    Human tyrosinase, is an important protein for biosynthetic pathway of melanin. It was studied to be phosphorylated and activated by protein kinase-C, β-subunit (PKC-β) through earlier experimentations with in vivo evidences. Documentation documents that mutation in two essentially vital serine residues in C-terminal end of tyrosinase leads to albinism. Due to the deficiency of protective shield like enzyme; melanin, albinos are at an increased peril for melanoma and other skin cancers. So, computational and residue-level insight including a mutational exploration with evolutionary importance into this mechanism lies obligatory for future pathological and therapeutic developments. Therefore, functional tertiary models of the relevant proteins were analyzed after satisfying their stereo-chemical features. Evolutionarily paramount residues for the activation of tyrosinase were perceived via multiple sequence alignment phenomena. Mutant-type tyrosinase protein (S98A and S102A) was thereby modeled, maintaining the wild-type proteins' functionality. Furthermore, this present comparative study discloses the variation in the stable residual participation (for mutant-type and wild-type tyrosinase-PKCβ complex). Mainly, an increased number of polar negatively charged residues from the wild-type tyrosinase participated with PKC-β, predominantly. Fascinatingly supported by evaluation of statistical significances, mutation even led to a destabilizing impact in tyrosinase accompanied by conformational switches with a helix-to-coil transition in the mutated protein. Even the allosteric sites in the protein got poorly hampered upon mutation leading to weaker tendency for binding partners to interact. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Modifying effects of carboxyl group on the interaction of recombinant S100A8/A9 complex with tyrosinase.

    PubMed

    NematiNiko, Fatemeh; Chegini, Koorosh Goodarzvand; Asghari, Hamideh; Amini, Abbas; Gheibi, Nematollah

    2017-03-01

    Tyrosinase is a determinant enzyme for modulating melanin production as its abnormal activity can result in an increased amount of melanin. Reduction of tyrosinase activity has been targeted for preventing and healing hyperpigmentation of skin, such as melanoma and age related spots. The aim of this systematic study is to investigate whether recombinant S100A8/A9 and its modified form reduce the activity of mushroom tyrosinase (MT) through changing its structure. Recombinant His-Tagged S100A8 and S100A9 are expressed in Escherichia coli BL21 (DE3) and modified using Woodward's reagent K which is a carboxyl group modifier. The structures of S100A8/A9 and its modified form are studied using fluorescence and circular dichroism spectroscopy, and the activity of MT is measured using UV-visible spectrophotometry in the presence of its substrate, L-3,4-dihydroxyphenylalanine (L-DOPA). The results show a lower stability of the modified protein when compared with its unmodified form. The interaction of S100A8/A9 with MT changes the structure and successfully reduces the activity of mushroom tyrosinase. Recombinant S100A8/A9 complex decreases MT activity which can control malignant melanoma, the most dangerous type of skin cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Modeling tyrosinase activity. Effect of ligand topology on aromatic ring hydroxylation: an overview.

    PubMed

    De, Anindita; Mandal, Sukanta; Mukherjee, Rabindranath

    2008-01-01

    Synthetic modeling of tyrosinase (o-phenol ring hydroxylation) has emerged as a novel class of successful biomimetic studies. It is a well-established fact that the reaction of dioxygen with copper(I) complexes of m-xylyl-based ligands generate putative copper-oxygen intermediate species such as side-on peroxo {CuII2(mu-O2)}2+ [in some cases bis-oxo {CuIII2(mu-O)2}2+ in equilibrium with isomeric side-on peroxo], due to oxygen activation. Electrophilic attack of such species brings about monooxygenase activity by incorporating one of the oxygens to m-xylyl ring of the ligand and the other oxygen is reduced to hydroxide ion. The goal of this review is to provide a concise overview of the present day knowledge in this field of research to emphasize the important role the designed ligands play in eliciting the desired tyrosinase-like chemistry.

  5. The etiology of oculocutaneous albinism (OCA) type II: the pink protein modulates the processing and transport of tyrosinase.

    PubMed

    Toyofuku, Kazutomo; Valencia, Julio C; Kushimoto, Tsuneto; Costin, Gertrude-E; Virador, Victoria M; Vieira, Wilfred D; Ferrans, Victor J; Hearing, Vincent J

    2002-06-01

    Oculocutaneous albinism (OCA) is caused by reduced or deficient melanin pigmentation in the skin, hair, and eyes. OCA has different phenotypes resulting from mutations in distinct pigmentation genes involved in melanogenesis. OCA type 2 (OCA2), the most common form of OCA, is an autosomal recessive disorder caused by mutations in the P gene, the function(s) of which is controversial. In order to elucidate the mechanism(s) involved in OCA2, our group used several antibodies specific for various melanosomal proteins (tyrosinase, Tyrp1, Dct, Pmel17 and HMB45), including a specific set of polyclonal antibodies against the p protein. We used confocal immunohistochemistry to compare the processing and distribution of those melanosomal proteins in wild type (melan-a) and in p mutant (melan-p1) melanocytes. Our results indicate that the melanin content of melan-p1 melanocytes was less than 50% that of wild type melan-a melanocytes. In contrast, the tyrosinase activities were similar in extracts of wild type and p mutant melanocytes. Confocal microscopy studies and pulse-chase analyses showed altered processing and sorting of tyrosinase, which is released from melan-p1 cells to the medium. Processing and sorting of Tyrp1 was also altered to some extent. However, Dct and Pmel17 expression and subcellular localization were similar in melan-a and in melan-p1 melanocytes. In melan-a cells, the p protein showed mainly a perinuclear pattern with some staining in the cytoplasm where some co-localization with HMB45 antibody was observed. These findings suggest that the p protein plays a major role in modulating the intracellular transport of tyrosinase and a minor role for Tyrp1, but is not critically involved in the transport of Dct and Pmel17. This study provides a basis to understand the relationship of the p protein with tyrosinase function and melanin synthesis, and also provides a rational approach to unveil the consequences of P gene mutations in the pathogenesis of OCA2.

  6. IMPROVED SELECTIVE ELECTROCATALYTIC OXIDATION OF PHENOLS BY TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR

    EPA Science Inventory

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil yielded a greater response to phenol and catechol than those using a higher viscosity oil of s...

  7. Discovery of Highly Potent Tyrosinase Inhibitor, T1, with Significant Anti-Melanogenesis Ability by zebrafish in vivo Assay and Computational Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Chen, Wang-Chuan; Tseng, Tien-Sheng; Hsiao, Nai-Wan; Lin, Yun-Lian; Wen, Zhi-Hong; Tsai, Chin-Chuan; Lee, Yu-Ching; Lin, Hui-Hsiung; Tsai, Keng-Chang

    2015-01-01

    Tyrosinase is involved in melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders that can be treated with depigmenting agents. A natural product T1, bis(4-hydroxybenzyl)sulfide, isolated from the Chinese herbal plant, Gastrodia elata, is a strong competitive inhibitor against mushroom tyrosinase (IC50 = 0.53 μM, Ki = 58 +/- 6 nM), outperforms than kojic acid. The cell viability and melanin quantification assay demonstrate that 50 μM of T1 apparently attenuates 20% melanin content of human normal melanocytes without significant cell toxicity. Moreover, the zebrafish in vivo assay reveals that T1 effectively reduces melanogenesis with no adverse side effects. The acute oral toxicity study evidently confirms that T1 molecule is free of discernable cytotoxicity in mice. Furthermore, the molecular modeling demonstrates that the sulfur atom of T1 coordinating with the copper ions in the active site of tyrosinase is essential for mushroom tyrosinase inhibition and the ability of diminishing the human melanin synthesis. These results evident that T1 isolated from Gastrodia elata is a promising candidate in developing pharmacological and cosmetic agents of great potency in skin-whitening.

  8. Acetazolamide Inhibits the Level of Tyrosinase and Melanin: An Enzyme Kinetic, In Vitro, In Vivo, and In Silico Studies.

    PubMed

    Abbas, Qamar; Raza, Hussain; Hassan, Mubashir; Phull, Abdul Rehman; Kim, Song Ja; Seo, Sung-Yum

    2017-09-01

    Melanin is the major factor that determines skin color and protects from ultraviolet radiation. In present study we evaluated the anti-melanogenesis effect of acetazolamide (ACZ) using four different approaches: enzyme kinetic, in vitro, in vivo and in silico. ACZ demonstrated significant inhibitory activity (IC 50 7.895 ± 0.24 μm) against tyrosinase as compared to the standard drug kojic acid (IC 50 16.84 ± 0.64 μm) and kinetic analyses showed that ACZ is a non-competitive inhibitor without cytotoxic effect. In in vitro experiments, A375 human melanoma cells were treated with 20 or 40 μm of ACZ with or without 50 μm of l-DOPA. Western blot results showed that ACZ significantly (P < 0.05) decreased the expression level of tyrosinase at 40 μm. Zebrafish embryos were treated with 10, 20 or 40 μm of ACZ and of positive control kojic acid. At 72 h of treatment with ACZ and kojic acid, ACZ significantly (P < 0.001) decreased the embryos pigmentation to 40.8% of untreated embryos at the dose of 40 μm of ACZ while kojic acid decreased only 25.0% of pigmentation at the same dose of kojic acid. In silico docking were performed against tyrosinase using PyRx tool. Docking studies suggested that His244, Asn260 and His85 are the major interacting residues in the binding site of the protein. In conclusion, our results suggest that ACZ is a good candidate for the inhibition of melanin and it could be used as a lead for developing the drugs for hyperpigmentary disorders and skin whitening. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  9. T Cell Receptors that Recognize the Tyrosinase Tumor Antigen | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute, Surgery Branch, Tumor Immunology Section, is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize T Cells Attacking Cancer: T Cell Receptors that Recognize the Tyrosinase Tumor Antigen

  10. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents.

    PubMed

    Liu, Jinbing; Wu, Fengyan; Chen, Changhong

    2015-11-15

    Twenty aloe-emodin derivatives were designed, synthesized, and their biological activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, compounds with thiosemicarbazide moiety showed more potent inhibitory effects than the other compounds. The structure-activity relationships (SARs) were preliminarily discussed. The inhibition mechanism of selected compounds 1 and 13 were investigated. The results showed compound 1 was reversible inhibitor, however, compound 13 was irreversible. Kinetic analysis indicated that compound 1 was competitive tyrosinase inhibitor. Furthermore, the antibacterial activities and anti-inflammatory activities of some selected compounds were also screened. The results showed that compound 3 exhibited more potent antibacterial activity than the aloe-emodin, compounds 5 and 6 possessed more potent anti-inflammatory activities than the diacerein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Use of Mushroom Tyrosinase to Introduce Michaelis-Menten Enzyme Kinetics to Biochemistry Students

    ERIC Educational Resources Information Center

    Flurkey, William H.; Inlow, Jennifer K.

    2017-01-01

    An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is…

  12. Promotion and computation of inhibitory effect on tyrosinase activity of herbal cream by incorporating indigenous medicinal plants.

    PubMed

    Sahu, Ram Kumar; Roy, Amit; Dwivedi, Jaya; Jha, Arvind Kumar

    2014-01-01

    Herbal cream imparts a chief role in regulating melanin production of skin. The phytoconstituents present in herbal cream impact biological functions of skin and contribute nutrients required for the healthy skin. In the present study, it was envisaged to prepare three batches of herbal cream (HC1, HC2 and HC3) containing ethanol extracts of Emblica officinalis (fruits), Daucus carota (root), Mangifera indica (leaves), Mentha arvensis (leaves), Terminalia arjuna (bark) and Cucumis sativus (fruits) and investigated the prepared cream for inhibitory effect on tyrosinase activity. The herbal cream was formulated by incorporating different ratio of extracts, by using cream base. Each formulation HC1, HC2 and HC3 were segregated into three different formulations (HC1.1, HC1.2, HC1.3, HC2.1, HC2.2, HC2.3, HC3.1, HC3.2 and HC3.3) by incorporating increasing ratio of extract in formulation. The HC3.2 cream produces highest tyrosinase inhibitory effect 65.23 +/- 0.07%, while the HC2.1 exhibited minimum tyrosinase inhibitory effect 26.19 +/- 0.08% compared to other prepared cream. Comparison of the inhibitory activity of the formulations demonstrated that the rank order was HC3.2 > HC3.3 > HC1.2 > HC1.3 > HC3.1 > HC1.1 > HC2.3 > HC2.2 > HC2.1. It has been observed from the result that the formulations of antityrosinase activity were not concentrate dependent. This finding suggests that decrease in antityrosinase activity of HC1 and HC3 might be considering that the incompatibility of the higher extract content with the base of cream. The HC3 produce the maximum inhibitory effects on tyrosinase activity might be due to higher level of polyphenol and flavonoids present in extracts.

  13. A rational workflow for sequential virtual screening of chemical libraries on searching for new tyrosinase inhibitors.

    PubMed

    Le-Thi-Thu, Huong; Casanola-Martín, Gerardo M; Marrero-Ponce, Yovani; Rescigno, Antonio; Abad, Concepcion; Khan, Mahmud Tareq Hassan

    2014-01-01

    The tyrosinase is a bifunctional, copper-containing enzyme widely distributed in the phylogenetic tree. This enzyme is involved in the production of melanin and some other pigments in humans, animals and plants, including skin pigmentations in mammals, and browning process in plants and vegetables. Therefore, enzyme inhibitors has been under the attention of the scientist community, due to its broad applications in food, cosmetic, agricultural and medicinal fields, to avoid the undesirable effects of abnormal melanin overproduction. However, the research of novel chemical with antityrosinase activity demands the use of more efficient tools to speed up the tyrosinase inhibitors discovery process. This chapter is focused in the different components of a predictive modeling workflow for the identification and prioritization of potential new compounds with activity against the tyrosinase enzyme. In this case, two structure chemical libraries Spectrum Collection and Drugbank are used in this attempt to combine different virtual screening data mining techniques, in a sequential manner helping to avoid the usually expensive and time consuming traditional methods. Some of the sequential steps summarize here comprise the use of drug-likeness filters, similarity searching, classification and potency QSAR multiclassifier systems, modeling molecular interactions systems, and similarity/diversity analysis. Finally, the methodologies showed here provide a rational workflow for virtual screening hit analysis and selection as a promissory drug discovery strategy for use in target identification phase.

  14. Synthesis of chiral pyrazolo[4,3-e][1,2,4]triazine sulfonamides with tyrosinase and urease inhibitory activity.

    PubMed

    Mojzych, Mariusz; Tarasiuk, Paweł; Kotwica-Mojzych, Katarzyna; Rafiq, Muhammad; Seo, Sung-Yum; Nicewicz, Michał; Fornal, Emilia

    2017-12-01

    A new series of sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazine with chiral amino group has been synthesized and characterized. The compounds were tested for their tyrosinase and urease inhibitory activity. Evaluation of prepared derivatives demonstrated that compounds (8b) and (8j) are most potent mushroom tyrosinase inhibitors whereas all of the obtained compounds showed higher urease inhibitory activity than the standard thiourea. The compounds (8a), (8f) and (8i) exhibited excellent enzyme inhibitory activity with IC 50 0.037, 0.044 and 0.042 μM, respectively, while IC 50 of thiourea is 20.9 μM.

  15. [Hereditary hypomelanocytoses: the role of PAX3, SOX10, MITF, SNAI2, KIT, EDN3 and EDNRB genes].

    PubMed

    Otręba, Michał; Miliński, Maciej; Buszman, Ewa; Wrześniok, Dorota; Beberok, Artur

    2013-11-26

    Hypo- and hyperpigmentation disorders are the most severe dermatological diseases observed in patients from all over the world. These disorders can be divided into melanoses connected with disorders of melanocyte function and melanocytoses connected with melanocyte development. The article presents some hereditary hypomelanocytoses, which are caused by abnormal melanoblast development, migration and proliferation as well as by abnormal melanocyte viability and proliferation. These disorders are represented by Waardenburg syndrome, piebaldism and Tietz syndrome, and are caused by different mutations of various or the same genes. The types of mutations comprise missense and nonsense mutations, frameshifts (in-frame insertions or deletions), truncating variations, splice alterations and non-stop mutations. It has been demonstrated that mutations of the same gene may cause different hypopigmentation syndromes that may have similar phenotypes. For example, mutations of the MITF gene cause Waardenburg syndrome type 2A as well as Tietz syndrome. It has also been demonstrated that mutations of different genes may cause an identical syndrome. For example, mutations of MITF, SNAI2 and SOX10 genes are observed in Waardenburg syndrome type II and mutations of EDNRB, EDN3 and SOX10 genes are responsible for Waardenburg syndrome type IV. In turn, mutation of the KIT gene and/or heterozygous deletion of the SNAI2 gene result in piebaldism disease. The knowledge of the exact mechanisms of pigmentary disorders may be useful in the development of new therapeutic approaches to their treatment.

  16. Activity, Stability, and Structure of Native and Modified by Woodward Reagent K Mushroom Tyrosinase

    NASA Astrophysics Data System (ADS)

    Emami, S.; Piri, H.; Gheibi, N.

    2018-01-01

    Mushroom tyrosinase (MT) was considered a good model for studying the inhibition, activation, and mutation of tyrosinase as the key enzyme of melanogenesis. In the present study, the activity, structure, reduction, and stability of native and modified enzymes were investigated after the modification of MT carboxylic residues by the Woodward reagent K (WRK). The relative activity of the sole enzyme was reduced from 100 to 77.9, 53.8, 39.4, and 26.4% after its modification by 2.5, 5, 25, and 50 ratios of [WRK]/[MT], respectively. The Tm values were calculated from thermal denaturation curves at 61.2, 60.1, 58.3, 53.9, and 45.5oC for the sole and modified enzymes. The reduction of the Δ {G}_{{H}_2O} values for the modified enzyme in chemical denaturation indicated instability. A structural study by CD and intrinsic fluorescence technique revealed the fluctuation of the secondary and tertiary structures of MT.

  17. Synthesis of Novel Compounds as New Potent Tyrosinase Inhibitors

    PubMed Central

    Hamidian, Hooshang

    2013-01-01

    In the present paper, we report the synthesis and pharmacological evaluation of a new series of azo compounds with different groups (1-naphthol, 2-naphthol, and N,N-dimethylaniline) and trifluoromethoxy and fluoro substituents in the scaffold. All synthesized compounds (5a–5f) showed the most potent mushroom tyrosinase inhibition (IC50 values in the range of 4.39 ± 0.76–1.71 ± 0.49 µM), comparable to the kojic acid, as reference standard inhibitor. All the novel compounds were characterized by FT-IR, 1H NMR, 13C NMR, and elemental analysis. PMID:24260737

  18. Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae

    PubMed Central

    Alam, Nuhu; Yoon, Ki Nam; Lee, Jae Seong; Cho, Hae Jin; Lee, Tae Soo

    2011-01-01

    This study was initiated to screen the antioxidant activities, tyrosinase inhibitory effects on the fruiting bodies of Pleurotus ferulae extracted with acetone, methanol and hot water. The antioxidant activities were performed on β-carotene–linoleic acid, reducing power, DPPH, ferrous ions chelating abilities, and xanthine oxidase. In addition to this, phenolic compounds were also analyzed. The methanolic extract showed the strongest β-carotene–linoleic acid inhibition and high reducing power as compared to other extracts. The scavenging effects on DPPH radicals, the acetonic and methanolic extracts were more effective than hot water extracts. The strongest chelating effect was obtained from the methanolic extract as compared to the tested synthetic antioxidant. Gallic acid, protocatechuic acid, caffeic acid, vanillin, ferulic acid, naringin, resveratrol, naringenin, hesperetin, formononetin and biochanin-A were detected from acetonitrile and hydrochloric acid (5:1) solvent extract. Xanthine oxidase and tyrosinase inhibitory activities of acetonic, methanolic, and hot water extracts of P. ferulae increased with increasing concentration. The results suggested that consumption of P. ferulae might be beneficial to the antioxidant, xanthine oxidase, and tyrosinase protection system of the human body against oxidative damage and others complications. PMID:23961169

  19. MHY884, a newly synthesized tyrosinase inhibitor, suppresses UVB-induced activation of NF-κB signaling pathway through the downregulation of oxidative stress.

    PubMed

    Choi, Yeon Ja; Uehara, Yohei; Park, Ji Young; Kim, Seong Jin; Kim, So Ra; Lee, Hee Won; Moon, Hyung Ryong; Chung, Hae Young

    2014-03-01

    The skin is the primary target of prolonged and repeated ultraviolet (UVB) irradiation which induces cutaneous inflammation and pigmentation. Nuclear factor κB (NF-κB) is the major factor mediating UVB-induced inflammatory responses through the expression of various proinflammatory proteins such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We have previously reported that the synthetic novel compound 4-(5-chloro-2,3-dihydrobenzo[d]thiazol-2-yl)-2,6-dimethoxyphenol (MHY884) strongly suppressed tyrosinase activity and melanin synthesis in B16F10 melanoma cells. In the present study, we investigated the effect of MHY884 on the inhibition of UVB-induced NF-κB activation and its proinflammatory downstream proteins through the suppression of oxidative stress in an in vivo model of photoaging. Generation of reactive oxygen species (ROS) and peroxynitrite was measured in vitro and in B16F10 melanoma cells to verify the scavenging activity of MHY884. MHY884 suppressed oxidative stress both in vitro and in the melanoma cells in a dose-dependent manner. Next, melanin-possessing hairless mice were pre-treated with MHY884 and then irradiated with UVB repeatedly. Topical application of MHY884 attenuated UVB-induced oxidative stress, resulting in reduced NF-κB activity. Pre-treatment with MHY884 inhibited Akt and IκB kinase α/β signaling pathways, leading to decreased translocation and phosphorylation of p65, a subunit of NF-κB. This result correlated with the expression levels of iNOS and COX-2 in the skin of MHY884-treated mice. Thus, the novel tyrosinase inhibitor MHY884 suppressed NF-κB activation signaling pathway by scavenging UVB-induced oxidative stress. The discovery of MHY884, a novel tyrosinase inhibitor that targets NF-κB signaling, is significant, because this compound is a promising protective agent against UVB-induced skin damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Antioxidant and tyrosinase inhibition activity of the fertile fronds and rhizomes of three different Drynaria species.

    PubMed

    Tan, Joash Ban Lee; Lim, Yau Yan

    2015-09-22

    For generations, the rhizomes of Drynaria ferns have been used as traditional medicine in Asia. Despite this, the bioactivities of Drynaria rhizomes and leaves have rarely been studied scientifically. This study evaluates the antioxidant properties of the methanolic extracts of the fertile fronds and rhizomes from three species in this genus: Drynaria quercifolia, Drynaria rigidula and Drynaria sparsisora. The phenolic and flavonoid contents of the samples were respectively quantified with the total phenolic content (TPC) and total flavonoid content (TFC) assays, while the antioxidant activities were determined via measuring the DPPH radical scavenging activity (FRS), ferric reducing power (FRP), ferrous ion chelating (FIC) activity and lipid peroxidation inhibition (LPI). The tyrosinase inhibition activity of all three species was also reported. The fertile fronds of D. quercifolia were found to exhibit the highest overall TPC (2939 ± 469 mg GAE/100 g) and antioxidant activity amongst all the samples, and the fertile fronds of D. quercifolia and D. rigidula exhibited superior TPC and FRP compared to their rhizomes, despite only the latter being widely used in traditional medicine. The fronds of D. quercifolia had high tyrosinase inhibition activity (56.6 ± 5.0 %), but most of the Drynaria extracts showed unexpected tyrosinase enhancement instead, particularly for D. sparsisora's fronds. The high bioactivity of the fertile fronds in the fern species indicate that there is value in further research on the fronds of ferns which are commonly used mostly, or only, for their rhizomes.

  1. TYROSINASE-BASED CARBON PASTE ELECTRODE BIOSENSOR FOR DETECTION OF PHENOLS: BINDER AND PRE-OXIDATION EFFECTS

    EPA Science Inventory

    Tyrosinase-based carbon paste electrodes are evaluated with respect to the viscosity and polarity of the binder liquids. The electrodes constructed using a lower viscosity mineral oil or paraffin wax oil yielded a greater response to phenol and catechol than those using the hi...

  2. Antioxidant activity and inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from ribose-histidine Maillard reaction products on aldose reductase and tyrosinase.

    PubMed

    Hwang, Seung Hwan; Wang, Zhiqiang; Suh, Hong-Won; Lim, Soon Sung

    2018-03-01

    This study aimed to better understand the functional properties of ribose and 20 amino acid Maillard reaction products (MRPs). The ABTS + radical scavenging ability of the ribose-20 amino acid MRPs was evaluated. Among the MRPs, ribose-histidine MRPs (RH-MRPs) showed the highest inhibitory activities on the ABTS + radical scavenging ability, aldose reductase (AR), and tyrosinase compared to other MRPs. Functional compounds with antioxidant and AR inhibitory activities have been recognized as an important strategy in the prevention and treatment of diabetic complications, and the search for tyrosinase inhibitors is important for the treatment of hyperpigmentation, development of skin-whitening agents, and use as preservatives in the food industry. On this basis, we sought to isolate and identify compounds with inhibitory activities against AR and tyrosinase. RH-MRPs were heated at 120 °C for 2 h and fractionated using four solvents: methylene chloride (MC), ethyl acetate, n-butanol, and water. The highest inhibitions were found in the MC fraction. The two compounds from this fraction were purified by silica gel column and preparative thin layer chromatography, and identified as 2-hydroxy-3-methylcyclopent-2-enone and furan-3-carboxylic acid. AR inhibition, tyrosinase inhibition, and ABTS + scavenging (IC 50 ) of 2-hydroxy-3-methylcyclopent-2-enone were 4.47, 721.91 and 9.81 μg mL -1 , respectively. In this study, inhibitory effects of 2-hydroxy-3-methylcyclopent-2-enone isolated from RH-MRP were demonstrated on AR, tyrosinase, and its antioxidant activity for the first time. RH-MRP and its constituents can be developed as beneficial functional food sources and cosmetic materials and should be investigated further as potential functional food sources.

  3. α-Glucosidase and tyrosinase inhibitory effects of an abietane type diterpenoid taxoquinone from Metasequoia glyptostroboides.

    PubMed

    Bajpai, Vivek K; Park, Yong-Ha; Na, MinKyun; Kang, Sun Chul

    2015-03-26

    Nowadays plant derived natural compounds have gained huge amount of research attention especially in food and medicine industries due to their multitude of biological and therapeutic properties as alternative medicines. In this study, a diterpenoid compound taxoquinone, isolated from Metasequoia glyptostroboides was evaluated for its α-glucosidase and tyrosinase inhibitory efficacy in terms of its potent anti-diabetic and depigmentation potential, respectively. As a result, taxoquinone at the concentration range of 100-3,000 μg/mL and 200-1,000 μg/mL showed potent efficacy on inhibiting α-glucosidase and tyrosinase enzymes by 9.24-51.32% and 11.14-52.32%, respectively. The findings of this study clearly evident potent therapeutic efficacy of an abietane diterpenoid taxoquinone isolated from M. glyptostroboides with a possibility for using it as a novel candidate in food and medicine industry as a natural alternative medicine to prevent diabetes mellitus type-2 related disorders and as a depigmentation agent.

  4. Molecular docking studies of (1E,3E,5E)-1,6-Bis(substituted phenyl)hexa-1,3,5-triene and 1,4-Bis(substituted trans-styryl)benzene analogs as novel tyrosinase inhibitors.

    PubMed

    Ha, Young Mi; Lee, Hye Jin; Park, Daeui; Jeong, Hyoung Oh; Park, Ji Young; Park, Yun Jung; Lee, Kyung Jin; Lee, Ji Yeon; Moon, Hyung Ryong; Chung, Hae Young

    2013-01-01

    We simulated the docking of the tertiary structure of mushroom tyrosinase with our compounds. From the structure-tyrosinase inhibitory activity relationship, it is notable that compounds 4, 8 and 11 showed similar or better activity rates than kojic acid which was used as a positive control. Compounds 17, 21, and 23 among benzene analogs that possess the same substituent showed significantly lower tyrosinase inhibitory effects. Therefore, we have confirmed that among the compounds showing better tyrosinase inhibitory effects than kojic acid, the compounds with triene analogs have better tyrosinase inhibitory effect than the compounds with benzene analogs. Docking simulation suggested the mechanism of compounds by several key residues which had possible hydrogen bonding interactions. The pharmacophore model underlined the features of active compounds, 4,4'-((1E,3E,5E)-hexa-1,3,5-triene-1,6-diyl)diphenol, 5,5'-((1E,3E,5E)-hexa-1,3,5-triene-1,6-diyl)bis(2-methoxy-phenol), and 5,5'-((1E,3E,5E)-hexa-1,3,5-triene-1,6-diyl)dibenzene-1,3-diol among triene derivatives which had several hydrogen bond groups on both terminal rings. The soundness of the docking results and the agreement with the pharmacophores suggest that it can be conveniently exploited to design inhibitors with an improved affinity for tyrosinase.

  5. The depigmenting effect of natural resorcinol type polyphenols Kuwanon O and Sanggenon T from the roots of morus australis.

    PubMed

    Hu, Shuting; Zheng, Zongping; Chen, Feng; Wang, Mingfu

    2017-01-04

    Morus australis, one of the major Morus species growing in East Asia, is rich in phenolic compounds. The extract of M. australis has been used as skin whitening components for a long period. The action mechanisms of its principal constituents are still unclear. This study aims to evaluate the skin lightening effects of phenolic compounds extracted from the root of M. australis in different melanocyte systems and artificial skin models. The depigmenting effect of resorcinol type polyphenols (RTPs) from the root extract of M. australis was evaluated in murine b16 and melan-a cell lines using a combined sulforhodamine B assay. Tyrosinase activity and the expression of melanogenesis proteins were evaluated for the mechanism study. The artificial skin model is used as a replacement of the animal test. Only Kuwanon O and Sanggenon T were found to have significant depigmenting effects in both murine b16 and melan-a cell lines. Their depigmenting mechanisms are slightly different in the two cell systems. In b16 cells, Kuwanon O and Sanggenon T, together with the other two RTPs, induced post-transcriptional degradations of MITF without suppressing its mRNA expression, leading to significant decreases of TRP-1 and TRP-2 production. While in melan-a cells, the levels of tyrosinase families were suppressed via MITF downregulation at both transcription and translation level by RTPs, with Kuwanon O inducing the greatest suppression. Further evaluations in artificial skin model demonstrated the outstanding depigmenting effects of Kuwanon O and Sanggenon T. Kuwanon O and Sanggenon T from M.australis root extract are two potential skin whitening ingredients. To screen resorcinol flavonone derivatives with an isoprenyl group in the Diels-Alder substituent might be an option for the search of potent hypopigmenting agents from plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. The Potency of White Rice (Oryza sativa), Black Rice (Oryza sativa L. indica), and Red Rice (Oryza nivara) as Antioxidant and Tyrosinase Inhibitor

    NASA Astrophysics Data System (ADS)

    Batubara, I.; Maharni, M.; Sadiah, S.

    2017-04-01

    Rice is known to have many beneficial biological activities and is often used as “bedak dingin”, a face powder. The content of vitamins, minerals, fiber, and several types of antioxidants, such as ferulic acid, phytic acid, tocopherol, and oryzanols [1-2] are predicted to be potential as a tyrosinase inhibitor. The purpose of this study is to determine the potency of extracts from there types of rice, namely white, red, and black rice as an antioxidant and tyrosinase inhibitor. The rice was extracted with three different solvents, n-hexane, ethyl acetate, and methanol. The results showed that the highest antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl method was found in the methanol extract of black rice (IC50 290 μg/mL). Meanwhile, ethyl acetate extract of white rice has the highest antioxidant activity withphosphomolybdic acid method (41 mmol α-tocopherol equivalents/g sample). Thus, methanol extract of black rice and ethyl acetate extract of white rice are potential as an antioxidant. For tyrosinase inhibitor, n-hexane extract of red rice (IC50 3156 μg/mL) was the most active extract. The active component for radical scavenging is polar compound and for antioxidant by phosphomolybdate method is less polar compounds in black rice methanol extract based on TLC bioautogram. In conclusion, the black rice is the most potent in antioxidant while red rice is for tyrosinase inhibition.

  7. VISCOSITY AND BINDER COMPOSITION EFFECTS ON TYROSINASE-BASED CARBON PASTE ELECTRODE FOR DETECTION OF PHENOL AND CATECHOL

    EPA Science Inventory

    The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wid...

  8. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase.

    PubMed

    Gheibi, Nematollah; Taherkhani, Negar; Ahmadi, Abolfazl; Haghbeen, Kamahldin; Ilghari, Dariush

    2015-02-01

    Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki) of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50) were comparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities.

  9. Synthesis, computational studies and enzyme inhibitory kinetics of substituted methyl[2-(4-dimethylamino-benzylidene)-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates as mushroom tyrosinase inhibitors.

    PubMed

    Channar, Pervaiz Ali; Saeed, Aamer; Larik, Fayaz Ali; Rafiq, Muhammad; Ashraf, Zaman; Jabeen, Farukh; Fattah, Tanzeela Abdul

    2017-11-01

    The present article describes the synthesis and enzyme inhibitory kinetics of methyl[2-(arylmethylene-hydrazono)-4-oxo-thiazolidin-5-ylidene]acetates 5a-j as mushroom tyrosinase inhibitors. The title compounds were synthesized via cyclocondensation of thiosemicarbazones 3a-j with dimethyl but-2-ynedioate (DMAD) 4 in good yields under solvent-free conditions. The synthesized compounds were evaluated for their potential to inhibit the activity of mushroom tyrosinase. It was unveiled that compounds 5i showed excellent enzyme inhibitory activity with IC 50 3.17µM while IC 50 of standard kojic acid is 15.91µM. The presence of heterocyclic pyridine ring in compound 5i play important role in enzyme inhibitory activity as rest of the functional groups are common in all synthesized compounds. The enzyme inhibitory kinetics of the most potent derivative 5i determined by Lineweaver-Burk plots and Dixon plots showed that it is non-competitive inhibitor with Ki value 1.5µM. It was further investigated that the wet lab results are in good agreement with the computational results. The molecular docking of the synthesized compounds was performed against tyrosinase protein (PDBID 2Y9X) to delineate ligand-protein interactions at molecular level. The docking results showed that the major interacting residues are His244, His85, His263, Val 283, His 296, Asn260, Val248, His260, His261 and Phe264 which are located in active binding site of the protein. The molecular modeling demonstrates that the oxygen atom of the compound 5i coordinated with the key residues in the active site of mushroom tyrosinase contribute significantly against inhibitory ability and diminishing the human melanin synthesis. These results evident that compound 5i is a lead structure in developing most potent mushroom tyrosinase inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Norartocarpetin from a folk medicine Artocarpus communis plays a melanogenesis inhibitor without cytotoxicity in B16F10 cell and skin irritation in mice

    PubMed Central

    2013-01-01

    Background Many natural products used in preventive medicine have also been developed as cosmeceutical ingredients in skin care products, such as Scutellaria baicalensis and Gardenia jasminoides. Norartocarpetin is one of the antioxidant and antityrosinase activity compound in Artocarpus communis; however, the cytotoxicity, skin irritation and antimelanogenesis mechanisms of norartocarpetin have not been investigated yet. Methods In the present study, cell viability in vitro and skin irritation in vivo are used to determine the safety of norartocarpetin. The melanogenesis inhibition of norartocarpetin was determined by cellular melanin content and tyrosinase in B16F10 melanoma cell. Moreover, we examined the related-melanogenesis protein by western blot analysis for elucidating the antimelanogenesis mechanism of norartocarpin. Results The result of the present study demonstrated that norartocarpetin not only present non-cytotoxic in B16F10 and human fibroblast cells but also non-skin irritation in mice. Moreover, our result also first found that norartocarpetin downregulated phospho-cAMP response element-binding (phospho-CREB) and microphthalmia-associated transcription factor (MITF) expression, which in turn decreased both synthesis of tyrosinases (TRP-1 and TRP-2) and cellular melanin content. This process is dependent on norartocarpetin phosphorylation by mitogen-activated protein kinases such as phospho-JNK and phospho-p38, and it results in decreased melanogenesis. Conclusion The present study suggests that norartocarpetin could be used as a whitening agent in medicine and/or cosmetic industry and need further clinical study. PMID:24325567

  11. Triterpene glycosides and other polar constituents of shea (Vitellaria paradoxa) kernels and their bioactivities.

    PubMed

    Zhang, Jie; Kurita, Masahiro; Shinozaki, Takuro; Ukiya, Motohiko; Yasukawa, Ken; Shimizu, Naoto; Tokuda, Harukuni; Masters, Eliot T; Akihisa, Momoko; Akihisa, Toshihiro

    2014-12-01

    The MeOH extract of defatted shea (Vitellaria paradoxa; Sapotaceae) kernels was investigated for its constituents, and fifteen oleanane-type triterpene acids and glycosides, two steroid glucosides, two pentane-2,4-diol glucosides, seven phenolic compounds, and three sugars, were isolated. The structures of five triterpene glycosides were elucidated on the basis of spectroscopic and chemical methods. Upon evaluation of the bioactivity of the isolated compounds, it was found that some or most of the compounds have potent or moderate inhibitory activities against the following: melanogenesis in B16 melanoma cells induced by α-melanocyte-stimulating hormone (α-MSH); generation of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, against Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-teradecanoylphorbol 13-acetate (TPA) in Raji cells; t TPA-induced inflammation in mice, and proliferation of one or more of HL-60, A549, AZ521, and SK-BR-3 human cancer cell lines, respectively. Western blot analysis established that paradoxoside E inhibits melanogenesis by regulation of expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1 (TRP-1) and TRP-2. In addition, tieghemelin A was demonstrated to exhibit cytotoxic activity against A549 cells (IC50 13.5 μM) mainly due to induction of apoptosis by flow cytometry. The extract of defatted shea kernels and its constituents may be, therefore, valuable as potential antioxidant, anti-inflammatory, skin-whitening, chemopreventive, and anticancer agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Combining molecular docking and QSAR studies for modeling the anti-tyrosinase activity of aromatic heterocycle thiosemicarbazone analogues

    NASA Astrophysics Data System (ADS)

    Dong, Huanhuan; Liu, Jing; Liu, Xiaoru; Yu, Yanying; Cao, Shuwen

    2018-01-01

    A collection of thirty-six aromatic heterocycle thiosemicarbazone analogues presented a broad span of anti-tyrosinase activities were designed and obtained. A robust and reliable two-dimensional quantitative structure-activity relationship model, as evidenced by the high q2 and r2 values (0.848 and 0.893, respectively), was gained based on the analogues to predict the quantitative chemical-biological relationship and the new modifier direction. Inhibitory activities of the compounds were found to greatly depend on molecular shape and orbital energy. Substituents brought out large ovality and high highest-occupied molecular orbital energy values helped to improve the activity of these analogues. The molecular docking results provided visual evidence for QSAR analysis and inhibition mechanism. Based on these, two novel tyrosinase inhibitors O04 and O05 with predicted IC50 of 0.5384 and 0.8752 nM were designed and suggested for further research.

  13. Syndecan-2 regulates melanin synthesis via protein kinase C βII-mediated tyrosinase activation.

    PubMed

    Jung, Hyejung; Chung, Heesung; Chang, Sung Eun; Choi, Sora; Han, Inn-Oc; Kang, Duk-Hee; Oh, Eok-Soo

    2014-05-01

    Syndecan-2, a transmembrane heparan sulfate proteoglycan that is highly expressed in melanoma cells, regulates melanoma cell functions (e.g. migration). Since melanoma is a malignant tumor of melanocytes, which largely function to synthesize melanin, we investigated the possible involvement of syndecan-2 in melanogenesis. Syndecan-2 expression was increased in human skin melanoma tissues compared with normal skin. In both mouse and human melanoma cells, siRNA-mediated knockdown of syndecan-2 was associated with reduced melanin synthesis, whereas overexpression of syndecan-2 increased melanin synthesis. Similar effects were also detected in human primary epidermal melanocytes. Syndecan-2 expression did not affect the expression of tyrosinase, a key enzyme in melanin synthesis, but instead enhanced the enzymatic activity of tyrosinase by increasing the membrane and melanosome localization of its regulator, protein kinase CβII. Furthermore, UVB caused increased syndecan-2 expression, and this up-regulation of syndecan-2 was required for UVB-induced melanin synthesis. Taken together, these data suggest that syndecan-2 regulates melanin synthesis and could be a potential therapeutic target for treating melanin-associated diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Antioxidant capacity of phenolic compounds on human cell lines as affected by grape-tyrosinase and Botrytis-laccase oxidation.

    PubMed

    Riebel, Matthias; Sabel, Andrea; Claus, Harald; Xia, Ning; Li, Huige; König, Helmut; Decker, Heinz; Fronk, Petra

    2017-08-15

    Phenolic components (PCs) are well-known for their positive impact on human health. In addition to their action as radical scavengers, they act as activators for the intrinsic cellular antioxidant system. Polyphenol oxidases (PPOs) such as tyrosinase and laccase catalyze the enzymatic oxidation of PCs and thus, can alter their scavenging and antioxidative capacity. In this study, oxidation by tryosinase was shown to increase the antioxidant capacity of many PCs, especially those that lack adjacent aromatic hydroxyl groups. In contrast, oxidation by laccase tended to decrease the antioxidant capacity of red wine and distinct PCs. This was clearly demonstrated for p-coumaric acid and resveratrol, which is associated with many health benefits. While oxidation by tyrosinase increased their antioxidant activity laccase treatment resulted in a decreased activity and also of that for red wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase

    PubMed Central

    Gheibi, Nematollah; Taherkhani, Negar; Ahmadi, Abolfazl; Haghbeen, Kamahldin; Ilghari, Dariush

    2015-01-01

    Objective(s): Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. Materials and Methods: In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Results: Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki) of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Conclusion: Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50) were comparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities. PMID:25810885

  16. Expression of microphthalmia transcription factor, S100 protein, and HMB-45 in malignant melanoma and pigmented nevi.

    PubMed

    Xia, Jianxin; Wang, Yanlong; Li, Fuqiu; Wang, Jinfeng; Mu, Yan; Mei, Xianglin; Li, Xue; Zhu, Wenjing; Jin, Xianhua; Yu, Kai

    2016-09-01

    Malignant melanoma (MM) is a type of malignant tumor, which originates from neural crest melanocytes. MM progresses rapidly and results in a high mortality rate. The present study aims to investigate the expression of microphthalmia transcription factor (MITF), the S100 protein, and HMB-45 in MM and pigmented nevi. A total of 32 MM samples (including three skin metastasis, three lymph node metastasis and two spindle cell MM samples), two Spitz nevus samples, four pigmented nevus samples and two blue nevus samples were collected. The expression levels of S100 protein, HMB-45, and MITF were observed via immunostaining. The S100 protein exhibited high positive rates in MM and pigment disorders (96.7 and 100%, respectively), but with low specificity. The S100 protein was also expressed in fibroblasts, myoepithelial cells, histocytes and Langerhans cells in normal skin samples. HMB-45 had high specificity. Its positive expression was only confined to MM cells and junctional nevus cells. Furthermore, HMB-45 was not expressed in melanocytes in the normal tissue samples around the tumor or in the benign intradermal nevus cells. MITF exhibited high specificity and high sensitivity. It was expressed in the nuclei of melanocytes, MM cells and nevus cells. It was observed to be strongly expressed in metastatic MM and spindle cell MMs. Thus, MITF may present as a specific immunomarker for the diagnosis and differential diagnosis of MM.

  17. Mitochondrial dynamics regulate melanogenesis through proteasomal degradation of MITF via ROS-ERK activation.

    PubMed

    Kim, Eun Sung; Park, So Jung; Goh, Myeong-Jin; Na, Yong-Joo; Jo, Doo Sin; Jo, Yoon Kyung; Shin, Ji Hyun; Choi, Eun Sun; Lee, Hae-Kwang; Kim, Ju-Yeon; Jeon, Hong Bae; Kim, Jin Cheon; Cho, Dong-Hyung

    2014-11-01

    Mitochondrial dynamics control mitochondrial functions as well as their morphology. However, the role of mitochondrial dynamics in melanogenesis is largely unknown. Here, we show that mitochondrial dynamics regulate melanogenesis by modulating the ROS-ERK signaling pathway. Genetic and chemical inhibition of Drp1, a mitochondrial fission protein, increased melanin production and mitochondrial elongation in melanocytes and melanoma cells. In contrast, down-regulation of OPA1, a mitochondria fusion regulator, suppressed melanogensis but induced massive mitochondrial fragmentation in hyperpigmented cells. Consistently, treatment with CCCP, a mitochondrial fission chemical inducer, also efficiently repressed melanogenesis. Furthermore, we found that ROS production and ERK phosphorylation were increased in cells with fragmented mitochondria. And inhibition of ROS or ERK suppressed the antimelanogenic effect of mitochondrial fission in α-MSH-treated cells. In addition, the activation of ROS-ERK pathway by mitochondrial fission induced phosphorylation of serine73 on MITF accelerating its proteasomal degradation. In conclusion, mitochondrial dynamics may regulate melanogenesis by modulating ROS-ERK signaling pathway. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Detection of phenolic compounds in flow systems based on tyrosinase-modified reticulated vitreous carbon electrodes.

    PubMed

    Peña, N; Reviejo, A J; Pingarrón, J M

    2001-08-03

    The fabrication and performance of a reticulated vitreous carbon (RVC)-based tyrosinase flow-through electrode, in which the enzyme was covalently immobilized, is reported. The bioelectrode was tested as an amperometric detector for phenolic compounds. Variables affecting the construction of the enzyme flow-through electrode such as the RVC chemical pretreatment procedure, the enzyme immobilization method in the RVC matrix, the enzyme loading and the pH value of the buffer solution used, were optimized by flow-injection with amperometric detection. A good immobilization of the enzyme in the RVC matrix, in spite of the hydrodynamic conditions, was found. The same tyrosinase-RVC electrode could be used with no significant loss of the amperometric response for around 20 days, and reproducible responses could be achieved with different electrodes constructed in the same manner. Moreover, the operational stability of the bioelectrode was tested under continuous monitorization conditions. Calibration plots by flow injection with amperometric detection at -0.20 V were obtained for phenol, 2,4-dimethylphenol; 3-chlorophenol; 4-chlorophenol; 4-chloro-3-methylphenol and 2-aminophenol, with detection limits ranging from 2 mug l(-1) (4-chloro-3-methylphenol) to 2 mg l(-1).

  19. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria.

    PubMed

    Chiou, Shu-Yuan; Ha, Choi-Lan; Wu, Pei-Shan; Yeh, Chiu-Ling; Su, Ying-Shan; Li, Man-Po; Wu, Ming-Jiuan

    2015-12-10

    Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM) reduced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E₂ (PGE₂) and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1) expression and addition of zinc protoporphyrin (ZnPP), a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries.

  20. An evaluation of extracts of five traditional medicinal plants from Iran on the inhibition of mushroom tyrosinase activity and scavenging of free radicals.

    PubMed

    Khazaeli, P; Goldoozian, R; Sharififar, F

    2009-10-01

    This study aimed to evaluate the free radical scavenging and inhibition properties of five medicinal plants, including Quercus infectoria Olive., Terminalia chebula Retz., Lavendula stoechas L., Mentha longifolia L., Rheum palmatum L., toward the activity of mushroom tyrosinase using L-tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA) as the substrate.The methanol extracts of Q. infectoria and T. chebula showed strong radical scavenging effect in 2,2'-dipheny L-1-picrylhydrazyl (DPPH) assay(IC50 = 15.3 and 82.2 microg mL)1 respectively).These plants also showed inhibitory effects against the activity of mushroom tyrosinase in hydroxylation of L-tyrosine (85.9% and 82.2% inhibition,respectively). These two plants also inhibited the oxidation of l-DOPA similar to kojic acid as positive control (IC50 = 102.8 and 192.6 microg mL)1 respectively). In general Q. infectoria and T. chebula significantly inhibited tyrosinase activity and DPPH radical. Both activities were concentration dependant but not in linear manner. It is needed to study the cytotoxicity of these plant extracts in pigment cell culture before further evaluation and moving to in vivo conditions.

  1. Inhibitions by hydrogen-occluding silica microcluster to melanogenesis in human pigment cells and tyrosinase reaction.

    PubMed

    Kato, Shinya; Saitoh, Yasukazu; Miwa, Nobuhiko

    2013-01-01

    We investigated the anti-melanogenetic efficacy of hydrogen-occluding silica microcluster (H2-Silica), which is a silsesquioxane-based compound with hydrogen interstitially embedded in a matrix of caged silica, against melanogenesis in HMV-II human melanoma cells and L-DOPA-tyrosinase reaction [EC1.14.18.1]. HMV-II cells were subjected to oxidative stress by ultraviolet ray-A (UVA) exposure of 3-times of 0.65 J/cm2 summed up to 1.95 J/cm2. After UVA irradiation, HMV-II cells were stimulated to produce melanin by 2.72-fold more abundantly than unirradiated control. When HMV-II cells were treated with H2-Silica of 20 ppm or kojic acid of 28.4 ppm before and after UVA-irradiation, the amount of melanin was repressed to 12.2% or 14.5% as compared to that of UVA-irradiated control, respectively. That is, H2-Silica exhibited a comparable efficacy to the whitening agent kojic acid. The H2-Silica could prevent melanogenesis in HMV-II cells by low-level doses at 1-10 ppm, and cell viability and apoptosis event did not change even by high-level doses at 100-1000 ppm. On the contrary, kojic acid was cytotoxic at the concentration of 14-28 ppm or more. By microscopic observation, H2-Silica suppressed such properties indicative of melanin-rich cells as cellular hypertrophy, cell process formation, and melanogenesis around the outside of nuclei. The enzymatic assay using L-DOPA and mushroom tyrosinase demonstrated that H2-Silica restrained UVA-mediated melanin formation owing to down-regulation of tyrosinase activity, which could be attributed to scavenging of free radicals and inhibition of L-DOPA-to-dopachrome oxidation by hydrogen released from H2-Silica. Thus H2-Silica has a potential to prevent melanin production against UVA and serves as a skin-lightening ingredient for supplements or cosmetics.

  2. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters.

    PubMed

    Martínková, Ludmila; Chmátal, Martin

    2016-10-01

    The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A novel synthetic Piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels.

    PubMed

    Hwang, Eunson; Lee, Taek Hwan; Lee, Wook-Joo; Shim, Won-Sik; Yeo, Eui-Ju; Kim, Sanghee; Kim, Sun Yeou

    2016-01-01

    Piper amides have a characteristic, unsaturated amide group and exhibit diverse biological activities, including proliferation and differentiation of melanocytes, although the molecular mechanisms underlying its antimelanogenesis effect remain unknown. We screened a selected chemical library of newly synthesized Piper amide derivatives and identified (E)-3-(4-(tert-butyl)phenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide (NED-180) as one of the most potent compounds in suppressing melanogenesis. In murine melan-a melanocytes, NED-180 downregulated the expression of melanogenic regulatory proteins including tyrosinase, Tyrp1, Dct, and MITF. PI3K/Akt-dependent phosphorylation of GSK3β by NED-180 decreases MITF phosphorylation and inhibits melanogenesis without any effects on cytotoxicity and proliferation. Furthermore, topical application of NED-180 significantly ameliorated UVB-induced skin hyperpigmentation in guinea pigs. Interestingly, data obtained using calcium imaging techniques suggested that NED-180 reduced the TPA-induced activation of TRPM1 (melastatin), which could explain the NED-180-induced inhibition of melanogenesis. All things taken together, NED-180 triggers activation of multiple pathways, such as PI3K and ERK, and inhibits TRPM1/TRPV1, leading to inhibition of melanogenesis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    PubMed Central

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md. Rakibul

    2016-01-01

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days. PMID:27367738

  5. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    PubMed

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  6. Identification of a novel microRNA important for melanogenesis in alpaca (Vicugna pacos).

    PubMed

    Yang, S; Fan, R; Shi, Z; Ji, K; Zhang, J; Wang, H; Herrid, M; Zhang, Q; Yao, J; Smith, G W; Dong, C

    2015-04-01

    The molecular mechanisms underlying the formation of coat colors in animals are poorly understood. Recent studies have demonstrated that microRNA play important roles in the control of melanogenesis and coat color in mammals. In a previous study, we characterized the miRNA expression profiles in alpaca skin with brown and white coat color and identified a novel miRNA (named lpa-miR-nov-66) that is expressed significantly higher in white skin compared to brown skin. The present study was conducted to determine the functional roles of this novel miRNA in the regulation of melanogenesis in alpaca melanocytes. lpa-miR-nov-66 is predicted to target the soluble guanylate cyclase (sGC) gene based on presence of a binding site in the sGC coding sequence (CDS). Overexpression of lpa-miR-nov-66 in alpaca melanocyes upregulated the expression of sGC both at the mRNA and protein level. Overexpression of lpa-miR-nov-66 in melanocyes also resulted in decreased expression of key melanogenic genes including tyrosinase (TYR), tyrosinase related protein 1 (TYRP1), and microphthalmia transcription factor (MITF). Our ELISA assays showed increased cyclic guanosine monophosphate (cGMP) but decreased cyclic adenosine monophosphate (cAMP) production in melanocytes overexpressing lpa-miR-nov-66. In addition, overexpression of lpa-miR-nov-66 also reduced melanin production in cultured melanocytes. Results support a role of lpa-miR-nov-66 in melanocytes by directly or indirectly targeting , which regulates melanogenesis via the cAMP pathway.

  7. The unfolded protein response in melanocytes: activation in response to chemical stressors of the endoplasmic reticulum and tyrosinase misfolding.

    PubMed

    Manga, Prashiela; Bis, Sabina; Knoll, Kristen; Perez, Beremis; Orlow, Seth J

    2010-10-01

    Accumulation of proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), comprising three signaling pathways initiated by Ire1, Perk and Atf6 respectively. Unfolded protein response activation was compared in chemically stressed murine wildtype melanocytes and mutant melanocytes that retain tyrosinase in the ER. Thapsigargin, an ER stressor, activated all pathways in wildtype melanocytes, triggering Caspase 12-mediated apoptosis at toxic doses. Albino melanocytes expressing mutant tyrosinase showed evidence of ER stress with increased Ire1 expression, but the downstream effector, Xbp1, was not activated even following thapsigargin treatment. Attenuation of Ire1 signaling was recapitulated in wildtype melanocytes treated with thapsigargin for 8 days, with diminished Xbp1 activation observed after 4 days. Atf6 was also activated in albino melanocytes, with no response to thapsigargin, while the Perk pathway was not activated and thapsigargin treatment elicited robust expression of the downstream effector CCAAT-enhancer-binding protein homologous protein. Thus, melanocytes adapt to ER stress by attenuating two UPR pathways.

  8. Modulating effect of new potential antimelanomic agents, spin-labeled triazenes and nitrosoureas on the DOPA-oxidase activity of tyrosinase.

    PubMed

    Gadjeva, V; Zheleva, A; Raikova, E

    1999-07-01

    The modulating effect of newly synthesized alkylating spin labeled triazene and spin labeled nitrosourea derivatives on the DOPA-oxidase activity of mushroom tyrosinase has been investigated by Bumett's spectrophotometric method (Burnett et al., 1967). All spin labeled triazenes have exhibited activating effect on DOPA-oxidase activity of tyrosinase, whereas clinically used triazene (DTIC), which does not contain nitroxide moiety, have showed inhibiting effect. At the same experimental conditions the spin labeled aminoacid nitrosoureas have showed dual effect - activating, in the beginning of the enzyme reaction and inhibiting later on. It is deduced that the activating effect of the spin labeled compounds is due to the nitroxide moiety and the inhibiting effect of all compounds depends on their half-life time. This study might contribute to make more clear the mechanism of action of the new compounds and on the other hand would come in quite useful as a preliminary prognosis for their antimelanomic activity.

  9. A novel fluorescent biosensor for adrenaline detection and tyrosinase inhibitor screening.

    PubMed

    Liu, Ziping; Liu, Shasha

    2018-04-17

    In this work, a novel simple fluorescent biosensor for the highly sensitive and selective detection of adrenaline was established. Firstly, water-soluble CuInS 2 quantum dots (QDs) capped by L-Cys were synthesized via a hydrothermal synthesis method. Then, the positively charged adrenaline was assembled on the surface of CuInS 2 QDs due to the electrostatic interactions and hydrogen bonding, which led to the formation of adrenaline-CuInS 2 QD (Adr-CuInS 2 QD) electrostatic complexes. Tyrosinase (TYR) can catalyze adrenaline to generate H 2 O 2 , and additionally oxidize the adrenaline to adrenaline quinone. Both the H 2 O 2 and the adrenaline quinone can quench the fluorescence of the CuInS 2 QDs through the electron transfer (ET) process. Thus, the determination of adrenaline could be facilely achieved by taking advantage of the fluorescence "turn off" feature of CuInS 2 QDs. Under the optimum conditions, the fluorescence quenching ratio I f /I f0 (I f and I f0 were the fluorescence intensity of Adr-CuInS 2 QDs in the presence and absence of TYR, respectively) was proportional to the logarithm of adrenaline concentration in the range of 1 × 10 -8 -1 × 10 -4  mol L -1 with the detection limit of 3.6 nmol L -1 . The feasibility of the proposed biosensor in real sample assay was also studied and satisfactory results were obtained. Significantly, the proposed fluorescent biosensor can also be utilized to screen TYR inhibitors. Graphical abstract Schematic illustration of the fluorescent biosensor for adrenaline detection (A) and tyrosinase inhibitor screening (B).

  10. SNPs in the 5'-regulatory region of the tyrosinase gene do not affect plumage color in ducks (Anas platyrhynchos).

    PubMed

    Zhang, N N; Hu, J W; Liu, H H; Xu, H Y; He, H; Li, L

    2015-12-29

    Tyrosinase, encoded by the TYR gene, is the rate-limiting enzyme in the production of melanin pigment. In this study, plumage color separation was observed in Cherry Valley duck line D and F1 and F2 hybrid generations of Liancheng white ducks. Gene sequencing and bioinformatic analysis were applied to the 5'-regulatory region of TYR, to explore the connection between TYR sequence variation and duck plumage color. Four SNPs were found in the 5'-regulatory region. The SNPs were in tight linkage and formed three haplotypes. However, the genotype distribution in groups with different plumage color was not significantly different, and there were no changes in the transcription factor binding sites between the different genotypes. In conclusion, these SNP variations may not cause the differences in feather color observed in this test group.

  11. Inhibitory effects of α-Na8SiW11CoO40 on tyrosinase and its application in controlling browning of fresh-cut apples.

    PubMed

    Chen, Bing-Nian; Xing, Rui; Wang, Fang; Zheng, A-Ping; Wang, Li

    2015-12-01

    α-Na8SiW11CoO40 was synthesized and characterized. The inhibitory effects of α-Na8SiW11CoO40 on the activity of mushroom tyrosinase and the effects of α-Na8SiW11CoO40 on the browning of fresh-cut apples were studied. The Native-PAGE result showed that α-Na8SiW11CoO40 had a significant inhibitory effect on tyrosinase. Kinetic analyses showed that α-Na8SiW11CoO40 was an irreversible and competitive inhibitor. The inhibitor concentration leading to a 50% reduction in activity (IC50) was estimated to be 0.239 mM. Additionally, the results also showed that α-Na8SiW11CoO40 treatment could significantly decrease the browning process of apple slices and inhibit the polyphenol oxidase (PPO) activity. Moreover, application of α-Na8SiW11CoO40 resulted in higher peroxidase activity and promoted high amounts of phenolic compounds and ascorbic acid. This study may provide a promising method for the use of polyoxometalates to inhibit tyrosinase activity and control the browning of fresh-cut apples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5.

    PubMed

    Nezich, Catherine L; Wang, Chunxin; Fogel, Adam I; Youle, Richard J

    2015-08-03

    The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats-generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy.

  13. Antioxidative and melanogenesis-inhibitory activities of caffeoylquinic acids and other compounds from moxa.

    PubMed

    Akihisa, Toshihiro; Kawashima, Kohta; Orido, Masashi; Akazawa, Hiroyuki; Matsumoto, Masahiro; Yamamoto, Ayako; Ogihara, Eri; Fukatsu, Makoto; Tokuda, Harukuni; Fuji, Jizaemon

    2013-03-01

    The MeOH extract of moxa, the processed leaves of Artemisia princeps PAMP. (Asteraceae), exhibited potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and melanogenesis-inhibitory activity in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 melanoma cells. Eight caffeoylquinic acids, 1 and 6-12, five flavonoids, 13-17, two benzoic acid derivatives, 18 and 19, three coumarin derivatives, 20-22, four steroids, 23-26, and six triterpenoids, 27-32, were isolated from the MeOH extract. Upon evaluation of compounds 1, 6-23, and four semisynthetic caffeoylquinic acid esters, 2-5, for their DPPH radical-scavenging activity, 15 compounds, 1-13, 17, and 19, showed potent activities (IC(50) 3.1-16.8 μM). The 15 compounds exhibited, moreover, potent inhibitory activities (51.1-92.5% inhibition) against peroxidation of linoleic acid emulsion at 10 μg/ml concentration. In addition, when 27 compounds, 1-8, 10, 12, 13, 15-18, 20-25, and 27-32, were evaluated for their inhibitory activity against melanogenesis in α-MSH-stimulated B16 melanoma cells, five caffeoylquinic acids, i.e., chlorogenic acid (1), ethyl chlorogenate (3), propyl chlorogenate (4), isopropyl chlorogenate (5), and butyl chlorogenate (6), along with homoorientin (17) and vanillic acid (18), exhibited inhibitory activities with 33-62% reduction of melanin content at 100 μM concentration with no or almost no toxicity to the cells (89-114% of cell viability at 100 μM). Western blot analysis showed that compound 6 reduced the protein levels of microphtalmia-associated transcription factor (MITF), tyrosinase, tyrosine-related protein 1 (TRP-1), and TRP-2 mostly in a concentration-dependent manner, suggesting that this compound inhibits melanogenesis on α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase, TRP-1, and TRP-2. Furthermore, four compounds, 13, 15, 16, and 30, exhibited

  14. Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as antibrowning agent.

    PubMed

    Zheng, Zong-Ping; Cheng, Ka-Wing; To, James Tsz-Kin; Li, Haitao; Wang, Mingfu

    2008-12-01

    A new furanoflavone, 7-(2,4-dihydroxyphenyl)-4-hydroxy-2-(2-hydroxy propan-2-yl)-2, 3-dihydrofuro(3, 2-g)chromen-5-one (artocarpfuranol, 1), together with 14 known compounds, dihydromorin (2), steppogenin (3), norartocarpetin (4), artocarpanone (5), artocarpesin (6), artocarpin (7), cycloartocarpin (8), cycloartocarpesin (9), artocarpetin (10), brosimone I (11), cudraflavone B (12), carpachromene (13), isoartocarpesin (14), and cyanomaclurin (15) were isolated from the wood of Artocarpus heterophyllus. Their structures were identified by interpretation of MS,( 1)H-NMR,( 13)C-NMR, HMQC, and HMBC spectroscopic data. Among them, compounds 1-6 and 14 showed strong mushroom tyrosinase inhibitory activity with IC(50) values lower than 50 microM, more potent than kojic acid (IC(50) = 71.6 microM), a well-known tyrosinase inhibitor. In addition, extract of A. heterophyllus was evaluated for its antibrowning effect on fresh-cut apple slices. It was discovered that fresh-cut apple slices treated by dipping in solution of 0.03 or 0.05% of A. heterophyllus extract with 0.5% ascorbic acid did not undergo any substantial browning reaction after storage at room temperature for 24 h. The antibrowning effect was significantly better than samples treated with the extract (0.03 or 0.05%) or ascorbic acid (0.5%) alone. The results provide preliminary evidence supporting the potential of this natural extract as antibrowning agent in food systems.

  15. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities.

    PubMed

    Ferri, Maura; Rondini, Greta; Calabretta, Maria Maddalena; Michelini, Elisa; Vallini, Veronica; Fava, Fabio; Roda, Aldo; Minnucci, Giordano; Tassoni, Annalisa

    2017-10-25

    The present work aimed at optimizing a two-step enzymatic plus solvent-based process for the recovery of bioactive compounds from white grape (Vitis vinifera L., mix of Trebbiano and Verdicchio cultivars) pomace, the winemaking primary by-product. Phenolic compounds solubilised by water enzyme-assisted and ethanol-based extractions of wet (WP) and dried (DP) pomace were characterised for composition and tested for antioxidant, anti-tyrosinase and anti-inflammatory bioactivities. Ethanol treatment led to higher phenol yields than water extraction, while DP samples showed the highest capacity of releasing polyphenols, most probably as a positive consequence of the pomace drying process. Different compositions and bioactivities were observed between water and ethanol extracts and among different treatments and for the first time the anti-tyrosinase activity of V. vinifera pomace extracts, was here reported. Enzymatic treatments did not significantly improve the total amount of solubilised compounds; Celluclast in DP led to the recovery of extracts enriched in specific compounds, when compared to control. The best extracts (enzymatic plus ethanol treatment total levels) were obtained from DP showing significantly higher amounts of polyphenols, flavonoids, flavanols and tannins and exerted higher antioxidant and anti-tyrosinase activities than WP total extracts. Conversely, anti-inflammatory capacity was only detected in water (with and without enzyme) extracts, with WP samples showing on average a higher activity than DP. The present findings demonstrate that white grape pomace constitute a sustainable source for the extraction of phytochemicals that might be exploited as functional ingredients in the food, nutraceutical, pharmaceutical or cosmetic industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract.

    PubMed

    Karim, Azila Abdul; Azlan, Azrina; Ismail, Amin; Hashim, Puziah; Abd Gani, Siti Salwa; Zainudin, Badrul Hisyam; Abdullah, Nur Azilah

    2014-10-07

    Cocoa pod is an outer part of cocoa fruits being discarded during cocoa bean processing. Authors found out that data on its usage in literature as cosmetic materials was not recorded in vast. In this study, cocoa pod extract was investigated for its potential as a cosmetic ingredient. Cocoa pod extract (CPE) composition was accomplished using UHPLC. The antioxidant capacity were measured using scavenging assay of 1,2-diphenyl-2-picrylhydrazyl (DPPH), β-carotene bleaching assay (BCB) and ferric reducing antioxidant power (FRAP). Inhibiting effect on skin degradation enzymes was carried out using elastase and collagenase assays. The skin whitening effect of CPE was determined based on mushroom tyrosinase assay and sun screening effect (UV-absorbance at 200-400 nm wavelength). LC-MS/MS data showed the presence of carboxylic acid, phenolic acid, fatty acid, flavonoids (flavonol and flavones), stilbenoids and terpenoids in CPE. Results for antioxidant activity exhibited that CPE possessed good antioxidant activity, based on the mechanism of the assays compared with ascorbic acid (AA) and standardized pine bark extract (PBE); DPPH: AA > CPE > PBE; FRAP: PBE > CPE > AA; and BCB: BHT > CPE > PBE. Cocoa pod extract showed better action against elastase and collagenase enzymes in comparison with PBE and AA. Higher inhibition towards tyrosinase enzyme was exhibited by CPE than kojic acid and AA, although lower than PBE. CPE induced proliferation when tested on human fibroblast cell at low concentration. CPE also exhibited a potential as UVB sunscreen despite its low performance as a UVA sunscreen agent. Therefore, the CPE has high potential as a cosmetic ingredient due to its anti-wrinkle, skin whitening, and sunscreen effects.

  17. Nanobiotechnological Nanocapsules Containing Polyhemoglobin-Tyrosinase: Effects on Murine B16F10 Melanoma Cell Proliferation and Attachment

    PubMed Central

    Wang, Yun; Chang, Thomas M. S.

    2012-01-01

    We have reported previously that daily intravenous infusions of a soluble nanobiotechnological complex, polyhemoglobin-tyrosinase [polyHb-Tyr], can suppress the growth of murine B16F10 melanoma in a mouse model. In order to avoid the need for daily intravenous injections, we have now extended this further as follows. We have prepared two types of biodegradable nanocapsules containing [polyHb-Tyr]. One type is to increase the circulation time and decrease the frequency of injection and is based on polyethyleneglycol-polylactic acid (PEG-PLA) nanocapsules containing [polyHb-Tyr]. The other type is to allow for intratumoural or local injection and is based on polylactic acid (PLA) nanocapsules containing [polyHb-Tyr]. Cell culture studies show that it can inhibit the proliferation of murine B16F10 melanoma cells in the “proliferation model”. It can also inhibit the attachment of murine B16F10 melanoma cells in the “attachment model.” This could be due to the action of tyrosinase on the depletion of tyrosine or the toxic effect of tyrosine metabolites. The other component, polyhemoglobin (polyHb), plays a smaller role in nanocapsules containing [polyHb-Tyr], and this is most likely by its depletion of nitric oxide needed for melanoma cell growth. PMID:23209910

  18. Influence of Laccase and Tyrosinase on the Antioxidant Capacity of Selected Phenolic Compounds on Human Cell Lines.

    PubMed

    Riebel, Matthias; Sabel, Andrea; Claus, Harald; Fronk, Petra; Xia, Ning; Li, Huige; König, Helmut; Decker, Heinz

    2015-09-18

    Polyphenolic compounds affect the color, odor and taste of numerous food products of plant origin. In addition to the visual and gustatory properties, they serve as radical scavengers and have antioxidant effects. Polyphenols, especially resveratrol in red wine, have gained increasing scientific and public interest due to their presumptive beneficial impact on human health. Enzymatic oxidation of phenolic compounds takes place under the influence of polyphenol oxidases (PPO), including tyrosinase and laccase. Several studies have demonstrated the radical scavenger effect of plants, food products and individual polyphenols in vitro, but, apart from resveratrol, such impact has not been proved in physiological test systems. Furthermore, only a few data exist on the antioxidant capacities of the enzymatic oxidation products of phenolic compounds generated by PPO. We report here first results about the antioxidant effects of phenolic substances, before and after oxidation by fungal model tyrosinase and laccase. In general, the common chemical 2,2-diphenyl-1-picrylhydrazyl assay and the biological tests using two different types of cell cultures (monocytes and endothelial cells) delivered similar results. The phenols tested showed significant differences with respect to their antioxidant activity in all test systems. Their antioxidant capacities after enzymatic conversion decreased or increased depending on the individual PPO used.

  19. Evaluation of RPE65, CRALBP, VEGF, CD68, and tyrosinase gene expression in human retinal pigment epithelial cells cultured on amniotic membrane.

    PubMed

    Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Khalooghi, Keynoush; Ahmadieh, Hamid; Kanavi, Mojgan Rezaie; Samiei, Shahram; Pakravesh, Jalil

    2011-06-01

    The retinal pigment epithelium (RPE) plays a key role in the maintenance of the normal functions of the retina. Tissue engineering using amniotic membrane as a substrate to culture RPE cells may provide a promising new strategy to replace damaged RPE. We established a method of culturing RPE cells over the amniotic membrane as a support for their growth and transplantation. The transcription of specific genes involved in cellular function of native RPE, including RPE65, CRALBP, VEGF, CD68, and tyrosinase, were then measured using quantitative real-time PCR. Data showed a considerable increase in transcription of RPE65, CD68, and VEGF in RPE cells cultured on amniotic membrane. The amounts of CRALBP and tyrosinase transcripts were not affected. This may simply indicate that amniotic membrane restricted dedifferentiation of RPE cells in culture. The results suggest that amniotic membrane may be considered as an elective biological substrate for RPE cell culture.

  20. Melanogenesis of murine melanoma cells induced by hesperetin, a Citrus hydrolysate-derived flavonoid.

    PubMed

    Huang, Yu-Chun; Liu, Kao-Chih; Chiou, Yi-Ling

    2012-03-01

    Melanogenesis is a complex process that modulates skin pigmentation to defend photodamage. Citrus is the most widely produced fruit crop in the world. People ingest various citrus fruits in their common diets. In the present study, the acid-hydrolyzed and un-hydrolyzed extracts of orange-type citrus fruits were subjected to analyze flavonoid compositions and assess their effects on melanin synthesis in murine B16-F10 melanoma cells. The acid-hydrolyzed extracts of Citrus sinensis, C. reticulata, and C. aurantium enhanced melanin production. Based on high-performance liquid chromatography (HPLC) analysis, the most abundant flavonoids that were found in citrus hydrolyzed extracts were hesperetin and naringenin. Hesperetin exhibited the most potent activity on melanin synthesis and induced tyrosinase and microphthalmia-associated transcription factor (MITF) expression. Moreover, hesperetin stimulated the activation of mitogen-activated protein kinases (MAPKs), phosphorylation of cAMP-responsive element binding protein (CREB) and glycogen synthase kinase-3β (GSK3β), and subsequently induced the accumulation of β-catenin. This study suggests that the citrus constituent hesperetin might have protective melanogenic potential as a cosmeceutical agent against skin photodamage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma

    PubMed Central

    Liu-Smith, Feng; Meyskens, Frank

    2016-01-01

    Flavonoids are becoming popular nutraceuticals. Different flavonoids show similar or distinct biological effects on different tissues or cell types, which may limit or define their usefulness in cancer prevention and/or treatment application. This review focuses on a few selected flavonoids and discusses their functions in normal and transformed pigment cells, including cyanidin, apigenin, genistein, fisetin, EGCG, luteolin, baicalein, quercetin and kaempferol. Flavonoids exhibit melanogenic or anti-melanogenic effects mainly via transcriptional factor MiTF and/or the melanogenesis enzymes tyrosinase, DCT2 or TYRP-1. To identify a direct target has been a challenge as most studies were not able to discriminate whether the effect(s) of the flavonoid were from direct targeting or represented indirect effects. Flavonoids exhibit an anti-melanoma effect via inhibiting cell proliferation and invasion and inducing apoptosis. The mechanisms are also multi-fold, via ROS-scavenging, immune-modulation, cell cycle regulation and epigenetic modification including DNA methylation and histone deacetylation. In summary, although many flavonoid compounds are extremely promising nutraceuticals, their detailed molecular mechanism and their multi-target (simultaneously targeting multiple molecules) nature warrant further investigation before advancement to translation studies or clinical trials. PMID:26865001

  2. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

    PubMed

    Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2015-12-15

    A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity.

    PubMed

    Chatatikun, Moragot; Chiabchalard, Anchalee

    2017-11-09

    Ultraviolet radiation from sunlight induces overproduction of reactive oxygen species (ROS) resulting in skin photoaging and hyperpigmentation disorders. Novel whitening and anti-wrinkle compounds from natural products have recently become of increasing interest. The purpose of this study was to find products that reduce ROS in 14 Thai plant extracts. To determine total phenolic and flavonoid content, antioxidant activity, anti-tyrosinase activity and anti-collagenase activity, we compared extracts of 14 Thai plants prepared using different solvents (petroleum ether, dichloromethane and ethanol). Antioxidant activities were determined by DPPH and ABTS assays. Total phenolic content of the 14 Thai plants extracts was found at the highest levels in ethanol followed by dichloromethane and petroleum ether extracts, respectively, while flavonoid content was normally found in the dichloromethane fraction. Scavenging activity ranged from 7 to 99% scavenging as assessed by DPPH and ABTS assays. The ethanol leaf extract of Ardisia elliptica Thunb. had the highest phenolic content, antioxidant activity and collagenase inhibition, while Cassia alata (L.) Roxb. extract had the richest flavonoid content. Interestingly, three plants extracts, which were the ethanolic fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb., had high antioxidant content and activity, and significantly inhibited both tyrosinase and collagenase. Our finding show that the ethanol fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb. show promise as potential ingredients for cosmetic products such as anti-wrinkle agents and skin whitening products.

  4. Prognostic and predictive values of oncogenic BRAF, NRAS, c-KIT and MITF in cutaneous and mucous melanoma.

    PubMed

    Pracht, M; Mogha, A; Lespagnol, A; Fautrel, A; Mouchet, N; Le Gall, F; Paumier, V; Lefeuvre-Plesse, C; Rioux-Leclerc, N; Mosser, J; Oger, E; Adamski, H; Galibert, M-D; Lesimple, T

    2015-08-01

    Mutations of BRAF, NRAS and c-KIT oncogenes are preferentially described in certain histological subtypes of melanoma and linked to specific histopathological features. BRAF-, MEK- and KIT-inhibitors led to improvement in overall survival of patients harbouring mutated metastatic melanoma. To assess the prevalence and types of BRAF, NRAS, c-KIT and MITF mutations in cutaneous and mucous melanoma and to correlate mutation status with clinicopathological features and outcome. Clinicopathological features and mutation status of 108 samples and of 98 consecutive patients were, respectively, assessed in one retrospective and one prospective study. Clinicopathological features were correlated with mutation status and the predictive value of these mutations was studied. This work identified significant correlations between BRAF mutations and melanoma occurring on non-chronic sun-damaged skin and superficial spreading melanoma (P < 0.05) on one hand, and between NRAS mutations and nodular melanoma (P < 0.05) on the other hand. Younger age (P < 0.05), microscopic (P < 0.05) and macroscopic (P < 0.05) lymphatic involvement at diagnosis of primary melanoma were significantly linked to BRAF mutations. A mutated status was a positive predictive factor of a response to BRAF inhibitors (OR = 3.44). Mutated melanoma showed a significantly (P = 0.038) higher objective response rate to cytotoxic chemotherapy (26.3%) than wild-type tumours (6.7%). Clinical and pathological characteristics of the primary melanoma differed between wild-type and BRAF- or NRAS-mutated tumours. Patients with BRAF-mutated tumours were younger at diagnosis of primary melanoma. Patients carrying mutations showed better responses better to specific kinase inhibitors and interestingly also to systemic cytotoxic chemotherapy. © 2015 European Academy of Dermatology and Venereology.

  5. Andrographolide suppresses melanin synthesis through Akt/GSK3β/β-catenin signal pathway.

    PubMed

    Zhu, Ping-Ya; Yin, Wei-Han; Wang, Meng-Ran; Dang, Yong-Yan; Ye, Xi-Yun

    2015-07-01

    Tyrosinase (TYR) is the key enzyme controlling the production of melanin. Very few papers have reported that andrographolide can inhibit melanin content. To investigate the effects of andrographolide on melanin synthesis. Cell viability, melanin content, TYR activity, transcriptional and protein expression levels of TYR family and other kinds of proteins involved in melanogenesis were measured after the treatments of andrographolide. It was found that andrographolide decreased melanin content, TYR activity and transcriptional and protein expression of TYR family and microphthalmia-associated transcription factor (MITF) in B16F10 melanoma cells. Data showed andrographolide also decreased melanin content and TYR content in ultraviolet B (UVB) irradiation induced brown guinea pigs. Moreover, we found that melanin content and TYR activity were effectively inhibited in Human Epidermis Melanocyte (HEM) treated with andrographolide at the medium concentrations without apparent effect on cell viability. Results in experiments treated with MG-132 or cycloheximide (CHX) showed that andrographolide lowered the content of β-catenin in cell nucleus resulting from accelerating the degradation of β-catenin. Phosphorylation of glycogen synthase kinase 3β (GSK3β) and Akt decreased simultaneously. 6-Bromoindirubin-3'-oxime (BIO, inhibitor of GSK3β) and insulin-like growth factors-1 (IGF-1, activator of Akt) could reverse the decline of β-catenin in B16F10 cells induced by andrographolide. These results demonstrate that andrographolide can effectively suppress melanin content and TYR activity in B16F10 cells, HEM cells and UVB-induced brown guinea pig skin by decreasing phosphorylation of GSK3β dependent on Akt, promoting the degradation of β-catenin, inhibiting β-catenin into the nucleus and decreasing the expression of MITF and TYR family. Data indicate that andrographolide may be a potential whiting agent which can have great market in cosmetics and in clinical such as

  6. Wnt/β-catenin signaling inhibitor ICG-001 enhances pigmentation of cultured melanoma cells.

    PubMed

    Kim, Kyung-Il; Jeong, Do-Sun; Jung, Eui Chang; Lee, Jeung-Hoon; Kim, Chang Deok; Yoon, Tae-Jin

    2016-11-01

    Wnt/β-catenin signaling is important in development and differentiation of melanocytes. The object of this study was to evaluate the effects of several Wnt/β-catenin signaling inhibitors on pigmentation using melanoma cells. Melanoma cells were treated with Wnt/β-catenin signaling inhibitors, and then melanin content and tyrosinase activity were checked. Although some inhibitors showed slight inhibition of pigmentation, we failed to observe potential inhibitory effect of those chemicals on pigmentation of HM3KO melanoma cells. Rather, one of powerful Wnt/β-catenin signaling inhibitors, ICG-001, increased the pigmentation of HM3KO melanoma cells. Pigmentation-enhancing effect of ICG-001 was reproducible in other melanoma cell line MNT-1. Consistent with these results. ICG-001 increased the expression of pigmentation-related genes, such as MITF, tyrosinase and TRP1. When ICG-001 was treated, the phosphorylation of CREB was significantly increased. In addition, ICG-001 treatment led to quick increase of intracellular cAMP level, suggesting that ICG-001 activated PKA signaling. The blockage of PKA signaling with pharmaceutical inhibitor H89 inhibited the ICG-001-induced pigmentation significantly. These results suggest that PKA signaling is pivotal in pigmentation process itself, while the importance of Wnt/β-catenin signaling should be emphasized in the context of development and differentiation. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Physiological effects of formulation containing tannase-converted green tea extract on skin care: physical stability, collagenase, elastase, and tyrosinase activities.

    PubMed

    Hong, Yang-Hee; Jung, Eun Young; Noh, Dong Ouk; Suh, Hyung Joo

    2014-03-01

    Green tea contains numerous polyphenols, which have health-promoting effects. The purpose of this study was to evaluate the effect of tannase-converted green tea extract (TGE) formulation on the physical stability and activities of skin-related enzymes. Physical stability was evaluated by measuring the pH, precipitation, and colors at 25 ± 2 °C/ambient humidity and at 40 ± 2 °C/70% ± 5% relative humidity for 4 months. Activities of collagenase, elastase, and tyrosinase as skin-related enzymes were assessed on TGE formulation. The concentrations of epigallocatechin-3-gallate and epicatechin-3-gallate in green tea extract were greatly decreased to the extent of negligible level when treated with tannase. The formulation containing 5% tannase-converted green tea extract showed relatively stable pH, precipitation, and color features for 16 weeks. When TGE was added to the formulation, there was a significant increase in the inhibition of elastase and tyrosinase activities ( p  < 0.05) compared with the formulation containing 5% normal green tea extract. The TGE could be used in cosmetics as skin antiwrinkling or depigmenting agent.

  8. Mutation in and lack of expression of tyrosinase-related protein-1 (TRP-1) in melanocytes from an individual with brown oculocutaneous albinism: a new subtype of albinism classified as "OCA3".

    PubMed Central

    Boissy, R. E.; Zhao, H.; Oetting, W. S.; Austin, L. M.; Wildenberg, S. C.; Boissy, Y. L.; Zhao, Y.; Sturm, R. A.; Hearing, V. J.; King, R. A.; Nordlund, J. J.

    1996-01-01

    Most types of human oculocutaneous albinism (OCA) result from mutations in the gene for tyrosinase (OCA1) or the P protein (OCA2), although other types of OCA have been described but have not been mapped to specific loci. Melanocytes were cultured from an African-American with OCA, who exhibited the phenotype of Brown OCA, and his normal fraternal twin. Melanocytes cultured from the patient with OCA and the normal twin appeared brown versus black, respectively. Melanocytes from both the patient with OCA and the normal twin demonstrated equal amounts of NP-40-soluble melanin; however, melanocytes from the patient with OCA contained only 7% of the amount of insoluble melanin found from the normal twin. Tyrosinase- related protein-1 (TRP-1) was not detected in the OCA melanocytes by use of various anti-TRP-1 probes. Furthermore, transcripts for TRP-1 were absent in cultured OCA melanocytes. The affected twin was homozygous for a single-bp deletion in exon 6, removing an A in codon 368 and leading to a premature stop at codon 384. Tyrosine hydroxylase activity of the OCA melanocytes was comparable to controls when assayed in cell lysates but was only 30% of controls when assayed in intact cells. We conclude that this mutation of the human TRP-1 gene affects its interaction with tyrosinase, resulting in dysregulation of tyrosinase activity, promotes the synthesis of brown versus black melanin, and is responsible for a third genetic type of OCA in humans, which we classify as "OCA3." Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8651291

  9. Tyrosinase is the modifier of retinoschisis in mice.

    PubMed

    Johnson, Britt A; Cole, Brian S; Geisert, Eldon E; Ikeda, Sakae; Ikeda, Akihiro

    2010-12-01

    X-linked retinoschisis (XLRS) is a form of macular degeneration with a juvenile onset. This disease is caused by mutations in the retinoschisin (RS1) gene. The major clinical pathologies of this disease include splitting of the retina (schisis) and a loss in synaptic transmission. Human XLRS patients display a broad range in phenotypic severity, even among family members with the same mutation. This variation suggests the existence of genetic modifiers that may contribute to disease severity. Previously, we reported the identification of a modifier locus, named Mor1, which affects severity of schisis in a mouse model of XLRS (the Rs1tmgc1 mouse). Homozygosity for the protective AKR allele of Mor1 restores cell adhesion in Rs1tmgc1 mice. Here, we report our study to identify the Mor1 gene. Through collecting recombinant mice followed by progeny testing, we have localized Mor1 to a 4.4-Mb region on chromosome 7. In this genetic region, the AKR strain is known to carry a mutation in the tyrosinase (Tyr) gene. We observed that the schisis phenotype caused by the Rs1 mutation is rescued by a Tyr mutation in the C57BL/6J genetic background, strongly suggesting that Tyr is the Mor1 gene.

  10. Molecular Study of Three Lebanese and Syrian Patients with Waardenburg Syndrome and Report of Novel Mutations in the EDNRB and MITF Genes

    PubMed Central

    Haddad, N.M.; Ente, D.; Chouery, E.; Jalkh, N.; Mehawej, C.; Khoueir, Z.; Pingault, V.; Mégarbané, A.

    2011-01-01

    Waardenburg syndrome (WS) is a genetic disorder characterized primarily by depigmentation of the skin and hair, heterochromia of the irides, sensorineural deafness, and sometimes by dystopia canthorum, and Hirschsprung disease. WS presents a large clinical and genetic heterogeneity. Four different types have been individualized and linked to 5 different genes. We report 2 cases of WS type II and 1 case of WS type IV from Lebanon and Syria. The genetic studies revealed 2 novel mutations in the MITF gene of the WS type II cases and 1 novel homozygous mutation in the EDNRB gene of the WS type IV case. This is the first molecular study of patients from the Arab world. Additional cases will enable a more detailed description of the clinical spectrum of Waardenburg syndrome in this region. PMID:21373256

  11. Molecular Study of Three Lebanese and Syrian Patients with Waardenburg Syndrome and Report of Novel Mutations in the EDNRB and MITF Genes.

    PubMed

    Haddad, N M; Ente, D; Chouery, E; Jalkh, N; Mehawej, C; Khoueir, Z; Pingault, V; Mégarbané, A

    2011-01-01

    Waardenburg syndrome (WS) is a genetic disorder characterized primarily by depigmentation of the skin and hair, heterochromia of the irides, sensorineural deafness, and sometimes by dystopia canthorum, and Hirschsprung disease. WS presents a large clinical and genetic heterogeneity. Four different types have been individualized and linked to 5 different genes. We report 2 cases of WS type II and 1 case of WS type IV from Lebanon and Syria. The genetic studies revealed 2 novel mutations in the MITF gene of the WS type II cases and 1 novel homozygous mutation in the EDNRB gene of the WS type IV case. This is the first molecular study of patients from the Arab world. Additional cases will enable a more detailed description of the clinical spectrum of Waardenburg syndrome in this region.

  12. Creation of miniature pig model of human Waardenburg syndrome type 2A by ENU mutagenesis.

    PubMed

    Hai, Tang; Guo, Weiwei; Yao, Jing; Cao, Chunwei; Luo, Ailing; Qi, Meng; Wang, Xianlong; Wang, Xiao; Huang, Jiaojiao; Zhang, Ying; Zhang, Hongyong; Wang, Dayu; Shang, Haitao; Hong, Qianlong; Zhang, Rui; Jia, Qitao; Zheng, Qiantao; Qin, Guosong; Li, Yongshun; Zhang, Tao; Jin, Weiwu; Chen, Zheng-Yi; Wang, Hongmei; Zhou, Qi; Meng, Anming; Wei, Hong; Yang, Shiming; Zhao, Jianguo

    2017-11-01

    Human Waardenburg syndrome 2A (WS2A) is a dominant hearing loss (HL) syndrome caused by mutations in the microphthalmia-associated transcription factor (MITF) gene. In mouse models with MITF mutations, WS2A is transmitted in a recessive pattern, which limits the study of hearing loss (HL) pathology. In the current study, we performed ENU (ethylnitrosourea) mutagenesis that resulted in substituting a conserved lysine with a serine (p. L247S) in the DNA-binding domain of the MITF gene to generate a novel miniature pig model of WS2A. The heterozygous mutant pig (MITF +/L247S ) exhibits a dominant form of profound HL and hypopigmentation in skin, hair, and iris, accompanied by degeneration of stria vascularis (SV), fused hair cells, and the absence of endocochlear potential, which indicate the pathology of human WS2A. Besides hypopigmentation and bilateral HL, the homozygous mutant pig (MITF L247S/L247S ) and CRISPR/Cas9-mediated MITF bi-allelic knockout pigs both exhibited anophthalmia. Three WS2 patients carrying MITF mutations adjacent to the corresponding region were also identified. The pig models resemble the clinical symptom and molecular pathology of human WS2A patients perfectly, which will provide new clues for better understanding the etiology and development of novel treatment strategies for human HL.

  13. Action mechanism of tyrosinase on meta- and para-hydroxylated monophenols.

    PubMed

    Fenoll, L G; Rodríguez-López, J N; Varón, R; García-Ruiz, P A; García-Cánovas, F; Tudela, J

    2000-04-01

    The relationship between the structure and activity of meta- and para-hydroxylated monophenols was studied during their tyrosinase-catalysed hydroxylation and the rate-limiting steps of the reaction mechanism were identified. The para-hydroxylated substrates permit us to study the effect of a substituent (R) in the carbon-1 position (C-1) of the benzene ring on the nucleophilic attack step, while the meta group permits a similar study of the effect on the electrophilic attack step. Substrates with a -OCH3 group on C-1, as p-hydroxyanisol (4HA) and m-hydroxyanisol (3HA), or with a -CH2OH group, as p-hydroxybenzylalcohol (4HBA) and m-hydroxybenzylalcohol (3HBA), were used because the effect of the substituent (R) size was assumed to be similar. However, the electron-donating effect of the -OCH3 group means that the carbon-4 position (C-4) is favoured for nucleophilic attack (para-hydroxylated substrates) or for electrophilic attack (meta-hydroxylated substrates). The electron-attracting effect of the -CH2OH group has the opposite effect, hindering nucleophilic (para) or electrophilic (meta) attack of C-4. The experimental data point to differences between the maximum steady-state rate (V(M)Max) of the different substrates, the value of this parameter depends on the nucleophilic and electrophilic attack. However, differences are greatest in the Michaelis constants (K(M)m), with the meta-hydroxylated substrates having very large values. The catalytic efficiency k(M)cat/K(M)m is much greater for thepara-hydroxylated substrates although it varies greatly between one substrate and the other. However, it varies much less in the meta-hydroxylated substrates since this parameter describes the power of the nucleophilic attack, which is weaker in the meta OH. The large increase in the K(M)m of the meta-hydroxylated substrates might suggest that the phenolic OH takes part in substrate binding. Since this is a weaker nucleophil than the para-hydroxylated substrates, the binding

  14. Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle

    PubMed Central

    Paterson, Elyse K.; Fielder, Thomas J.; MacGregor, Grant R.; Ito, Shosuke; Wakamatsu, Kazumasa; Gillen, Daniel L.; Eby, Victoria; Boissy, Raymond E.; Ganesan, Anand K.

    2015-01-01

    The mechanisms that lead to variation in human skin and hair color are not fully understood. To better understand the molecular control of skin and hair color variation, we modulated the expression of Tyrosinase (Tyr), which controls the rate-limiting step of melanogenesis, by expressing a single-copy, tetracycline-inducible shRNA against Tyr in mice. Moderate depletion of TYR was sufficient to alter the appearance of the mouse coat in black, agouti, and yellow coat color backgrounds, even though TYR depletion did not significantly inhibit accumulation of melanin within the mouse hair. Ultra-structural studies revealed that the reduction of Tyr inhibited the accumulation of terminal melanosomes, and inhibited the expression of genes that regulate melanogenesis. These results indicate that color in skin and hair is determined not only by the total amount of melanin within the hair, but also by the relative accumulation of mature melanosomes. PMID:26619124

  15. Synthesis of adhesive peptides similar to those found in blue mussel (Mytilus edulis) using papain and tyrosinase.

    PubMed

    Numata, Keiji; Baker, Peter James

    2014-08-11

    The blue mussel (Mytilus edulis) foot protein 5 (Mefp-5) is an adhesive protein that is mainly composed of glycine, l-lysine, and 3,4-dihydroxy-l-phenylalanine (DOPA). Thousands of adhesive pads have been analyzed in previous studies, whereby it has been found that adhesion is largely achieved by the redox-chemistry of DOPA, and that l-lysine (approximately 20 mol %) affects the formation of molecular networks. While DOPA and lysine are essential for biomimetic adhesive design, the synthesis of copolymers containing DOPA is limited, in terms of yield, by the multiple reaction steps required. Here, we synthesized adhesive peptides containing DOPA and l-lysine via two enzymatic reactions, namely, chemoenzymatic synthesis of copolypeptides of l-tyrosine and l-lysine by Papaya peptidase I (papain), as well as the enzymatic conversion from l-tyrosine to DOPA by tyrosinase. The synthesis was characterized in terms of yield, degree of polymerization, and composition of the polypeptide. In addition, the conversion of tyrosine to DOPA by tyrosinase was evaluated quantitatively by nuclear magnetic resonance and amino acid analysis. The adhesive properties of the resulting peptides, consisting of DOPA, l-lysine, and l-tyrosine, were evaluated at various pH levels with different protonation/deprotonation states. Our results show that deprotonated DOPA is required for adhesive function, and the deprotonated primary amine group of lysine induces molecular networks by varying the elastic moduli of the adhesives. In this study, we demonstrate the benefit of combining multiple enzymatic reactions, including chemoenzymatic polymerization, in obtaining new types of peptide-based materials.

  16. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    PubMed Central

    2016-01-01

    Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons. PMID:27698666

  17. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites.

    PubMed

    Irizarry, Kristopher J L; Bryden, Randall L

    2016-01-01

    Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1) that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus . Our results provide insight into pigment phenotypes in pythons.

  18. Genetic and phenotypic heterogeneity in Chinese patients with Waardenburg syndrome type II.

    PubMed

    Yang, Shuzhi; Dai, Pu; Liu, Xin; Kang, Dongyang; Zhang, Xin; Yang, Weiyan; Zhou, Chengyong; Yang, Shiming; Yuan, Huijun

    2013-01-01

    Waardenburg Syndrome (WS) is an autosomal-dominant disorder characterized by sensorineural hearing loss and pigmentary abnormalities of the eyes, hair, and skin. Microphthalmia-associated transcription factor (MITF) gene mutations account for about 15% of WS type II (WS2) cases. To date, fewer than 40 different MITF gene mutations have been identified in human WS2 patients, and few of these were of Chinese descent. In this study, we report clinical findings and mutation identification in the MITF gene of 20 Chinese WS2 patients from 14 families. A high level of clinical variability was identified. Sensorineural hearing loss (17/20, 85.0%) and heterochromia iridum (20/20, 100.0%) were the most commonly observed clinical features in Chinese WS2 patients. Five affected individuals (5/20, 25.0%) had numerous brown freckles on the face, trunk, and limb extremities. Mutation screening of the MITF gene identified five mutations: c.20A>G, c.332C>T, c.647_649delGAA, c.649A>G, and c.763C>T. The total mutational frequency of the MITF gene was 21.4% (3/14), which is significantly higher than the 15.0% observed in the fair-skinned WS2 population. Our results indicate that MITF mutations are relatively common among Chinese WS2 patients.

  19. Control of lysosomal biogenesis and Notch-dependent tissue patterning by components of the TFEB-V-ATPase axis in Drosophila melanogaster.

    PubMed

    Tognon, Emiliana; Kobia, Francis; Busi, Ilaria; Fumagalli, Arianna; De Masi, Federico; Vaccari, Thomas

    2016-01-01

    In vertebrates, TFEB (transcription factor EB) and MITF (microphthalmia-associated transcription factor) family of basic Helix-Loop-Helix (bHLH) transcription factors regulates both lysosomal function and organ development. However, it is not clear whether these 2 processes are interconnected. Here, we show that Mitf, the single TFEB and MITF ortholog in Drosophila, controls expression of vacuolar-type H(+)-ATPase pump (V-ATPase) subunits. Remarkably, we also find that expression of Vha16-1 and Vha13, encoding 2 key components of V-ATPase, is patterned in the wing imaginal disc. In particular, Vha16-1 expression follows differentiation of proneural regions of the disc. These regions, which will form sensory organs in the adult, appear to possess a distinctive endolysosomal compartment and Notch (N) localization. Modulation of Mitf activity in the disc in vivo alters endolysosomal function and disrupts proneural patterning. Similar to our findings in Drosophila, in human breast epithelial cells we observe that impairment of the Vha16-1 human ortholog ATP6V0C changes the size and function of the endolysosomal compartment and that depletion of TFEB reduces ligand-independent N signaling activity. Our data suggest that lysosomal-associated functions regulated by the TFEB-V-ATPase axis might play a conserved role in shaping cell fate.

  20. Improved antimelanogenesis and antioxidant effects of polysaccharide from Cuscuta chinensis Lam seeds after enzymatic hydrolysis.

    PubMed

    Liu, Zi-Jun; Wang, Ya-Lan; Li, Qi-Ling; Yang, Liu

    2018-01-01

    Cuscuta chinensis polysaccharide (CPS) was extracted using hot water and enzymatically hydrolyzed C. chinensis polysaccharide (ECPS) was produced by the mannase enzymatic hydrolysis process. The purpose of this research was to investigate the antimelanogenic activity of ECPS and CPS in B16F10 melanoma cells. The in vitro antioxidant activity was assessed by their ferric iron reducing power and DPPH free radical scavenging activities. The molecular mass distribution of polysaccharides was determined using SEC-MALLS-RI. CPS was successfully enzymatically degraded using mannase and the weighted average molecular weights of CPS and ECPS were 434.6 kDa and 211.7 kDa. The results of biological activity assays suggested that the enzymatically hydrolyzed polysaccharide had superior antimelanogenic activity and antioxidant effect than the original polysaccharide. ECPS exhibited antimelanogenic activity by down-regulating the expression of tyrosinase, MITF, and TRP-1 without cytotoxic effects in B16F10 melanoma cells. In conclusion, ECPS have the potential to become a skin whitening product.

  1. A hybrid bioreactor based on insolubilized tyrosinase and laccase catalysis and microfiltration membrane remove pharmaceuticals from wastewater.

    PubMed

    Ba, Sidy; Haroune, Lounès; Soumano, Lassine; Bellenger, Jean-Phillipe; Jones, J Peter; Cabana, Hubert

    2018-06-01

    The increasing presence of pharmaceutical products (PPs) and other organic contaminants of emerging concern (CECs) in aquatic systems has become one of the major global environmental contamination concerns. Sewage treatment plants (STPs) are one of the major sources of PPs discharge into natural waters due to the deficiencies of conventional treatment processes to deal with these micropollutants. Numerous new treatment processes and technologies have been investigated for the removals of CECs in wastewaters with more or less success. In the present study, we investigated the efficiency of a hybrid bioreactor (HBR) of a combined crosslinked tyrosinase and laccase aggregates and hollow fiber microfiltration (MF) membrane to remove a mixture of 14 PPs from municipal wastewater at environmentally relevant concentration of 10 μg/L. After a 5-day continuous operation, the HBR achieved complete removal of all tested PPs. Results also highlight that these high performances result from a synergistic action of the MF membrane and the insoluble enzymes. The biocatalyst retained nearly 70% of its initial enzymatic activity over the treatment period. The removal of PPs is unlikely to result from their sole sorption on the membrane. Overall, the results suggest that the HBR is well suited to the biocatalysts (i.e. insolubilized tyrosinase and laccase). The results invite to further investigate how the HBR can be tailored with various types of enzymes and membranes for either specific or non-specific target substrates and to further explore the applicability of this technology for the continuous treatment of wastewater at environmentally relevant concentration of PPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. 4-Hydroxyestradiol is conjugated with thiols primarily at C-2: evidence from regiospecific displacement of tritium by rat liver microsomes or tyrosinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jellinck, P.H.

    1988-03-01

    4-Hydroxyestradiol bearing a 3H label specifically at C-2 was prepared chemically and incubated with male rat liver microsomes or mushroom tyrosinase. A very high proportion (80-90%) of the 3H was displaced from the labeled steroid when either glutathione or N-acetylcysteine was present, and tyrosinase was shown not to require NADPH as cofactor for this reaction. In either case, only negligible amounts (less than 3%) of the 3H radioactivity were found associated with water-soluble adducts in contrast to 3H-labeled 2-hydroxyestradiol, which gave rise to about 25% of such products. The effect of ascorbic acid on the microsomal reaction with regiospecifically labeledmore » estradiol, 2-hydroxyestradiol, and 4-hydroxyestradiol was also investigated, and the results are discussed in terms of the reactivity at different carbon atoms in ring A of the catechol estrogens. All the evidence points to conjugation of 4-hydroxyestradiol with glutathione or N-acetylcysteine at C-2 but not C-1 of this highly reactive catechol estrogen. Measuring the displacement of 3H as 3H2O from specific positions in the steroid ring provides a useful and sensitive method to assess the formation of adducts in cases where their isolation and characterization is particularly difficult.« less

  3. Malignant perivascular epithelioid cell neoplasm (PEComa) of the urinary bladder with TFE3 gene rearrangement: clinicopathologic, immunohistochemical, and molecular features.

    PubMed

    Williamson, Sean R; Bunde, Paula J; Montironi, Rodolfo; Lopez-Beltran, Antonio; Zhang, Shaobo; Wang, Mingsheng; Maclennan, Gregory T; Cheng, Liang

    2013-10-01

    Recently, a small subgroup of PEComas has been recognized to harbor rearrangements involving TFE3, a gene also involved in rearrangements in translocation-associated renal cell carcinomas and alveolar soft part sarcomas. The few TFE3 rearrangement-associated PEComas reported have exhibited distinctive pathologic characteristics contrasting to PEComas in general, including predominantly epithelioid nested or alveolar morphology and underexpression of muscle markers by immunohistochemistry. In this study, we report the clinicopathologic, immunohistochemical, and molecular features of a primary urinary bladder PEComa diagnosed by transurethral resection in a 55-year-old woman that clinically mimicked urothelial carcinoma. Light microscopy demonstrated mixed spindle cell and epithelioid morphology with the epithelioid component preferentially associated with blood vessels. Immunohistochemistry revealed positive staining for HMB45, tyrosinase, MiTF, cathepsin K, smooth muscle actin, and TFE3 protein. Fluorescence in situ hybridization for the TFE3 gene revealed a split signal pattern, indicating TFE3 rearrangement. X chromosome inactivation analysis demonstrated a clonal pattern despite the heterogenous appearance of the tumor. Unfortunately, despite surgical resection and sarcoma-directed therapy, the patient died of metastatic disease 12 months after diagnosis. This report adds to the known data regarding urinary bladder PEComas and PEComas with TFE3 rearrangement, indicating that both can pursue an aggressive course. Although the few reported TFE3-rearranged PEComas have predominantly lacked a spindle cell component and expression of smooth muscle actin and MiTF by immunohistochemistry, the findings in this study indicate that these features are sometimes present in TFE3-rearranged PEComas.

  4. The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation.

    PubMed

    Maurus, K; Hufnagel, A; Geiger, F; Graf, S; Berking, C; Heinemann, A; Paschen, A; Kneitz, S; Stigloher, C; Geissinger, E; Otto, C; Bosserhoff, A; Schartl, M; Meierjohann, S

    2017-09-07

    The MAPK pathway is activated in the majority of melanomas and is the target of therapeutic approaches. Under normal conditions, it initiates the so-called immediate early response, which encompasses the transient transcription of several genes belonging to the AP-1 transcription factor family. Under pathological conditions, such as continuous MAPK pathway overactivation due to oncogenic alterations occurring in melanoma, these genes are constitutively expressed. The consequences of a permanent expression of these genes are largely unknown. Here, we show that FOSL1 is the main immediate early AP-1 member induced by melanoma oncogenes. We first examined its role in established melanoma cells. We found that FOSL1 is involved in melanoma cell migration as well as cell proliferation and anoikis-independent growth, which is mediated by the gene product of its target gene HMGA1, encoding a multipotent chromatin modifier. As FOSL1 expression is increased in patient melanoma samples compared to nevi, we investigated the effect of enhanced FOSL1 expression on melanocytes. Intriguingly, we found that FOSL1 acts oncogenic and transforms melanocytes, enabling subcutaneous tumor growth in vivo. During the process of transformation, FOSL1 reprogrammed the melanocytes and downregulated MITF in a HMGA1-dependent manner. At the same time, AXL was upregulated, leading to a shift in the MITF/AXL balance. Furthermore, FOSL1 re-enforced pro-tumorigenic transcription factors MYC, E2F3 and AP-1. Together, this led to the enhancement of several growth-promoting processes, such as ribosome biogenesis, cellular detachment and pyrimidine metabolism. Overall, we demonstrate that FOSL1 is a novel reprogramming factor for melanocytes with potent tumor transformation potential.

  5. Screening of plant extracts for human tyrosinase inhibiting effects.

    PubMed

    Kim, M; Park, J; Song, K; Kim, H G; Koh, J-S; Boo, Y C

    2012-04-01

    Screening for tyrosinase (TYR) inhibitors potentially useful for control of skin pigmentation has been hampered by the limited availability of human TYR. To overcome this hurdle, we have established human embryonic kidney (HEK293)-TYR cells that constitutively express human TYR. In the current study, we assayed human TYR inhibition activities of 50 plant extracts using the lysates of transformed HEK293-TYR cells. The strongest inhibition of human TYR was shown by the extract of Vaccinium bracteatum Thunberg, followed by the extract of Morus bombycis Koidzumi. The former extract did not inhibit mushroom TYR activity whereas significant inhibition was observed with the latter extract, demonstrating the importance of using human TYR in the screening for human TYR inhibitors. Upon liquid-liquid partitioning of the extract from V. bracteatum, the active constituents were enriched in the ethyl acetate fraction, and the subsequent preparatory thin-layer chromatography identified p-coumaric acid (PCA) as the main active constituent. The hypo-pigmentation of PCA was verified in the MelanoDerm™ Skin Model. This study demonstrates that transformed HEK293-TYR cells could expedite the discovery of human TYR-specific inhibitors from natural sources which might be useful in the control of skin pigmentation. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. Genetic and Phenotypic Heterogeneity in Chinese Patients with Waardenburg Syndrome Type II

    PubMed Central

    Yang, Shuzhi; Dai, Pu; Liu, Xin; Kang, Dongyang; Zhang, Xin; Yang, Weiyan; Zhou, Chengyong; Yang, Shiming; Yuan, Huijun

    2013-01-01

    Waardenburg Syndrome (WS) is an autosomal-dominant disorder characterized by sensorineural hearing loss and pigmentary abnormalities of the eyes, hair, and skin. Microphthalmia-associated transcription factor (MITF) gene mutations account for about 15% of WS type II (WS2) cases. To date, fewer than 40 different MITF gene mutations have been identified in human WS2 patients, and few of these were of Chinese descent. In this study, we report clinical findings and mutation identification in the MITF gene of 20 Chinese WS2 patients from 14 families. A high level of clinical variability was identified. Sensorineural hearing loss (17/20, 85.0%) and heterochromia iridum (20/20, 100.0%) were the most commonly observed clinical features in Chinese WS2 patients. Five affected individuals (5/20, 25.0%) had numerous brown freckles on the face, trunk, and limb extremities. Mutation screening of the MITF gene identified five mutations: c.20A>G, c.332C>T, c.647_649delGAA, c.649A>G, and c.763C>T. The total mutational frequency of the MITF gene was 21.4% (3/14), which is significantly higher than the 15.0% observed in the fair-skinned WS2 population. Our results indicate that MITF mutations are relatively common among Chinese WS2 patients. PMID:24194866

  7. Wearable Wireless Tyrosinase Bandage and Microneedle Sensors: Toward Melanoma Screening.

    PubMed

    Ciui, Bianca; Martin, Aida; Mishra, Rupesh K; Brunetti, Barbara; Nakagawa, Tatsuo; Dawkins, Thomas J; Lyu, Mengjia; Cristea, Cecilia; Sandulescu, Robert; Wang, Joseph

    2018-04-01

    Wearable bendable bandage-based sensor and a minimally invasive microneedle biosensor are described toward rapid screening of skin melanoma. These wearable electrochemical sensors are capable of detecting the presence of the tyrosinase (TYR) enzyme cancer biomarker in the presence of its catechol substrate, immobilized on the transducer surface. In the presence of the surface TYR biomarker, the immobilized catechol is rapidly converted to benzoquinone that is detected amperometrically, with a current signal proportional to the TYR level. The flexible epidermal bandage sensor relies on printing stress-enduring inks which display good resiliency against mechanical deformations, whereas the hollow microneedle device is filled with catechol-coated carbon paste for assessing tissue TYR levels. The bandage sensor can thus be used directly on the skin whereas microneedle device can reach melanoma tissues under the skin. Both wearable sensors are interfaced to an ultralight flexible electronic board, which transmits data wirelessly to a mobile device. The analytical performance of the resulting bandage and microneedle sensing systems are evaluated using TYR-containing agarose phantom gel and porcine skin. The new integrated conformal portable sensing platforms hold considerable promise for decentralized melanoma screening, and can be extended to the screening of other key biomarkers in skin moles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Use of mushroom tyrosinase to introduce michaelis-menten enzyme kinetics to biochemistry students.

    PubMed

    Flurkey, William H; Inlow, Jennifer K

    2017-05-01

    An inexpensive enzyme kinetics laboratory exercise for undergraduate biochemistry students is described utilizing tyrosinase from white button mushrooms. The exercise can be completed in one or two three-hour lab sessions. The optimal amounts of enzyme, substrate (catechol), and inhibitor (kojic acid) are first determined, and then kinetic data is collected in the absence and presence of the inhibitor. A Microsoft Excel template is used to plot the data and to fit the Michaelis-Menten equation to the data to determine the kinetic parameters V max and K m . The exercise is designed to clarify and reinforce concepts covered in an accompanying biochemistry lecture course. It has been used with positive results in an upper-level biochemistry laboratory course for junior/senior students majoring in chemistry or biology. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):270-276, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  9. Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils

    PubMed Central

    Silva, Natália de F.; Andrade, Eloísa Helena A.; Gratieri, Tais; Setzer, William N.; Maia, José Guilherme S.

    2017-01-01

    The essential oils (EOs) of the aerial parts of Lippia origanoides (LiOr), collected in different localities of the Amazon region, were obtained by hydrodistillation and analyzed by GC and CG-MS. Principle component analysis (PCA) based on chemical composition grouped the oils in four chemotypes rich in mono- and sesquiterpenoids. Group I was characterized by 1,8-cineole and α-terpineol (LiOr-1 and LiOr-4) and group II by thymol (LiOr-2). The oil LiOr-3 showed β-caryophyllene, α-phellandrene and β-phellandrene as predominant and LiOr-5 was rich in (E)-nerolidol and β-caryophyllene. All samples were evaluated for antioxidant activity and inhibition of tyrosinase in vitro and in silico. The highest antioxidant activity by the DPPH free radical method was observed in LiOr-2 and LiOr-5 oils (132.1 and 82.7 mg TE∙mL-1, respectively). The tyrosinase inhibition potential was performed using L-tyrosine and L-DOPA as substrates and all samples were more effective in the first step of oxidation. The inhibition by samples LiOr-2 and LiOr-4 were 84.7% and 62.6%, respectively. The samples LiOr-1, LiOr-4 and LiOr-5 displayed an interaction with copper (II) ion with bathochromic shift around 15 nm. In order to elucidate the mechanism of inhibition of the main compounds, a molecular docking study was carried out. All compounds displayed an interaction between an oxygen and Cu or histidine residues with distances less than 4 Å. The best docking energies were observed with thymol and (E)-nerolidol (-79.8 kcal.mol-1), which suggested H-bonding interactions with Met281 and His263 (thymol) and His259, His263 ((E)-nerolidol). PMID:28459864

  10. Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils.

    PubMed

    da Silva, Alessandra P; Silva, Natália de F; Andrade, Eloísa Helena A; Gratieri, Tais; Setzer, William N; Maia, José Guilherme S; da Silva, Joyce Kelly R

    2017-01-01

    The essential oils (EOs) of the aerial parts of Lippia origanoides (LiOr), collected in different localities of the Amazon region, were obtained by hydrodistillation and analyzed by GC and CG-MS. Principle component analysis (PCA) based on chemical composition grouped the oils in four chemotypes rich in mono- and sesquiterpenoids. Group I was characterized by 1,8-cineole and α-terpineol (LiOr-1 and LiOr-4) and group II by thymol (LiOr-2). The oil LiOr-3 showed β-caryophyllene, α-phellandrene and β-phellandrene as predominant and LiOr-5 was rich in (E)-nerolidol and β-caryophyllene. All samples were evaluated for antioxidant activity and inhibition of tyrosinase in vitro and in silico. The highest antioxidant activity by the DPPH free radical method was observed in LiOr-2 and LiOr-5 oils (132.1 and 82.7 mg TE∙mL-1, respectively). The tyrosinase inhibition potential was performed using L-tyrosine and L-DOPA as substrates and all samples were more effective in the first step of oxidation. The inhibition by samples LiOr-2 and LiOr-4 were 84.7% and 62.6%, respectively. The samples LiOr-1, LiOr-4 and LiOr-5 displayed an interaction with copper (II) ion with bathochromic shift around 15 nm. In order to elucidate the mechanism of inhibition of the main compounds, a molecular docking study was carried out. All compounds displayed an interaction between an oxygen and Cu or histidine residues with distances less than 4 Å. The best docking energies were observed with thymol and (E)-nerolidol (-79.8 kcal.mol-1), which suggested H-bonding interactions with Met281 and His263 (thymol) and His259, His263 ((E)-nerolidol).

  11. Development of Amperometric Biosensors Based on Nanostructured Tyrosinase-Conducting Polymer Composite Electrodes

    PubMed Central

    Lupu, Stelian; Lete, Cecilia; Balaure, Paul Cătălin; Caval, Dan Ion; Mihailciuc, Constantin; Lakard, Boris; Hihn, Jean-Yves; del Campo, Francisco Javier

    2013-01-01

    Bio-composite coatings consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and tyrosinase (Ty) were successfully electrodeposited on conventional size gold (Au) disk electrodes and microelectrode arrays using sinusoidal voltages. Electrochemical polymerization of the corresponding monomer was carried out in the presence of various Ty amounts in aqueous buffered solutions. The bio-composite coatings prepared using sinusoidal voltages and potentiostatic electrodeposition methods were compared in terms of morphology, electrochemical properties, and biocatalytic activity towards various analytes. The amperometric biosensors were tested in dopamine (DA) and catechol (CT) electroanalysis in aqueous buffered solutions. The analytical performance of the developed biosensors was investigated in terms of linear response range, detection limit, sensitivity, and repeatability. A semi-quantitative multi-analyte procedure for simultaneous determination of DA and CT was developed. The amperometric biosensor prepared using sinusoidal voltages showed much better analytical performance. The Au disk biosensor obtained by 50 mV alternating voltage amplitude displayed a linear response for DA concentrations ranging from 10 to 300 μM, with a detection limit of 4.18 μM. PMID:23698270

  12. Synthesis of aryl pyrazole via Suzuki coupling reaction, in vitro mushroom tyrosinase enzyme inhibition assay and in silico comparative molecular docking analysis with Kojic acid.

    PubMed

    Channar, Pervaiz Ali; Saeed, Aamer; Larik, Fayaz Ali; Batool, Bakhtawar; Kalsoom, Saima; Hasan, M M; Erben, Mauricio F; El-Seedi, Hesham R; Ali, Musrat; Ashraf, Zaman

    2018-04-30

    Aryl pyrazoles are well recognized class of heterocyclic compounds found in several commercially available drugs. Owing to their significance in medicinal chemistry, in this current account we have synthesized a series of suitably substituted aryl pyrazole by employing Suzuki cross-coupling reaction. All compounds were evaluated for inhibition of mushroom tyrosinase enzyme both in vitro and in silico. Compound 3f (IC 50  = 1.568 ± 0.01 µM) showed relatively better potential compared to reference kojic acid (IC 50  = 16.051 ± 1.27 µM). A comparative docking studies showed that compound 3f have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-6.90 kcal/mol) as compared to Kojic acid. The 4-methoxy group in compound 3f shows 100% interaction with Cu. Compound 3f displayed hydrogen binding interaction with His61 and His94 at distance of 1.71 and 1.74 Å which might be responsible for higher activity compared to Kojic acid. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Comprehensive analysis of melanogenesis and proliferation potential of melanocyte lineage in solar lentigines.

    PubMed

    Yamada, Takaaki; Hasegawa, Seiji; Inoue, Yu; Date, Yasushi; Arima, Masaru; Yagami, Akiko; Iwata, Yohei; Abe, Masamichi; Takahashi, Masayuki; Yamamoto, Naoki; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko; Akamatsu, Hirohiko

    2014-03-01

    Solar lentigines (SLs) are characterized by hyperpigmented macules, commonly seen on sun-exposed areas of the skin. Although it has been reported that an increase in the number of melanocytes and epidermal melanin content was observed in the lesions, the following questions remain to be answered: (1) Is acceleration of melanogenesis in the epidermis caused by an increased number of melanocytes or the high melanogenic potential of each melanocyte? (2) Why does the number of melanocytes increase? To elucidate the pathogenic mechanism of SLs by investigating the number, melanogenic potential and proliferation status of the melanocyte lineage in healthy skin and SL lesions. Immunostaining for melanocyte lineage markers (tyrosinase, MART-1, MITF, and Frizzled-4) and a proliferation marker, Ki67, was performed on skin sections, and the obtained images were analyzed by image analysis software. The expression level of tyrosinase to MART-1 of each melanocyte was significantly higher in SL lesions than healthy skin. The numbers of melanocytes in the epidermis, melanoblasts in the hair follicular infundibulum and melanocyte stem cells in the bulge region were increased in SL; however, no significant difference was observed in the Ki67-positive rate of these cells. The melanogenic potential of each melanocyte was elevated in SL lesions. It was suggested that the increased number of melanocytes in the SL epidermis might be attributed to the abnormal increase of melanocyte stem cells in the bulge. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Melanogenesis inhibition in mice using a low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser: a pilot study.

    PubMed

    Nam, Jae-Hui; Min, Joon Hong; Kim, Wang-Kyun; Yim, Sunmin; Kim, Won-Serk

    2017-07-01

    A low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser, or laser toning, has yielded favorable outcomes in various benign pigmented disorders. However, the exact mechanism of action of laser toning has not been fully elucidated. We sought to determine the inhibitory effect of laser toning on melanogenesis and to assess how laser passes influence the outcomes. To produce perceptible pigmentation, nine HRM-2 melanin-possessing hairless mice were treated with ultraviolet (UV) B radiation on the dorsal skin. This was followed by zero, two, four, or six passes of laser toning twice in 2 weeks on each designated quadrant. The spectrophotometric values and pigmentation-related protein expressions were measured. Pigment changes were found in the mice skin using the Fontana-Masson stain for histopathological analysis. Four- and six-pass laser toning significantly improved the lightness compared to that in the unirradiated control (p < 0.002). The Fontana-Masson stain showed that melanin was considerably decreased in laser-irradiated skin. As the number of laser passes increased, the expression of tyrosinase decreased (p < 0.008). The following parameters also decreased in proportion to the number of laser passes: MITF, TRP-1, TRP-2, p-ERK, and p-Akt. In contrast, TGF-β increased in proportion to the number of laser passes. However, the changes in these six proteins were not statistically significant. Our study demonstrates that laser toning improves skin pigmentation with increased number of passes in a dose-dependent manner. This effect is mediated by tyrosinase inhibition.

  15. Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals.

    PubMed

    Jantakee, Kanyaluck; Tragoolpua, Yingmanee

    2015-01-16

    Honey is a natural product obtained from the nectar that is collected from flowers by bees. It has several properties, including those of being food and supplementary diet, and it can be used in cosmetic products. Honey imparts pharmaceutical properties since it has antibacterial and antioxidant activities. The antibacterial and antioxidant activities of Thai honey were investigated in this study. The honey from longan flower (source No. 1) gave the highest activity on MRSA when compared to the other types of honey, with a minimum inhibitory concentration of 12.5% (v/v) and minimum bactericidal concentration of 25% (v/v). Moreover, it was found that MRSA isolate 49 and S. aureus were completely inhibited by the 50% (v/v) longan honey (source No. 1) at 8 and 20 hours of treatment, respectively. Furthermore, it was observed that the honey from coffee pollen (source No. 4) showed the highest phenolic and flavonoid compounds by 734.76 mg gallic/kg of honey and 178.31 mg quercetin/kg of honey, respectively. The antioxidant activity of the honey obtained from coffee pollen was also found to be the highest, when investigated using FRAP and DPPH assay, with 1781.77 mg FeSO4•7H2O/kg of honey and 86.20 mg gallic/kg of honey, respectively. Additionally, inhibition of tyrosinase enzyme was found that honey from coffee flower showed highest inhibition by 63.46%. Honey demonstrates tremendous potential as a useful source that provides anti-free radicals, anti-tyrosinase and anti-bacterial activity against pathogenic bacteria causing skin diseases.

  16. Reactivity of dinuclear copper(II) complexes towards melanoma cells: Correlation with its stability, tyrosinase mimicking and nuclease activity.

    PubMed

    Nunes, Cléia Justino; Borges, Beatriz Essenfelder; Nakao, Lia Sumie; Peyroux, Eugénie; Hardré, Renaud; Faure, Bruno; Réglier, Marius; Giorgi, Michel; Prieto, Marcela Bach; Oliveira, Carla Columbano; Da Costa Ferreira, Ana M

    2015-08-01

    In this work, the influence of two new dinuclear copper(II) complexes in the viability of melanoma cells (B16F10 and TM1MNG3) was investigated, with the aim of verifying possible correlations between their cytotoxicity and their structure. One of the complexes had a polydentate dinucleating amine-imine ligand (complex 2), and the other a tridentate imine and a diamine-bridging ligand (complex 4). The analogous mononuclear copper(II) species (complexes 1 and 3, respectively) were also prepared for comparative studies. Crystal structure determination of complex 2 indicated a square-based pyramidal geometry around each copper, coordinated to three N atoms from the ligand and the remaining sites being occupied by either solvent molecules or counter-ions. Complex 4 has a tetragonal geometry. Interactions of these complexes with human albumin protein (HSA) allowed an estimation of their relative stabilities. Complementary studies of their reactivity towards DNA indicated that all of them are able of causing significant oxidative damage, with single and double strand cleavages, in the presence of hydrogen peroxide. However, nuclease activity of the dinuclear species was very similar and much higher than that of the corresponding mononuclear compounds. Although complex 2, with a more flexible structure, exhibits a much higher tyrosinase activity than complex 4, having a more rigid environment around the metal ion, both complexes showed comparable cytotoxicity towards melanoma cells. Corresponding mononuclear complexes showed to be remarkably less reactive as tyrosinase mimics as well as cytotoxic agents. Moreover, the dinuclear complexes showed higher cytotoxicity towards more melanogenic cells. The obtained results indicated that the structure of these species is decisive for its activity towards the malignant tumor cells tested. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Evaluation of tyrosinase inhibitory and antioxidant activities of Angelica dahurica root extracts for four different probiotic bacteria fermentations.

    PubMed

    Wang, Guey-Horng; Chen, Chih-Yu; Tsai, Teh-Hua; Chen, Ching-Kuo; Cheng, Chiu-Yu; Huang, Yi-Hsin; Hsieh, Min-Chi; Chung, Ying-Chien

    2017-06-01

    Angelica dahurica root (ADR), which shows strong antioxidant activity, is used in Chinese medicine. This study evaluated the tyrosinase inhibitory and antioxidant activities of ADR extracts fermented by four different probiotic bacteria: Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus, and Lactobacillus brevis. The ADR was first extracted using distilled water, 70% ethanol, and ethyl acetate, and then fermented by probiotic bacteria. The physiological characteristics of these fermented extracts, namely the antityrosinase activity, antioxidant activity, phenolic composition, and phenolic content, were evaluated and compared with those of unfermented extracts. Results showed that the water extracts after fermentation by probiotic bacteria exhibited the most favorable physiological characteristics. Among the extracts fermented by these probiotic bacteria, L. acidophilus-fermented ADR extract showed the most favorable physiological characteristics. The optimal IC 50 values for antityrosinase activity, DPPH radical scavenging activity, and reducing power for L. acidophilus-fermented ADR extract were 0.07 ± 0.03, 0.12 ± 0.01, and 0.68 ± 0.06 mg/mL, respectively. Furthermore, the physiological activities of fermented extracts were considerably higher than those of unfermented extracts. The tyrosinase inhibition and melanin content of B16F10 melanoma cells, and cytotoxicity effects of the fermented ADR extracts on B16F10 cells were also evaluated. We found that the L. acidophilus-fermented ADR extract at 1.5 mg/mL showed significant cellular antityrosinase activity with low melanin production in B16F10 cells and was noncytotoxic to B16F10 cells. Among all probiotic bacteria, water-extracted ADR fermented by L. acidophilus for 48 h was found to be the best skincare agent or antioxidant agent. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Two Novel Tyrosinase Inhibitory Sesquiterpenes Induced by CuCl2 from a Marine-Derived Fungus Pestalotiopsis sp. Z233

    PubMed Central

    Wu, Bin; Wu, Xiaodan; Sun, Min; Li, Minhui

    2013-01-01

    Two new sesquiterpenes, 1β,5α,6α,14-tetraacetoxy-9α-benzoyloxy-7βH-eudesman-2β,11-diol (1) and 4α,5α-diacetoxy-9α-benzoyloxy-7βH-eudesman-1β,2β,11,14-tetraol (2), were produced as stress metabolites in the cultured mycelia of Pestalotiopsis sp. Z233 isolated from the algae Sargassum horneri in response to abiotic stress elicitation by CuCl2. Their structures were established by spectroscopic means. New compounds 1 and 2 showed tyrosinase inhibitory activities with IC50 value of 14.8 µM and 22.3 µM. PMID:23917067

  19. Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp. Z233.

    PubMed

    Wu, Bin; Wu, Xiaodan; Sun, Min; Li, Minhui

    2013-08-02

    Two new sesquiterpenes, 1β,5α,6α,14-tetraacetoxy-9α-benzoyloxy-7β H-eudesman-2β,11-diol (1) and 4α,5α-diacetoxy-9α-benzoyloxy-7βH-eudesman-1β,2β,11, 14-tetraol (2), were produced as stress metabolites in the cultured mycelia of Pestalotiopsis sp. Z233 isolated from the algae Sargassum horneri in response to abiotic stress elicitation by CuCl2. Their structures were established by spectroscopic means. New compounds 1 and 2 showed tyrosinase inhibitory activities with IC50 value of 14.8 µM and 22.3 µM.

  20. Inhibitory Effects of (2'R)-2',3'-dihydro-2'-(1-hydroxy-1-methylethyl)-2,6'-bibenzofuran-6,4'-diol on Mushroom Tyrosinase and Melanogenesis in B16-F10 Melanoma Cells.

    PubMed

    Zhu, Jing-Jie; Yan, Gui-Rui; Xu, Zhi-Jian; Hu, Xiao; Wang, Gai-Hong; Wang, Ting; Zhu, Wei-Liang; Hou, Ai-Jun; Wang, He-Yao

    2015-07-01

    (2'R)-2',3'-Dihydro-2'-(1-hydroxy-1-methylethyl)-2,6'-bibenzofuran-6,4'-diol (DHMB) is a natural compound extracted from Morus notabilis. It was found that DHMB acts as a competitive inhibitor against mushroom tyrosinase with a Ki value of 14.77 μM. Docking results further indicated that it could form strong interactions with one copper ion with a distance of 2.7 Å, suggesting the mechanism of inhibition might be due to chelating copper ions in the active site. Furthermore, melanin production in B16-F10 murine melanoma cells was significantly inhibited by DHMB in a concentration-dependent manner without cytotoxicity. The results of western blotting also showed that DHMB decreased 3-isobuty-1-methxlzanthine-induced mature tyrosinase expression. Taken together, these findings indicated that DHMB may be a new promising pigmentation-altering agent for agriculture, cosmetic, and therapeutic applications. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b: cloning, sequencing, and expression of the tyrosinase gene mepA.

    PubMed Central

    Mercado-Blanco, J; García, F; Fernández-López, M; Olivares, J

    1993-01-01

    Melanin production by Rhizobium meliloti GR4 is linked to nonsymbiotic plasmid pRmeGR4b (140 MDa). Transfer of this plasmid to GR4-cured derivatives or to Agrobacterium tumefaciens enables these bacteria to produce melanin. Sequence analysis of a 3.5-kb PstI fragment of plasmid pRmeGR4b has revealed the presence of a open reading frame 1,481-bp that codes for a protein whose sequence shows strong homology to two conserved regions involved in copper binding in tyrosinases and hemocyanins. In vitro-coupled transcription-translation experiments showed that this open reading frame codes for a 55-kDa polypeptide. Melanin production in GR4 is not under the control of the RpoN-NifA regulatory system, unlike that in R. leguminosarum bv. phaseoli 8002. The GR4 tyrosinase gene could be expressed in Escherichia coli under the control of the lacZ promoter. For avoiding confusion with mel genes (for melibiose), a change of the name of the previously reported mel genes of R. leguminosarum bv. phaseoli and other organisms to mep genes (for melanin production) is proposed. Images PMID:8366027

  2. Insights into the mechanism of Piper betle leaf-induced contact leukomelanosis using C57BL/6 mice as the animal model and tyrosinase assays.

    PubMed

    Liu, Han-Nan; Liu, Tsung-Yun; Chen, Chih-Chiang; Lee, Ding-Dar; Chang, Yun-Ting

    2011-08-01

    Steamed piper betle leaves (PBL) were once used by many Taiwanese women to treat pigment disorders on the face. Most women claimed a quick, favourable response at first, only to be overcome with facial leukomelanosis later. C57BL/6 mice were randomly assigned to different groups to study if PBL could cause the following effects: contact dermatitis, leukomelanosis, or hair bleaching. Intracellular melanin content was measured by tyrosinase assays. Most steamed PBL-treated mice developed contact dermatitis and postinflammatory hyperpigmentation (PIH) on their shaved backs. About half developed bleached hair to varying extents. The steamed PBL did not only bleach the hairs, but also, unexpectedly, stimulated melanocyte replication, indicated by the fact that the number of functional melanocytes in the tail epidermis increased significantly after treatment (P = 0.007). Using tyrosinase assays PBL extract at the undiluted concentration showed limited inhibition of melanogenesis, probably via melanocytotoxicity. The leukomelanosis observed in patients might be the consequence of PIH combined with a mixed reaction (hyper- and hypopigmentation), probably due to the different volatile chemicals that surface after steaming the PBL. This conflicting mixed reaction suggests that counteractive ingredients might exist in PBL. PBL, if purified, might be a promising source of a novel bleaching agent. © 2011 The Authors; Australasian Journal of Dermatology © 2011 The Australasian College of Dermatologists.

  3. Assessment of Antioxidant and Phenolic Compound Concentrations as well as Xanthine Oxidase and Tyrosinase Inhibitory Properties of Different Extracts of Pleurotus citrinopileatus Fruiting Bodies

    PubMed Central

    Alam, Nuhu; Yoon, Ki Nam; Lee, Kyung Rim; Kim, Hye Young; Shin, Pyung Gyun; Cheong, Jong Chun; Yoo, Young Bok; Shim, Mi Ja; Lee, Min Woong

    2011-01-01

    Cellular damage caused by reactive oxygen species has been implicated in several diseases, thus establishing a significant role for antioxidants in maintaining human health. Acetone, methanol, and hot water extracts of Pleurotus citrinopileatus were evaluated for their antioxidant activities against β-carotene-linoleic acid and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, reducing power, ferrous ion-chelating abilities, and xanthine oxidase inhibitory activities. In addition, the tyrosinase inhibitory effects and phenolic compound contents of the extracts were also analyzed. Methanol and acetone extracts of P. citrinopileatus showed stronger inhibition of β-carotene-linoleic acid compared to the hot water extract. Methanol extract (8 mg/mL) showed a significantly high reducing power of 2.92 compared to the other extracts. The hot water extract was more effective than the acetone and methanole extracts for scavenging DPPH radicals. The strongest chelating effect (92.72%) was obtained with 1.0 mg/mL of acetone extract. High performance liquid chromatography analysis detected eight phenolic compounds, including gallic acid, protocatechuic acid, chlorogenic acid, ferulic acid, naringenin, hesperetin, formononetin, and biochanin-A, in an acetonitrile and hydrochloric acid (5 : 1) solvent extract. Xanthine oxidase and tyrosinase inhibitory activities of the acetone, methanol, and hot water extracts increased with increasing concentration. This study suggests that fruiting bodies of P. citrinopileatus can potentially be used as a readily accessible source of natural antioxidants. PMID:22783067

  4. Global patterns of diversity and selection in human tyrosinase gene.

    PubMed

    Hudjashov, Georgi; Villems, Richard; Kivisild, Toomas

    2013-01-01

    Global variation in skin pigmentation is one of the most striking examples of environmental adaptation in humans. More than two hundred loci have been identified as candidate genes in model organisms and a few tens of these have been found to be significantly associated with human skin pigmentation in genome-wide association studies. However, the evolutionary history of different pigmentation genes is rather complex: some loci have been subjected to strong positive selection, while others evolved under the relaxation of functional constraints in low UV environment. Here we report the results of a global study of the human tyrosinase gene, which is one of the key enzymes in melanin production, to assess the role of its variation in the evolution of skin pigmentation differences among human populations. We observe a higher rate of non-synonymous polymorphisms in the European sample consistent with the relaxation of selective constraints. A similar pattern was previously observed in the MC1R gene and concurs with UV radiation-driven model of skin color evolution by which mutations leading to lower melanin levels and decreased photoprotection are subject to purifying selection at low latitudes while being tolerated or even favored at higher latitudes because they facilitate UV-dependent vitamin D production. Our coalescent date estimates suggest that the non-synonymous variants, which are frequent in Europe and North Africa, are recent and have emerged after the separation of East and West Eurasian populations.

  5. [Study of gene mutation and pathogenetic mechanism for a family with Waardenburg syndrome].

    PubMed

    Chen, Hongsheng; Liao, Xinbin; Liu, Yalan; He, Chufeng; Zhang, Hua; Jiang, Lu; Feng, Yong; Mei, Lingyun

    2017-08-10

    To explore the pathogenetic mechanism of a family affected with Waardenburg syndrome. Clinical data of the family was collected. Potential mutation of the MITF, SOX10 and SNAI2 genes were screened. Plasmids for wild type (WT) and mutant MITF proteins were constructed to determine their exogenous expression and subcellular distribution by Western blotting and immunofluorescence assay, respectively. A heterozygous c.763C>T (p.R255X) mutation was detected in exon 8 of the MITF gene in the proband and all other patients from the family. No pathological mutation of the SOX10 and SNAI2 genes was detected. The DNA sequences of plasmids of MITF wild and mutant MITF R255X were confirmed. Both proteins were detected with the expected size. WT MITF protein only localized in the nucleus, whereas R255X protein showed aberrant localization in the nucleus as well as the cytoplasm. The c.763C>T mutation of the MITF gene probably underlies the disease in this family. The mutation can affect the subcellular distribution of MITF proteins in vitro, which may shed light on the molecular mechanism of Waardenburg syndrome caused by mutations of the MITF gene.

  6. The Investigation of Electrochemistry Behaviors of Tyrosinase Based on Directly-Electrodeposited Grapheneon Choline-Gold Nanoparticles.

    PubMed

    He, Yaping; Yang, Xiaohui; Han, Quan; Zheng, Jianbin

    2017-06-23

    A novel catechol (CA) biosensor was developed by embedding tyrosinase (Tyr) onto in situ electrochemical reduction graphene (EGR) on choline-functionalized gold nanoparticle (AuNPs-Ch) film. The results of UV-Vis spectra indicated that Tyr retained its original structure in the film, and an electrochemical investigation of the biosensor showed a pair of well-defined, quasi-reversible redox peaks with E pa = -0.0744 V and E pc = -0.114 V (vs. SCE) in 0.1 M, pH 7.0 sodium phosphate-buffered saline at a scan rate of 100 mV/s. The transfer rate constant k s is 0.66 s -1 . The Tyr-EGR/AuNPs-Ch showed a good electrochemical catalytic response for the reduction of CA, with the linear range from 0.2 to 270 μM and a detection limit of 0.1 μM (S/N = 3). The apparent Michaelis-Menten constant was estimated to be 109 μM.

  7. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9.

    PubMed

    Honda, Arata; Hirose, Michiko; Sankai, Tadashi; Yasmin, Lubna; Yuzawa, Kazuaki; Honsho, Kimiko; Izu, Haruna; Iguchi, Atsushi; Ikawa, Masahito; Ogura, Atsuo

    2015-01-01

    Targeted genome editing of nonrodent mammalian species has provided the potential for highly accurate interventions into gene function in humans and the generation of useful animal models of human diseases. Here we show successful clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas)-mediated gene targeting via circular plasmid injection in rabbits. The rabbit tyrosinase gene (TYR) was effectively disrupted, and we confirmed germline transmission by pronuclear injection of a circular plasmid expressing humanized Cas9 (hCas9) and single-guide RNA. Direct injection into pronuclear stage zygotes was possible following an in vitro validation assay. Neither off-target mutagenesis nor hCas9 transgenesis was detected in any of the genetically targeted pups and embryos examined. Gene targeting with this rapid and simplified strategy will help accelerate the development of translational research using other nonrodent mammalian species.

  8. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9

    PubMed Central

    Honda, Arata; Hirose, Michiko; Sankai, Tadashi; Yasmin, Lubna; Yuzawa, Kazuaki; Honsho, Kimiko; Izu, Haruna; Iguchi, Atsushi; Ikawa, Masahito; Ogura, Atsuo

    2014-01-01

    Targeted genome editing of nonrodent mammalian species has provided the potential for highly accurate interventions into gene function in humans and the generation of useful animal models of human diseases. Here we show successful clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas)-mediated gene targeting via circular plasmid injection in rabbits. The rabbit tyrosinase gene (TYR) was effectively disrupted, and we confirmed germline transmission by pronuclear injection of a circular plasmid expressing humanized Cas9 (hCas9) and single-guide RNA. Direct injection into pronuclear stage zygotes was possible following an in vitro validation assay. Neither off-target mutagenesis nor hCas9 transgenesis was detected in any of the genetically targeted pups and embryos examined. Gene targeting with this rapid and simplified strategy will help accelerate the development of translational research using other nonrodent mammalian species. PMID:25195632

  9. Biophenols: Enzymes (β-secretase, Cholinesterases, histone deacetylase and tyrosinase) inhibitors from olive (Olea europaea L.).

    PubMed

    Omar, Syed Haris; Scott, Christopher J; Hamlin, Adam S; Obied, Hassan K

    2018-07-01

    The focus of this study was on inhibition of enzymes involved in the pathogenesis Alzheimer's disease (AD) including prime amyloid beta (Aβ) producing enzyme (β-secretase: BACE-1) and disease progression enzymes including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), histone deacetylase (HDAC), and tyrosinase along with the catecholamine L-DOPA, by using olive biophenols. Here we report the strongest inhibition of BACE-1 from rutin (IC 50 : 3.8 nM) followed by verbascoside (IC 50 : 6.3 nM) and olive fruit extract (IC 50 : 18 ng), respectively. Olive biophenol, quercetin exhibited strongest enzyme inhibitory activity against tyrosinase (IC 50 : 10.73 μM), BChE (IC 50 : 19.08 μM), AChE (IC 50 : 55.44 μM), and HDAC (IC 50 : 105.1 μM) enzymes. Furthermore, olive biophenol verbascoside (IC 50 : 188.6 μM), and hydroxytyrosol extreme extract (IC 50 : 66.22 μg) were showed the highest levels of inhibition against the HDAC enzyme. Neuroprotective capacity against levodopa-induced toxicity in neuroblastoma (SH-SY5Y) cells of olive biophenols were assessed, where rutin indicated the highest neuroprotection (74%), followed by caffeic acid (73%), and extract hydroxytyrosol extreme (97%), respectively. To the best of our knowledge, this is the first in vitro report on the enzymes inhibitory activity of olive biophenols. Taken together, our in vitro results data suggest that olive biophenols could be a promising natural inhibitor, which may reduce the enzyme-induced toxicity associated with the oxidative stress involved in the progression of AD. Acetylthiocholine iodide (PubChem CID: 74629); S-Butyrylthiocholine chloride (PubChem CID: 3015121); Caffeic acid (PubChem CID: 689043); Dimethyl sulfoxide (DMSO) (PubChem: 679); L-3,4-Dihydroxyphenylalanine (L-DOPA) (PubChem CID: 6047); 5,5'-Dithiobis (2-nitrobenzoic acid) (DTNB) (PubChem CID: 6254); Epigallocatechin gallate (EGCG) (PubChem CID: 65064); Ethylenediamine tetraacetic acid (EDTA) (Pub

  10. Safety assessment, biological effects, and mechanisms of Myrica rubra fruit extract for anti-melanogenesis, anti-oxidation, and free radical scavenging abilities on melanoma cells.

    PubMed

    Juang, Lih-Jeng; Gao, Xiang-Yu; Mai, Shou-Ting; Lee, Cheng-Hung; Lee, Ming-Chung; Yao, Chao-Ling

    2018-02-20

    Currently, the cosmetic and medical industries are paying considerable attention to solve or prevent skin damage or diseases, such as hyperpigmentation and oxidation and free radical damage. In this study, the effective compounds in Myrica rubra fruit were extracted and studied the biological effects of these M. rubra fruit extracts. In this study, we extracted M. rubra fruit using solutions with various ratios of water to ethanol (100:0, 50:50, 5:95) and studied the anti-melanogenesis, anti-oxidation and radical scavenging effects of these M. rubra fruit extracts on two melanoma cell lines: mouse melanoma (B16-F0) and human melanoma (A2058). The cytotoxicity, melanin synthesis, mushroom and cellular tyrosinase activities, enzyme kinetics, melanogenesis-related gene expression, melanogenesis-related protein secretion, radical DPPH scavenging activity and ROS inhibition after treatment with M. rubra fruit extracts were determined. The results showed that the water extract of M. rubra fruit was less cytotoxic to the melanoma cell lines, effectively inhibited melanin synthesis and tyrosinase activity and down-regulated the gene expression and protein secretion of MITF and TRP-1. In addition, the M. rubra fruit extracts also showed the abilities to scavenge DPPH free radicals and suppress ROS production. Finally, the effective compounds in the water extract were Myricetin-O-deoxyhexoside, Quercetin-O-deoxyhexoside, and Kaempferol-O-hexoside determined by LC/MS/MS assay. Overall, the water extract of M. rubra fruit is a safe and effective melanin inhibitor and anti-oxidant and can be applied widely in the fields of cosmetics and medicine. © 2018 Wiley Periodicals, Inc.

  11. Clinical and genetic investigation of families with type II Waardenburg syndrome

    PubMed Central

    CHEN, YONG; YANG, FUWEI; ZHENG, HEXIN; ZHOU, JIANDA; ZHU, GANGHUA; HU, PENG; WU, WEIJING

    2016-01-01

    The present study aimed to investigate the molecular pathology of Waardenburg syndrome type II in three families, in order to provide genetic diagnosis and hereditary counseling for family members. Relevant clinical examinations were conducted on the probands of the three pedigrees. Peripheral blood samples of the probands and related family members were collected and genomic DNA was extracted. The coding sequences of paired box 3 (PAX3), microphthalmia-associated transcription factor (MITF), sex-determining region Y-box 10 (SOX10) and snail family zinc finger 2 (SNAI2) were analyzed by polymerase chain reaction and DNA sequencing. The heterozygous mutation, c.649_651delAGA in exon 7 of the MITF gene was detected in the proband and all patients of pedigree 1; however, no pathological mutation of the relevant genes (MITF, SNAI2, SOX10 or PAX3) was detected in pedigrees 2 and 3. The heterozygous mutation c.649_651delAGA in exon 7 of the MITF gene is therefore considered the disease-causing mutation in pedigree 1. However, there are novel disease-causing genes in Waardenburg syndrome type II, which require further research. PMID:26781036

  12. Clinical and genetic investigation of families with type II Waardenburg syndrome.

    PubMed

    Chen, Yong; Yang, Fuwei; Zheng, Hexin; Zhou, Jianda; Zhu, Ganghua; Hu, Peng; Wu, Weijing

    2016-03-01

    The present study aimed to investigate the molecular pathology of Waardenburg syndrome type II in three families, in order to provide genetic diagnosis and hereditary counseling for family members. Relevant clinical examinations were conducted on the probands of the three pedigrees. Peripheral blood samples of the probands and related family members were collected and genomic DNA was extracted. The coding sequences of paired box 3 (PAX3), microphthalmia‑associated transcription factor (MITF), sex‑determining region Y‑box 10 (SOX10) and snail family zinc finger 2 (SNAI2) were analyzed by polymerase chain reaction and DNA sequencing. The heterozygous mutation, c.649_651delAGA in exon 7 of the MITF gene was detected in the proband and all patients of pedigree 1; however, no pathological mutation of the relevant genes (MITF, SNAI2, SOX10 or PAX3) was detected in pedigrees 2 and 3. The heterozygous mutation c.649_651delAGA in exon 7 of the MITF gene is therefore considered the disease‑causing mutation in pedigree 1. However, there are novel disease‑causing genes in Waardenburg syndrome type II, which require further research.

  13. Structure-based function prediction of the expanding mollusk tyrosinase family

    NASA Astrophysics Data System (ADS)

    Huang, Ronglian; Li, Li; Zhang, Guofan

    2017-11-01

    Tyrosinase (Ty) is a common enzyme found in many different animal groups. In our previous study, genome sequencing revealed that the Ty family is expanded in the Pacific oyster ( Crassostrea gigas). Here, we examine the larger number of Ty family members in the Pacific oyster by high-level structure prediction to obtain more information about their function and evolution, especially the unknown role in biomineralization. We verified 12 Ty gene sequences from Crassostrea gigas genome and Pinctada fucata martensii transcriptome. By using phylogenetic analysis of these Tys with functionally known Tys from other molluscan species, eight subgroups were identified (CgTy_s1, CgTy_s2, MolTy_s1, MolTy-s2, MolTy-s3, PinTy-s1, PinTy-s2 and PviTy). Structural data and surface pockets of the dinuclear copper center in the eight subgroups of molluscan Ty were obtained using the latest versions of prediction online servers. Structural comparison with other Ty proteins from the protein databank revealed functionally important residues (HA1, HA2, HA3, HB1, HB2, HB3, Z1-Z9) and their location within these protein structures. The structural and chemical features of these pockets which may related to the substrate binding showed considerable variability among mollusks, which undoubtedly defines Ty substrate binding. Finally, we discuss the potential driving forces of Ty family evolution in mollusks. Based on these observations, we conclude that the Ty family has rapidly evolved as a consequence of substrate adaptation in mollusks.

  14. Functional analysis of a tyrosinase gene involved in early larval shell biogenesis in Crassostrea angulata and its response to ocean acidification.

    PubMed

    Yang, Bingye; Pu, Fei; Li, Lingling; You, Weiwei; Ke, Caihuan; Feng, Danqing

    2017-04-01

    The formation of the primary shell is a vital process in marine bivalves. Ocean acidification largely influences shell formation. It has been reported that enzymes involved in phenol oxidation, such as tyrosinase and phenoloxidases, participate in the formation of the periostracum. In the present study, we cloned a tyrosinase gene from Crassostrea angulata named Ca-tyrA1, and its potential function in early larval shell biogenesis was investigated. The Ca-tyrA1 gene has a full-length cDNA of 2430bp in size, with an open reading frame of 1896bp in size, which encodes a 631-amino acid protein that includes a 24-amino acid putative signal peptide. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that Ca-tyrA1 transcription mainly occurs at the trochophore stage, and the Ca-tyrA1 mRNA levels in the 3000ppm treatment group were significantly upregulated in the early D-veliger larvae. WMISH and electron scanning microscopy analyses showed that the expression of Ca-tyrA1 occurs at the gastrula stage, thereby sustaining the early D-veliger larvae, and the shape of its signal is saddle-like, similar to that observed under an electron scanning microscope. Furthermore, the RNA interference has shown that the treatment group has a higher deformity rate than that of the control, thereby indicating that Ca-tyrA1 participates in the biogenesis of the primary shell. In conclusion, and our results indicate that Ca-tyrA1 plays a vital role in the formation of the larval shell and participates in the response to larval shell damages in Crassostrea angulata that were induced by ocean acidification. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties.

    PubMed

    Taofiq, Oludemi; Heleno, Sandrina A; Calhelha, Ricardo C; Alves, Maria José; Barros, Lillian; Barreiro, Maria Filomena; González-Paramás, Ana M; Ferreira, Isabel C F R

    2016-10-14

    The cosmetic industry is in a constant search for natural compounds or extracts with relevant bioactive properties, which became valuable ingredients to design cosmeceutical formulations. Mushrooms have been markedly studied in terms of nutritional value and medicinal properties. However, there is still slow progress in the biotechnological application of mushroom extracts in cosmetic formulations, either as antioxidants, anti-aging, antimicrobial, and anti-inflammatory agents or as hyperpigmentation correctors. In the present work, the cosmeceutical potential of ethanolic extracts prepared from Agaricus bisporus , Pleurotus ostreatus , and Lentinula edodes was analyzed in terms of anti-inflammatory, anti-tyrosinase, antioxidant, and antibacterial activities. The extracts were characterized in terms of phenolic acids and ergosterol composition, and further incorporated in a base cosmetic cream to achieve the same bioactive purposes. From the results obtained, the final cosmeceutical formulations presented 85%-100% of the phenolic acids and ergosterol levels found in the mushroom extracts, suggesting that there was no significant loss of bioactive compounds. The final cosmeceutical formulation also displayed all the ascribed bioactivities and as such, mushrooms can further be exploited as natural cosmeceutical ingredients.

  16. Embryonic expression of zebrafish MiT family genes tfe3b, tfeb, and tfec.

    PubMed

    Lister, James A; Lane, Brandon M; Nguyen, Anhthu; Lunney, Katherine

    2011-11-01

    The MiT family comprises four genes in mammals: Mitf, Tfe3, Tfeb, and Tfec, which encode transcription factors of the basic-helix-loop-helix/leucine zipper class. Mitf is well-known for its essential role in the development of melanocytes, however the functions of the other members of this family, and of interactions between them, are less well understood. We have now characterized the complete set of MiT genes from zebrafish, which totals six instead of four. The zebrafish genome contain two mitf (mitfa and mitfb), two tfe3 (tfe3a and tfe3b), and single tfeb and tfec genes; this distribution is shared with other teleosts. We present here the sequence and embryonic expression patterns for the zebrafish tfe3b, tfeb, and tfec genes, and identify a new isoform of tfe3a. These findings will assist in elucidating the roles of the MiT gene family over the course of vertebrate evolution. Copyright © 2011 Wiley-Liss, Inc.

  17. Inhibition of melanogenesis by β-caryophyllene from lime mint essential oil in mouse B16 melanoma cells.

    PubMed

    Yang, C-H; Huang, Y-C; Tsai, M-L; Cheng, C-Y; Liu, L-L; Yen, Y-W; Chen, W-L

    2015-10-01

    Volatile essential oils of mint species are used for cosmetics and in skin care products. In this study, we evaluated the main chemical components of the lime mint and the anti-melanogenic properties of its main components. The essential oil was analysed by gas chromatography-mass spectrometry (GC/MS). The anti-melanogenic effects of mint essential oil and β-caryophyllene were investigated in B16F10 murine melanoma cells. The main components of lime mint essential oil were found to be D-limonene (41.10%), D-carvone (8.58%), δ-selinene (6.73%) and β-caryophyllene (6.24%). The lime mint essential oil reduced melanin production in a dose-dependent manner in murine B16F10 cells. β-Caryophyllene, one of the main compounds in lime mint essential oil, could reduce melanogenesis by down-regulating the expression of MITF, TRP-1, TRP-2 and tyrosinase, resulting in a decrease in melanin content decrease. These results reveal that lime mint essential oil and β-caryophyllene are considered to be valuable as potential skin-whitening agents. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Novel biphenyl ester derivatives as tyrosinase inhibitors: Synthesis, crystallographic, spectral analysis and molecular docking studies.

    PubMed

    Kwong, Huey Chong; Chidan Kumar, C S; Mah, Siau Hui; Chia, Tze Shyang; Quah, Ching Kheng; Loh, Zi Han; Chandraju, Siddegowda; Lim, Gin Keat

    2017-01-01

    Biphenyl-based compounds are clinically important for the treatments of hypertension and inflammatory, while many more are under development for pharmaceutical uses. In the present study, a series of 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl benzoates, 2(a-q), and 2-([1,1'-biphenyl]-4-yl)-2-oxoethyl pyridinecarboxylate, 2(r-s) were synthesized by reacting 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one with various carboxylic acids using potassium carbonate in dimethylformamide at ambient temperature. Single-crystal X-ray diffraction studies revealed a more closely packed crystal structure can be produced by introduction of biphenyl moiety. Five of the compounds among the reported series exhibited significant anti-tyrosinase activities, in which 2p, 2r and 2s displayed good inhibitions which are comparable to standard inhibitor kojic acid at concentrations of 100 and 250 μg/mL. The inhibitory effects of these active compounds were further confirmed by computational molecular docking studies and the results revealed the primary binding site is active-site entrance instead of inner copper binding site which acted as the secondary binding site.

  19. Isolation of Resveratrol from Vitis Viniferae Caulis and Its Potent Inhibition of Human Tyrosinase

    PubMed Central

    Park, Jiaa; Boo, Yong Chool

    2013-01-01

    Tyrosinase (TYR) catalyzes rate-limiting reactions of cellular melanin synthesis, and its inhibitors are of commercial interest as potential skin whitening agents. However, the limited availability of human TYR makes the screening of TYR inhibitors difficult. To overcome this hurdle, we transformed nonmelanocytic human embryonic kidney (HEK) 293 cells to express human TYR constitutively. Using these cells as a source of human TYR, the ethanolic extracts of 52 medicinal plants grown in Korea were tested for human TYR activity, and the extract of Vitis Viniferae Caulis (dried stems of the grape tree, Vitis vinifera L.) was found to inhibit human TYR activity potently. An active compound was isolated from this extract by solvent fractionation followed by liquid column chromatography and identified as resveratrol by spectroscopic and chromatographic analyses. Resveratrol was determined to be a highly potent inhibitor of human TYR (IC50 = 0.39 μg mL−1) as compared with p-coumaric acid (IC50 = 0.66 μg mL−1) and arbutin (IC50 > 100 μg mL−1) and inhibited melanin synthesis by human epidermal melanocytes at subtoxic concentrations. This study suggests that resveratrol and resveratrol-containing extracts of Vitis Viniferae Caulis have a potential use as skin whitening agents. PMID:23476698

  20. Importance of iron in lipid peroxidation in the tyrosinase/4-hydroxyanisole system: possible mechanism of killing of malignant melanoma cells by 4-hydroxyanisole.

    PubMed

    Koga, S; Nakano, M; Ito, T; Tomita, Y

    1992-03-01

    Phospholipid peroxidation of unsaturated phospholipid liposomes in the tyrosinase(mushroom)-4-hydroxyanisole system was studied in both the presence and absence of Fe3+, as a model of melanocyte damage by this agent. Ferric ion is required for the lipid peroxidation, and maximal lipid peroxidation was achieved with a molar ratio of [Fe3+]/[4-hydroxyanisole] of about 1. The lipid peroxidation was significantly inhibited by ceruloplasmin (a ferroxidase), indicating that Fe3+, which would be coordinated with metabolites, catechols, should be reduced to express its oxidant property. Judging from the results obtained with inhibitors or scavengers of active oxygen species, O2-, H2O2, and .OH would not mainly involve in the lipid peroxidation.

  1. Next-generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin-remodeling genes.

    PubMed

    Malouf, Gabriel G; Su, Xiaoping; Yao, Hui; Gao, Jianjun; Xiong, Liangwen; He, Qiuming; Compérat, Eva; Couturier, Jérôme; Molinié, Vincent; Escudier, Bernard; Camparo, Philippe; Doss, Denaha J; Thompson, Erika J; Khayat, David; Wood, Christopher G; Yu, Willie; Teh, Bin T; Weinstein, John; Tannir, Nizar M

    2014-08-01

    MITF/TFE translocation renal cell carcinoma (TRCC) is a rare subtype of kidney cancer. Its incidence and the genome-wide characterization of its genetic origin have not been fully elucidated. We performed RNA and exome sequencing on an exploratory set of TRCC (n = 7), and validated our findings using The Cancer Genome Atlas (TCGA) clear-cell RCC (ccRCC) dataset (n = 460). Using the TCGA dataset, we identified seven TRCC (1.5%) cases and determined their genomic profile. We discovered three novel partners of MITF/TFE (LUC7L3, KHSRP, and KHDRBS2) that are involved in RNA splicing. TRCC displayed a unique gene expression signature as compared with other RCC types, and showed activation of MITF, the transforming growth factor β1 and the PI3K complex targets. Genes differentially spliced between TRCC and other RCC types were enriched for MITF and ID2 targets. Exome sequencing of TRCC revealed a distinct mutational spectrum as compared with ccRCC, with frequent mutations in chromatin-remodeling genes (six of eight cases, three of which were from the TCGA). In two cases, we identified mutations in INO80D, an ATP-dependent chromatin-remodeling gene, previously shown to control the amplitude of the S phase. Knockdown of INO80D decreased cell proliferation in a novel cell line bearing LUC7L3-TFE3 translocation. This genome-wide study defines the incidence of TRCC within a ccRCC-directed project and expands the genomic spectrum of TRCC by identifying novel MITF/TFE partners involved in RNA splicing and frequent mutations in chromatin-remodeling genes. ©2014 American Association for Cancer Research.

  2. Role of β-catenin signaling in the anti-invasive effect of the omega-3 fatty acid DHA in human melanoma cells.

    PubMed

    Serini, Simona; Zinzi, Antonio; Ottes Vasconcelos, Renata; Fasano, Elena; Riillo, Maria Greca; Celleno, Leonardo; Trombino, Sonia; Cassano, Roberta; Calviello, Gabriella

    2016-11-01

    We previously found that docosahexaenoic acid (DHA), a dietary polyunsaturated fatty acid present at high level in fatty fish, inhibited cell growth and induced differentiation of melanoma cells in vitro by increasing nuclear β-catenin content. An anti-neoplastic role of nuclear β-catenin was suggested in melanoma, and related to the presence in the melanocyte lineage of the microphtalmia transcription factor (MITF), which interferes with the transcription of β-catenin/TCF/LEF pro-invasive target genes. In the present work we investigated if DHA could inhibit the invasive potential of melanoma cells, and if this effect could be related to DHA-induced alterations of the Wnt/β-catenin signaling, including changes in MITF expression. WM115 and WM266-4 human melanoma, and B16-F10 murine melanoma cell lines were used. Cell invasion was evaluated by Wound Healing and Matrigel transwell assays. Protein expression was analyzed by Western Blotting and β-catenin phosphorylation by immunoprecipitation. The role of MITF in the anti-invasive effect of DHA was analyzed by siRNA gene silencing. We found that DHA inhibited anchorage-independent cell growth, reduced their migration/invasion in vitro and down-regulated several Matrix Metalloproteinases (MMP: MMP-2, MT1-MMP and MMP-13), known to be involved in melanoma invasion. We related these effects to the β-catenin increased nuclear expression and PKA-dependent phosphorylation, as well as to the increased expression of MITF. The data obtained further support the potential role of dietary DHA as suppressor of melanoma progression to invasive malignancy through its ability to enhance MITF expression and PKA-dependent nuclear β-catenin phosphorylation. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. Polyphenols Determination in Olive Oil Samples Based on a Thick Film Voltammetric Sensor and a Tyrosinase Biosensor

    NASA Astrophysics Data System (ADS)

    Capannesi, Cecilia; Palchetti, Ilaria; Mascini, Marco

    2000-12-01

    The aim of the present work was to compare different techniques to evaluate the variation with the storage time and storage conditions in the phenolic content of an extra-virgin olive oil. A disposable screen-printed sensor (SPE) was coupled with differential pulse voltammetry (DPV) to determine the phenolic fractions after extraction with glycine buffer; DPV parameters were chosen in order to study oxidation peak of oleuropein, that was used as reference compound. Moreover a tyrosinase based biosensor operating in organic solvent (hexane) was assembled, using an amperometric oxygen probe as transducer. Calibration curves were realised in flow injection analysis (F.I.A.) using phenol as substrate. Both of these methods are easy to operate, require no extraction (biosensor) or a rapid extraction procedure (SPE), and the analysis time is short (min.). The results obtained with these two innovative procedures were compared with classical spectrophotometric assay using the Folin-Ciocalteau reagent. Other extra-virgin olive oil quality parameters were investigated with classical methods in order to better define the alteration process and results are reported.

  4. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity.

    PubMed

    Kampatsikas, Ioannis; Bijelic, Aleksandar; Pretzler, Matthias; Rompel, Annette

    2017-08-01

    Tyrosinases are type 3 copper enzymes that belong to the polyphenol oxidase (PPO) family and are able to catalyze both the ortho-hydroxylation of monophenols and their subsequent oxidation to o-quinones, which are precursors for the biosynthesis of colouring substances such as melanin. The first plant pro-tyrosinase from Malus domestica (MdPPO1) was recombinantly expressed in its latent form (56.4 kDa) and mutated at four positions around the catalytic pocket which are believed to influence the activity of the enzyme. Mutating the amino acids, which are known as activity controllers, yielded the mutants MdPPO1-Ala239Thr and MdPPO1-Leu243Arg, whereas mutation of the so-called water-keeper and gatekeeper residues resulted in the mutants MdPPO1-Glu234Ala and MdPPO1-Phe259Ala, respectively. The wild-type enzyme and two of the mutants, MdPPO1-Ala239Thr and MdPPO1-Phe259Ala, were successfully crystallized, leading to single crystals that diffracted to 1.35, 1.55 and 1.70 Å resolution, respectively. All crystals belonged to space group P2 1 2 1 2 1 , exhibiting similar unit-cell parameters: a = 50.70, b = 80.15, c = 115.96 Å for the wild type, a = 50.58, b = 79.90, c = 115.76 Å for MdPPO1-Ala239Thr and a = 50.53, b = 79.76, c = 116.07 Å for MdPPO1-Phe259Ala. In crystallo activity tests with the crystals of the wild type and the two mutants were performed by adding the monophenolic substrate tyramine and the diphenolic substrate dopamine to crystal-containing drops. The effects of the mutation on the activity of the enzyme were observed by colour changes of the crystals owing to the conversion of the substrates to dark chromophore products.

  5. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity

    PubMed Central

    Kampatsikas, Ioannis; Bijelic, Aleksandar; Pretzler, Matthias

    2017-01-01

    Tyrosinases are type 3 copper enzymes that belong to the polyphenol oxidase (PPO) family and are able to catalyze both the ortho-hydroxylation of monophenols and their subsequent oxidation to o-quinones, which are precursors for the biosynthesis of colouring substances such as melanin. The first plant pro-tyrosinase from Malus domestica (MdPPO1) was recombinantly expressed in its latent form (56.4 kDa) and mutated at four positions around the catalytic pocket which are believed to influence the activity of the enzyme. Mutating the amino acids, which are known as activity controllers, yielded the mutants MdPPO1-Ala239Thr and MdPPO1-Leu243Arg, whereas mutation of the so-called water-keeper and gatekeeper residues resulted in the mutants MdPPO1-Glu234Ala and MdPPO1-Phe259Ala, respectively. The wild-type enzyme and two of the mutants, MdPPO1-Ala239Thr and MdPPO1-Phe259Ala, were successfully crystallized, leading to single crystals that diffracted to 1.35, 1.55 and 1.70 Å resolution, respectively. All crystals belonged to space group P212121, exhibiting similar unit-cell parameters: a = 50.70, b = 80.15, c = 115.96 Å for the wild type, a = 50.58, b = 79.90, c = 115.76 Å for MdPPO1-Ala239Thr and a = 50.53, b = 79.76, c = 116.07 Å for MdPPO1-Phe259Ala. In crystallo activity tests with the crystals of the wild type and the two mutants were performed by adding the monophenolic substrate tyramine and the diphenolic substrate dopamine to crystal-containing drops. The effects of the mutation on the activity of the enzyme were observed by colour changes of the crystals owing to the conversion of the substrates to dark chromophore products. PMID:28777094

  6. Effect of tyrosinase-aided crosslinking on the IgE binding potential and conformational structure of shrimp (Metapenaeus ensis) tropomyosin.

    PubMed

    Ahmed, Ishfaq; Lv, Liangtao; Lin, Hong; Li, Zhenxing; Ma, Jiaju; Guanzhi, Chen; Sun, Lirui; Xu, Lili

    2018-05-15

    The present study was performed to determine crosslinking and oxidative reactions catalyzed by tyrosinase (Tyr), caffeic acid (CA) and their combination with respect to IgE binding potential and conformational structure of shrimp tropomyosin (TM). Cross-links and IgE binding potentials were analyzed by SDS-PAGE, western blot and indirect ELISA. While structural changes were characterized using surface hydrophobicity, ultraviolet (UV), fluorescence and circular dichroism (CD) spectroscopies. Maximum reduction in the IgG (37.19%) and IgE binding potentials (49.41%) were observed when treated with 2000 nkat/g Tyr + CA, as indicated by ELISA analyses. These findings correlated well with the denaturation of protein, as evident by slight blue shift and alterations in the ellipticities observed via structural analyses. The results demonstrated that addition of CA mediator with Tyr pronouncedly enhanced crosslinking, and altered the conformational structure, thereby mitigated allergenicity of TM, thus showing promise in developing novel food structures with reduced allergenic potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Structural Switch of Lysyl-tRNA Synthetase Between Translation and Transcription

    PubMed Central

    Ofir-Birin, Yifat; Fang, Pengfei; Bennett, Steven P.; Zhang, Hui-Min; Wang, Jing; Rachmin, Inbal; Shapiro, Ryan; Song, Jing; Dagan, Arie; Pozo, Jorge; Kim, Sunghoon; Marshall, Alan G.; Schimmel, Paul; Yang, Xiang-Lei; Nechushtan, Hovav; Razin, Ehud; Guo, Min

    2013-01-01

    SUMMARY Lysyl-tRNA synthetase (LysRS), a component of the translation apparatus, is released from the cytoplasmic multi-tRNA synthetase complex (MSC) to activate the transcription factor MITF in stimulated mast cells through undefined mechanisms. Here we show that Ser207-phosphorylation provokes a new conformer of LysRS that inactivates its translational, but activates its transcriptional function. The crystal structure of an MSC sub-complex established that LysRS is held in the MSC by binding to the N-terminus of the scaffold protein p38/AIMP2. Phosphorylation-created steric clashes at the LysRS domain interface disrupt its binding grooves for p38/AIMP2, releasing LysRS and provoking its nuclear translocation. This alteration also exposes the C-terminal domain of LysRS to bind to MITF and triggers LysRS-directed production of the second messenger Ap4A that activates MITF. Thus our results establish that a single conformational change triggered by phosphorylation leads to multiple effects driving an exclusive switch of LysRS function from translation to transcription. PMID:23159739

  8. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics.

    PubMed

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-03-18

    Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Prospective analysis. 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype-phenotype analyses. All analyses were performed in a large German laboratory specialised in genetic diagnostics. 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype-phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position.

  9. Condensed Tannins from Ficus virens as Tyrosinase Inhibitors: Structure, Inhibitory Activity and Molecular Mechanism

    PubMed Central

    Chai, Wei-Ming; Feng, Hui-Ling; Zhuang, Jiang-Xing; Chen, Qing-Xi

    2014-01-01

    Condensed tannins from Ficus virens leaves, fruit, and stem bark were isolated and their structures characterized by 13C nuclear magnetic resonance spectrometry, high performance liquid chromatography electrospray ionization mass spectrometry, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results showed that the leaves, fruit, and stem bark condensed tannins were complex mixtures of homo- and heteropolymers of B-type procyanidins and prodelphinidins with degrees of polymerization up to hexamer, dodecamer, and pentadecamer, respectively. Antityrosinase activities of the condensed tannins were studied. The results indicated that the condensed tannins were potent tyrosinase inhibitors. The concentrations for the leaves, fruit, and stem bark condensed tannins leading to 50% enzyme activity were determined to be 131.67, 99.89, and 106.22 μg/ml on monophenolase activity, and 128.42, 43.07, and 74.27 μg/ml on diphenolase activity. The inhibition mechanism, type, and constants of the condensed tannins on the diphenolase activity were further investigated. The results indicated that the condensed tannins were reversible and mixed type inhibitors. Fluorescence quenching, copper interacting, and molecular docking techniques were utilized to unravel the molecular mechanisms of the inhibition. The results showed that the hydroxyl group on the B ring of the condensed tannins could chelate the dicopper irons of the enzyme. Moreover, the condensed tannins could reduce the enzyme product o-quinones into colourless compounds. These results would contribute to the development and design of antityrosinase agents. PMID:24637701

  10. Validating tyrosinase homologue MelA as a photoacoustic reporter gene for imaging Escherichia coli

    NASA Astrophysics Data System (ADS)

    Paproski, Robert J.; Li, Yan; Barber, Quinn; Lewis, John D.; Campbell, Robert; Zemp, Roger

    2015-03-01

    Antibiotic drug resistance is a major worldwide issue. Development of new therapies against pathogenic bacteria requires appropriate research tools for replicating and characterizing infections. Previously fluorescence and bioluminescence modalities have been used to image infectious burden in animal models but scattering significantly limits imaging depth and resolution. We hypothesize that photoacoustic imaging, which has improved depth-toresolution ratio, could be useful for visualizing MelA-expressing bacteria since MelA is a bacterial tyrosinase homologue involved in melanin production. Using an inducible expression system, E. coli expressing MelA were visibly black in liquid culture. Phosphate buffered saline (PBS), MelA-expressing bacteria (at different dilutions in PBS), and chicken embryo blood were injected in plastic tubes which were imaged using a VisualSonics Vevo LAZR system. Photoacoustic imaging at 6 different wavelengths (680, 700, 750, 800, 850 and 900nm) enabled spectral de-mixing to distinguish melanin signals from blood. The signal to noise ratio of 9x diluted MelA bacteria was 55, suggesting that ~20 bacteria cells could be detected with our system. When MelA bacteria were injected as a 100 μL bolus into a chicken embryo, photoacoustic signals from deoxy- and oxy- hemoglobin as well as MelA-expressing bacteria could be separated and overlaid on an ultrasound image, allowing visualization of the bacterial location. Photoacoustic imaging may be a useful tool for visualizing bacterial infections and further work incorporating photoacoustic reporters into infectious bacterial strains is warranted.

  11. Electrochemical enzymatic fenitrothion sensor based on a tyrosinase/poly(2-hydroxybenzamide)-modified graphite electrode.

    PubMed

    Alves, Maria de Fátima; Corrêa, Ricardo Augusto Moreira de Souza; da Cruz, Filipe Soares; Franco, Diego Leoni; Ferreira, Lucas Franco

    2018-07-15

    This paper reports the electrosynthesis and characterisation of a polymeric film derived from 2-hydroxybenzamide over a graphite electrode and its application as an enzymatic biosensor for the determination and quantification of the pesticide fenitrothion. The material was analysed by scanning electron microscopy and its electrochemical properties characterised by cyclic voltammetry and electrochemical impedance spectroscopy. The enzyme tyrosinase was immobilised over the modified electrode by the drop and dry technique. Catechol was determined by direct reduction of biocatalytically formed o-quinone by employing the flow injection analysis technique. The analytical characteristics of the proposed sensor were optimised as follows: phosphate buffer 0.050 M at pH 6.5, flow rate 5.0 mL min -1 , sample injection volume 150 μL, catechol concentration 1.0 mM and maximum inhibition time by fenitrothion of 6 min. The biosensors showed a linear response to pesticide concentration from 0.018 to 3.60 μM. The limit of detection and limit of quantification were calculated as 4.70 nM and 15.9 nM (RSD < 2.7%), respectively. The intra- and inter-electrode RSDs were 3.35% (n = 15) and 8.70% (n = 7), respectively. In addition, water samples spiked with the pesticide showed an average recovery of 97.6% (±1.53). Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Hypoxia and PGE2 Regulate MiTF-CX During Cervical Ripening

    PubMed Central

    Hari Kishore, Annavarapu; Li, Xiang-Hong

    2012-01-01

    The mechanisms by which the cervix remains closed during the massive uterine expansion of pregnancy are unknown. IL-8 is important for recruitment of immune cells into the cervical stroma, matrix remodeling, and dilation of the cervix during labor. Previously, we have shown that several cytokine genes transcriptionally repressed in the cervix during gestation are activated during cervical ripening and dilation. IL-8 gene expression is repressed in cervical stromal cells during pregnancy by the transcription factor microphthalmia-associated transcription factor (MiTF-CX). Here, we tested the hypothesis that hypoxia and the transcription factor hypoxia inducible factor-1α (HIF-1α) may regulate MiTF-CX and cervical ripening. Using tissues from women during pregnancy before and after cervical ripening, we show that, during cervical ripening, HIF-1α was stabilized and relocalized to the nucleus. Further, we found that hypoxia and two hypoxia mimetics that stabilize HIF-1α activated the transcriptional repressor differentiated embryo chondrocyte-expressed gene 1, which bound to sites in the MiTF-CX promoter crucial for its positive autoregulation. Ectopic overexpression of MiTF-CX abrogated hypoxia-induced up-regulation of IL-8 gene expression. We also show that activation of HIF-1α induced cyclooxygenase-2 and that prostaglandin E2 repressed MiTF-CX. We conclude that hypoxia and stabilization of the transcription factor HIF-1α result in up-regulation of differentiated embryo chondrocyte-expressed gene 1, loss of MiTF, and absence of MiTF binding to the IL-8 promoter, which in turn leads to up-regulation of IL-8 gene expression. Hypoxia also up-regulated cyclooxygenase-2, leading to prostaglandin E2-mediated loss of MiTF in cervical stromal cells. The results support a pivotal role for hypoxia and HIF-1α in the cervical ripening process during pregnancy. PMID:23144021

  13. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics

    PubMed Central

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-01-01

    Objectives Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Design Prospective analysis. Patients 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype–phenotype analyses. Setting All analyses were performed in a large German laboratory specialised in genetic diagnostics. Results 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. Conclusions On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype–phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum

  14. Genetics Home Reference: Tietz syndrome

    MedlinePlus

    ... groups? Genetic Changes Tietz syndrome is caused by mutations in the MITF gene. This gene provides instructions ... development of the retinal pigment epithelium. MITF gene mutations that cause Tietz syndrome either delete or change ...

  15. A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors

    PubMed Central

    Harris, Melissa L.; Buac, Kristina; Shakhova, Olga; Hakami, Ramin M.; Wegner, Michael; Sommer, Lukas; Pavan, William J.

    2013-01-01

    During embryogenesis, the transcription factor, Sox10, drives the survival and differentiation of the melanocyte lineage. However, the role that Sox10 plays in postnatal melanocytes is not established. We show in vivo that melanocyte stem cells (McSCs) and more differentiated melanocytes express SOX10 but that McSCs remain undifferentiated. Sox10 knockout (Sox10fl; Tg(Tyr::CreER)) results in loss of both McSCs and differentiated melanocytes, while overexpression of Sox10 (Tg(DctSox10)) causes premature differentiation and loss of McSCs, leading to hair graying. This suggests that levels of SOX10 are key to normal McSC function and Sox10 must be downregulated for McSC establishment and maintenance. We examined whether the mechanism of Tg(DctSox10) hair graying is through increased expression of Mitf, a target of SOX10, by asking if haploinsufficiency for Mitf (Mitfvga9) can rescue hair graying in Tg(DctSox10) animals. Surprisingly, Mitfvga9 does not mitigate but exacerbates Tg(DctSox10) hair graying suggesting that MITF participates in the negative regulation of Sox10 in McSCs. These observations demonstrate that while SOX10 is necessary to maintain the postnatal melanocyte lineage it is simultaneously prevented from driving differentiation in the McSCs. This data illustrates how tissue-specific stem cells can arise from lineage-specified precursors through the regulation of the very transcription factors important in defining that lineage. PMID:23935512

  16. Effect of SMURF2 Targeting on Susceptibility to MEK Inhibitors in Melanoma

    PubMed Central

    2013-01-01

    Background The mitogen-activated protein–kinase pathway consisting of the kinases RAF, MEK, and ERK is central to cell proliferation and survival and is deregulated in more than 90% of melanomas. MEK inhibitors are currently trialled in the clinic, but despite efficient target inhibition, cytostatic rather than cytotoxic activity limits their efficacy. Methods We assessed the cytotoxicity to MEK inhibitors (PD184352 and selumetinib) in melanoma cells by toluidine-blue staining, caspase 3 cleavage, and melanoma-sphere growth. Western blotting and quantitative real-time polymerase chain reaction were applied to determine SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2), PAX3, and MITF expression. Human melanoma samples (n = 77) from various stages were analyzed for SMURF2 and PAX3 expression. RNA interference was performed to target SMURF2 during MEK inhibition in vivo in melanoma xenografts in mice and zebrafish. All statistical tests were two-sided. Results Activation of transforming growth factor β (TGF-β) signalling sensitized melanoma cells to the cytotoxic effects of MEK inhibition. Melanoma cells resistant to the cytotoxic effects of MEK inhibitors counteracted TGF-β signalling through overexpression of the E3 ubiquitin ligase SMURF2, which resulted in increased expression of the transcription factors PAX3 and MITF. High MITF expression protected melanoma cells against MEK inhibitor cytotoxicity. Depleting SMURF2 reduced MITF expression and substantially lowered the threshold for MEK inhibitor–induced apoptosis. Moreover, SMURF2 depletion sensitized melanoma cells to the cytotoxic effects of selumetinib, leading to cell death at concentrations approximately 100-fold lower than the concentration required to induce cell death in SMURF2-expressing cells. Mice treated with selumetinib alone at a dosage of 10mg/kg body weight once daily produced no response, but in combination with SMURF2 depletion, selumetinib suppressed tumor growth by 97.9% (95

  17. Modulation of the interface between polyester and spent coffee grounds in polysaccharide membranes: Preparation, cell proliferation, antioxidant activity and tyrosinase activity.

    PubMed

    Wu, Chin-San

    2017-09-01

    The structural, antioxidant and cytocompatibility properties of membranes prepared from polyhydroxyalkanoate (PHA) and spent coffee ground (SCG) blends (PHA/SCG) were studied. Acrylic acid-grafted PHA (PHA-g-AA) was used to enhance the desirable characteristics of these membranes, which had better tensile properties than the corresponding PHA/SCG membranes. The water resistance of the PHA-g-AA/SCG membranes was greater than that of the PHA/SCG membranes, and a cytocompatibility evaluation with mouse normal tail fibroblasts (FBs) indicated that both materials were nontoxic. Cell cycle assays of FBs on PHA/SCG and PHA-g-AA/SCG membrane samples were not affected by the DNA content related to damage. Moreover, SCG enhanced the saccharide and polyphenol contents, and antioxidant properties, of the PHA-g-AA/SCG and PHA/SCG membranes. Therefore, we analysed the effects of these compounds' membranes on melanogenesis in B16-F10 melanoma cells. The results demonstrated that PHA/SCG and PHA-g-AA/SCG membranes reduced cellular tyrosinase activities in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [Clinical classification and genetic mutation study of two pedigrees with type II Waardenburg syndrome].

    PubMed

    Chen, Yong; Yang, Fuwei; Zheng, Hexin; Zhu, Ganghua; Hu, Peng; Wu, Weijing

    2015-12-01

    To explore the molecular etiology of two pedigrees affected with type II Waardenburg syndrome (WS2) and to provide genetic diagnosis and counseling. Blood samples were collected from the proband and his family members. Following extraction of genomic DNA, the coding sequences of PAX3, MITF, SOX10 and SNAI2 genes were amplified with PCR and subjected to DNA sequencing to detect potential mutations. A heterozygous deletional mutation c.649_651delAGA in exon 7 of the MITF gene has been identified in all patients from the first family, while no mutation was found in the other WS2 related genes including PAX3, MITF, SOX10 and SNAI2. The heterozygous deletion mutation c.649_651delAGA in exon 7 of the MITF gene probably underlies the disease in the first family. It is expected that other genes may also underlie WS2.

  19. [Molecular pathogenesis of Waardenburg syndrome type II resulting from SOX10 gene mutation].

    PubMed

    Zhang, Hua; Chen, Hongsheng; Feng, Yong; Qian, Minfei; Li, Jiping; Liu, Jun; Zhang, Chun

    2016-08-01

    To explore the molecular mechanism of Waardenburg syndrome type II (WS2) resulting from SOX10 gene mutation E248fs through in vitro experiment. 293T cells were transiently transfected with wild type (WT) SOX10 and mutant type (MT) E248fs plasmids. The regulatory effect of WT/MT SOX10 on the transcriptional activity of MITF gene and influence of E248fs on WT SOX10 function were determined with a luciferase activity assay. The DNA binding capacity of the WT/MT SOX10 with the promoter of the MITF gene was determined with a biotinylated double-stranded oligonucleotide probe containing the SOX10 binding sequence cattgtc to precipitate MITF and E248fs, respectively. The stability of SOX10 and E248fs were also analyzed. As a loss-of-function mutation, the E248fs mutant failed to transactivate the MITF promoter as compared with the WT SOX10 (P<0.01), which also showed a dominant-negative effect on WT SOX10. The WT SOX10 and E248fs mutant were also able to bind specifically to the cattgtc motif in the MITF promoter, whereas E248fs had degraded faster than WT SOX10. Despite the fact that the E248fs has a dominant-negative effect on SOX10, its reduced stability may down-regulate the transcription of MITF and decrease the synthesis of melanin, which may result in haploinsufficiency of SOX10 protein and cause the milder WS2 phenotype.

  20. Design, synthesis, and anti-melanogenic effects of (E)-2-benzoyl-3-(substituted phenyl)acrylonitriles

    PubMed Central

    Yun, Hwi Young; Kim, Do Hyun; Son, Sujin; Ullah, Sultan; Kim, Seong Jin; Kim, Yeon-Jeong; Yoo, Jin-Wook; Jung, Yunjin; Chun, Pusoon; Moon, Hyung Ryong

    2015-01-01

    Background Tyrosinase is the most prominent target for inhibitors of hyperpigmentation because it plays a critical role in melaninogenesis. Although many tyrosinase inhibitors have been identified, from both natural and synthetic sources, there remains a considerable demand for novel tyrosinase inhibitors that are safer and more effective. Methods (E)-2-Benzoyl-3-(substituted phenyl)acrylonitriles (BPA analogs) with a linear β-phenyl-α,β-unsaturated carbonyl scaffold were designed and synthesized as potential tyrosinase inhibitors. We evaluated their effects on cellular tyrosinase activity and melanin biosynthesis in murine B16F10 melanoma cells and their ability to inhibit mushroom tyrosinase activity. Results BPA analogs exhibited inhibitory activity against mushroom tyrosinase. In particular, BPA13 significantly suppressed melanin biosynthesis and inhibited cellular tyrosinase activity in B16F10 cells in a dose-dependent manner. A docking study revealed that BPA13 had higher binding affinity for tyrosinase than kojic acid. Conclusion BPA13, which possesses a linear β-phenyl-α,β-unsaturated carbonyl scaffold, is a potential candidate skin-whitening agent and treatment for diseases associated with hyperpigmentation. PMID:26347064

  1. A novel fluorescence biosensor for sensitivity detection of tyrosinase and acid phosphatase based on nitrogen-doped graphene quantum dots.

    PubMed

    Qu, Zhengyi; Na, Weidan; Liu, Xiaotong; Liu, Hua; Su, Xingguang

    2018-01-02

    In this paper, we developed a sensitive fluorescence biosensor for tyrosinase (TYR) and acid phosphatase (ACP) activity detection based on nitrogen-doped graphene quantum dots (N-GQDs). Tyrosine could be catalyzed by TYR to generate dopaquinone, which could efficiently quench the fluorescence of N-GQDs, and the degree of fluorescence quenching of N-GQDs was proportional to the concentration of TYR. In the presence of ACP, l-Ascorbic acid-2-phosphate (AAP) was hydrolyzed to generate ascorbic acid (AA), and dopaquinone was reduced to l-dopa, resulting in the fluorescence recovery of the quenched fluorescence by dopaquinone. Thus, a novel fluorescence biosensor for the detection of TYR and ACP activity based on N-GQDs was constructed. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of TYR and ACP in the range of 0.43-3.85 U mL -1 and 0.04-0.7 mU mL -1 with a detection limit of 0.15 U mL -1 and 0.014 mU mL -1 , respectively. The feasibility of the proposed biosensor in real samples assay was also studied and satisfactory results were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Three cases of Waardenburg syndrome type 2 in a Korean family.

    PubMed

    Choi, Joong Hyuk; Moon, Sung-Kyun; Lee, Ki Hwang; Lew, Ho Min; Chang, Yoon-Hee

    2004-12-01

    Waardenburg syndrome (WS) is a rare, autosomal dominant disorder characterized by sensorineural hearing loss, pigmentary disturbances of the skin, hair, and iris, and other developmental defects such as lateral displacement of both medial canthi and lacrimal puncta called dystopia canthorum. While mutations of the PAX3 (paired box) gene have been identified in about 99% of WS type 1 cases, WS type 2 is a heterogeneous group, with about 15% of cases caused by mutations in microphthalmia associated transcription factor (MITF). We have experienced three cases of typical WS type 2 in a Korean family, for whom full ocular examination and genetic studies were performed. The genetic studies revealed no mutation in either PAX3 or MITF genes. The genetic basis, as yet unknown for most cases of WS type 2, might be found with further investigation.

  3. Prenatal diagnosis and genetic counseling for Waardenburg syndrome type I and II in Chinese families

    PubMed Central

    Wang, Li; Qin, Litao; Li, Tao; Liu, Hongjian; Ma, Lingcao; Li, Wan; Wu, Dong; Wang, Hongdan; Guo, Qiannan; Guo, Liangjie; Liao, Shixiu

    2018-01-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder with varying combinations of sensorineural hearing loss and abnormal pigmentation. The present study aimed to investigate the underlying molecular pathology and provide a method of prenatal diagnosis of WS in Chinese families. A total of 11 patients with WS from five unrelated Chinese families were enrolled. A thorough clinical examination was performed on all participants. Furthermore, patients with WS underwent screening for mutations in the following genes: Paired box 3 (PAX3), melanogenesis associated transcription factor (MITF), SRY-box 10, snail family transcriptional repressor 2 and endothelin receptor type B using polymerase chain reaction sequencing. Array-based comparative genomic hybridization was used for specific patients whose sequence results were normal. Following identification of the genotype of the probands and their parents, prenatal genetic diagnosis was performed for family 01 and 05. According to the diagnostic criteria for WS, five cases were diagnosed as WS1, while the other six cases were WS2. Genetic analysis revealed three mutations, including a nonsense mutation PAX3 c.583C>T in family 01, a splice-site mutation MITF c.909G>A in family 03 and an in-frame deletion MITF c.649_651delGAA in family 05. To the best of the authors' knowledge the mutations (c.583C>T in PAX3 and c.909G>A in MITF) were reported for the first time in Chinese people. Mutations in the gene of interest were not identified in family 02 and 04. The prenatal genetic testing of the two fetuses was carried out and demonstrated that the two babies were normal. The results of the present study expanded the range of known genetic mutations in China. Identification of genetic mutations in these families provided an efficient way to understand the causes of WS and improved genetic counseling. PMID:29115496

  4. Prenatal diagnosis and genetic counseling for Waardenburg syndrome type I and II in Chinese families.

    PubMed

    Wang, Li; Qin, Litao; Li, Tao; Liu, Hongjian; Ma, Lingcao; Li, Wan; Wu, Dong; Wang, Hongdan; Guo, Qiannan; Guo, Liangjie; Liao, Shixiu

    2018-01-01

    Waardenburg syndrome (WS) is an auditory‑pigmentary disorder with varying combinations of sensorineural hearing loss and abnormal pigmentation. The present study aimed to investigate the underlying molecular pathology and provide a method of prenatal diagnosis of WS in Chinese families. A total of 11 patients with WS from five unrelated Chinese families were enrolled. A thorough clinical examination was performed on all participants. Furthermore, patients with WS underwent screening for mutations in the following genes: Paired box 3 (PAX3), melanogenesis associated transcription factor (MITF), SRY‑box 10, snail family transcriptional repressor 2 and endothelin receptor type B using polymerase chain reaction sequencing. Array‑based comparative genomic hybridization was used for specific patients whose sequence results were normal. Following identification of the genotype of the probands and their parents, prenatal genetic diagnosis was performed for family 01 and 05. According to the diagnostic criteria for WS, five cases were diagnosed as WS1, while the other six cases were WS2. Genetic analysis revealed three mutations, including a nonsense mutation PAX3 c.583C>T in family 01, a splice‑site mutation MITF c.909G>A in family 03 and an in‑frame deletion MITF c.649_651delGAA in family 05. To the best of the authors' knowledge the mutations (c.583C>T in PAX3 and c.909G>A in MITF) were reported for the first time in Chinese people. Mutations in the gene of interest were not identified in family 02 and 04. The prenatal genetic testing of the two fetuses was carried out and demonstrated that the two babies were normal. The results of the present study expanded the range of known genetic mutations in China. Identification of genetic mutations in these families provided an efficient way to understand the causes of WS and improved genetic counseling.

  5. Aqueous humor tyrosinase activity is indicative of iris melanocyte toxicity.

    PubMed

    Mahanty, Sarmistha; Kawali, Ankush A; Dakappa, Shruthi Shirur; Mahendradas, Padmamalini; Kurian, Mathew; Kharbanda, Varun; Shetty, Rohit; Setty, Subba Rao Gangi

    2017-09-01

    Antibiotics such as fluoroquinolones (FQLs) are commonly used to treat ocular infections but are also known to cause dermal melanocyte toxicity. The release of dispersed pigments from the iris into the aqueous humor has been considered a possible ocular side effect of the systemic administration of FQLs such as Moxifloxacin, and this condition is known as bilateral acute iris transillumination (BAIT). Bilateral acute depigmentation of iris (BADI) is a similar condition, with iris pigment released into the aqueous, but it has not been reported as a side effect of FQL. Iris pigments are synthesized by the melanogenic enzyme tyrosinase (TYR) and can be detected but not quantified by using slit-lamp biomicroscopy. The correlation between dispersed pigments in the aqueous and the extent of melanocyte toxicity due to topical antibiotics in vivo is not well studied. Here, we aimed to study the effect of topical FQLs on iris tissue, the pigment release in the aqueous humor and the development of clinically evident iris atrophic changes. We evaluated this process by measuring the activity of TYR in the aqueous humor of 82 healthy eyes undergoing cataract surgery following topical application of FQLs such as Moxifloxacin (27 eyes, preservative-free) or Ciprofloxacin (29 eyes, with preservative) or the application of non-FQL Tobramycin (26 eyes, with preservative) as a control. In addition, the patients were questioned and examined for ocular side effects in pre- and post-operative periods. Our data showed a significantly higher mean TYR activity in the aqueous humor of Ciprofloxacin-treated eyes compared to Moxifloxacin- (preservative free, p < 0.0001) or Tobramycin-treated eyes (p < 0.0001), which indicated that few quinolones under certain conditions are toxic to the iris melanocytes. However, the reduced TYR activity in the aqueous of Moxifloxacin-treated eyes was possibly due to the presence of a higher drug concentration, which inhibits TYR activity. Consistently

  6. Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.

    PubMed

    Kos, L; Aronzon, A; Takayama, H; Maina, F; Ponzetto, C; Merlino, G; Pavan, W

    1999-02-01

    The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.

  7. Design, synthesis, and antimelanogenic effects of (2-substituted phenyl-1,3-dithiolan-4-yl)methanol derivatives

    PubMed Central

    Kim, Do Hyun; Kim, Su Jeong; Ullah, Sultan; Yun, Hwi Young; Chun, Pusoon; Moon, Hyung Ryong

    2017-01-01

    The authors designed and synthesized 17 (2-substituted phenyl-1,3-dithiolan-4-yl) methanol (PDTM) derivatives to find a new chemical scaffold, showing excellent tyrosinase-inhibitory activity. Their tyrosinase-inhibitory activities were evaluated against mushroom tyrosinase at 50 μM, and five of the PDTM derivatives (PDTM3, PDTM7–PDTM9, and PDTM13) were found to inhibit mushroom tyrosinase more than kojic acid or arbutin, the positive controls. Of seventeen PDTMs, PDTM3 (half-maximal inhibitory concentration 13.94±1.76 μM), with a 2,4-dihydroxyphenyl moiety, exhibited greatest inhibitory effects (kojic acid half-maximal inhibitory concentration 18.86±2.14 μM). Interestingly, PDTM compounds with no hydroxyl group, PDTM7–PDTM9, also had stronger inhibitory activities than kojic acid. In silico studies of interactions between tyrosinase and the five PDTMs suggested their binding affinities were closely related to their tyrosinase-inhibitory activities. Cell-based experiments performed using B16F10 mouse-skin melanoma cells showed that PDTM3 effectively inhibited melanogenesis and cellular tyrosinase activity. A cell-viability study conducted using B16F10 cells indicated that the antimelanogenic effect of PDTM3 was not attributable to its cytotoxicity. Kinetic studies showed PDTM3 competitively inhibited tyrosinase, indicating binding to the tyrosinase-active site. We found that PDTM3 with a new chemical scaffold could be a promising candidate for skin-whitening agents, and that the 1,3-dithiolane ring could be used as a chemical scaffold for potent tyrosinase inhibition. PMID:28352157

  8. Molecular etiology and genotype-phenotype correlation of Chinese Han deaf patients with type I and type II Waardenburg Syndrome.

    PubMed

    Sun, Lianhua; Li, Xiaohua; Shi, Jun; Pang, Xiuhong; Hu, Yechen; Wang, Xiaowen; Wu, Hao; Yang, Tao

    2016-10-19

    Waardenburg syndrome (WS) characterized by sensorineural hearing loss and pigmentary abnormalities is genetically heterogeneous and phenotypically variable. This study investigated the molecular etiology and genotype-phenotype correlation of WS in 36 Chinese Han deaf probands and 16 additional family members that were clinically diagnosed with WS type I (WS1, n = 8) and type II (WS2, n = 42). Mutation screening of six WS-associated genes detected PAX3 mutations in 6 (86%) of the 7 WS1 probands. Among the 29 WS2 probands, 13 (45%) and 10 (34%) were identified with SOX10 and MITF mutations, respectively. Nineteen of the 26 detected mutations were novel. In WS2 probands whose parental DNA samples were available, de novo mutations were frequently seen for SOX10 mutations (7/8) but not for MITF mutations (0/5, P = 0.005). Excessive freckle, a common feature of WS2 in Chinese Hans, was frequent in WS2 probands with MITF mutations (7/10) but not in those with SOX10 mutations (0/13, P = 4.9 × 10 -4 ). Our results showed that mutations in SOX10 and MITF are two major causes for deafness associated with WS2. These two subtypes of WS2 can be distinguished by the high de novo rate of the SOX10 mutations and the excessive freckle phenotype exclusively associated with the MITF mutations.

  9. Molecular etiology and genotype-phenotype correlation of Chinese Han deaf patients with type I and type II Waardenburg Syndrome

    PubMed Central

    Sun, Lianhua; Li, Xiaohua; Shi, Jun; Pang, Xiuhong; Hu, Yechen; Wang, Xiaowen; Wu, Hao; Yang, Tao

    2016-01-01

    Waardenburg syndrome (WS) characterized by sensorineural hearing loss and pigmentary abnormalities is genetically heterogeneous and phenotypically variable. This study investigated the molecular etiology and genotype-phenotype correlation of WS in 36 Chinese Han deaf probands and 16 additional family members that were clinically diagnosed with WS type I (WS1, n = 8) and type II (WS2, n = 42). Mutation screening of six WS-associated genes detected PAX3 mutations in 6 (86%) of the 7 WS1 probands. Among the 29 WS2 probands, 13 (45%) and 10 (34%) were identified with SOX10 and MITF mutations, respectively. Nineteen of the 26 detected mutations were novel. In WS2 probands whose parental DNA samples were available, de novo mutations were frequently seen for SOX10 mutations (7/8) but not for MITF mutations (0/5, P = 0.005). Excessive freckle, a common feature of WS2 in Chinese Hans, was frequent in WS2 probands with MITF mutations (7/10) but not in those with SOX10 mutations (0/13, P = 4.9 × 10−4). Our results showed that mutations in SOX10 and MITF are two major causes for deafness associated with WS2. These two subtypes of WS2 can be distinguished by the high de novo rate of the SOX10 mutations and the excessive freckle phenotype exclusively associated with the MITF mutations. PMID:27759048

  10. Aspergillus niger PA2 Tyrosinase Covalently Immobilized on a Novel Eco-Friendly Bio-Composite of Chitosan-Gelatin and Its Evaluation for L-DOPA Production

    PubMed Central

    Agarwal, Pragati; Dubey, Swati; Singh, Mukta; Singh, Rajesh P.

    2016-01-01

    Tyrosinase (EC 1.14.18.1) a copper-containing monooxygenase, isolated from a fungal isolate Aspergillus niger PA2 was subjected for immobilization onto a composite consisting of chitosan and gelatin biopolymers. The homogeneity of the chitosan-gelatin biocomposite film was characterized by X-ray diffraction analyses. To evaluate immobilization efficiency, chitosan-gelatin-Tyr bio-composite films were analyzed by field emission scanning electron microscopy, atomic force microscopy and UV-spectroscopy. The rough morphology of the film led to a high loading of enzyme and it could retain its bioactivity for a longer period. The enzyme adsorbed onto the film exhibited 72% of its activity after 10 days and exhibited good repeatability for up to nine times, after intermittent storage. Moreover, the immobilized enzyme exhibited broader pH and temperature profile as compared to free counterpart. Immobilized enzyme was further evaluated for the synthesis of L-DOPA (2,4-dihydroxy phenylalanine) which is a precursor of dopamine and a potent drug for the treatment of Parkinson's disease and for myocardium neurogenic injury. PMID:28066399

  11. Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease.

    PubMed

    Lubbe, S J; Escott-Price, V; Brice, A; Gasser, T; Pittman, A M; Bras, J; Hardy, J; Heutink, P; Wood, N M; Singleton, A B; Grosset, D G; Carroll, C B; Law, M H; Demenais, F; Iles, M M; Bishop, D T; Newton-Bishop, J; Williams, N M; Morris, H R

    2016-12-01

    A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson's disease (PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls. No statistically significant enrichment of rare variants across all genes, per gene, or for any individual variant was detected in either cohort. There were nonsignificant trends toward different carrier frequencies between PD cases and controls, under different inheritance models, in the following CMM risk genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and has a role in the production of dopamine. These results suggest a possible role for another gene in the dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease pathogenesis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Canine melanoma diagnosis: RACK1 as a potential biological marker.

    PubMed

    Campagne, C; Julé, S; Alleaume, C; Bernex, F; Ezagal, J; Château-Joubert, S; Estrada, M; Aubin-Houzelstein, G; Panthier, J-J; Egidy, G

    2013-11-01

    Melanoma diagnosis in dogs can be challenging due to the variety of histological appearances of canine melanocytic neoplasms. Markers of malignancy are needed. Receptor for activated C-kinase 1 (RACK1) was found to characterize melanomas in other mammals. We investigated the value of RACK1 detection in the classification of 19 cutaneous and 5 mucosal melanocytic neoplasms in dogs. These tumors were categorized as melanocytomas or benign and melanomas or malignant after evaluation of their morphology, mitotic index, and Ki-67 growth fraction. Using immunofluorescence, we confirmed microphthalmia-associated transcription factor (MITF) as a marker of normal and transformed melanocytic cells in dog tissues. All control (n = 10) and tumoral (n = 24) samples stained positively for MITF (34/34, 100%). Whereas RACK1 was not detected in healthy skin melanocytes, melanocytic lesions were all positive for RACK1 signal (24/24, 100%). RACK1 cytoplasmic staining appeared with 2 distinct distribution patterns: strong, diffuse, and homogeneous or granular and heterogeneous. All melanoma samples (13/13, 100%) stained homogeneously for RACK1. All melanocytomas (11/11, 100%) stained heterogeneously for RACK1. Immunohistochemistry was less consistent than immunofluorescence for all labelings in melanocytic lesions, which were often very pigmented. Thus, the fluorescent RACK1-MITF labeling pattern helped to distinguish melanomas from melanocytomas. Furthermore, RACK1 labeling correlated with 2 of 11 morphological features linked to malignancy: cell and nuclear size. These results suggest that RACK1 may be used as a marker in dog melanomas.

  13. Genomic regions controlling shape variation in the first upper molar of the house mouse

    PubMed Central

    Pantalacci, Sophie; Turner, Leslie M; Steingrimsson, Eirikur; Renaud, Sabrina

    2017-01-01

    Numerous loci of large effect have been shown to underlie phenotypic variation between species. However, loci with subtle effects are presumably more frequently involved in microevolutionary processes but have rarely been discovered. We explore the genetic basis of shape variation in the first upper molar of hybrid mice between Mus musculus musculus and M. m. domesticus. We performed the first genome-wide association study for molar shape and used 3D surface morphometrics to quantify subtle variation between individuals. We show that many loci of small effect underlie phenotypic variation, and identify five genomic regions associated with tooth shape; one region contained the gene microphthalmia-associated transcription factor Mitf that has previously been associated with tooth malformations. Using a panel of five mutant laboratory strains, we show the effect of the Mitf gene on tooth shape. This is the first report of a gene causing subtle but consistent variation in tooth shape resembling variation in nature. PMID:29091026

  14. High Throughput, High Content Screening for Novel Pigmentation Regulators Using a Keratinocyte/Melanocyte Co-culture System

    PubMed Central

    Lee, Ju Hee; Chen, Hongxiang; Kolev, Vihren; Aull, Katherine H.; Jung, Inhee; Wang, Jun; Miyamoto, Shoko; Hosoi, Junichi; Mandinova, Anna; Fisher, David E.

    2014-01-01

    Skin pigmentation is a complex process including melanogenesis within melanocytes and melanin transfer to the keratinocytes. To develop a comprehensive screening method for novel pigmentation regulators, we used immortalized melanocytes and keratinocytes in co-culture to screen large numbers of compounds. High-throughput screening plates were subjected to digital automated microscopy to quantify the pigmentation via brightfield microscopy. Compounds with pigment suppression were secondarily tested for their effects on expression of MITF and several pigment regulatory genes, and further validated in terms of non-toxicity to keratinocytes/melanocytes and dose dependent activity. The results demonstrate a high-throughput, high-content screening approach, which is applicable to the analysis of large chemical libraries using a co-culture system. We identified candidate pigmentation inhibitors from 4,000 screened compounds including zoxazolamine, 3-methoxycatechol, and alpha-mangostin, which were also shown to modulate expression of MITF and several key pigmentation factors, and are worthy of further evaluation for potential translation to clinical use. PMID:24438532

  15. Assessment of Cuscuta chinensis seeds׳ effect on melanogenesis: comparison of water and ethanol fractions in vitro and in vivo.

    PubMed

    Wang, Tian-Jing; An, Jing; Chen, Xiao-Hui; Deng, Qiu-Di; Yang, Liu

    2014-05-28

    Cuscuta chinensis seeds have traditionally been used to treat freckles and melasma in Asia, although recent reports have revealed that Semen cuscutae is a promoter of melanogenesis. The present study aims to investigate the mechanism of this opposite effect of Semen cuscutae on melanogenesis. In accordance with traditional usage, the water fraction and the ethanol fraction from Semen cuscutae (WFSC/EFSC) were extracted to determine the herbal effects by examining the activity of mushroom tyrosinase, cellular melanin contents, tyrosinase activity assay, quantitative-reverse transcription polymerase chain reaction (qRT-PCR), and Western blot analysis for tyrosinase in B16F10 mouse melanoma cells. The melanocyte phenotypes of zebrafish larvae were observed while the in vivo melanin contents and tyrosinase activity were determined. The activity of mushroom tyrosinase assay shown that WFSC was an uncompetitive inhibitor of mushroom tyrosinase, while EFSC indicated dose-dependent activation of the mushroom tyrosinase activity. The WFSC markedly inhibited 3-isobutyl-1-methylxanthine (IBMX)-stimulated melanin synthesis and tyrosinase activity in vitro. Howeveran accelerant role in melanin synthesis and tyosinase activity. Neither fraction had any effect on the IBMX-induced expression of tyrosinase protein or mRNA. The WFSC strongly inhibited melanin synthesis and cellular tyrosinase activity in vivo. Furthermore, with the function of WFSC at a higher concentration, a punctate melanocyte pattern appeared that was similar to the pattern induced by arbutin or Mequinol (MQ). The EFSC had no effect on the melanocytes of zebrafish larvae. It was discovered that WFSC did not show a stable inhibitory effect until it was extracted 1 month later. These results suggest that the opposite effects of Cuscuta chinensis seeds were caused by the extraction methods and that time has an important role on the effect of WFSC. Both WFSC and EFSC significantly influence melanogenesis by

  16. UV-B radiation induces macrophage migration inhibitory factor-mediated melanogenesis through activation of protease-activated receptor-2 and stem cell factor in keratinocytes.

    PubMed

    Enomoto, Akiko; Yoshihisa, Yoko; Yamakoshi, Takako; Ur Rehman, Mati; Norisugi, Osamu; Hara, Hiroshi; Matsunaga, Kenji; Makino, Teruhiko; Nishihira, Jun; Shimizu, Tadamichi

    2011-02-01

    UV radiation indirectly regulates melanogenesis in melanocytes through a paracrine regulatory mechanism involving keratinocytes. Protease-activated receptor (PAR)-2 activation induces melanosome transfer by increasing phagocytosis of melanosomes by keratinocytes. This study demonstrated that macrophage migration inhibitory factor (MIF) stimulated PAR-2 expression in human keratinocytes. In addition, we showed that MIF stimulated stem cell factor (SCF) release in keratinocytes; however, MIF had no effect on the release of endothelin-1 or prostaglandin E2 in keratinocytes. In addition, MIF had no direct effect on melanin and tyrosinase synthesis in cultured human melanocytes. The effect of MIF on melanogenesis was also examined using a three-dimensional reconstituted human epidermal culture model, which is a novel, commercially available, cultured human epidermis containing functional melanocytes. Migration inhibitory factor induced an increase in melanin content in the epidermis after a 9-day culture period. Moreover, melanin synthesis induced by UV-B stimulation was significantly down-regulated by anti-MIF antibody treatment. An in vivo study showed that the back skin of MIF transgenic mice had a higher melanin content than that of wild-type mice after 12 weeks of UV-B exposure. Therefore, MIF-mediated melanogenesis occurs mainly through the activation of PAR-2 and SCF expression in keratinocytes after exposure to UV-B radiation. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Catechol-O-methyltransferase as a target for melanoma destruction?

    PubMed

    Smit, N P; Latter, A J; Naish-Byfield, S; Westerhof, W; Pavel, S; Riley, P A

    1994-08-17

    Catechols may interfere in melanogenesis by causing increased levels of toxic quinones. Several catechols and known inhibitors of the enzyme catechol-O-methyltransferase (COMT) were therefore tested for their toxicity towards a pigmented melanoma cell line, UCLA-SO-(M14). The inhibition of thymidine incorporation as a result of exposure to the compounds was measured. All agents were compared to 4-hydroxyanisole (4HA), a depigmenting agent extensively studied as an antimelanoma drug. The compounds were also tested on the epithelial cell line, CNCM-I-(221) in the presence and absence of tyrosinase. All the compounds were more effective than 4HA towards the M14-cells at either 10(-4) M or 10(-5) M. The toxicity of 4HA towards the 221-cells was shown to be completely dependent on the presence of tyrosinase. Effects of the test agents on the 221-cells were also observed in the absence of tyrosinase. Although some of them were shown to be good substrates for tyrosinase only small changes in toxicity were observed as a result of the presence of the enzyme in comparison with 4HA. No direct correlation of the toxicity of the agents and COMT inhibition was observed. The possible mode of action of the compounds through inhibition of COMT and interference in melanogenesis is discussed together with other possibilities and factors involved.

  18. Role of Melanin in Oncogenesis

    DTIC Science & Technology

    2011-02-28

    the skin and eyes against the mutagenic effects of UV radiation. Through poorly understood mechanisms, melanin forms an envelope over the nucleus...it is compelling to question the role of undamaged melanin in oncogenesis. To answer this question, it is imperative to separate the UV - protective ...by the oncogenic MITF transcription factor2,3. It has been suggested that in its UV - protective role ,

  19. Anti-Melanogenic Properties of Greek Plants. A Novel Depigmenting Agent from Morus alba Wood.

    PubMed

    Chaita, Eliza; Lambrinidis, George; Cheimonidi, Christina; Agalou, Adamantia; Beis, Dimitris; Trougakos, Ioannis; Mikros, Emmanuel; Skaltsounis, Alexios-Leandros; Aligiannis, Nektarios

    2017-03-23

    In therapeutic interventions associated with melanin hyperpigmentation, tyrosinase is regarded as a target enzyme as it catalyzes the rate-limiting steps in mammalian melanogenesis. Since many known agents have been proven to be toxic, there has been increasing impetus to identify alternative tyrosinase inhibitors, especially from natural sources. In this study, we investigated 900 extracts from Greek plants for potential tyrosinase inhibitive properties. Among the five most potent extracts, the methanol extract of Morus alba wood (MAM) demonstrated a significant reduction in intracellular tyrosinase and melanin content in B16F10 melanoma cells. Bioassay-guided isolation led to the acquisition of twelve compounds: oxyresveratrol (1), kuwanon C (2), mulberroside A (3), resorcinol (4), dihydrooxyresveratol (5), trans-dihydromorin (6), 2,4,3'-trihydroxydihydrostilbene (7), kuwanon H (8), 2,4-dihydroxybenzaldehyde (9), morusin (10), moracin M (11) and kuwanon G (12). Among these, 2,4,3'-trihydroxydihydrostilbene (7) is isolated for the first time from Morus alba and constitutes a novel potent tyrosinase inhibitor (IC50 0.8 ± 0.15). We report here for the first time dihydrooxyresveratrol (5) as a potent natural tyrosinase inhibitor (IC50 0.3 ± 0.05). Computational docking analysis indicated the binding modes of six tyrosinase inhibitors with the aminoacids of the active centre of tyrosinase. Finally, we found both MAM extract and compounds 1, 6 and 7 to significantly suppress in vivo melanogenesis during zebrafish embryogenesis.

  20. Validating tyrosinase homologue melA as a photoacoustic reporter gene for imaging Escherichia coli

    NASA Astrophysics Data System (ADS)

    Paproski, Robert J.; Li, Yan; Barber, Quinn; Lewis, John D.; Campbell, Robert E.; Zemp, Roger

    2015-10-01

    To understand the pathogenic processes for infectious bacteria, appropriate research tools are required for replicating and characterizing infections. Fluorescence and bioluminescence imaging have primarily been used to image infections in animal models, but optical scattering in tissue significantly limits imaging depth and resolution. Photoacoustic imaging, which has improved depth-to-resolution ratio compared to conventional optical imaging, could be useful for visualizing melA-expressing bacteria since melA is a bacterial tyrosinase homologue which produces melanin. Escherichia coli-expressing melA was visibly dark in liquid culture. When melA-expressing bacteria in tubes were imaged with a VisualSonics Vevo LAZR system, the signal-to-noise ratio of a 9× dilution sample was 55, suggesting that ˜20 bacteria cells could be detected with our system. Multispectral (680, 700, 750, 800, 850, and 900 nm) analysis of the photoacoustic signal allowed unmixing of melA-expressing bacteria from blood. To compare photoacoustic reporter gene melA (using Vevo system) with luminescent and fluorescent reporter gene Nano-lantern (using Bruker Xtreme In-Vivo system), tubes of bacteria expressing melA or Nano-lantern were submerged 10 mm in 1% Intralipid, spaced between <1 and 20 mm apart from each other, and imaged with the appropriate imaging modality. Photoacoustic imaging could resolve the two tubes of melA-expressing bacteria even when the tubes were less than 1 mm from each other, while bioluminescence and fluorescence imaging could not resolve the two tubes of Nano-lantern-expressing bacteria even when the tubes were spaced 10 mm from each other. After injecting 100-μL of melA-expressing bacteria in the back flank of a chicken embryo, photoacoustic imaging allowed visualization of melA-expressing bacteria up to 10-mm deep into the embryo. Photoacoustic signal from melA could also be separated from deoxy- and oxy-hemoglobin signal observed within the embryo and

  1. Artemisia asiatica ethanol extract exhibits anti-photoaging activity.

    PubMed

    Jeong, Deok; Lee, Jongsung; Jeong, Seong-Gu; Hong, Yo Han; Yoo, Sulgi; Han, Sang Yun; Kim, Ji Hye; Kim, Sunggyu; Kim, Jin Sic; Chung, Young Soo; Kim, Jong-Hoon; Yi, Young-Su; Cho, Jae Youl

    2018-06-28

    Artemisia asiatica Nakai is a traditional herbal plant that has long been used in anti-inflammatory, anti-infective and skin protective remedies. In this study, traditionally known skin-protective activity of Artemisia asiatica Nakai was examined with its ethanol extract (Aa-EE) under various photoaging conditions using skin-originated cells, and the underlying mechanism was also examined using various types of cells. Effects of Aa-EE on cell viability, photocytotoxicity, and expression of matrix metalloproteinases (MMPs), cyclooxygenase (COX)-2, and moisturizing factors were measured in B16F10, HEK293, NIH3T3, and HaCaT cells under untreated and ultraviolet B (UVB)-irradiation conditions. Anti-melanogenic effect of Aa-EE was also examined by measuring both melanin content in B16F10 cells and tyrosinase activity. Anti-photoaging mechanism of Aa-EE was explored by determining the activation levels of signaling molecules by immunoblotting analysis. Aa-EE protected HaCaT cells from UVB irradiation-induced death. Aa-EE increased the expression of a type 1 pro-collagen gene and decreased the expression of matrix metalloproteinases, and COX-2 in NIH3T3 cells induced by UVB. Aa-EE increased the expression of transglutamase-1, hyaluronic acid synthase (HAS)-2, and HAS-3 in HaCaT cells and decreased the production of melanin in α-melanocyte-stimulating hormone-stimulated B16F10 cells by suppressing tyrosinase activity and the expression of tyrosinase, microphthalmia-associated transcription factor, tyrosinase-related protein (TRP)-1 and TRP-2. The results suggest that Aa-EE could be skin-protective remedy with anti-photoaging, anti-apoptotic, skin remodeling, moisturizing, and anti-melanogenesis properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling.

    PubMed

    Nayak, G; Cooper, G M

    2012-10-11

    The phosphatidylinositol (PI) 3-kinase/Akt signaling pathway has a prominent role in cell survival and proliferation, in part, by regulating gene expression at the transcriptional level. Previous work using global expression profiling identified FOXOs and the E-box-binding transcription factors MITF and USF1 as key targets of PI 3-kinase signaling that lead to the induction of proapoptotic and cell cycle arrest genes in response to inhibition of PI 3-kinase. In this study, we investigated the role of p53 downstream of PI 3-kinase signaling by analyzing the effects of inhibition of PI 3-kinase in Rat-1 cells, which have wild-type p53, compared with Rat-1 cells expressing a dominant-negative p53 mutant. Expression of dominant-negative p53 conferred partial resistance to apoptosis induced by inhibition of PI 3-kinase. Global gene expression profiling combined with computational and experimental analysis of transcription factor binding sites demonstrated that p53, along with FOXO, MITF and USF1, contributed to gene induction in response to PI 3-kinase inhibition. Activation of p53 was mediated by phosphorylation of the histone acetyltransferase Tip60 by glycogen synthase kinase (GSK) 3, leading to activation of p53 by acetylation. Many of the genes targeted by p53 were also targeted by FOXO and E-box-binding transcription factors, indicating that p53 functions coordinately with these factors to regulate gene expression downstream of PI 3-kinase/Akt/GSK3 signaling.

  3. A polymethoxyflavone mixture extracted from orange peels, mainly containing nobiletin, 3,3',4',5,6,7,8-heptamethoxyflavone and tangeretin, suppresses melanogenesis through the acidification of cell organelles, including melanosomes.

    PubMed

    Yoshizaki, Norihiro; Hashizume, Ron; Masaki, Hitoshi

    2017-10-01

    Skin color is determined by melanin contents and its distribution. Melanin is synthesized in melanosomes of melanocytes, catalyzed by tyrosinase, melanogenic enzymes. Regarding the process of melanin synthesis, melanosomal pH is considered to play an important role, because it has been reported to differ between Caucasian and Black melanocytes. Although polymethoxyflavone (PMF) has many beneficial effects, it has not been reported which PMF suppresses melanogenesis. In this study, we identified the mechanism underlying the effect of PMF on melanogenesis METHODS: We determined the effects of a PMF mixture extracted from orange peels on melanogenesis, on tyrosinase expression, on the localization of tyrosinase and on the acidification of organelles, including melanosomes, in HM3KO human melanoma cells. RESULTS TREATMENT: with the PMF mixture elicited the suppression of melanogenesis, the degradation of tyrosinase in lysosomes and the mislocalization of tyrosinase associated with the acidification of intracellular organelles, including melanosomes. The neutralization of cell organelle pH by ammonium chloride restored melanogenesis and the correct localization of tyrosinase to melanosomes, which had been suppressed by the PMF mixture. These results suggest that the PMF mixture suppresses the localization of tyrosinase to melanosomes and consequently inhibits melanogenesis due to the acidification of cell organelles, including melanosomes. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  4. Effect of carbon black functionalization on the analytical performance of a tyrosinase biosensor based on glassy carbon electrode modified with dihexadecylphosphate film.

    PubMed

    Ibáñez-Redín, Gisela; Silva, Tiago Almeida; Vicentini, Fernando Campanhã; Fatibello-Filho, Orlando

    2018-09-01

    Carbon Black (CB) has acquired a prominent position as a carbon nanomaterial for the development of electrochemical sensors and biosensors due to its low price and extraordinary electrochemical and physical properties. These properties are highly dependent on the surface chemistry and thus, the effect of functionalization has been widely studied for different applications. Meanwhile, the influence of CB functionalization over its properties for electroanalytical applications is still being poorly explored. In this study, we describe the use of chemically functionalized CB Vulcan XC 72R for the development of sensitive electrochemical biosensors. The chemical pre-treatment increased the material wettability by raising the concentration of surface oxygenated functional groups verified from elemental analysis and FTIR measurements. In addition, it was observed an enhancement of almost 100-fold on the electron transfer rate constant (k 0 ) related to unfunctionalized CB, confirming a remarkable improvement of the electrocatalytic properties. Finally, we constructed a Tyrosinase (Tyr) biosensor based on functionalized CB and dihexadecylphosphate (DHP) for the determination of catechol in water samples. The resulting device displayed an excellent stability with a limit of detection of 8.7 × 10 -8  mol L -1 and a sensitivity of 539 mA mol -1  L. Our results demonstrate that functionalized CB provides an excellent platform for biosensors development. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Clinical relevance of sentinel lymph node status examined with conventional histology and molecular biology.

    PubMed

    Micciolo, Rocco; Boi, Sebastiana; Paoli, Loredana; Cristofolini, Paolo; Girlando, Salvatore; Dalla Palma, Paolo; Cristofolini, Mario

    2009-01-01

    The presence of nodal metastases in patients with primary cutaneous melanoma adversely affects the biological behavior and is related to a poor prognosis. The role of sentinel lymph node biopsy is still debated. The aim of this study was to evaluate the prognostic role of sentinel lymph node biopsy with respect to disease-free period and overall survival. Patients with invasive cutaneous melanoma who underwent sentinel lymph node biopsy in the Santa Chiara Hospital of Trento between October 1997 and December 2002 were evaluated. The lymph nodes were examined with conventional histology, S100 and tyrosinase in immunohistochemistry, and tyrosinase in molecular biology. There were 144 patients with 198 sentinel lymph nodes. A significant association was found in conventional histology with Clark level and Breslow thickness. The prognostic role of sentinel lymph node status was independent of the other considered variables. However, no significant association was found with the molecular biology test. A significant excess of positive results at molecular biology was found. Sentinel lymph node biopsy is an important independent prognostic factor for invasive cutaneous melanoma, but only when evaluated with conventional histology. As a result of this study, we stopped performing the tyrosinase test in molecular biology.

  6. Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract

    PubMed Central

    2012-01-01

    Background Magnolia grandiflora L. flower is wildly used in Asian as a traditional herbal medication. The purpose of the study was to investigate the antimelanogenic and antioxidant properties of Magnolia grandiflora L. flower extract. In the study, the inhibitory effects of M. grandiflora L. flower extract on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were determined spectrophotometrically. Meanwhile, the antioxidative capacity of the flower extract was also investigated. Results Our results revealed that M. grandiflora L. flower extract inhibit mushroom tyrosinase activity (IC50 =11.1%; v/v), the flower extract also effectively suppressed intracellular tyrosinase activity (IC50 = 13.6%; v/v) and decreased the amount of melanin (IC50 = 25.6%; v/v) in a dose-dependent manner in B16F10 cells. Protein expression level of tyrosinase and tyrosinase-related protein 1 (TRP-1) were also decreased by the flower extract. Additionally, antioxidant capacities such as ABTS+ free radical scavenging activity, reducing capacity and total phenolic content of the flower extract were increased in a dose-dependent pattern. Conclusions Our results concluded that M. grandiflora L. flower extract decreased the expression of tyrosinase and TRP-1, and then inhibited melanogenesis in B16F10 cells. The flower extract also show antioxidant capacities and depleted cellular reactive oxygen species (ROS). Hence, M. grandiflora L. flower extract could be applied as a type of dermatological whitening agent in skin care products. PMID:22672352

  7. Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract.

    PubMed

    Huang, Huey-Chun; Hsieh, Wan-Yu; Niu, Yu-Lin; Chang, Tsong-Min

    2012-06-06

    Magnolia grandiflora L. flower is wildly used in Asian as a traditional herbal medication. The purpose of the study was to investigate the antimelanogenic and antioxidant properties of Magnolia grandiflora L. flower extract. In the study, the inhibitory effects of M. grandiflora L. flower extract on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were determined spectrophotometrically. Meanwhile, the antioxidative capacity of the flower extract was also investigated. Our results revealed that M. grandiflora L. flower extract inhibit mushroom tyrosinase activity (IC(50) = 11.1%; v/v), the flower extract also effectively suppressed intracellular tyrosinase activity (IC(50) = 13.6%; v/v) and decreased the amount of melanin (IC(50) = 25.6%; v/v) in a dose-dependent manner in B16F10 cells. Protein expression level of tyrosinase and tyrosinase-related protein 1 (TRP-1) were also decreased by the flower extract. Additionally, antioxidant capacities such as ABTS(+) free radical scavenging activity, reducing capacity and total phenolic content of the flower extract were increased in a dose-dependent pattern. Our results concluded that M. grandiflora L. flower extract decreased the expression of tyrosinase and TRP-1, and then inhibited melanogenesis in B16F10 cells. The flower extract also show antioxidant capacities and depleted cellular reactive oxygen species (ROS). Hence, M. grandiflora L. flower extract could be applied as a type of dermatological whitening agent in skin care products.

  8. Mechanism of the melanogenesis stimulation activity of (-)-cubebin in murine B16 melanoma cells.

    PubMed

    Hirata, Noriko; Naruto, Shunsuke; Ohguchi, Kenji; Akao, Yukihiro; Nozawa, Yoshinori; Iinuma, Munekazu; Matsuda, Hideaki

    2007-07-15

    (-)-Cubebin showed a melanogenesis stimulation activity in a concentration-dependent manner in murine B16 melanoma cells without any significant effects on cell proliferation. Tyrosinase activity was increased at 24-72 h after addition of cubebin to B16 cells, and then intracellular melanin amount was increased at 48-96 h after the treatment. The expression levels of tyrosinase were time-dependently enhanced after the treatment with cubebin. At the same time, the expression levels of tyrosinase mRNA were also increased after addition of cubebin. Furthermore Western blot analysis revealed that cubebin elevated the level of phosphorylation of p38 mitogen-activated protein kinase (MAPK). SB203580, a selective inhibitor of p38 MAPK, completely blocked cubebin-induced expression of tyrosinase mRNA in B16 cells. These results suggested that cubebin increased melanogenesis in B16 cells through the enhancement of tyrosinase expression mediated by activation of p38 MAPK.

  9. HMB-45 and Melan-A are useful in the differential diagnosis between granular cell tumor and malignant melanoma.

    PubMed

    Gleason, Briana C; Nascimento, Alessandra F

    2007-02-01

    Granular cell tumors (GCTs), especially if atypical or malignant, may share cytomorphologic and architectural features with malignant melanoma, when the latter shows granular cell change. In many cases, these neoplasms can be differentiated from each other on histologic grounds, but distinction may sometimes be challenging. By immunohistochemistry, both tumors are strongly positive for S-100 protein and frequently express other nonspecific markers such as CD68, NSE, and NKIC3. In the current study, we reviewed 60 cases of conventional cutaneous, mucosal, and visceral GCT and studied the use of immunoperoxidase staining for the differential diagnosis between malignant melanoma and GCT. Immunohistochemical stains for S-100 protein, A, HMB-45, and microphthalmia transcription factor (MITF) were performed in all cases. All of the tumors were positive for S-100 protein. MITF immunostaining was diffusely positive in 53 (88%) cases, focally positive in three (5%) cases, and negative in four (7%). Fifty-seven (95%) tumors were negative for Melan-A, one case was focally positive, and two cases showed rare positive tumor cells. None of the tumors expressed HMB-45. In conclusion, GCT and malignant melanoma can be reliably differentiated on the basis of immunohistochemical stains in the majority of cases. Although not always positive in malignant melanoma, in this context, HMB-45 expression seems to be 100% specific for the diagnosis of melanoma. Melan-A is slightly less specific, with rare cases of GCT showing focal positivity. MITF is not useful in this differential-93% of the GCTs in our series showed nuclear reactivity for this marker. The latter finding highlights the limited specificity of this antibody in the diagnosis of melanocytic tumors.

  10. Increased systemic and epidermal levels of IL-17A and IL-1β promotes progression of non-segmental vitiligo.

    PubMed

    Bhardwaj, Supriya; Rani, Seema; Srivastava, Niharika; Kumar, Ravinder; Parsad, Davinder

    2017-03-01

    Non-segmental vitiligo (NSV) results from autoimmune destruction of melanocytes. The altered levels of various cytokines have been proposed in the pathogenesis of vitiligo. However, the exact immune mechanisms have not yet been fully elucidated. To investigate the role of epidermal and systemic cytokines in active and stable NSV patients. Serum levels of inflammatory cytokines were checked in 42 active and 30 stable NSV patients with 30 controls. The lesional, perilesional and normal skin sections were subjected to H&E staining. The mRNA expression of inflammatory cytokines and their respective receptors were assessed by quantitative PCR in lesional skin of both active and stable NSV skin. The MITF and IL-17A were immunolocalized in lesional, perilesional and normal skin tissue. Significant increase in the expression of inflammatory cytokines, IL-17A, IL-1β and TGF-β was observed in active patients, whereas no change was observed in stable patients. A marked reduction in epidermal thickness was observed in lesional skin sections. Significant increase in IL-17A and significant decrease in microphthalmia associated transcription factor (MITF) expression was observed in lesional and perilesional skin sections. Moreover, qPCR analysis showed significant alterations in the mRNA levels of IL-17A, IL-1β, IFN-γ, TGF-β and their respective receptors in active and stable vitiligo patient samples. Increased levels of IL-17A and IL-1β cytokines and decreased expression of MITF suggested a possible role of these cytokines in dysregulation of melanocytic activity in the lesional skin and hence might be responsible for the progression of active vitiligo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. [Clinical and genetic investigation of families with Waardenburg syndrome type 2].

    PubMed

    Chen, H S; Liao, X B; Liu, Y L; He, C F; Zhang, H; Jiang, L; Feng, Y; Mei, L Y

    2016-12-01

    Objective: To investigate the clinical chacteration and molecular pathology of Waardenburg syndrome type 2 in seven families, and provide genetic diagnosis and hereditary counseling for family members. Method: Clinical data of seven families with WS2(14 patients)were collected. Peripheral blood samples of the probands and related family members were collected and genomic DNA was extracted. The coding sequences of microphthalmia associated transcription factor (MITF), sex-determining region Y-box 10(SOX10), snail family zinc finger 2 (SNAI2) and endothelin receptor type B(EDNRB)were analyzed by polymerase chain reaction and DNA sequencing. Then the raw data was analyzed. Result: The most common manifestations of WS2 are sensorineural hearing loss(10/14,71.4%), freckle(7/14, 50.0%),heterochromia iridis(6/14, 42.9%) and premature greying(5/14,35.7%). All the deafness phenotype is congenital, bilateral profound sensorineural hearing loss. Freckles phenotype is different from cutaneous pigment abnormalities of WS in Westerners. The heterozygous mutation, c.328C>T in exon 3 of the MITF gene was detected in the proband and all patients of pedigree 2. However, no pathological mutation of the relevant genes (SOX10,SNAI2 and EDNRB) was detected in other pedigrees. Conclusion: There are obvious variations in clinical features of WS, while freckles may be a special subtype of cutaneous pigment disturbances. The MITF gene mutation, R110X,is therefore considered the disease causing mutation in pedigree WS02.However, there are novel disease causing genes or copy number variations in Waardenburg syndrome type 2, which require further research. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  12. Whitening Effect of Watersoluble Royal Jelly from South Korea.

    PubMed

    Han, Sang Mi; Kim, Jung Min; Hong, In Phyo; Woo, Soon Ok; Kim, Se Gun; Jang, Hye Ri; Park, Kwan Kyu; Pak, Sok Cheon

    2015-01-01

    Royal jelly has been widely used as a health supplement worldwide. However, royal jelly has been implicated in allergic reactions, and we developed a water-soluble royal jelly (WSRJ) without the allergy inducing protein. In this study, we aimed to identify the anti-melanogenic efficacy of WSRJ. B16F1 melanoma cells were first treated with 10 nM α-melanocyte stimulating hormone (α-MSH) and then with various doses of WSRJ. In addition, we investigated the mRNA and protein expression of melanogenesis-related genes such as tyrosinase, tyrosinase related protein-1 (TRP-1) and TRP-2 by reverse transcription-polymerase chain reaction and western blotting. WSRJ directly inhibited tyrosinase and cellular tyrosinase activity, which decreased melanin synthesis in α-MSH stimulated B16F1 melanoma cells a level comparable to that observed with arbutin. WSRJ decreased the mRNA and protein expressions of tyrosinase, TRP-1, and TRP-2, which was comparable to that observed with arbutin. WSRJ has strong anti-melanogenic activity, which invoice direct inhibition of tyrosinase enzyme activity and suppression of expression of melanogenesis related genes. Results from this study suggests that WSRJ is a potential candidate for the treatment of skin pigmentation.

  13. Diadenosine Tetraphosphate Hydrolase Is Part of the Transcriptional Regulation Network in Immunologically Activated Mast Cells▿

    PubMed Central

    Carmi-Levy, Irit; Yannay-Cohen, Nurit; Kay, Gillian; Razin, Ehud; Nechushtan, Hovav

    2008-01-01

    We previously discovered that microphthalmia transcription factor (MITF) and upstream stimulatory factor 2 (USF2) each forms a complex with its inhibitor histidine triad nucleotide-binding 1 (Hint-1) and with lysyl-tRNA synthetase (LysRS). Moreover, we showed that the dinucleotide diadenosine tetraphosphate (Ap4A), previously shown to be synthesized by LysRS, binds to Hint-1, and as a result the transcription factors are released from their suppression. Thus, transcriptional activity is regulated by Ap4A, suggesting that Ap4A is a second messenger in this context. For Ap4A to be unambiguously established as a second messenger, several criteria have to be fulfilled, including the presence of a metabolizing enzyme. Since several enzymes are able to hydrolize Ap4A, we provided here evidence that the “Nudix” type 2 gene product, Ap4A hydrolase, is responsible for Ap4A degradation following the immunological activation of mast cells. The knockdown of Ap4A hydrolase modulated Ap4A accumulation, resulting in changes in the expression of MITF and USF2 target genes. Moreover, our observations demonstrated that the involvement of Ap4A hydrolase in gene regulation is not a phenomenon exclusive to mast cells but can also be found in cardiac cells activated with the β-agonist isoproterenol. Thus, we have provided concrete evidence establishing Ap4A as a second messenger in the regulation of gene expression. PMID:18644867

  14. Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network in immunologically activated mast cells.

    PubMed

    Carmi-Levy, Irit; Yannay-Cohen, Nurit; Kay, Gillian; Razin, Ehud; Nechushtan, Hovav

    2008-09-01

    We previously discovered that microphthalmia transcription factor (MITF) and upstream stimulatory factor 2 (USF2) each forms a complex with its inhibitor histidine triad nucleotide-binding 1 (Hint-1) and with lysyl-tRNA synthetase (LysRS). Moreover, we showed that the dinucleotide diadenosine tetraphosphate (Ap(4)A), previously shown to be synthesized by LysRS, binds to Hint-1, and as a result the transcription factors are released from their suppression. Thus, transcriptional activity is regulated by Ap(4)A, suggesting that Ap(4)A is a second messenger in this context. For Ap(4)A to be unambiguously established as a second messenger, several criteria have to be fulfilled, including the presence of a metabolizing enzyme. Since several enzymes are able to hydrolyze Ap(4)A, we provided here evidence that the "Nudix" type 2 gene product, Ap(4)A hydrolase, is responsible for Ap(4)A degradation following the immunological activation of mast cells. The knockdown of Ap(4)A hydrolase modulated Ap(4)A accumulation, resulting in changes in the expression of MITF and USF2 target genes. Moreover, our observations demonstrated that the involvement of Ap(4)A hydrolase in gene regulation is not a phenomenon exclusive to mast cells but can also be found in cardiac cells activated with the beta-agonist isoproterenol. Thus, we have provided concrete evidence establishing Ap(4)A as a second messenger in the regulation of gene expression.

  15. Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2006-09-01

    In our previous efforts to find new tyrosinase inhibitory materials, we investigated 44 Indonesian medicinal plants belonging to 24 families. Among those plants, the extract of Artocarpus heterophyllus was one of the strongest inhibitors of tyrosinase activity. By activity-guided fractionation of A. heterophyllus wood extract, we isolated artocarpanone, which inhibited both mushroom tyrosinase activity and melanin production in B16 melanoma cells. This compound is a strong candidate as a remedy for hyperpigmentation in human skin.

  16. Inhibition of enzymatic browning of chlorogenic acid by sulfur-containing compounds.

    PubMed

    Kuijpers, Tomas F M; Narváez-Cuenca, Carlos-Eduardo; Vincken, Jean-Paul; Verloop, Annewieke J W; van Berkel, Willem J H; Gruppen, Harry

    2012-04-04

    The antibrowning activity of sodium hydrogen sulfite (NaHSO(3)) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color (spectral analysis), oxygen consumption, and reaction product formation (RP-UHPLC-PDA-MS) were monitored in time. It was found that the compounds showing antibrowning activity either prevented browning by forming colorless addition products with o-quinones of 5-CQA (NaHSO(3), cysteine, and glutathione) or inhibiting the enzymatic activity of tyrosinase (NaHSO(3) and dithiothreitol). NaHSO(3) was different from the other sulfur-containing compounds investigated, because it showed a dual inhibitory effect on browning. Initial browning was prevented by trapping the o-quinones formed in colorless addition products (sulfochlorogenic acid), while at the same time, tyrosinase activity was inhibited in a time-dependent way, as shown by pre-incubation experiments of tyrosinase with NaHSO(3). Furthermore, it was demonstrated that sulfochlorogenic and cysteinylchlorogenic acids were not inhibitors of mushroom tyrosinase.

  17. Investigating wound healing, tyrosinase inhibitory and antioxidant activities of the ethanol extracts of Salvia cryptantha and Salvia cyanescens using in vivo and in vitro experimental models.

    PubMed

    Süntar, Ipek; Akkol, Esra Küpeli; Senol, Fatma Sezer; Keles, Hikmet; Orhan, Ilkay Erdogan

    2011-04-26

    Salvia L. species are widely used against wounds and skin infections in Turkish folk medicine. The aim of the present study is to evaluate wound healing activity of the ethanol (EtOH) extracts of Salvia cryptantha and Salvia cyanescens. For the assessment of wound healing activity linear incision and circular excision wound models were employed on rats and mice. The wound healing effect was comparatively evaluated with the standard skin ointment Madecassol(®). Inhibition of tyrosinase, a key enzyme in skin aging, was achieved using ELISA microplate reader. Antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radical scavenger effect, ferrous ion-chelating ability, and ferric-reducing antioxidant power (FRAP) tests. The EtOH extract of Salvia cryptantha treated groups of animals showed 56.5% contraction, whereas the reference drug Madecassol(®) showed 100% contraction. On the other hand, the same extract on linear incision wound model demonstrated a significant increase (33.2%) in wound tensile strength as compared to other groups. The results of histopathological examination maintained the upshot of linear incision and circular excision wound models as well. These findings specify that Salvia cryptantha for wound healing activity can be appealed further phytochemical estimation for spotting its active components. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Cinnamomum cassia Essential Oil Inhibits α-MSH-Induced Melanin Production and Oxidative Stress in Murine B16 Melanoma Cells

    PubMed Central

    Chou, Su-Tze; Chang, Wen-Lun; Chang, Chen-Tien; Hsu, Shih-Lan; Lin, Yu-Che; Shih, Ying

    2013-01-01

    Essential oils extracted from aromatic plants exhibit important biological activities and have become increasingly important for the development of aromatherapy for complementary and alternative medicine. The essential oil extracted from Cinnamomum cassia Presl (CC-EO) has various functional properties; however, little information is available regarding its anti-tyrosinase and anti-melanogenic activities. In this study, 16 compounds in the CC-EO have been identified; the major components of this oil are cis-2-methoxycinnamic acid (43.06%) and cinnamaldehyde (42.37%). CC-EO and cinnamaldehyde exhibited anti-tyrosinase activities; however, cis-2-methoxycinnamic acid did not demonstrate tyrosinase inhibitory activity. In murine B16 melanoma cells stimulated with α-melanocyte-stimulating hormone (α-MSH), CC-EO and cinnamaldehyde not only reduced the melanin content and tyrosinase activity of the cells but also down-regulated tyrosinase expression without exhibiting cytotoxicity. Moreover, CC-EO and cinnamaldehyde decreased thiobarbituric acid-reactive substance (TBARS) levels and restored glutathione (GSH) and catalase activity in the α-MSH-stimulated B16 cells. These results demonstrate that CC-EO and its major component, cinnamaldehyde, possess potent anti-tyrosinase and anti-melanogenic activities that are coupled with antioxidant properties. Therefore, CC-EO may be a good source of skin-whitening agents and may have potential as an antioxidant in the future development of complementary and alternative medicine-based aromatherapy. PMID:24051402

  19. Methylquercetins stimulate melanin biosynthesis in a three-dimensional skin model.

    PubMed

    Yamauchi, Kosei; Mitsunaga, Tohru

    2018-03-01

    In a previous study, we found that both synthetic 3-O-methylquercetin (3MQ) and 3,4',7-O-trimethylquercetin (34'7TMQ) increased extracellular melanin content. 34'7TMQ increased the activity of melanogenic enzymes by stimulating the p38 pathway and the expression of microphthalmia-associated transcription factor (MITF). In contrast, 3MQ increased the activity of melanogenic enzymes without the involvement of MITF, which suggests that 3MQ inhibits the degradation of melanogenic enzymes. In the present study, we investigated the effects of 3MQ and 34'7TMQ on melanogenesis in normal human melanocytes and using a commercial three-dimensional (3D) skin model system. Both 3MQ and 34'7TMQ elongated the dendrites of normal human melanocytes from a Caucasian donor, but did not stimulate melanogenesis in the melanocytes. In the 3D skin model, which included melanocytes from an Asian donor, 3MQ and 34'7TMQ increased and elongated the melanocytes and showed a tendency to stimulate melanogenesis. These results suggest that 3MQ and 34'7TMQ could be put to practical use in skin care products and agents aimed at preventing hair graying.

  20. Phenol oxidation by mushroom waste extracts: a kinetic and thermodynamic study.

    PubMed

    Pigatto, Gisele; Lodi, Alessandra; Aliakbarian, Bahar; Converti, Attilio; da Silva, Regildo Marcio Gonçalves; Palma, Mauri Sérgio Alves

    2013-09-01

    Tyrosinase activity of mushroom extracts was checked for their ability to degrade phenol. Phenol oxidation kinetics was investigated varying temperature from 10 to 60 °C and the initial values of pH, enzyme activity and phenol concentration in the ranges 4.5-8.5, 1.43-9.54 U/mL and 50-600 mg/L, respectively. Thermodynamic parameters of phenol oxidation and tyrosinase reversible inactivation were estimated. Tyrosinase thermostability was also investigated through residual activity tests after extracts exposition at 20-50 °C, whose results allowed exploring the thermodynamics of enzyme irreversible thermoinactivation. This study is the first attempt to separate the effects of reversible unfolding and irreversible denaturation of tyrosinase on its activity. Extracts were finally tested on a real oil mill wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.