Sample records for factor mutations identified

  1. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-05-26

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes.

  2. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  3. Identification of eight novel coagulation factor XIII subunit A mutations: implied consequences for structure and function

    PubMed Central

    Ivaskevicius, Vytautas; Biswas, Arijit; Bevans, Carville; Schroeder, Verena; Kohler, Hans Peter; Rott, Hannelore; Halimeh, Susan; Petrides, Petro E.; Lenk, Harald; Krause, Manuele; Miterski, Bruno; Harbrecht, Ursula; Oldenburg, Johannes

    2010-01-01

    Background Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer. Design and Methods We analyzed ten index patients and three relatives for factor XIII activity using a photometric assay and sequenced their F13A and F13B genes. Additionally, structural analysis of the wild-type protein structure from a previously reported X-ray crystallographic model identified potential structural and functional effects of the missense mutations. Results All individuals except one were heterozygous for factor XIIIA mutations (average factor XIII activity 51%), while the remaining homozygous individual was found to have severe factor XIII deficiency (<5% of normal factor XIII activity). Eight of the 12 heterozygous patients exhibited a bleeding tendency upon provocation. Conclusions The identified missense (Pro289Arg, Arg611His, Asp668Gly) and nonsense (Gly390X, Trp664X) mutations are causative for factor XIII deficiency. A Gly592Ser variant identified in three unrelated index patients, as well as in 200 healthy controls (minor allele frequency 0.005), and two further Tyr167Cys and Arg540Gln variants, represent possible candidates for rare F13A gene polymorphisms since they apparently do not have a significant influence on the structure of the factor XIIIA protein. Future in vitro expression studies of the factor XIII mutations are required to confirm their pathological mechanisms. PMID:20179087

  4. Identification of eight novel coagulation factor XIII subunit A mutations: implied consequences for structure and function.

    PubMed

    Ivaskevicius, Vytautas; Biswas, Arijit; Bevans, Carville; Schroeder, Verena; Kohler, Hans Peter; Rott, Hannelore; Halimeh, Susan; Petrides, Petro E; Lenk, Harald; Krause, Manuele; Miterski, Bruno; Harbrecht, Ursula; Oldenburg, Johannes

    2010-06-01

    Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer. We analyzed ten index patients and three relatives for factor XIII activity using a photometric assay and sequenced their F13A and F13B genes. Additionally, structural analysis of the wild-type protein structure from a previously reported X-ray crystallographic model identified potential structural and functional effects of the missense mutations. All individuals except one were heterozygous for factor XIIIA mutations (average factor XIII activity 51%), while the remaining homozygous individual was found to have severe factor XIII deficiency (<5% of normal factor XIII activity). Eight of the 12 heterozygous patients exhibited a bleeding tendency upon provocation. The identified missense (Pro289Arg, Arg611His, Asp668Gly) and nonsense (Gly390X, Trp664X) mutations are causative for factor XIII deficiency. A Gly592Ser variant identified in three unrelated index patients, as well as in 200 healthy controls (minor allele frequency 0.005), and two further Tyr167Cys and Arg540Gln variants, represent possible candidates for rare F13A gene polymorphisms since they apparently do not have a significant influence on the structure of the factor XIIIA protein. Future in vitro expression studies of the factor XIII mutations are required to confirm their pathological mechanisms.

  5. Prognostication in Philadelphia Chromosome Negative Myeloproliferative Neoplasms: a Review of the Recent Literature.

    PubMed

    Zhou, Amy; Afzal, Amber; Oh, Stephen T

    2017-10-01

    The prognosis for patients with Philadelphia chromosome (Ph)-negative myeloproliferative neoplasms (MPNs) is highly variable. All Ph-negative MPNs carry an increased risk for thrombotic complications, bleeding, and leukemic transformation. Several clinical, biological, and molecular prognostic factors have been identified in recent years, which provide important information in guiding management of patients with Ph-negative MPNs. In this review, we critically evaluate the recent published literature and discuss important new developments in clinical and molecular factors that impact survival, disease transformation, and thrombosis in patients with polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have identified several clinical factors and non-driver mutations to have prognostic impact on Ph-negative MPNs independent of conventional risk stratification and prognostic models. In polycythemia vera (PV), leukocytosis, abnormal karyotype, phlebotomy requirement on hydroxyurea, increased bone marrow fibrosis, and mutations in ASXL1, SRSF2, and IDH2 were identified as additional adverse prognostic factors. In essential thrombocythemia (ET), JAK2 V617F mutation, splenomegaly, and mutations in SH2B3, SF3B1, U2AF1, TP53, IDH2, and EZH2 were found to be additional negative prognostic factors. Bone marrow fibrosis and mutations in ASXL1, SRSF2, EZH2, and IDH1/2 have been found to be additional prognostic factors in primary myelofibrosis (PMF). CALR mutations appear to be a favorable prognostic factor in PMF, which has not been clearly demonstrated in ET. The prognosis for patients with PV, ET, and PMF is dependent upon the presence or absence of several clinical, biological, and molecular risk factors. The significance of additional risk factors identified in these recent studies will need further validation in prospective studies to determine how they may be best utilized in the management of these disorders.

  6. [Molecular genetic analysis for a pedigree with severe hereditary coagulation factor VII deficiency].

    PubMed

    Ding, Qiu-lan; Wang, Hong-li; Wang, Xue-feng; Wang, Ming-shan; Fu, Qi-hua; Wu, Wen-man; Hu, Yi-qun; Wang, Zhen-yi

    2003-10-01

    To identify the genetic mutations of a severe inherited coagulation factor VII (FVII) deficiency pedigree. The diagnosis was validated by coagulant and haemostatic parameters. FVII gene mutations were screened in the propositus and his family members by DNA direct sequencing and confirmed by digestions of the restriction enzymes of the PCR production. Two heterozygous missense mutations were found in the propositus of the pedigree: a G to T transversion at position 9482 in exon 6 and a C to T mutation at position 11348 in exon 8 resulting in the amino acid substitution of Arg152 with Leu and Arg304 with Trp, respectively. A heterozygous single nucleotide deletion (C) at position 11487-11489(CCC) within exon 8 was identified, which predicted the frameshift mutation at position His351 followed by the changes of six corresponding amino acids and appearance of a premature protein caused by stop codon. The heterozygous mutations identified in the proband were derived from his father (Arg152 to Leu) and his mother (Arg304 to Trp mutation) and a heterozygous deletion (C) at position 11487-9(CCC). By tracing the other pedigree members, it was found that his grandmother had a heterozygous mutation of Arg304Trp and a heterozygous polymorphism of Arg353Gln and his grandfather had a heterozygous Arg152Leu mutation. Three heterozygous mutations were found in a pedigree with hereditary coagulation factor VII deficiency. Arg152Leu and deletion C at position 11487-9(CCC) were novel mutations.

  7. Novel HSF4 mutation causes congenital total white cataract in a Chinese family.

    PubMed

    Ke, Tie; Wang, Qing K; Ji, Binchu; Wang, Xu; Liu, Ping; Zhang, Xianqin; Tang, Zhaohui; Ren, Xiang; Liu, Mugen

    2006-08-01

    To identify the disease-causing gene (mutation) in a Chinese family affected with autosomal dominant congenital total white cataract. Observational case series. Genotyping and linkage analyses were used to identify the linkage of the disease-causing gene in the Chinese family to the HSF4 gene encoding a member of the family of heat shock transcription factors (HSFs). Direct DNA sequence analysis was used to identify the disease-causing mutation. Polymerase chain reaction/restriction fragment length polymorphism analysis was used to demonstrate cosegregation of the HSF4 mutation with the cataract and the absence of the mutation in the normal controls. The cataract gene in the Chinese family was linked to marker D16S3043, and further haplotype analysis defined the causative gene between D16S515 and D16S415 within which HSF4 is located. A novel mutation c.221G>A was identified in HSF4, which results in substitution of a highly conserved arginine residue by histidine at codon 74 (p.R74H). The R74H mutation cosegregated with the affected individuals in the family and did not exist in unaffected family members and 150 unrelated normal controls. These results identified a novel missense mutation R74H in the transcription factor gene HSF4 in a Chinese cataract family and expand the spectrum of HSF4 mutations causing cataract.

  8. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA

    PubMed Central

    Ashenberg, Orr; Padmakumar, Jai

    2017-01-01

    The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP). Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors. PMID:28346537

  9. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    DOE PAGES

    Schulze, Kornelius; Imbeaud, Sandrine; Letouzé, Eric; ...

    2015-03-30

    Our genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. These analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereasFGF3, FGF4, FGF19 or CCND1more » amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. Finally, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.« less

  10. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Kornelius; Imbeaud, Sandrine; Letouzé, Eric

    Our genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. These analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereasFGF3, FGF4, FGF19 or CCND1more » amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. Finally, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.« less

  11. Identifying RNA splicing factors using IFT genes in Chlamydomonas reinhardtii.

    PubMed

    Lin, Huawen; Zhang, Zhengyan; Iomini, Carlo; Dutcher, Susan K

    2018-03-01

    Intraflagellar transport moves proteins in and out of flagella/cilia and it is essential for the assembly of these organelles. Using whole-genome sequencing, we identified splice site mutations in two IFT genes, IFT81 ( fla9 ) and IFT121 ( ift121-2 ), which lead to flagellar assembly defects in the unicellular green alga Chlamydomonas reinhardtii The splicing defects in these ift mutants are partially corrected by mutations in two conserved spliceosome proteins, DGR14 and FRA10. We identified a dgr14 deletion mutant, which suppresses the 3' splice site mutation in IFT81 , and a frameshift mutant of FRA10 , which suppresses the 5' splice site mutation in IFT121 Surprisingly, we found dgr14-1 and fra10 mutations suppress both splice site mutations. We suggest these two proteins are involved in facilitating splice site recognition/interaction; in their absence some splice site mutations are tolerated. Nonsense mutations in SMG1 , which is involved in nonsense-mediated decay, lead to accumulation of aberrant transcripts and partial restoration of flagellar assembly in the ift mutants. The high density of introns and the conservation of noncore splicing factors, together with the ease of scoring the ift mutant phenotype, make Chlamydomonas an attractive organism to identify new proteins involved in splicing through suppressor screening. © 2018 The Authors.

  12. Role of tumour necrosis factor (TNF)-α and TNFRSF1A R92Q mutation in the pathogenesis of TNF receptor-associated periodic syndrome and multiple sclerosis

    PubMed Central

    Caminero, A; Comabella, M; Montalban, X

    2011-01-01

    It has long been known that tumour necrosis factor (TNF)/TNFRSF1A signalling is involved in the pathophysiology of multiple sclerosis (MS). Different genetic and clinical findings over the last few years have generated renewed interest in this relationship. This paper provides an update on these recent findings. Genome-wide association studies have identified the R92Q mutation in the TNFRSF1A gene as a genetic risk factor for MS (odds ratio 1·6). This allele, which is also common in the general population and in other inflammatory conditions, therefore only implies a modest risk for MS and provides yet another piece of the puzzle that defines the multiple genetic risk factors for this disease. TNFRSF1A mutations have been associated with an autoinflammatory disease known as TNF receptor-associated periodic syndrome (TRAPS). Clinical observations have identified a group of MS patients carrying the R92Q mutation who have additional TRAPS symptoms. Hypothetically, the co-existence of MS and TRAPS or a co-morbidity relationship between the two could be mediated by this mutation. The TNFRSF1A R92Q mutation behaves as a genetic risk factor for MS and other inflammatory diseases, including TRAPS. Nevertheless, this mutation does not appear to be a severity marker of the disease, neither modifying the clinical progression of MS nor its therapeutic response. An alteration in TNF/TNFRS1A signalling may increase proinflammatory signals; the final clinical phenotype may possibly be determined by other genetic or environmental modifying factors that have not yet been identified. PMID:22059991

  13. Identification of a Comprehensive Spectrum of Genetic Factors for Hereditary Breast Cancer in a Chinese Population by Next-Generation Sequencing

    PubMed Central

    Yang, Xiaochen; Wu, Jiong; Lu, Jingsong; Liu, Guangyu; Di, Genhong; Chen, Canming; Hou, Yifeng; Sun, Menghong; Yang, Wentao; Xu, Xiaojing; Zhao, Ying; Hu, Xin; Li, Daqiang; Cao, Zhigang; Zhou, Xiaoyan; Huang, Xiaoyan; Liu, Zhebin; Chen, Huan; Gu, Yanzi; Chi, Yayun; Yan, Xia; Han, Qixia; Shen, Zhenzhou; Shao, Zhimin; Hu, Zhen

    2015-01-01

    The genetic etiology of hereditary breast cancer has not been fully elucidated. Although germline mutations of high-penetrance genes such as BRCA1/2 are implicated in development of hereditary breast cancers, at least half of all breast cancer families are not linked to these genes. To identify a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population, we performed an analysis of germline mutations in 2,165 coding exons of 152 genes associated with hereditary cancer using next-generation sequencing (NGS) in 99 breast cancer patients from families of cancer patients regardless of cancer types. Forty-two deleterious germline mutations were identified in 21 genes of 34 patients, including 18 (18.2%) BRCA1 or BRCA2 mutations, 3 (3%) TP53 mutations, 5 (5.1%) DNA mismatch repair gene mutations, 1 (1%) CDH1 mutation, 6 (6.1%) Fanconi anemia pathway gene mutations, and 9 (9.1%) mutations in other genes. Of seven patients who carried mutations in more than one gene, 4 were BRCA1/2 mutation carriers, and their average onset age was much younger than patients with only BRCA1/2 mutations. Almost all identified high-penetrance gene mutations in those families fulfill the typical phenotypes of hereditary cancer syndromes listed in the National Comprehensive Cancer Network (NCCN) guidelines, except two TP53 and three mismatch repair gene mutations. Furthermore, functional studies of MSH3 germline mutations confirmed the association between MSH3 mutation and tumorigenesis, and segregation analysis suggested antagonism between BRCA1 and MSH3. We also identified a lot of low-penetrance gene mutations. Although the clinical significance of those newly identified low-penetrance gene mutations has not been fully appreciated yet, these new findings do provide valuable epidemiological information for the future studies. Together, these findings highlight the importance of genetic testing based on NCCN guidelines and a multi-gene analysis using NGS may be a supplement to traditional genetic counseling. PMID:25927356

  14. Epidermal growth factor receptor mutation in gastric cancer.

    PubMed

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  15. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.

    PubMed

    Pellagatti, Andrea; Boultwood, Jacqueline

    2017-01-01

    Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mutations of RNA splicing factors in hematological malignancies.

    PubMed

    Shukla, Girish C; Singh, Jagjit

    2017-11-28

    Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing. Somatic mutations and copy number variation in many of the splicing factors which participate in the formation of multiple spliceosomal complexes appear to play a role in many cancers and in particular in myelodysplastic syndromes (MDS). Mutated proteins seem to interfere with the recognition of the authentic splice sites (SS) leading to utilization of suboptimal alternative splicing sites generating aberrantly spliced mRNA isoforms. This short review is focusing on the function of the splice factors involved in the formation of splicing complexes and potential mechanisms which affect usage of the authentic splice site recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. G20210A prothrombin gene mutation identified in patients with venous leg ulcers.

    PubMed

    Jebeleanu, G; Procopciuc, L

    2001-01-01

    The G20210A mutation variant of prothrombin gene is the second most frequent mutation identified in patients with deep venous thrombosis, after factor V Leiden. The risk for developing deep venous thrombosis is high in patients identified as heterozygous for G20210A mutation. In order to identify this polymorphism in the gene coding prothrombin, the 345bp fragment in the 3'- untranslated region of the prothrombin gene was amplified using amplification by polymerase chain reaction and enzymatic digestion by HindIII (restriction endonuclease enzyme). The products of amplification and enzymatic's digestion were analized using agarose gel electrophoresis. We investigated 20 patients with venous leg ulcers and we found 2 heterozygous (10%) for G20210A mutation. None of the patients in the control group had G20210A mutation. Our study confirms the presence of G20210A mutation in the Romanian population. Our study also shows the link between venous leg ulcers and this polymorphism in the prothrombin gene.

  18. The association of factor V leiden mutation with recurrent pregnancy loss.

    PubMed

    Kashif, Sumreen; Kashif, Muhammad Ali; Saeed, Anjum

    2015-11-01

    To determine the association of factor V Leiden mutation with recurrent pregnancy loss. The case-control study was conducted at the Department of Haematology, Armed Forces Institute of Pathology, Rawalpindi, Pakistan, from January to June 2012, and comprised women of 18 to 45 years of age who had a history of recurrent pregnancy loss, and controls with no history of pregnancy loss. All the subjects belonged to Punjabi ethnic group. Three ml blood was taken from cases and controls and deoxyribonucleic acid was extracted. In order to identify Factor V Leiden mutation, polymerase chain reaction method was utilised combined with the amplification refractory mutation system. Data was analysed using SPSS 17. Of the 112 subjects, 56(50%) were in each of the two groups. The presence of factor V Leiden mutation among the cases was 3(5.4%) while it was absent among the controls. The mutation was significantly associated with recurrent pregnancy loss (p=0.017).Recurrent pregnancy loss was higher in cases than controls (p=0.001). Factor V Leiden mutation, Recurrent pregnancy loss, PCR (Polymerase chain reaction).

  19. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes

    PubMed Central

    Maher, Geoffrey J.; McGowan, Simon J.; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O. M.

    2016-01-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39–90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones. PMID:26858415

  20. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    PubMed

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.

  1. The CDC Hemophilia A Mutation Project (CHAMP) Mutation List: a New Online Resource

    PubMed Central

    Payne, Amanda B.; Miller, Connie H.; Kelly, Fiona M.; Soucie, J. Michael; Hooper, W. Craig

    2015-01-01

    Genotyping efforts in hemophilia A (HA) populations in many countries have identified large numbers of unique mutations in the Factor VIII gene (F8). To assist HA researchers conducting genotyping analyses, we have developed a listing of F8 mutations including those listed in existing locus-specific databases as well as those identified in patient populations and reported in the literature. Each mutation was reviewed and uniquely identified using Human Genome Variation Society (HGVS) nomenclature standards for coding DNA and predicted protein changes as well as traditional nomenclature based on the mature, processed protein. Listings also include the associated hemophilia severity classified by International Society of Thrombosis and Haemostasis (ISTH) criteria, associations of the mutations with inhibitors, and reference information. The mutation list currently contains 2,537 unique mutations known to cause HA. HA severity caused by the mutation is available for 2,022 mutations (80%) and information on inhibitors is available for 1,816 mutations (72%). The CDC Hemophilia A Mutation Project (CHAMP) Mutation List is available at http://www.cdc.gov/hemophiliamutations for download and search and will be updated quarterly based on periodic literature reviews and submitted reports. PMID:23280990

  2. Mutations in the Kinase Domain of the HER2/ERBB2 Gene Identified in a Wide Variety of Human Cancers.

    PubMed

    Wen, Wenhsiang; Chen, Wangjuh Sting; Xiao, Nick; Bender, Ryan; Ghazalpour, Anatole; Tan, Zheng; Swensen, Jeffrey; Millis, Sherri Z; Basu, Gargi; Gatalica, Zoran; Press, Michael F

    2015-09-01

    The HER2 (official name ERBB2) gene encodes a membrane receptor in the epidermal growth factor receptor family amplified and overexpressed in adenocarcinoma. Activating mutations also occur in several cancers. We report mutation analyses of the HER2 kinase domain in 7497 histologically diverse cancers. Forty-five genes, including the kinase domain of HER2 with HER2 IHC and dual in situ hybridization, were analyzed in tumors from 7497 patients with cancer, including 850 breast, 770 colorectal, 910 non-small cell lung, 823 uterine or cervical, 1372 ovarian, and 297 pancreatic cancers, as well as 323 melanomas and 2152 other solid tumors. Sixty-nine HER2 kinase domain mutations were identified in tumors from 68 patients (approximately 1% of all cases, ranging from absent in sarcomas to 4% in urothelial cancers), which included previously published activating mutations and 13 novel mutations. Fourteen cases with coexisting HER2 mutation and amplification and/or overexpression were identified. Fifty-two of 68 patients had additional mutations in other analyzed genes, whereas 16 patients (23%) had HER2 mutations identified as the sole driver mutation. HER2 mutations coexisted with HER2 gene amplification and overexpression and with mutations in other functionally important genes. HER2 mutations were identified as the only driver mutation in a significant proportion of solid cancers. Evaluation of anti-HER2 therapies in nonamplified, HER2-mutated cancers is warranted. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  3. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations.

    PubMed

    Pellagatti, Andrea; Armstrong, Richard N; Steeples, Violetta; Sharma, Eshita; Repapi, Emmanouela; Singh, Shalini; Sanchi, Andrea; Radujkovic, Aleksandar; Horn, Patrick; Dolatshad, Hamid; Roy, Swagata; Broxholme, John; Lockstone, Helen; Taylor, Stephen; Giagounidis, Aristoteles; Vyas, Paresh; Schuh, Anna; Hamblin, Angela; Papaemmanuil, Elli; Killick, Sally; Malcovati, Luca; Hennrich, Marco L; Gavin, Anne-Claude; Ho, Anthony D; Luft, Thomas; Hellström-Lindberg, Eva; Cazzola, Mario; Smith, Christopher W J; Smith, Stephen; Boultwood, Jacqueline

    2018-06-21

    SF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34 + cells of 84 MDS patients. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whilst several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms which independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the impact of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology. Copyright © 2018 American Society of Hematology.

  4. [Clinical and genetic analysis of a patient with Treacher Collins syndrome in TCOF1 gene].

    PubMed

    Li, Hongbo; Zhang, Xu; Li, Zhenyue; Chen, Jing; Lu, Yu; Jia, Jingjie; Yuan, Huijun; Han, Dongyi

    2012-05-01

    To analyze the clinical and genetic features of a patient with Treacher Collins syndrome (TCS), and identify the mutation in TCOF1 gene. The medical history was taken, and general physical examinations and otological examinations were conducted in this patient. Genomic DNA was extracted from this patient and his parents and complete TCOF1 gene coding exons were amplified by specific PCR primers. Direct sequencing was carried out to identify the mutations. The raw data was analyzed with GeneTool software and molecular biological website. We detected a heterozygous c. 1639 delAG mutation in exon 11 of TCOF1, which resulted in a truncated protein lacking normal function. This mutation is a novel mutation and the second case identified in exon 11 of in TCS. TCS patient reported in this study has unique clinical phenotype. TCOF1 gene mutation is the specific risk factor.

  5. KIT mutations correlate with adverse survival in children with core-binding factor acute myeloid leukemia.

    PubMed

    Chen, Xi; Dou, Hu; Wang, Xingjuan; Huang, Yi; Lu, Ling; Bin, Junqing; Su, Yongchun; Zou, Lin; Yu, Jie; Bao, Liming

    2018-04-01

    The prevalence and clinical relevance of KIT mutations in childhood core-binding factor (CBF) acute myeloid leukemia (AML) have not been well characterized. In this study, a total of 212 children with de novo AML were enrolled from a Chinese population and 50 (23.5%) of the patients were deemed CBF-AML. KIT mutations were identified in 30% of the CBF-AML cohort. The KIT mutations were clustered in exon 17 and exon 8, and KIT mutations in exons 8 and 17 were correlated with a shorter overall survival (OS) (5-year OS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .007) and event-free survival (EFS) (5-year EFS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .003). Multivariate analysis revealed KIT mutations as an independent risk factor in CBF-AML. Our results suggest that KIT mutations are a molecular marker for an inferior prognosis in pediatric CBF-AML.

  6. Comparison of Thoracic Radiotherapy Efficacy Between Patients With and Without EGFR-mutated Lung Adenocarcinoma.

    PubMed

    Li, Ming-Hsien; Tsai, Jo-Ting; Ting, Lai-Lei; Lin, Jang-Chun; Liu, Yu-Chang

    2018-01-01

    To investigate the association between tumor response to thoracic radiotherapy and epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma, we collected 48 patients treated between January 2010 and December 2013. Of the 18 patients with EGFR mutation, 15 (83.3%) had a single mutation, and three (16.7%) had double mutation. Different EGFR mutation subtypes exhibited different responses to radiotherapy. The identified double EGFR mutations were associated with reduction of residual tumor burden (RTB) after radiotherapy. In univariate analysis, EGFR mutations in exon 18, 20, and 21 and double EGFR mutation were significant factors predicting RTB. In multivariate analysis, exon 20 mutation was the only significant factor. Patients with EGFR mutation seemed to have longer mean overall survival (OS) compared to the group with wild-type EGFR (31.1 vs. 26.6 months, p=0.49). The median and mean OS in patients with double EGFR mutation vs. wild-type EGFR were 20.1 vs. 16.9 months and 28.9 vs. 26.6 months, respectively. Further studies with larger sample size are warranted to clarify the association of EGFR mutation status with the lung tumor response after radiotherapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

    PubMed Central

    Lee, Jeffrey C; Vivanco, Igor; Beroukhim, Rameen; Huang, Julie H. Y; Feng, Whei L; DeBiasi, Ralph M; Yoshimoto, Koji; King, Jennifer C; Nghiemphu, Phioanh; Yuza, Yuki; Xu, Qing; Greulich, Heidi; Thomas, Roman K; Paez, J. Guillermo; Peck, Timothy C; Linhart, David J; Glatt, Karen A; Getz, Gad; Onofrio, Robert; Ziaugra, Liuda; Levine, Ross L; Gabriel, Stacey; Kawaguchi, Tomohiro; O'Neill, Keith; Khan, Haumith; Liau, Linda M; Nelson, Stanley F; Rao, P. Nagesh; Mischel, Paul; Pieper, Russell O; Cloughesy, Tim; Leahy, Daniel J; Sellers, William R; Sawyers, Charles L; Meyerson, Matthew; Mellinghoff, Ingo K

    2006-01-01

    Background Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. Methods and Findings Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. Conclusions Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma. PMID:17177598

  8. The pleiotropic mouse phenotype extra-toes spotting is caused by translation initiation factor Eif3c mutations and is associated with disrupted sonic hedgehog signaling.

    PubMed

    Gildea, Derek E; Luetkemeier, Erin S; Bao, Xiaozhong; Loftus, Stacie K; Mackem, Susan; Yang, Yingzi; Pavan, William J; Biesecker, Leslie G

    2011-05-01

    Polydactyly is a common malformation and can be an isolated anomaly or part of a pleiotropic syndrome. The elucidation of the mutated genes that cause polydactyly provides insight into limb development pathways. The extra-toes spotting (Xs) mouse phenotype manifests anterior polydactyly, predominantly in the forelimbs, with ventral hypopigmenation. The mapping of Xs(J) to chromosome 7 was confirmed, and the interval was narrowed to 322 kb using intersubspecific crosses. Two mutations were identified in eukaryotic translation initiation factor 3 subunit C (Eif3c). An Eif3c c.907C>T mutation (p.Arg303X) was identified in Xs(J), and a c.1702_1758del mutation (p.Leu568_Leu586del) was identified in extra-toes spotting-like (Xsl), an allele of Xs(J). The effect of the Xs(J) mutation on the SHH/GLI3 pathway was analyzed by in situ hybridization analysis, and we show that Xs mouse embryos have ectopic Shh and Ptch1 expression in the anterior limb. In addition, anterior limb buds show aberrant Gli3 processing, consistent with perturbed SHH/GLI3 signaling. Based on the occurrence of Eif3c mutations in 2 Xs lines and haploinsufficiency of the Xs(J) allele, we conclude that the Xs phenotype is caused by a mutation in Eif3c, a component of the translation initiation complex, and that the phenotype is associated with aberrant SHH/GLI3 signaling.

  9. Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?

    PubMed Central

    Marinozzi, Maria Chiara; Vergoz, Laura; Rybkine, Tania; Ngo, Stephanie; Bettoni, Serena; Pashov, Anastas; Cayla, Mathieu; Tabarin, Fanny; Jablonski, Mathieu; Hue, Christophe; Smith, Richard J.; Noris, Marina; Halbwachs-Mecarelli, Lise; Donadelli, Roberta; Fremeaux-Bacchi, Veronique

    2014-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a genetic ultrarare renal disease associated with overactivation of the alternative pathway of complement. Four gain-of-function mutations that form a hyperactive or deregulated C3 convertase have been identified in Factor B (FB) ligand binding sites. Here, we studied the functional consequences of 10 FB genetic changes recently identified from different aHUS cohorts. Using several tests for alternative C3 and C5 convertase formation and regulation, we identified two gain-of-function and potentially disease-relevant mutations that formed either an overactive convertase (M433I) or a convertase resistant to decay by FH (K298Q). One mutation (R178Q) produced a partially cleaved protein with no ligand binding or functional activity. Seven genetic changes led to near-normal or only slightly reduced ligand binding and functional activity compared with the most common polymorphism at position 7, R7. Notably, none of the algorithms used to predict the disease relevance of FB mutations agreed completely with the experimental data, suggesting that in silico approaches should be undertaken with caution. These data, combined with previously published results, suggest that 9 of 15 FB genetic changes identified in patients with aHUS are unrelated to disease pathogenesis. This study highlights that functional assessment of identified nucleotide changes in FB is mandatory to confirm disease association. PMID:24652797

  10. Novel splice mutation in microthalmia-associated transcription factor in Waardenburg Syndrome.

    PubMed

    Brenner, Laura; Burke, Kelly; Leduc, Charles A; Guha, Saurav; Guo, Jiancheng; Chung, Wendy K

    2011-01-01

    Waardenburg Syndrome (WS) is a syndromic form of hearing loss associated with mutations in six different genes. We identified a large family with WS that had previously undergone clinical testing, with no reported pathogenic mutation. Using linkage analysis, a region on 3p14.1 with an LOD score of 6.6 was identified. Microthalmia-Associated Transcription Factor, a gene known to cause WS, is located within this region of linkage. Sequencing of Microthalmia-Associated Transcription Factor demonstrated a c.1212 G>A synonymous variant that segregated with the WS in the family and was predicted to cause a novel splicing site that was confirmed with expression analysis of the mRNA. This case illustrates the need to computationally analyze novel synonymous sequence variants for possible effects on splicing to maximize the clinical sensitivity of sequence-based genetic testing.

  11. Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations.

    PubMed

    Gallo, Leandro H; Nelson, Katelyn N; Meyer, April N; Donoghue, Daniel J

    2015-08-01

    The four receptor tyrosine kinases (RTKs) within the family of Fibroblast Growth Factor Receptors (FGFRs) are critical for normal development but also play an enormous role in oncogenesis. Mutations and/or abnormal expression often lead to constitutive dimerization and kinase activation of FGFRs, and represent the primary mechanism for aberrant signaling. Sequencing of human tumors has revealed a plethora of somatic mutations in FGFRs that are frequently identical to germline mutations in developmental syndromes, and has also identified novel FGFR fusion proteins arising from chromosomal rearrangements that contribute to malignancy. This review details approximately 200 specific point mutations in FGFRs and 40 different fusion proteins created by translocations involving FGFRs that have been identified in human cancer. This review discusses the effects of these genetic alterations on downstream signaling cascades, and the challenge of drug resistance in cancer treatment with antagonists of FGFRs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families

    PubMed Central

    Coppieters, Frauke; Roels, Dimitri; De Jaegere, Sarah; Flipts, Helena; De Zaeytijd, Julie; Walraedt, Sophie; Claes, Charlotte; Fransen, Erik; Van Camp, Guy; Depasse, Fanny; Casteels, Ingele; de Ravel, Thomy

    2017-01-01

    Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular spectrum of PRPH2, PRPF8, RHO, RP1, SNRNP200, and TOPORS-associated adRP by the identification of 17 novel mutations. PMID:28076437

  13. [Mutation screening of MITF gene in patients with Waardenburg syndrome type 2].

    PubMed

    Chen, Jing; Yang, Shu-Zhi; Liu, Jun; Han, Bing; Wang, Guo-Jian; Zhang, Xin; Kang, Dong-Yang; Dai, Pu; Young, Wie-Yen; Yuan, Hui-Jun

    2008-04-01

    Warrgenburg syndrome type 2 (WS2) is the most common autosomal dominantly-inherited syndrome with hearing loss. MITF (microphthalmia associated transcription factor)is a basic-helix-loop-helix-luecine zipper (bHLHZip) factor which regulates expression of tyrosinase, and is involved in melanocyte differentiation. Mutations in MITF associated with WS2 have been identified in some but not all affected families. Here, we report a three-generation Chinese family with a point mutation in the MITF gene causing WS2. The proband exhibits congenital severe sensorineural hearing loss, heterochromia iridis and facial freckles. One of family members manifests sensorineural deafness, and the other patients show premature greying or/and freckles. This mutation, heterozygous deletion c.639delA, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking normal interaction with its target DNA motif. This mutation is a novel mutation and the third case identified in exon 7 of MITF in WS2. Though there is only one base pair distance between this novel mutation and the other two documented cases and similar amino acids change, significant difference is seen in clinical phenotype, which suggests genetic background may play an important role.

  14. Positive Selection during the Evolution of the Blood Coagulation Factors in the Context of Their Disease-Causing Mutations

    PubMed Central

    Rallapalli, Pavithra M.; Orengo, Christine A.; Studer, Romain A.; Perkins, Stephen J.

    2014-01-01

    Blood coagulation occurs through a cascade of enzymes and cofactors that produces a fibrin clot, while otherwise maintaining hemostasis. The 11 human coagulation factors (FG, FII–FXIII) have been identified across all vertebrates, suggesting that they emerged with the first vertebrates around 500 Ma. Human FVIII, FIX, and FXI are associated with thousands of disease-causing mutations. Here, we evaluated the strength of selective pressures on the 14 genes coding for the 11 factors during vertebrate evolution, and compared these with human mutations in FVIII, FIX, and FXI. Positive selection was identified for fibrinogen (FG), FIII, FVIII, FIX, and FX in the mammalian Primates and Laurasiatheria and the Sauropsida (reptiles and birds). This showed that the coagulation system in vertebrates was under strong selective pressures, perhaps to adapt against blood-invading pathogens. The comparison of these results with disease-causing mutations reported in FVIII, FIX, and FXI showed that the number of disease-causing mutations, and the probability of positive selection were inversely related to each other. It was concluded that when a site was under positive selection, it was less likely to be associated with disease-causing mutations. In contrast, sites under negative selection were more likely to be associated with disease-causing mutations and be destabilizing. A residue-by-residue comparison of the FVIII, FIX, and FXI sequence alignments confirmed this. This improved understanding of evolutionary changes in FVIII, FIX, and FXI provided greater insight into disease-causing mutations, and better assessments of the codon sites that may be mutated in applications of gene therapy. PMID:25158795

  15. FLG mutations in ichthyosis vulgaris and atopic eczema: spectrum of mutations and population genetics.

    PubMed

    Akiyama, M

    2010-03-01

    Filaggrin is a key protein involved in skin barrier function. Mutations in the gene encoding filaggrin (FLG) have been identified as the cause of ichthyosis vulgaris and have been shown to be major predisposing factors for atopic eczema (AE), initially in European populations. Subsequently, FLG mutations were identified in Japanese, Chinese, Taiwanese and Korean populations. It was demonstrated that FLG mutations are closely associated with AE in the Japanese population. Notably, the same FLG mutations identified in the European population were rarely found in Asians. These results exemplify differences in filaggrin population genetics between Europe and Asia. For mutation screening, background information needs to be obtained on prevalent FLG mutations for each geographical population. It is therefore important to establish the global population genetics maps for FLG mutations. Mutations at any site within FLG, even mutations in C-terminal imperfect filaggrin repeats, cause significant reductions in amounts of profilaggrin/filaggrin peptide in patient epidermis as the C-terminal region is essential for proper processing of profilaggrin into filaggrin. Thus, no genotype-phenotype correlation has been observed in patients with FLG mutations. A restoration of the barrier function seems a feasible and promising strategy for treatment and prevention in individuals with filaggrin deficiency.

  16. Seven novel mutations in the factor XIII A-subunit gene causing hereditary factor XIII deficiency in 10 unrelated families.

    PubMed

    Vysokovsky, A; Saxena, R; Landau, M; Zivelin, A; Eskaraev, R; Rosenberg, N; Seligsohn, U; Inbal, A

    2004-10-01

    Hereditary factor (F)XIII deficiency is a rare bleeding disorder mostly due to mutations in FXIII A subunit. We studied the molecular basis of FXIII deficiency in patients from 10 unrelated families originating from Israel, India and Tunisia. Exons 2-15 of genomic DNA consisting of coding regions and intron/exon boundaries were amplified and sequenced. Structural analysis of the mutations was undertaken by computer modeling. Seven novel mutations were identified in the FXIIIA gene. The propositus from the Ethiopian-Jewish family was found to be a compound heterozygote for two novel mutations: a 10-bp deletion in exon 12 at nucleotides 1652-1661 (followed by 22 altered amino acids and termination codon) and Ala318Val mutation. The propositus of the Tunisian family was homozygous for C insertion after nucleotide 863 within a stretch of six cytosines of exon 7. This insertion results in generation of eight altered amino acids followed by a termination codon downstream. The propositus from Indian-Jewish origin was found to be homozygous for G to T substitution at IVS 11 [+1] resulting in skipping of exons 10 and 11. In addition to the Ala318Val mutation, three of the novel mutations identified are missense mutations: Arg260Leu, Thr398Asn and Gly210Arg each occurring in a homozygous state in an Israeli-Arab and two Indian families, respectively. Structure-function correlation analysis by computer modeling of the new missense mutations predicted that Gly210Arg will cause protein misfolding, Ala318Val and Thr398Asn will interfere with the catalytic process or protein stability, and Arg260Leu will impair dimerization.

  17. Massively Parallel Sequencing of a Chinese Family with DFNA9 Identified a Novel Missense Mutation in the LCCL Domain of COCH

    PubMed Central

    Gu, Xiaodong; Su, Wenling; Tang, Mingliang; Guo, Luo; Zhao, Liping

    2016-01-01

    DFNA9 is a late-onset, progressive, autosomal dominantly inherited sensorineural hearing loss with vestibular dysfunction, which is caused by mutations in the COCH (coagulation factor C homology) gene. In this study, we investigated a Chinese family segregating autosomal dominant nonsyndromic sensorineural hearing loss. We identified a missense mutation c.T275A p.V92D in the LCCL domain of COCH cosegregating with the disease and absent in 100 normal hearing controls. This mutation leads to substitution of the hydrophobic valine to an acidic amino acid aspartic acid. Our data enriched the mutation spectrum of DFNA9 and implied the importance for mutation screening of COCH in age related hearing loss with vestibular dysfunctions. PMID:28116169

  18. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism

    PubMed Central

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel MA; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin AM; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-01-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication, and protect, repair and restart damaged forks. Here we identify DONSON as a novel fork protection factor, and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilises forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATR-dependent signalling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity, and potentiating chromosomal instability. Hypomorphic mutations substantially reduce DONSON protein levels and impair fork stability in patient cells, consistent with defective DNA replication underlying the disease phenotype. In summary, we identify mutations in DONSON as a common cause of microcephalic dwarfism, and establish DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability. PMID:28191891

  19. The Colony-Stimulating Factor 3 Receptor T640N Mutation Is Oncogenic, Sensitive to JAK Inhibition, and Mimics T618I.

    PubMed

    Maxson, Julia E; Luty, Samuel B; MacManiman, Jason D; Paik, Jason C; Gotlib, Jason; Greenberg, Peter; Bahamadi, Swaleh; Savage, Samantha L; Abel, Melissa L; Eide, Christopher A; Loriaux, Marc M; Stevens, Emily A; Tyner, Jeffrey W

    2016-02-01

    Colony-stimulating factor 3 receptor (CSF3R) mutations have been identified in the majority of chronic neutrophilic leukemia (CNL) and a smaller percentage of atypical chronic myeloid leukemia (aCML) cases. Although CSF3R point mutations (e.g., T618I) are emerging as key players in CNL/aCML, the significance of rarer CSF3R mutations is unknown. In this study, we assess the importance of the CSF3R T640N mutation as a marker of CNL/aCML and potential therapeutic target. Sanger sequencing of leukemia samples was performed to identify CSF3R mutations in CNL and aCML. The oncogenicity of the CSF3R T640N mutation relative to the T618I mutation was assessed by cytokine independent growth assays and by mouse bone marrow transplant. Receptor dimerization and O-glycosylation of the mutants was assessed by Western blot, and JAK inhibitor sensitivity was assessed by colony assay. Here, we identify a CSF3R T640N mutation in two patients with CNL/aCML, one of whom was originally diagnosed with MDS and acquired the T640N mutation upon evolution of disease to aCML. The T640N mutation is oncogenic in cellular transformation assays and an in vivo mouse bone marrow transplantation model. It exhibits many similar phenotypic features to T618I, including ligand independence and altered patterns of O-glycosylation--despite the transmembrane location of T640 preventing access by GalNAc transferase enzymes. Cells transformed by the T640N mutation are sensitive to JAK kinase inhibition to a similar degree as cells transformed by CSF3R T618I. Because of its similarities to CSF3R T618I, the T640N mutation likely has diagnostic and therapeutic relevance in CNL/aCML. ©2015 American Association for Cancer Research.

  20. MADGiC: a model-based approach for identifying driver genes in cancer

    PubMed Central

    Korthauer, Keegan D.; Kendziorski, Christina

    2015-01-01

    Motivation: Identifying and prioritizing somatic mutations is an important and challenging area of cancer research that can provide new insights into gene function as well as new targets for drug development. Most methods for prioritizing mutations rely primarily on frequency-based criteria, where a gene is identified as having a driver mutation if it is altered in significantly more samples than expected according to a background model. Although useful, frequency-based methods are limited in that all mutations are treated equally. It is well known, however, that some mutations have no functional consequence, while others may have a major deleterious impact. The spatial pattern of mutations within a gene provides further insight into their functional consequence. Properly accounting for these factors improves both the power and accuracy of inference. Also important is an accurate background model. Results: Here, we develop a Model-based Approach for identifying Driver Genes in Cancer (termed MADGiC) that incorporates both frequency and functional impact criteria and accommodates a number of factors to improve the background model. Simulation studies demonstrate advantages of the approach, including a substantial increase in power over competing methods. Further advantages are illustrated in an analysis of ovarian and lung cancer data from The Cancer Genome Atlas (TCGA) project. Availability and implementation: R code to implement this method is available at http://www.biostat.wisc.edu/ kendzior/MADGiC/. Contact: kendzior@biostat.wisc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573922

  1. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

  2. Hearing loss caused by a P2RX2 mutation identified in a MELAS family with a coexisting mitochondrial 3243AG mutation

    PubMed Central

    Moteki, Hideaki; Azaiez, Hela; Booth, Kevin T; Hattori, Mitsuru; Sato, Ai; Sato, Yoshihiko; Motobayashi, Mitsuo; Sloan, Christina M; Kolbe, Diana L; Shearer, A Eliot; Smith, Richard J H; Usami, Shin-ichi

    2015-01-01

    Objective We present a family with a mitochondrial DNA 3243A>G mutation resulting in MELAS, of which some members have hearing loss where a novel mutation in the P2RX2 gene was identified. Methods One hundred ninety-four (194) Japanese subjects from unrelated families were enrolled in the study. Targeted genomic enrichment and massively parallel sequencing of all known non-syndromic hearing loss genes were performed to identify the genetic causes of hearing loss. Results A novel mutation in the P2RX2 gene, that corresponded to c.601G>A (p.Asp201Tyr) was identified. Two patients carried the mutation, and had severe SNHL, while other members with MELAS (who did not carry the P2RX2 mutation) had normal hearing. Conclusion This is the first case report of a diagnosis of hearing loss caused by P2RX2 mutation in patients with MELAS. A potential explanation is that decreasing ATP production due to MELAS with mitochondrial 3243A>G mutation might suppress activation of P2X2 receptors. We also suggest that hearing loss caused by the P2RX2 mutation might be influenced by the decrease in ATP production due to MELAS, and that nuclear genetic factors may play a modifying role in mitochondrial dysfunction. PMID:25788561

  3. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma.

    PubMed

    Comino-Méndez, Iñaki; Gracia-Aznárez, Francisco J; Schiavi, Francesca; Landa, Iñigo; Leandro-García, Luis J; Letón, Rocío; Honrado, Emiliano; Ramos-Medina, Rocío; Caronia, Daniela; Pita, Guillermo; Gómez-Graña, Alvaro; de Cubas, Aguirre A; Inglada-Pérez, Lucía; Maliszewska, Agnieszka; Taschin, Elisa; Bobisse, Sara; Pica, Giuseppe; Loli, Paola; Hernández-Lavado, Rafael; Díaz, José A; Gómez-Morales, Mercedes; González-Neira, Anna; Roncador, Giovanna; Rodríguez-Antona, Cristina; Benítez, Javier; Mannelli, Massimo; Opocher, Giuseppe; Robledo, Mercedes; Cascón, Alberto

    2011-06-19

    Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential.

  4. Case-control analysis of truncating mutations in DNA damage response genes connects TEX15 and FANCD2 with hereditary breast cancer susceptibility.

    PubMed

    Mantere, Tuomo; Tervasmäki, Anna; Nurmi, Anna; Rapakko, Katrin; Kauppila, Saila; Tang, Jiangbo; Schleutker, Johanna; Kallioniemi, Anne; Hartikainen, Jaana M; Mannermaa, Arto; Nieminen, Pentti; Hanhisalo, Riitta; Lehto, Sini; Suvanto, Maija; Grip, Mervi; Jukkola-Vuorinen, Arja; Tengström, Maria; Auvinen, Päivi; Kvist, Anders; Borg, Åke; Blomqvist, Carl; Aittomäki, Kristiina; Greenberg, Roger A; Winqvist, Robert; Nevanlinna, Heli; Pylkäs, Katri

    2017-04-06

    Several known breast cancer susceptibility genes encode proteins involved in DNA damage response (DDR) and are characterized by rare loss-of-function mutations. However, these explain less than half of the familial cases. To identify novel susceptibility factors, 39 rare truncating mutations, identified in 189 Northern Finnish hereditary breast cancer patients in parallel sequencing of 796 DDR genes, were studied for disease association. Mutation screening was performed for Northern Finnish breast cancer cases (n = 578-1565) and controls (n = 337-1228). Mutations showing potential cancer association were analyzed in additional Finnish cohorts. c.7253dupT in TEX15, encoding a DDR factor important in meiosis, associated with hereditary breast cancer (p = 0.018) and likely represents a Northern Finnish founder mutation. A deleterious c.2715 + 1G > A mutation in the Fanconi anemia gene, FANCD2, was over two times more common in the combined Finnish hereditary cohort compared to controls. A deletion (c.640_644del5) in RNF168, causative for recessive RIDDLE syndrome, had high prevalence in majority of the analyzed cohorts, but did not associate with breast cancer. In conclusion, truncating variants in TEX15 and FANCD2 are potential breast cancer risk factors, warranting further investigations in other populations. Furthermore, high frequency of RNF168 c.640_644del5 indicates the need for its testing in Finnish patients with RIDDLE syndrome symptoms.

  5. Whole Exome Sequencing in Dominant Cataract Identifies a New Causative Factor, CRYBA2, and a Variety of Novel Alleles in Known Genes

    PubMed Central

    Reis, Linda M.; Tyler, Rebecca C.; Muheisen, Sanaa; Raggio, Victor; Salviati, Leonardo; Han, Dennis P.; Costakos, Deborah; Yonath, Hagith; Hall, Sarah; Power, Patricia; Semina, Elena V.

    2013-01-01

    Pediatric cataracts are observed in 1–15 per 10,000 births with 10–25% of cases attributed to genetic causes; autosomal dominant inheritance is the most commonly observed pattern. Since the specific cataract phenotype is not sufficient to predict which gene is mutated, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 23 pedigrees affected with familial dominant cataract. Review of WES data for 36 known cataract genes identified causative mutations in nine pedigrees (39%) in CRYAA, CRYBB1, CRYBB3, CRYGC (2), CRYGD, GJA8 (2), and MIP and an additional likely causative mutation in EYA1; the CRYBB3 mutation represents the first dominant allele in this gene and demonstrates incomplete penetrance. Examination of crystallin genes not yet linked to human disease identified a novel cataract gene, CRYBA2, a member of the βγ-crystallin superfamily. The p.(Val50Met) mutation in CRYBA2 cosegregated with disease phenotype in a four-generation pedigree with autosomal dominant congenital cataracts with incomplete penetrance. Expression studies detected cryba2 transcripts during early lens development in zebrafish, supporting its role in congenital disease. Our data highlight the extreme genetic heterogeneity of dominant cataract as the eleven causative/likely causative mutations affected nine different genes and the majority of mutant alleles were novel. Furthermore, these data suggest that less than half of dominant cataract can be explained by mutations in currently known genes. PMID:23508780

  6. Krüppel-like factor 1 mutations and expression of hemoglobins F and A2 in homozygous hemoglobin E syndrome.

    PubMed

    Tepakhan, Wanicha; Yamsri, Supawadee; Fucharoen, Goonnapa; Sanchaisuriya, Kanokwan; Fucharoen, Supan

    2015-07-01

    The basis for variability of hemoglobin (Hb) F in homozygous Hb E disease is not well understood. We have examined multiple mutations of the Krüppel-like factor 1 (KLF1) gene; an erythroid specific transcription factor and determined their associations with Hbs F and A2 expression in homozygous Hb E. Four KLF1 mutations including G176AfsX179, T334R, R238H, and -154 (C-T) were screened using specific PCR assays on 461 subjects with homozygous Hb E and 100 normal controls. None of these four mutations were observed in 100 normal controls. Among 461 subjects with homozygous Hb E, 306 had high (≥5 %) and 155 had low (<5 %) Hb F. DNA analysis identified the KLF1 mutations in 35 cases of the former group with high Hb F, including the G176AfsX179 mutation (17/306 = 5.6 %), T334R mutation (9/306 = 2.9 %), -154 (C-T) mutation (7/306 = 2.3 %), and R328H mutation (2/306 = 0.7 %). Only two subjects in the latter group with low Hb F carried the G176AfsX179 and -154 (C-T) mutations. Significant higher Hb A2 level was observed in those of homozygous Hb E with the G176AfsX179 mutation as compared to those without KLF1 mutations. These results indicate that KLF1 is among the genetic factors associated with increased Hbs F and A2, and in combination with other factors could explain the variabilities of these Hb expression in Hb E syndrome.

  7. Functional mutation analysis of EGFR family genes and corresponding lymph node metastases in head and neck squamous cell carcinoma.

    PubMed

    Hama, Takanori; Yuza, Yuki; Suda, Toshihito; Saito, Yoshimichi; Norizoe, Chihiro; Kato, Takakuni; Moriyama, Hiroshi; Urashima, Mitsuyoshi

    2012-01-01

    Tumors with certain mutations in the epidermal growth factor receptor (EGFR) family genes dramatically respond to EGFR inhibitors. Therefore, these mutations are important factors that influence disease progression and patient survival. We previously studied the mutation status of EGFR in patients with head and neck squamous cell carcinoma (HNSCC). However, the mutation status of lymph node metastases and the frequency of mutations in EGFR family genes have not been extensively studied. In this study, we sequenced the catalytic domains of the three other members of the EGFR family, HER2, HER3, and HER4 in 92 clinical samples of HNSCC. We identified a HER2 mutation (K716E) in one sample but no mutations were found in HER3 or HER4. Next to investigate the relationship between EGFR mutations and tumor metastasis, we compared the DNA sequences of the EGFR gene between the primary tumor and the lymph node metastasis in 31 clinical samples. Only one of the patients with an EGFR mutation in the primary HNSCC carried the same mutation (L858R) in the lymph node metastasis. Finally, we explored the tumorigenic potential of the EGFR mutations that we had previously identified and their sensitivity to two different EGFR tyrosine kinase inhibitors (CL-387785, OSI-420). Ba/F3 cells transformed with mutant EGFR genes were sensitive to treatment with lower concentrations of CL-387785 than of OSI-420. These results contribute to our understanding of the genetic basis of drug sensitivity and will help design drugs that specifically target different subtypes of HNSCC.

  8. Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations.

    PubMed

    Villanueva, Carine; Jacobson-Dickman, Elka; Xu, Cheng; Manouvrier, Sylvie; Dwyer, Andrew A; Sykiotis, Gerasimos P; Beenken, Andrew; Liu, Yang; Tommiska, Johanna; Hu, Youli; Tiosano, Dov; Gerard, Marion; Leger, Juliane; Drouin-Garraud, Valérie; Lefebvre, Hervé; Polak, Michel; Carel, Jean-Claude; Phan-Hug, Franziska; Hauschild, Michael; Plummer, Lacey; Rey, Jean-Pierre; Raivio, Taneli; Bouloux, Pierre; Sidis, Yisrael; Mohammadi, Moosa; de Roux, Nicolas; Pitteloud, Nelly

    2015-08-01

    Congenital hypogonadotropic hypogonadism (CHH) and split hand/foot malformation (SHFM) are two rare genetic conditions. Here we report a clinical entity comprising the two. We identified patients with CHH and SHFM through international collaboration. Probands and available family members underwent phenotyping and screening for FGFR1 mutations. The impact of identified mutations was assessed by sequence- and structure-based predictions and/or functional assays. We identified eight probands with CHH with (n = 3; Kallmann syndrome) or without anosmia (n = 5) and SHFM, seven of whom (88%) harbor FGFR1 mutations. Of these seven, one individual is homozygous for p.V429E and six individuals are heterozygous for p.G348R, p.G485R, p.Q594*, p.E670A, p.V688L, or p.L712P. All mutations were predicted by in silico analysis to cause loss of function. Probands with FGFR1 mutations have severe gonadotropin-releasing hormone deficiency (absent puberty and/or cryptorchidism and/or micropenis). SHFM in both hands and feet was observed only in the patient with the homozygous p.V429E mutation; V429 maps to the fibroblast growth factor receptor substrate 2α binding domain of FGFR1, and functional studies of the p.V429E mutation demonstrated that it decreased recruitment and phosphorylation of fibroblast growth factor receptor substrate 2α to FGFR1, thereby resulting in reduced mitogen-activated protein kinase signaling. FGFR1 should be prioritized for genetic testing in patients with CHH and SHFM because the likelihood of a mutation increases from 10% in the general CHH population to 88% in these patients.

  9. TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma.

    PubMed

    Griewank, Klaus G; Murali, Rajmohan; Puig-Butille, Joan Anton; Schilling, Bastian; Livingstone, Elisabeth; Potrony, Miriam; Carrera, Cristina; Schimming, Tobias; Möller, Inga; Schwamborn, Marion; Sucker, Antje; Hillen, Uwe; Badenas, Celia; Malvehy, Josep; Zimmer, Lisa; Scherag, André; Puig, Susana; Schadendorf, Dirk

    2014-09-01

    Recently, TERT promoter mutations were identified at high frequencies in cutaneous melanoma tumor samples and cell lines. The mutations were found to have a UV-signature and to lead to increased TERT gene expression. We analyzed a large cohort of melanoma patients for the presence and distribution of TERT promoter mutations and their association with clinico-pathological characteristics. 410 melanoma tumor samples were analyzed by Sanger sequencing for the presence of TERT promoter mutations. An analysis of associations between mutation status and various clinical and pathologic variables was performed. TERT promoter mutations were identified in 154 (43%) of 362 successfully sequenced melanomas. Mutation frequencies varied between melanoma subtype, being most frequent in melanomas arising in nonacral skin (48%) and melanomas with occult primary (50%), and less frequent in mucosal (23%), and acral (19%) melanomas. Mutations carried a UV signature (C>T or CC>TT). The presence of TERT promoter mutations was associated with factors such as BRAF or NRAS mutation (P < .001), histologic type (P = .002), and Breslow thickness (P < .001). TERT promoter mutation was independently associated with poorer overall survival in patients with nonacral cutaneous melanomas (median survival 80 months vs 291 months for wild-type; hazard ratio corrected for other covariates 2.47; 95% confidence interval [CI] = 1.29 to 4.74; P = .006). UV-induced TERT promoter mutations are one of the most frequent genetic alterations in melanoma, with frequencies varying depending on melanoma subtype. In nonacral cutaneous melanomas, presence of TERT promoter mutations is independently associated with poor prognosis. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome.

    PubMed Central

    Wilkin, D J; Szabo, J K; Cameron, R; Henderson, S; Bellus, G A; Mack, M L; Kaitila, I; Loughlin, J; Munnich, A; Sykes, B; Bonaventure, J; Francomano, C A

    1998-01-01

    More than 97% of achondroplasia cases are caused by one of two mutations (G1138A and G1138C) in the fibroblast growth factor receptor 3 (FGFR3) gene, which results in a specific amino acid substitution, G380R. Sporadic cases of achondroplasia have been associated with advanced paternal age, suggesting that these mutations occur preferentially during spermatogenesis. We have determined the parental origin of the achondroplasia mutation in 40 sporadic cases. Three distinct 1-bp polymorphisms were identified in the FGFR3 gene, within close proximity to the achondroplasia mutation site. Ninety-nine families, each with a sporadic case of achondroplasia in a child, were analyzed in this study. In this population, the achondroplasia mutation occurred on the paternal chromosome in all 40 cases in which parental origin was unambiguous. This observation is consistent with the clinical observation of advanced paternal age resulting in new cases of achondroplasia and suggests that factors influencing DNA replication or repair during spermatogenesis, but not during oogenesis, may predispose to the occurrence of the G1138 FGFR3 mutations. PMID:9718331

  11. Epidermal growth factor receptor gene mutation as risk factor for recurrence in patients with surgically resected lung adenocarcinoma: a matched-pair analysis.

    PubMed

    Matsumura, Yuki; Owada, Yuki; Yamaura, Takumi; Muto, Satoshi; Osugi, Jun; Hoshino, Mika; Higuchi, Mitsunori; Ohira, Tetsuya; Suzuki, Hiroyuki; Gotoh, Mitsukazu

    2016-08-01

    Epidermal growth factor receptor (EGFR) mutation is a robust prognostic factor in patients with lung adenocarcinoma (ADC). However, the role of EGFR mutation status as a recurrence-risk factor remains unknown because the presence of such mutations is associated with other background characteristics. We therefore conducted a matched-pair analysis to compare recurrence-free survival (RFS) in matched cohorts of patients with lung ADC. We enrolled 379 patients who underwent surgical resection for lung ADC between 2005 and 2012. We determined the EGFR mutation status of each tumour. Matching their age, gender, smoking history and pathological stage (pStage), we compared RFS between matched cohorts with and without EGFR mutation (n = 86 each). The median age was 67 years, there were 39 (45%) men, 39 (45%) ex- or current smokers and pStage I: 71 (83%), II: 5 (6%), III: 8 (9%), IV: 2 (2%) in each group. The 3- and 5-year RFS rates in patients with mutant and wild-type EGFR were 85 and 78%, and 74 and 60%, respectively, with significant differences between the groups (P = 0.040). Multivariate analysis identified vascular invasion and lymphatic permeation, but not EGFR mutation status, as independent risk factors for recurrence. EGFR-gene mutation might be a favourable recurrence-risk factor in patients with surgically resected lung ADC, but further studies in larger cohorts are needed to verify this hypothesis. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  12. Variation of p53 mutational spectra between carcinoma of the upper and lower respiratory tract.

    PubMed

    Law, J C; Whiteside, T L; Gollin, S M; Weissfeld, J; El-Ashmawy, L; Srivastava, S; Landreneau, R J; Johnson, J T; Ferrell, R E

    1995-07-01

    Mutations of the p53 tumor suppressor gene are the most common genetic alterations associated with human cancer. Tumor-associated p53 mutations often show characteristic tissue-specific profiles which may infer environmentally induced mutational mechanisms. The p53 mutational frequency and spectrum were determined for 95 carcinomas of the upper and lower respiratory tract (32 lung and 63 upper respiratory tract). Mutations were identified at a frequency of 30% in upper respiratory tract (URT) tumors and 31% in lung tumors. All 29 identified mutations were single-base substitutions. Comparison of the frequency of specific base substitutions between lung and URT showed a striking difference. Transitions occurred at a frequency of 68% in URT, but only 30% in lung. Mutations involving G:C-->A:T transitions, which are commonly reported in gastric and esophageal tumors, were the most frequently identified alteration in URT (11/19). Mutations involving G:C-->T:A transversions, which were relatively common in lung tumors (3/10) and are representative of tobacco smoke-induced mutations were rare in URT tumors (1/19). Interestingly, G:C-->A:T mutations at CpG sites, which are characteristic of endogenous processes, were observed frequently in URT tumors (9/19) but only rarely in lung tumors (1/10), suggesting that both endogenous and exogenous factors are responsible for the observed differences in mutational spectra between the upper and lower respiratory systems.

  13. Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms

    PubMed Central

    Ernst, Thomas; Chase, Andrew; Zoi, Katerina; Waghorn, Katherine; Hidalgo-Curtis, Claire; Score, Joannah; Jones, Amy; Grand, Francis; Reiter, Andreas; Hochhaus, Andreas; Cross, Nicholas C.P.

    2010-01-01

    Background Aberrant activation of tyrosine kinases, caused by either mutation or gene fusion, is of major importance for the development of many hematologic malignancies, particularly myeloproliferative neoplasms. We hypothesized that hitherto unrecognized, cytogenetically cryptic tyrosine kinase fusions may be common in non-classical or atypical myeloproliferative neoplasms and related myelodysplastic/myeloproliferative neoplasms. Design and Methods To detect genomic copy number changes associated with such fusions, we performed a systematic search in 68 patients using custom designed, targeted, high-resolution array comparative genomic hybridization. Arrays contained 44,000 oligonucleotide probes that targeted 500 genes including all 90 tyrosine kinases plus downstream tyrosine kinase signaling components, other translocation targets, transcription factors, and other factors known to be important for myelopoiesis. Results No abnormalities involving tyrosine kinases were detected; however, nine cytogenetically cryptic copy number imbalances were detected in seven patients, including hemizygous deletions of RUNX1 or CEBPA in two cases with atypical chronic myeloid leukemia. Mutation analysis of the remaining alleles revealed non-mutated RUNX1 and a frameshift insertion within CEBPA. A further mutation screen of 187 patients with myelodysplastic/myeloproliferative neoplasms identified RUNX1 mutations in 27 (14%) and CEBPA mutations in seven (4%) patients. Analysis of other transcription factors known to be frequently mutated in acute myeloid leukemia revealed NPM1 mutations in six (3%) and WT1 mutations in two (1%) patients with myelodysplastic/myeloproliferative neoplasms. Univariate analysis indicated that patients with mutations had a shorter overall survival (28 versus 44 months, P=0.019) compared with patients without mutations, with the prognosis for cases with CEBPA, NPM1 or WT1 mutations being particularly poor. Conclusions We conclude that mutations of transcription and other nuclear factors are frequent in myelodysplastic/myeloproliferative neoplasms and are generally mutually exclusive. CEBPA, NPM1 or WT1 mutations may be associated with a poor prognosis, an observation that will need to be confirmed by detailed prospective studies. PMID:20421268

  14. De novo frameshift mutation in fibroblast growth factor 8 in a male patient with gonadotropin deficiency.

    PubMed

    Suzuki, Erina; Yatsuga, Shuichi; Igarashi, Maki; Miyado, Mami; Nakabayashi, Kazuhiko; Hayashi, Keiko; Hata, Kenichirou; Umezawa, Akihiro; Yamada, Gen; Ogata, Tsutomu; Fukami, Maki

    2014-01-01

    Missense, nonsense, and splice mutations in the Fibroblast Growth Factor 8(FGF8) have recently been identified in patients with hypothalamo-pituitary dysfunction and craniofacial anomalies. Here, we report a male patient with a frameshift mutation in FGF8. The patient exhibited micropenis, craniofacial anomalies, and ventricular septal defect at birth. Clinical evaluation at 16 years and 8 months of age revealed delayed puberty, hyposmia, borderline mental retardation, and mild hearing difficulty. Endocrine findings included gonadotropin deficiency and primary hypothyroidism. Molecular analysis identified a de novo heterozygous p.S192fsX204 mutation in the last exon of FGF8. RT-PCR analysis of normal human tissues detected FGF8 expression in the genital skin, and whole-mount in situ hybridization analysis of mouse embryos revealed Fgf8 expression in the anlage of the penis. The results indicate that frameshift mutations in FGF8 account for a part of the etiology of hypothalamo-pituitary dysfunction. Micropenis in patients with FGF8 abnormalities appears to be caused by gonadotropin deficiency and defective outgrowth of the anlage of the penis.

  15. Identification of a novel missense mutation of MAF in a Japanese family with congenital cataract by whole exome sequencing: a clinical report and review of literature.

    PubMed

    Narumi, Yoko; Nishina, Sachiko; Tokimitsu, Motoharu; Aoki, Yoko; Kosaki, Rika; Wakui, Keiko; Azuma, Noriyuki; Murata, Toshinori; Takada, Fumio; Fukushima, Yoshimitsu; Kosho, Tomoki

    2014-05-01

    Congenital cataracts are the most important cause of severe visual impairment in infants. Genetic factors contribute to the disease development and 29 genes are known to cause congenital cataracts. Identifying the genetic cause of congenital cataracts can be difficult because of genetic heterogeneity. V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF) encodes a basic region/leucine zipper transcription factor that plays a key role as a regulator of embryonic lens fiber cell development. MAF mutations have been reported to cause juvenile-onset pulverulent cataract, microcornea, iris coloboma, and other anterior segment dysgenesis. We report on six patients in a family who have congenital cataracts were identified MAF mutation by whole exome sequencing (WES). The heterozygous MAF mutation Q303L detected in the present family occurs in a well conserved glutamine residue at the basic region of the DNA-binding domain. All affected members showed congenital cataracts. Three of the six members showed microcornea and one showed iris coloboma. Congenital cataracts with MAF mutation exhibited phenotypically variable cataracts within the family. Review of the patients with MAF mutations supports the notion that congenital cataracts caused by MAF mutations could be accompanied by microcornea and/or iris coloboma. WES is a useful tool for detecting disease-causing mutations in patients with genetically heterogeneous conditions. © 2014 Wiley Periodicals, Inc.

  16. Erythrocytosis and Pulmonary Hypertension in a Mouse Model of Human HIF2A Gain of Function Mutation*

    PubMed Central

    Tan, Qiulin; Kerestes, Heddy; Percy, Melanie J.; Pietrofesa, Ralph; Chen, Li; Khurana, Tejvir S.; Christofidou-Solomidou, Melpo; Lappin, Terence R. J.; Lee, Frank S.

    2013-01-01

    The central pathway for oxygen-dependent control of red cell mass is the prolyl hydroxylase domain protein (PHD):hypoxia inducible factor (HIF) pathway. PHD site specifically prolyl hydroxylates the transcription factor HIF-α, thereby targeting the latter for degradation. Under hypoxia, this modification is attenuated, allowing stabilized HIF-α to activate target genes, including that for erythropoietin (EPO). Studies employing genetically modified mice point to Hif-2α, one of two main Hif-α isoforms, as being the critical regulator of Epo in the adult mouse. More recently, erythrocytosis patients with heterozygous point mutations in the HIF2A gene have been identified; whether these mutations were polymorphisms unrelated to the phenotype could not be ruled out. In the present report, we characterize a mouse line bearing a G536W missense mutation in the Hif2a gene that corresponds to the first such human mutation identified (G537W). We obtained mice bearing both heterozygous and homozygous mutations at this locus. We find that these mice display, in a mutation dose-dependent manner, erythrocytosis and pulmonary hypertension with a high degree of penetrance. These findings firmly establish missense mutations in HIF-2α as a cause of erythrocytosis, highlight the importance of this HIF-α isoform in erythropoiesis, and point to physiologic consequences of HIF-2α dysregulation. PMID:23640890

  17. Presence of hemochromatosis-associated mutations in Hispanic patients with iron overload.

    PubMed

    Nieves-Santiago, Paul; Cancel, Dilany; Canales, Dialma; Toro, Doris H

    2011-09-01

    To determine the characteristics of the Puerto Rico Veteran population with iron overload in terms of demographic features, clinical manifestations, and the presence of hereditary hemochromatosis (HH) mutations, and to compare such characteristics in patients with and without HH mutations. A retrospective study was conducted in patients with iron overload (transferrin saturation > or = 45%) who were tested for HH mutations from January 2003 to June 2007. Data collected included age, gender, body mass index, hemoglobin level, platelet count, ferritin level, transferrin saturation, ceruloplasmin, alfa-1 antitrypsin, anti-nuclear antibodies, aspartate aminotransferase, alanine aminotransferase, alfa-fetoprotein, viral hepatitis profile, imaging studies, and comorbid conditions. Patients were grouped according to the results of the commercially available HH DNA mutation analysis as homozygote, heterozygote, compound heterozygote, or negative. 94 patients were studied. Most patients were male (90/94); the mean age was 60 years. Of the study group, 36% (34/94) was found positive for HH mutations. The most common mutation was H63D, which was found in 85% (29/34) of patients; 4 homozygotes and 25 heterozygotes. C282Y mutation was identified in only 12% (4/34) of patients, of which one was homozygote. A compound heterozygote (C282Y/ H63D) was also identified. After analyzing the data for confounding factors, 6 of 29 heterozygotes had no other risk factors for liver disease other than the H63D mutation. The predominance of H63D mutations in our population deserves further investigation since it considerably differs from other studied populations with iron overload in which C282Y is the most common mutation.

  18. The long tail of oncogenic drivers in prostate cancer.

    PubMed

    Armenia, Joshua; Wankowicz, Stephanie A M; Liu, David; Gao, Jianjiong; Kundra, Ritika; Reznik, Ed; Chatila, Walid K; Chakravarty, Debyani; Han, G Celine; Coleman, Ilsa; Montgomery, Bruce; Pritchard, Colin; Morrissey, Colm; Barbieri, Christopher E; Beltran, Himisha; Sboner, Andrea; Zafeiriou, Zafeiris; Miranda, Susana; Bielski, Craig M; Penson, Alexander V; Tolonen, Charlotte; Huang, Franklin W; Robinson, Dan; Wu, Yi Mi; Lonigro, Robert; Garraway, Levi A; Demichelis, Francesca; Kantoff, Philip W; Taplin, Mary-Ellen; Abida, Wassim; Taylor, Barry S; Scher, Howard I; Nelson, Peter S; de Bono, Johann S; Rubin, Mark A; Sawyers, Charles L; Chinnaiyan, Arul M; Schultz, Nikolaus; Van Allen, Eliezer M

    2018-05-01

    Comprehensive genomic characterization of prostate cancer has identified recurrent alterations in genes involved in androgen signaling, DNA repair, and PI3K signaling, among others. However, larger and uniform genomic analysis may identify additional recurrently mutated genes at lower frequencies. Here we aggregate and uniformly analyze exome sequencing data from 1,013 prostate cancers. We identify and validate a new class of E26 transformation-specific (ETS)-fusion-negative tumors defined by mutations in epigenetic regulators, as well as alterations in pathways not previously implicated in prostate cancer, such as the spliceosome pathway. We find that the incidence of significantly mutated genes (SMGs) follows a long-tail distribution, with many genes mutated in less than 3% of cases. We identify a total of 97 SMGs, including 70 not previously implicated in prostate cancer, such as the ubiquitin ligase CUL3 and the transcription factor SPEN. Finally, comparing primary and metastatic prostate cancer identifies a set of genomic markers that may inform risk stratification.

  19. A novel inherited mutation of the transcription factor RUNX1 causes thrombocytopenia and may predispose to acute myeloid leukaemia.

    PubMed

    Walker, Logan C; Stevens, Jane; Campbell, Hamish; Corbett, Rob; Spearing, Ruth; Heaton, David; Macdonald, Donald H; Morris, Christine M; Ganly, Peter

    2002-06-01

    The RUNX1 (AML1, CBFA2) gene is a member of the runt transcription factor family, responsible for DNA binding and heterodimerization of other non-DNA binding transcription factors. RUNX1 plays an important part in regulating haematopoiesis and it is frequently disrupted by illegitimate somatic recombination in both acute myeloid and lymphoblastic leukaemia. Germline mutations of RUNX1 have also recently been described and are dominantly associated with inherited leukaemic conditions. We have identified a unique point mutation of the RUNX1 gene (A107P) in members of a family with autosomal dominant inheritance of thrombocytopenia. One member has developed acute myeloid leukaemia (AML).

  20. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism.

    PubMed

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel M A; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin A M; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-04-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.

  1. Precipitating factors of porphyria cutanea tarda in Brazil with emphasis on hemochromatosis gene (HFE) mutations. Study of 60 patients.

    PubMed

    Vieira, Fatima Mendonça Jorge; Nakhle, Maria Cristina; Abrantes-Lemos, Clarice Pires; Cançado, Eduardo Luiz Rachid; Reis, Vitor Manoel Silva dos

    2013-01-01

    Porphyria cutanea tarda is the most common form of porphyria, characterized by the decreased activity of the uroporphyrinogen decarboxylase enzyme. Several reports associated HFE gene mutations of hereditary hemochromatosis with porphyria cutanea tarda worldwide, although up to date only one study has been conducted in Brazil. Investigation of porphyria cutanea tarda association with C282Y and H63D mutations in the HFE gene. Identification of precipitating factors (hepatitis C, HIV, alcoholism and estrogen) and their link with HFE mutations. An ambispective study of 60 patients with PCT was conducted during the period from 2003 to 2012. Serological tests for hepatitis C and HIV were performed and histories of alcohol abuse and estrogen intake were investigated. HFE mutations were identified with real-time PCR. Porphyria cutanea tarda predominated in males and alcohol abuse was the main precipitating factor. Estrogen intake was the sole precipitating factor present in 25% of female patients. Hepatitis C was present in 41.7%. All HIV-positive patients (15.3%) had a history of alcohol abuse. Allele frequency for HFE mutations, i.e., C282Y (p = 0.0001) and H63D (p = 0.0004), were significantly higher in porphyria cutanea tarda patients, compared to control group. HFE mutations had no association with the other precipitating factors. Alcohol abuse, hepatitis C and estrogen intake are prevalent precipitating factors in our porphyria cutanea tarda population; however, hemochromatosis in itself can also contribute to the outbreak of porphyria cutanea tarda, which makes the research for HFE mutations necessary in these patients.

  2. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders.

    PubMed

    Visconte, V; Makishima, H; Maciejewski, J P; Tiu, R V

    2012-12-01

    In humans, the majority of all protein-coding transcripts contain introns that are removed by mRNA splicing carried out by spliceosomes. Mutations in the spliceosome machinery have recently been identified using whole-exome/genome technologies in myelodysplastic syndromes (MDS) and in other hematological disorders. Alterations in splicing factor 3 subunit b1 (SF3b1) were the first spliceosomal mutations described, immediately followed by identification of other splicing factor mutations, including U2 small nuclear RNA auxillary factor 1 (U2AF1) and serine arginine-rich splicing factor 2 (SRSF2). SF3b1/U2AF1/SRSF2 mutations occur at varying frequencies in different disease subtypes, each contributing to differences in survival outcomes. However, the exact functional consequences of these spliceosomal mutations in the pathogenesis of MDS and other hematological malignancies remain largely unknown and subject to intense investigation. For SF3b1, a gain of function mutation may offer the promise of new targeted therapies for diseases that carry this molecular abnormality that can potentially lead to cure. This review aims to provide a comprehensive overview of the emerging role of the spliceosome machinery in the biology of MDS/hematological disorders with an emphasis on the functional consequences of mutations, their clinical significance, and perspectives on how they may influence our understanding and management of diseases affected by these mutations.

  3. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematologic disorders

    PubMed Central

    Visconte, V; Makishima, H; Maciejewski, JP; Tiu, RV

    2013-01-01

    In humans, the majority of all protein-coding transcripts contain introns that are removed by mRNA splicing carried out by spliceosomes. Mutations in the spliceosome machinery have recently been identified using whole exome/genome technologies in myelodysplastic syndromes (MDS) and in other hematologic disorders. Alterations in Splicing Factor 3 Subunit b1 (SF3b1) were the first spliceosomal mutations described, immediately followed by identification of other splicing factor mutations, including U2 Small Nuclear RNA Auxillary Factor 1 (U2AF1) and Serine Arginine Rich Splicing Factor 2 (SRSF2). SF3b1/U2AF1/SRSF2 mutations occur at varying frequencies in different disease subtypes, each contributing to differences in survival outcomes. However, the exact functional consequences of these spliceosomal mutations in the pathogenesis of MDS and other hematologic malignancies remain largely unknown and subject to intense investigation. For SF3b1, a gain of function mutation may offer the promise of new targeted therapies for diseases that carry this molecular abnormality that can potentially lead to cure. This review aims to provide a comprehensive overview of the emerging role of the spliceosome machinery in the biology of MDS/hematologic disorders with an emphasis on the functional consequences of mutations, their clinical significance, and perspectives on how they may influence our understanding and management of diseases affected by these mutations. PMID:22678168

  4. Personalized medicine in non-small-cell lung cancer: is KRAS a useful marker in selecting patients for epidermal growth factor receptor-targeted therapy?

    PubMed

    Roberts, Patrick J; Stinchcombe, Thomas E; Der, Channing J; Socinski, Mark A

    2010-11-01

    In patients with metastatic colorectal cancer, the predictive value of KRAS mutational status in the selection of patients for treatment with anti-epidermal growth factor (EGFR) monoclonal antibodies is established. In patients with non-small-cell lung cancer (NSCLC), the utility of determining KRAS mutational status to predict clinical benefit to anti-EGFR therapies remains unclear. This review will provide a brief description of Ras biology, provide an overview of aberrant Ras signaling in NSCLC, and summarize the clinical data for using KRAS mutational status as a negative predictive biomarker to anti-EGFR therapies. Retrospective investigations of KRAS mutational status as a negative predictor of clinical benefit from anti-EGFR therapies in NSCLC have been performed; however, small samples sizes as a result of low prevalence of KRAS mutations and the low rate of tumor sample collection have limited the strength of these analyses. Although an association between the presence of KRAS mutation and lack of response to EGFR tyrosine kinase inhibitors (TKIs) has been observed, it remains unclear whether there is an association between KRAS mutation and EGFR TKI progression-free and overall survival. Unlike colorectal cancer, KRAS mutations do not seem to identify patients who do not benefit from anti-EGFR monoclonal antibodies in NSCLC. The future value of testing for KRAS mutational status may be to exclude the possibility of an EGFR mutation or anaplastic lymphoma kinase translocation or to identify a molecular subset of patients with NSCLC in whom to pursue a drug development strategy that targets the KRAS pathway.

  5. Neutrophil elastase and granulocyte colony-stimulating factor receptor mutation analyses and leukemia evolution in severe congenital neutropenia patients belonging to the original Kostmann family in northern Sweden.

    PubMed

    Carlsson, Göran; Aprikyan, Andrew A G; Ericson, Kim Göransdotter; Stein, Steve; Makaryan, Vahagn; Dale, David C; Nordenskjöld, Magnus; Fadeel, Bengt; Palmblad, Jan; Hentera, Jan-Inge

    2006-05-01

    Severe congenital neutropenia (SCN) or Kostmann syndrome was originally reported to be an autosomal recessive disease of neutrophil production causing recurrent, life-threatening infections. Mutations in the neutrophil elastase gene (ELA-2) have previously been identified in patients with sporadic or autosomal dominant SCN. We studied 14 individuals (four patients with SCN and ten close relatives) belonging to the original Kostmann family in northern Sweden for mutations in the ELA-2 and the granulocyte colony-stimulating factor (G-CSF) receptor genes. One patient belonging to the original Kostmann family harbored a novel heterozygous ELA-2 mutation (g.2310T-->A;Leu92His) that was not inherited from her parents. The mutation was identified in DNA isolated from both whole blood and skin fibroblasts, suggesting a sporadic de novo mutation. As a young adult this patient sequentially acquired two mutations in the gene for the G-CSF receptor (G-CSFR) and therefore recently received a hematopoietic stem cell transplant, due to the risk of evolution to leukemia. Moreover, another patient developed acute leukemia and was treated with transplantation. No pathogenic ELA-2 or G-CSFR gene mutations were found in this patient or the other two patients, nor in any healthy relative. Our data are the first to document leukemia evolution and G-CSFR gene mutations in the original Kostmann kindred. In addition, our findings indicate that ELA-2 mutations are not the primary cause of SCN in the Swedish Kostmann family.

  6. Testicular differentiation factor SF-1 is required for human spleen development

    PubMed Central

    Zangen, David; Kaufman, Yotam; Banne, Ehud; Weinberg-Shukron, Ariella; Abulibdeh, Abdulsalam; Garfinkel, Benjamin P.; Dweik, Dima; Kanaan, Moein; Camats, Núria; Flück, Christa; Renbaum, Paul; Levy-Lahad, Ephrat

    2014-01-01

    The transcription factor steroidogenic factor 1 (SF-1; also known as NR5A1) is a crucial mediator of both steroidogenic and nonsteroidogenic tissue differentiation. Mutations within SF1 underlie different disorders of sexual development (DSD), including sex reversal, spermatogenic failure, ovarian insufficiency, and adrenocortical deficiency. Here, we identified a recessive mutation within SF1 that resulted in a substitution of arginine to glutamine at codon 103 (R103Q) in a child with both severe 46,XY-DSD and asplenia. The R103Q mutation decreased SF-1 transactivation of TLX1, a transcription factor that has been shown to be essential for murine spleen development. Additionally, the SF1 R103Q mutation impaired activation of steroidogenic genes, without affecting synergistic SF-1 and sex-determining region Y (SRY) coactivation of the testis development gene SOX9. Together, our data provide evidence that SF-1 is required for spleen development in humans via transactivation of TLX1 and that mutations that only impair steroidogenesis, without altering the SF1/SRY transactivation of SOX9, can lead to 46,XY-DSD. PMID:24905461

  7. Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers.

    PubMed

    Milne, Roger L; Antoniou, Antonis C

    2016-10-01

    Pathogenic mutations in BRCA1 and BRCA2 are associated with high risks of breast and ovarian cancer. However, penetrance estimates for mutation carriers have been found to vary substantially between studies, and the observed differences in risk are consistent with the hypothesis that genetic and environmental factors modify cancer risks for women with these mutations. Direct evidence that this is the case has emerged in the past decade, through large-scale international collaborative efforts. Here, we describe the methodological challenges in the identification and characterisation of these risk-modifying factors, review the latest evidence on genetic and lifestyle/hormonal risk factors that modify breast and ovarian cancer risks for women with BRCA1 and BRCA2 mutations and outline the implications of these findings for cancer risk prediction. We also review the unresolved issues in this area of research and identify strategies of clinical implementation so that women with BRCA1 and BRCA2 mutations are no longer counselled on the basis of 'average' risk estimates. © 2016 Society for Endocrinology.

  8. Functional Analyses of a Novel CITED2 Nonsynonymous Mutation in Chinese Tibetan Patients with Congenital Heart Disease.

    PubMed

    Liu, Shiming; Su, Zhaobing; Tan, Sainan; Ni, Bin; Pan, Hong; Liu, Beihong; Wang, Jing; Xiao, Jianmin; Chen, Qiuhong

    2017-08-01

    CITED2 gene is an important cardiac transcription factor that plays a fundamental role in the formation and development of embryonic cardiovascular. Previous studies have showed that knock-out of CITED2 in mice might result in various cardiac malformations. However, the mechanisms of CITED2 mutation on congenital heart disease (CHD) in Chinese Tibetan population are still poorly understood. In the present study, 187 unrelated Tibetan patients with CHD and 200 unrelated Tibetan healthy controls were screened for variants in the CITED2 gene; we subsequently identified one potential disease-causing mutation p.G143A in a 6-year-old girl with PDA and functional analyses of the mutation were carried out. Our study showed that the novel mutation of CITED2 significantly enhanced the expression activity of vascular endothelial growth factor (VEGF) under the role of co-receptor hypoxia inducible factor 1-aipha (HIF-1A), which is closely related with embryonic cardiac development. As a result, CITED2 gene mutation may play a significant role in the development of pediatric congenital heart disease.

  9. Alteration of the SETBP1 gene and splicing pathway genes SF3B1, U2AF1, and SRSF2 in childhood acute myeloid leukemia.

    PubMed

    Choi, Hyun-Woo; Kim, Hye-Ran; Baek, Hee-Jo; Kook, Hoon; Cho, Duck; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook; Shin, Myung-Geun

    2015-01-01

    Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, but not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood.

  10. The Genetic Causes of Nonsyndromic Congenital Retinal Detachment: A Genetic and Phenotypic Study of Pakistani Families.

    PubMed

    Keser, Vafa; Khan, Ayesha; Siddiqui, Sorath; Lopez, Irma; Ren, Huanan; Qamar, Raheel; Nadaf, Javad; Majewski, Jacek; Chen, Rui; Koenekoop, Robert K

    2017-02-01

    To evaluate consanguineous pedigrees from Pakistan with a clinical diagnosis of nonsyndromic congenital retinal nonattachment (NCRNA) and identify genes responsible for the disease as currently only one NCRNA gene is known (atonal basic helix-loop-helix transcription factor 7: ATOH7). We implemented a three-step genotyping platform: single nucleotide polymorphism genotyping to identify loss of heterozygosity regions in patients, Retinal Information Network panel screening for mutations in currently known retinal genes. Negative patients were then subjected to whole exome sequencing. We evaluated 21 consanguineous NCRNA pedigrees and identified the causal mutations in known retinal genes in 13 out of our 21 families. We found mutations in ATOH7 in three families. Surprisingly, we then found mutations in familial exudative vitreoretinopathy (FEVR) genes; low-density lipoprotein receptor-related protein 5 mutations (six families), tetraspanin 12 mutations (two families), and NDP mutations (two families). Thus, 62% of the patients were successfully genotyped in our study with seven novel and six previously reported mutations in known retinal genes. Although the clinical diagnosis of all children was NCRNA with severe congenital fibrotic retinal detachments, the molecular diagnosis determined that the disease process was in fact a very severe form of FEVR in 10 families. Because severe congenital retinal detachment has not been previously associated with all the FEVR genes, we have thus expanded the phenotypic spectrum of FEVR, a highly variable retinal detachment phenotype that has clinical overlap with NCRNA. We identified seven novel mutations. We also established for the first time genetic overlap between the Iranian and Pakistani populations. We identified eight NCRNA families that do not harbor mutations in any known retinal genes, suggesting novel causal genes in these families.

  11. The Genetic Causes of Nonsyndromic Congenital Retinal Detachment: A Genetic and Phenotypic Study of Pakistani Families

    PubMed Central

    Keser, Vafa; Khan, Ayesha; Siddiqui, Sorath; Lopez, Irma; Ren, Huanan; Qamar, Raheel; Nadaf, Javad; Majewski, Jacek; Chen, Rui; Koenekoop, Robert K.

    2017-01-01

    Purpose To evaluate consanguineous pedigrees from Pakistan with a clinical diagnosis of nonsyndromic congenital retinal nonattachment (NCRNA) and identify genes responsible for the disease as currently only one NCRNA gene is known (atonal basic helix-loop-helix transcription factor 7: ATOH7). Methods We implemented a three-step genotyping platform: single nucleotide polymorphism genotyping to identify loss of heterozygosity regions in patients, Retinal Information Network panel screening for mutations in currently known retinal genes. Negative patients were then subjected to whole exome sequencing. Results We evaluated 21 consanguineous NCRNA pedigrees and identified the causal mutations in known retinal genes in 13 out of our 21 families. We found mutations in ATOH7 in three families. Surprisingly, we then found mutations in familial exudative vitreoretinopathy (FEVR) genes; low-density lipoprotein receptor-related protein 5 mutations (six families), tetraspanin 12 mutations (two families), and NDP mutations (two families). Thus, 62% of the patients were successfully genotyped in our study with seven novel and six previously reported mutations in known retinal genes. Conclusions Although the clinical diagnosis of all children was NCRNA with severe congenital fibrotic retinal detachments, the molecular diagnosis determined that the disease process was in fact a very severe form of FEVR in 10 families. Because severe congenital retinal detachment has not been previously associated with all the FEVR genes, we have thus expanded the phenotypic spectrum of FEVR, a highly variable retinal detachment phenotype that has clinical overlap with NCRNA. We identified seven novel mutations. We also established for the first time genetic overlap between the Iranian and Pakistani populations. We identified eight NCRNA families that do not harbor mutations in any known retinal genes, suggesting novel causal genes in these families. PMID:28192794

  12. Molecular-genetic characterization and rescue of a TSFM mutation causing childhood-onset ataxia and nonobstructive cardiomyopathy

    PubMed Central

    Emperador, Sonia; Bayona-Bafaluy, M Pilar; Fernández-Marmiesse, Ana; Pineda, Mercedes; Felgueroso, Blanca; López-Gallardo, Ester; Artuch, Rafael; Roca, Iria; Ruiz-Pesini, Eduardo; Couce, María Luz; Montoya, Julio

    2017-01-01

    Oxidative phosphorylation dysfunction has been found in many different disorders. This biochemical pathway depends on mitochondrial protein synthesis. Thus, mutations in components of the mitochondrial translation system can be responsible for some of these pathologies. We identified a new homozygous missense mutation in the mitochondrial translation elongation factor Ts gene in a patient suffering from slowly progressive childhood ataxia and hypertrophic cardiomyopathy. Using cell, biochemical and molecular-genetic protocols, we confirm it as the etiologic factor of this phenotype. Moreover, as an important functional confirmation, we rescued the normal molecular phenotype by expression of the wild-type TSFM cDNA in patient's fibroblasts. Different TSFM mutations can produce the same or very different clinical phenotypes, going from abortions to moderately severe presentations. On the other hand, the same TSFM mutation can also produce same or different phenotypes within the same range of presentations, therefore suggesting the involvement of unknown factors. PMID:27677415

  13. Analysis of Transcription Factors Key for Mouse Pancreatic Development Establishes NKX2-2 and MNX1 Mutations as Causes of Neonatal Diabetes in Man

    PubMed Central

    Flanagan, Sarah E.; De Franco, Elisa; Lango Allen, Hana; Zerah, Michele; Abdul-Rasoul, Majedah M.; Edge, Julie A.; Stewart, Helen; Alamiri, Elham; Hussain, Khalid; Wallis, Sam; de Vries, Liat; Rubio-Cabezas, Oscar; Houghton, Jayne A.L.; Edghill, Emma L.; Patch, Ann-Marie; Ellard, Sian; Hattersley, Andrew T.

    2014-01-01

    Summary Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development. PMID:24411943

  14. Genetic factors of age-related macular degeneration

    PubMed Central

    Tuo, Jingsheng; Bojanowski, Christine M.; Chan, Chi-Chao

    2007-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in the United States and developed countries. Although the etiology and pathogenesis of AMD remain unknown, a complex interaction of genetic and environmental factors is thought to exist. The incidence and progression of all of the features of AMD are known to increase significantly with age. The tendency for familial aggregation and the findings of gene variation association studies implicate a significant genetic component in the development of AMD. This review summarizes in detail the AMD-related genes identified by studies on genetically engineered and spontaneously gene-mutated (naturally mutated) animals, AMD chromosomal loci identified by linkage studies, AMD-related genes identified through studies of monogenic degenerative retinal diseases, and AMD-related gene variation identified by association studies. PMID:15094132

  15. EIF2AK4 Mutations in Pulmonary Capillary Hemangiomatosis

    PubMed Central

    Best, D. Hunter; Sumner, Kelli L.; Austin, Eric D.; Chung, Wendy K.; Brown, Lynette M.; Borczuk, Alain C.; Rosenzweig, Erika B.; Bayrak-Toydemir, Pinar; Mao, Rong; Cahill, Barbara C.; Tazelaar, Henry D.; Leslie, Kevin O.; Hemnes, Anna R.; Robbins, Ivan M.

    2014-01-01

    Background: Pulmonary capillary hemangiomatosis (PCH) is a rare disease of capillary proliferation of unknown cause and with a high mortality. Families with multiple affected individuals with PCH suggest a heritable cause although the genetic etiology remains unknown. Methods: We used exome sequencing to identify a candidate gene for PCH in a family with two affected brothers. We then screened 11 unrelated patients with familial (n = 1) or sporadic (n = 10) PCH for mutations. Results: Using exome sequencing, we identified compound mutations in eukaryotic translation initiation factor 2 α kinase 4 (EIF2AK4) (formerly known as GCN2) in both affected brothers. Both parents and an unaffected sister were heterozygous carriers. In addition, we identified two EIF2AK4 mutations in each of two of 10 unrelated individuals with sporadic PCH. EIF2AK4 belongs to a family of kinases that regulate angiogenesis in response to cellular stress. Conclusions: Mutations in EIF2AK4 are likely to cause autosomal-recessive PCH in familial and some nonfamilial cases. PMID:24135949

  16. Deep Sequencing-guided Design of a High Affinity Dual Specificity Antibody to Target Two Angiogenic Factors in Neovascular Age-related Macular Degeneration* ♦

    PubMed Central

    Koenig, Patrick; Lee, Chingwei V.; Sanowar, Sarah; Wu, Ping; Stinson, Jeremy; Harris, Seth F.; Fuh, Germaine

    2015-01-01

    The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies. PMID:26088137

  17. Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes.

    PubMed

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Otsuki, Taiichiro; Fukuoka, Kazuya; Hasegawa, Seiki; Nakano, Takashi; Hashimoto-Tamaoki, Tomoko

    2015-02-01

    We detected low levels of acetylation for histone H3 tail lysines in malignant mesothelioma (MM) cell lines resistant to histone deacetylase inhibitors. To identify the possible genetic causes related to the low histone acetylation levels, whole-exome sequencing was conducted with MM cell lines established from eight patients. A mono-allelic variant of BRD1 was common to two MM cell lines with very low acetylation levels. We identified 318 homozygous protein-damaging variants/mutations (18-78 variants/mutations per patient); annotation analysis showed enrichment of the molecules associated with mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes and co-activators that facilitate initiation of transcription. In seven of the patients, we detected a combination of variants in histone modifiers or transcription factors/co-factors, in addition to variants in mSWI/SNF. Direct sequencing showed that homozygous mutations in SMARCA4, PBRM1 and ARID2 were somatic. In one patient, homozygous germline variants were observed for SMARCC1 and SETD2 in chr3p22.1-3p14.2. These exhibited extended germline homozygosity and were in regions containing somatic mutations, leading to a loss of BAP1 and PBRM1 expression in MM cell line. Most protein-damaging variants were heterozygous in normal tissues. Heterozygous germline variants were often converted into hemizygous variants by mono-allelic deletion, and were rarely homozygous because of acquired uniparental disomy. Our findings imply that MM might develop through the somatic inactivation of mSWI/SNF complex subunits and/or histone modifiers, including BAP1, in subjects that have rare germline variants of these transcription regulators and/or transcription factors/co-factors, and in regions prone to mono-allelic deletion during oncogenesis. © 2014 UICC.

  18. Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes.

    PubMed

    Marchegiani, Shannon; Davis, Taylor; Tessadori, Federico; van Haaften, Gijs; Brancati, Francesco; Hoischen, Alexander; Huang, Haigen; Valkanas, Elise; Pusey, Barbara; Schanze, Denny; Venselaar, Hanka; Vulto-van Silfhout, Anneke T; Wolfe, Lynne A; Tifft, Cynthia J; Zerfas, Patricia M; Zambruno, Giovanna; Kariminejad, Ariana; Sabbagh-Kermani, Farahnaz; Lee, Janice; Tsokos, Maria G; Lee, Chyi-Chia R; Ferraz, Victor; da Silva, Eduarda Morgana; Stevens, Cathy A; Roche, Nathalie; Bartsch, Oliver; Farndon, Peter; Bermejo-Sanchez, Eva; Brooks, Brian P; Maduro, Valerie; Dallapiccola, Bruno; Ramos, Feliciano J; Chung, Hon-Yin Brian; Le Caignec, Cédric; Martins, Fabiana; Jacyk, Witold K; Mazzanti, Laura; Brunner, Han G; Bakkers, Jeroen; Lin, Shuo; Malicdan, May Christine V; Boerkoel, Cornelius F; Gahl, William A; de Vries, Bert B A; van Haelst, Mieke M; Zenker, Martin; Markello, Thomas C

    2015-07-02

    Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. CREBBP mutations in relapsed acute lymphoblastic leukaemia

    PubMed Central

    Mullighan, Charles G.; Zhang, Jinghui; Kasper, Lawryn H.; Lerach, Stephanie; Payne-Turner, Debbie; Phillips, Letha A.; Heatley, Sue L.; Holmfeldt, Linda; Collins-Underwood, J. Racquel; Ma, Jing; Buetow, Kenneth H.; Pui, Ching-Hon; Baker, Sharyn D.; Brindle, Paul K.; Downing, James R.

    2010-01-01

    Relapsed acute lymphoblastic leukaemia (ALL) is a leading cause of death due to disease in young people, but the biologic determinants of treatment failure remain poorly understood. Recent genome-wide profiling of structural DNA alterations in ALL have identified multiple submicroscopic somatic mutations targeting key cellular pathways1,2, and have demonstrated substantial evolution in genetic alterations from diagnosis to relapse3. However, detailed analysis of sequence mutations in ALL has not been performed. To identify novel mutations in relapsed ALL, we resequenced 300 genes in matched diagnosis and relapse samples from 23 patients with ALL. This identified 52 somatic non-synonymous mutations in 32 genes, many of which were novel, including the transcriptional coactivators CREBBP and NCOR1, the transcription factors ERG, SPI1, TCF4 and TCF7L2, components of the Ras signalling pathway, histone genes, genes involved in histone modification (CREBBP and CTCF), and genes previously shown to be targets of recurring DNA copy number alteration in ALL. Analysis of an extended cohort of 71 diagnosis-relapse cases and 270 acute leukaemia cases that did not relapse found that 18.3% of relapse cases had sequence or deletion mutations of CREBBP, which encodes the transcriptional coactivator and histone acetyltransferase (HAT) CREB-binding protein (CBP)4. The mutations were either present at diagnosis or acquired at relapse, and resulted in truncated alleles or deleterious substitutions in conserved residues of the HAT domain. Functionally, the mutations impaired histone acetylation and transcriptional regulation of CREBBP targets, including glucocorticoid responsive genes. Several mutations acquired at relapse were detected in subclones at diagnosis, suggesting that the mutations may confer resistance to therapy. These results extend the landscape of genetic alterations in leukaemia, and identify mutations targeting transcriptional and epigenetic regulation as a mechanism of resistance in ALL. PMID:21390130

  20. Precipitating factors of porphyria cutanea tarda in Brazil with emphasis on hemochromatosis gene (HFE) mutations. Study of 60 patients*

    PubMed Central

    Vieira, Fatima Mendonça Jorge; Nakhle, Maria Cristina; Abrantes-Lemos, Clarice Pires; Cançado, Eduardo Luiz Rachid; dos Reis, Vitor Manoel Silva

    2013-01-01

    BACKGROUND Porphyria cutanea tarda is the most common form of porphyria, characterized by the decreased activity of the uroporphyrinogen decarboxylase enzyme. Several reports associated HFE gene mutations of hereditary hemochromatosis with porphyria cutanea tarda worldwide, although up to date only one study has been conducted in Brazil. OBJECTIVES Investigation of porphyria cutanea tarda association with C282Y and H63D mutations in the HFE gene. Identification of precipitating factors (hepatitis C, HIV, alcoholism and estrogen) and their link with HFE mutations. METHODS An ambispective study of 60 patients with PCT was conducted during the period from 2003 to 2012. Serological tests for hepatitis C and HIV were performed and histories of alcohol abuse and estrogen intake were investigated. HFE mutations were identified with real-time PCR. RESULTS Porphyria cutanea tarda predominated in males and alcohol abuse was the main precipitating factor. Estrogen intake was the sole precipitating factor present in 25% of female patients. Hepatitis C was present in 41.7%. All HIV-positive patients (15.3%) had a history of alcohol abuse. Allele frequency for HFE mutations, i.e., C282Y (p = 0.0001) and H63D (p = 0.0004), were significantly higher in porphyria cutanea tarda patients, compared to control group. HFE mutations had no association with the other precipitating factors. CONCLUSIONS Alcohol abuse, hepatitis C and estrogen intake are prevalent precipitating factors in our porphyria cutanea tarda population; however, hemochromatosis in itself can also contribute to the outbreak of porphyria cutanea tarda, which makes the research for HFE mutations necessary in these patients PMID:24068123

  1. Simultaneous Identification of Multiple Driver Pathways in Cancer

    PubMed Central

    Leiserson, Mark D. M.; Blokh, Dima

    2013-01-01

    Distinguishing the somatic mutations responsible for cancer (driver mutations) from random, passenger mutations is a key challenge in cancer genomics. Driver mutations generally target cellular signaling and regulatory pathways consisting of multiple genes. This heterogeneity complicates the identification of driver mutations by their recurrence across samples, as different combinations of mutations in driver pathways are observed in different samples. We introduce the Multi-Dendrix algorithm for the simultaneous identification of multiple driver pathways de novo in somatic mutation data from a cohort of cancer samples. The algorithm relies on two combinatorial properties of mutations in a driver pathway: high coverage and mutual exclusivity. We derive an integer linear program that finds set of mutations exhibiting these properties. We apply Multi-Dendrix to somatic mutations from glioblastoma, breast cancer, and lung cancer samples. Multi-Dendrix identifies sets of mutations in genes that overlap with known pathways – including Rb, p53, PI(3)K, and cell cycle pathways – and also novel sets of mutually exclusive mutations, including mutations in several transcription factors or other genes involved in transcriptional regulation. These sets are discovered directly from mutation data with no prior knowledge of pathways or gene interactions. We show that Multi-Dendrix outperforms other algorithms for identifying combinations of mutations and is also orders of magnitude faster on genome-scale data. Software available at: http://compbio.cs.brown.edu/software. PMID:23717195

  2. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II.

    PubMed

    Zhang, Hua; Chen, Hongsheng; Luo, Hunjin; An, Jing; Sun, Lin; Mei, Lingyun; He, Chufeng; Jiang, Lu; Jiang, Wen; Xia, Kun; Li, Jia-Da; Feng, Yong

    2012-03-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. PAX3 and SOX10 are two transcription factors that can activate the expression of microphthalmia-associated transcription factor (MITF), a critical transcription factor for melanocyte development. Mutations of PAX3 are associated with WS1 and WS3, while mutations of SOX10 cause WS2 and WS4. Recently, we identified some novel WS-associated mutations in PAX3 and SOX10 in a cohort of Chinese WS patients. Here, we further identified an E248fsX30 SOX10 mutation in a family of WS2. We analyzed the subcellular distribution, expression and in vitro activity of two PAX3 mutations (p.H80D, p.H186fsX5) and four SOX10 mutations (p.E248fsX30, p.G37fsX58, p.G38fsX69 and p.R43X). Except H80D PAX3, which retained partial activity, the other mutants were unable to activate MITF promoter. The H80D PAX3 and E248fsX30 SOX10 were localized in the nucleus as wild type (WT) proteins, whereas the other mutant proteins were distributed in both cytoplasm and nucleus. Furthermore, E248fsX30 SOX10 protein retained the DNA-binding activity and showed dominant-negative effect on WT SOX10. However, E248fsX30 SOX10 protein seems to decay faster than the WT one, which may underlie the mild WS2 phenotype caused by this mutation.

  3. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma.

    PubMed

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-10-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies.

  4. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma

    PubMed Central

    Ozawa, Michael G; Bhaduri, Aparna; Chisholm, Karen M; Baker, Steven A; Ma, Lisa; Zehnder, James L; Luna-Fineman, Sandra; Link, Michael P; Merker, Jason D; Arber, Daniel A; Ohgami, Robert S

    2016-01-01

    Pediatric-type follicular lymphoma and pediatric marginal zone lymphoma are two of the rarest B-cell lymphomas. These lymphomas occur predominantly in the pediatric population and show features distinct from their more common counterparts in adults: adult-type follicular lymphoma and adult-type nodal marginal zone lymphoma. Here we report a detailed whole-exome deep sequencing analysis of a cohort of pediatric-type follicular lymphomas and pediatric marginal zone lymphomas. This analysis revealed a recurrent somatic variant encoding p.Lys66Arg in the transcription factor interferon regulatory factor 8 (IRF8) in 3 of 6 cases (50%) of pediatric-type follicular lymphoma. This specific point mutation was not detected in pediatric marginal zone lymphoma or in adult-type follicular lymphoma. Additional somatic point mutations in pediatric-type follicular lymphoma were observed in genes involved in transcription, intracellular signaling, and cell proliferation. In pediatric marginal zone lymphoma, no recurrent mutation was identified; however, somatic point mutations were observed in genes involved in cellular adhesion, cytokine regulatory elements, and cellular proliferation. A somatic variant in AMOTL1, a recurrently mutated gene in splenic marginal zone lymphoma, was also identified in a case of pediatric marginal zone lymphoma. The overall non-synonymous mutational burden was low in both pediatric-type follicular lymphoma and pediatric marginal zone lymphoma (4.6 mutations per exome). Altogether, these findings support a distinctive genetic basis for pediatric-type follicular lymphoma and pediatric marginal zone lymphoma when compared with adult subtypes and to one another. Moreover, identification of a recurrent point mutation in IRF8 provides insight into a potential driver mutation in the pathogenesis of pediatric-type follicular lymphoma with implications for novel diagnostic or therapeutic strategies. PMID:27338637

  5. A prognostic mutation panel for predicting cancer recurrence in stages II and III colorectal cancer.

    PubMed

    Sho, Shonan; Court, Colin M; Winograd, Paul; Russell, Marcia M; Tomlinson, James S

    2017-12-01

    Approximately 20-40% of stage II/III colorectal cancer (CRC) patients develop relapse. Clinicopathological factors alone are limited in detecting these patients, resulting in potential under/over-treatment. We sought to identify a prognostic tumor mutational profile that could predict CRC recurrence. Whole-exome sequencing data were obtained for 207 patients with stage II/III CRC from The Cancer Genome Atlas. Mutational landscape in relapse-free versus relapsed cohort was compared using Fisher's exact test, followed by multivariate Cox regression to identify genes associated with cancer recurrence. Bootstrap-validation was used to examine internal/external validity. We identified five prognostic genes (APAF1, DIAPH2, NTNG1, USP7, and VAV2), which were combined to form a prognostic mutation panel. Patients with ≥1 mutation(s) within this five-gene panel had worse prognosis (3-yr relapse-free survival [RFS]: 53.0%), compared to patients with no mutation (3-yr RFS: 84.3%). In multivariate analysis, the five-gene panel remained prognostic for cancer recurrence independent of stage and high-risk features (hazard ratio 3.63, 95%CI [1.93-6.83], P < 0.0001). Furthermore, its prognostic accuracy was superior to the American Joint Commission on Cancer classification (concordance-index: 0.70 vs 0.54). Our proposed mutation panel identifies CRC patients at high-risk for recurrence, which may help guide adjuvant therapy and post-operative surveillance protocols. © 2017 Wiley Periodicals, Inc.

  6. Identification of three novel mutations by studying the molecular genetics of Maple Syrup Urine Disease (MSUD) in the Lebanese population.

    PubMed

    Tabbouche, Omar; Saker, Amer; Mountain, Harry

    2014-01-01

    Maple Syrup Urine Disease (MSUD) is a genetically heterogeneous metabolic disorder that is transmitted in an autosomal recessive manner. According to clinical data, MSUD prevalence in Lebanon is expected to be higher than the International prevalence because of consanguineous marriage. Novel mutations are still getting detected by using DNA sequencing for mutation analysis in MSUD patients. In the current study, we have extracted DNA from Lebanese MSUD patients in order to amplify the exonic and flanking intronic regions of the genes implicated in MSUD ( BCKDHA , BCKDHB , and DBT ) and sequenced the resultant amplified products to assess the molecular genetics of MSUD in the Lebanese population studied. All of the mutations identified occurred in the homozygous state, which reflects the high rate of consanguineous marriage in Lebanon. In the current study, we have identified one previously cited mutation and three novel mutations not previously described in the scientific literature. The identified mutations were distributed as follows: three patients (60%) had two nucleotide substitutions in the DBT gene (c.224G>A and c.1430T>G), one patient (20%) had a gross deletion in the BCKDHA gene (c.488_1167+3del), and one patient (20%) had a small deletion in the BCKDHB gene (c.92_102del). The majority of the mutations identified in the Lebanese MSUD patients occurred in the DBT gene. Consanguineous marriage is a major risk factor for the prevalence of MSUD in Lebanon.

  7. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification.

    PubMed

    Rafaelsen, Silje Hjorth; Raeder, Helge; Fagerheim, Anne Kristine; Knappskog, Per; Carpenter, Thomas O; Johansson, Stefan; Bjerknes, Robert

    2013-06-01

    Fibroblast growth factor 23 (FGF23) plays a crucial role in renal phosphate regulation, exemplified by the causal role of PHEX and DMP1 mutations in X-linked hypophosphatemic rickets and autosomal recessive rickets type 1, respectively. Using whole exome sequencing we identified compound heterozygous mutations in family with sequence similarity 20, member C (FAM20C) in two siblings referred for hypophosphatemia and severe dental demineralization disease. FAM20C mutations were not found in other undiagnosed probands of a national Norwegian population of familial hypophosphatemia. Our results demonstrate that mutations in FAM20C provide a putative new mechanism in human subjects leading to dysregulated FGF23 levels, hypophosphatemia, hyperphosphaturia, dental anomalies, intracerebral calcifications and osteosclerosis of the long bones in the absence of rickets. Copyright © 2013 American Society for Bone and Mineral Research.

  8. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    PubMed

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  9. Recurrent PTPRB and PLCG1 mutations in angiosarcoma.

    PubMed

    Behjati, Sam; Tarpey, Patrick S; Sheldon, Helen; Martincorena, Inigo; Van Loo, Peter; Gundem, Gunes; Wedge, David C; Ramakrishna, Manasa; Cooke, Susanna L; Pillay, Nischalan; Vollan, Hans Kristian M; Papaemmanuil, Elli; Koss, Hans; Bunney, Tom D; Hardy, Claire; Joseph, Olivia R; Martin, Sancha; Mudie, Laura; Butler, Adam; Teague, Jon W; Patil, Meena; Steers, Graham; Cao, Yu; Gumbs, Curtis; Ingram, Davis; Lazar, Alexander J; Little, Latasha; Mahadeshwar, Harshad; Protopopov, Alexei; Al Sannaa, Ghadah A; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Zhang, Jianhua; Ravi, Vinod; Torres, Keila E; Khatri, Bhavisha; Halai, Dina; Roxanis, Ioannis; Baumhoer, Daniel; Tirabosco, Roberto; Amary, M Fernanda; Boshoff, Chris; McDermott, Ultan; Katan, Matilda; Stratton, Michael R; Futreal, P Andrew; Flanagan, Adrienne M; Harris, Adrian; Campbell, Peter J

    2014-04-01

    Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionizing radiation or chronic lymphoedema. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signaling genes, as a key driver of angiosarcoma. Here we employed whole-genome, whole-exome and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harbored predominantly truncating mutations in 10 of 39 tumors (26%). PLCG1, a signal transducer of tyrosine kinases, encoded a recurrent, likely activating p.Arg707Gln missense variant in 3 of 34 cases (9%). Overall, 15 of 39 tumors (38%) harbored at least one driver mutation in angiogenesis signaling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signaling in angiosarcoma.

  10. IFITM5 mutations and osteogenesis imperfecta.

    PubMed

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  11. [Mutation analysis of beta myosin heavy chain gene in hypertrophic cardiomyopathy families].

    PubMed

    Fan, Xin-ping; Yang, Zhong-wei; Feng, Xiu-li; Yang, Fu-hui; Xiao, Bai; Liang, Yan

    2011-08-01

    To detect the gene mutations of beta-myosin heavy chain gene (MYH7) in Chinese pedigrees with hypertrophic cardiomyopathy (HCM), and to analyze the correlation between the genotype and phenotype. Exons 3, 5, 7-9, 11-16 and 18-23 of the MYH7 gene were amplified with PCR in three Chinese pedigrees with HCM. The products were sequenced. Sequence alignment between the detected and the standard sequences was performed. A missense mutation of Thr441Met in exon 14 was identified in a pedigree, which was not detected in the controls. Several synonymous mutations of MYH7 gene were detected in the three pedigrees. The mutation of Thr441Met, located in the actin binding domain of the globular head, was first identified in Chinese. It probably caused HCM. HCM is a heterogeneous disease. Many factors are involved in the process of its occurrence and development.

  12. Prognostic value of plasma EGFR ctDNA in NSCLC patients treated with EGFR-TKIs.

    PubMed

    Zhang, Chengjuan; Wei, Bing; Li, Peng; Yang, Ke; Wang, Zhizhong; Ma, Jie; Guo, Yongjun

    2017-01-01

    Epidermal growth factor receptor (EGFR) specific mutations have been known to improve survival of patients with non-small-cell lung carcinoma (NSCLC). However, whether there are any changes of EGFR mutations after targeted therapy and its clinical significance is unclear. This study was to identify the status of EGFR mutations after targeted therapy and predict the prognostic significance for NSCLC patients. A total of forty-five (45) NSCLC patients who received EGFR-TKI therapy were enrolled. We identified the changes of EGFR mutations in plasma ctDNA by Amplification Refractory Mutation System (ARMS) PCR technology. In the 45 cases of NSCLC with EGFR mutations, the EGFR mutation status changed in 26 cases, in which, 12 cases (26.7%) from positive to negative, and 14 cases (31.1%) from T790M mutation negative to positive after TKI targeted therapy. The T790M occurance group had a shorter Progression -Free-Survival (PFS) than the groups of EGFR mutation undetected and EGFR mutation turned out to have no change after EGFR-TKI therapy (p < 0.05). According to this study, it's necessary to closely monitor EGFR mutations during follow-up to predict the prognosis of NSCLC patients who are to receive the TKI targeted therapy.

  13. CFTR and/or pancreatitis susceptibility genes mutations as risk factors of pancreatitis in cystic fibrosis patients?

    PubMed

    Gaitch, Natacha; Hubert, Dominique; Gameiro, Christine; Burgel, Pierre-Régis; Houriez, Florence; Martinez, Brigitte; Honoré, Isabelle; Chapron, Jeanne; Kanaan, Reem; Dusser, Daniel; Girodon, Emmanuelle; Bienvenu, Thierry

    2016-01-01

    Currently, factors that promote the occurrence of pancreatitis episodes in patients affected with cystic fibrosis (CF) and pancreatic sufficiency (PS) are largely unknown. Six genes involved in pancreatitis or in ion transport into the pancreatic duct were investigated by next generation sequencing in 59 adult CF-PS patients with two identified CF mutations. Data on predisposing environmental factors were also recorded. 19 experienced at least one episode of acute pancreatitis (AP) (AP+) and 40 patients did not (AP-). No influence of environmental factor was evidenced. No specific CFTR genotype was found predictive of pancreatitis. Patients sharing the same CFTR genotype may or may not experience AP episodes. Frequent and rare missense variants were found in 78.9% patients in group AP+ and 67.5% in group AP- but a few of them were pathogenic. AP or recurrent AP (RAP) is a frequent complication in our series of adult CF-PS patients. The majority of mild CFTR mutations found in group AP+ were located in the first transmembrane region. No clear other genetic factor could be found predictive of AP/RAP. Further experiments in large homogenous cohorts of CF-PS patients, including whole genome sequencing, may identify genetic predisposing factors to pancreatitis. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  14. Mechanisms of mutations in myeloproliferative neoplasms.

    PubMed

    Levine, Ross L

    2009-12-01

    In recent years, a series of studies have provided genetic insight into the pathogenesis of myeloproliferative neoplasms (MPNs). It is now known that JAK2V617F mutations are present in 90% of patients with polycythaemia vera (PV), 60% of patients with essential thrombocytosis (ET) and 50% of patients with myelofibrosis (MF). Despite the high prevalence of JAK2V617F mutations in these three myeloid malignancies, several questions remain. For example, how does one mutation contribute to the pathogenesis of three clinically distinct diseases, and how do some patients develop these diseases in the absence of a JAK2V617F mutation? Single nucleotide polymorphisms at various loci and somatic mutations, such as those in MPLW515L/K, TET2 and in exon 12 of JAK2, may also contribute to the pathogenesis of these MPNs. There are likely additional germline and somatic genetic factors important to the MPN phenotype. Additional studies of large MPN and control cohorts with new techniques will help identify these factors.

  15. Bleeding complications in BCR-ABL negative myeloproliferative neoplasms: prevalence, type, and risk factors in a single-center cohort.

    PubMed

    Kander, Elizabeth M; Raza, Sania; Zhou, Zheng; Gao, Juehua; Zakarija, Anaadriana; McMahon, Brandon J; Stein, Brady L

    2015-11-01

    The BCR-ABL1-negative myeloproliferative neoplasms (MPN) share an increased risk of thrombotic and hemorrhagic complications. Risk factors for hemorrhage are less well defined than those for thrombosis. Because patients with CALR mutations have higher platelet counts compared to JAK2 V617F-mutated patients, bleeding rates may be increased in this group. Our aim was to retrospectively evaluate whether acquired von Willebrand disease (AvWD), thrombocytosis, mutational status, or treatment history are associated with bleeding in a cohort of MPN patients. Using an electronic database, MPN patients seen between 2005 and 2013 were retrospectively identified using ICD-9 codes and billing records. A bleeding event was defined as one that was identified in the medical record and graded based on the Common Terminology Criteria for Adverse Event (CTCAE) version 4.0. Among 351 MPN patients, 15.6 % experienced 64 bleeding event types. There was no association of bleeding with mutational status, gender, MPN subtype, aspirin use, prior thrombosis, or platelet count at presentation. There was an association between bleeding and older age at diagnosis. aVWD was identified in six patients. In this single-center retrospective study, bleeding events were identified in 15 % of patients, and associated with older age at diagnosis. aVWD was rarely tested for in this cohort.

  16. Variant-specific quantification of factor H in plasma reveals null alleles associated with atypical hemolytic uremic syndrome

    PubMed Central

    Hakobyan, Svetlana; Tortajada, Agustín; Harris, Claire L.; de Córdoba, Santiago Rodríguez; Morgan, B. Paul

    2011-01-01

    Atypical hemolytic uremic syndrome (aHUS) associates with complement alternative pathway defects in over 50% of cases. Mutations in factor H (fH) are most common, usually point mutations affecting complement surface regulation and sometimes null mutations in heterozygosity. The latter are difficult to identify; although consistently low plasma fH concentration is suggestive, definitive proof has required the demonstration that the mutant sequence does not express in vitro. Here, novel reagents and assays that distinguish and individually quantify the common fH-Y402H polymorphic variants were used to identify alleles of the CFH gene resulting in low or no (‘null’) expression of full-length fH, but normal or increased expression of the alternative splice product FHL-1, also detected in these assays. Their use in an aHUS cohort identified three Y402H heterozygotes with low or absent fH-H402 but normal or increased FHL-1 levels. Novel mutations in heterozygosis explained the null phenotype in two cases, confirmed by family studies in one. In the third case, family studies showed that a known mutation was present on the Y allele; the cause of the reduced expression of H allele was not found, although data suggested altered fH/FHL-1 splicing. In each family, inheritance of “low expression” or “null” alleles for fH strongly associated with aHUS. These assays provide a rapid means to identify fH expression defects in aHUS without resorting to gene sequencing or expression analysis. PMID:20703214

  17. Novel candidate genes may be possible predisposing factors revealed by whole exome sequencing in familial esophageal squamous cell carcinoma.

    PubMed

    Forouzanfar, Narjes; Baranova, Ancha; Milanizadeh, Saman; Heravi-Moussavi, Alireza; Jebelli, Amir; Abbaszadegan, Mohammad Reza

    2017-05-01

    Esophageal squamous cell carcinoma is one of the deadliest of all the cancers. Its metastatic properties portend poor prognosis and high rate of recurrence. A more advanced method to identify new molecular biomarkers predicting disease prognosis can be whole exome sequencing. Here, we report the most effective genetic variants of the Notch signaling pathway in esophageal squamous cell carcinoma susceptibility by whole exome sequencing. We analyzed nine probands in unrelated familial esophageal squamous cell carcinoma pedigrees to identify candidate genes. Genomic DNA was extracted and whole exome sequencing performed to generate information about genetic variants in the coding regions. Bioinformatics software applications were utilized to exploit statistical algorithms to demonstrate protein structure and variants conservation. Polymorphic regions were excluded by false-positive investigations. Gene-gene interactions were analyzed for Notch signaling pathway candidates. We identified novel and damaging variants of the Notch signaling pathway through extensive pathway-oriented filtering and functional predictions, which led to the study of 27 candidate novel mutations in all nine patients. Detection of the trinucleotide repeat containing 6B gene mutation (a slice site alteration) in five of the nine probands, but not in any of the healthy samples, suggested that it may be a susceptibility factor for familial esophageal squamous cell carcinoma. Noticeably, 8 of 27 novel candidate gene mutations (e.g. epidermal growth factor, signal transducer and activator of transcription 3, MET) act in a cascade leading to cell survival and proliferation. Our results suggest that the trinucleotide repeat containing 6B mutation may be a candidate predisposing gene in esophageal squamous cell carcinoma. In addition, some of the Notch signaling pathway genetic mutations may act as key contributors to esophageal squamous cell carcinoma.

  18. False-negative BRAF V600E mutation results on fine-needle aspiration cytology of papillary thyroid carcinoma.

    PubMed

    Paek, Se Hyun; Kim, Byung Seup; Kang, Kyung Ho; Kim, Hee Sung

    2017-11-13

    The BRAF V600E mutation is highly specific for papillary thyroid carcinoma (PTC). A test for this mutation can increase the diagnostic accuracy of fine-needle aspiration cytology (FNAC), but a considerably high false-negative rate for the BRAF V600E mutation on FNAC has been reported. In this study, we investigated the risk factors associated with false-negative BRAF V600E mutation results on FNAC. BRAF V600E mutation results of 221 PTC nodules between December 2011 and June 2013 were retrospectively reviewed. BRAF V600E mutation results on both preoperative FNAC and postoperative formalin-fixed, paraffin-embedded (FFPE) samples were compared. We investigated the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of BRAF V600E mutation results on FNAC. And, we identified the risk factors associated with false-negative results. Of 221 PTC nodules, 150 (67.9%) on FNAC and 185 (83.7%) on FFPE samples were BRAF V600E mutation positive. The sensitivity, specificity, PPV, and NPV for BRAF V600E mutation testing with FNAC were 80.5, 97.2, 99.3, and 49.3%, respectively. Thirty-six (16.3%) BRAF V600E mutation-negative nodules on FNAC were mutation positive on FFPE sample analysis. Risk factors for these false-negative results were age, indeterminate FNAC results (nondiagnostic, atypia of undetermined significance (AUS), and findings suspicious for PTC), and PTC subtype. False-negative rate of BRAF mutation testing with FNAC for thyroid nodules is increased in cases of old age, indeterminate FNAC pathology results, and certain PTC subtypes. Therapeutic surgery can be considered for these cases. A well-designed prospective study with informed consent of patients will be essential for more informative results.

  19. Utility of genetic testing for the detection of late-onset hearing loss in neonates.

    PubMed

    Lim, B Gail; Clark, Reese H; Kelleher, Amy S; Lin, Zhili; Spitzer, Alan R

    2013-12-01

    The purpose of this study was to demonstrate the utility of molecular testing in the detection of potentially important causes of delayed hearing loss missed by current audiometric screening at birth. We enrolled infants who had received a newborn audiometric hearing screen and a filter paper blood collection for state newborn screening. A central laboratory ran the SoundGene® panel. Of 3,681 infants studied, 35 (0.95%) had a positive SoundGene panel, 16 had mitochondrial mutations, 9 had Pendred mutations, 5 were cytomegalovirus (CMV) DNA positive, 2 had connexin mutations, and 3 had a combination of different mutations. Infants with an abnormal SoundGene panel were at increased risk for hearing loss compared to neonates without mutations. Three (8.6%) of the 35 subjects had persistent hearing loss compared to 5 (0.21%) of 2,398 subjects with no report of mutation (p < .01). Of 3,681 infants studied, 8 (0.22%) had persistent hearing loss: 5 (62.5%) had abnormal newborn audiometric screens, 2 (25%) had an abnormal SoundGene panel (1 was CMV positive, 1 had a mitochondrial mutation), and 1 (12.5%) had no identifiable risk factors. A positive SoundGene panel identifies infants who are not identified by audiometric testing and may be at risk for hearing loss.

  20. Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene.

    PubMed

    Martín, Miguel A; Blázquez, Alberto; Gutierrez-Solana, Luis G; Fernández-Moreira, Daniel; Briones, Paz; Andreu, Antoni L; Garesse, Rafael; Campos, Yolanda; Arenas, Joaquín

    2005-04-01

    Mutations in the nuclear-encoded subunits of complex I of the mitochondrial respiratory chain are a recognized cause of Leigh syndrome (LS). Recently, 6 mutations in the NDUFS1 gene were identified in 3 families. To describe a Spanish family with LS, complex I deficiency in muscle, and a novel mutation in the NDUFS1 gene. Using molecular genetic approaches, we identified the underlying molecular defect in a patient with LS with a complex I defect. The proband was a child who displayed the clinical features of LS. Muscle biochemistry results showed a complex I defect of the mitochondrial respiratory chain. Sequencing analysis of the mitochondrial DNA-encoded ND genes, the nuclear DNA-encoded NDUFV1, NDUFS1, NDUFS2, NDUFS4, NDUFS6, NDUFS7, NDUFS8, and NDUFAB1 genes, and the complex I assembly factor CIA30 gene revealed a novel homozygous L231V mutation (c.691C-->G) in the NDUFS1 gene. The parents were heterozygous carriers of the L231V mutation. Identifying nuclear mutations as a cause of respiratory chain disorders will enhance the possibility of prenatal diagnosis and help us understand how molecular defects can lead to complex I deficiency.

  1. Genetic and Phenotypic Heterogeneity in Chinese Patients with Waardenburg Syndrome Type II

    PubMed Central

    Yang, Shuzhi; Dai, Pu; Liu, Xin; Kang, Dongyang; Zhang, Xin; Yang, Weiyan; Zhou, Chengyong; Yang, Shiming; Yuan, Huijun

    2013-01-01

    Waardenburg Syndrome (WS) is an autosomal-dominant disorder characterized by sensorineural hearing loss and pigmentary abnormalities of the eyes, hair, and skin. Microphthalmia-associated transcription factor (MITF) gene mutations account for about 15% of WS type II (WS2) cases. To date, fewer than 40 different MITF gene mutations have been identified in human WS2 patients, and few of these were of Chinese descent. In this study, we report clinical findings and mutation identification in the MITF gene of 20 Chinese WS2 patients from 14 families. A high level of clinical variability was identified. Sensorineural hearing loss (17/20, 85.0%) and heterochromia iridum (20/20, 100.0%) were the most commonly observed clinical features in Chinese WS2 patients. Five affected individuals (5/20, 25.0%) had numerous brown freckles on the face, trunk, and limb extremities. Mutation screening of the MITF gene identified five mutations: c.20A>G, c.332C>T, c.647_649delGAA, c.649A>G, and c.763C>T. The total mutational frequency of the MITF gene was 21.4% (3/14), which is significantly higher than the 15.0% observed in the fair-skinned WS2 population. Our results indicate that MITF mutations are relatively common among Chinese WS2 patients. PMID:24194866

  2. Genetic and phenotypic heterogeneity in Chinese patients with Waardenburg syndrome type II.

    PubMed

    Yang, Shuzhi; Dai, Pu; Liu, Xin; Kang, Dongyang; Zhang, Xin; Yang, Weiyan; Zhou, Chengyong; Yang, Shiming; Yuan, Huijun

    2013-01-01

    Waardenburg Syndrome (WS) is an autosomal-dominant disorder characterized by sensorineural hearing loss and pigmentary abnormalities of the eyes, hair, and skin. Microphthalmia-associated transcription factor (MITF) gene mutations account for about 15% of WS type II (WS2) cases. To date, fewer than 40 different MITF gene mutations have been identified in human WS2 patients, and few of these were of Chinese descent. In this study, we report clinical findings and mutation identification in the MITF gene of 20 Chinese WS2 patients from 14 families. A high level of clinical variability was identified. Sensorineural hearing loss (17/20, 85.0%) and heterochromia iridum (20/20, 100.0%) were the most commonly observed clinical features in Chinese WS2 patients. Five affected individuals (5/20, 25.0%) had numerous brown freckles on the face, trunk, and limb extremities. Mutation screening of the MITF gene identified five mutations: c.20A>G, c.332C>T, c.647_649delGAA, c.649A>G, and c.763C>T. The total mutational frequency of the MITF gene was 21.4% (3/14), which is significantly higher than the 15.0% observed in the fair-skinned WS2 population. Our results indicate that MITF mutations are relatively common among Chinese WS2 patients.

  3. Deep Sequencing-guided Design of a High Affinity Dual Specificity Antibody to Target Two Angiogenic Factors in Neovascular Age-related Macular Degeneration.

    PubMed

    Koenig, Patrick; Lee, Chingwei V; Sanowar, Sarah; Wu, Ping; Stinson, Jeremy; Harris, Seth F; Fuh, Germaine

    2015-09-04

    The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome.

    PubMed

    Boileau, Catherine; Guo, Dong-Chuan; Hanna, Nadine; Regalado, Ellen S; Detaint, Delphine; Gong, Limin; Varret, Mathilde; Prakash, Siddharth K; Li, Alexander H; d'Indy, Hyacintha; Braverman, Alan C; Grandchamp, Bernard; Kwartler, Callie S; Gouya, Laurent; Santos-Cortez, Regie Lyn P; Abifadel, Marianne; Leal, Suzanne M; Muti, Christine; Shendure, Jay; Gross, Marie-Sylvie; Rieder, Mark J; Vahanian, Alec; Nickerson, Deborah A; Michel, Jean Baptiste; Jondeau, Guillaume; Milewicz, Dianna M

    2012-07-08

    A predisposition for thoracic aortic aneurysms leading to acute aortic dissections can be inherited in families in an autosomal dominant manner. Genome-wide linkage analysis of two large unrelated families with thoracic aortic disease followed by whole-exome sequencing of affected relatives identified causative mutations in TGFB2. These mutations-a frameshift mutation in exon 6 and a nonsense mutation in exon 4-segregated with disease with a combined logarithm of odds (LOD) score of 7.7. Sanger sequencing of 276 probands from families with inherited thoracic aortic disease identified 2 additional TGFB2 mutations. TGFB2 encodes transforming growth factor (TGF)-β2, and the mutations are predicted to cause haploinsufficiency for TGFB2; however, aortic tissue from cases paradoxically shows increased TGF-β2 expression and immunostaining. Thus, haploinsufficiency for TGFB2 predisposes to thoracic aortic disease, suggesting that the initial pathway driving disease is decreased cellular TGF-β2 levels leading to a secondary increase in TGF-β2 production in the diseased aorta.

  5. Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man.

    PubMed

    Flanagan, Sarah E; De Franco, Elisa; Lango Allen, Hana; Zerah, Michele; Abdul-Rasoul, Majedah M; Edge, Julie A; Stewart, Helen; Alamiri, Elham; Hussain, Khalid; Wallis, Sam; de Vries, Liat; Rubio-Cabezas, Oscar; Houghton, Jayne A L; Edghill, Emma L; Patch, Ann-Marie; Ellard, Sian; Hattersley, Andrew T

    2014-01-07

    Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. PPARγ2Pro12Ala Polymorphism and Human Health

    PubMed Central

    He, Weimin

    2009-01-01

    The nuclear hormone receptor peroxisome proliferator activated receptor gamma (PPARγ) is an important transcription factor regulating adipocyte differentiation, lipid and glucose homeostasis, and insulin sensitivity. Numerous genetic mutations of PPARγ have been identified and these mutations positively or negatively regulate insulin sensitivity. Among these, a relatively common polymorphism of PPARγ, Pro12Ala of PPARγ2, the isoform expressed only in adipose tissue has been shown to be associated with lower body mass index, enhanced insulin sensitivity, and resistance to the risk of type 2 diabetes in human subjects carrying this mutation. Subsequent studies in different ethnic populations, however, have revealed conflicting results, suggesting a complex interaction between the PPARγ2 Pro12Ala polymorphism and environmental factors such as the ratio of dietary unsaturated fatty acids to saturated fatty acids and/or between the PPARγ2 Pro12Ala polymorphism and genetic factors such as polymorphic mutations in other genes. In addition, this polymorphic mutation in PPARγ2 is associated with other aspects of human diseases, including cancers, polycystic ovary syndrome, Alzheimer disease and aging. This review will highlight findings from recent studies. PMID:19390629

  7. Mutations in the glucocerebrosidase gene are common in patients with Parkinson's disease from Eastern Canada.

    PubMed

    Han, Fabin; Grimes, David A; Li, Fang; Wang, Ting; Yu, Zhe; Song, Na; Wu, Shichao; Racacho, Lemuel; Bulman, Dennis E

    2016-01-01

    Mutations in the β-glucocerebrosidase gene (GBA) have been implicated as a risk factor for Parkinson's disease (PD). However, GBA mutations in PD patients of different ethnic origins were reported to be inconsistent. We sequenced all exons of the GBA gene in 225 PD patients and 110 control individuals from Eastern Canada. Two novel GBA variants of c.-119 A/G and S(-35)N, five known GBA mutations of R120W, N370S, L444P, RecNciI and RecTL mutation (del55/D409H/RecNciI) as well as two non-pathological variants of E326K and T369M were identified from PD patients while only one mutation of S13L and two non-pathological variants of E326K and T369M were found in the control individuals. The frequency of GBA mutations within PD patients (4.4%) is 4.8 times higher than the 0.91% observed in control individuals (X(2) = 2.91, p = 0.088; odds ratio = 4.835; 95% confidence interval = 2.524-9.123). The most common mutations of N370S and L444P accounted for 36.0% (9/25) of all the GBA mutations in this Eastern Canadian PD cohort. The frequency (6.67%) of E326K and T369M in PD patients is comparable to 7.27% in control individuals (X(2) = 0.042, p = 0.8376), further supporting that these two variants have no pathological effects on PD. Phenotype analysis showed that no significant difference in family history, age at onset and cognitive impairment was identified between the GBA mutation carriers and non-GBA mutation carriers. GBA mutations were found to be a common genetic risk factor for PD in Eastern Canadian patients.

  8. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse.

    PubMed

    Guan, Yuting; Ma, Yanlin; Li, Qi; Sun, Zhenliang; Ma, Lie; Wu, Lijuan; Wang, Liren; Zeng, Li; Shao, Yanjiao; Chen, Yuting; Ma, Ning; Lu, Wenqing; Hu, Kewen; Han, Honghui; Yu, Yanhong; Huang, Yuanhua; Liu, Mingyao; Li, Dali

    2016-05-01

    The X-linked genetic bleeding disorder caused by deficiency of coagulator factor IX, hemophilia B, is a disease ideally suited for gene therapy with genome editing technology. Here, we identify a family with hemophilia B carrying a novel mutation, Y371D, in the human F9 gene. The CRISPR/Cas9 system was used to generate distinct genetically modified mouse models and confirmed that the novel Y371D mutation resulted in a more severe hemophilia B phenotype than the previously identified Y371S mutation. To develop therapeutic strategies targeting this mutation, we subsequently compared naked DNA constructs versus adenoviral vectors to deliver Cas9 components targeting the F9 Y371D mutation in adult mice. After treatment, hemophilia B mice receiving naked DNA constructs exhibited correction of over 0.56% of F9 alleles in hepatocytes, which was sufficient to restore hemostasis. In contrast, the adenoviral delivery system resulted in a higher corrective efficiency but no therapeutic effects due to severe hepatic toxicity. Our studies suggest that CRISPR/Cas-mediated in situ genome editing could be a feasible therapeutic strategy for human hereditary diseases, although an efficient and clinically relevant delivery system is required for further clinical studies. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  9. A pilot study identifying a potential plasma biomarker for determining EGFR mutations in exons 19 or 21 in lung cancer patients

    PubMed Central

    Pamungkas, Aryo D.; Medriano, Carl A.; Sim, Eunjung; Lee, Sungyong; Park, Youngja H.

    2017-01-01

    The most common type of lung cancer is non-small cell lung cancer (NSCLC), which is frequently characterized by a mutation in the epidermal growth factor receptor (EGFR). Determining the presence of an EGFR mutation in lung cancer is important, as it determines the type of treatment that a patients will receive. Therefore, the aim of the present study was to apply high-resolution metabolomics (HRM) using liquid chromatography-mass spectrometry to identify significant compounds in human plasma samples obtained from South Korean NSCLC patients, as potential biomarkers for providing early detection and diagnosis of minimally-invasive NSCLC. The metabolic differences between lung cancer patients without EGFR mutations were compared with patients harboring EGFR mutations. Univariate analysis was performed, with a false discovery rate of q=0.05, in order to identify significant metabolites between the two groups. In addition, hierarchical clustering analysis was performed to discriminate between the metabolic profiles of the two groups. Furthermore, the significant metabolites were identified and mapped using Mummichog software, in order to generate a potential metabolic network model. Using metabolome-wide association studies, metabolic alterations were identified. Linoleic acid [303.23 m/z, (M+Na)+], 5-methyl tetrahydrofolate [231.10 m/z, (M+2H)+] and N-succinyl-L-glutamate-5 semialdehyde [254.06 m/z, (M+Na)+], were observed to be elevated in patients harboring EGFR mutations, whereas tetradecanoyl carnitine [394.29 m/z, (M+Na)+] was observed to be reduced. This suggests that these compounds may be affected by the EGFR mutation. In conclusion, the present study identified four potential biomarkers in patients with EGFR mutations, using HRM combined with pathway analysis. These results may facilitate the development of novel diagnostic tools for EGFR mutation detection in patients with lung cancer. PMID:28487968

  10. Checkpoint Kinase 2 (CHEK2) Mutation in Renal Cell Carcinoma: A Single-Center Experience

    PubMed Central

    Huszno, Joanna; Kołosza, Zofia

    2018-01-01

    Renal cell carcinoma (RCC) occurs in sporadic and heritable forms. Genetic mutations have been identified as risk factors in 1–2% of RCC. The aim of this study was to evaluate I157T and CHEK2*1100delC mutations of checkpoint kinase 2 (CHEK2) gene in RCC. Medical records of 40 clear cell RCC patients who had genetic tests and consultation at the Genetic Outpatient Clinic, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland, were reviewed retrospectively. Mutation profile was assessed by ASA-PCR and RFLP-PCR techniques. Only three female patients had CHEK2 mutation (I157T). No CHEK2*1100delC was observed in any of the patients. These tumors were N0, and two were Grade 3. One showed capsular infiltration. No blood vessel infiltration or metastases was observed. Overall, RCC from patients with CHEK2 mutation did not display any special characteristics when compared with those without the mutation. While no association between CHEK2 mutation and RCC could be established, all three patients with CHEK2 mutation developed second neoplasms many years after first diagnosis. Further studies, especially regarding CHEK2 mutation as a predictive factor for second neoplasm in RCC patients, are warranted. PMID:29682443

  11. Checkpoint Kinase 2 (CHEK2) Mutation in Renal Cell Carcinoma: A Single-Center Experience.

    PubMed

    Huszno, Joanna; Kołosza, Zofia

    2018-01-01

    Renal cell carcinoma (RCC) occurs in sporadic and heritable forms. Genetic mutations have been identified as risk factors in 1-2% of RCC. The aim of this study was to evaluate I157T and CHEK2*1100delC mutations of checkpoint kinase 2 (CHEK2) gene in RCC. Medical records of 40 clear cell RCC patients who had genetic tests and consultation at the Genetic Outpatient Clinic, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland, were reviewed retrospectively. Mutation profile was assessed by ASA-PCR and RFLP-PCR techniques. Only three female patients had CHEK2 mutation (I157T). No CHEK2*1100delC was observed in any of the patients. These tumors were N0, and two were Grade 3. One showed capsular infiltration. No blood vessel infiltration or metastases was observed. Overall, RCC from patients with CHEK2 mutation did not display any special characteristics when compared with those without the mutation. While no association between CHEK2 mutation and RCC could be established, all three patients with CHEK2 mutation developed second neoplasms many years after first diagnosis. Further studies, especially regarding CHEK2 mutation as a predictive factor for second neoplasm in RCC patients, are warranted.

  12. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation

    PubMed Central

    Yoshizato, Tetsuichi; Nannya, Yasuhito; Atsuta, Yoshiko; Shiozawa, Yusuke; Iijima-Yamashita, Yuka; Yoshida, Kenichi; Shiraishi, Yuichi; Suzuki, Hiromichi; Nagata, Yasunobu; Sato, Yusuke; Kakiuchi, Nobuyuki; Matsuo, Keitaro; Onizuka, Makoto; Kataoka, Keisuke; Chiba, Kenichi; Tanaka, Hiroko; Ueno, Hiroo; Nakagawa, Masahiro M.; Przychodzen, Bartlomiej; Haferlach, Claudia; Kern, Wolfgang; Aoki, Kosuke; Itonaga, Hidehiro; Kanda, Yoshinobu; Sekeres, Mikkael A.; Maciejewski, Jaroslaw P.; Haferlach, Torsten; Miyazaki, Yasushi; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Makishima, Hideki

    2017-01-01

    Genetic alterations, including mutations and copy-number alterations, are central to the pathogenesis of myelodysplastic syndromes and related diseases (myelodysplasia), but their roles in allogeneic stem cell transplantation have not fully been studied in a large cohort of patients. We enrolled 797 patients who had been diagnosed with myelodysplasia at initial presentation and received transplantation via the Japan Marrow Donor Program. Targeted-capture sequencing was performed to identify mutations in 69 genes, together with copy-number alterations, whose effects on transplantation outcomes were investigated. We identified 1776 mutations and 927 abnormal copy segments among 617 patients (77.4%). In multivariate modeling using Cox proportional-hazards regression, genetic factors explained 30% of the total hazards for overall survival; clinical characteristics accounted for 70% of risk. TP53 and RAS-pathway mutations, together with complex karyotype (CK) as detected by conventional cytogenetics and/or sequencing-based analysis, negatively affected posttransplant survival independently of clinical factors. Regardless of disease subtype, TP53-mutated patients with CK were characterized by unique genetic features and associated with an extremely poor survival with frequent early relapse, whereas outcomes were substantially better in TP53-mutated patients without CK. By contrast, the effects of RAS-pathway mutations depended on disease subtype and were confined to myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). Our results suggest that TP53 and RAS-pathway mutations predicted a dismal prognosis, when associated with CK and MDS/MPNs, respectively. However, for patients with mutated TP53 or CK alone, long-term survival could be obtained with transplantation. Clinical sequencing provides vital information for accurate prognostication in transplantation. PMID:28223278

  13. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation.

    PubMed

    Yoshizato, Tetsuichi; Nannya, Yasuhito; Atsuta, Yoshiko; Shiozawa, Yusuke; Iijima-Yamashita, Yuka; Yoshida, Kenichi; Shiraishi, Yuichi; Suzuki, Hiromichi; Nagata, Yasunobu; Sato, Yusuke; Kakiuchi, Nobuyuki; Matsuo, Keitaro; Onizuka, Makoto; Kataoka, Keisuke; Chiba, Kenichi; Tanaka, Hiroko; Ueno, Hiroo; Nakagawa, Masahiro M; Przychodzen, Bartlomiej; Haferlach, Claudia; Kern, Wolfgang; Aoki, Kosuke; Itonaga, Hidehiro; Kanda, Yoshinobu; Sekeres, Mikkael A; Maciejewski, Jaroslaw P; Haferlach, Torsten; Miyazaki, Yasushi; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Makishima, Hideki; Ogawa, Seishi

    2017-04-27

    Genetic alterations, including mutations and copy-number alterations, are central to the pathogenesis of myelodysplastic syndromes and related diseases (myelodysplasia), but their roles in allogeneic stem cell transplantation have not fully been studied in a large cohort of patients. We enrolled 797 patients who had been diagnosed with myelodysplasia at initial presentation and received transplantation via the Japan Marrow Donor Program. Targeted-capture sequencing was performed to identify mutations in 69 genes, together with copy-number alterations, whose effects on transplantation outcomes were investigated. We identified 1776 mutations and 927 abnormal copy segments among 617 patients (77.4%). In multivariate modeling using Cox proportional-hazards regression, genetic factors explained 30% of the total hazards for overall survival; clinical characteristics accounted for 70% of risk. TP53 and RAS-pathway mutations, together with complex karyotype (CK) as detected by conventional cytogenetics and/or sequencing-based analysis, negatively affected posttransplant survival independently of clinical factors. Regardless of disease subtype, TP53 -mutated patients with CK were characterized by unique genetic features and associated with an extremely poor survival with frequent early relapse, whereas outcomes were substantially better in TP53 -mutated patients without CK. By contrast, the effects of RAS-pathway mutations depended on disease subtype and were confined to myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). Our results suggest that TP53 and RAS-pathway mutations predicted a dismal prognosis, when associated with CK and MDS/MPNs, respectively. However, for patients with mutated TP53 or CK alone, long-term survival could be obtained with transplantation. Clinical sequencing provides vital information for accurate prognostication in transplantation. © 2017 by The American Society of Hematology.

  14. Identification and characterisation of mutations associated with von Willebrand disease in a Turkish patient cohort

    PubMed Central

    Hampshire, Daniel J.; Abuzenadah, Adel M.; Cartwright, Ashley; Al-Shammari, Nawal S.; Coyle, Rachael E.; Eckert, Michaela; Al-Buhairan, Ahlam M.; Messenger, Sarah L.; Budde, Ulrich; Gürsel, Türkiz; Ingerslev, Jørgen; Peake, Ian R.; Goodeve, Anne C.

    2014-01-01

    Summary Several cohort studies have investigated the molecular basis of von Willebrand disease (VWD); however these have mostly focused on European and North American populations. This study aimed to investigate mutation spectrum in 26 index cases (IC) from Turkey diagnosed with all three VWD types, the majority (73%) with parents who were knowingly related. IC were screened for mutations using multiplex ligation-dependent probe amplification and analysis of all von Willebrand factor gene (VWF) exons and exon/intron boundaries. Selected missense mutations were expressed in vitro. Candidate VWF mutations were identified in 25 of 26 IC and included propeptide missense mutations in four IC (two resulting in type 1 and two in recessive 2A), all influencing VWF expression in vitro. Four missense mutations, a nonsense mutation and a small in-frame insertion resulting in type 2A were also identified. Of 15 type 3 VWD IC, 13 were homozygous and two compound heterozygous for 14 candidate mutations predicted to result in lack of expression and two propeptide missense changes. Identification of intronic breakpoints of an exon 17–18 deletion suggested that the mutation resulted from non-homologous end joining. This study provides further insight into the pathogenesis of VWD in a population with a high degree of consanguineous partnerships. PMID:23702511

  15. Environmental risk factors for autism: do they help cause de novo genetic mutations that contribute to the disorder?

    PubMed

    Kinney, Dennis K; Barch, Daniel H; Chayka, Bogdan; Napoleon, Siena; Munir, Kerim M

    2010-01-01

    Recent research has discovered that a number of genetic risk factors for autism are de novo mutations. Advanced parental age at the time of conception is associated with increased risk for both autism and de novo mutations. We investigated the hypothesis that other environmental factors associated with increased risk for autism might also be mutagenic and contribute to autism by causing de novo mutations. A survey of the research literature identified 9 environmental factors for which increased pre-conceptual exposure appears to be associated with increased risk for autism. Five of these factors--mercury, cadmium, nickel, trichloroethylene, and vinyl chloride--are established mutagens. Another four--including residence in regions that are urbanized, located at higher latitudes, or experience high levels of precipitation--are associated with decreased sun exposure and increased risk for vitamin D deficiency. Vitamin D plays important roles in repairing DNA damage and protecting against oxidative stress--a key cause of DNA damage. Factors associated with vitamin D deficiency will thus contribute to higher mutation rates and impaired repair of DNA. We note how de novo mutations may also help explain why the concordance rate for autism is so markedly higher in monozygotic than dizygotic twins. De novo mutations may also explain in part why the prevalence of autism is so remarkably high, given the evidence for a strong role of genetic factors and the low fertility of individuals with autism--and resultant selection pressure against autism susceptibility genes. These several lines of evidence provide support for the hypothesis, and warrant new research approaches--which we suggest--to address limitations in existing studies. The hypothesis has implications for understanding possible etiologic roles of de novo mutations in autism, and it suggests possible approaches to primary prevention of the disorder, such as addressing widespread vitamin D deficiency and exposure to known mutagens.

  16. EIF2AK4 Mutations in Patients Diagnosed With Pulmonary Arterial Hypertension.

    PubMed

    Best, D Hunter; Sumner, Kelli L; Smith, Benjamin P; Damjanovich-Colmenares, Kristy; Nakayama, Ikue; Brown, Lynette M; Ha, Youna; Paul, Eleri; Morris, Ashley; Jama, Mohamed A; Dodson, Mark W; Bayrak-Toydemir, Pinar; Elliott, C Gregory

    2017-04-01

    Differentiating pulmonary venoocclusive disease (PVOD) and pulmonary capillary hemangiomatosis (PCH) from idiopathic pulmonary arterial hypertension (IPAH) or heritable pulmonary arterial hypertension (HPAH) is important clinically. Mutations in eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) cause heritable PVOD and PCH, whereas mutations in other genes cause HPAH. The aim of this study was to describe the frequency of pathogenic EIF2AK4 mutations in patients diagnosed clinically with IPAH or HPAH. Sanger sequencing and deletion/duplication analysis were performed to detect mutations in the bone morphogenetic protein receptor type II (BMPR2) gene in 81 patients diagnosed at 30 North American medical centers with IPAH (n = 72) or HPAH (n = 9). BMPR2 mutation-negative patients (n = 67) were sequenced for mutations in four other genes (ACVRL1, ENG, CAV1, and KCNK3) known to cause HPAH. Patients negative for mutations in all known PAH genes (n = 66) were then sequenced for mutations in EIF2AK4. We assessed the pathogenicity of EIF2AK4 mutations and reviewed clinical characteristics of patients with pathogenic EIF2AK4 mutations. Pathogenic BMPR2 mutations were identified in 8 of 72 (11.1%) patients with IPAH and 6 of 9 (66.7%) patients with HPAH. A novel homozygous EIF2AK4 mutation (c.257+4A>C) was identified in 1 of 9 (11.1%) patients diagnosed with HPAH. The novel EIF2AK4 mutation (c.257+4A>C) was homozygous in two sisters with severe pulmonary hypertension. None of the 72 patients with IPAH had biallelic EIF2AK4 mutations. Pathogenic biallelic EIF2AK4 mutations are rarely identified in patients diagnosed with HPAH. Identification of pathogenic biallelic EIF2AK4 mutations can aid clinicians in differentiating HPAH from heritable PVOD or PCH. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  17. Molecular alterations in endometrial and ovarian clear cell carcinomas: clinical impacts of telomerase reverse transcriptase promoter mutation.

    PubMed

    Huang, Hsien-Neng; Chiang, Ying-Cheng; Cheng, Wen-Fang; Chen, Chi-An; Lin, Ming-Chieh; Kuo, Kuan-Ting

    2015-02-01

    Recently, mutations of telomerase reverse transcriptase (TERT) promoter were found in several types of cancer. A few reports demonstrate TERT promoter mutations in ovarian clear cell carcinomas but endometrial clear cell carcinoma has not been studied. The aims of this study were to compare differences of molecular alterations and clinical factors, and identify their prognostic impact in endometrial and ovarian clear cell carcinomas. We evaluated mutations of the TERT promoter and PIK3CA, expression of ARID1A, and other clinicopathological factors in 56 ovarian and 14 endometrial clear cell carcinomas. We found that TERT promoter mutations were present in 21% (3/14) of endometrial clear cell carcinomas and 16% (9/56) of ovarian clear cell carcinomas. Compared with ovarian clear cell carcinomas, endometrial clear cell carcinomas showed older mean patient age (P<0.001), preserved ARID1A immunoreactivity (P=0.017) and infrequent PIK3CA mutation (P=0.025). In ovarian clear cell carcinomas, TERT promoter mutations were correlated with patient age >45 (P=0.045) and preserved ARID1A expression (P=0.003). In cases of endometrial clear cell carcinoma, TERT promoter mutations were not statistically associated with any other clinicopathological factors. In ovarian clear cell carcinoma patients with early FIGO stage (stages I and II), TERT promoter mutation was an independent prognostic factor and correlated with a shorter disease-free survival and overall survival (P=0.015 and 0.009, respectively). In recurrent ovarian clear cell carcinoma patients with early FIGO stage, TERT promoter mutations were associated with early relapse within 6 months (P=0.018). We concluded that TERT promoter mutations were present in endometrial and ovarian clear cell carcinomas. Distinct molecular alteration patterns in endometrial and ovarian clear cell carcinomas implied different processes of tumorigenesis in these morphologically similar tumors. In ovarian clear cell carcinoma of early FIGO stage, patients with TERT promoter mutation require close follow-up during the initial 6 months following chemotherapy.

  18. Global perspective on the natural history of chronic hepatitis B: role of hepatitis B virus genotypes A to J.

    PubMed

    Liu, Chun-Jen; Kao, Jia-Horng

    2013-05-01

    Clinical outcomes of chronic hepatitis B virus (HBV) infection vary widely. In addition to host factors, several viral factors including HBV genotype, viral load, specific viral mutations and quantitative HBsAg levels, have been associated with disease outcomes. Among viral factors, HBV genotype correlates with not only the clinical outcomes, but also with the response to interferon treatment. Currently, 10 HBV genotypes have been identified. Compared with genotype A and B cases, patients with genotypes C and D have lower rates and usually delayed onset of spontaneous HBeAg seroconversion. HBV-genotype C has a higher frequency of basal core promoter (BCP) A1762T/G1764A mutation and preS deletion, and a higher viral load than genotype B. Similarly, genotype D has a higher prevalence of BCP A1762T/G1764A mutation than genotype A. These observations suggest pathogenic differences between HBV genotypes. Genotyping of HBV can help practicing physicians identify chronic hepatitis B patients at risk of disease progression. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Oncogenic mutations in KEAP1 disturbing inhibitory Nrf2-Keap1 interaction: Activation of antioxidative pathway in papillary thyroid carcinoma.

    PubMed

    Danilovic, Debora Lucia Seguro; de Mello, Evandro Sobroza; Frazzato, Eliana Salgado Turri; Wakamatsu, Alda; de Lima Jorge, Alexander Augusto; Hoff, Ana Oliveira; Marui, Suemi

    2018-06-01

    Nuclear factor erythroid 2-like 2 (NFE2L2) encodes Nrf2, transcription factor of antioxidative genes. In the presence of reactive oxygen species, Keap1 (Kelch-ECH-associating protein-1) inhibitor complex undergoes conformational changes disrupting Keap1-Nrf2 binding and Nrf2 translocates into nucleus. We evaluated the presence of mutations in NFE2L2 and KEAP1 in papillary thyroid carcinomas (PTCs) and correlated them with clinical presentation. Coding regions of NFE2L2 and KEAP1 were sequenced in 131 patients with PTC. Clinical and histopathological features were analyzed. Immunohistochemical analysis of Nrf2 expression was performed in mutated carcinomas. Although no mutations were found in NFE2L2, missense mutations in KEAP1 were observed in 6 patients with PTC (4.6%). Immunohistochemistry showed increased Nrf2 expression in nuclei of all mutated carcinomas, which presented poor prognostic features in histopathology. We identified mutations in KEAP1 associated with Nrf2 overexpression in PTC. Mutations favored disruption of inhibitory interaction Nrf2-Keap1 to enable increased antioxidant Nrf2 activity, possibly with prognostic consequences. © 2018 Wiley Periodicals, Inc.

  20. Hypogonadotropic Hypogonadism due to Novel FGFR1 Mutations.

    PubMed

    Akkuş, Gamze; Kotan, Leman Damla; Durmaz, Erdem; Mengen, Eda; Turan, İhsan; Ulubay, Ayça; Gürbüz, Fatih; Yüksel, Bilgin; Tetiker, Tamer; Topaloğlu, A Kemal

    2017-06-01

    The underlying genetic etiology of hypogonadotropic hypogonadism (HH) is heterogeneous. Fibroblast growth factor signaling is pivotal in the ontogeny of gonadotropin-releasing hormone neurons. Loss-of-function mutations in FGFR1 gene cause variable HH phenotypes encompassing pubertal delay to idiopathic HH (IHH) or Kallmann syndrome (KS). As FGFR1 mutations are common, recognizing mutations and associated phenotypes may enhance clinical management. Using a candidate gene approach, we screened 52 IHH/KS patients. We identified three novel (IVS3-1G>C and p.W2X, p.R209C) FGFR1 gene mutations. Despite predictive null protein function, patients from the novel mutation families had normosmic IHH without non-reproductive phenotype. These findings further emphasize the great variability of FGFR1 mutation phenotypes in IHH/KS.

  1. Psychosocial factors associated with the uptake of contralateral prophylactic mastectomy among BRCA1/2 mutation noncarriers with newly-diagnosed breast cancer

    PubMed Central

    Hamilton, Jada G.; Genoff, Margaux C.; Salerno, Melissa; Amoroso, Kimberly; Boyar, Sherry R.; Sheehan, Margaret; Fleischut, Megan Harlan; Siegel, Beth; Arnold, Angela G.; Salo-Mullen, Erin E.; Hay, Jennifer L.; Offit, Kenneth; Robson, Mark E.

    2017-01-01

    Purpose Women who are newly diagnosed with breast cancer may consider contralateral prophylactic mastectomy (CPM) to reduce their future risk of cancer in their unaffected breast. Pre-surgical BRCA1/2 genetic testing can provide valuable risk information to guide this choice. However, little is understood about why BRCA1/2 mutation noncarriers, who are generally not at substantially elevated risk of contralateral disease, select CPM. Methods We examined the uptake of CPM among breast cancer patients identified as BRCA1/2 mutation noncarriers (n=92) as part of a larger prospective study of the impact of pre-surgical BRCA1/2 testing. Data obtained from self-report questionnaires and patient medical records were used to examine associations between theoretically-relevant background and psychosocial factors and BRCA1/2 mutation noncarriers’ decisions to undergo CPM. Results Among BRCA1/2 mutation noncarriers, 25% (n=23) elected to undergo CPM. Psychosocial factors including a self-reported physician recommendation for CPM, greater perceived contralateral breast cancer risk, and greater perceived benefits of CPM were all significantly associated with the uptake of CPM. Conclusions A sizeable minority of BRCA1/2 mutation noncarriers choose to undergo CPM after learning their mutation status through pre-surgical genetic testing. BRCA1/2 mutation noncarriers’ cognitive perceptions and social influences appear to be important in shaping their decisions regarding CPM. This work highlights the importance of several psychosocial factors in influencing patients’ surgical decisions. Future research is needed that examines the formation of BRCA1/2 mutation noncarriers’ beliefs regarding their disease and available treatment options, and that characterizes the physician-patient communication that occurs in this complex decision-making context. PMID:28150129

  2. Psychosocial factors associated with the uptake of contralateral prophylactic mastectomy among BRCA1/2 mutation noncarriers with newly diagnosed breast cancer.

    PubMed

    Hamilton, Jada G; Genoff, Margaux C; Salerno, Melissa; Amoroso, Kimberly; Boyar, Sherry R; Sheehan, Margaret; Fleischut, Megan Harlan; Siegel, Beth; Arnold, Angela G; Salo-Mullen, Erin E; Hay, Jennifer L; Offit, Kenneth; Robson, Mark E

    2017-04-01

    Women who are newly diagnosed with breast cancer may consider contralateral prophylactic mastectomy (CPM) to reduce their future risk of cancer in their unaffected breast. Pre-surgical BRCA1/2 genetic testing can provide valuable risk information to guide this choice. However, little is understood about why BRCA1/2 mutation noncarriers, who are generally not at substantially elevated risk of contralateral disease, select CPM. We examined the uptake of CPM among breast cancer patients identified as BRCA1/2 mutation noncarriers (n = 92) as part of a larger prospective study of the impact of pre-surgical BRCA1/2 testing. Data obtained from self-report questionnaires and patient medical records were used to examine associations between theoretically relevant background and psychosocial factors and BRCA1/2 mutation noncarriers' decisions to undergo CPM. Among BRCA1/2 mutation noncarriers, 25% (n = 23) elected to undergo CPM. Psychosocial factors including a self-reported physician recommendation for CPM, greater perceived contralateral breast cancer risk, and greater perceived benefits of CPM were all significantly associated with the uptake of CPM. A sizeable minority of BRCA1/2 mutation noncarriers choose to undergo CPM after learning their mutation status through pre-surgical genetic testing. BRCA1/2 mutation noncarriers' cognitive perceptions and social influences appear to be important in shaping their decisions regarding CPM. This work highlights the importance of several psychosocial factors in influencing patients' surgical decisions. Future research is needed that examines the formation of BRCA1/2 mutation noncarriers' beliefs regarding their disease and available treatment options, and that characterizes the physician-patient communication that occurs in this complex decision-making context.

  3. Gene analysis of PROP1 in dwarfism with combined pituitary hormone deficiency.

    PubMed

    Takamura, N; Fofanova, O V; Kinoshita, E; Yamashita, S

    1999-06-01

    The prophet of Pit-1 gene (PROP1), a novel pituitary-specific homeodomain factor, has been proved to be one of the causative genes for combined pituitary hormone deficiency (CPHD). Recently, PROP1 mutations have been identified in CPHD families, including our Russian cohort. The 2-bp deletion, 296delGA (A301G302del), is the most common mutational hot spot. Furthermore, in our cohort, PROP1 mutations are more common in comparison with human POU1F1 gene mutations. Here we review the gene analysis of PROP1 in patients with CPHD.

  4. Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy

    PubMed Central

    Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B.; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S. Vasantha; Chandak, Giriraj Ratan

    2012-01-01

    Purpose Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3. PMID:22876130

  5. Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy.

    PubMed

    Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S Vasantha; Chandak, Giriraj Ratan; Kumar, Arun

    2012-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.

  6. Muscle RAS oncogene homolog (MRAS) recurrent mutation in Borrmann type IV gastric cancer.

    PubMed

    Yasumoto, Makiko; Sakamoto, Etsuko; Ogasawara, Sachiko; Isobe, Taro; Kizaki, Junya; Sumi, Akiko; Kusano, Hironori; Akiba, Jun; Torimura, Takuji; Akagi, Yoshito; Itadani, Hiraku; Kobayashi, Tsutomu; Hasako, Shinichi; Kumazaki, Masafumi; Mizuarai, Shinji; Oie, Shinji; Yano, Hirohisa

    2017-01-01

    The prognosis of patients with Borrmann type IV gastric cancer (Type IV) is extremely poor. Thus, there is an urgent need to elucidate the molecular mechanisms underlying the oncogenesis of Type IV and to identify new therapeutic targets. Although previous studies using whole-exome and whole-genome sequencing have elucidated genomic alterations in gastric cancer, none has focused on comprehensive genetic analysis of Type IV. To discover cancer-relevant genes in Type IV, we performed whole-exome sequencing and genome-wide copy number analysis on 13 patients with Type IV. Exome sequencing identified 178 somatic mutations in protein-coding sequences or at splice sites. Among the mutations, we found a mutation in muscle RAS oncogene homolog (MRAS), which is predicted to cause molecular dysfunction. MRAS belongs to the Ras subgroup of small G proteins, which includes the prototypic RAS oncogenes. We analyzed an additional 46 Type IV samples to investigate the frequency of MRAS mutation. There were eight nonsynonymous mutations (mutation frequency, 17%), showing that MRAS is recurrently mutated in Type IV. Copy number analysis identified six focal amplifications and one homozygous deletion, including insulin-like growth factor 1 receptor (IGF1R) amplification. The samples with IGF1R amplification had remarkably higher IGF1R mRNA and protein expression levels compared with the other samples. This is the first report of MRAS recurrent mutation in human tumor samples. Our results suggest that MRAS mutation and IGF1R amplification could drive tumorigenesis of Type IV and could be new therapeutic targets. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  7. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms

    PubMed Central

    Panizzi, Jennifer R.; Becker-Heck, Anita; Castleman, Victoria H.; Al-Mutairi, Dalal; Liu, Yan; Loges, Niki T.; Pathak, Narendra; Austin-Tse, Christina; Sheridan, Eamonn; Schmidts, Miriam; Olbrich, Heike; Werner, Claudius; Häffner, Karsten; Hellman, Nathan; Chodhari, Rahul; Gupta, Amar; Kramer-Zucker, Albrecht; Olale, Felix; Burdine, Rebecca D.; Schier, Alexander F.; O’Callaghan, Christopher; Chung, Eddie MK; Reinhardt, Richard; Mitchison, Hannah M.; King, Stephen M.; Omran, Heymut; Drummond, Iain A.

    2012-01-01

    Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation, and to establish laterality1. Cilia motility defects cause Primary Ciliary Dyskinesia (PCD, MIM 242650), a disorder affecting 1:15-30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive cilia bending2. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD linked loci3. Here we show that the zebrafish cilia paralysis mutant schmalhanstn222 (smh) mutant encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a regulated gene. Screening 146 unrelated PCD families identified patients in six families with reduced outer dynein arms, carrying mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103 functions as a tightly bound, axoneme-associated protein. The results identify Ccdc103 as a novel dynein arm attachment factor that when mutated causes Primary Ciliary Dyskinesia. PMID:22581229

  8. Evaluation of genetic variations in miRNA-binding sites of BRCA1 and BRCA2 genes as risk factors for the development of early-onset and/or familial breast cancer.

    PubMed

    Erturk, Elif; Cecener, Gulsah; Polatkan, Volkan; Gokgoz, Sehsuvar; Egeli, Unal; Tunca, Berrin; Tezcan, Gulcin; Demirdogen, Elif; Ak, Secil; Tasdelen, Ismet

    2014-01-01

    Although genetic markers identifying women at an increased risk of developing breast cancer exist, the majority of inherited risk factors remain elusive. Mutations in the BRCA1/BRCA2 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intron- exon boundaries, precluding the identification of mutations in noncoding and untranslated regions. Because 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we aimed to determine genetic variation in the 3'UTR of BRCA1/BRCA2 in familial and early-onset breast cancer patients with and without mutations in the coding regions of BRCA1/ BRCA2 and to identify specific 3'UTR variants that may be risk factors for cancer development. The 3'UTRs of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis and DNA sequencing in 100 patients from 46 BRCA1/2 families, 54 non-BRCA1/2 families, and 47 geographically matched controls. Two polymorphisms were identified. SNPs c.*1287C>T (rs12516) (BRCA1) and c.*105A>C (rs15869) (BRCA2) were identified in 27% and 24% of patients, respectively. These 2 variants were also identified in controls with no family history of cancer (23.4% and 23.4%, respectively). In comparison to variations in the 3'UTR region of the BRCA1/2 genes and the BRCA1/2 mutational status in patients, there was a statistically significant relationship between the BRCA1 gene polymorphism c.*1287C>T (rs12516) and BRCA1 mutations (p=0.035) by Fisher's Exact Test. SNP c.*1287C>T (rs12516) of the BRCA1 gene may have potential use as a genetic marker of an increased risk of developing breast cancer and likely represents a non-coding sequence variation in BRCA1 that impacts BRCA1 function and leads to increased early-onset and/or familial breast cancer risk in the Turkish population.

  9. Molecular analysis reveals a high mutation frequency in the first untranslated exon of the PPOX gene and largely excludes variegate porphyria in a subset of clinically affected Afrikaner families.

    PubMed

    Kotze, M J; De Villiers, J N; Groenewald, J Z; Rooney, R N; Loubser, O; Thiart, R; Oosthuizen, C J; van Niekerk, M M; Groenewald, I M; Retief, A E; Warnich, L

    1998-10-01

    A subset of probands from 11 South African families with clinical and/or biochemical features of variegate porphyria (VP), but without the known protoporphyrinogen oxidase (PPOX) gene defects identified previously in the South African population, were subjected to mutation analysis. Disease-related mutation(s) could not be identified after screening virtually the entire PPOX gene by heteroduplex single-strand conformation polymorphism analysis (HEX-SSCP), although three new sequence variants were detected in exon 1 of the gene in three normal controls. The presence of these single base changes at nucleotide positions 22 (C/G), 27 (C/A) and 127 (C/A), in addition to the known exon 1 polymorphisms I-26 and I-150, indicates that this untranslated region of the PPOX gene is particularly mutation-prone. Furthermore, microsatellite markers flanking the PPOX and alpha-1 antitrypsin (PI) gene, on chromosomes 1 and 14, respectively, were used to assess the probability of involvement of these loci in disease presentation. Common alleles transmitted from affected parent to affected child were determined where possible in the mutation-negative index cases. Allelic frequencies of these alleles were compared to findings in the normal population, but no predominant disease-associated allele could be identified. Co-segregation of a specific haplotype with the disease phenotype could also not be demonstrated in a large Afrikaner family. It is concluded that further studies are warranted to determine the genetic factor(s) underlying the autosomal dominant pattern of inheritance in molecularly uncharacterized cases showing clinical symptoms of an acute porphyria. Copyright 1998 Academic Press.

  10. Mutation frequency in 15 common cancer genes in high-risk head and neck squamous cell carcinoma.

    PubMed

    McBride, Sean M; Rothenberg, S Michael; Faquin, William C; Chan, Annie W; Clark, John R; Ellisen, Leif W; Wirth, Lori J

    2014-08-01

    With prior studies having looked at unselected cohorts, we sought to explore the mutational landscape in a high-risk group of head and neck squamous cell carcinoma (HNSCC) tumors. A multiplexed polymerase chain reaction (PCR) assay evaluating 68 loci in 15 genes was performed on 64 patients with high-risk HNSCC. Because of the frequent PIK3CA and AKT1 mutations in patients with oropharyngeal carcinoma, we evaluated the relationship between mutation status and both clinical/pathologic variables and tumor control in this subgroup. Seventeen of 64 patients harbored mutations in the assayed loci: 16% in PIK3CA, 9% in TP53, 2% in AKT1, and 2% in epidermal growth factor receptor (EGFR). The frequency of PIK3CA/AKT1 mutations in oropharyngeal and sinonasal primaries was increased compared to other primary sites (35% vs 6%; p = .005). There was no relationship between mutation status and overall survival (OS), disease-specific death, or progression in the oropharyngeal cohort. We identified frequent PIK3CA mutations in patients with high-risk HNSCC confined predominantly to the oropharyngeal and sinonasal subsites; for the first time, mutation in AKT1 has been identified in HNSCC. Copyright © 2014 Wiley Periodicals, Inc.

  11. The p.M292T NDUFS2 mutation causes complex I-deficient Leigh syndrome in multiple families.

    PubMed

    Tuppen, Helen A L; Hogan, Vanessa E; He, Langping; Blakely, Emma L; Worgan, Lisa; Al-Dosary, Mazhor; Saretzki, Gabriele; Alston, Charlotte L; Morris, Andrew A; Clarke, Michael; Jones, Simon; Devlin, Anita M; Mansour, Sahar; Chrzanowska-Lightowlers, Zofia M A; Thorburn, David R; McFarland, Robert; Taylor, Robert W

    2010-10-01

    Isolated complex I deficiency is the most frequently observed oxidative phosphorylation defect in children with mitochondrial disease, leading to a diverse range of clinical presentations, including Leigh syndrome. For most patients the genetic cause of the biochemical defect remains unknown due to incomplete understanding of the complex I assembly process. Nonetheless, a plethora of pathogenic mutations have been described to date in the seven mitochondrial-encoded subunits of complex I as well as in 12 of the nuclear-encoded subunits and in six assembly factors. Whilst several mitochondrial DNA mutations are recurrent, the majority of these mutations are reported in single families. We have sequenced core structural and functional nuclear-encoded subunits of complex I in a cohort of 34 paediatric patients with isolated complex I deficiency, identifying pathogenic mutations in 6 patients. These included a novel homozygous NDUFS1 mutation in an Asian child with Leigh syndrome, a previously identified NDUFS8 mutation (c.236C>T, p.P79L) in a second Asian child with Leigh-like syndrome and six novel, compound heterozygous NDUFS2 mutations in four white Caucasian patients with Leigh or Leigh-like syndrome. Three of these children harboured an identical NDUFS2 mutation (c.875T>C, p.M292T), which was also identified in conjunction with a novel NDUFS2 splice site mutation (c.866+4A>G) in a fourth Caucasian child who presented to a different diagnostic centre, with microsatellite and single nucleotide polymorphism analyses indicating that this was due to an ancient common founder event. Our results confirm that NDUFS2 is a mutational hotspot in Caucasian children with isolated complex I deficiency and recommend the routine diagnostic investigation of this gene in patients with Leigh or Leigh-like phenotypes.

  12. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation.

    PubMed

    Müller, Eva; Dunstheimer, Desiree; Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H

    2012-01-01

    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.

  13. Clinical and Functional Characterization of a Patient Carrying a Compound Heterozygous Pericentrin Mutation and a Heterozygous IGF1 Receptor Mutation

    PubMed Central

    Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H.

    2012-01-01

    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration. PMID:22693602

  14. Targeted next generation sequencing identifies novel NOTCH3 gene mutations in CADASIL diagnostics patients.

    PubMed

    Maksemous, Neven; Smith, Robert A; Haupt, Larisa M; Griffiths, Lyn R

    2016-11-24

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic, hereditary, small vessel disease of the brain causing stroke and vascular dementia in adults. CADASIL has previously been shown to be caused by varying mutations in the NOTCH3 gene. The disorder is often misdiagnosed due to its significant clinical heterogeneic manifestation with familial hemiplegic migraine and several ataxia disorders as well as the location of the currently identified causative mutations. The aim of this study was to develop a new, comprehensive and efficient single assay strategy for complete molecular diagnosis of NOTCH3 mutations through the use of a custom next-generation sequencing (NGS) panel for improved routine clinical molecular diagnostic testing. Our custom NGS panel identified nine genetic variants in NOTCH3 (p.D139V, p.C183R, p.R332C, p.Y465C, p.C597W, p.R607H, p.E813E, p.C977G and p.Y1106C). Six mutations were stereotypical CADASIL mutations leading to an odd number of cysteine residues in one of the 34 NOTCH3 gene epidermal growth factor (EGF)-like repeats, including three new typical cysteine mutations identified in exon 11 (p.C597W; c.1791C>G); exon 18 (p.C977G; c.2929T>G) and exon 20 (p.Y1106C; c.3317A>G). Interestingly, a novel missense mutation in the CACNA1A gene was also identified in one CADASIL patient. All variants identified (novel and known) were further investigated using in silico bioinformatic analyses and confirmed through Sanger sequencing. NGS provides an improved and effective methodology for the diagnosis of CADASIL. The NGS approach reduced time and cost for comprehensive genetic diagnosis, placing genetic diagnostic testing within reach of more patients.

  15. IRS2 mutations linked to invasion in pleomorphic invasive lobular carcinoma

    PubMed Central

    Zhu, Sha; Ward, B. Marie; Yu, Jun; Matthew-Onabanjo, Asia N.; Janusis, Jenny; Hsieh, Chung-Cheng; Tomaszewicz, Keith; Hutchinson, Lloyd; Zhu, Lihua Julie; Kandil, Dina; Shaw, Leslie M.

    2018-01-01

    Pleomorphic invasive lobular carcinoma (PILC) is an aggressive variant of invasive lobular breast cancer that is associated with poor clinical outcomes. Limited molecular data are available to explain the mechanistic basis for PILC behavior. To address this issue, targeted sequencing was performed to identify molecular alterations that define PILC. This sequencing analysis identified genes that distinguish PILC from classic ILC and invasive ductal carcinoma by the incidence of their genomic changes. In particular, insulin receptor substrate 2 (IRS2) is recurrently mutated in PILC, and pathway analysis reveals a role for the insulin receptor (IR)/insulin-like growth factor-1 receptor (IGF1R)/IRS2 signaling pathway in PILC. IRS2 mutations identified in PILC enhance invasion, revealing a role for this signaling adaptor in the aggressive nature of PILC. PMID:29669935

  16. A founder mutation in PET100 causes isolated complex IV deficiency in Lebanese individuals with Leigh syndrome.

    PubMed

    Lim, Sze Chern; Smith, Katherine R; Stroud, David A; Compton, Alison G; Tucker, Elena J; Dasvarma, Ayan; Gandolfo, Luke C; Marum, Justine E; McKenzie, Matthew; Peters, Heidi L; Mowat, David; Procopis, Peter G; Wilcken, Bridget; Christodoulou, John; Brown, Garry K; Ryan, Michael T; Bahlo, Melanie; Thorburn, David R

    2014-02-06

    Leigh syndrome (LS) is a severe neurodegenerative disorder with characteristic bilateral lesions, typically in the brainstem and basal ganglia. It usually presents in infancy and is genetically heterogeneous, but most individuals with mitochondrial complex IV (or cytochrome c oxidase) deficiency have mutations in the biogenesis factor SURF1. We studied eight complex IV-deficient LS individuals from six families of Lebanese origin. They differed from individuals with SURF1 mutations in having seizures as a prominent feature. Complementation analysis suggested they had mutation(s) in the same gene but targeted massively parallel sequencing (MPS) of 1,034 genes encoding known mitochondrial proteins failed to identify a likely candidate. Linkage and haplotype analyses mapped the location of the gene to chromosome 19 and targeted MPS of the linkage region identified a homozygous c.3G>C (p.Met1?) mutation in C19orf79. Abolishing the initiation codon could potentially still allow initiation at a downstream methionine residue but we showed that this would not result in a functional protein. We confirmed that mutation of this gene was causative by lentiviral-mediated phenotypic correction. C19orf79 was recently renamed PET100 and predicted to encode a complex IV biogenesis factor. We showed that it is located in the mitochondrial inner membrane and forms a ∼300 kDa subcomplex with complex IV subunits. Previous proteomic analyses of mitochondria had overlooked PET100 because its small size was below the cutoff for annotating bona fide proteins. The mutation was estimated to have arisen at least 520 years ago, explaining how the families could have different religions and different geographic origins within Lebanon. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels.

    PubMed

    Mikhitarian, Kaidi; Pollen, Maressa; Zhao, Zhiguo; Shyr, Yu; Merchant, Nipun B; Parikh, Alexander; Revetta, Frank; Washington, M Kay; Vnencak-Jones, Cindy; Shi, Chanjuan

    2014-05-01

    Our objective was to explore alteration of the epidermal growth factor receptor (EGFR) signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of EGFR. A lab-developed assay was used to identify mutations in the EGFR pathway genes, including KRAS, BRAF, PIK3CA, PTEN, and AKT1. A total of 52 ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors, with the intestinal type being associated with a younger age at diagnosis (P=0.03) and a better prognosis (P<0.01). Expression of amphiregulin correlated with better differentiation (P<0.01), but no difference was observed between two major histologic types. Expression and activation of EGFR was more commonly seen in the pancreatobiliary type (P<0.01). Mutations were detected in 50% of the pancreatobiliary type and 60% of the intestinal type. KRAS was the most common gene mutated in the pancreatobiliary type (42%) as well as the intestinal type (52%). Other mutations detected included PIK3CA, SMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not adversely affect overall survival. In conclusion, EGFR expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared with its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the EGFR pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma.

  18. Mutations in the histone fold domain of the TAF12 gene show synthetic lethality with the TAF1 gene lacking the TAF N-terminal domain (TAND) by different mechanisms from those in the SPT15 gene encoding the TATA box-binding protein (TBP)

    PubMed Central

    Kobayashi, Akiko; Miyake, Tsuyoshi; Kawaichi, Masashi; Kokubo, Tetsuro

    2003-01-01

    The general transcription factor TFIID, composed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), is important for both basal and regulated transcription by RNA polymerase II. Although it is well known that the TAF N-terminal domain (TAND) at the amino-terminus of the TAF1 protein binds to TBP and thereby inhibits TBP function in vitro, the physiological role of this domain remains obscure. In our previous study, we screened for mutations that cause lethality when co-expressed with the TAF1 gene lacking TAND (taf1-ΔTAND) and identified two ΔTAND synthetic lethal (nsl) mutations as those in the SPT15 gene encoding TBP. In this study we isolated another nsl mutation in the same screen and identified it to be a mutation in the histone fold domain (HFD) of the TAF12 gene. Several other HFD mutations of this gene also exhibit nsl phenotypes, and all of them are more or less impaired in transcriptional activation in vivo. Interestingly, a set of genes affected in the taf1-ΔTAND mutant is similarly affected in the taf12 HFD mutants but not in the nsl mutants of TBP. Therefore, we discovered that the nsl mutations of these two genes cause lethality in the taf1-ΔTAND mutant by different mechanisms. PMID:12582246

  19. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    PubMed

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  20. Insulin-like growth factor II messenger RNA-binding protein-3 is an independent prognostic factor in uterine leiomyosarcoma.

    PubMed

    Yasutake, Nobuko; Ohishi, Yoshihiro; Taguchi, Kenichi; Hiraki, Yuka; Oya, Masafumi; Oshiro, Yumi; Mine, Mari; Iwasaki, Takeshi; Yamamoto, Hidetaka; Kohashi, Kenichi; Sonoda, Kenzo; Kato, Kiyoko; Oda, Yoshinao

    2018-04-01

    The aim of this study was to identify the prognostic factors of uterine leiomyosarcoma (ULMS). We reviewed 60 cases of surgically resected ULMSs and investigated conventional clinicopathological factors, together with the expression of insulin-like growth factor II messenger RNA-binding protein-3 (IMP3), hormone receptors and cell cycle regulatory markers by immunohistochemistry. Mediator complex subunit 12 (MED12) mutation analysis was also performed. Univariate analyses revealed that advanced stage (P < 0.0001), older age (P = 0.0244) and IMP3 expression (P = 0.0011) were significant predictors of a poor outcome. Multivariate analysis revealed advanced stage (P < 0.0001) and IMP3 (P = 0.0373) as independent predictors of a poor prognosis. Expressions of cell cycle markers and hormone receptors, and MED12 mutations (12% in ULMSs) were not identified as prognostic markers in this study. IMP3 expression in ULMS could be a marker of a poor prognosis. © 2017 John Wiley & Sons Ltd.

  1. Structural Implications of Mutations Conferring Rifampin Resistance in Mycobacterium leprae.

    PubMed

    Vedithi, Sundeep Chaitanya; Malhotra, Sony; Das, Madhusmita; Daniel, Sheela; Kishore, Nanda; George, Anuja; Arumugam, Shantha; Rajan, Lakshmi; Ebenezer, Mannam; Ascher, David B; Arnold, Eddy; Blundell, Tom L

    2018-03-22

    The rpoB gene encodes the β subunit of RNA polymerase holoenzyme in Mycobacterium leprae (M. leprae). Missense mutations in the rpoB gene were identified as etiological factors for rifampin resistance in leprosy. In the present study, we identified mutations corresponding to rifampin resistance in relapsed leprosy cases from three hospitals in southern India which treat leprosy patients. DNA was extracted from skin biopsies of 35 relapse/multidrug therapy non-respondent leprosy cases, and PCR was performed to amplify the 276 bp rifampin resistance-determining region of the rpoB gene. PCR products were sequenced, and mutations were identified in four out of the 35 cases at codon positions D441Y, D441V, S437L and H476R. The structural and functional effects of these mutations were assessed in the context of three-dimensional comparative models of wild-type and mutant M. leprae RNA polymerase holoenzyme (RNAP), based on the recently solved crystal structures of RNAP of Mycobacterium tuberculosis, containing a synthetic nucleic acid scaffold and rifampin. The resistance mutations were observed to alter the hydrogen-bonding and hydrophobic interactions of rifampin and the 5' ribonucleotide of the growing RNA transcript. This study demonstrates that rifampin-resistant strains of M. leprae among leprosy patients in southern India are likely to arise from mutations that affect the drug-binding site and stability of RNAP.

  2. Therapeutic targeting of RNA splicing in myelodysplasia.

    PubMed

    Kim, Young Joon; Abdel-Wahab, Omar

    2017-07-01

    Genomic analysis of patients with myelodysplastic syndromes (MDS) has identified that mutations within genes encoding RNA splicing factors represent the most common class of genetic alterations in MDS. These mutations primarily affect SF3B1, SRSF2, U2AF1, and ZRSR2. Current data suggest that these mutations perturb RNA splicing catalysis in a manner distinct from loss of function but how exactly the global changes in RNA splicing imparted by these mutations result in MDS is not well delineated. At the same time, cells bearing mutations in RNA splicing factors are exquisitely dependent on the presence of the remaining wild-type (WT) allele to maintain residual normal splicing for cell survival. The high frequency of these mutations in MDS, combined with their mutual exclusivity and noteworthy dependence on the WT allele, make targeting RNA splicing attractive in MDS. To this end, two promising therapeutic approaches targeting RNA splicing are being tested clinically currently. These include molecules targeting core RNA splicing catalysis by interfering with the ability of the SF3b complex to interact with RNA, as well as molecules degrading the auxiliary RNA splicing factor RBM39. The preclinical and clinical evaluation of these compounds are discussed here in addition to their potential as therapies for spliceosomal mutant MDS. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A novel mutation of the MITF gene in a family with Waardenburg syndrome type 2: A case report

    PubMed Central

    SHI, YUNFANG; LI, XIAOZHOU; JU, DUAN; LI, YAN; ZHANG, XIULING; ZHANG, YING

    2016-01-01

    Waardenburg syndrome (WS) is an autosomal dominant disorder with varying degrees of sensorineural hearing loss, and accumulation of pigmentation in hair, skin and iris. There are four types of WS (WS1–4) with differing characteristics. Mutations in six genes [paired box gene 3 (PAX3), microphthalmia-associated transcription factor (MITF), endothelin 3 (END3), endothelin receptor type B (EDNRB), SRY (sex determining region Y)-box 10 (SOX10) and snail homolog 2 (SNAI2)] have been identified to be associated with the various types. This case report describes the investigation of genetic mutations in three patients with WS2 from a single family. Genomic DNA was extracted, and the six WS-related genes were sequenced using next-generation sequencing technology. In addition to mutations in PAX3, EDNRB and SOX10, a novel heterozygous MITF mutation, p.Δ315Arg (c.944_946delGAA) on exon 8 was identified. This is predicted to be a candidate disease-causing mutation that may affect the structure and function of the enzyme. PMID:27073475

  4. A novel mutation of the MITF gene in a family with Waardenburg syndrome type 2: A case report.

    PubMed

    Shi, Yunfang; Li, Xiaozhou; Ju, Duan; Li, Yan; Zhang, Xiuling; Zhang, Ying

    2016-04-01

    Waardenburg syndrome (WS) is an autosomal dominant disorder with varying degrees of sensorineural hearing loss, and accumulation of pigmentation in hair, skin and iris. There are four types of WS (WS1-4) with differing characteristics. Mutations in six genes [paired box gene 3 ( PAX3 ), microphthalmia-associated transcription factor ( MITF ), endothelin 3 ( END3 ), endothelin receptor type B ( EDNRB ), SRY (sex determining region Y)-box 10 ( SOX10 ) and snail homolog 2 ( SNAI2 )] have been identified to be associated with the various types. This case report describes the investigation of genetic mutations in three patients with WS2 from a single family. Genomic DNA was extracted, and the six WS-related genes were sequenced using next-generation sequencing technology. In addition to mutations in PAX3, EDNRB and SOX10, a novel heterozygous MITF mutation, p.Δ315Arg (c.944_946delGAA) on exon 8 was identified. This is predicted to be a candidate disease-causing mutation that may affect the structure and function of the enzyme.

  5. Functional analysis of a nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome type 2

    PubMed Central

    Sun, Jie; Hao, Ziqi; Luo, Hunjin; He, Chufeng; Mei, Lingyun; Liu, Yalan; Wang, Xueping; Niu, Zhijie; Chen, Hongsheng; Li, Jia-Da; Feng, Yong

    2017-01-01

    Waardenburg syndrome (WS) is an autosomal dominant inherited neurogenic disorder with the combination of various degrees of sensorineural deafness and pigmentary abnormalities affecting the skin, hair and eye. The four subtypes of WS were defined on the basis of the presence or absence of additional symptoms. Mutation of human microphthalmia-associated transcription factor (MITF) gene gives rise to WS2. Here, we identified a novel WS-associated mutation at the stop codon of MITF (p.X420Y) in a Chinese WS2 patient. This mutation resulted in an extension of extra 33 amino-acid residues in MITF. The mutant MITF appeared in both the nucleus and the cytoplasm, whereas the wild-type MITF was localized in the nucleus exclusively. The mutation led to a reduction in the transcriptional activities, whereas the DNA-binding activity was not altered. We show that the foremost mechanism was haploinsufficiency for the mild phenotypes of WS2 induced in X420Y MITF. PMID:28356565

  6. Functional analysis of a nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome type 2.

    PubMed

    Sun, Jie; Hao, Ziqi; Luo, Hunjin; He, Chufeng; Mei, Lingyun; Liu, Yalan; Wang, Xueping; Niu, Zhijie; Chen, Hongsheng; Li, Jia-Da; Feng, Yong

    2017-07-01

    Waardenburg syndrome (WS) is an autosomal dominant inherited neurogenic disorder with the combination of various degrees of sensorineural deafness and pigmentary abnormalities affecting the skin, hair and eye. The four subtypes of WS were defined on the basis of the presence or absence of additional symptoms. Mutation of human microphthalmia-associated transcription factor (MITF) gene gives rise to WS2. Here, we identified a novel WS-associated mutation at the stop codon of MITF (p.X420Y) in a Chinese WS2 patient. This mutation resulted in an extension of extra 33 amino-acid residues in MITF. The mutant MITF appeared in both the nucleus and the cytoplasm, whereas the wild-type MITF was localized in the nucleus exclusively. The mutation led to a reduction in the transcriptional activities, whereas the DNA-binding activity was not altered. We show that the foremost mechanism was haploinsufficiency for the mild phenotypes of WS2 induced in X420Y MITF.

  7. Novel SOX2 mutations and genotype-phenotype correlation in anophthalmia and microphthalmia.

    PubMed

    Schneider, Adele; Bardakjian, Tanya; Reis, Linda M; Tyler, Rebecca C; Semina, Elena V

    2009-12-01

    SOX2 represents a High Mobility Group domain containing transcription factor that is essential for normal development in vertebrates. Mutations in SOX2 are known to result in a spectrum of severe ocular phenotypes in humans, also typically associated with other systemic defects. Ocular phenotypes include anophthalmia/microphthalmia (A/M), optic nerve hypoplasia, ocular coloboma and other eye anomalies. We screened 51 unrelated individuals with A/M and identified SOX2 mutations in the coding region of the gene in 10 individuals. Seven of the identified mutations are novel alterations, while the remaining three individuals carry the previously reported recurrent 20-nucleotide deletion in SOX2, c.70del20. Among the SOX2-positive cases, seven patients had bilateral A/M and mutations resulting in premature termination of the normal protein sequence (7/38; 18% of all bilateral cases), one patient had bilateral A/M associated with a single amino acid insertion (1/38; 3% of bilateral cases), and the final two patients demonstrated unilateral A/M associated with missense mutations (2/13; 15% of all unilateral cases). These findings and review of previously reported cases suggest a potential genotype/phenotype correlation for SOX2 mutations with missense changes generally leading to less severe ocular defects. In addition, we report a new familial case of affected siblings with maternal mosaicism for the identified SOX2 mutation, which further underscores the importance of parental testing to provide accurate genetic counseling to families.

  8. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures.

    PubMed

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5-13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known. We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations.

  9. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures

    PubMed Central

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5–13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known.     We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations. PMID:24879340

  10. IDENTIFICATION OF NOVEL FIBROBLAST GROWTH FACTOR RECEPTOR 3 GENE MUTATIONS IN ACTINIC CHEILITIS

    PubMed Central

    Chou, Annie; Dekker, Nusi; Jordan, Richard C.K.

    2009-01-01

    Objective Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) gene are responsible for several craniosynostosis and chondrodysplasia syndromes as well as some human cancers including bladder and cervical carcinoma. Despite a high frequency in some benign skin disorders, FGFR3 mutations have not been reported in cutaneous malignancies. Actinic cheilitis (AC) is a sun-induced premalignancy affecting the lower lip that frequently progresses to squamous cell carcinoma (SCC). The objective of this study was to determine if FGFR3 gene mutations are present in AC and SCC of the lip. Study Design DNA was extracted and purified from micro-dissected, formalin-fixed, paraffin-embedded tissue sections of 20 cases of AC and SCC arising in AC. Exons 7, 15, and 17 were PCR amplified and direct sequenced. Results Four novel somatic mutations in the FGFR3 gene were identified: exon 7 mutation 742C→T (amino acid change R248C), exon 15 mutations 1850A→G (D617G) and 1888G→A (V630M), and exon 17 mutation 2056G→A (E686K). Grade of dysplasia did not correlate with presence of mutations. Conclusion The frequency of FGFR3 receptor mutations suggests a functional role for the FGFR3 receptor in the development of epithelial disorders and perhaps a change may contribute to the pathogenesis of some AC and SCC. PMID:19327639

  11. Genome amplification and promoter mutation expand the range of csgD-dependent biofilm responses in an STEC population.

    PubMed

    Uhlich, Gaylen A; Chen, Chin-Yi; Cottrell, Bryan J; Andreozzi, Elisa; Irwin, Peter L; Nguyen, Ly-Huong

    2017-04-01

    Expression of the major biofilm components of E. coli, curli fimbriae and cellulose, requires the CsgD transcription factor. A complex regulatory network allows environmental control of csgD transcription and biofilm formation. However, most clinical serotype O157 : H7 strains contain prophage insertions in the csgD regulator, mlrA, or mutations in other regulators that restrict csgD expression. These barriers can be circumvented by certain compensating mutations that restore higher csgD expression. One mechanism is via csgD promoter mutations that switch sigma factor utilization. Biofilm-forming variants utilizing RpoD rather than RpoS have been identified in glycerol freezer stocks of the non-biofilm-forming food-borne outbreak strain, ATCC 43894. In this study we used whole genome sequencing and RNA-seq to study genotypic and transcriptomic differences between those strains. In addition to defining the consequences of the csgD promoter switch and identifying new csgD-controlled genes, we discovered a region of genome amplification in our laboratory stock of 43894 (designated 43894OW) that contributed to the regulation of csgD-dependent properties.

  12. Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer

    PubMed Central

    Lin, Nancy U.; Kidd, John; Allen, Brian A.; Singh, Nanda; Wenstrup, Richard J.; Hartman, Anne-Renee; Winer, Eric P.; Garber, Judy E.

    2016-01-01

    Purpose Testing for germline mutations in BRCA1/2 is standard for select patients with breast cancer to guide clinical management. Next-generation sequencing (NGS) allows testing for mutations in additional breast cancer predisposition genes. The frequency of germline mutations detected by using NGS has been reported in patients with breast cancer who were referred for BRCA1/2 testing or with triple-negative breast cancer. We assessed the frequency and predictors of mutations in 25 cancer predisposition genes, including BRCA1/2, in a sequential series of patients with breast cancer at an academic institution to examine the utility of genetic testing in this population. Methods Patients with stages I to III breast cancer who were seen at a single cancer center between 2010 and 2012, and who agreed to participate in research DNA banking, were included (N = 488). Personal and family cancer histories were collected and germline DNA was sequenced with NGS to identify mutations. Results Deleterious mutations were identified in 10.7% of women, including 6.1% in BRCA1/2 (5.1% in non-Ashkenazi Jewish patients) and 4.6% in other breast/ovarian cancer predisposition genes including CHEK2 (n = 10), ATM (n = 4), BRIP1 (n = 4), and one each in PALB2, PTEN, NBN, RAD51C, RAD51D, MSH6, and PMS2. Whereas young age (P < .01), Ashkenazi Jewish ancestry (P < .01), triple-negative breast cancer (P = .01), and family history of breast/ovarian cancer (P = .01) predicted for BRCA1/2 mutations, no factors predicted for mutations in other breast cancer predisposition genes. Conclusion Among sequential patients with breast cancer, 10.7% were found to have a germline mutation in a gene that predisposes women to breast or ovarian cancer, using a panel of 25 predisposition genes. Factors that predict for BRCA1/2 mutations do not predict for mutations in other breast/ovarian cancer susceptibility genes when these genes are analyzed as a single group. Additional cohorts will be helpful to define individuals at higher risk of carrying mutations in genes other than BRCA1/2. PMID:26976419

  13. A novel loss-of-function mutation in OTX2 in a patient with anophthalmia and isolated growth hormone deficiency.

    PubMed

    Ashkenazi-Hoffnung, Liat; Lebenthal, Yael; Wyatt, Alexander W; Ragge, Nicola K; Dateki, Sumito; Fukami, Maki; Ogata, Tsutomu; Phillip, Moshe; Gat-Yablonski, Galia

    2010-06-01

    Heterozygous mutations of the gene encoding transcription factor OTX2 were recently shown to be responsible for ocular as well as pituitary abnormalities. Here, we describe a patient with unilateral anophthalmia and short stature. Endocrine evaluation of the hypothalamic-pituitary axis revealed isolated growth hormone deficiency (IGHD) with small anterior pituitary gland, invisible stalk, ectopic posterior lobe, and right anophthalmia on brain magnetic resonance imaging. DNA was analyzed for mutations in the HESX1, SOX2, and OTX2 genes. Molecular analysis yielded a novel heterozygous OTX2 mutation (c.270A>T, p.R90S) within the homeodomain. Functional analysis revealed that the mutation inhibited both the DNA binding and transactivation activities of the protein. This novel loss-of-function mutation is associated with anophthalmia and IGHD in a patient of Sephardic Jewish descent. We recommend that patients with GH deficiency and ocular malformation in whom genetic analysis for classic transcription factor genes (PROP1, POU1F1, HESX1, and LHX4) failed to identify alterations should be checked for the presence of mutations in the OTX2 gene.

  14. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing

    PubMed Central

    Jin, Ying; Shao, Yang; Shi, Xun; Lou, Guangyuan; Zhang, Yiping; Wu, Xue; Tong, Xiaoling; Yu, Xinmin

    2016-01-01

    Patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive epithelial growth factor receptor (EGFR) mutations invariably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Identification of actionable genetic alterations conferring drug-resistance can be helpful for guiding the subsequent treatment decision. One of the major resistant mechanisms is secondary EGFR-T790M mutation. Other mechanisms, such as HER2 and MET amplifications, and PIK3CA mutations, were also reported. However, the mechanisms in the remaining patients are still unknown. In this study, we performed mutational profiling in a cohort of 83 NSCLC patients with TKI-sensitizing EGFR mutations at diagnosis and acquired resistance to three different first-generation EGFR TKIs using targeted next generation sequencing (NGS) of 416 cancer-related genes. In total, we identified 322 genetic alterations with a median of 3 mutations per patient. 61% of patients still exhibit TKI-sensitizing EGFR mutations, and 36% of patients acquired EGFR-T790M. Besides other known resistance mechanisms, we identified TET2 mutations in 12% of patients. Interestingly, we also observed SOX2 amplification in EGFR-T790M negative patients, which are restricted to Icotinib treatment resistance, a drug widely used in Chinese NSCLC patients. Our study uncovered mutational profiles of NSCLC patients with first-generation EGFR TKIs resistance with potential therapeutic implications. PMID:27528220

  15. A Restricted Spectrum of Mutations in the SMAD4 Tumor-Suppressor Gene Underlies Myhre Syndrome

    PubMed Central

    Caputo, Viviana; Cianetti, Luciano; Niceta, Marcello; Carta, Claudio; Ciolfi, Andrea; Bocchinfuso, Gianfranco; Carrani, Eugenio; Dentici, Maria Lisa; Biamino, Elisa; Belligni, Elga; Garavelli, Livia; Boccone, Loredana; Melis, Daniela; Andria, Generoso; Gelb, Bruce D.; Stella, Lorenzo; Silengo, Margherita; Dallapiccola, Bruno; Tartaglia, Marco

    2012-01-01

    Myhre syndrome is a developmental disorder characterized by reduced growth, generalized muscular hypertrophy, facial dysmorphism, deafness, cognitive deficits, joint stiffness, and skeletal anomalies. Here, by performing exome sequencing of a single affected individual and coupling the results to a hypothesis-driven filtering strategy, we establish that heterozygous mutations in SMAD4, which encodes for a transducer mediating transforming growth factor β and bone morphogenetic protein signaling branches, underlie this rare Mendelian trait. Two recurrent de novo SMAD4 mutations were identified in eight unrelated subjects. Both mutations were missense changes altering Ile500 within the evolutionary conserved MAD homology 2 domain, a well known mutational hot spot in malignancies. Structural analyses suggest that the substituted residues are likely to perturb the binding properties of the mutant protein to signaling partners. Although SMAD4 has been established as a tumor suppressor gene somatically mutated in pancreatic, gastrointestinal, and skin cancers, and germline loss-of-function lesions and deletions of this gene have been documented to cause disorders that predispose individuals to gastrointestinal cancer and vascular dysplasias, the present report identifies a previously unrecognized class of mutations in the gene with profound impact on development and growth. PMID:22243968

  16. LMX1B Mutations Cause Hereditary FSGS without Extrarenal Involvement

    PubMed Central

    Boyer, Olivia; Woerner, Stéphanie; Yang, Fan; Oakeley, Edward J.; Linghu, Bolan; Gribouval, Olivier; Tête, Marie-Josèphe; Duca, José S.; Klickstein, Lloyd; Damask, Amy J.; Szustakowski, Joseph D.; Heibel, Françoise; Matignon, Marie; Baudouin, Véronique; Chantrel, François; Champigneulle, Jacqueline; Martin, Laurent; Nitschké, Patrick; Gubler, Marie-Claire; Johnson, Keith J.; Chibout, Salah-Dine

    2013-01-01

    LMX1B encodes a homeodomain-containing transcription factor that is essential during development. Mutations in LMX1B cause nail-patella syndrome, characterized by dysplasia of the patellae, nails, and elbows and FSGS with specific ultrastructural lesions of the glomerular basement membrane (GBM). By linkage analysis and exome sequencing, we unexpectedly identified an LMX1B mutation segregating with disease in a pedigree of five patients with autosomal dominant FSGS but without either extrarenal features or ultrastructural abnormalities of the GBM suggestive of nail-patella–like renal disease. Subsequently, we screened 73 additional unrelated families with FSGS and found mutations involving the same amino acid (R246) in 2 families. An LMX1B in silico homology model suggested that the mutated residue plays an important role in strengthening the interaction between the LMX1B homeodomain and DNA; both identified mutations would be expected to diminish such interactions. In summary, these results suggest that isolated FSGS could result from mutations in genes that are also involved in syndromic forms of FSGS. This highlights the need to include these genes in all diagnostic approaches to FSGS that involve next-generation sequencing. PMID:23687361

  17. Mutations Affecting the SAND Domain of DEAF1 Cause Intellectual Disability with Severe Speech Impairment and Behavioral Problems

    PubMed Central

    Vulto-van Silfhout, Anneke T.; Rajamanickam, Shivakumar; Jensik, Philip J.; Vergult, Sarah; de Rocker, Nina; Newhall, Kathryn J.; Raghavan, Ramya; Reardon, Sara N.; Jarrett, Kelsey; McIntyre, Tara; Bulinski, Joseph; Ownby, Stacy L.; Huggenvik, Jodi I.; McKnight, G. Stanley; Rose, Gregory M.; Cai, Xiang; Willaert, Andy; Zweier, Christiane; Endele, Sabine; de Ligt, Joep; van Bon, Bregje W.M.; Lugtenberg, Dorien; de Vries, Petra F.; Veltman, Joris A.; van Bokhoven, Hans; Brunner, Han G.; Rauch, Anita; de Brouwer, Arjan P.M.; Carvill, Gemma L.; Hoischen, Alexander; Mefford, Heather C.; Eichler, Evan E.; Vissers, Lisenka E.L.M.; Menten, Björn; Collard, Michael W.; de Vries, Bert B.A.

    2014-01-01

    Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1. PMID:24726472

  18. Epistatic interactions between mutations of TACI (TNFRSF13B) and TCF3 result in a severe primary immunodeficiency disorder and systemic lupus erythematosus

    PubMed Central

    Ameratunga, Rohan; Koopmans, Wikke; Woon, See-Tarn; Leung, Euphemia; Lehnert, Klaus; Slade, Charlotte A; Tempany, Jessica C; Enders, Anselm; Steele, Richard; Browett, Peter; Hodgkin, Philip D; Bryant, Vanessa L

    2017-01-01

    Common variable immunodeficiency disorders (CVID) are a group of primary immunodeficiencies where monogenetic causes account for only a fraction of cases. On this evidence, CVID is potentially polygenic and epistatic although there are, as yet, no examples to support this hypothesis. We have identified a non-consanguineous family, who carry the C104R (c.310T>C) mutation of the Transmembrane Activator Calcium-modulator and cyclophilin ligand Interactor (TACI, TNFRSF13B) gene. Variants in TNFRSF13B/TACI are identified in up to 10% of CVID patients, and are associated with, but not solely causative of CVID. The proband is heterozygous for the TNFRSF13B/TACI C104R mutation and meets the Ameratunga et al. diagnostic criteria for CVID and the American College of Rheumatology criteria for systemic lupus erythematosus (SLE). Her son has type 1 diabetes, arthritis, reduced IgG levels and IgA deficiency, but has not inherited the TNFRSF13B/TACI mutation. Her brother, homozygous for the TNFRSF13B/TACI mutation, is in good health despite profound hypogammaglobulinemia and mild cytopenias. We hypothesised that a second unidentified mutation contributed to the symptomatic phenotype of the proband and her son. Whole-exome sequencing of the family revealed a de novo nonsense mutation (T168fsX191) in the Transcription Factor 3 (TCF3) gene encoding the E2A transcription factors, present only in the proband and her son. We demonstrate mutations of TNFRSF13B/TACI impair immunoglobulin isotype switching and antibody production predominantly via T-cell-independent signalling, while mutations of TCF3 impair both T-cell-dependent and -independent pathways of B-cell activation and differentiation. We conclude that epistatic interactions between mutations of the TNFRSF13B/TACI and TCF3 signalling networks lead to the severe CVID-like disorder and SLE in the proband. PMID:29114388

  19. Whole-exome sequencing and targeted gene sequencing provide insights into the role of PALB2 as a male breast cancer susceptibility gene.

    PubMed

    Silvestri, Valentina; Zelli, Veronica; Valentini, Virginia; Rizzolo, Piera; Navazio, Anna Sara; Coppa, Anna; Agata, Simona; Oliani, Cristina; Barana, Daniela; Castrignanò, Tiziana; Viel, Alessandra; Russo, Antonio; Tibiletti, Maria Grazia; Zanna, Ines; Masala, Giovanna; Cortesi, Laura; Manoukian, Siranoush; Azzollini, Jacopo; Peissel, Bernard; Bonanni, Bernardo; Peterlongo, Paolo; Radice, Paolo; Palli, Domenico; Giannini, Giuseppe; Chillemi, Giovanni; Montagna, Marco; Ottini, Laura

    2017-01-01

    Male breast cancer (MBC) is a rare disease whose etiology appears to be largely associated with genetic factors. BRCA1 and BRCA2 mutations account for about 10% of all MBC cases. Thus, a fraction of MBC cases are expected to be due to genetic factors not yet identified. To further explain the genetic susceptibility for MBC, whole-exome sequencing (WES) and targeted gene sequencing were applied to high-risk, BRCA1/2 mutation-negative MBC cases. Germ-line DNA of 1 male and 2 female BRCA1/2 mutation-negative breast cancer (BC) cases from a pedigree showing a first-degree family history of MBC was analyzed with WES. Targeted gene sequencing for the validation of WES results was performed for 48 high-risk, BRCA1/2 mutation-negative MBC cases from an Italian multicenter study of MBC. A case-control series of 433 BRCA1/2 mutation-negative MBC and female breast cancer (FBC) cases and 849 male and female controls was included in the study. WES in the family identified the partner and localizer of BRCA2 (PALB2) c.419delA truncating mutation carried by the proband, her father, and her paternal uncle (all affected with BC) and the N-acetyltransferase 1 (NAT1) c.97C>T nonsense mutation carried by the proband's maternal aunt. Targeted PALB2 sequencing detected the c.1984A>T nonsense mutation in 1 of the 48 BRCA1/2 mutation-negative MBC cases. NAT1 c.97C>T was not found in the case-control series. These results add strength to the evidence showing that PALB2 is involved in BC risk for both sexes and indicate that consideration should be given to clinical testing of PALB2 for BRCA1/2 mutation-negative families with multiple MBC and FBC cases. Cancer 2017;123:210-218. © 2016 American Cancer Society. © 2016 American Cancer Society.

  20. Mutations associated with occult hepatitis B in HIV-positive South Africans.

    PubMed

    Powell, Eleanor A; Gededzha, Maemu P; Rentz, Michael; Rakgole, Nare J; Selabe, Selokela G; Seleise, Tebogo A; Mphahlele, M Jeffrey; Blackard, Jason T

    2015-03-01

    Occult hepatitis B is characterized by the absence of hepatitis B surface antigen (HBsAg) but the presence of HBV DNA. Because diagnosis of hepatitis B virus (HBV) typically includes HBsAg detection, occult HBV remains largely undiagnosed. Occult HBV is associated with increased risk of hepatocellular carcinoma, reactivation to chronic HBV during immune suppression, and transmission during blood transfusion and liver transplant. The mechanisms leading to occult HBV infection are unclear, although viral mutations are likely a significant factor. In this study, sera from 394 HIV-positive South Africans were tested for HBV DNA and HBsAg. For patients with detectable HBV DNA, the overlapping surface and polymerase open reading frames (ORFs) were sequenced. Occult-associated mutations-those mutations found exclusively in individuals with occult HBV infection but not in individuals with chronic HBV infection from the same cohort or GenBank references-were identified. Ninety patients (22.8%) had detectable HBV DNA. Of these, 37 had detectable HBsAg, while 53 lacked detectable surface antigen. The surface and polymerase ORFs were cloned successfully for 19 patients with chronic HBV and 30 patients with occult HBV. In total, 235 occult-associated mutations were identified. Ten occult-associated mutations were identified in more than one patient. Additionally, 15 amino acid positions had two distinct occult-associated mutations at the same residue. Occult-associated mutations were common and present in all regions of the surface and polymerase ORFs. Further study is underway to determine the effects of these mutations on viral replication and surface antigen expression in vitro. © 2014 Wiley Periodicals, Inc.

  1. Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data.

    PubMed

    Haricharan, Svasti; Bainbridge, Matthew N; Scheet, Paul; Brown, Powel H

    2014-07-01

    Breast cancer is one of the most commonly diagnosed cancers in women. While there are several effective therapies for breast cancer and important single gene prognostic/predictive markers, more than 40,000 women die from this disease every year. The increasing availability of large-scale genomic datasets provides opportunities for identifying factors that influence breast cancer survival in smaller, well-defined subsets. The purpose of this study was to investigate the genomic landscape of various breast cancer subtypes and its potential associations with clinical outcomes. We used statistical analysis of sequence data generated by the Cancer Genome Atlas initiative including somatic mutation load (SML) analysis, Kaplan-Meier survival curves, gene mutational frequency, and mutational enrichment evaluation to study the genomic landscape of breast cancer. We show that ER(+), but not ER(-), tumors with high SML associate with poor overall survival (HR = 2.02). Further, these high mutation load tumors are enriched for coincident mutations in both DNA damage repair and ER signature genes. While it is known that somatic mutations in specific genes affect breast cancer survival, this study is the first to identify that SML may constitute an important global signature for a subset of ER(+) tumors prone to high mortality. Moreover, although somatic mutations in individual DNA damage genes affect clinical outcome, our results indicate that coincident mutations in DNA damage response and signature ER genes may prove more informative for ER(+) breast cancer survival. Next generation sequencing may prove an essential tool for identifying pathways underlying poor outcomes and for tailoring therapeutic strategies.

  2. Exome sequencing in schizophrenic patients with high levels of homozygosity identifies novel and extremely rare mutations in the GABA/glutamatergic pathways.

    PubMed

    Giacopuzzi, Edoardo; Gennarelli, Massimo; Minelli, Alessandra; Gardella, Rita; Valsecchi, Paolo; Traversa, Michele; Bonvicini, Cristian; Vita, Antonio; Sacchetti, Emilio; Magri, Chiara

    2017-01-01

    Inbreeding is a known risk factor for recessive Mendelian diseases and previous studies have suggested that it could also play a role in complex disorders, such as psychiatric diseases. Recent inbreeding results in the presence of long runs of homozygosity (ROHs) along the genome, which are also defined as autozygosity regions. Genetic variants in these regions have two alleles that are identical by descent, thus increasing the odds of bearing rare recessive deleterious mutations due to a homozygous state. A recent study showed a suggestive enrichment of long ROHs in schizophrenic patients, suggesting that recent inbreeding could play a role in the disease. To better understand the impact of autozygosity on schizophrenia risk, we selected, from a cohort of 180 Italian patients, seven subjects with extremely high numbers of large ROHs that were likely due to recent inbreeding and characterized the mutational landscape within their ROHs using Whole Exome Sequencing and, gene set enrichment analysis. We identified a significant overlap (17%; empirical p-value = 0.0171) between genes inside ROHs affected by low frequency functional homozygous variants (107 genes) and the group of most promising candidate genes mutated in schizophrenia. Moreover, in four patients, we identified novel and extremely rare damaging mutations in the genes involved in neurodevelopment (MEGF8) and in GABA/glutamatergic synaptic transmission (GAD1, FMN1, ANO2). These results provide insights into the contribution of rare recessive mutations and inbreeding as risk factors for schizophrenia. ROHs that are likely due to recent inbreeding harbor a combination of predisposing low-frequency variants and extremely rare variants that have a high impact on pivotal biological pathways implicated in the disease. In addition, this study confirms that focusing on patients with high levels of homozygosity could be a useful prioritization strategy for discovering new high-impact mutations in genetically complex disorders.

  3. Characterizing genomic differences of human cancer stratified by the TP53 mutation status.

    PubMed

    Wang, Mengyao; Yang, Chao; Zhang, Xiuqing; Li, Xiangchun

    2018-06-01

    The key roles of the TP53 mutation in cancer have been well established. TP53 is the most frequently mutated gene, and its inactivation is widespread among human cancer types. However, the landscape of genomic alterations in human cancers stratified by the TP53 mutation has not yet been described. We obtained somatic mutation and copy number change data of 6551 regular-mutated samples from the Cancer Genome Atlas (TCGA) and compared significantly mutated genes (SMGs), copy number alterations, mutational signatures and mutational strand asymmetries between cancer samples with and without the TP53 mutation. We identified 126 SMGs, 30 of which were statistically significant in both the TP53 mutant and wild-type groups. Several SMGs, such as VHL, SMAD4 and PTEN, showed a mutation bias towards the TP53 wild-type group, whereas ATRX, IDH1 and RB1 were more prevalent in the TP53 mutant group. Five mutational signatures were extracted from the combined TCGA dataset on which mutational asymmetry analysis was performed, revealing that the TP53 mutant group exhibited substantially greater replication and transcription biases. Furthermore, we found that alterations of multiple genes in a merged mutually exclusive network composed of BRAF, EGFR, PAK1, PIK3CA, PTEN, APC and TERT were related to shortened survival in the TP53 wild-type group. In summary, we characterized the genomic differences and similarities underlying human cancers stratified by the TP53 mutation and identified multi-gene alterations of a merged mutually exclusive network to be a poor prognostic factor for the TP53 wild-type group.

  4. Heterogeneous Pulmonary Phenotypes Associated With Mutations in the Thyroid Transcription Factor Gene NKX2-1

    PubMed Central

    Deterding, Robin R.; Wert, Susan E.; White, Frances V.; Dishop, Megan K.; Alfano, Danielle N.; Halbower, Ann C.; Planer, Benjamin; Stephan, Mark J.; Uchida, Derek A.; Williames, Lee D.; Rosenfeld, Jill A.; Lebel, Robert Roger; Young, Lisa R.; Cole, F. Sessions; Nogee, Lawrence M.

    2013-01-01

    Background: Mutations in the gene encoding thyroid transcription factor, NKX2-1, result in neurologic abnormalities, hypothyroidism, and neonatal respiratory distress syndrome (RDS) that together are known as the brain-thyroid-lung syndrome. To characterize the spectrum of associated pulmonary phenotypes, we identified individuals with mutations in NKX2-1 whose primary manifestation was respiratory disease. Methods: Retrospective and prospective approaches identified infants and children with unexplained diffuse lung disease for NKX2-1 sequencing. Histopathologic results and electron micrographs were assessed, and immunohistochemical analysis for surfactant-associated proteins was performed in a subset of 10 children for whom lung tissue was available. Results: We identified 16 individuals with heterozygous missense, nonsense, and frameshift mutations and five individuals with heterozygous, whole-gene deletions of NKX2-1. Neonatal RDS was the presenting pulmonary phenotype in 16 individuals (76%), interstitial lung disease in four (19%), and pulmonary fibrosis in one adult family member. Altogether, 12 individuals (57%) had the full triad of neurologic, thyroid, and respiratory manifestations, but five (24%) had only pulmonary symptoms at the time of presentation. Recurrent respiratory infections were a prominent feature in nine subjects. Lung histopathology demonstrated evidence of disrupted surfactant homeostasis in the majority of cases, and at least five cases had evidence of disrupted lung growth. Conclusions: Patients with mutations in NKX2-1 may present with pulmonary manifestations in the newborn period or during childhood when thyroid or neurologic abnormalities are not apparent. Surfactant dysfunction and, in more severe cases, disrupted lung development are likely mechanisms for the respiratory disease. PMID:23430038

  5. Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor gene NKX2-1.

    PubMed

    Hamvas, Aaron; Deterding, Robin R; Wert, Susan E; White, Frances V; Dishop, Megan K; Alfano, Danielle N; Halbower, Ann C; Planer, Benjamin; Stephan, Mark J; Uchida, Derek A; Williames, Lee D; Rosenfeld, Jill A; Lebel, Robert Roger; Young, Lisa R; Cole, F Sessions; Nogee, Lawrence M

    2013-09-01

    Mutations in the gene encoding thyroid transcription factor, NKX2-1, result in neurologic abnormalities, hypothyroidism, and neonatal respiratory distress syndrome (RDS) that together are known as the brain-thyroid-lung syndrome. To characterize the spectrum of associated pulmonary phenotypes, we identified individuals with mutations in NKX2-1 whose primary manifestation was respiratory disease. Retrospective and prospective approaches identified infants and children with unexplained diffuse lung disease for NKX2-1 sequencing. Histopathologic results and electron micrographs were assessed, and immunohistochemical analysis for surfactant-associated proteins was performed in a subset of 10 children for whom lung tissue was available. We identified 16 individuals with heterozygous missense, nonsense, and frameshift mutations and five individuals with heterozygous, whole-gene deletions of NKX2-1. Neonatal RDS was the presenting pulmonary phenotype in 16 individuals (76%), interstitial lung disease in four (19%), and pulmonary fibrosis in one adult family member. Altogether, 12 individuals (57%) had the full triad of neurologic, thyroid, and respiratory manifestations, but five (24%) had only pulmonary symptoms at the time of presentation. Recurrent respiratory infections were a prominent feature in nine subjects. Lung histopathology demonstrated evidence of disrupted surfactant homeostasis in the majority of cases, and at least five cases had evidence of disrupted lung growth. Patients with mutations in NKX2-1 may present with pulmonary manifestations in the newborn period or during childhood when thyroid or neurologic abnormalities are not apparent. Surfactant dysfunction and, in more severe cases, disrupted lung development are likely mechanisms for the respiratory disease.

  6. BMP15 Mutations Associated With Primary Ovarian Insufficiency Reduce Expression, Activity, or Synergy With GDF9.

    PubMed

    Patiño, Liliana C; Walton, Kelly L; Mueller, Thomas D; Johnson, Katharine E; Stocker, William; Richani, Dulama; Agapiou, David; Gilchrist, Robert B; Laissue, Paul; Harrison, Craig A

    2017-03-01

    Bone morphogenetic protein (BMP)15 is an oocyte-specific growth factor, which, together with growth differentiation factor (GDF) 9, regulates folliculogenesis and ovulation rate. Multiple mutations in BMP15 have been identified in women with primary ovarian insufficiency (POI), supporting a pathogenic role; however, the underlying biological mechanism of many of these mutants remains unresolved. To determine how mutations associated with ovarian dysfunction alter the biological activity of human BMP15. The effects of 10 mutations in BMP15 on protein production, activation of granulosa cells, and synergy with GDF9 were assessed. Sequencing of 35 patients with POI identified both an unrecognized BMP15 variant (c.986G>A, R329H) and a variant (c.581T>C, F194S) previously associated with the condition. Assessing expression and activity of these and 8 other BMP15 mutants identified: (1) multiple variants, including L148P, F194S, and Y235C, with reduced mature protein production; (2) three variants (R138H, A180T, and R329H) with ∼fourfold lower activity than wild-type BMP15; and (3) 3 variants (R68W, F194S, and N196K) with a significantly reduced ability to synergize with GDF9. Mutations in BMP15 associated with POI reduce mature protein production, activity, or synergy with GDF9. The latter effect is perhaps most interesting given that interactions with GDF9 most likely underlie the physiology of BMP15 in the human ovary. Copyright © 2017 by the Endocrine Society

  7. Hyperhomocysteinemia. An emerging and important risk factor for thromboembolic and cardiovascular disease.

    PubMed

    Guba, S C; Fink, L M; Fonseca, V

    1996-12-01

    Homocysteine is an important contributing factor to thrombosis, vascular injury, and vascular disease. Mechanisms for homocysteine-induced vascular disease include alterations in coagulation as well as endothelial cell and vessel wall injury. Hyperhomocysteinemia (HH[e]) can occur when homocysteine metabolism is altered by mutations in enzymes responsible for homocysteine metabolism. Characterization of these mutations identifies patient groups at risk for vascular disease. Treatment of HH(e) consists of vitamins and raises the possibility that some forms of vascular disease may be easily, safely, and inexpensively treated.

  8. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We report the characterization of a four-generation large Chinese family with ADOA. Black-Right-Pointing-Pointer We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. Black-Right-Pointing-Pointer We do not find any mitochondrial DNA mutations associated with optic atrophy. Black-Right-Pointing-Pointer Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressivemore » visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.« less

  9. Clinical Aspects of Type-1 Long-QT Syndrome by Location, Coding Type, and Biophysical Function of Mutations Involving the KCNQ1 Gene

    PubMed Central

    Moss, Arthur J.; Shimizu, Wataru; Wilde, Arthur A.M.; Towbin, Jeffrey A.; Zareba, Wojciech; Robinson, Jennifer L.; Qi, Ming; Vincent, G. Michael; Ackerman, Michael J.; Kaufman, Elizabeth S.; Hofman, Nynke; Seth, Rahul; Kamakura, Shiro; Miyamoto, Yoshihiro; Goldenberg, Ilan; Andrews, Mark L.; McNitt, Scott

    2012-01-01

    Background Type-1 long-QT syndrome (LQTS) is caused by loss-of-function mutations in the KCNQ1-encoded IKs cardiac potassium channel. We evaluated the effect of location, coding type, and biophysical function of KCNQ1 mutations on the clinical phenotype of this disorder. Methods and Results We investigated the clinical course in 600 patients with 77 different KCNQ1 mutations in 101 proband-identified families derived from the US portion of the International LQTS Registry (n=425), the Netherlands’ LQTS Registry (n=93), and the Japanese LQTS Registry (n=82). The Cox proportional hazards survivorship model was used to evaluate the independent contribution of clinical and genetic factors to the first occurrence of time-dependent cardiac events from birth through age 40 years. The clinical characteristics, distribution of mutations, and overall outcome event rates were similar in patients enrolled from the 3 geographic regions. Biophysical function of the mutations was categorized according to dominant-negative (>50%) or haploinsufficiency (≤50%) reduction in cardiac repolarizing IKs potassium channel current. Patients with transmembrane versus C-terminus mutations (hazard ratio, 2.06; P<0.001) and those with mutations having dominant-negative versus haploinsufficiency ion channel effects (hazard ratio, 2.26; P<0.001) were at increased risk for cardiac events, and these genetic risks were independent of traditional clinical risk factors. Conclusions This genotype–phenotype study indicates that in type-1 LQTS, mutations located in the transmembrane portion of the ion channel protein and the degree of ion channel dysfunction caused by the mutations are important independent risk factors influencing the clinical course of this disorder. PMID:17470695

  10. Mutations in the Norrie disease gene.

    PubMed

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. A comparison of somatic mutational spectra in healthy study populations from Russia, Sweden and USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noori, P; Hou, S; Jones, I M

    Comparison of mutation spectra at the hypoxanthine-phosphoribosyl transferase (HPRT) gene of peripheral blood T lymphocytes may provide insight into the aetiology of somatic mutation contributing to carcinogenesis and other diseases. To increase knowledge of mutation spectra in healthy people, we have analyzed HPRT mutant T-cells of 50 healthy Russians originally recruited as controls for a study of Chernobyl clean-up workers (Jones et al. Radiation Res. 158, 2002, 424). Reverse transcriptase polymerase chain reactions and DNA sequencing identified 161 independent mutations among 176 thioguanine resistant mutants. Forty (40) mutations affected splicing mechanisms and 27 deletions or insertions of 1 to 60more » nucleotides were identified. Ninety four (94) single base substitutions were identified, including 62 different mutations at 55 different nucleotide positions, of which 19 had not previously been reported in human T-cells. Comparison of this base substitution spectrum with mutation spectra in a USA (Burkhart-Schultz et al. Carcinogenesis 17, 1996, 1871) and two Swedish populations (Podlutsky et al, Carcinogenesis 19, 1998, 557, Podlutsky et al. Mutation Res. 431, 1999, 325) revealed similarity in the type, frequency and distribution of mutations in the four spectra, consistent with aetiologies inherent in human metabolism. There were 15-19 identical mutations in the three pair-wise comparisons of Russian with USA and Swedish spectra. Intriguingly, there were 21 mutations unique to the Russian spectrum, and comparison by the Monte Carlo method of Adams and Skopek (J. Mol. Biol. 194, 1987, 391) indicated that the Russian spectrum was different from both Swedish spectra (P=0.007, 0.002) but not different from the USA spectrum (P=0.07), when Bonferroni correction for multiple comparisons was made (p < 0.008 required for significance). Age and smoking did not account for these differences. Other factors causing mutational differences need to be explored.« less

  12. Shared genetic predisposition in rheumatoid arthritis-interstitial lung disease and familial pulmonary fibrosis.

    PubMed

    Juge, Pierre-Antoine; Borie, Raphaël; Kannengiesser, Caroline; Gazal, Steven; Revy, Patrick; Wemeau-Stervinou, Lidwine; Debray, Marie-Pierre; Ottaviani, Sébastien; Marchand-Adam, Sylvain; Nathan, Nadia; Thabut, Gabriel; Richez, Christophe; Nunes, Hilario; Callebaut, Isabelle; Justet, Aurélien; Leulliot, Nicolas; Bonnefond, Amélie; Salgado, David; Richette, Pascal; Desvignes, Jean-Pierre; Lioté, Huguette; Froguel, Philippe; Allanore, Yannick; Sand, Olivier; Dromer, Claire; Flipo, René-Marc; Clément, Annick; Béroud, Christophe; Sibilia, Jean; Coustet, Baptiste; Cottin, Vincent; Boissier, Marie-Christophe; Wallaert, Benoit; Schaeverbeke, Thierry; Dastot le Moal, Florence; Frazier, Aline; Ménard, Christelle; Soubrier, Martin; Saidenberg, Nathalie; Valeyre, Dominique; Amselem, Serge; Boileau, Catherine; Crestani, Bruno; Dieudé, Philippe

    2017-05-01

    Despite its high prevalence and mortality, little is known about the pathogenesis of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). Given that familial pulmonary fibrosis (FPF) and RA-ILD frequently share the usual pattern of interstitial pneumonia and common environmental risk factors, we hypothesised that the two diseases might share additional risk factors, including FPF-linked genes. Our aim was to identify coding mutations of FPF-risk genes associated with RA-ILD.We used whole exome sequencing (WES), followed by restricted analysis of a discrete number of FPF-linked genes and performed a burden test to assess the excess number of mutations in RA-ILD patients compared to controls.Among the 101 RA-ILD patients included, 12 (11.9%) had 13 WES-identified heterozygous mutations in the TERT , RTEL1 , PARN or SFTPC coding regions . The burden test, based on 81 RA-ILD patients and 1010 controls of European ancestry, revealed an excess of TERT , RTEL1 , PARN or SFTPC mutations in RA-ILD patients (OR 3.17, 95% CI 1.53-6.12; p=9.45×10 -4 ). Telomeres were shorter in RA-ILD patients with a TERT , RTEL1 or PARN mutation than in controls (p=2.87×10 -2 ).Our results support the contribution of FPF-linked genes to RA-ILD susceptibility. Copyright ©ERS 2017.

  13. Emergence of resistance mutations in simian immunodeficiency virus (SIV)-infected rhesus macaques receiving non-suppressive antiretroviral therapy (ART)

    DOE PAGES

    Policicchio, Benjamin Bruno; Sette, Paola; Xu, Cuiling; ...

    2018-02-21

    Two SIVmac251-infected rhesus macaques received tenofovir/emtricitabine with raltegravir intensification. Viral rebound occurred during treatment and sequencing of reverse transcriptase and integrase genes identified multiple resistance mutations. Similar to HIV infection, antiretroviral-resistance mutations may occur in SIV-infected nonhuman primates receiving nonsuppressive ART. As ART administration to nonhuman primates is currently dramatically expanding, fueled by both cure research and the study of HIV-related comorbidities, viral resistance should be factored in the study design and data interpretation

  14. Emergence of resistance mutations in simian immunodeficiency virus (SIV)-infected rhesus macaques receiving non-suppressive antiretroviral therapy (ART)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Policicchio, Benjamin Bruno; Sette, Paola; Xu, Cuiling

    Two SIVmac251-infected rhesus macaques received tenofovir/emtricitabine with raltegravir intensification. Viral rebound occurred during treatment and sequencing of reverse transcriptase and integrase genes identified multiple resistance mutations. Similar to HIV infection, antiretroviral-resistance mutations may occur in SIV-infected nonhuman primates receiving nonsuppressive ART. As ART administration to nonhuman primates is currently dramatically expanding, fueled by both cure research and the study of HIV-related comorbidities, viral resistance should be factored in the study design and data interpretation

  15. Comprehensive Genomic Characterization of Upper Tract Urothelial Carcinoma.

    PubMed

    Moss, Tyler J; Qi, Yuan; Xi, Liu; Peng, Bo; Kim, Tae-Beom; Ezzedine, Nader E; Mosqueda, Maribel E; Guo, Charles C; Czerniak, Bogdan A; Ittmann, Michael; Wheeler, David A; Lerner, Seth P; Matin, Surena F

    2017-10-01

    Upper urinary tract urothelial cancer (UTUC) may have unique etiologic and genomic factors compared to bladder cancer. To characterize the genomic landscape of UTUC and provide insights into its biology using comprehensive integrated genomic analyses. We collected 31 untreated snap-frozen UTUC samples from two institutions and carried out whole-exome sequencing (WES) of DNA, RNA sequencing (RNAseq), and protein analysis. Adjusting for batch effects, consensus mutation calls from independent pipelines identified DNA mutations, gene expression clusters using unsupervised consensus hierarchical clustering (UCHC), and protein expression levels that were correlated with relevant clinical variables, The Cancer Genome Atlas, and other published data. WES identified mutations in FGFR3 (74.1%; 92% low-grade, 60% high-grade), KMT2D (44.4%), PIK3CA (25.9%), and TP53 (22.2%). APOBEC and CpG were the most common mutational signatures. UCHC of RNAseq data segregated samples into four molecular subtypes with the following characteristics. Cluster 1: no PIK3CA mutations, nonsmokers, high-grade

  16. Risk factors and outcomes for the Q151M and T69 insertion HIV-1 resistance mutations in historic UK data.

    PubMed

    Stirrup, Oliver T; Dunn, David T; Tostevin, Anna; Sabin, Caroline A; Pozniak, Anton; Asboe, David; Cox, Alison; Orkin, Chloe; Martin, Fabiola; Cane, Patricia

    2018-04-16

    The prevalence of HIV-1 resistance to antiretroviral therapies (ART) has declined in high-income countries over recent years, but drug resistance remains a substantial concern in many low and middle-income countries. The Q151M and T69 insertion (T69i) resistance mutations in the viral reverse transcriptase gene can reduce susceptibility to all nucleoside/tide analogue reverse transcriptase inhibitors, motivating the present study to investigate the risk factors and outcomes associated with these mutations. We considered all data in the UK HIV Drug Resistance Database for blood samples obtained in the period 1997-2014. Where available, treatment history and patient outcomes were obtained through linkage to the UK Collaborative HIV Cohort study. A matched case-control approach was used to assess risk factors associated with the appearance of each of the mutations in ART-experienced patients, and survival analysis was used to investigate factors associated with viral suppression. A further analysis using matched controls was performed to investigate the impact of each mutation on survival. A total of 180 patients with Q151M mutation and 85 with T69i mutation were identified, almost entirely from before 2006. Occurrence of both the Q151M and T69i mutations was strongly associated with cumulative period of virological failure while on ART, and for Q151M there was a particular positive association with use of stavudine and negative association with use of boosted-protease inhibitors. Subsequent viral suppression was negatively associated with viral load at sequencing for both mutations, and for Q151M we found a negative association with didanosine use but a positive association with boosted-protease inhibitor use. The results obtained in these analyses were also consistent with potentially large associations with other drugs. Analyses were inconclusive regarding associations between the mutations and mortality, but mortality was high for patients with low CD4 at detection. The Q151M and T69i resistance mutations are now very rare in the UK. Our results suggest that good outcomes are possible for people with these mutations. However, in this historic sample, viral load and CD4 at detection were important factors in determining prognosis.

  17. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing

    PubMed Central

    Foster, Patricia L.; Lee, Heewook; Popodi, Ellen; Townes, Jesse P.; Tang, Haixu

    2015-01-01

    A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1–2 × 10−3 mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3′ base can affect the mutability of a purine by oxidative damage by as much as eightfold. PMID:26460006

  18. An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes.

    PubMed

    Barbon, Elena; Pignani, Silvia; Branchini, Alessio; Bernardi, Francesco; Pinotti, Mirko; Bovolenta, Matteo

    2016-06-24

    Tailored approaches to restore defective transcription responsible for severe diseases have been poorly explored. We tested transcription activator-like effectors fused to an activation domain (TALE-TFs) in a coagulation factor VII (FVII) deficiency model. In this model, the deficiency is caused by the -94C > G or -61T > G mutation, which abrogate the binding of Sp1 or HNF-4 transcription factors. Reporter assays in hepatoma HepG2 cells naturally expressing FVII identified a single TALE-TF (TF4) that, by targeting the region between mutations, specifically trans-activated both the variant (>100-fold) and wild-type (20-40-fold) F7 promoters. Importantly, in the genomic context of transfected HepG2 and transduced primary hepatocytes, TF4 increased F7 mRNA and protein levels (2- to 3-fold) without detectable off-target effects, even for the homologous F10 gene. The ectopic F7 expression in renal HEK293 cells was modestly affected by TF4 or by TALE-TF combinations. These results provide experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations.

  19. Familial cleidocranial dysplasia misdiagnosed as rickets over three generations.

    PubMed

    Franceschi, Roberto; Maines, Evelina; Fedrizzi, Michela; Piemontese, Maria Rosaria; De Bonis, Patrizia; Agarwal, Nivedita; Bellizzi, Maria; Di Palma, Annunziata

    2015-10-01

    Cleidocranial dysplasia (CCD) is a rare autosomal dominant skeletal dysplasia characterized by hypoplastic clavicles, late closure of the fontanels, dental problems and other skeletal features. CCD is caused by mutations, deletions or duplications in runt-related transcription factor 2 (RUNX2), which encodes for a protein essential for osteoblast differentiation and chondrocyte maturation. We describe three familial cases of CCD, misdiagnosed as rickets over three generations. No mutations were detected on standard DNA sequencing of RUNX2, but a novel deletion was identified on quantitative polymerase chain reaction (qPCR) and multiple ligation-dependent probe amplification (MLPA). The present cases indicate that CCD could be misdiagnosed as rickets, leading to inappropriate treatment, and confirm that mutations in RUNX2 are not able to be identified on standard DNA sequencing in all CCD patients, but can be identified on qPCR and MLPA. © 2015 Japan Pediatric Society.

  20. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    PubMed

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  1. Search for Novel Candidate Mutations for Metronidazole Resistance in Helicobacter pylori Using Next-Generation Sequencing

    PubMed Central

    Binh, Tran Thanh; Suzuki, Rumiko; Trang, Tran Thi Huyen; Kwon, Dong Hyeon

    2015-01-01

    Metronidazole resistance is a key factor associated with Helicobacter pylori treatment failure. Although this resistance is mainly associated with mutations in the rdxA and frxA genes, the question of whether metronidazole resistance is caused by the inactivation of frxA alone is still debated. Furthermore, it is unclear whether there are other mutations involved in addition to the two genes that are associated with resistance. A metronidazole-resistant strain was cultured from the metronidazole-susceptible H. pylori strain 26695-1 by exposure to low concentrations of metronidazole. The genome sequences of both susceptible and resistant H. pylori strains were determined by Illumina next-generation sequencing, from which putative candidate resistance mutations were identified. Natural transformation was used to introduce PCR products containing candidate mutations into the susceptible parent strain 26695-1, and the metronidazole MIC was determined for each strain. Mutations in frxA (hp0642), rdxA (hp0954), and rpsU (hp0562) were confirmed by the Sanger method. The mutated sequence in rdxA was successfully transformed into strain 26695-1, and the transformants showed resistance to metronidazole. The transformants containing a single mutation in rdxA showed a low MIC (16 mg/liter), while those containing mutations in both rdxA and frxA showed a higher MIC (48 mg/liter). No transformants containing a single mutation in frxA or rpsU were obtained. Next-generation sequencing was used to identify mutations related to drug resistance. We confirmed that the mutations in rdxA are mainly associated with metronidazole resistance, and mutations in frxA are able to enhance H. pylori resistance only in the presence of rdxA mutations. Moreover, mutations in rpsU may play a role in metronidazole resistance. PMID:25645832

  2. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases

    PubMed Central

    Xu, Qifang; Malecka, Kimberly L.; Fink, Lauren; Jordan, E. Joseph; Duffy, Erin; Kolander, Samuel; Peterson, Jeffrey; Dunbrack, Roland L.

    2016-01-01

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an “autophosphorylation complex.” We developed and applied a structural bioinformatics method to identify all such autophosphorylation kinase complexes in X-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which 5 complexes had not previously been described in the publications describing the crystal structures. These 5 consist of tyrosine residues in the N-terminal juxtamembrane regions of colony stimulating factor 1 receptor (CSF1R, Tyr561) and EPH receptor A2 (EPHA2, Tyr594), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr394) and insulin-like growth factor 1 receptor (IGF1R, Tyr1166), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser142). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro447 to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets. PMID:26628682

  3. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations—a review

    PubMed Central

    Stewart, Erin L.; Tan, Samuel Zhixing; Liu, Geoffrey

    2015-01-01

    Lung cancer is the leading cause of cancer related deaths in Canada with non-small cell lung cancer (NSCLC) being the predominant form of the disease. Tumor characterization can identify cancer-driving mutations as treatment targets. One of the most successful examples of cancer targeted therapy is inhibition of mutated epidermal growth factor receptor (EGFR), which occurs in ~10-30% of NSCLC patients. While this treatment has benefited many patients with activating EGFR mutations, almost all who initially benefited will eventually acquire resistance. Approximately 50% of cases of acquired resistance (AR) are due to a secondary T790M mutation in exon 20 of the EGFR gene; however, many of the remaining mechanisms of resistance are still unknown. Much work has been done to elucidate the remaining mechanisms of resistance. This review aims to highlight both the mechanisms of resistance that have already been identified in patients and potential novel mechanisms identified in preclinical models which have yet to be validated in the patient settings. PMID:25806347

  4. Copy Number Variants and Exome Sequencing Analysis in Six Pairs of Chinese Monozygotic Twins Discordant for Congenital Heart Disease.

    PubMed

    Xu, Yuejuan; Li, Tingting; Pu, Tian; Cao, Ruixue; Long, Fei; Chen, Sun; Sun, Kun; Xu, Rang

    2017-12-01

    Congenital heart disease (CHD) is one of the most common birth defects. More than 200 susceptibility loci have been identified for CHDs, yet a large part of the genetic risk factors remain unexplained. Monozygotic (MZ) twins are thought to be completely genetically identical; however, discordant phenotypes have been found in MZ twins. Recent studies have demonstrated genetic differences between MZ twins. We aimed to test whether copy number variants (CNVs) and/or genetic mutation differences play a role in the etiology of CHDs by using single nucleotide polymorphism (SNP) genotyping arrays and whole exome sequencing of twin pairs discordant for CHDs. Our goal was to identify mutations present only in the affected twins, which could identify novel candidates for CHD susceptibility loci. We present a comprehensive analysis for the CNVs and genetic mutation results of the selected individuals but detected no consistent differences within the twin pairs. Our study confirms that chromosomal structure or genetic mutation differences do not seem to play a role in the MZ twins discordant for CHD.

  5. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease.

    PubMed

    Hamblin, Terry J; Orchard, Jenny A; Ibbotson, Rachel E; Davis, Zadie; Thomas, Peter W; Stevenson, Freda K; Oscier, David G

    2002-02-01

    Although the presence or absence of somatic mutations in the immunoglobulin variable region (IgV(H)) genes in chronic lymphocytic leukemia (B-CLL) identifies subtypes with very different prognoses, the assay is technically complex and unavailable to most laboratories. CD38 expression has been suggested as a surrogate marker for the 2 subtypes. IgV(H) mutations and CD38 expression in 145 patients with B-CLL with a long follow-up were compared. The 2 assays gave discordant results in 41 patients (28.3%). Multivariate analysis demonstrated that Binet stage, IgV(H) mutations and CD38 were independent prognostic indicators. Median survival time in patients whose cells had unmutated IgV(H) genes and expressed CD38 was 8 years; in those with mutated IgV(H) genes not expressing CD38, it was 26 years. For those with discordant results, median survival time was 15 years. Thus, although CD38 expression does not identify the same 2 subsets as IgV(H) mutations in CLL, it is an independent risk factor that can be used with IgV(H) mutations and clinical stage to select patients with B-CLL with the worst prognoses. Using cryopreserved cells taken at intervals during the course of the disease, however, changes of CD38 expression over time were demonstrated in 10 of 41 patients. Causes of the variation of CD38 expression require further study. Additional prospective studies are required for comparing CD38 expression with other prognostic factors and for taking sequential measurements during the course of the disease.

  6. Two novel mutations of fibrillin-1 gene correlate with different phenotypes of Marfan syndrome in Chinese families.

    PubMed

    Zhao, Feng; Pan, Xinyuan; Zhao, Kanxing; Zhao, Chen

    2013-01-01

    To identify the causative mutations in two Chinese families with autosomal dominant Marfan syndrome and to describe the associated phenotypes. Complete physical, ophthalmic, and cardiovascular examinations were given to the patients and unaffected individuals in the two families. Exclusive linkage mapping was performed for transforming growth factor beta receptor II (TGFBR2) and fibrillin-1 (FBN1) loci in both families. The entire coding region and flanking splice sites of the FBN1 gene were screened for mutations in the two families with Sanger sequencing. The potential mutations of FBN1 were tested in 100 normal controls. Lens dislocation was observed in two out of ten patients in the MF1 family and all patients in the MF2 family. However, the MF1 family displayed more severe cardiovascular and skeletal system involvement compared with the MF2 family. The transforming growth factor beta receptor II locus was excluded in both families by linkage analysis. A maximum multipoint lod score score of 2.83 was obtained for marker D15S992 (located in the FBN1 gene) in the MF1 family and 1.51 for the same marker in the MF2 family. Two novel mutations of FBN1, p.C271* and p.C637Y, were identified in the MF1 and MF2 families, respectively. Genotype-phenotype correlations in this study indicate that nonsense mutations of FBN1 may correlate with relatively severe systemic phenotypes when compared with cysteine substitutions, the most common type of FBN1 mutations. Genetic diagnosis for patients with Marfan syndrome would help with genetic counseling, clinical intervention, and prognosis.

  7. Two novel mutations of fibrillin-1 gene correlate with different phenotypes of Marfan syndrome in Chinese families

    PubMed Central

    Zhao, Feng; Pan, Xinyuan; Zhao, Kanxing

    2013-01-01

    Purpose To identify the causative mutations in two Chinese families with autosomal dominant Marfan syndrome and to describe the associated phenotypes. Methods Complete physical, ophthalmic, and cardiovascular examinations were given to the patients and unaffected individuals in the two families. Exclusive linkage mapping was performed for transforming growth factor beta receptor II (TGFBR2) and fibrillin-1 (FBN1) loci in both families. The entire coding region and flanking splice sites of the FBN1 gene were screened for mutations in the two families with Sanger sequencing. The potential mutations of FBN1 were tested in 100 normal controls. Results Lens dislocation was observed in two out of ten patients in the MF1 family and all patients in the MF2 family. However, the MF1 family displayed more severe cardiovascular and skeletal system involvement compared with the MF2 family. The transforming growth factor beta receptor II locus was excluded in both families by linkage analysis. A maximum multipoint lod score score of 2.83 was obtained for marker D15S992 (located in the FBN1 gene) in the MF1 family and 1.51 for the same marker in the MF2 family. Two novel mutations of FBN1, p.C271* and p.C637Y, were identified in the MF1 and MF2 families, respectively. Conclusions Genotype-phenotype correlations in this study indicate that nonsense mutations of FBN1 may correlate with relatively severe systemic phenotypes when compared with cysteine substitutions, the most common type of FBN1 mutations. Genetic diagnosis for patients with Marfan syndrome would help with genetic counseling, clinical intervention, and prognosis. PMID:23592911

  8. Germline CDKN2A/P16INK4A mutations contribute to genetic determinism of sarcoma.

    PubMed

    Jouenne, Fanélie; Chauvot de Beauchene, Isaure; Bollaert, Emeline; Avril, Marie-Françoise; Caron, Olivier; Ingster, Olivier; Lecesne, Axel; Benusiglio, Patrick; Terrier, Philippe; Caumette, Vincent; Pissaloux, Daniel; de la Fouchardière, Arnaud; Cabaret, Odile; N'Diaye, Birama; Velghe, Amélie; Bougeard, Gaelle; Mann, Graham J; Koscielny, Serge; Barrett, Jennifer H; Harland, Mark; Newton-Bishop, Julia; Gruis, Nelleke; Van Doorn, Remco; Gauthier-Villars, Marion; Pierron, Gaelle; Stoppa-Lyonnet, Dominique; Coupier, Isabelle; Guimbaud, Rosine; Delnatte, Capucine; Scoazec, Jean-Yves; Eggermont, Alexander M; Feunteun, Jean; Tchertanov, Luba; Demoulin, Jean-Baptiste; Frebourg, Thierry; Bressac-de Paillerets, Brigitte

    2017-09-01

    Sarcomas are rare mesenchymal malignancies whose pathogenesis is poorly understood; both environmental and genetic risk factors could contribute to their aetiology. We performed whole-exome sequencing (WES) in a familial aggregation of three individuals affected with soft-tissue sarcoma (STS) without TP53 mutation (Li-Fraumeni-like, LFL) and found a shared pathogenic mutation in CDKN2A tumour suppressor gene. We searched for individuals with sarcoma among 474 melanoma-prone families with a CDKN2A -/+ genotype and for CDKN2A mutations in 190 TP53 -negative LFL families where the index case was a sarcoma. Including the initial family, eight independent sarcoma cases carried a germline mutation in the CDKN2A /p16 INK4A gene. In five out of seven formalin-fixed paraffin-embedded sarcomas, heterozygosity was lost at germline CDKN2A mutations sites demonstrating complete loss of function. As sarcomas are rare in CDKN2A /p16 INK4A carriers, we searched in constitutional WES of nine carriers for potential modifying rare variants and identified three in platelet-derived growth factor receptor ( PDGFRA ) gene. Molecular modelling showed that two never-described variants could impact the PDGFRA extracellular domain structure. Germline mutations in CDKN2A /P16 INK4A , a gene known to predispose to hereditary melanoma, pancreatic cancer and tobacco-related cancers, account also for a subset of hereditary sarcoma. In addition, we identified PDGFRA as a candidate modifier gene. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Mutations Associated With Occult Hepatitis B in HIV-Positive South Africans

    PubMed Central

    Powell, Eleanor A.; Gededzha, Maemu P.; Rentz, Michael; Rakgole, Nare J.; Selabe, Selokela G.; Seleise, Tebogo A.; Mphahlele, M. Jeffrey; Blackard, Jason T.

    2015-01-01

    Occult hepatitis B is characterized by the absence of hepatitis B surface antigen (HBsAg) but the presence of HBV DNA. Because diagnosis of hepatitis B virus (HBV) typically includes HBsAg detection, occult HBV remains largely undiagnosed. Occult HBV is associated with increased risk of hepatocellular carcinoma, reactivation to chronic HBV during immune suppression, and transmission during blood transfusion and liver transplant. The mechanisms leading to occult HBV infection are unclear, although viral mutations are likely a significant factor. In this study, sera from 394 HIV-positive South Africans were tested for HBV DNA and HBsAg. For patients with detectable HBV DNA, the overlapping surface and polymerase open reading frames (ORFs) were sequenced. Occult-associated mutations—those mutations found exclusively in individuals with occult HBV infection but not in individuals with chronic HBV infection from the same cohort or GenBank references—were identified. Ninety patients (22.8%) had detectable HBV DNA. Of these, 37 had detectable HBsAg, while 53 lacked detectable surface antigen. The surface and polymerase ORFs were cloned successfully for 19 patients with chronic HBV and 30 patients with occult HBV. In total, 235 occult-associated mutations were identified. Ten occult-associated mutations were identified in more than one patient. Additionally, 15 amino acid positions had two distinct occult-associated mutations at the same residue. Occult-associated mutations were common and present in all regions of the surface and polymerase ORFs. Further study is underway to determine the effects of these mutations on viral replication and surface antigen expression in vitro. PMID:25164924

  10. Analysis of patients with atypical hemolytic uremic syndrome treated at the Mie University Hospital: concentration of C3 p.I1157T mutation.

    PubMed

    Matsumoto, Takeshi; Fan, Xinping; Ishikawa, Eiji; Ito, Masaaki; Amano, Keishirou; Toyoda, Hidemi; Komada, Yoshihiro; Ohishi, Kohshi; Katayama, Naoyuki; Yoshida, Yoko; Matsumoto, Masanori; Fujimura, Yoshihiro; Ikejiri, Makoto; Wada, Hideo; Miyata, Toshiyuki

    2014-11-01

    Atypical hemolytic uremic syndrome (aHUS) is caused by abnormalities of the complement system and has a significantly poor prognosis. The clinical phenotypes of 12 patients in nine families with aHUS with familial or recurrent onset and ADAMTS13 activity of ≥20 % treated at the Mie University Hospital were examined. In seven of the patients, the first episode of aHUS occurred during childhood and ten patients experienced a relapse. All patients had renal dysfunction and three had been treated with hemodialysis. Seven patients experienced probable triggering events including common cold, influenza, bacterial infection and/or vaccination for influenza. All patients had entered remission, and renal function was improved in 11 patients. DNA sequencing of six candidate genes, identified a C3 p.I1157T missense mutation in all eight patients in six families examined and this mutation was causative for aHUS. A causative mutation THBD p.D486Y was also identified in an aHUS patient. Four missense mutations, CFH p.V837I, p.Y1058H, p.V1060L and THBD p.R403K may predispose to aHUS manifestation; the remaining seven missense mutations were likely neutral. In conclusion, the clinical phenotypes of aHUS are various, and there are often trigger factors. The C3 p.I1157T mutation was identified as the causative mutation for aHUS in all patients examined, and may be geographically concentrated in or around the Mie prefecture in central Japan.

  11. Phenotypic and genotypic characterization of four factor VII deficiency patients from central China.

    PubMed

    Liu, Hui; Wang, Hua-Fang; Cheng, Zhi-peng; Wang, Qing-yun; Hu, Bei; Zeng, Wei; Wu, Ying-ying; Guo, Tao; Tang, Liang; Hu, Yu

    2015-06-01

    Hereditary coagulation factor VII deficiency (FVIID) is a rare autosomal, recessive inherited hemorrhagic disorder related to a variety of mutations or polymorphisms throughout the factor VII (FVII) gene (F7). The aims of this study were to characterize the molecular defect of the F7 gene in four unrelated patients with FVIID and to find the genotype-phenotype correlation. All nine exons, exon-intron boundaries, and 5' and 3'-untranslated regions of the F7 gene were amplified by PCR and the purified PCR products were sequenced directly. Suspected mutations were confirmed by another PCR and sequencing of the opposite strand. Family studies were also performed. A total of five unique lesions were identified, including three missense mutations (c.384A>G, c.839A>C, c.1163T>G, predicting p.Tyr128Cys, p.Glu280Ala and p.Phe388Cys substitution, respectively) and two splice junction mutations (c.572-1G>A, c.681+1G>T), among which two (p.Glu280Ala, p.Phe388Cys) were novel. A previously reported mutation p.Tyr128Cys was seen in the homozygous state in two unrelated patients. The other two cases were both compound heterozygotes of a missense mutation and a splicing site mutation. Multiple sequence alignment using DNAMAN analysis showed that all the missense mutations were found in residues that highly conserved across species and vitamin K-dependent serine proteases. Online software Polyphen and SIFT were used to confirm the pathogenic of the missense mutation. p.Tyr128Cys seems to be a hotspot of the F7 gene in ethnic Han Chinese population.

  12. Molecular genetic analysis in mild hyperhomocysteinemia: A common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluijtmans, L.A.J.; Heuvel, L.P.W.J. van den; Stevens, E.M.B.

    1996-01-01

    Mild hyperhomocysteinemia is an established risk factor for cardiovascular disease. Genetic aberrations in the cystathionine P-synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) genes may account for reduced enzyme activities and elevated plasma homocysteine levels. In 15 unrelated Dutch patients with homozygous CBS deficiency, we observed the 833T{yields}C (1278T) mutation in 50% of the alleles. Very recently, we identified a common mutation (677C{yields}T; A{yields}V) in the MTHFR gene, which, in homozygous state, is responsible for the thermolabile phenotype and which is associated with decreased specific MTHFR activity and elevated homocysteine levels. We screened 60 cardiovascular patients and 111 controls for these twomore » mutations, to determine whether these mutations are risk factors for premature cardiovascular disease. Heterozygosity for the 833T{yields}C mutation in the CBS gene was observed in one individual of the control group but was absent in patients with premature cardiovascular disease. Homozygosity for the 677C-{yields}T mutation in the MTHFR gene was found in 9 (15%) of 60 cardiovascular patients and in only 6 ({approximately}5%) of 111 control individuals (odds ratio 3.1 [95% confidence interval 1.0-9.21]). Because of both the high prevalence of the 833T-{yields}C mutation among homozygotes for CBS deficiency and its absence in 60 cardiovascular patients, we may conclude that heterozygosity for CBS deficiency does not appear to be involved in premature cardiovascular disease. However, a frequent homozygous mutation in the MTHFR gene is associated with a threefold increase in risk for premature cardiovascular disease. 35 refs., 3 figs., 1 tab.« less

  13. Genomic profiling in a homogeneous molecular subtype of non-small cell lung cancer: An effort to explore new drug targets.

    PubMed

    Veldore, Vidya H; Patil, S; Satheesh, C T; Shashidhara, H P; Tejaswi, R; Prabhudesai, Shilpa A; Krishnamoorthy, N; Hazarika, D; Naik, R; Rao, Raghavendra M; Ajai Kumar, B S

    2015-01-01

    Patients' who are positive for kinase domain activating mutations in epidermal growth factor receptor (EGFR) gene, constitute 30-40% of non-small cell lung cancer (NSCLC), and are suitable candidates for Tyrosine Kinase Inhibitor based targeted/personalized therapy. In EGFR non-mutated subset, 8-10% that show molecular abnormalities such as EML4-ALK, ROS1-ALK, KIP4-ALK, may also derive the benefit of targeted therapy. However, 40% of NSCLC belong to a grey zone of tumours that are negative for the clinically approved biomarkers for personalized therapy. This pilot study aims to identify and classify molecular subtypes of this group to address the un-met need for new drug targets in this category. Here we screened for known/novel oncogenic driver mutations using a 46 gene Ampliseq Panel V1.0 that includes Ser/Thr/Tyr kinases, transcription factors and tumor suppressors. NSCLC with tumor burden of at least 40% on histopathology were screened for 29 somatic mutations in the EGFR kinase domain by real-time polymerase chain reaction methods. 20 cases which were EGFR non-mutated for TK domain mutations were included in this study. DNA Quality was verified from each of the 20 cases by fluorimeter, pooled and subjected to targeted re-sequencing in the Ion Torrent platform. Torrent Suite software was used for next generation sequencing raw data processing and variant calling. The clinical relevance and pathological role of all the mutations/variants that include SNPs and Indels was assessed using polyphen-2/SIFT/PROVEAN/mutation assessor structure function prediction programs. There were 10 pathogenic mutations in six different oncogenes for which annotation was available in the COSMIC database; C420R mutation in PIK3CA, Q472H mutation in vascular endothelial growth factor receptor 2 (VEGFR2) (KDR), C630W and C634R in RET, K367M mutation in fibroblast growth factor receptor 2 (FGFR2), G12C in KRAS and 4 pathogenic mutations in TP53 in the DNA binding domain (E285K, R213L, R175H, V173G). Results suggest, a potential role for PIK3CA, VEGFR2, RET and FGFR2 as therapeutic targets in EGFR non-mutated NSCLC that requires further clinical validation.

  14. The relationship between BIM deletion polymorphism and clinical significance of epidermal growth factor receptor-mutated non-small cell lung cancer patients with epidermal growth factor receptor-tyrosine kinase inhibitor therapy: a meta-analysis.

    PubMed

    Zou, Qian; Zhan, Ping; Lv, Tangfeng; Song, Yong

    2015-12-01

    BIM deletion polymorphism is a germline that might lead to little or no BH3 expression, which affects epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) related apoptosis. Recent studies show that BIM deletion polymorphism might be a critical factor leading to the resistance of EGFR-TKIs in EGFR mutation-positive non-small cell lung cancer (NSCLC) patients. Thus, a meta-analysis was conducted by combing seven original eligible studies including 778 NSCLC patients to investigate a steady and reliable conclusion. Our study indicated that BIM deletion polymorphism was significantly associated with the poor objective response rate (ORR) of EGFR-TKIs in EGFR-mutated NSCLC patients [odds ratios (OR) =0.55, 95% confidence interval (CI), 0.33-0.92]. And disease control rate (DCR) in EGFR-mutate NSCLC patients treated with EGFR-TKIs was significantly decreased in patients with BIM deletion polymorphism (OR=0.55, 95% CI, 0.27-1.12). Moreover, the progression-free survival (PFS) of patients with BIM deletion polymorphism is shorter. These findings suggested that BIM deletion polymorphism might be a genetic cause of intrinsic resistance to TKI therapy and it could be emerged as an independent predictor to identify patients who would benefit from TKI targeted therapy in EGFR-mutated NSCLC.

  15. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures.

    PubMed

    Guo, Yan; Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang

    2002-05-28

    Low temperature regulates gene expression in bacteria, yeast, and animals as well as in plants. However, the signal transduction cascades mediating the low temperature responses are not well understood in any organism. To identify components in low temperature signaling genetically, we isolated Arabidopsis thaliana mutants in which cold-responsive genes are no longer induced by low temperatures. One of these mutations, los1-1, specifically blocks low temperature-induced transcription of cold-responsive genes. Surprisingly, cold-induced expression of the early response transcriptional activators, C-repeat/dehydration responsive element binding factors (CBF/DREB1s), is enhanced by the los1-1 mutation. The los1-1 mutation also reduces the capacity of plants to develop freezing tolerance but does not impair the vernalization response. Genetic analysis indicated that los1-1 is a recessive mutation in a single nuclear gene. The LOS1 gene encodes a translation elongation factor 2-like protein. Protein labeling studies show that new protein synthesis is blocked in los1-1 mutant plants specifically in the cold. These results reveal a critical role of new protein synthesis in the proper transduction of low temperature signals. Our results also suggest that cold-induced transcription of CBF/DREB1s is feedback inhibited by their gene products or by products of their downstream target genes.

  16. Fragment length analysis screening for detection of CEBPA mutations in intermediate-risk karyotype acute myeloid leukemia.

    PubMed

    Fuster, Oscar; Barragán, Eva; Bolufer, Pascual; Such, Esperanza; Valencia, Ana; Ibáñez, Mariam; Dolz, Sandra; de Juan, Inmaculada; Jiménez, Antonio; Gómez, Maria Teresa; Buño, Ismael; Martínez, Joaquín; Cervera, José; Montesinos, Pau; Moscardó, Federico; Sanz, Miguel Ángel

    2012-01-01

    During last years, molecular markers have been increased as prognostic factors routinely screened in acute myeloid leukemia (AML). Recently, an increasing interest has been reported in introducing to clinical practice screening for mutations in the CCAAT/enhancer-binding protein α (CEBPA) gene in AML, as it seems to be a good prognostic factor. However, there is no reliable established method for assessing CEBPA mutations during the diagnostic work-up of AMLs. We describe here a straightforward and reliable fragment analysis method based in PCR capillary electrophoresis (PCR-CE) for screening of CEBPA mutations; moreover, we present the results obtained in 151 intermediate-risk karyotype AML patients (aged 16-80 years). The method gave a specificity of 100% and sensitivity of 93% with a lower detection limit of 1-5% for CEBPA mutations. The series found 19 mutations and four polymorphisms in 12 patients, seven of whom (58%) presented two mutations. The overall frequency of CEBPA mutations in AML was 8% (n = 12). CEBPA mutations showed no coincidence with FLT3-ITD or NPM1 mutations. CEBPA mutation predicted better disease-free survival in the group of patients without FLT3-ITD, NPM, or both genes mutated (HR 3.6, IC 95%; 1.0-13.2, p = 0.05) and better overall survival in patients younger than 65 of this group without molecular markers (HR 4.0, IC 95%; 1.0-17.4, p = 0.05). In conclusion, the fragment analysis method based in PCR-CE is a rapid, specific, and sensitive method for CEBPA mutation screening and our results confirm that CEBPA mutations can identify a subgroup of patients with favorable prognosis in AML with intermediate-risk karyotype.

  17. Epidermal growth factor receptor and anaplastic lymphoma kinase testing and mutation prevalence in patients with advanced non-small cell lung cancer in Switzerland: A comprehensive evaluation of real world practices.

    PubMed

    Ess, S M; Herrmann, C; Frick, H; Krapf, M; Cerny, T; Jochum, W; Früh, M

    2017-11-01

    In order to improve outcomes, identification of the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genes has become crucial in advanced non-small-cell lung cancer (NSCLC). The aim of the present study is to analyse time trends and frequency of testing, factors affecting testing as well as prevalence of mutations in the Swiss population. We analysed EGFR and ALK testing in a cohort of patients with newly diagnosed metastasised non-squamous NSCLC in the catchment area of the cancer registry Eastern Switzerland in the years 2008-2014. We analysed prevalence of mutations and studied clinicopathological characteristics and survival of tested and non-tested patients and of patients with and without mutations. Among 718 patients identified, 11% (51/447) harboured an EGFR mutation in the exons 18, 19 or 21 and further 12% (31/265) showed a positive test result for ALK rearrangements. In non-smokers the proportions of mutations were 31% and 23% respectively. Testing rates increased over time and reached 79% in 2014. We observed significantly lower testing rates and poorer survival in elderly, patients with limited life expectancy and patients treated at hospitals not involved in clinical research. Outcomes can be further improved in a considerable proportion of patients with advanced non-squamous NSCLC. © 2017 John Wiley & Sons Ltd.

  18. The RAS mutation status predicts survival in patients undergoing hepatic resection for colorectal liver metastases: The results from a genetic analysis of all-RAS.

    PubMed

    Amikura, Katsumi; Akagi, Kiwamu; Ogura, Toshiro; Takahashi, Amane; Sakamoto, Hirohiko

    2018-03-01

    We investigated the impact of mutations in KRAS exons 3-4 and NRAS exons 2-3 in addition to KRAS exon 2, so-called all-RAS mutations, in patients with colorectal liver metastasis (CLM) undergoing hepatic resection. We analyzed 421 samples from CLM patients for their all-RAS mutation status to compare the overall survival rate (OS), recurrence-free survival rate (RFS), and the pattern of recurrence between the patients with and without RAS mutations. RAS mutations were detected in 191 (43.8%). Thirty-two rare mutations (12.2%) were detected in 262 patients with KRAS exon 2 wild-type. After excluding 79 patients who received anti-EGFR antibody therapy, 168 were classified as all-RAS wild-type, and 174 as RAS mutant-type. A multivariate analysis of factors associated with OS and RFS identified the RAS status as an independent factor (OS; hazard ratio [HR] = 1.672, P = 0.0031, RFS; HR = 1.703, P = 0.0024). Recurrence with lung metastasis was observed significantly more frequent in patients with RAS mutations than in patients with RAS wild-type (P = 0.0005). Approximately half of CLM patients may have a RAS mutation. CLM patients with RAS mutations had a significantly worse survival rate in comparison to patients with RAS wild-type, regardless of the administration of anti-EGFR antibody therapy. © 2017 Wiley Periodicals, Inc.

  19. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy

    PubMed Central

    Marchant, D; Yu, K; Bigot, K; Roche, O; Germain, A; Bonneau, D; Drouin‐Garraud, V; Schorderet, D F; Munier, F; Schmidt, D; Neindre, P Le; Marsac, C; Menasche, M; Dufier, J L; Fischmeister, R; Hartzell, C; Abitbol, M

    2007-01-01

    Purpose The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin‐1 (hBest1) which is a Ca2+‐sensitive chloride channel. This study was performed to identify disease‐specific mutations in 27 patients with BVMD. Because this disease is characterised by an alteration in Cl− channel function, patch clamp analysis was used to test the hypothesis that one of the VMD2 mutated variants causes the disease. Methods Direct sequencing analysis of the 11 VMD2 exons was performed to detect new abnormal sequences. The mutant of hBest1 was expressed in HEK‐293 cells and the associated Cl− current was examined using whole‐cell patch clamp analysis. Results Six new VMD2 mutations were identified, located exclusively in exons four, six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non‐functional. Furthermore, the Q293H mutant inhibited the function of wild‐type bestrophin‐1 channels in a dominant negative manner. Conclusions This study provides further support for the idea that mutations in VMD2 are a necessary factor for Best disease. However, because variable expressivity of VMD2 was observed in a family with the Q293H mutation, it is also clear that a disease‐linked mutation in VMD2 is not sufficient to produce BVMD. The finding that the Q293H mutant does not form functional channels in the membrane could be explained either by disruption of channel conductance or gating mechanisms or by improper trafficking of the protein to the plasma membrane. PMID:17287362

  20. Multiple endocrine neoplasia type 1: analysis of germline MEN1 mutations in the Italian multicenter MEN1 patient database.

    PubMed

    Marini, Francesca; Giusti, Francesca; Fossi, Caterina; Cioppi, Federica; Cianferotti, Luisella; Masi, Laura; Boaretto, Francesca; Zovato, Stefania; Cetani, Filomena; Colao, Annamaria; Davì, Maria Vittoria; Faggiano, Antongiulio; Fanciulli, Giuseppe; Ferolla, Piero; Ferone, Diego; Loli, Paola; Mantero, Franco; Marcocci, Claudio; Opocher, Giuseppe; Beck-Peccoz, Paolo; Persani, Luca; Scillitani, Alfredo; Guizzardi, Fabiana; Spada, Anna; Tomassetti, Paola; Tonelli, Francesco; Brandi, Maria Luisa

    2018-03-01

    Multiple endocrine neoplasia type 1 (MEN1) is caused by germline inactivating mutations of the MEN1 gene. Currently, no direct genotype-phenotype correlation is identified. We aim to analyze MEN1 mutation site and features, and possible correlations between the mutation type and/or the affected menin functional domain and clinical presentation in patients from the Italian multicenter MEN1 database, one of the largest worldwide MEN1 mutation series published to date. The study included the analysis of MEN1 mutation profile in 410 MEN1 patients [370 familial cases from 123 different pedigrees (48 still asymptomatic at the time of this study) and 40 single cases]. We identified 99 different mutations: 41 frameshift [small intra-exon deletions (28) or insertions (13)], 13 nonsense, 26 missense and 11 splicing site mutations, 4 in-frame small deletions, and 4 intragenic large deletions spanning more than one exon. One family had two different inactivating MEN1 mutations on the same allele. Gastro-entero-pancreatic tumors resulted more frequent in patients with a nonsense mutation, and thoracic neuroendocrine tumors in individuals bearing a splicing-site mutation. Our data regarding mutation type frequency and distribution are in accordance with previously published data: MEN1 mutations are scattered through the entire coding region, and truncating mutations are the most common in MEN1 syndrome. A specific direct correlation between MEN1 genotype and clinical phenotype was not found in all our families, and wide intra-familial clinical variability and variable disease penetrance were both confirmed, suggesting a role for modifying, still undetermined, factors, explaining the variable MEN1 tumorigenesis.

  1. VWF mutations and new sequence variations identified in healthy controls are more frequent in the African-American population.

    PubMed

    Bellissimo, Daniel B; Christopherson, Pamela A; Flood, Veronica H; Gill, Joan Cox; Friedman, Kenneth D; Haberichter, Sandra L; Shapiro, Amy D; Abshire, Thomas C; Leissinger, Cindy; Hoots, W Keith; Lusher, Jeanne M; Ragni, Margaret V; Montgomery, Robert R

    2012-03-01

    Diagnosis and classification of VWD is aided by molecular analysis of the VWF gene. Because VWF polymorphisms have not been fully characterized, we performed VWF laboratory testing and gene sequencing of 184 healthy controls with a negative bleeding history. The controls included 66 (35.9%) African Americans (AAs). We identified 21 new sequence variations, 13 (62%) of which occurred exclusively in AAs and 2 (G967D, T2666M) that were found in 10%-15% of the AA samples, suggesting they are polymorphisms. We identified 14 sequence variations reported previously as VWF mutations, the majority of which were type 1 mutations. These controls had VWF Ag levels within the normal range, suggesting that these sequence variations might not always reduce plasma VWF levels. Eleven mutations were found in AAs, and the frequency of M740I, H817Q, and R2185Q was 15%-18%. Ten AA controls had the 2N mutation H817Q; 1 was homozygous. The average factor VIII level in this group was 99 IU/dL, suggesting that this variation may confer little or no clinical symptoms. This study emphasizes the importance of sequencing healthy controls to understand ethnic-specific sequence variations so that asymptomatic sequence variations are not misidentified as mutations in other ethnic or racial groups.

  2. The genetics and genomics of thoracic aortic disease

    PubMed Central

    Pomianowski, Pawel

    2013-01-01

    Genetic studies over the past several decades have helped to better elucidate the genomics and inheritance of thoracic aortic diseases. Seminal work from various researchers have identified several genetic factors and mutations that predispose to aortic aneurysms, which will aid in better screening and early intervention, resulting in better clinical outcomes. Syndromic aneurysms have been associated with Marfan syndrome, Loeys-Dietz syndrome, aneurysm osteoarthritis syndrome, arterial tortuosity syndrome, Ehlers-Danlos Syndrome, and TGFβ mutation. Mutations in MYH11, TGFβR1, TGFβR2, MYLK, and ACTA2 genes have been linked to familial non-syndromic cases, although linkage analysis is limited by incomplete penetrance and/or locus heterogeneity. This overview presents a summary of key genetic and genomic factors that are associated with thoracic aortic diseases. PMID:23977594

  3. A Noncoding, Regulatory Mutation Implicates HCFC1 in Nonsyndromic Intellectual Disability

    PubMed Central

    Huang, Lingli; Jolly, Lachlan A.; Willis-Owen, Saffron; Gardner, Alison; Kumar, Raman; Douglas, Evelyn; Shoubridge, Cheryl; Wieczorek, Dagmar; Tzschach, Andreas; Cohen, Monika; Hackett, Anna; Field, Michael; Froyen, Guy; Hu, Hao; Haas, Stefan A.; Ropers, Hans-Hilger; Kalscheuer, Vera M.; Corbett, Mark A.; Gecz, Jozef

    2012-01-01

    The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function. PMID:23000143

  4. Expressivity of hearing loss in cases with Usher syndrome type IIA.

    PubMed

    Sadeghi, André M; Cohn, Edward S; Kimberling, William J; Halvarsson, Glenn; Möller, Claes

    2013-12-01

    The purpose of this study was to compare the genotype/phenotype relationship between siblings with identical USH2A pathologic mutations and the consequent audiologic phenotypes, in particular degree of hearing loss (HL). Decade audiograms were also compared among two groups of affected subjects with different mutations of USH2A. DNA samples from patients with Usher syndrome type II were analysed. The audiological features of patients and affected siblings with USH2A mutations were also examined to identify genotype-phenotype correlations. Genetic and audiometric examinations were performed in 18 subjects from nine families with Usher syndrome type IIA. Three different USH2A mutations were identified in the affected subjects. Both similarities and differences of the auditory phenotype were seen in families with several affected siblings. A variable degree of hearing loss, ranging from mild to profound, was observed among affected subjects. No significant differences in hearing thresholds were found the group of affected subjects with different pathological mutations. Our results indicate that mutations in the USH2A gene and the resulting phenotype are probably modulated by other variables, such as modifying genes, epigenetics or environmental factors which may be of importance for better understanding the etiology of Usher syndrome.

  5. A branch-migration based fluorescent probe for straightforward, sensitive and specific discrimination of DNA mutations

    PubMed Central

    Xiao, Xianjin; Wu, Tongbo; Xu, Lei; Chen, Wei

    2017-01-01

    Abstract Genetic mutations are important biomarkers for cancer diagnostics and surveillance. Preferably, the methods for mutation detection should be straightforward, highly specific and sensitive to low-level mutations within various sequence contexts, fast and applicable at room-temperature. Though some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a branch-migration based fluorescent probe (BM probe) which is able to identify the presence of known or unknown single-base variations at abundances down to 0.3%-1% within 5 min, even in highly GC-rich sequence regions. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 89–311 by measurement of their respective branch-migration products via polymerase elongation reactions. The BM probe not only enabled sensitive detection of two types of EGFR-associated point mutations located in GC-rich regions, but also successfully identified the BRAF V600E mutation in the serum from a thyroid cancer patient which could not be detected by the conventional sequencing method. The new method would be an ideal choice for high-throughput in vitro diagnostics and precise clinical treatment. PMID:28201758

  6. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism.

    PubMed

    Bonaventure, J; Rousseau, F; Legeai-Mallet, L; Le Merrer, M; Munnich, A; Maroteaux, P

    1996-05-03

    The mapping of the achondroplasia locus to the short arm of chromosome 4 and the subsequent identification of a recurrent missense mutation (G380R) in the fibroblast growth factor receptor 3 (FGFR-3) gene has been followed by the detection of common FGFR-3 mutations in two clinically related disorders: thanatophoric dwarfism (types I and II) and hypochondroplasia. The relative clinical homogeneity of achondroplasia was substantiated by demonstration of its genetic homogeneity as more than 98% of all patients hitherto reported exhibit mutations in the transmembrane receptor domain. Although most hypochondroplasia cases were accounted for by a recurrent missense substitution (N540K) in the first tyrosine kinase (TK 1) domain of the receptor, a significant proportion (40%) of our patients did not harbor the N540K mutation and three hypochondroplasia families were not linked to the FGFR-3 locus, thus supporting clinical heterogeneity of this condition. In thanatophoric dwarfism (TD), a recurrent FGFR-3 mutation located in the second tyrosine kinase (TK 2) domain of the receptor was originally detected in 100% of TD II cases, our series seven distinct mutations in three different protein domains were identified in 25 of 26 TD I patients, suggesting that TD, like achondroplasia, is a genetically homogenous skeletal disorder.

  7. Predictable Phenotypes of Antibiotic Resistance Mutations.

    PubMed

    Knopp, M; Andersson, D I

    2018-05-15

    Antibiotic-resistant bacteria represent a major threat to our ability to treat bacterial infections. Two factors that determine the evolutionary success of antibiotic resistance mutations are their impact on resistance level and the fitness cost. Recent studies suggest that resistance mutations commonly show epistatic interactions, which would complicate predictions of their stability in bacterial populations. We analyzed 13 different chromosomal resistance mutations and 10 host strains of Salmonella enterica and Escherichia coli to address two main questions. (i) Are there epistatic interactions between different chromosomal resistance mutations? (ii) How does the strain background and genetic distance influence the effect of chromosomal resistance mutations on resistance and fitness? Our results show that the effects of combined resistance mutations on resistance and fitness are largely predictable and that epistasis remains rare even when up to four mutations were combined. Furthermore, a majority of the mutations, especially target alteration mutations, demonstrate strain-independent phenotypes across different species. This study extends our understanding of epistasis among resistance mutations and shows that interactions between different resistance mutations are often predictable from the characteristics of the individual mutations. IMPORTANCE The spread of antibiotic-resistant bacteria imposes an urgent threat to public health. The ability to forecast the evolutionary success of resistant mutants would help to combat dissemination of antibiotic resistance. Previous studies have shown that the phenotypic effects (fitness and resistance level) of resistance mutations can vary substantially depending on the genetic context in which they occur. We conducted a broad screen using many different resistance mutations and host strains to identify potential epistatic interactions between various types of resistance mutations and to determine the effect of strain background on resistance phenotypes. Combinations of several different mutations showed a large amount of phenotypic predictability, and the majority of the mutations displayed strain-independent phenotypes. However, we also identified a few outliers from these patterns, illustrating that the choice of host organism can be critically important when studying antibiotic resistance mutations. Copyright © 2018 Knopp and Andersson.

  8. ROS1 fusions rarely overlap with other oncogenic drivers in non-small cell lung cancer

    PubMed Central

    Lin, Jessica J.; Ritterhouse, Lauren L.; Ali, Siraj M.; Bailey, Mark; Schrock, Alexa B.; Gainor, Justin F.; Ferris, Lorin A.; Mino-Kenudson, Mari; Miller, Vincent A.; Iafrate, Anthony J.; Lennerz, Jochen K.; Shaw, Alice T.

    2017-01-01

    Introduction Chromosomal rearrangements involving the ROS proto-oncogene 1 receptor tyrosine kinase gene (ROS1) define a distinct molecular subset of non-small cell lung cancer (NSCLC) with sensitivity to ROS1 inhibitors. Recent reports have suggested a significant overlap between ROS1 fusions and other oncogenic driver alterations, including mutations in epidermal growth factor receptor (EGFR) and KRAS proto-oncogene (KRAS). Methods We identified patients at our institution with ROS1-rearranged NSCLC who had undergone testing for genetic alterations in additional oncogenes, including EGFR, KRAS, and anaplastic lymphoma kinase (ALK). Clinicopathologic features and genetic testing results were reviewed. We also examined a separate database of ROS1-rearranged NSCLCs identified through a commercial FoundationOne assay. Results Among 62 patients with ROS1-rearranged NSCLC evaluated at our institution, none harbored concurrent ALK fusions (0%) or EGFR activating mutations (0%). KRAS mutations were detected in two cases (3.2%), one of which harbored a concurrent non-canonical KRAS I24N mutation of unknown biological significance. In a separate ROS1 FISH-positive case, targeted sequencing failed to confirm a ROS1 fusion, but instead identified a KRAS G13D mutation. No concurrent mutations in BRAF, ERBB2, PIK3CA, AKT1, or MAP2K1 were detected. Analysis of an independent dataset of 166 ROS1-rearranged NSCLCs identified by FoundationOne demonstrated rare cases with co-occurring driver mutations in EGFR (1/166) and KRAS (3/166), and no cases with co-occurring ROS1 and ALK rearrangements. Conclusions ROS1 rearrangements rarely overlap with alterations in EGFR, KRAS, ALK, or other targetable oncogenes in NSCLC. PMID:28088512

  9. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed Central

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-01-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation. PMID:9062372

  10. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    PubMed

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  11. Axon Transport and Neuropathy

    PubMed Central

    Tourtellotte, Warren G.

    2017-01-01

    Peripheral neuropathies are highly prevalent and are most often associated with chronic disease, side effects from chemotherapy, or toxic-metabolic abnormalities. Neuropathies are less commonly caused by genetic mutations, but studies of the normal function of mutated proteins have identified particular vulnerabilities that often implicate mitochondrial dynamics and axon transport mechanisms. Hereditary sensory and autonomic neuropathies are a group of phenotypically related diseases caused by monogenic mutations that primarily affect sympathetic and sensory neurons. Here, I review evidence to indicate that many genetic neuropathies are caused by abnormalities in axon transport. Moreover, in hereditary sensory and autonomic neuropathies. There may be specific convergence on gene mutations that disrupt nerve growth factor signaling, upon which sympathetic and sensory neurons critically depend. PMID:26724390

  12. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia

    PubMed Central

    Gauthier, Julie; Champagne, Nathalie; Lafrenière, Ronald G.; Xiong, Lan; Spiegelman, Dan; Brustein, Edna; Lapointe, Mathieu; Peng, Huashan; Côté, Mélanie; Noreau, Anne; Hamdan, Fadi F.; Addington, Anjené M.; Rapoport, Judith L.; DeLisi, Lynn E.; Krebs, Marie-Odile; Joober, Ridha; Fathalli, Ferid; Mouaffak, Fayçal; Haghighi, Ali P.; Néri, Christian; Dubé, Marie-Pierre; Samuels, Mark E.; Marineau, Claude; Stone, Eric A.; Awadalla, Philip; Barker, Philip A.; Carbonetto, Salvatore; Drapeau, Pierre; Rouleau, Guy A.

    2010-01-01

    Schizophrenia likely results from poorly understood genetic and environmental factors. We studied the gene encoding the synaptic protein SHANK3 in 285 controls and 185 schizophrenia patients with unaffected parents. Two de novo mutations (R1117X and R536W) were identified in two families, one being found in three affected brothers, suggesting germline mosaicism. Zebrafish and rat hippocampal neuron assays revealed behavior and differentiation defects resulting from the R1117X mutant. As mutations in SHANK3 were previously reported in autism, the occurrence of SHANK3 mutations in subjects with a schizophrenia phenotype suggests a molecular genetic link between these two neurodevelopmental disorders. PMID:20385823

  13. Eight novel F13A1 gene missense mutations in patients with mild FXIII deficiency: in silico analysis suggests changes in FXIII-A subunit structure/function.

    PubMed

    Biswas, Arijit; Ivaskevicius, Vytautas; Thomas, Anne; Varvenne, Michael; Brand, Brigitte; Rott, Hannelore; Haussels, Iris; Ruehl, Heiko; Scholz, Ute; Klamroth, Robert; Oldenburg, Johannes

    2014-10-01

    Mild FXIII deficiency is an under-diagnosed disorder because the carriers of this deficiency are often asymptomatic and reveal a phenotype only under special circumstances like surgery or induced trauma. Mutational reports from this type of deficiency have been rare. In this study, we present the phenotypic and genotypic data of nine patients showing mild FXIII-A deficiency caused by eight novel heterozygous missense mutations (Pro166Leu, Arg171Gln, His342Tyr, Gln415Arg, Leu529Pro, Gln601Lys, Arg703Gln and Arg715Gly) in the F13A1 gene. None of these variants were seen in 200 healthy controls. In silico structural analysis of the local wild-type protein structures (activated and non-activated) from X-ray crystallographic models downloaded from the protein databank identified potential structural/functional effects for the identified mutations. The missense mutations in the core domain are suggested to be directly influencing the catalytic triad. Mutations on other domains might influence other critical factors such as activation peptide cleavage or the barrel domain integrity. In vitro expression and subsequent biochemical studies in the future will be able to confirm the pathophysiological mechanisms proposed for the mutations in this article.

  14. Compound heterozygous PNPLA6 mutations cause Boucher-Neuhäuser syndrome with late-onset ataxia.

    PubMed

    Deik, A; Johannes, B; Rucker, J C; Sánchez, E; Brodie, S E; Deegan, E; Landy, K; Kajiwara, Y; Scelsa, S; Saunders-Pullman, R; Paisán-Ruiz, C

    2014-12-01

    PNPLA6 mutations, known to be associated with the development of motor neuron phenotypes, have recently been identified in families with Boucher-Neuhäuser syndrome. Boucher-Neuhäuser is a rare autosomal recessive syndrome characterized by the co-occurrence of cerebellar ataxia, hypogonadotropic hypogonadism, and chorioretinal dystrophy. Gait ataxia in Boucher-Neuhäuser usually manifests before early adulthood, although onset in the third or fourth decade has also been reported. However, given the recent identification of PNPLA6 mutations as the cause of this condition, the determining factors of age of symptom onset still need to be established. Here, we have identified a sporadic Boucher-Neuhäuser case with late-onset gait ataxia and relatively milder retinal changes due to compound heterozygous PNPLA6 mutations. Compound heterozygosity was confirmed by cloning and sequencing the patient's genomic DNA from coding exons 26-29. Furthermore, both mutations (one novel and one known) fell in the phospholipase esterase domain, where most pathogenic mutations seem to cluster. Taken together, we herein confirm PNPLA6 mutations as the leading cause of Boucher-Neuhäuser syndrome and suggest inquiring about a history of hypogonadism or visual changes in patients presenting with late-onset gait ataxia. We also advocate for neuroophthalmologic evaluation in suspected cases.

  15. Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems.

    PubMed

    Vulto-van Silfhout, Anneke T; Rajamanickam, Shivakumar; Jensik, Philip J; Vergult, Sarah; de Rocker, Nina; Newhall, Kathryn J; Raghavan, Ramya; Reardon, Sara N; Jarrett, Kelsey; McIntyre, Tara; Bulinski, Joseph; Ownby, Stacy L; Huggenvik, Jodi I; McKnight, G Stanley; Rose, Gregory M; Cai, Xiang; Willaert, Andy; Zweier, Christiane; Endele, Sabine; de Ligt, Joep; van Bon, Bregje W M; Lugtenberg, Dorien; de Vries, Petra F; Veltman, Joris A; van Bokhoven, Hans; Brunner, Han G; Rauch, Anita; de Brouwer, Arjan P M; Carvill, Gemma L; Hoischen, Alexander; Mefford, Heather C; Eichler, Evan E; Vissers, Lisenka E L M; Menten, Björn; Collard, Michael W; de Vries, Bert B A

    2014-05-01

    Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Sudden unexpected fatal encephalopathy in adults with OTC gene mutations-Clues for early diagnosis and timely treatment

    PubMed Central

    2014-01-01

    Background X-linked Ornithine Transcarbamylase deficiency (OTCD) is often unrecognized in adults, as clinical manifestations are non-specific, often episodic and unmasked by precipitants, and laboratory findings can be normal outside the acute phase. It may thus be associated with significant mortality if not promptly recognized and treated. The aim of this study was to provide clues for recognition of OTCD in adults and analyze the environmental factors that, interacting with OTC gene mutations, might have triggered acute clinical manifestations. Methods We carried out a clinical, biochemical and molecular study on five unrelated adult patients (one female and four males) with late onset OTCD, who presented to the Emergency Department (ED) with initial fatal encephalopathy. The molecular study consisted of OTC gene sequencing in the probands and family members and in silico characterization of the newly detected mutations. Results We identified two new, c.119G>T (p.Arg40Leu) and c.314G>A (p.Gly105Glu), and three known OTC mutations. Both new mutations were predicted to cause a structural destabilization, correlating with late onset OTCD. We also identified, among the family members, 8 heterozygous females and 2 hemizygous asymptomatic males. Patients' histories revealed potential environmental triggering factors, including steroid treatment, chemotherapy, diet changes and hormone therapy for in vitro fertilization. Conclusions This report raises awareness of the ED medical staff in considering OTCD in the differential diagnosis of sudden neurological and behavioural disorders associated with hyperammonemia at any age and in both genders. It also widens the knowledge about combined effect of genetic and environmental factors in determining the phenotypic expression of OTCD. PMID:25026867

  17. Rare Frequency of Mutations in Pituitary Transcription Factor Genes in Combined Pituitary Hormone or Isolated Growth Hormone Deficiencies in Korea.

    PubMed

    Choi, Jin Ho; Jung, Chang Woo; Kang, Eungu; Kim, Yoon Myung; Heo, Sun Hee; Lee, Beom Hee; Kim, Gu Hwan; Yoo, Han Wook

    2017-05-01

    Congenital hypopituitarism is caused by mutations in pituitary transcription factors involved in the development of the hypothalamic-pituitary axis. Mutation frequencies of genes involved in congenital hypopituitarism are extremely low and vary substantially between ethnicities. This study was undertaken to compare the clinical, endocrinological, and radiological features of patients with an isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD). This study included 27 patients with sporadic IGHD and CPHD. A mutation analysis of the POU1F1, PROP1, LHX3, LHX4, and HESX1 genes was performed using genomic DNA from peripheral blood leukocytes. IGHD and CPHD were observed in 4 and 23 patients, respectively. Mean age at diagnosis was 8.28±7.25 years for IGHD and 13.48±10.46 years for CPHD (p=0.37). Serum insulin-like growth factor-1 and peak growth hormone (GH) levels following GH stimulation tests were significantly lower in patients with CPHD than in those with IGHD (p<0.05). Sellar MRI findings revealed structural abnormalities in 3 patients with IGHD (75%) and 21 patients with CPHD (91.3%) (p=0.62). A mutation analysis identified homozygous p.R109Q mutations in HESX1 in a patient with CPHD. Patients with CPHD had more severe GHD than those with IGHD. The frequency of defects in the genes encoding pituitary transcription factors was extremely low in Korean patients with congenital hypopituitarism. Environmental factors and the impact of other causative genes may contribute to this clinical phenotype. © Copyright: Yonsei University College of Medicine 2017

  18. Rare Frequency of Mutations in Pituitary Transcription Factor Genes in Combined Pituitary Hormone or Isolated Growth Hormone Deficiencies in Korea

    PubMed Central

    Choi, Jin-Ho; Jung, Chang-Woo; Kang, Eungu; Kim, Yoon-Myung; Heo, Sun Hee; Lee, Beom Hee; Kim, Gu-Hwan

    2017-01-01

    Purpose Congenital hypopituitarism is caused by mutations in pituitary transcription factors involved in the development of the hypothalamic-pituitary axis. Mutation frequencies of genes involved in congenital hypopituitarism are extremely low and vary substantially between ethnicities. This study was undertaken to compare the clinical, endocrinological, and radiological features of patients with an isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD). Materials and Methods This study included 27 patients with sporadic IGHD and CPHD. A mutation analysis of the POU1F1, PROP1, LHX3, LHX4, and HESX1 genes was performed using genomic DNA from peripheral blood leukocytes. Results IGHD and CPHD were observed in 4 and 23 patients, respectively. Mean age at diagnosis was 8.28±7.25 years for IGHD and 13.48±10.46 years for CPHD (p=0.37). Serum insulin-like growth factor-1 and peak growth hormone (GH) levels following GH stimulation tests were significantly lower in patients with CPHD than in those with IGHD (p<0.05). Sellar MRI findings revealed structural abnormalities in 3 patients with IGHD (75%) and 21 patients with CPHD (91.3%) (p=0.62). A mutation analysis identified homozygous p.R109Q mutations in HESX1 in a patient with CPHD. Patients with CPHD had more severe GHD than those with IGHD. Conclusion The frequency of defects in the genes encoding pituitary transcription factors was extremely low in Korean patients with congenital hypopituitarism. Environmental factors and the impact of other causative genes may contribute to this clinical phenotype. PMID:28332357

  19. A novel missense mutation close to the charge-stabilizing system in a patient with congenital factor VII deficiency.

    PubMed

    Jiang, Minghua; Wang, Zhaoyue; Yu, Ziqiang; Bai, Xia; Su, Jian; Cao, Lijuan; Zhang, Wei; Ruan, Changgeng

    2011-06-01

    Congenital factor VII (FVII) deficiency is a rare autosomal recessive bleeding disorder. Its clinical manifestation and mutational spectrum are highly variable. The purpose of this study was to identify and characterize the mutation causing the FVII deficiency in a Chinese patient and his family. The FVII gene was analyzed by genomic DNA sequencing, and the FVII levels in patient's plasma were measured with an enzyme-linked immunoabsorbent assay (ELISA) and one-stage prothrombin time based method. In addition, the FVII-Phe190 mutant identified in the pedigree was expressed in the HEK293 cells, and the subcellular localization experiments in the Chinese hamster ovary (CHO) cells were performed. The patient had a prolonged prothrombin time and low levels of both FVII antigen and activity, and two heterozygous mutations were identified in F7 gene (NG-009262.1): a g.15975 G>A in the splice receptor site of intron 6 and a novel g.16750 C>T in exon 8 resulting in Ser190 to Phe190 replacement. In expression experiments, the reduced antigen and activity levels of FVII-Phe190 in the culture medium were found, whereas an ELISA and Western blotting analysis of FVII revealed that mutant FVII-Phe190 was synthesized in the cells as the wild-type FVII-Ser190. And FVII-Phe190 was found in endoplasmic reticulum and Golgi apparatus. Compound heterozygous mutations in F7 gene should be responsible for the FVII deficiency in this patient. The FVII-Phe190 can normally be synthesized and transported from endoplasmic reticulum to Golgi apparatus, but degraded or inefficiently secreted.

  20. Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations

    PubMed Central

    Araya, Carlos L.; Cenik, Can; Reuter, Jason A.; Kiss, Gert; Pande, Vijay S.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    Cancer sequencing studies have primarily identified cancer-driver genes by the accumulation of protein-altering mutations. An improved method would be annotation-independent, sensitive to unknown distributions of functions within proteins, and inclusive of non-coding drivers. We employed density-based clustering methods in 21 tumor types to detect variably-sized significantly mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and non-coding elements, including transcription factor binding sites and untranslated regions mutated in up to ∼15% of specific tumor types. SMRs reveal spatial clustering of mutations at molecular domains and interfaces, often with associated changes in signaling. Mutation frequencies in SMRs demonstrate that distinct protein regions are differentially mutated among tumor types, as exemplified by a linker region of PIK3CA in which biophysical simulations suggest mutations affect regulatory interactions. The functional diversity of SMRs underscores both the varied mechanisms of oncogenic misregulation and the advantage of functionally-agnostic driver identification. PMID:26691984

  1. THE GENOMIC LANDSCAPE OF PEDIATRIC AND YOUNG ADULT T-LINEAGE ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Liu, Yu; Easton, John; Shao, Ying; Maciaszek, Jamie; Wang, Zhaoming; Wilkinson, Mark R.; McCastlain, Kelly; Edmonson, Michael; Pounds, Stanley B.; Shi, Lei; Zhou, Xin; Ma, Xiaotu; Sioson, Edgar; Li, Yongjin; Rusch, Michael; Gupta, Pankaj; Pei, Deqing; Cheng, Cheng; Smith, Malcolm A.; Auvil, Jaime Guidry; Gerhard, Daniela S.; Relling, Mary V.; Winick, Naomi J.; Carroll, Andrew J.; Heerema, Nyla A.; Raetz, Elizabeth; Devidas, Meenakshi; Willman, Cheryl L.; Harvey, Richard C.; Carroll, William L.; Dunsmore, Kimberly P.; Winter, Stuart S.; Wood, Brent L; Sorrentino, Brian P.; Downing, James R.; Loh, Mignon L.; Hunger, Stephen P; Zhang, Jinghui; Mullighan, Charles G.

    2017-01-01

    Genetic alterations activating NOTCH1 signaling and T cell transcription factors, coupled with inactivation of the INK4/ARF tumor suppressors are hallmarks of T-ALL, but detailed genome-wide sequencing of large T-ALL cohorts has not been performed. Using integrated genomic analysis of 264 T-ALL cases, we identify 106 putative driver genes, half of which were not previously described in childhood T-ALL (e.g. CCND3, CTCF, MYB, SMARCA4, ZFP36L2 and MYCN). We described new mechanisms of coding and non-coding alteration, and identify 10 recurrently altered pathways, with associations between mutated genes and pathways, and stage or subtype of T-ALL. For example, NRAS/FLT3 mutations were associated with immature T-ALL, JAK3/STAT5B mutations in HOX1 deregulated ALL, PTPN2 mutations in TLX1 T-ALL, and PIK3R1/PTEN mutations in TAL1 ALL, suggesting that different signaling pathways have distinct roles according to maturational stage. This genomic landscape provides a logical framework for the development of faithful genetic models and new therapeutic approaches. PMID:28671688

  2. De novo mutations in the genome organizer CTCF cause intellectual disability.

    PubMed

    Gregor, Anne; Oti, Martin; Kouwenhoven, Evelyn N; Hoyer, Juliane; Sticht, Heinrich; Ekici, Arif B; Kjaergaard, Susanne; Rauch, Anita; Stunnenberg, Hendrik G; Uebe, Steffen; Vasileiou, Georgia; Reis, André; Zhou, Huiqing; Zweier, Christiane

    2013-07-11

    An increasing number of genes involved in chromatin structure and epigenetic regulation has been implicated in a variety of developmental disorders, often including intellectual disability. By trio exome sequencing and subsequent mutational screening we now identified two de novo frameshift mutations and one de novo missense mutation in CTCF in individuals with intellectual disability, microcephaly, and growth retardation. Furthermore, an individual with a larger deletion including CTCF was identified. CTCF (CCCTC-binding factor) is one of the most important chromatin organizers in vertebrates and is involved in various chromatin regulation processes such as higher order of chromatin organization, enhancer function, and maintenance of three-dimensional chromatin structure. Transcriptome analyses in all three individuals with point mutations revealed deregulation of genes involved in signal transduction and emphasized the role of CTCF in enhancer-driven expression of genes. Our findings indicate that haploinsufficiency of CTCF affects genomic interaction of enhancers and their regulated gene promoters that drive developmental processes and cognition. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. A natural allele of Nxf1/TAP supresses retrovirus insertional mutations

    PubMed Central

    Floyd, Jennifer A.; Gold, David A.; Concepcion, Dorothy; Poon, Tiffany H.; Wang, Xiaobo; Keithley, Elizabeth; Chen, Dan; Ward, Erica J.; Chinn, Steven B.; Friedman, Rick A.; Yu, Hon-Tsen; Moriwaki, Kazuo; Shiroishi, Toshihiko; Hamilton, Bruce A.

    2009-01-01

    Endogenous retroviruses have shaped the evolution of mammalian genomes. Host genes that control the effects of retrovirus insertions are therefore of great interest. The Modifier-of-vibrator-1 locus controls level of correctly processed mRNA from genes mutated by endogenous retrovirus insertions into introns, including the pitpnvb tremor mutation and the Eya1BOR model of human branchiootorenal syndrome. Positional complementation cloning identifies Mvb1 as the nuclear export factor Nxf1, providing an unexpected link between mRNA export receptor and pre-mRNA processing. Population structure of the suppressing allele in wild M. m. castaneus suggests selective advantage. A congenic Mvb1CAST allele is a useful tool for modifying gene expression from existing mutations and could be used to manipulate engineered mutations containing retroviral elements. PMID:14517553

  4. Genetic analyses of bone morphogenetic protein 2, 4 and 7 in congenital combined pituitary hormone deficiency.

    PubMed

    Breitfeld, Jana; Martens, Susanne; Klammt, Jürgen; Schlicke, Marina; Pfäffle, Roland; Krause, Kerstin; Weidle, Kerstin; Schleinitz, Dorit; Stumvoll, Michael; Führer, Dagmar; Kovacs, Peter; Tönjes, Anke

    2013-12-01

    The complex process of development of the pituitary gland is regulated by a number of signalling molecules and transcription factors. Mutations in these factors have been identified in rare cases of congenital hypopituitarism but for most subjects with combined pituitary hormone deficiency (CPHD) genetic causes are unknown. Bone morphogenetic proteins (BMPs) affect induction and growth of the pituitary primordium and thus represent plausible candidates for mutational screening of patients with CPHD. We sequenced BMP2, 4 and 7 in 19 subjects with CPHD. For validation purposes, novel genetic variants were genotyped in 1046 healthy subjects. Additionally, potential functional relevance for most promising variants has been assessed by phylogenetic analyses and prediction of effects on protein structure. Sequencing revealed two novel variants and confirmed 30 previously known polymorphisms and mutations in BMP2, 4 and 7. Although phylogenetic analyses indicated that these variants map within strongly conserved gene regions, there was no direct support for their impact on protein structure when applying predictive bioinformatics tools. A mutation in the BMP4 coding region resulting in an amino acid exchange (p.Arg300Pro) appeared most interesting among the identified variants. Further functional analyses are required to ultimately map the relevance of these novel variants in CPHD.

  5. Genetic analyses of bone morphogenetic protein 2, 4 and 7 in congenital combined pituitary hormone deficiency

    PubMed Central

    2013-01-01

    Background The complex process of development of the pituitary gland is regulated by a number of signalling molecules and transcription factors. Mutations in these factors have been identified in rare cases of congenital hypopituitarism but for most subjects with combined pituitary hormone deficiency (CPHD) genetic causes are unknown. Bone morphogenetic proteins (BMPs) affect induction and growth of the pituitary primordium and thus represent plausible candidates for mutational screening of patients with CPHD. Methods We sequenced BMP2, 4 and 7 in 19 subjects with CPHD. For validation purposes, novel genetic variants were genotyped in 1046 healthy subjects. Additionally, potential functional relevance for most promising variants has been assessed by phylogenetic analyses and prediction of effects on protein structure. Results Sequencing revealed two novel variants and confirmed 30 previously known polymorphisms and mutations in BMP2, 4 and 7. Although phylogenetic analyses indicated that these variants map within strongly conserved gene regions, there was no direct support for their impact on protein structure when applying predictive bioinformatics tools. Conclusions A mutation in the BMP4 coding region resulting in an amino acid exchange (p.Arg300Pro) appeared most interesting among the identified variants. Further functional analyses are required to ultimately map the relevance of these novel variants in CPHD. PMID:24289245

  6. Wilms tumor gene 1 (WT1), TP53, RAS/BRAF and KIT aberrations in testicular germ cell tumors.

    PubMed

    Boublikova, L; Bakardjieva-Mihaylova, V; Skvarova Kramarzova, K; Kuzilkova, D; Dobiasova, A; Fiser, K; Stuchly, J; Kotrova, M; Buchler, T; Dusek, P; Grega, M; Rosova, B; Vernerova, Z; Klezl, P; Pesl, M; Zachoval, R; Krolupper, M; Kubecova, M; Stahalova, V; Abrahamova, J; Babjuk, M; Kodet, R; Trka, J

    2016-07-01

    Wilms tumor gene 1 (WT1), a zinc-finger transcription factor essential for testis development and function, along with other genes, was investigated for their role in the pathogenesis of testicular germ cell tumors (TGCT). In total, 284 TGCT and 100 control samples were investigated, including qPCR for WT1 expression and BRAF mutation, p53 immunohistochemistry detection, and massively parallel amplicon sequencing. WT1 was significantly (p < 0.0001) under-expressed in TGCT, with an increased ratio of exon 5-lacking isoforms, reaching low levels in chemo-naïve relapsed TGCT patients vs. high levels in chemotherapy-pretreated relapsed patients. BRAF V600E mutation was identified in 1% of patients only. p53 protein was lowly expressed in TGCT metastases compared to the matched primary tumors. Of 9 selected TGCT-linked genes, RAS/BRAF and WT1 mutations were frequent while significant TP53 and KIT variants were not detected (p = 0.0003). WT1 has been identified as a novel factor involved in TGCT pathogenesis, with a potential prognostic impact. Distinct biologic nature of the two types of relapses occurring in TGCT has been demonstrated. Differential mutation rate of the key TGCT-related genes has been documented. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency.

    PubMed

    Péquignot, M O; Dey, R; Zeviani, M; Tiranti, V; Godinot, C; Poyau, A; Sue, C; Di Mauro, S; Abitbol, M; Marsac, C

    2001-05-01

    Cytochrome c oxidase (COX) deficiency is one of the major causes of Leigh Syndrome (LS), a fatal encephalopathy of infancy or childhood, characterized by symmetrical lesions in the basal ganglia and brainstem. Mutations in the nuclear genes encoding COX subunits have not been found in patients with LS and COX deficiency, but mutations have been identified in SURF1. SURF1 encodes a factor involved in COX biogenesis. To date, 30 different mutations have been reported in 40 unrelated patients. We aim to provide an overview of all known mutations in SURF1, and to propose a common nomenclature. Twelve of the mutations were insertion/deletion mutations in exons 1, 4, 6, 8, and 9; 10 were missense/nonsense mutations in exons 2, 4, 5, 7, and 8; and eight were detected at splicing sites in introns 3 to 7. The most frequent mutation was 312_321del 311_312insAT which was found in 12 patients out of 40. Twenty mutations have been described only once. We also list all polymorphisms discovered to date. Copyright 2001 Wiley-Liss, Inc.

  8. Epidermal growth factor receptor mutations in adenocarcinoma in situ and minimally invasive adenocarcinoma detected using mutation-specific monoclonal antibodies.

    PubMed

    Nakamura, Haruhiko; Koizumi, Hirotaka; Kimura, Hiroyuki; Marushima, Hideki; Saji, Hisashi; Takagi, Masayuki

    2016-09-01

    Epidermal growth factor receptor (EGFR) mutation rates in adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) were studied using both DNA analysis and mutation-specific immunohistochemistry. The peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method was used to detect mutations in exons 18, 19, 20, and 21 of the EGFR gene in DNA samples extracted from paraffin-embedded tissue sections. Simultaneously, immunohistochemical analysis with two EGFR mutation-specific monoclonal antibodies was used to identify proteins resulting from an in-frame deletion in exon 19 (E746_A750del) and a point mutation replacing leucine with arginine at codon 858 of exon 21 (L858R). Forty-three tumors (22 AIS and 21 MIA) were examined. The EGFR mutation rate in AIS detected by DNA analysis was 27.3% (L858R, 5/22; exon 19 deletion,1/22), whereas that detected in MIA was 42.9% (L858R,4/21; exon 19 deletion,5/21). Mutations detected by immunohistochemical analysis included 22.7% (L858R, 4/22; exon 19 deletion, 1/22) in AIS and 42.9% (L858R, 4/21; exon 19 deletion, 5/21) in MIA. Although some results were contradictory, concordant results were obtained using both assays in 38 of 43 cases (88.4%). DNA and immunohistochemical analyses revealed similar EGFR mutation rates in both MIA and AIS, suggesting that mutation-specific monoclonal antibodies are useful to confirm DNA assay results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Spontaneous mutation rate is a plastic trait associated with population density across domains of life.

    PubMed

    Krašovec, Rok; Richards, Huw; Gifford, Danna R; Hatcher, Charlie; Faulkner, Katy J; Belavkin, Roman V; Channon, Alastair; Aston, Elizabeth; McBain, Andrew J; Knight, Christopher G

    2017-08-01

    Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life.

  10. Spontaneous mutation rate is a plastic trait associated with population density across domains of life

    PubMed Central

    Gifford, Danna R.; Hatcher, Charlie; Faulkner, Katy J.; Belavkin, Roman V.; Channon, Alastair; Aston, Elizabeth; McBain, Andrew J.

    2017-01-01

    Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life. PMID:28837573

  11. Mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) cause 1.6% of autosomal dominant retinitis pigmentosa

    PubMed Central

    Sullivan, Lori S.; Avery, Cheryl E.; Sasser, Elizabeth M.; Roorda, Austin; Duncan, Jacque L.; Wheaton, Dianna H.; Birch, David G.; Branham, Kari E.; Heckenlively, John R.; Sieving, Paul A.; Daiger, Stephen P.

    2013-01-01

    Purpose The purpose of this project was to determine the spectrum and frequency of mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) that cause autosomal dominant retinitis pigmentosa (adRP). Methods A well-characterized adRP cohort of 251 families was tested for mutations in the exons and intron/exon junctions of SNRNP200 using fluorescent dideoxy sequencing. An additional 21 adRP families from the eyeGENE® Network were tested for possible mutations. Bioinformatic and segregation analysis was performed on novel variants. Results SNRNP200 mutations were identified in seven of the families tested. Two previously reported mutations, p.Arg681Cys and p.Ser1087Leu, were found in two families each. One family had the previously reported p.Arg681His mutation. Two novel SNRNP200 variants, p.Pro682Ser and p.Ala542Val, were also identified in one family each. Bioinformatic and segregation analyses suggested that these novel variants are likely to be pathogenic. Clinical examination of patients with SNRNP200 mutations showed a wide range of clinical symptoms and severity, including one instance of non-penetrance. Conclusions Mutations in SNRNP200 caused 1.6% of disease in our adRP cohort. Pathogenic mutations were found primarily in exons 16 and 25, but the novel p.Ala542Val mutation in exon 13 suggests that variation in other genetic regions is also responsible for causing dominant disease. SNRNP200 mutations were associated with a wide range of clinical symptoms similar to those of individuals with other splice-factor gene mutations. PMID:24319334

  12. TERT promoter mutations contribute to IDH mutations in predicting differential responses to adjuvant therapies in WHO grade II and III diffuse gliomas

    PubMed Central

    Ding, Xiao-Jie; Qin, Zhi-Yong; Hong, Christopher S.; Chen, Ling-Chao; Zhang, Xin; Zhao, Fang-Ping; Wang, Yin; Wang, Yang; Zhou, Liang-Fu; Zhuang, Zhengping; Ng, Ho-Keung; Yan, Hai; Yao, Yu; Mao, Ying

    2015-01-01

    IDH mutations frequently occur in WHO grade II and III diffuse gliomas and have favorable prognosis compared to wild-type tumors. However, whether IDH mutations in WHO grade II and II diffuse gliomas predict enhanced sensitivity to adjuvant radiation (RT) or chemotherapy (CHT) is still being debated. Recent studies have identified recurrent mutations in the promoter region of telomerase reverse transcriptase (TERT) in gliomas. We previously demonstrated that TERT promoter mutations may be promising biomarkers in glioma survival prognostication when combined with IDH mutations. This study analyzed IDH and TERT promoter mutations in 295 WHO grade II and III diffuse gliomas treated with or without adjuvant therapies to explore their impact on the sensitivity of tumors to genotoxic therapies. IDH mutations were found in 216 (73.2%) patients and TERT promoter mutations were found in 112 (38%) patients. In multivariate analysis, IDH mutations (p < 0.001) were independent prognostic factors for PFS and OS in patients receiving genotoxic therapies while TERT promoter mutations were not. In univariate analysis, IDH and TERT promoter mutations were not significant prognostic factors in patients who did not receive genotoxic therapies. Adjuvant RT and CHT were factors independently impacting PFS (RT p = 0.001, CHT p = 0.026) in IDH mutated WHO grade II and III diffuse gliomas but not in IDH wild-type group. Univariate and multivariate analyses demonstrated TERT promoter mutations further stratified IDH wild-type WHO grade II and III diffuse gliomas into two subgroups with different responses to genotoxic therapies. Adjuvant RT and CHT were significant parameters influencing PFS in the IDH wt/TERT mut subgroup (RT p = 0.015, CHT p = 0.015) but not in the IDH wt/TERT wt subgroup. Our data demonstrated that IDH mutated WHO grade II and III diffuse gliomas had better PFS and OS than their IDH wild-type counterparts when genotoxic therapies were administered after surgery. Importantly, we also found that TERT promoter mutations further stratify IDH wild-type WHO grade II and III diffuse gliomas into two subgroups with different responses to adjuvant therapies. Taken together, TERT promoter mutations may predict enhanced sensitivity to genotoxic therapies in IDH wild-type WHO grade II and III diffuse gliomas and may justify intensified treatment in this subgroup. PMID:26314843

  13. Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma.

    PubMed

    Abate, Francesco; Ambrosio, Maria Raffaella; Mundo, Lucia; Laginestra, Maria Antonella; Fuligni, Fabio; Rossi, Maura; Zairis, Sakellarios; Gazaneo, Sara; De Falco, Giulia; Lazzi, Stefano; Bellan, Cristiana; Rocca, Bruno Jim; Amato, Teresa; Marasco, Elena; Etebari, Maryam; Ogwang, Martin; Calbi, Valeria; Ndede, Isaac; Patel, Kirtika; Chumba, David; Piccaluga, Pier Paolo; Pileri, Stefano; Leoncini, Lorenzo; Rabadan, Raul

    2015-10-01

    Endemic Burkitt lymphoma (eBL) is primarily found in children in equatorial regions and represents the first historical example of a virus-associated human malignancy. Although Epstein-Barr virus (EBV) infection and MYC translocations are hallmarks of the disease, it is unclear whether other factors may contribute to its development. We performed RNA-Seq on 20 eBL cases from Uganda and showed that the mutational and viral landscape of eBL is more complex than previously reported. First, we found the presence of other herpesviridae family members in 8 cases (40%), in particular human herpesvirus 5 and human herpesvirus 8 and confirmed their presence by immunohistochemistry in the adjacent non-neoplastic tissue. Second, we identified a distinct latency program in EBV involving lytic genes in association with TCF3 activity. Third, by comparing the eBL mutational landscape with published data on sporadic Burkitt lymphoma (sBL), we detected lower frequencies of mutations in MYC, ID3, TCF3 and TP53, and a higher frequency of mutation in ARID1A in eBL samples. Recurrent mutations in two genes not previously associated with eBL were identified in 20% of tumors: RHOA and cyclin F (CCNF). We also observed that polyviral samples showed lower numbers of somatic mutations in common altered genes in comparison to sBL specimens, suggesting dual mechanisms of transformation, mutation versus virus driven in sBL and eBL respectively.

  14. Exome Capture and Massively Parallel Sequencing Identifies a Novel HPSE2 Mutation in a Saudi Arabian Child with Ochoa (Urofacial) Syndrome

    PubMed Central

    Al Badr, Wisam; Al Bader, Suha; Otto, Edgar; Hildebrandt, Friedhelm; Ackley, Todd; Peng, Weiping; Xu, Jishu; Li, Jun; Owens, Kailey M.; Bloom, David; Innis, Jeffrey W.

    2011-01-01

    We describe a child of Middle Eastern descent by first-cousin mating with idiopathic neurogenic bladder and high grade vesicoureteral reflux at 1 year of age, whose characteristic facial grimace led to the diagnosis of Ochoa (Urofacial) syndrome at age 5 years. We used homozygosity mapping, exome capture and paired end sequencing to identify the disease causing mutation in the proband. We reviewed the literature with respect to the urologic manifestations of Ochoa syndrome. A large region of marker homozygosity was observed at 10q24, consistent with known autosomal recessive inheritance, family consanguinity and previous genetic mapping in other families with Ochoa syndrome. A homozygous mutation was identified in the proband in HPSE2: c.1374_1378delTGTGC, a deletion of 5 nucleotides in exon 10 that is predicted to lead to a frameshift followed by replacement of 132 C-terminal amino acids with 153 novel amino acids (p.Ala458Alafsdel132ins153). This mutation is novel relative to very recently published mutations in HPSE2 in other families. Early intervention and recognition of Ochoa syndrome with control of risk factors and close surveillance will decrease complications and renal failure. PMID:21450525

  15. Microarray-based mutation detection and phenotypic characterization in Korean patients with retinitis pigmentosa

    PubMed Central

    Kim, Cinoo; Kim, Kwang Joong; Bok, Jeong; Lee, Eun-Ju; Kim, Dong-Joon; Oh, Ji Hee; Park, Sung Pyo; Shin, Joo Young; Lee, Jong-Young

    2012-01-01

    Purpose To evaluate microarray-based genotyping technology for the detection of mutations responsible for retinitis pigmentosa (RP) and to perform phenotypic characterization of patients with pathogenic mutations. Methods DNA from 336 patients with RP and 360 controls was analyzed using the GoldenGate assay with microbeads containing 95 previously reported disease-associated mutations from 28 RP genes. Mutations identified by microarray-based genotyping were confirmed by direct sequencing. Segregation analysis and phenotypic characterization were performed in patients with mutations. The disease severity was assessed by visual acuity, electroretinography, optical coherence tomography, and kinetic perimetry. Results Ten RP-related mutations of five RP genes (PRP3 pre-mRNA processing factor 3 homolog [PRPF3], rhodopsin [RHO], phosphodiesterase 6B [PDE6B], peripherin 2 [PRPH2], and retinitis pigmentosa 1 [RP1]) were identified in 26 of the 336 patients (7.7%) and in six of the 360 controls (1.7%). The p.H557Y mutation in PDE6B, which was homozygous in four patients and heterozygous in nine patients, was the most frequent mutation (2.5%). Mutation segregation was assessed in four families. Among the patients with missense mutations, the most severe phenotype occurred in patients with p.D984G in RP1; less severe phenotypes occurred in patients with p.R135W in RHO; a relatively moderate phenotype occurred in patients with p.T494M in PRPF3, p.H557Y in PDE6B, or p.W316G in PRPH2; and a mild phenotype was seen in a patient with p.D190N in RHO. Conclusions The results reveal that the GoldenGate assay may not be an efficient method for molecular diagnosis in RP patients with rare mutations, although it has proven to be reliable and efficient for high-throughput genotyping of single-nucleotide polymorphisms. The clinical features varied according to the mutations. Continuous effort to identify novel RP genes and mutations in a population is needed to improve the efficiency and accuracy of the genetic diagnosis of RP. PMID:23049240

  16. Expression and functional analysis of menin in a multiple endocrine neoplasia type 1 (MEN1) patient with somatic loss of heterozygosity in chromosome 11q13 and unidentified germline mutation of the MEN1 gene.

    PubMed

    Naito, Junko; Kaji, Hiroshi; Sowa, Hideaki; Kitazawa, Riko; Kitazawa, Sohei; Tsukada, Toshihiko; Hendy, Geoffrey N; Sugimoto, Toshitsugu; Chihara, Kazuo

    2006-06-01

    In some patients with multiple endocrine neoplasia type 1 (MEN1) it is not possible to identify a germline mutation in the MEN1 gene. We sought to document the loss of expression and function of the MEN1 gene product, menin, in the tumors of such a patient. The proband is an elderly female patient with primary hyperparathyroidism, pancreatic islet tumor, and breast cancer. Her son has primary hyperparathyroidism. No germline MEN1 mutation was identified in the proband or her son. However, loss of heterozygosity at the MEN1 locus and complete lack of menin expression were demonstrated in the proband's tumor tissue. The proband's cultured parathyroid cells lacked the normal reduction in proliferation and parathyroid hormone secretion in response to transforming growth factor- beta. This assessment provided insight into the molecular pathogenesis of the patient and provides evidence for a critical requirement for menin in the antiproliferative action of transforming growth factor-beta.

  17. The cytoplasmic end of transmembrane domain 3 regulates the activity of the Saccharomyces cerevisiae G-protein-coupled alpha-factor receptor.

    PubMed Central

    Parrish, William; Eilers, Markus; Ying, Weiwen; Konopka, James B

    2002-01-01

    The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors. PMID:11861550

  18. Novel NTRK1 mutations cause hereditary sensory and autonomic neuropathy type IV: demonstration of a founder mutation in the Turkish population.

    PubMed

    Tüysüz, Beyhan; Bayrakli, Fatih; DiLuna, Michael L; Bilguvar, Kaya; Bayri, Yasar; Yalcinkaya, Cengiz; Bursali, Aysegul; Ozdamar, Elif; Korkmaz, Baris; Mason, Christopher E; Ozturk, Ali K; Lifton, Richard P; State, Matthew W; Gunel, Murat

    2008-05-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV), or congenital insensitivity to pain with anhidrosis, is an autosomal recessive disorder characterized by insensitivity to noxious stimuli, anhidrosis from deinnervated sweat glands, and delayed mental and motor development. Mutations in the neurotrophic tyrosine kinase receptor type 1 (NTRK1), a receptor in the neurotrophin signaling pathway phosphorylated in response to nerve growth factor, are associated with this disorder. We identified six families from Northern Central Turkey with HSAN IV. We screened the NTRK1 gene for mutations in these families. Microsatellite and single nucleotide polymorphism (SNP) markers on the Affymetrix 250K chip platform were used to determine the haplotypes for three families harboring the same mutation. Screening for mutations in the NTRK1 gene demonstrated one novel frameshift mutation, two novel nonsense mutations, and three unrelated kindreds with the same splice-site mutation. Genotyping of the three families with the identical splice-site mutation revealed that they share the same haplotype. This report broadens the spectrum of mutations in NTRK1 that cause HSAN IV and demonstrates a founder mutation in the Turkish population.

  19. Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal–Hreidarsson syndrome

    PubMed Central

    Deng, Zhong; Glousker, Galina; Molczan, Aliah; Fox, Alan J.; Lamm, Noa; Dheekollu, Jayaraju; Weizman, Orr-El; Schertzer, Michael; Wang, Zhuo; Vladimirova, Olga; Schug, Jonathan; Aker, Memet; Londoño-Vallejo, Arturo; Kaestner, Klaus H.; Lieberman, Paul M.; Tzfati, Yehuda

    2013-01-01

    Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal–Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. HHS-causing mutations have previously been found in telomerase and the shelterin component telomeric repeat binding factor 1 (TRF1)-interacting nuclear factor 2 (TIN2). We identified by whole-genome exome sequencing compound heterozygous mutations in four siblings affected with HHS, in the gene encoding the regulator of telomere elongation helicase 1 (RTEL1). Rtel1 was identified in mouse by its genetic association with telomere length. However, its mechanism of action and whether it regulates telomere length in human remained unknown. Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres. PMID:23959892

  20. Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome.

    PubMed

    Deng, Zhong; Glousker, Galina; Molczan, Aliah; Fox, Alan J; Lamm, Noa; Dheekollu, Jayaraju; Weizman, Orr-El; Schertzer, Michael; Wang, Zhuo; Vladimirova, Olga; Schug, Jonathan; Aker, Memet; Londoño-Vallejo, Arturo; Kaestner, Klaus H; Lieberman, Paul M; Tzfati, Yehuda

    2013-09-03

    Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. HHS-causing mutations have previously been found in telomerase and the shelterin component telomeric repeat binding factor 1 (TRF1)-interacting nuclear factor 2 (TIN2). We identified by whole-genome exome sequencing compound heterozygous mutations in four siblings affected with HHS, in the gene encoding the regulator of telomere elongation helicase 1 (RTEL1). Rtel1 was identified in mouse by its genetic association with telomere length. However, its mechanism of action and whether it regulates telomere length in human remained unknown. Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres.

  1. Mutations in Elongation Factor Ef-1α Affect the Frequency of Frameshifting and Amino Acid Misincorporation in Saccharomyces Cerevisiae

    PubMed Central

    Sandbaken, M. G.; Culbertson, M. R.

    1988-01-01

    A mutational analysis of the eukaryotic elongation factor EF-1α indicates that this protein functions to limit the frequency of errors during genetic code translation. We found that both amino acid misincorporation and reading frame errors are controlled by EF-1α. In order to examine the function of this protein, the TEF2 gene, which encodes EF-1α in Saccharomyces cerevisiae, was mutagenized in vitro with hydroxylamine. Sixteen independent TEF2 alleles were isolated by their ability to suppress frameshift mutations. DNA sequence analysis identified eight different sites in the EF-1α protein that elevate the frequency of mistranslation when mutated. These sites are located in two different regions of the protein. Amino acid substitutions located in or near the GTP-binding and hydrolysis domain of the protein cause suppression of frameshift and nonsense mutations. These mutations may effect mistranslation by altering the binding or hydrolysis of GTP. Amino acid substitutions located adjacent to a putative aminoacyl-tRNA binding region also suppress frameshift and nonsense mutations. These mutations may alter the binding of aminoacyl-tRNA by EF-1α. The identification of frameshift and nonsense suppressor mutations in EF-1α indicates a role for this protein in limiting amino acid misincorporation and reading frame errors. We suggest that these types of errors are controlled by a common mechanism or closely related mechanisms. PMID:3066688

  2. A Mitochondrial DNA A8701G Mutation Associated with Maternally Inherited Hypertension and Dilated Cardiomyopathy in a Chinese Pedigree of a Consanguineous Marriage

    PubMed Central

    Zhu, Ye; Gu, Xiang; Xu, Chao

    2016-01-01

    Background: Cardiovascular diseases, including dilated cardiomyopathy (DCM) and hypertension, are the leading cause of death worldwide. The role of mitochondrial DNA (mtDNA) in the pathogenesis of these diseases has not been completely clarified. In this study, we evaluate whether A8701G mutation is associated with maternally inherited hypertension and DCM in a Chinese pedigree of a consanguineous marriage. Methods: Fourteen subjects in a three-generation Han Chinese family with hypertension and DCM, in which consanguineous marriage was present in the parental generation, were interviewed. We divided all the family members into case (7 maternal members) and control group (7 nonmaternal members) for comparison. Clinical evaluations and sequence analysis of mtDNA were obtained from all participants. Frequency differences between maternal and nonmaternal members were tested to locate the disease-associated mutations. Results: The majority of the family members presented with a maternal inheritance of hypertension and DCM. Sequence analysis of mtDNA in this pedigree identified eight mtDNA mutations. Among the mutations identified, there was only one significant mutation: A8701G (P = 0.005), which is a homoplasmic mitochondrial missense mutation in all the matrilineal relatives. There was no clear evidence for any synergistic effects between A8701G and other mutations. Conclusions: A8701G mutation may act as an inherited risk factor for the matrilineal transmission of hypertension and DCM in conjunction with genetic disorders caused by consanguineous marriage. PMID:26831225

  3. Mouth Cancer

    MedlinePlus

    ... lips and the inside of your mouth. Most oral cancers are squamous cell carcinomas. It's not clear what causes the mutations in squamous cells that lead to mouth cancer. But doctors have identified factors that may increase ...

  4. Rapamycin prevents the development and progression of mutant epidermal growth factor receptor lung tumors with the acquired resistance mutation T790M.

    PubMed

    Kawabata, Shigeru; Mercado-Matos, José R; Hollander, M Christine; Donahue, Danielle; Wilson, Willie; Regales, Lucia; Butaney, Mohit; Pao, William; Wong, Kwok-Kin; Jänne, Pasi A; Dennis, Phillip A

    2014-06-26

    Lung cancer in never-smokers is an important disease often characterized by mutations in epidermal growth factor receptor (EGFR), yet risk reduction measures and effective chemopreventive strategies have not been established. We identify mammalian target of rapamycin (mTOR) as potentially valuable target for EGFR mutant lung cancer. mTOR is activated in human lung cancers with EGFR mutations, and this increases with acquisition of T790M mutation. In a mouse model of EGFR mutant lung cancer, mTOR activation is an early event. As a single agent, the mTOR inhibitor rapamycin prevents tumor development, prolongs overall survival, and improves outcomes after treatment with an irreversible EGFR tyrosine kinase inhibitor (TKI). These studies support clinical testing of mTOR inhibitors in order to prevent the development and progression of EGFR mutant lung cancers. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Non-coding recurrent mutations in chronic lymphocytic leukaemia.

    PubMed

    Puente, Xose S; Beà, Silvia; Valdés-Mas, Rafael; Villamor, Neus; Gutiérrez-Abril, Jesús; Martín-Subero, José I; Munar, Marta; Rubio-Pérez, Carlota; Jares, Pedro; Aymerich, Marta; Baumann, Tycho; Beekman, Renée; Belver, Laura; Carrio, Anna; Castellano, Giancarlo; Clot, Guillem; Colado, Enrique; Colomer, Dolors; Costa, Dolors; Delgado, Julio; Enjuanes, Anna; Estivill, Xavier; Ferrando, Adolfo A; Gelpí, Josep L; González, Blanca; González, Santiago; González, Marcos; Gut, Marta; Hernández-Rivas, Jesús M; López-Guerra, Mónica; Martín-García, David; Navarro, Alba; Nicolás, Pilar; Orozco, Modesto; Payer, Ángel R; Pinyol, Magda; Pisano, David G; Puente, Diana A; Queirós, Ana C; Quesada, Víctor; Romeo-Casabona, Carlos M; Royo, Cristina; Royo, Romina; Rozman, María; Russiñol, Nuria; Salaverría, Itziar; Stamatopoulos, Kostas; Stunnenberg, Hendrik G; Tamborero, David; Terol, María J; Valencia, Alfonso; López-Bigas, Nuria; Torrents, David; Gut, Ivo; López-Guillermo, Armando; López-Otín, Carlos; Campo, Elías

    2015-10-22

    Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.

  6. Gradual Loss of ACTH Due to a Novel Mutation in LHX4: Comprehensive Mutation Screening in Japanese Patients with Congenital Hypopituitarism

    PubMed Central

    Takagi, Masaki; Ishii, Tomohiro; Inokuchi, Mikako; Amano, Naoko; Narumi, Satoshi; Asakura, Yumi; Muroya, Koji; Hasegawa, Yukihiro; Adachi, Masanori; Hasegawa, Tomonobu

    2012-01-01

    Mutations in transcription factors genes, which are well regulated spatially and temporally in the pituitary gland, result in congenital hypopituitarism (CH) in humans. The prevalence of CH attributable to transcription factor mutations appears to be rare and varies among populations. This study aimed to define the prevalence of CH in terms of nine CH-associated genes among Japanese patients. We enrolled 91 Japanese CH patients for DNA sequencing of POU1F1, PROP1, HESX1, LHX3, LHX4, SOX2, SOX3, OTX2, and GLI2. Additionally, gene copy numbers for POU1F1, PROP1, HESX1, LHX3, and LHX4 were examined by multiplex ligation-dependent probe amplification. The gene regulatory properties of mutant LHX4 proteins were characterized in vitro. We identified two novel heterozygous LHX4 mutations, namely c.249-1G>A, p.V75I, and one common POU1F1 mutation, p.R271W. The patient harboring the c.249-1G>A mutation exhibited isolated growth hormone deficiency at diagnosis and a gradual loss of ACTH, whereas the patient with the p.V75I mutation exhibited multiple pituitary hormone deficiency. In vitro experiments showed that both LHX4 mutations were associated with an impairment of the transactivation capacities of POU1F1 andαGSU, without any dominant-negative effects. The total mutation prevalence in Japanese CH patients was 3.3%. This study is the first to describe, a gradual loss of ACTH in a patient carrying an LHX4 mutation. Careful monitoring of hypothalamic–pituitary -adrenal function is recommended for CH patients with LHX4 mutations. PMID:23029363

  7. Correlational study on mitochondrial DNA mutations as potential risk factors in breast cancer.

    PubMed

    Li, Linhai; Chen, Lidan; Li, Jun; Zhang, Weiyun; Liao, Yang; Chen, Jianyun; Sun, Zhaohui

    2016-05-24

    The presented study performed an mtDNA genome-wide association analysis to screen the peripheral blood of breast cancer patients for high-risk germline mutations. Unlike previous studies, which have used breast tissue in analyzing somatic mutations, we looked for germline mutations in our study, since they are better predictors of breast cancer in high-risk groups, facilitate early, non-invasive diagnoses of breast cancer and may provide a broader spectrum of therapeutic options. The data comprised 22 samples of healthy group and 83 samples from breast cancer patients. The sequencing data showed 170 mtDNA mutations in the healthy group and 393 mtDNA mutations in the disease group. Of these, 283 mtDNA mutations (88 in the healthy group and 232 in the disease group) had never been reported in the literature. Moreover, correlation analysis indicated there was a significant difference in 32 mtDNA mutations. According to our relative risk analysis of these 32 mtDNA mutations, 27 of the total had odds ratio values (ORs) of less than 1, meaning that these mutations have a potentially protective role to play in breast cancer. The remaining 5 mtDNA mutations, RNR2-2463 indelA, COX1-6296 C>A, COX1-6298 indelT, ATP6-8860 A>G, and ND5-13327 indelA, whose ORs were 8.050, 4.464, 4.464, 5.254 and 4.853, respectively, were regarded as risk factors of increased breast cancer. The five mutations identified here may serve as novel indicators of breast cancer and may have future therapeutic applications. In addition, the use of peripheral blood samples was procedurally simple and could be applied as a non-invasive diagnostic technique.

  8. The BRAFT1799A mutation is not associated with occult contralateral carcinoma in patients with unilateral papillary thyroid microcarcinoma.

    PubMed

    Wan, Han-Feng; Zhang, Bin; Yan, Dan-Gui; Xu, Zhen-Gang

    2015-01-01

    The phenomenon of occult carcinoma maybe observed in patients with clinically unilateral papillary thyroid microcarcinoma (PTMC). Although many studies have reported that the BRAFT1799A mutation is associated with aggressive PTMC, the relationship between BRAFT1799A mutation and occult carcinoma is unclear. The aim of this study was to investigate the risk factors, including BRAFT1799A mutation, for occult contralateral carcinoma in clinically unilateral PTMC accompanied by benign nodules in the contralateral lobe. From January 2011 to December 2013,we prospectively enrolled 89 consecutive PTMC patients with clinically unilateral carcinoma accompanied by benign nodules in the contralateral lobe who received a total thyroidectomy and cervical lymph node dissection. BRAFT1799A mutation was tested by pyrosequencing on postoperative paraffin specimens. The frequency and predictive factors for occult contralateral carcinoma were analyzed with respect to the following variables: age, gender, family history, tumor size, presence of Hashimoto thyroiditis, extrathyroidal extension, central lymph node metastasis, multifocality of primary tumor, or BRAFT1799A mutation. A total of 36 patients (40.4%) had occult PTMC in the contralateral lobe. The median diameter of the occult tumors was 0.33±0.21 cm. The BRAFT1799A mutation was found in 38 cases (42.7%). According to the univariate analysis, there were no significant differences between the presence of occult contralateral carcinoma and age, gender, family history, tumor size, presence of Hashimoto thyroiditis, extrathyroidal extension, central lymph node metastasis, multifocality of primary tumor, or BRAFT1799A mutation. Using current methods, it is difficult to preoperatively identify patients with PTMC, and further research is needed to determine predictive factors for the presence of occult contralateral carcinoma in patients with unilateral PTMC.

  9. Broad Detection of Alterations Predicted to Confer Lack of Benefit From EGFR Antibodies or Sensitivity to Targeted Therapy in Advanced Colorectal Cancer.

    PubMed

    Rankin, Andrew; Klempner, Samuel J; Erlich, Rachel; Sun, James X; Grothey, Axel; Fakih, Marwan; George, Thomas J; Lee, Jeeyun; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M; Schrock, Alexa B

    2016-09-28

    A KRAS mutation represented the first genomic biomarker to predict lack of benefit from anti-epidermal growth factor receptor (EGFR) antibody therapy in advanced colorectal cancer (CRC). Expanded RAS testing has further refined the treatment approach, but understanding of genomic alterations underlying primary and acquired resistance is limited and further study is needed. We prospectively analyzed 4,422 clinical samples from patients with advanced CRC, using hybrid-capture based comprehensive genomic profiling (CGP) at the request of the individual treating physicians. Comparison with prior molecular testing results, when available, was performed to assess concordance. We identified a RAS/RAF pathway mutation or amplification in 62% of cases, including samples harboring KRAS mutations outside of the codon 12/13 hotspot region in 6.4% of cases. Among cases with KRAS non-codon 12/13 alterations for which prior test results were available, 79 of 90 (88%) were not identified by focused testing. Of 1,644 RAS/RAF wild-type cases analyzed by CGP, 31% harbored a genomic alteration (GA) associated with resistance to anti-EGFR therapy in advanced CRC including mutations in PIK3CA, PTEN, EGFR, and ERBB2. We also identified other targetable GA, including novel kinase fusions, receptor tyrosine kinase amplification, activating point mutations, as well as microsatellite instability. Extended genomic profiling reliably detects alterations associated with lack of benefit to anti-EGFR therapy in advanced CRC, while simultaneously identifying alterations potentially important in guiding treatment. The use of CGP during the course of clinical care allows for the refined selection of appropriate targeted therapies and clinical trials, increasing the chance of clinical benefit and avoiding therapeutic futility. Comprehensive genomic profiling (CGP) detects diverse genomic alterations associated with lack of benefit to anti-epidermal growth factor receptor therapy in advanced colorectal cancer (CRC), as well as targetable alterations in many other genes. This includes detection of a broad spectrum of activating KRAS alterations frequently missed by focused molecular hotspot testing, as well as other RAS/RAF pathway alterations, mutations shown to disrupt antibody binding, RTK activating point mutations, amplifications, and rearrangements, and activating alterations in downstream effectors including PI3K and MEK1. The use of CGP in clinical practice is critical to guide appropriate selection of targeted therapies for patients with advanced CRC. ©AlphaMed Press.

  10. Identification and Functional Analysis of ZIC3 Mutations in Heterotaxy and Related Congenital Heart Defects

    PubMed Central

    Ware, Stephanie M.; Peng, Jianlan; Zhu, Lirong; Fernbach, Susan; Colicos, Suzanne; Casey, Brett; Towbin, Jeffrey; Belmont, John W.

    2004-01-01

    Mutations in the zinc finger transcription factor ZIC3 cause X-linked heterotaxy and have also been identified in patients with isolated congenital heart disease (CHD). To determine the relative contribution of ZIC3 mutations to both heterotaxy and isolated CHD, we screened the coding region of ZIC3 in 194 unrelated patients, including 61 patients with classic heterotaxy, 93 patients with heart defects characteristic of heterotaxy, and 11 patients with situs inversus totalis. Five novel ZIC3 mutations in three classic heterotaxy kindreds and two sporadic CHD cases were identified. None of these alleles was found in 97 ethnically matched control samples. On the basis of these analyses, we conclude that the phenotypic spectrum of ZIC3 mutations should be expanded to include affected females and CHD not typical for heterotaxy. This screening of a cohort of patients with sporadic heterotaxy indicates that ZIC3 mutations account for ∼1% of affected individuals. Missense and nonsense mutations were found in the highly conserved zinc finger–binding domain and in the N-terminal protein domain. Functional analysis of all currently known ZIC3 point mutations indicates that mutations in the putative zinc finger DNA binding domain and in the N-terminal domain result in loss of reporter gene transactivation. It is surprising that transfection studies demonstrate aberrant cytoplasmic localization resulting from mutations between amino acids 253–323 of the ZIC3 protein, indicating that the pathogenesis of a subset of ZIC3 mutations results at least in part from failure of appropriate nuclear localization. These results further expand the phenotypic and genotypic spectrum of ZIC3 mutations and provide initial mechanistic insight into their functional consequences. PMID:14681828

  11. Ferroportin (Q248H) mutations in African families with dietary iron overload.

    PubMed

    McNamara, Lynne; Gordeuk, Victor R; MacPhail, A Patrick

    2005-12-01

    Dietary iron overload found in sub-Saharan Africa might be caused by an interaction between dietary iron and an iron-loading gene. Caucasian people with ferroportin gene mutations have iron overload histologically similar to that found in African patients with iron overload. Ferroportin is also implicated in the hypoferremic response to inflammation. The prevalence of the ferroportin Q248H mutation, unique to African people, and its association with dietary iron overload, mean cell volume (MCV) and C-reactive protein (CRP) were examined in 19 southern African families. Polymerase chain reaction (PCR) and restriction enzyme digestion were used to identify the Q248H mutation. Statistical analysis was carried out to correlate the presence of the mutation with markers of iron overload and inflammation. We identified three (1.4%) Q248H homozygotes and 53 (24.1%) heterozygotes in the families examined in the present study. There was no increased prevalence of the mutation in index subjects or their families. Logistic regression showed significantly higher serum ferritin concentrations with the mutation. The mean cell volume (MCV) was significantly lower, and the serum CRP significantly higher in subjects who carried the mutation. The present study of 19 families with African iron overload failed to show evidence that the ferroportin (Q248H) mutation is responsible for the condition. Logistic regression, correcting for factors influencing iron status, did show increased ferritin levels in individuals with the mutation. The strong association with low MCV suggests the possibility that the ferroportin (Q248H) mutation might interfere with iron supply, whereas the elevated serum CRP might indicate that the ferroportin mutation influences the inflammatory response in African populations. Copyright 2005 Blackwell Publishing Asia Pty Ltd.

  12. Mutations of the KISS1 Gene in Disorders of Puberty

    PubMed Central

    Silveira, L. G.; Noel, S. D.; Silveira-Neto, A. P.; Abreu, A. P.; Brito, V. N.; Santos, M. G.; Bianco, S. D. C.; Kuohung, W.; Xu, S.; Gryngarten, M.; Escobar, M. E.; Arnhold, I. J. P.; Mendonca, B. B.; Kaiser, U. B.; Latronico, A. C.

    2010-01-01

    Context: Kisspeptin, encoded by the KISS1 gene, is a key stimulatory factor of GnRH secretion and puberty onset. Inactivating mutations of its receptor (KISS1R) cause isolated hypogonadotropic hypogonadism (IHH). A unique KISS1R-activating mutation was described in central precocious puberty (CPP). Objective: Our objective was to investigate KISS1 mutations in patients with idiopathic CPP and normosmic IHH. Patients: Eighty-three children with CPP (77 girls) and 61 patients with IHH (40 men) were studied. The control group consisted of 200 individuals with normal pubertal development. Methods: The promoter region and the three exons of KISS1 were amplified and sequenced. Cells expressing KISS1R were stimulated with synthetic human wild-type or mutant kisspeptin-54 (kp54), and inositol phosphate accumulation was measured. In a second set of experiments, kp54 was preincubated in human serum before stimulation of the cells. Results: Two novel KISS1 missense mutations, p.P74S and p.H90D, were identified in three unrelated children with idiopathic CPP. Both mutations were absent in 400 control alleles. The p.P74S mutation was identified in the heterozygous state in a boy who developed CPP at 1 yr of age. The p.H90D mutation was identified in the homozygous state in two unrelated girls with CPP. In vitro studies revealed that the capacity of the P74S and H90D mutants to stimulate IP production was similar to the wild type. After preincubation of wild-type and mutant kp54 in human serum, the capacity to stimulate signal transduction was significantly greater for P74S compared with the wild type, suggesting that the p.P74S variant is more stable. Only polymorphisms were found in the IHH group. Conclusion: Two KISS1 mutations were identified in unrelated patients with idiopathic CPP. The p.P74S variant was associated with higher kisspeptin resistance to degradation in comparison with the wild type, suggesting a role for this mutation in the precocious puberty phenotype. PMID:20237166

  13. Mutations of the KISS1 gene in disorders of puberty.

    PubMed

    Silveira, L G; Noel, S D; Silveira-Neto, A P; Abreu, A P; Brito, V N; Santos, M G; Bianco, S D C; Kuohung, W; Xu, S; Gryngarten, M; Escobar, M E; Arnhold, I J P; Mendonca, B B; Kaiser, U B; Latronico, A C

    2010-05-01

    Kisspeptin, encoded by the KISS1 gene, is a key stimulatory factor of GnRH secretion and puberty onset. Inactivating mutations of its receptor (KISS1R) cause isolated hypogonadotropic hypogonadism (IHH). A unique KISS1R-activating mutation was described in central precocious puberty (CPP). Our objective was to investigate KISS1 mutations in patients with idiopathic CPP and normosmic IHH. Eighty-three children with CPP (77 girls) and 61 patients with IHH (40 men) were studied. The control group consisted of 200 individuals with normal pubertal development. The promoter region and the three exons of KISS1 were amplified and sequenced. Cells expressing KISS1R were stimulated with synthetic human wild-type or mutant kisspeptin-54 (kp54), and inositol phosphate accumulation was measured. In a second set of experiments, kp54 was preincubated in human serum before stimulation of the cells. Two novel KISS1 missense mutations, p.P74S and p.H90D, were identified in three unrelated children with idiopathic CPP. Both mutations were absent in 400 control alleles. The p.P74S mutation was identified in the heterozygous state in a boy who developed CPP at 1 yr of age. The p.H90D mutation was identified in the homozygous state in two unrelated girls with CPP. In vitro studies revealed that the capacity of the P74S and H90D mutants to stimulate IP production was similar to the wild type. After preincubation of wild-type and mutant kp54 in human serum, the capacity to stimulate signal transduction was significantly greater for P74S compared with the wild type, suggesting that the p.P74S variant is more stable. Only polymorphisms were found in the IHH group. Two KISS1 mutations were identified in unrelated patients with idiopathic CPP. The p.P74S variant was associated with higher kisspeptin resistance to degradation in comparison with the wild type, suggesting a role for this mutation in the precocious puberty phenotype.

  14. Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress

    PubMed Central

    Barron, Martin J.; Smith, Claire E.L.; Poulter, James A.; Mighell, Alan J.; Inglehearn, Chris F.; Brown, Catriona J.; Rodd, Helen; Kirkham, Jennifer; Dixon, Michael J.

    2017-01-01

    Abstract ‘Amelogenesis imperfecta’ (AI) describes a group of inherited diseases of dental enamel that have major clinical impact. Here, we identify the aetiology driving AI in mice carrying a p.S55I mutation in enamelin; one of the most commonly mutated proteins underlying AI in humans. Our data indicate that the mutation inhibits the ameloblast secretory pathway leading to ER stress and an activated unfolded protein response (UPR). Initially, with the support of the UPR acting in pro-survival mode, Enamp.S55I heterozygous mice secreted structurally normal enamel. However, enamel secreted thereafter was structurally abnormal; presumably due to the UPR modulating ameloblast behaviour and function in an attempt to relieve ER stress. Homozygous mutant mice failed to produce enamel. We also identified a novel heterozygous ENAMp.L31R mutation causing AI in humans. We hypothesize that ER stress is the aetiological factor in this case of human AI as it shared the characteristic phenotype described above for the Enamp.S55I mouse. We previously demonstrated that AI in mice carrying the Amelxp.Y64H mutation is a proteinopathy. The current data indicate that AI in Enamp.S55I mice is also a proteinopathy, and based on comparative phenotypic analysis, we suggest that human AI resulting from the ENAMp.L31R mutation is another proteinopathic disease. Identifying a common aetiology for AI resulting from mutations in two different genes opens the way for developing pharmaceutical interventions designed to relieve ER stress or modulate the UPR during enamel development to ameliorate the clinical phenotype. PMID:28334996

  15. Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress.

    PubMed

    Brookes, Steven J; Barron, Martin J; Smith, Claire E L; Poulter, James A; Mighell, Alan J; Inglehearn, Chris F; Brown, Catriona J; Rodd, Helen; Kirkham, Jennifer; Dixon, Michael J

    2017-05-15

    'Amelogenesis imperfecta' (AI) describes a group of inherited diseases of dental enamel that have major clinical impact. Here, we identify the aetiology driving AI in mice carrying a p.S55I mutation in enamelin; one of the most commonly mutated proteins underlying AI in humans. Our data indicate that the mutation inhibits the ameloblast secretory pathway leading to ER stress and an activated unfolded protein response (UPR). Initially, with the support of the UPR acting in pro-survival mode, Enamp.S55I heterozygous mice secreted structurally normal enamel. However, enamel secreted thereafter was structurally abnormal; presumably due to the UPR modulating ameloblast behaviour and function in an attempt to relieve ER stress. Homozygous mutant mice failed to produce enamel. We also identified a novel heterozygous ENAMp.L31R mutation causing AI in humans. We hypothesize that ER stress is the aetiological factor in this case of human AI as it shared the characteristic phenotype described above for the Enamp.S55I mouse. We previously demonstrated that AI in mice carrying the Amelxp.Y64H mutation is a proteinopathy. The current data indicate that AI in Enamp.S55I mice is also a proteinopathy, and based on comparative phenotypic analysis, we suggest that human AI resulting from the ENAMp.L31R mutation is another proteinopathic disease. Identifying a common aetiology for AI resulting from mutations in two different genes opens the way for developing pharmaceutical interventions designed to relieve ER stress or modulate the UPR during enamel development to ameliorate the clinical phenotype. © The Author 2017. Published by Oxford University Press.

  16. Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations

    PubMed Central

    Spinella, Jean-François; Cassart, Pauline; Richer, Chantal; Saillour, Virginie; Ouimet, Manon; Langlois, Sylvie; St-Onge, Pascal; Sontag, Thomas; Healy, Jasmine; Minden, Mark D.; Sinnett, Daniel

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with variable prognosis. It represents 15% of diagnosed pediatric ALL cases and has a threefold higher incidence among males. Many recurrent alterations have been identified and help define molecular subgroups of T-ALL, however the full range of events involved in driving transformation remain to be defined. Using an integrative approach combining genomic and transcriptomic data, we molecularly characterized 30 pediatric T-ALLs and identified common recurrent T-ALL targets such as FBXW7, JAK1, JAK3, PHF6, KDM6A and NOTCH1 as well as novel candidate T-ALL driver mutations including the p.R35L missense mutation in splicesome factor U2AF1 found in 3 patients and loss of function mutations in the X-linked tumor suppressor genes MED12 (frameshit mutation p.V167fs, splice site mutation g.chrX:70339329T>C, missense mutation p.R1989H) and USP9X (nonsense mutation p.Q117*). In vitro functional studies further supported the putative role of these novel T-ALL genes in driving transformation. U2AF1 p.R35L was shown to induce aberrant splicing of downstream target genes, and shRNA knockdown of MED12 and USP9X was shown to confer resistance to apoptosis following T-ALL relevant chemotherapy drug treatment in Jurkat leukemia cells. Interestingly, nearly 60% of novel candidate driver events were identified among immature T-ALL cases, highlighting the underlying genomic complexity of pediatric T-ALL, and the need for larger integrative studies to decipher the mechanisms that contribute to its various subtypes and provide opportunities to refine patient stratification and treatment. PMID:27602765

  17. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy

    PubMed Central

    Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu

    2011-01-01

    Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344

  18. Mutations in SOX17 are Associated with Congenital Anomalies of the Kidney and the Urinary Tract

    PubMed Central

    Gimelli, Stefania; Caridi, Gianluca; Beri, Silvana; McCracken, Kyle; Bocciardi, Renata; Zordan, Paola; Dagnino, Monica; Fiorio, Patrizia; Murer, Luisa; Benetti, Elisa; Zuffardi, Orsetta; Giorda, Roberto; Wells, James M; Gimelli, Giorgio; Ghiggeri, Gian Marco

    2010-01-01

    Congenital anomalies of the kidney and the urinary tract (CAKUT) represent a major source of morbidity and mortality in children. Several factors (PAX, SOX,WNT, RET, GDFN, and others) play critical roles during the differentiation process that leads to the formation of nephron epithelia. We have identified mutations in SOX17, an HMG-box transcription factor and Wnt signaling antagonist, in eight patients with CAKUT (seven vesico-ureteric reflux, one pelvic obstruction). One mutation, c.775T>A (p.Y259N), recurred in six patients. Four cases derived from two small families; renal scars with urinary infection represented the main symptom at presentation in all but two patients. Transfection studies indicated a 5–10-fold increase in the levels of the mutant protein relative to wild-type SOX17 in transfected kidney cells. Moreover we observed a corresponding increase in the ability of SOX17 p.Y259N to inhibit Wnt/β-catenin transcriptional activity, which is known to regulate multiple stages of kidney and urinary tract development. In conclusion, SOX17 p.Y259N mutation is recurrent in patients with CAKUT. Our data shows that this mutation correlates with an inappropriate accumulation of SOX17-p.Y259N protein and inhibition of the β-catenin/Wnt signaling pathway. These data indicate a role of SOX17 in human kidney and urinary tract development and implicate the SOX17–p.Y259N mutation as a causative factor in CAKUT. Hum Mutat 31:1352–1359, 2010. © 2010 Wiley-Liss, Inc. PMID:20960469

  19. A quantitative assay measuring the function of lipase maturation factor 1

    PubMed Central

    Yin, Fen; Doolittle, Mark H.; Péterfy, Miklós

    2009-01-01

    Newly synthesized lipoprotein lipase (LPL) and related members of the lipase gene family require an endoplasmic reticulum maturation factor for attainment of enzyme activity. This factor has been identified as lipase maturation factor 1 (Lmf1), and mutations affecting its function and/or expression result in combined lipase deficiency (cld) and hypertriglyceridemia. To assess the functional impact of Lmf1 sequence variations, both naturally occurring and induced, we report the development of a cell-based assay using LPL activity as a quantitative reporter of Lmf1 function. The assay uses a cell line homozygous for the cld mutation, which renders endogenous Lmf1 nonfunctional. LPL transfected into the mutant cld cell line fails to attain activity; however, cotransfection of LPL with wild-type Lmf1 restores its ability to support normal lipase maturation. In this report, we describe optimized conditions that ensure the detection of a complete range of Lmf1 function (full, partial, or complete loss of function) using LPL activity as the quantitative reporter. To illustrate the dynamic range of the assay, we tested several novel mutations in mouse Lmf1. Our results demonstrate the ability of the assay to detect and analyze Lmf1 mutations having a wide range of effects on Lmf1 function and protein expression. PMID:19471043

  20. In silico analysis of a novel MKRN3 missense mutation in familial central precocious puberty.

    PubMed

    Neocleous, Vassos; Shammas, Christos; Phelan, Marie M; Nicolaou, Stella; Phylactou, Leonidas A; Skordis, Nicos

    2016-01-01

    The onset of puberty is influenced by the interplay of stimulating and restraining factors, many of which have a genetic origin. Premature activation of the GnRH secretion in central precocious puberty (CPP) may arise either from gain-of-function mutations of the KISS1 and KISS1R genes or from loss-of-function manner mutations of the MKRN3 gene leading to MKRN3 deficiency. To explore the genetic causes responsible for CPP and the potential role of the RING finger protein 3 (MKRN3) gene. We investigated potential sequence variations in the intronless MKRN3 gene by Sanger sequencing of the entire 507 amino acid coding region of exon 1 in a family with two affected girls presented with CPP at the age of 6 and 5·7 years, respectively. A novel heterozygous g.Gly312Asp missense mutation in the MKRN3 gene was identified in these siblings. The imprinted MKRN3 missense mutation was also identified as expected in the unaffected father and followed as expected an imprinted mode of inheritance. In silico analysis of the altered missense variant using the computational algorithms Polyphen2, SIFT and Mutation Taster predicted a damage and pathogenic alteration causing CPP. The pathogenicity of the alteration at the protein level via an in silico structural model is also explored. A novel mutation in the MKRN3 gene in two sisters with CPP was identified, supporting the fundamental role of this gene in the suppression of the hypothalamic GnRH neurons. © 2015 John Wiley & Sons Ltd.

  1. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes

    DOE PAGES

    Standaert, Robert F.; Giannone, Richard J.; Michener, Joshua K.

    2018-04-18

    Here, metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neithermore » enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.« less

  2. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Standaert, Robert F.; Giannone, Richard J.; Michener, Joshua K.

    Here, metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI, from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neithermore » enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA, duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI, growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.« less

  3. Identification of parallel and divergent optimization solutions for homologous metabolic enzymes.

    PubMed

    Standaert, Robert F; Giannone, Richard J; Michener, Joshua K

    2018-06-01

    Metabolic pathway assembly typically involves the expression of enzymes from multiple organisms in a single heterologous host. Ensuring that each enzyme functions effectively can be challenging, since many potential factors can disrupt proper pathway flux. Here, we compared the performance of two enzyme homologs in a pathway engineered to allow Escherichia coli to grow on 4-hydroxybenzoate (4-HB), a byproduct of lignocellulosic biomass deconstruction. Single chromosomal copies of the 4-HB 3-monooxygenase genes pobA and praI , from Pseudomonas putida KT2440 and Paenibacillus sp. JJ-1B, respectively, were introduced into a strain able to metabolize protocatechuate (PCA), the oxidation product of 4-HB. Neither enzyme initially supported consistent growth on 4-HB. Experimental evolution was used to identify mutations that improved pathway activity. For both enzymes, silent mRNA mutations were identified that increased enzyme expression. With pobA , duplication of the genes for PCA metabolism allowed growth on 4-HB. However, with praI , growth required a mutation in the 4-HB/PCA transporter pcaK that increased intracellular concentrations of 4-HB, suggesting that flux through PraI was limiting. These findings demonstrate the value of directed evolution strategies to rapidly identify and overcome diverse factors limiting enzyme activity.

  4. Characterization of differential gene expression in adrenocortical tumors harboring beta-catenin (CTNNB1) mutations.

    PubMed

    Durand, Julien; Lampron, Antoine; Mazzuco, Tania L; Chapman, Audrey; Bourdeau, Isabelle

    2011-07-01

    Mutations of β-catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and adrenocortical carcinomas (ACC). However, the target genes of β-catenin have not yet been identified in adrenocortical tumors. Our objective was to identify genes deregulated in adrenocortical tumors harboring CTNNB1 genetic alterations and nuclear accumulation of β-catenin. Microarray analysis identified a dataset of genes that were differently expressed between AA with CTNNB1 mutations and wild-type (WT) tumors. Within this dataset, the expression profiles of five genes were validated by real time-PCR (RT-PCR) in a cohort of 34 adrenocortical tissues (six AA and one ACC with CTNNB1 mutations, 13 AA and four ACC with WT CTNNB1, and 10 normal adrenal glands) and two human ACC cell lines. We then studied the effects of suppressing β-catenin transcriptional activity with the T-cell factor/β-catenin inhibitors PKF115-584 and PNU74654 on gene expression in H295R and SW13 cells. RT-PCR analysis confirmed the overexpression of ISM1, RALBP1, and PDE2A and the down-regulation of PHYHIP in five of six AA harboring CTNNB1 mutations compared with WT AA (n = 13) and normal adrenal glands (n = 10). RALBP1 and PDE2A overexpression was also confirmed at the protein level by Western blotting analysis in mutated tumors. ENC1 was specifically overexpressed in three of three AA harboring CTNNB1 point mutations. mRNA expression and protein levels of RALBP1, PDE2A, and ENC1 were decreased in a dose-dependent manner in H295R cells after treatment with PKF115-584 or PNU74654. This study identified candidate genes deregulated in CTNNB1-mutated adrenocortical tumors that may lead to a better understanding of the role of the Wnt-β-catenin pathway in adrenocortical tumorigenesis.

  5. Molecular genetic analysis of the F11 gene in 14 Turkish patients with factor XI deficiency: identification of novel and recurrent mutations and their inheritance within families.

    PubMed

    Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul

    2018-01-01

    Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients' families. Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients' F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson's correlation coefficient and the nonparametric Mann-Whitney test. Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues with high fibrinolytic activity.

  6. EGFR T790M mutation testing within the osimertinib AURA Phase I study.

    PubMed

    Dearden, Simon; Brown, Helen; Jenkins, Suzanne; Thress, Kenneth S; Cantarini, Mireille; Cole, Rebecca; Ranson, Malcolm; Jänne, Pasi A

    2017-07-01

    Reliable epidermal growth factor receptor (EGFR) mutation testing techniques are required to identify eligible patients with EGFR mutation/T790M positive advanced non-small cell lung cancer (NSCLC), for treatment with osimertinib (AZD9291), an oral, potent, irreversible EGFR tyrosine kinase inhibitor (TKI) selective for EGFR-TKI-sensitizing and T790M resistance mutations over wild-type EGFR. There is no current consensus regarding the best method to detect EGFR T790M mutations. The aim of this study was to describe the concordance between local testing, which used a variety of methods, and central testing, using the cobas ® EGFR Mutation Test, for EGFR-sensitizing mutations and the T790M resistance mutation. Tumor samples were obtained from all patients screened for inclusion onto the osimertinib Phase I expansion component of the AURA Phase I/II study (NCT01802632). Samples underwent central laboratory testing for EGFR-sensitizing mutations and T790M resistance mutation using the cobas ® EGFR Mutation Test. Results were compared with local laboratory test results, based on other testing methodologies including Sanger sequencing, therascreen ® , PNAClamp™, and Sequenom MassARRAY ® . Central laboratory testing was successful in 99% of samples passing histopathology review and testing success rates were comparable across the three central laboratories. Concordance between central and local testing for common sensitizing mutations was high (>98%) and concordance for the T790M mutation was also high (>90%). Tumor heterogeneity, along with other technical factors may have influenced this result. Within the osimertinib AURA Phase I study, EGFR mutation testing across three centralized laboratories using the cobas ® EGFR Mutation Test was feasible and successful, with strong concordance between local and central laboratory results, including for T790M. The cobas ® EGFR Mutation Test has subsequently been approved as the companion diagnostic test for osimertinib in the USA and Japan. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Breast cancer risk factors differ between Asian and white women with BRCA1/2 mutations.

    PubMed

    de Bruin, Monique A; Kwong, Ava; Goldstein, Benjamin A; Lipson, Jafi A; Ikeda, Debra M; McPherson, Lisa; Sharma, Bhavna; Kardashian, Ani; Schackmann, Elizabeth; Kingham, Kerry E; Mills, Meredith A; West, Dee W; Ford, James M; Kurian, Allison W

    2012-09-01

    The prevalence and penetrance of BRCA1 and BRCA2 (BRCA1/2) mutations may differ between Asians and whites. We investigated BRCA1/2 mutations and cancer risk factors in a clinic-based sample. BRCA1/2 mutation carriers were enrolled from cancer genetics clinics in Hong Kong and California according to standardized entry criteria. We compared BRCA mutation position, cancer history, hormonal and reproductive exposures. We analyzed DNA samples for single-nucleotide polymorphisms reported to modify breast cancer risk. We performed logistic regression to identify independent predictors of breast cancer. Fifty Asian women and forty-nine white American women were enrolled. BRCA1 mutations were more common among whites (67 vs. 42 %, p = 0.02), and BRCA2 mutations among Asians (58 vs. 37 %, p = 0.04). More Asians had breast cancer (76 vs. 53 %, p = 0.03); more whites had relatives with breast cancer (86 vs. 50 %, p = 0.0003). More whites than Asians had breastfed (71 vs. 42 %, p = 0.005), had high BMI (median 24.3 vs. 21.2, p = 0.04), consumed alcohol (2 drinks/week vs. 0, p < 0.001), and had oophorectomy (61 vs. 34 %, p = 0.01). Asians had a higher frequency of risk-associated alleles in MAP3K1 (88 vs. 59 %, p = 0.005) and TOX3/TNRC9 (88 vs. 55 %, p = 0.0002). On logistic regression, MAP3K1 was associated with increased breast cancer risk for BRCA2, but not BRCA1 mutation carriers; breast density was associated with increased risk among Asians but not whites. We found significant differences in breast cancer risk factors between Asian and white BRCA1/2 mutation carriers. Further investigation of racial differences in BRCA1/2 mutation epidemiology could inform targeted cancer risk-reduction strategies.

  8. Research progress in the genetics of hyperuricaemia and gout.

    PubMed

    Zheng, Min; Ma, Jun-wu

    2016-04-01

    Gout is one of the most common inflammatory arthritis caused by hyperuricaemia, which is affected by both genetic factors and environmental factors. Early researches show that a few of rare monogenic mutations, such as PRPS1 and HPRT1 mutations, lead to abnormal purine anabolism and then cause hyperuricaemia and gout. In recent years, genome-wide association studies (GWAS) have identified dozens of susceptibility loci and/or candidate genes associated with hyperuricemia and gout. Loss-of-function mutations in SLC2A9, SLC22A11, and SLC22A12 cause hereditary hypouricaemia, while their overexpression may increase the reabsorption of uric acid. In contrast, loss-of-function mutations in ABCG2, SLC17A1, and SLC17A3 cause urate underexcretion of renal and intestinal. These variations leading to blood uric acid excretion disorder (excess reabsorption and underexcretion) are the main genetic factors affecting hyperuicemia and gout. Moreover, to some degree, inhibins-activins growth factor system, transcription factors, cytoskeleton and gene-environment interaction can also affect the level of blood uric acid. In addition, two risk genes, RFX3 and KCNQ1, which might impair immune response and lead to functional deficiency of beta cell were recently discovered to influence hyperuiceamia and gout in Han Chinese. This paper systematically reviews genetic studies on hyperuricaemia and gout to improve our understanding of pathogenesis of hyperuricaemia and gout.

  9. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures

    PubMed Central

    Guo, Yan; Xiong, Liming; Ishitani, Manabu; Zhu, Jian-Kang

    2002-01-01

    Low temperature regulates gene expression in bacteria, yeast, and animals as well as in plants. However, the signal transduction cascades mediating the low temperature responses are not well understood in any organism. To identify components in low temperature signaling genetically, we isolated Arabidopsis thaliana mutants in which cold-responsive genes are no longer induced by low temperatures. One of these mutations, los1–1, specifically blocks low temperature-induced transcription of cold-responsive genes. Surprisingly, cold-induced expression of the early response transcriptional activators, C-repeat/dehydration responsive element binding factors (CBF/DREB1s), is enhanced by the los1–1 mutation. The los1–1 mutation also reduces the capacity of plants to develop freezing tolerance but does not impair the vernalization response. Genetic analysis indicated that los1–1 is a recessive mutation in a single nuclear gene. The LOS1 gene encodes a translation elongation factor 2-like protein. Protein labeling studies show that new protein synthesis is blocked in los1–1 mutant plants specifically in the cold. These results reveal a critical role of new protein synthesis in the proper transduction of low temperature signals. Our results also suggest that cold-induced transcription of CBF/DREB1s is feedback inhibited by their gene products or by products of their downstream target genes. PMID:12032361

  10. Rare Complex Mutational Profile in an ALK Inhibitor-resistant Non-small Cell Lung Cancer.

    PubMed

    Azzato, Elizabeth M; Deshpande, Charuhas; Aikawa, Vania; Aggarwal, Charu; Alley, Evan; Jacobs, Benjamin; Morrissette, Jennifer; Daber, Robert

    2015-05-01

    Testing for somatic alterations, including anaplastic lymphoma receptor tyrosine kinase gene (ALK) rearrangements and epidermal growth factor receptor gene (EGFR) mutations, is standard practice in the diagnostic evaluation and therapeutic management of non-small cell lung cancer (NSCLC), where the results of such tests can predict response to targeted-therapy. ALK rearrangements, EGFR mutations and mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) are considered mutually exclusive in NSCLC. Herein we identified a KRAS Q22K mutation and frameshift mutations in the genes encoding serine/threonine kinase 11 (STK11) and ataxia telangiectasia mutated serine/threonine kinase (ATM) by next-generation sequencing in a patient with ALK rearrangement-positive oligo-metastatic NSCLC, whose disease progressed while on two ALK-targeted therapies. Such a complex diagnostic genetic profile has not been reported in ALK fusion-positive NSCLC. This case highlights the utility of comprehensive molecular testing in the diagnosis of NSCLC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Correction of Hirschsprung-Associated Mutations in Human Induced Pluripotent Stem Cells Via Clustered Regularly Interspaced Short Palindromic Repeats/Cas9, Restores Neural Crest Cell Function.

    PubMed

    Lai, Frank Pui-Ling; Lau, Sin-Ting; Wong, John Kwong-Leong; Gui, Hongsheng; Wang, Reeson Xu; Zhou, Tingwen; Lai, Wing Hon; Tse, Hung-Fat; Tam, Paul Kwong-Hang; Garcia-Barcelo, Maria-Mercedes; Ngan, Elly Sau-Wai

    2017-07-01

    Hirschsprung disease is caused by failure of enteric neural crest cells (ENCCs) to fully colonize the bowel, leading to bowel obstruction and megacolon. Heterozygous mutations in the coding region of the RET gene cause a severe form of Hirschsprung disease (total colonic aganglionosis). However, 80% of HSCR patients have short-segment Hirschsprung disease (S-HSCR), which has not been associated with genetic factors. We sought to identify mutations associated with S-HSCR, and used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system to determine how mutations affect ENCC function. We created induced pluripotent stem cell (iPSC) lines from 1 patient with total colonic aganglionosis (with the G731del mutation in RET) and from 2 patients with S-HSCR (without a RET mutation), as well as RET +/- and RET -/- iPSCs. IMR90-iPSC cells were used as the control cell line. Migration and differentiation capacities of iPSC-derived ENCCs were analyzed in differentiation and migration assays. We searched for mutation(s) associated with S-HSCR by combining genetic and transcriptome data from patient blood- and iPSC-derived ENCCs, respectively. Mutations in the iPSCs were corrected using the CRISPR/Cas9 system. ENCCs derived from all iPSC lines, but not control iPSCs, had defects in migration and neuronal lineage differentiation. RET mutations were associated with differentiation and migration defects of ENCCs in vitro. Genetic and transcriptome analyses associated a mutation in the vinculin gene (VCL M209L) with S-HSCR. CRISPR/Cas9 correction of the RET G731del and VCL M209L mutations in iPSCs restored the differentiation and migration capacities of ENCCs. We identified mutations in VCL associated with S-HSCR. Correction of this mutation in iPSC using CRISPR/Cas9 editing, as well as the RET G731del mutation that causes Hirschsprung disease with total colonic aganglionosis, restored ENCC function. Our study demonstrates how human iPSCs can be used to identify disease-associated mutations and determine how they affect cell functions and contribute to pathogenesis. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, R.K.; Otte, C.A.

    Eight independently isolated mutants which are supersensitive (Sst/sup -/) to the G1 arrest induced by the tridecapeptide pheromone ..cap alpha.. factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by ..cap alpha.. factor. These mutants carries lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to ..cap alpha.. factor, but MAT..cap alpha.. sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on bothmore » MATa and MAT..cap alpha.. cells. Even in the absence of added ..cap alpha.. pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology (''shmoo'' shape) that normally develops only after MATa cells are exposed to ..cap alpha.. factor. This ''self-shmooing'' phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT..cap alpha.. diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT..cap alpha.. sst2-1/sst2-1) were still insensitive to ..cap alpha.. factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked nor centromere distal to MAT on the right arm of chromosome III.« less

  13. Mutations Preventing Regulated Exon Skipping in MET Cause Osteofibrous Dysplasia

    PubMed Central

    Gray, Mary J.; Kannu, Peter; Sharma, Swarkar; Neyt, Christine; Zhang, Dongping; Paria, Nandina; Daniel, Philip B.; Whetstone, Heather; Sprenger, Hans-Georg; Hammerschmidt, Philipp; Weng, Angela; Dupuis, Lucie; Jobling, Rebekah; Mendoza-Londono, Roberto; Dray, Michael; Su, Peiqiang; Wilson, Megan J.; Kapur, Raj P.; McCarthy, Edward F.; Alman, Benjamin A.; Howard, Andrew; Somers, Gino R.; Marshall, Christian R.; Manners, Simon; Flanagan, Adrienne M.; Rathjen, Karl E.; Karol, Lori A.; Crawford, Haemish; Markie, David M.; Rios, Jonathan J.; Wise, Carol A.; Robertson, Stephen P.

    2015-01-01

    The periosteum contributes to bone repair and maintenance of cortical bone mass. In contrast to the understanding of bone development within the epiphyseal growth plate, factors that regulate periosteal osteogenesis have not been studied as intensively. Osteofibrous dysplasia (OFD) is a congenital disorder of osteogenesis and is typically sporadic and characterized by radiolucent lesions affecting the cortical bone immediately under the periosteum of the tibia and fibula. We identified germline mutations in MET, encoding a receptor tyrosine kinase, that segregate with an autosomal-dominant form of OFD in three families and a mutation in a fourth affected subject from a simplex family and with bilateral disease. Mutations identified in all families with dominant inheritance and in the one simplex subject with bilateral disease abolished the splice inclusion of exon 14 in MET transcripts, which resulted in a MET receptor (METΔ14) lacking a cytoplasmic juxtamembrane domain. Splice exclusion of this domain occurs during normal embryonic development, and forced induction of this exon-exclusion event retarded osteoblastic differentiation in vitro and inhibited bone-matrix mineralization. In an additional subject with unilateral OFD, we identified a somatic MET mutation, also affecting exon 14, that substituted a tyrosine residue critical for MET receptor turnover and, as in the case of the METΔ14 mutations, had a stabilizing effect on the mature protein. Taken together, these data show that aberrant MET regulation via the juxtamembrane domain subverts core MET receptor functions that regulate osteogenesis within cortical diaphyseal bone. PMID:26637977

  14. Characterization of potential driver mutations involved in human breast cancer by computational approaches

    PubMed Central

    Rajendran, Barani Kumar; Deng, Chu-Xia

    2017-01-01

    Breast cancer is the second most frequently occurring form of cancer and is also the second most lethal cancer in women worldwide. A genetic mutation is one of the key factors that alter multiple cellular regulatory pathways and drive breast cancer initiation and progression yet nature of these cancer drivers remains elusive. In this article, we have reviewed various computational perspectives and algorithms for exploring breast cancer driver mutation genes. Using both frequency based and mutational exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of them as candidate drivers for breast cancer using various computational approaches. Finally, we conducted network and pathway analysis to explore their functions in breast tumorigenesis including tumor initiation, progression, and metastasis. PMID:28477017

  15. Shared Oncogenic Pathways Implicated in Both Virus-Positive and UV-Induced Merkel Cell Carcinomas.

    PubMed

    González-Vela, María Del Carmen; Curiel-Olmo, Soraya; Derdak, Sophia; Beltran, Sergi; Santibañez, Miguel; Martínez, Nerea; Castillo-Trujillo, Alfredo; Gut, Martha; Sánchez-Pacheco, Roxana; Almaraz, Carmen; Cereceda, Laura; Llombart, Beatriz; Agraz-Doblas, Antonio; Revert-Arce, José; López Guerrero, José Antonio; Mollejo, Manuela; Marrón, Pablo Isidro; Ortiz-Romero, Pablo; Fernandez-Cuesta, Lynnette; Varela, Ignacio; Gut, Ivo; Cerroni, Lorenzo; Piris, Miguel Ángel; Vaqué, José Pedro

    2017-01-01

    Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55-90% of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multivariable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Imaging of SHOX-associated anomalies.

    PubMed

    Gahunia, Harpal K; Babyn, Paul S; Kirsch, Susan; Mendoza-Londono, Roberto

    2009-09-01

    Human growth is a multifactorial trait influenced by environmental, hormonal, and genetic factors. Although it is clear that multiple factors contribute to an individual's final height and limb development, genetic factors play a crucial role. One such gene is the short stature homeobox ( SHOX) containing gene. Knowledge about the SHOX gene has rapidly increased since its discovery in 1997, and we now know that SHOX haploinsufficiency affects the development of the extremities and is an important cause of short stature. Currently, SHOX mutations occur with an estimated incidence of roughly 1 in 1000 newborns, making mutations of this gene one of the most common genetic defects associated with growth failure and skeletal deformities. Heterozygous mutations of SHOX have been implicated in patients with Madelung's deformity, Leri-Weill dyschondrosteosis (77%), Turner's syndrome (66%), and idiopathic short stature (3%), and homozygous mutations of SHOX gene have been identified in patients with Langer's mesomelic dysplasia (100%). Recognition of the early radiographic features encountered in SHOX haploinsufficiency maybe pivotal for the diagnosis. In this article, we summarize the genetic and clinical features of the various SHOX haploinsufficiency-associated disorders. We present the characteristic imaging features of these disorders and the results of growth hormone treatment trials.

  17. Mutations in the LHX2 gene are not a frequent cause of micro/anophthalmia

    PubMed Central

    Desmaison, Annaïck; Vigouroux, Adeline; Rieubland, Claudine; Peres, Christine; Calvas, Patrick

    2010-01-01

    Purpose Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (orthodenticle homeobox 2 [OTX2], retina and anterior neural fold homeobox [RAX], SRY-box 2 [SOX2], CEH10 homeodomain-containing homolog [CHX10], and growth differentiation factor 6 [GDF6]) have been implicated mainly in isolated micro/anophthalmia but causative mutations of these genes explain less than a quarter of these developmental defects. The essential role of the LIM homeobox 2 (LHX2) transcription factor in early eye development has recently been documented. We postulated that mutations in this gene could lead to micro/anophthalmia, and thus performed molecular screening of its sequence in patients having micro/anophthalmia. Methods Seventy patients having non-syndromic forms of colobomatous microphthalmia (n=25), isolated microphthalmia (n=18), or anophthalmia (n=17), and syndromic forms of micro/anophthalmia (n=10) were included in this study after negative molecular screening for OTX2, RAX, SOX2, and CHX10 mutations. Mutation screening of LHX2 was performed by direct sequencing of the coding sequences and intron/exon boundaries. Results Two heterozygous variants of unknown significance (c.128C>G [p.Pro43Arg]; c.776C>A [p.Pro259Gln]) were identified in LHX2 among the 70 patients. These variations were not identified in a panel of 100 control patients of mixed origins. The variation c.776C>A (p.Pro259Gln) was considered as non pathogenic by in silico analysis, while the variation c.128C>G (p.Pro43Arg) considered as deleterious by in silico analysis and was inherited from the asymptomatic father. Conclusions Mutations in LHX2 do not represent a frequent cause of micro/anophthalmia. PMID:21203406

  18. Mutations in the LHX2 gene are not a frequent cause of micro/anophthalmia.

    PubMed

    Desmaison, Annaïck; Vigouroux, Adeline; Rieubland, Claudine; Peres, Christine; Calvas, Patrick; Chassaing, Nicolas

    2010-12-18

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (orthodenticle homeobox 2 [OTX2], retina and anterior neural fold homeobox [RAX], SRY-box 2 [SOX2], CEH10 homeodomain-containing homolog [CHX10], and growth differentiation factor 6 [GDF6]) have been implicated mainly in isolated micro/anophthalmia but causative mutations of these genes explain less than a quarter of these developmental defects. The essential role of the LIM homeobox 2 (LHX2) transcription factor in early eye development has recently been documented. We postulated that mutations in this gene could lead to micro/anophthalmia, and thus performed molecular screening of its sequence in patients having micro/anophthalmia. Seventy patients having non-syndromic forms of colobomatous microphthalmia (n=25), isolated microphthalmia (n=18), or anophthalmia (n=17), and syndromic forms of micro/anophthalmia (n=10) were included in this study after negative molecular screening for OTX2, RAX, SOX2, and CHX10 mutations. Mutation screening of LHX2 was performed by direct sequencing of the coding sequences and intron/exon boundaries. Two heterozygous variants of unknown significance (c.128C>G [p.Pro43Arg]; c.776C>A [p.Pro259Gln]) were identified in LHX2 among the 70 patients. These variations were not identified in a panel of 100 control patients of mixed origins. The variation c.776C>A (p.Pro259Gln) was considered as non pathogenic by in silico analysis, while the variation c.128C>G (p.Pro43Arg) considered as deleterious by in silico analysis and was inherited from the asymptomatic father. Mutations in LHX2 do not represent a frequent cause of micro/anophthalmia.

  19. Nuclear proteins that bind the human gamma-globin gene promoter: alterations in binding produced by point mutations associated with hereditary persistence of fetal hemoglobin.

    PubMed Central

    Gumucio, D L; Rood, K L; Gray, T A; Riordan, M F; Sartor, C I; Collins, F S

    1988-01-01

    The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation. Images PMID:2468996

  20. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.

    PubMed

    Ravindran, Ethiraj; Hu, Hao; Yuzwa, Scott A; Hernandez-Miranda, Luis R; Kraemer, Nadine; Ninnemann, Olaf; Musante, Luciana; Boltshauser, Eugen; Schindler, Detlev; Hübner, Angela; Reinecker, Hans-Christian; Ropers, Hans-Hilger; Birchmeier, Carmen; Miller, Freda D; Wienker, Thomas F; Hübner, Christoph; Kaindl, Angela M

    2017-04-01

    Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.

  1. Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation

    PubMed Central

    Yuzwa, Scott A.; Hernandez-Miranda, Luis R.; Musante, Luciana; Boltshauser, Eugen; Schindler, Detlev; Hübner, Angela; Reinecker, Hans-Christian; Ropers, Hans-Hilger; Miller, Freda D.; Hübner, Christoph; Kaindl, Angela M.

    2017-01-01

    Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder. PMID:28453519

  2. Identification and characterization of the elusive mutation causing the historical von Willebrand Disease type IIC Miami.

    PubMed

    Obser, T; Ledford-Kraemer, M; Oyen, F; Brehm, M A; Denis, C V; Marschalek, R; Montgomery, R R; Sadler, J E; Schneppenheim, S; Budde, U; Schneppenheim, R

    2016-09-01

    Essentials Von Willebrand disease IIC Miami features high von Willebrand factor (VWF) with reduced function. We aimed to identify and characterize the elusive underlying mutation in the original family. An inframe duplication of VWF exons 9-10 was identified and characterized. The mutation causes a defect in VWF multimerization and decreased VWF clearance from the circulation. Background A variant of von Willebrand disease (VWD) type 2A, phenotype IIC (VWD2AIIC), is characterized by recessive inheritance, low von Willebrand factor antigen (VWF:Ag), lack of VWF high-molecular-weight multimers, absence of VWF proteolytic fragments and mutations in the VWF propeptide. A family with dominantly inherited VWD2AIIC but markedly elevated VWF:Ag of > 2 U L(-1) was described as VWD type IIC Miami (VWD2AIIC-Miami) in 1993; however, the molecular defect remained elusive. Objectives To identify the molecular mechanism underlying the phenotype of the original VWD2AIIC-Miami. Patients and Methods We studied the original family with VWD2AIIC-Miami phenotypically and by genotyping. The identified mutation was recombinantly expressed and characterized by standard techniques, confocal imaging and in a mouse model, respectively. Results By Multiplex ligation-dependent probe amplification we identified an in-frame duplication of VWF exons 9-10 (c.998_1156dup; p.Glu333_385dup) in all patients. Recombinant mutant (rm)VWF only presented as a dimer. Co-expressed with wild-type VWF, the multimer pattern was indistinguishable from patients' plasma VWF. Immunofluorescence studies indicated retention of rmVWF in unusually large intracellular granules in the endoplasmic reticulum. ADAMTS-13 proteolysis of rmVWF under denaturing conditions was normal; however, an aberrant proteolytic fragment was apparent. A decreased ratio of VWF propeptide to VWF:Ag and a 1-desamino-8-d-arginine vasopressin (DDAVP) test in one patient indicated delayed VWF clearance, which was supported by clearance data after infusion of rmVWF into VWF(-/-) mice. Conclusion The unique phenotype of VWD2 type IIC-Miami results from dominant impairment of multimer assembly, an aberrant structure of mutant mature VWF and reduced clearance in vivo. © 2016 International Society on Thrombosis and Haemostasis.

  3. Evaluation of risk factors for thrombophilia in patients with cerebral venous thrombosis.

    PubMed

    Yokuş, Osman; Şahin Balçık, Özlem; Albayrak, Murat; Ceran, Funda; Dağdaş, Simten; Yılmaz, Mesude; Özet, Gülsüm

    2010-09-05

    The increased risk for thrombosis is known as hypercoagulability or thrombophilia. In our study, we aimed to compare the frequency of the identified defects for thrombophilia in patients with central venous thrombosis and under the age of 50 years, with the findings in the current literature. Forty-three patients (16-50 years old) were retrospectively evaluated. Thrombophilia investigation included determinations of protein C, protein S, antithrombin, and activated protein C resistance, factor V Leiden (FVL), prothrombin 20210A (PT 20210) and methylene tetrahydrofolate reductase (MTHFR) C677T mutations, antiphospholipid antibodies (APA), factor VIII levels, and homocysteine levels. We detected a single thrombophilic defect in 67.4%, two defects in 27.9% and three defects in 4.7% of our patients. The most common thrombophilic defect was mutation in the MTHFR gene (41.8%), and this was followed by the FVL mutation (34.9%). Since the prevalence of individual thrombophilic defects varies in each population, ethnic group and geographical location, screening for thrombophilic defects in patients presenting with cerebral venous thrombosis should primarily investigate the most frequent thrombophilia risk factors.

  4. Identifying novel genetic determinants of hemostatic balance.

    PubMed

    Ginsburg, D

    2005-08-01

    Incomplete penetrance and variable expressivity confound the diagnosis and therapy of most inherited thrombotic and hemorrhagic disorders. For many of these diseases, some or most of this variability is determined by genetic modifiers distinct from the primary disease gene itself. Clues toward identifying such modifier genes may come from studying rare Mendelian disorders of hemostasis. Examples include identification of the cause of combined factor V and VIII deficiency as mutations in the ER Golgi intermediate compartment proteins LMAN1 and MCFD2. These proteins form a cargo receptor that facilitates the transport of factors V and VIII, and presumably other proteins, from the ER to the Golgi. A similar positional cloning approach identified ADAMTS-13 as the gene responsible for familial TTP. Along with the work of many other groups, these findings identified VWF proteolysis by ADAMTS-13 as a key regulatory pathway for hemostasis. Recent advances in mouse genetics also provide powerful tools for the identification of novel genes contributing to hemostatic balance. Genetic studies of inbred mouse lines with unusually high and unusually low plasma VWF levels identified polymorphic variation in the expression of a glycosyltransferase gene, Galgt2, as an important determinant of plasma VWF levels in the mouse. Ongoing studies in mice genetically engineered to carry the factor V Leiden mutation may similarly identify novel genes contributing to thrombosis risk in humans.

  5. The population genetics of human disease: The case of recessive, lethal mutations

    PubMed Central

    Gao, Ziyue; Baker, Zachary; Diesel, José Francisco; Simons, Yuval B.; Haque, Imran S.; Pickrell, Joseph; Przeworski, Molly

    2017-01-01

    Do the frequencies of disease mutations in human populations reflect a simple balance between mutation and purifying selection? What other factors shape the prevalence of disease mutations? To begin to answer these questions, we focused on one of the simplest cases: recessive mutations that alone cause lethal diseases or complete sterility. To this end, we generated a hand-curated set of 417 Mendelian mutations in 32 genes reported to cause a recessive, lethal Mendelian disease. We then considered analytic models of mutation-selection balance in infinite and finite populations of constant sizes and simulations of purifying selection in a more realistic demographic setting, and tested how well these models fit allele frequencies estimated from 33,370 individuals of European ancestry. In doing so, we distinguished between CpG transitions, which occur at a substantially elevated rate, and three other mutation types. Intriguingly, the observed frequency for CpG transitions is slightly higher than expectation but close, whereas the frequencies observed for the three other mutation types are an order of magnitude higher than expected, with a bigger deviation from expectation seen for less mutable types. This discrepancy is even larger when subtle fitness effects in heterozygotes or lethal compound heterozygotes are taken into account. In principle, higher than expected frequencies of disease mutations could be due to widespread errors in reporting causal variants, compensation by other mutations, or balancing selection. It is unclear why these factors would have a greater impact on disease mutations that occur at lower rates, however. We argue instead that the unexpectedly high frequency of disease mutations and the relationship to the mutation rate likely reflect an ascertainment bias: of all the mutations that cause recessive lethal diseases, those that by chance have reached higher frequencies are more likely to have been identified and thus to have been included in this study. Beyond the specific application, this study highlights the parameters likely to be important in shaping the frequencies of Mendelian disease alleles. PMID:28957316

  6. Severe vascular calcification and tumoral calcinosis in a family with hyperphosphatemia: a fibroblast growth factor 23 mutation identified by exome sequencing

    PubMed Central

    Shah, Anuja; Miller, Clinton J.; Nast, Cynthia C.; Adams, Mark D.; Truitt, Barbara; Tayek, John A.; Tong, Lili; Mehtani, Parag; Monteon, Francisco; Sedor, John R.; Clinkenbeard, Erica L.; White, Kenneth; Mehrotra, Rajnish; LaPage, Janine; Dickson, Patricia; Adler, Sharon G.; Iyengar, Sudha K.

    2014-01-01

    Background Tumoral calcinosis is an autosomal recessive disorder characterized by ectopic calcification and hyperphosphatemia. Methods We describe a family with tumoral calcinosis requiring amputations. The predominant metabolic anomaly identified in three affected family members was hyperphosphatemia. Biochemical and phenotypic analysis of 13 kindred members, together with exome analysis of 6 members, was performed. Results We identified a novel Q67K mutation in fibroblast growth factor 23 (FGF23), segregating with a null (deletion) allele on the other FGF23 homologue in three affected members. Affected siblings had high circulating plasma C-terminal FGF23 levels, but undetectable intact FGF23 or N-terminal FGF23, leading to loss of FGF23 function. Conclusions This suggests that in human, as in experimental models, severe prolonged hyperphosphatemia may be sufficient to produce bone differentiation proteins in vascular cells, and vascular calcification severe enough to require amputation. Genetic modifiers may contribute to the phenotypic variation within and between families. PMID:25378588

  7. The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism.

    PubMed

    Gregory, L C; Gaston-Massuet, C; Andoniadou, C L; Carreno, G; Webb, E A; Kelberman, D; McCabe, M J; Panagiotakopoulos, L; Saldanha, J W; Spoudeas, H A; Torpiano, J; Rossi, M; Raine, J; Canham, N; Martinez-Barbera, J P; Dattani, M T

    2015-05-01

    The Gli family of zinc finger (GLI) transcription factors mediates the sonic hedgehog signalling pathway (HH) essential for CNS, early pituitary and ventral forebrain development in mice. Human mutations in this pathway have been described in patients with holoprosencephaly (HPE), isolated congenital hypopituitarism (CH) and cranial/midline facial abnormalities. Mutations in Sonic hedgehog (SHH) have been associated with HPE but not CH, despite murine studies indicating involvement in pituitary development. We aimed to establish the role of the HH pathway in the aetiology of hypothalamo-pituitary disorders by screening our cohort of patients with midline defects and/or CH for mutations in SHH, GLI2, Shh brain enhancer 2 (SBE2) and growth-arrest specific 1 (GAS1). Two variants and a deletion of GLI2 were identified in three patients. A novel variant at a highly conserved residue in the zinc finger DNA-binding domain, c.1552G > A [pE518K], was identified in a patient with growth hormone deficiency and low normal free T4. A nonsynonymous variant, c.2159G > A [p.R720H], was identified in a patient with a short neck, cleft palate and hypogonadotrophic hypogonadism. A 26·6 Mb deletion, 2q12·3-q21·3, encompassing GLI2 and 77 other genes, was identified in a patient with short stature and impaired growth. Human embryonic expression studies and molecular characterisation of the GLI2 mutant p.E518K support the potential pathogenicity of GLI2 mutations. No mutations were identified in GAS1 or SBE2. A novel SHH variant, c.1295T>A [p.I432N], was identified in two siblings with variable midline defects but normal pituitary function. Our data suggest that mutations in SHH, GAS1 and SBE2 are not associated with hypopituitarism, although GLI2 is an important candidate for CH. © 2014 John Wiley & Sons Ltd.

  8. Germline mutations in 40 cancer susceptibility genes among Chinese patients with high hereditary risk breast cancer.

    PubMed

    Li, Junyan; Jing, Ruilin; Wei, Hongyi; Wang, Minghao; Qi, Xiaowei; Liu, Haoxi; Liu, Jian; Ou, Jianghua; Jiang, Weihua; Tian, Fuguo; Sheng, Yuan; Li, Hengyu; Xu, Hong; Zhang, Ruishan; Guan, Aihua; Liu, Ke; Jiang, Hongchuan; Ren, Yu; He, Jianjun; Huang, Weiwei; Liao, Ning; Cai, Xiangjun; Ming, Jia; Ling, Rui; Xu, Yan; Hu, Chunyan; Zhang, Jianguo; Guo, Baoliang; Ouyang, Lizhi; Shuai, Ping; Liu, Zhenzhen; Zhong, Ling; Zeng, Zhen; Zhang, Ting; Xuan, Zhaoling; Tan, Xuanni; Liang, Junbin; Pan, Qinwen; Chen, Li; Zhang, Fan; Fan, Linjun; Zhang, Yi; Yang, Xinhua; Li, Jingbo; Chen, Chongjian; Jiang, Jun

    2018-05-12

    Multigene panel testing of breast cancer predisposition genes have been extensively conducted in Europe and America, which is relatively rare in Asia however. In this study, we assessed the frequency of germline mutations in 40 cancer predisposition genes, including BRCA1 and BRCA2, among a large cohort of Chinese patients with high hereditary risk of BC. From 2015 to 2016, consecutive BC patients from 26 centers of China with high hereditary risk were recruited (n=937). Clinical information was collected and next-generation sequencing (NGS) was performed using blood samples of participants to identify germline mutations. In total, we acquired 223 patients with putative germline mutations, including 159 in BRCA1/2, 61 in 15 other BC susceptibility genes and 3 in both BRCA1/2 and non-BRCA1/2 gene. Major mutant non-BRCA1/2 genes were TP53 (n=18), PALB2 (n=11), CHEK2 (n=6), ATM (n=6), and BARD1 (n=5). No factors predicted pathologic mutations in non-BRCA1/2 genes when treated as a whole. TP53 mutations were associated with HER-2 positive BC and younger age at diagnosis; and CHEK2 and PALB2 mutations were enriched in patients with luminal BC. Among high hereditary risk Chinese BC patients, 23.8% contained germline mutations, including 6.8% in non-BRCA1/2 genes. TP53 and PALB2 had a relatively high mutation rates (1.9% and 1.2%). Although no factors predicted for detrimental mutations in non-BRCA1/2 genes, some clinical features were associated with mutations of several particular genes. This article is protected by copyright. All rights reserved. © 2018 UICC.

  9. Human NR5A1/SF-1 Mutations Show Decreased Activity on BDNF (Brain-Derived Neurotrophic Factor), an Important Regulator of Energy Balance: Testing Impact of Novel SF-1 Mutations Beyond Steroidogenesis

    PubMed Central

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E.

    2014-01-01

    Context Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. Objective To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. Patients 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. Methods SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Results Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Conclusions Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations. PMID:25122490

  10. Human NR5A1/SF-1 mutations show decreased activity on BDNF (brain-derived neurotrophic factor), an important regulator of energy balance: testing impact of novel SF-1 mutations beyond steroidogenesis.

    PubMed

    Malikova, Jana; Camats, Núria; Fernández-Cancio, Mónica; Heath, Karen; González, Isabel; Caimarí, María; del Campo, Miguel; Albisu, Marian; Kolouskova, Stanislava; Audí, Laura; Flück, Christa E

    2014-01-01

    Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.

  11. PI3K pathway mutations are associated with longer time to local progression after radioembolization of colorectal liver metastases.

    PubMed

    Ziv, Etay; Bergen, Michael; Yarmohammadi, Hooman; Boas, F Ed; Petre, E Nadia; Sofocleous, Constantinos T; Yaeger, Rona; Solit, David B; Solomon, Stephen B; Erinjeri, Joseph P

    2017-04-04

    To establish the relationship between common mutations in the MAPK and PI3K signaling pathways and local progression after radioembolization. Retrospective review of a HIPAA-compliant institutional review-board approved database identified 40 patients with chemo-refractory colorectal liver metastases treated with radioembolization who underwent tumor genotyping for hotspot mutations in 6 key genes in the MAPK/PI3K pathways (KRAS, NRAS, BRAF, MEK1, PIK3CA, and AKT1). Mutation status as well as clinical, tumor, and treatment variables were recorded. These factors were evaluated in relation to time to local progression (TTLP), which was calculated from time of radioembolization to first radiographic evidence of local progression. Predictors of outcome were identified using a proportional hazards model for both univariate and multivariate analysis with death as a competing risk. Sixteen patients (40%) had no mutations in either pathway, eighteen patients (45%) had mutations in the MAPK pathway, ten patients (25%) had mutations in the PI3K pathway and four patients (10%) had mutations in both pathways. The cumulative incidence of progression at 6 and 12 months was 33% and 55% for the PI3K mutated group compared with 76% and 92% in the PI3K wild type group. Mutation in the PI3K pathway was a significant predictor of longer TTLP in both univariate (p=0.031, sHR 0.31, 95% CI: 0.11-0.90) and multivariate (p=0.015, sHR=0.27, 95% CI: 0.096-0.77) analysis. MAPK pathway alterations were not associated with TTLP. PI3K pathway mutation predicts longer time to local progression after radioembolization of colorectal liver metastases.

  12. Mutation spectrum of hepatocellular carcinoma from eastern-European patients betrays the impact of a complex exposome.

    PubMed

    Tanase, Anna-Maria; Marchio, Agnès; Dumitrascu, Traian; Dima, Simona; Herlea, Vlad; Oprisan, Gabriela; Dejean, Anne; Popescu, Irinel; Pineau, Pascal

    2015-05-01

    Genomic analysis of hepatocellular carcinoma (HCC) has been shown to provide clues about local risk factors. In the last decades, the mortality from malignant liver tumors increased sharply in Romania, where both hepatitis viruses and environmental pollutants are known to be highly prevalent. To date, HCC from this country has not been subject to molecular characterization. We analyzed a series of 48 consecutive HCC cases. Point mutations were searched in 9 nuclear genes and the mitochondrial D-loop. Oxidative stress response was monitored through measurement of gene expression (NRF2, KEAP1, SRXN1, and CES1) by qRT-PCR. An atypical mutation spectrum was observed, as more than 40% of DNA changes were oxidative stress-associated T>C or T>G lesions (T>S). These mutations affected primarily genes encoding for β-catenin and NRF2 (P<0.0001). Besides, tumors from patients born in Greater Bucharest carried TP53 mutations more frequently than others (45 vs 10%, P=0.02). Finally, a R249S mutation of TP53, well-known hallmark of aflatoxin B1 exposure, was found. Our findings indicate, therefore, that distinct mutagenic processes affect Romanian patients with HCC. Further analyses are now warranted in order to identify causal lifestyle or environmental factors.

  13. Analysis of fluG mutations that affect light-dependent conidiation in Aspergillus nidulans.

    PubMed Central

    Yager, L N; Lee, H O; Nagle, D L; Zimmerman, J E

    1998-01-01

    Conidiation in Aspergillus nidulans is induced by exposure to red light but can also be induced by blue light in certain mutant strains. We have isolated a mutation in the fluG gene that abolishes responsiveness to red light but does not affect the response to blue light. It has been shown that the veA1 (velvet) mutation allows conidiation to occur in the absence of light. We have identified three other fluG mutations that suppress the veA1 phenotype; these double mutants do not conidiate in the dark. The mutations described here define two new phenotypic classes of fluG alleles that display abnormal responses to light. We have characterized these mutations with respect to their molecular identity and to their effect on fluG transcription. Although it has been shown that fluG is required for the synthesis of an extracellular factor that directs conidiation, we do not detect this factor under conditions that promote conidiation in the veA1 suppressors. Furthermore, extracellular rescue is not observed in fluG deletion strains containing the wild-type veA allele. We propose that a genetic interaction between fluG and veA influences the production of the extracellular signal and regulates the initiation of conidiation. PMID:9691036

  14. Lack of CHEK2 gene mutations in differentiated thyroid carcinoma patients using high resolution melting analysis.

    PubMed

    Fayaz, Shima; Fard-Esfahani, Pezhman; Torbati, Peyman Mohammadi

    2014-01-01

    Recently, mutations in the genes involved in cell cycle control, including CHEK2, are being considered as etiological factors in different kinds of cancers. The CHEK2 protein plays an important role in protecting damaged DNA from entering mitosis. In this study the potential effects of two common mutations IVS2+1G?A and Ile157Thr of CHEK2 gene in differentiated thyroid carcinoma (DTC) were evaluated. A total of 100 patients admitted to the Research Institute for Nuclear Medicine were diagnosed with DTC based on pathology reports of surgery samples. An additional 100 people were selected as a control group with no cancer history. PCR-HRM (high resolution melting) analysis was performed to deal with each of mutations in all case and control samples separately. During the analysis of IVS2+1G?A and Ile157Thr mutations of CHEK2 gene in the case and control groups, all the samples were identified as wild homozygote type. The finding suggests that IVS2+1G?A and Ile157Thr mutations of CHEK2 gene do not constitute a risk factor for DTC in the Iranian population. However, further studies with a larger population are required to confirm the outcome.

  15. Col4a1 mutations cause progressive retinal neovascular defects and retinopathy

    PubMed Central

    Alavi, Marcel V.; Mao, Mao; Pawlikowski, Bradley T.; Kvezereli, Manana; Duncan, Jacque L.; Libby, Richard T.; John, Simon W. M.; Gould, Douglas B.

    2016-01-01

    Mutations in collagen, type IV, alpha 1 (COL4A1), a major component of basement membranes, cause multisystem disorders in humans and mice. In the eye, these include anterior segment dysgenesis, optic nerve hypoplasia and retinal vascular tortuosity. Here we investigate the retinal pathology in mice carrying dominant-negative Col4a1 mutations. To this end, we examined retinas longitudinally in vivo using fluorescein angiography, funduscopy and optical coherence tomography. We assessed retinal function by electroretinography and studied the retinal ultrastructural pathology. Retinal examinations revealed serous chorioretinopathy, retinal hemorrhages, fibrosis or signs of pathogenic angiogenesis with chorioretinal anastomosis in up to approximately 90% of Col4a1 mutant eyes depending on age and the specific mutation. To identify the cell-type responsible for pathogenesis we generated a conditional Col4a1 mutation and determined that primary vascular defects underlie Col4a1-associated retinopathy. We also found focal activation of Müller cells and increased expression of pro-angiogenic factors in retinas from Col4a1+/Δex41mice. Together, our findings suggest that patients with COL4A1 and COL4A2 mutations may be at elevated risk of retinal hemorrhages and that retinal examinations may be useful for identifying patients with COL4A1 and COL4A2 mutations who are also at elevated risk of hemorrhagic strokes. PMID:26813606

  16. Clinical characteristics of severe congenital neutropenia caused by novel ELANE gene mutations.

    PubMed

    Shu, Zhou; Li, Xiao-Hui; Bai, Xiao-Ming; Zhang, Zhi-Yong; Jiang, Li-ping; Tang, Xue-Mei; Zhao, Xiao-dong

    2015-02-01

    Mutations within the ELANE gene, which encodes human neutrophil elastase, are the most common genetic causes of severe congenital neutropenia (SCN). No cases of SCN have been previously described from a Chinese population. Herein, we describe the clinical, hematologic and molecular characteristics of 7 Chinese SCN cases with novel ELANE mutations. Seven Chinese pediatric patients (4 males and 3 females) with suspected SCN were enrolled in this study. Clinical data, peripheral blood, bone marrow and immune function were evaluated for SCN. ELANE genomic DNA and cDNA sequences from patients and potential carriers were analyzed using polymerase chain reaction (PCR) and direct sequencing. All the7 patients experienced recurrent infection (soft tissue, lung, oral cavity) during a period of 120 days. Noninfectious conditions such as anemia and osteopenia were found in most patients, and absolute peripheral neutrophil counts varied. DNA and cDNA sequencing demonstrated that the patients harbored a range of heterozygous ELANE gene mutations, including substitution, deletion, insertion and frame shift alterations. All the mutations had not been reported previously; however, no mutation carriers were identified among the parents or siblings, even in a family with 2 affected offspring. SCN cases were identified for the first time in China, and all patients carried novel ELANE mutations. Granulocyte-colony stimulating factor (G-CSF) was an effective treatment for most of the SCN patients and prevented life-threatening bacterial infections.

  17. SAMHD1 Gene Mutations Are Associated with Cerebral Large-Artery Atherosclerosis

    PubMed Central

    Xin, Baozhong; Yan, Junpeng; Wu, Ying; Hu, Bo; Liu, Liping; Wang, Yilong; Ahn, Jinwoo; Skowronski, Jacek; Zhang, Zaiqiang; Wang, Yongjun; Wang, Heng

    2015-01-01

    Background. To investigate whether one or more SAMHD1 gene mutations are associated with cerebrovascular disease in the general population using a Chinese stroke cohort. Methods. Patients with a Chinese Han background (N = 300) diagnosed with either cerebral large-artery atherosclerosis (LAA, n = 100), cerebral small vessel disease (SVD, n = 100), or other stroke-free neurological disorders (control, n = 100) were recruited. Genomic DNA from the whole blood of each patient was isolated, and direct sequencing of the SAMHD1 gene was performed. Both wild type and mutant SAMHD1 proteins identified from the patients were expressed in E. coli and purified; then their dNTPase activities and ability to form stable tetramers were analysed in vitro. Results. Three heterozygous mutations, including two missense mutations c.64C>T (P22S) and c.841G>A (p.E281K) and one splice site mutation c.696+2T>A, were identified in the LAA group with a prevalence of 3%. No mutations were found in the patients with SVD or the controls (p = 0.05). The mutant SAMHD1 proteins were functionally impaired in terms of their catalytic activity as a dNTPase and ability to assemble stable tetramers. Conclusions. Heterozygous SAMHD1 gene mutations might cause genetic predispositions that interact with other risk factors, resulting in increased vulnerability to stroke. PMID:26504826

  18. A Cell Based Assay To Identify Neuroprotective Molecules for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    This project on ALS stems from our findings that rodent astrocytes expressing mutated SOD1 kill specifically spinal primary and embryonic mouse stem...identifying the toxic factor, the topic of this project is to search for neuroprotective small molecules by using ourcell-based model of ALS for high

  19. A regional analysis of epidermal growth factor receptor (EGFR) mutated lung cancer for HSE South.

    PubMed

    Kelly, D; Mc Sorley, L; O'Shea, E; Mc Carthy, E; Bowe, S; Brady, C; Sui, J; Dawod, M A; O'Brien, O; Graham, D; McCarthy, J; Burke, L; Power, D; O'Reilly, S; Bambury, R M; Mahony, D O

    2017-11-01

    EGFR mutated lung cancer represents a subgroup with distinct clinical presentations, prognosis, and management requirements. We investigated the survival, prognostic factors, and real-world treatment of NSCLC patients with EGFR mutation in clinical practice. A retrospective review of all specimens sent for EGFR analysis from December 2009 to September 2015 was performed. Patient demographics, specimen type, EGFR mutation status/type, stage at diagnosis, treatment, response rate, and survival data were recorded. 27/334 (8%) patient specimens sent for EGFR testing tested positive for a sensitising EGFR mutation. The median age was 65 years (40-85 years). Exon 19 deletion represented the most commonly detected alteration, accounting for 39% (n = 11). First-line treatment for those with Exon 18, 19, or 21 alterations (n = 24) was with an EGFR tyrosine kinase inhibitor (TKI) in 79% (n = 19). Objective response rate among these patients was 74% and median duration of response was 13 months (range 7-35 months). The incidence of EGFR mutation in our cohort of NSCLC is 9% which is consistent with mutation incidence reported in other countries. The rate of EGFR mutation in our population is slightly below that reported internationally, but treatment outcomes are consistent with published data. Real-world patient data have important contributions to make with regard to quality measurement, incorporating patient experience into guidelines and identifying safety signals.

  20. The effect of prothrombotic blood abnormalities on risk of deep vein thrombosis in users of hormone replacement therapy: a prospective case-control study.

    PubMed

    Douketis, Jim D; Julian, Jim A; Crowther, Mark A; Kearon, Clive; Bates, Shannon M; Barone, Marisa; Piovella, Franco; Middeldorp, Saskia; Prandoni, Paolo; Johnston, Marilyn; Costantini, Lorrie; Ginsberg, Jeffrey S

    2011-01-01

    Few studies have assessed the effect of prothrombotic blood abnormalities on the risk of deep vein thrombosis (DVT) with hormone replacement therapy (HRT). We studied postmenopausal women with suspected DVT in whom HRT use and prothrombotic blood abnormalities were sought. Cases had unprovoked DVT and controls had no DVT and without DVT risk factors. The risk of DVT was determined in women with and without prothrombotic abnormalities. A total of 510 postmenopausal women with suspected DVT were assessed; 57 cases and 283 controls were identified. Compared to HRT, nonusers without the factor V Leiden mutation, the risk of DVT was increased in estrogen-progestin HRT users (odds ratio [OR], 3.2; 95% confidence interval [CI]: 1.2-8.6) and in nonusers with the factor V Leiden mutation (OR, 5.3; 1.9-15.4) and appears multiplied in users of estrogen-progestin HRT with the factor V Leiden mutation (OR, 17.1; 3.7-78). Compared to HRT, nonusers with normal factor VIII, the risk of DVT was increased in estrogen-progestin HRT users with normal factor VIII (OR, 2.8; 1.0-7.9) and in HRT nonusers with the highest factor VIII quartile (OR, 6.0; 2.1-17), and appears to be multiplied in women who are users of estrogen-progestin HRT with the highest factor VIII quartile (OR, 17.0; 3.6-80). In postmenopausal women who are estrogen-progestin HRT users, the presence of the factor V Leiden mutation or an elevated factor VIII level appears to have a multiplicative effect on their overall risk of DVT, increasing it 17-fold compared to women without these blood abnormalities who are HRT nonusers.

  1. Novel SOX2 Mutations and Genotype-Phenotype Correlation in Anophthalmia and Microphthalmia

    PubMed Central

    Schneider, Adele; Bardakjian, Tanya; Reis, Linda M.; Tyler, Rebecca C.; Semina, Elena V.

    2009-01-01

    SOX2 represents a High Mobility Group domain containing transcription factor that is essential for normal development in vertebrates. Mutations in SOX2 are known to result in a spectrum of severe ocular phenotypes in humans, also typically associated with other systemic defects. Ocular phenotypes include anophthalmia/microphthalmia (A/M), optic nerve hypoplasia, ocular coloboma and other eye anomalies. We screened 51 unrelated individuals with A/M and indentified SOX2 mutations in the coding region of the gene in 10 individuals. Seven of the identified mutations are novel alterations, while the remaining three individuals carry the previously reported recurrent 20-nucleotide deletion in SOX2, c.70del20. Among the SOX2-positive cases, seven patients had bilateral A/M and mutations resulting in premature termination of the normal protein sequence (7/38; 18% of all bilateral cases), one patient had bilateral A/M associated with a single amino acid insertion (1/38; 3% of bilateral cases), and the final two patients demonstrated unilateral A/M associated with missense mutations (2/13; 15% of all unilateral cases). These findings and review of previously reported cases suggest a potential genotype/phenotype correlation for SOX2 mutations with missense changes generally leading to less severe ocular defects. In addition, we report a new familial case of affected siblings with maternal mosaicism for the identified SOX2 mutation, which further underscores the importance of parental testing to provide accurate genetic counseling to families. PMID:19921648

  2. MYD88 L265P mutation in Waldenstrom macroglobulinemia.

    PubMed

    Poulain, Stéphanie; Roumier, Christophe; Decambron, Audrey; Renneville, Aline; Herbaux, Charles; Bertrand, Elisabeth; Tricot, Sabine; Daudignon, Agnès; Galiègue-Zouitina, Sylvie; Soenen, Valerie; Theisen, Olivier; Grardel, Nathalie; Nibourel, Olivier; Roche-Lestienne, Catherine; Quesnel, Bruno; Duthilleul, Patrick; Preudhomme, Claude; Leleu, Xavier

    2013-05-30

    Mutation of the MYD88 gene has recently been identified in activated B-cell-like diffuse cell lymphoma and enhanced Janus kinase/signal transducer and activator of transcription (JAK-STAT) and nuclear factor κB (NF-κB) signaling pathways. A whole exome-sequencing study of Waldenstrom macroglobulinemia (WM) suggested a high frequency of MYD88 L265P mutation in WM. The genetic background is not fully deciphered in WM, although the role of NF-κB and JAK-STAT has been demonstrated. We analyzed MYD88 mutation in exon 5 and characterized the clinical significance of this genetic alteration in 67 WM patients. Clinical features; immunophenotypic markers; and conventional cytogenetic, fluorescence in situ hybridization, and single nucleotide polymorphism array data were analyzed. MYD88 L265P mutation was acquired in 79% of patients. Overall, we have identified alteration of the MYD88 locus in 91% of WM patients, including 12% with gain on chromosome 3 at the 3p22 locus that included the MYD88 gene. Patients with absence of MYD88 mutation were WM characterized with a female predominance, a splenomegaly, gain of chromosome 3, and CD27 expression. Importantly, inhibition of MYD88 signaling induced cytotoxicity and inhibited cell growth of cell lines issued from patients with WM. In conclusion, these results confirm a high frequency of MYD88 L265P mutation in WM. The discovery of MYD88 L265P mutation may contribute to a better understanding of the physiopathogeny of WM.

  3. Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma

    PubMed Central

    Mundo, Lucia; Laginestra, Maria Antonella; Fuligni, Fabio; Rossi, Maura; Zairis, Sakellarios; Gazaneo, Sara; De Falco, Giulia; Lazzi, Stefano; Bellan, Cristiana; Rocca, Bruno Jim; Amato, Teresa; Marasco, Elena; Etebari, Maryam; Ogwang, Martin; Calbi, Valeria; Ndede, Isaac; Patel, Kirtika; Chumba, David; Piccaluga, Pier Paolo; Pileri, Stefano; Leoncini, Lorenzo; Rabadan, Raul

    2015-01-01

    Endemic Burkitt lymphoma (eBL) is primarily found in children in equatorial regions and represents the first historical example of a virus-associated human malignancy. Although Epstein-Barr virus (EBV) infection and MYC translocations are hallmarks of the disease, it is unclear whether other factors may contribute to its development. We performed RNA-Seq on 20 eBL cases from Uganda and showed that the mutational and viral landscape of eBL is more complex than previously reported. First, we found the presence of other herpesviridae family members in 8 cases (40%), in particular human herpesvirus 5 and human herpesvirus 8 and confirmed their presence by immunohistochemistry in the adjacent non-neoplastic tissue. Second, we identified a distinct latency program in EBV involving lytic genes in association with TCF3 activity. Third, by comparing the eBL mutational landscape with published data on sporadic Burkitt lymphoma (sBL), we detected lower frequencies of mutations in MYC, ID3, TCF3 and TP53, and a higher frequency of mutation in ARID1A in eBL samples. Recurrent mutations in two genes not previously associated with eBL were identified in 20% of tumors: RHOA and cyclin F (CCNF). We also observed that polyviral samples showed lower numbers of somatic mutations in common altered genes in comparison to sBL specimens, suggesting dual mechanisms of transformation, mutation versus virus driven in sBL and eBL respectively. PMID:26468873

  4. Identification of Novel PROP1 and POU1F1 Mutations in Patients with Combined Pituitary Hormone Deficiency.

    PubMed

    Birla, S; Khadgawat, R; Jyotsna, V P; Jain, V; Garg, M K; Bhalla, A S; Sharma, A

    2016-12-01

    Growth hormone deficiency (GHD) results from variations affecting the production and release of growth hormone (GH) and is of 2 types: isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD). IGHD results from mutations in GH1 and GHRHR while CPHD is associated with defects in transcription factor genes PROP1 , POU1F1 , and HESX1. The present study reports on screening of POU1F1 , PROP1 , and HESX1 in CPHD patients and the novel variations identified. Fifty-one CPHD patients from 49 unrelated families clinically diagnosed on the basis of biochemical and imaging investigations along with 100 controls were enrolled. Detailed family history was noted from all participants and 5 ml blood samples drawn were processed for DNA isolation followed by direct sequencing of POU1F1 , PROP1 , and HESX1 genes. Of the 51 patients, 8 were females and 43 were males. Mean height standard deviation score (SDS) and weight SDS were -5.50 and -2.76, respectively. Thirty-six of the 51 patients underwent MRI of which 9 (25%) had normal pituitary structure and morphology while 27 (75%) showed abnormalities. Molecular analysis revealed 10 (20%) patients to have POU1F1 and PROP1 mutations/variations of which 5 were novel and 2 previously reported. No mutations were identified in HESX1. The novel variations identified were absent in the 100 healthy individuals screened and the control database Exome Aggregation Consortium (ExAC). Reported POU1F1 and PROP1 mutation hotspots were absent in our patients. Instead, novel POU1F1 changes were identified suggesting existence of a distinct mutation spectrum in our population. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Influence of Gene Expression on Hardness in Wheat.

    PubMed

    Nirmal, Ravi C; Furtado, Agnelo; Wrigley, Colin; Henry, Robert J

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences.

  6. Oestrogen receptor status, treatment and breast cancer prognosis in Icelandic BRCA2 mutation carriers.

    PubMed

    Jonasson, Jon G; Stefansson, Olafur A; Johannsson, Oskar T; Sigurdsson, Helgi; Agnarsson, Bjarni A; Olafsdottir, Gudridur H; Alexiusdottir, Kristin K; Stefansdottir, Hrefna; Munoz Mitev, Rodrigo; Olafsdottir, Katrin; Olafsdottir, Kristrun; Arason, Adalgeir; Stefansdottir, Vigdis; Olafsdottir, Elinborg J; Barkardottir, Rosa B; Eyfjord, Jorunn E; Narod, Steven A; Tryggvadóttir, Laufey

    2016-09-27

    The impact of an inherited BRCA2 mutation on the prognosis of women with breast cancer has not been well documented. We studied the effects of oestrogen receptor (ER) status, other prognostic factors and treatments on survival in a large cohort of BRCA2 mutation carriers. We identified 285 breast cancer patients with a 999del5 BRCA2 mutation and matched them with 570 non-carrier patients. Clinical information was abstracted from patient charts and pathology records and supplemented by evaluation of tumour grade and ER status using archived tissue specimens. Univariate and multivariate hazard ratios (HR) were estimated for breast cancer-specific survival using Cox regression. The effects of various therapies were studied in patients treated from 1980 to 2012. Among mutation carriers, positive ER status was associated with higher risk of death than negative ER status (HR=1.94; 95% CI=1.22-3.07, P=0.005). The reverse association was seen for non-carriers (HR=0.71; 95% CI: 0.51-0.97; P=0.03). Among BRCA2 carriers, ER-positive status is an adverse prognostic factor. BRCA2 carrier status should be known at the time when treatment decisions are made.

  7. Characterisation of four novel fibrillin-1 (FBN1) mutations in Marfan syndrome.

    PubMed Central

    Adès, L C; Haan, E A; Colley, A F; Richard, R I

    1996-01-01

    Forty-four percent of the fibrillin-1 gene (FBN1) from 19 unrelated families with Marfan syndrome was screened for putative mutations by single strand conformational polymorphism (SSCP) analysis. Four novel mutations were identified and characterised in five people, three with classical Marfan syndrome (two from one family, and one from an unrelated family), one with a more severe phenotype, and one with neonatal Marfan syndrome. The base substitutions G2113A, G2132A, T3163G, and G3458A result in amino acid substitutions A705T, C711Y, C1055G, and C1152Y, respectively. C711Y, C1055G, and C1152Y lead to replacement of a cysteine by another amino acid; the latter two occur within epidermal growth factor-like motifs in exon 25 and 27, respectively. The A705T mutation occurs at exon 16 adjacent to the GT splice site. The A705T and C711Y mutations, at exon 16 and 17, respectively, are the first documented in the second transforming growth factor-beta 1 binding protein-like motif of FBN1. Images PMID:8863159

  8. Comprehensive molecular screening by next generation sequencing reveals a distinctive mutational profile of KIT/PDGFRA genes and novel genomic alterations: results from a 20-year cohort of patients with GIST from north-western Greece.

    PubMed

    Mavroeidis, Leonidas; Metaxa-Mariatou, Vassiliki; Papoudou-Bai, Alexandra; Lampraki, Angeliki Maria; Kostadima, Lida; Tsinokou, Ilias; Zarkavelis, George; Papadaki, Alexandra; Petrakis, Dimitrios; Gκoura, Stefania; Kampletsas, Eleftherios; Nasioulas, George; Batistatou, Anna; Pentheroudakis, George

    2018-01-01

    Gastrointestinal stromal tumours (GIST) are mesenchymal neoplasms that usually carry an activating mutation in KIT or platelet-derived growth factor receptor alpha ( PDGFRA ) genes with predictive and prognostic significance. We investigated the extended mutational status of GIST in a patient population of north-western Greece in order to look at geopraphic/genotypic distinctive traits. Clinicopathological and molecular data of 38 patients diagnosed from 1996 to 2016 with GIST in the region of Epirus in Greece were retrospectively assessed. Formalin-fixed paraffin-embedded tumours were successfully analysed for mutations in 54 genes with oncogenic potential. Next generation sequencing was conducted by using the Ion AmpliSeqCancer Hotspot Panel V.2 for DNA analysis (Thermofisher Scientific). Among 38 tumours, 24 (63.16%) and seven (18.42%) of the tumours harboured mutations in the KIT and PDGFRA genes, respectively, while seven (18.42%) tumours were negative for either KIT or PDGFRA mutation. No mutations were detected in five (13.16%) cases. Concomitant mutations of BRAF and fibroblast growth factor receptor 3 ( FGFR3 ) genes were observed in two patients with KIT gene mutation. Two patients with KIT / PDGFRA wild-type GIST had mutations in either KRAS or phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA ) genes. There was no significant survival difference regarding the exonic site of mutation in either KIT or PDGFRA gene. The presence of a mutation in pathway effectors downstream of KIT or PDGFRA , such as BRAF , KRAS or PIK3CA , was associated with poor prognosis. Adverse prognosticators were also high mitotic index and the advanced disease status at diagnosis. We report comparable incidence of KIT and PDGFRA mutation in patients with GIST from north-western Greece as compared with cohorts from other regions. Interestingly, we identified rare mutations on RAS , BRAF and PIK3CA genes in patients with poor prognosis.

  9. Germline mutations in PALB2 in African-American breast cancer cases.

    PubMed

    Ding, Yuan Chun; Steele, Linda; Chu, Li-Hao; Kelley, Karen; Davis, Helen; John, Esther M; Tomlinson, Gail E; Neuhausen, Susan L

    2011-02-01

    Breast cancer incidence is lower in African Americans than in Caucasian Americans. However, African-American women have higher breast cancer mortality rates and tend to be diagnosed with earlier-onset disease. Identifying factors correlated to the racial/ethnic variation in the epidemiology of breast cancer may provide better understanding of the more aggressive disease at diagnosis. Truncating germline mutations in PALB2 have been identified in approximately 1% of early-onset and/or familial breast cancer cases. To date, PALB2 mutation testing has not been performed in African-American breast cancer cases. We screened for germline mutations in PALB2 in 139 African-American breast cases by denaturing high-performance liquid chromatography and direct sequencing. Twelve variants were identified in these cases and none caused truncation of the protein. Three missense variants, including two rare variants (P8L and T300I) and one common variant (P210L), were predicted to be pathogenic, and were located in a coiled-coil domain of PALB2 required for RAD51- and BRCA1-binding. We investigated and found no significant association between the P210L variant and breast cancer risk in a small case-control study of African-American women. This study adds to the literature that PALB2 mutations, although rare, appear to play a role in breast cancer in all populations investigated to date.

  10. Analyses of a Mutant Foxp3 Allele Reveal BATF as a Critical Transcription Factor in the Differentiation and Accumulation of Tissue Regulatory T Cells.

    PubMed

    Hayatsu, Norihito; Miyao, Takahisa; Tachibana, Masashi; Murakami, Ryuichi; Kimura, Akihiko; Kato, Takako; Kawakami, Eiryo; Endo, Takaho A; Setoguchi, Ruka; Watarai, Hiroshi; Nishikawa, Takeshi; Yasuda, Takuwa; Yoshida, Hisahiro; Hori, Shohei

    2017-08-15

    Foxp3 controls the development and function of regulatory T (Treg) cells, but it remains elusive how Foxp3 functions in vivo. Here, we established mouse models harboring three unique missense Foxp3 mutations that were identified in patients with the autoimmune disease IPEX. The I363V and R397W mutations were loss-of-function mutations, causing multi-organ inflammation by globally compromising Treg cell physiology. By contrast, the A384T mutation induced a distinctive tissue-restricted inflammation by specifically impairing the ability of Treg cells to compete with pathogenic T cells in certain non-lymphoid tissues. Mechanistically, repressed BATF expression contributed to these A384T effects. At the molecular level, the A384T mutation altered Foxp3 interactions with its specific target genes including Batf by broadening its DNA-binding specificity. Our findings identify BATF as a critical regulator of tissue Treg cells and suggest that sequence-specific perturbations of Foxp3-DNA interactions can influence specific facets of Treg cell physiology and the immunopathologies they regulate. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Identification of a Novel Missense FBN2 Mutation in a Chinese Family with Congenital Contractural Arachnodactyly Using Exome Sequencing

    PubMed Central

    Deng, Hao; Lu, Qian; Xu, Hongbo; Deng, Xiong; Yuan, Lamei; Yang, Zhijian; Guo, Yi; Lin, Qiongfen; Xiao, Jingjing; Guan, Liping; Song, Zhi

    2016-01-01

    Congenital contractural arachnodactyly (CCA, OMIM 121050), also known as Beals-Hecht syndrome, is an autosomal dominant disorder of connective tissue. CCA is characterized by arachnodactyly, dolichostenomelia, pectus deformities, kyphoscoliosis, congenital contractures and a crumpled appearance of the helix of the ear. The aim of this study is to identify the genetic cause of a 4-generation Chinese family of Tujia ethnicity with congenital contractural arachnodactyly by exome sequencing. The clinical features of patients in this family are consistent with CCA. A novel missense mutation, c.3769T>C (p.C1257R), in the fibrillin 2 gene (FBN2) was identified responsible for the genetic cause of our family with CCA. The p.C1257R mutation occurs in the 19th calcium-binding epidermal growth factor-like (cbEGF) domain. The amino acid residue cysteine in this domain is conserved among different species. Our findings suggest that exome sequencing is a powerful tool to discover mutation(s) in CCA. Our results may also provide new insights into the cause and diagnosis of CCA, and may have implications for genetic counseling and clinical management. PMID:27196565

  12. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia

    PubMed Central

    2013-01-01

    BACKGROUND Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. METHODS We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. RESULTS AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation–related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. CONCLUSIONS We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.) PMID:23634996

  13. A Novel Mutation in OTX2 Causes Combined Pituitary Hormone Deficiency, Bilateral Microphthalmia, and Agenesis of the Left Internal Carotid Artery.

    PubMed

    Shimada, Aya; Takagi, Masaki; Nagashima, Yuka; Miyai, Kentaro; Hasegawa, Yukihiro

    2016-01-01

    Mutations in OTX2 cause hypopituitarism, ranging from isolated growth hormone deficiency to combined pituitary hormone deficiency (CPHD), which are commonly detected in association with severe eye abnormalities, including anophthalmia or microphthalmia. Pituitary phenotypes of OTX2 mutation carriers are highly variable; however, ACTH deficiency during the neonatal period is not common in previous reports. We report a novel missense OTX2 (R89P) mutation in a CPHD patient with severe hypoglycemia in the neonatal period due to ACTH deficiency, bilateral microphthalmia, and agenesis of the left internal carotid artery (ICA). We identified a novel heterozygous mutation in OTX2 (c.266G>C, p.R89P). R89P OTX2 showed markedly reduced transcriptional activity of HESX1 and POU1F1 reporters compared with wild-type OTX2. A dominant negative effect was noted only in the transcription analysis with POU1F1 promoter. Electrophoretic mobility shift assay experiments showed that R89P OTX2 abrogated DNA-binding ability. OTX2 mutations can cause ACTH deficiency in the neonatal period. Our study also shows that OTX2 mutations are associated with agenesis of the ICA. To the best of our knowledge, this is the first report of a transcription factor gene mutation, which was identified due to agenesis of the ICA of a patient with CPHD. This study extends our understanding of the phenotypic features, molecular mechanism, and developmental course associated with mutations in OTX2. © 2016 S. Karger AG, Basel.

  14. De novo and rare mutations in the HSPA1L heat shock gene associated with inflammatory bowel disease.

    PubMed

    Takahashi, Shinichi; Andreoletti, Gaia; Chen, Rui; Munehira, Yoichi; Batra, Akshay; Afzal, Nadeem A; Beattie, R Mark; Bernstein, Jonathan A; Ennis, Sarah; Snyder, Michael

    2017-01-26

    Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disease of the gastrointestinal tract which includes ulcerative colitis and Crohn's disease. Genetic risk factors for IBD are not well understood. We performed a family-based whole exome sequencing (WES) analysis on a core family (Family A) to identify potential causal mutations and then analyzed exome data from a Caucasian pediatric cohort (136 patients and 106 controls) to validate the presence of mutations in the candidate gene, heat shock 70 kDa protein 1-like (HSPA1L). Biochemical assays of the de novo and rare (minor allele frequency, MAF < 0.01) mutation variant proteins further validated the predicted deleterious effects of the identified alleles. In the proband of Family A, we found a heterozygous de novo mutation (c.830C > T; p.Ser277Leu) in HSPA1L. Through analysis of WES data of 136 patients, we identified five additional rare HSPA1L mutations (p.Gly77Ser, p.Leu172del, p.Thr267Ile, p.Ala268Thr, p.Glu558Asp) in six patients. In contrast, rare HSPA1L mutations were not observed in controls, and were significantly enriched in patients (P = 0.02). Interestingly, we did not find non-synonymous rare mutations in the HSP70 isoforms HSPA1A and HSPA1B. Biochemical assays revealed that all six rare HSPA1L variant proteins showed decreased chaperone activity in vitro. Moreover, three variants demonstrated dominant negative effects on HSPA1L and HSPA1A protein activity. Our results indicate that de novo and rare mutations in HSPA1L are associated with IBD and provide insights into the pathogenesis of IBD, and also expand our understanding of the roles of HSP70s in human disease.

  15. Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease.

    PubMed

    Sieving, P A; Yashar, B M; Ayyagari, R

    1999-01-01

    X-linked juvenile retinoschisis (RS) provides a starting point to define clinical paradigms and understand the limitations of diagnostic molecular testing. The RS phenotype is specific, but the broad severity range is clinically confusing. Molecular diagnostic testing obviates unnecessary examinations for boys at-risk and identifies carrier females who otherwise show no clinical signs. The XLRS1 gene has 6 exons of 26-196 base-pair size. Each exon is amplified by a single polymerase chain reaction and then sequenced, starting with exons 4 through 6, which contain mutation "hot spots." The 6 XLRS1 exons are sequenced serially. If alterations are found, they are compared with mutations in our > 120 XLRS families and with the > 300 mutations reported worldwide. Point mutations, small deletions, or rearrangements are identified in nearly 90% of males with a clinical diagnosis of RS. XLRS1 has very few sequence polymorphisms. Carrier-state testing produces 1 of 3 results: (1) positive, in which the woman has the same mutation as an affected male relative or known in other RS families; (2) negative, in which she lacks the mutation of her affected male relative; and (3) uninformative, in which no known mutation is identified or no information exists about the familial mutation. Molecular RS screening is an effective diagnostic tool that complements the clinician's skills for early detection of at-risk males. Useful outcomes of carrier testing depend on several factors: (1) a male relative with a clear clinical diagnosis; (2) a well-defined inheritance pattern; (3) high disease penetrance; (4) size and organization of the gene; and (5) the types of disease-associated mutations. Ethical questions include molecular diagnostic testing of young at-risk females before the age of consent, the impact of this information on the emotional health of the patient and family, and issues of employability and insurance coverage.

  16. Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease.

    PubMed Central

    Sieving, P A; Yashar, B M; Ayyagari, R

    1999-01-01

    BACKGROUND AND PURPOSE: X-linked juvenile retinoschisis (RS) provides a starting point to define clinical paradigms and understand the limitations of diagnostic molecular testing. The RS phenotype is specific, but the broad severity range is clinically confusing. Molecular diagnostic testing obviates unnecessary examinations for boys at-risk and identifies carrier females who otherwise show no clinical signs. METHODS: The XLRS1 gene has 6 exons of 26-196 base-pair size. Each exon is amplified by a single polymerase chain reaction and then sequenced, starting with exons 4 through 6, which contain mutation "hot spots." RESULTS: The 6 XLRS1 exons are sequenced serially. If alterations are found, they are compared with mutations in our > 120 XLRS families and with the > 300 mutations reported worldwide. Point mutations, small deletions, or rearrangements are identified in nearly 90% of males with a clinical diagnosis of RS. XLRS1 has very few sequence polymorphisms. Carrier-state testing produces 1 of 3 results: (1) positive, in which the woman has the same mutation as an affected male relative or known in other RS families; (2) negative, in which she lacks the mutation of her affected male relative; and (3) uninformative, in which no known mutation is identified or no information exists about the familial mutation. CONCLUSIONS: Molecular RS screening is an effective diagnostic tool that complements the clinician's skills for early detection of at-risk males. Useful outcomes of carrier testing depend on several factors: (1) a male relative with a clear clinical diagnosis; (2) a well-defined inheritance pattern; (3) high disease penetrance; (4) size and organization of the gene; and (5) the types of disease-associated mutations. Ethical questions include molecular diagnostic testing of young at-risk females before the age of consent, the impact of this information on the emotional health of the patient and family, and issues of employability and insurance coverage. Images FIGURE 2A FIGURE 2B PMID:10703138

  17. SHP2 sails from physiology to pathology.

    PubMed

    Tajan, Mylène; de Rocca Serra, Audrey; Valet, Philippe; Edouard, Thomas; Yart, Armelle

    2015-10-01

    Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Myeloproliferative neoplasms: Current molecular biology and genetics.

    PubMed

    Saeidi, Kolsoum

    2016-02-01

    Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by increased production of mature blood cells. Philadelphia chromosome-negative MPNs (Ph-MPNs) consist of polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). A number of stem cell derived mutations have been identified in the past 10 years. These findings showed that JAK2V617F, as a diagnostic marker involving JAK2 exon 14 with a high frequency, is the best molecular characterization of Ph-MPNs. Somatic mutations in an endoplasmic reticulum chaperone, named calreticulin (CALR), is the second most common mutation in patients with ET and PMF after JAK2 V617F mutation. Discovery of CALR mutations led to the increased molecular diagnostic of ET and PMF up to 90%. It has been shown that JAK2V617F is not the unique event in disease pathogenesis. Some other genes' location such as TET oncogene family member 2 (TET2), additional sex combs-like 1 (ASXL1), casitas B-lineage lymphoma proto-oncogene (CBL), isocitrate dehydrogenase 1/2 (IDH1/IDH2), IKAROS family zinc finger 1 (IKZF1), DNA methyltransferase 3A (DNMT3A), suppressor of cytokine signaling (SOCS), enhancer of zeste homolog 2 (EZH2), tumor protein p53 (TP53), runt-related transcription factor 1 (RUNX1) and high mobility group AT-hook 2 (HMGA2) have also identified to be involved in MPNs phenotypes. Here, current molecular biology and genetic mechanisms involved in MNPs with a focus on the aforementioned factors is presented. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. WHO-defined 'myelodysplastic syndrome with isolated del(5q)' in 88 consecutive patients: survival data, leukemic transformation rates and prevalence of JAK2, MPL and IDH mutations.

    PubMed

    Patnaik, M M; Lasho, T L; Finke, C M; Gangat, N; Caramazza, D; Holtan, S G; Pardanani, A; Knudson, R A; Ketterling, R P; Chen, D; Hoyer, J D; Hanson, C A; Tefferi, A

    2010-07-01

    The 2008 World Health Organization (WHO) criteria were used to identify 88 consecutive Mayo Clinic patients with 'myelodysplastic syndrome with isolated del(5q)' (median age 74 years; 60 females). In all, 60 (68%) patients were followed up to the time of their death. Overall median survival was 66 months; leukemic transformation was documented in five (5.7%) cases. Multivariable analysis identified age >or=70 years (P=0.01), transfusion need at diagnosis (P=0.04) and dysgranulopoiesis (P=0.02) as independent predictors of shortened survival; the presence of zero (low risk), one (intermediate risk) or >or=2 (high risk) risk factors corresponded to median survivals of 102, 52 and 27 months, respectively. Janus kinase 2 (JAK2), thrombopoietin receptor (MPL), isocitrate dehydrogenase 1 (IDH1) and IDH2 mutational analysis was performed on archived bone marrows in 78 patients; JAK2V617F and MPLW515L mutations were shown in five (6.4%) and three (3.8%) patients, respectively, and did not seem to affect phenotype or prognosis. IDH mutations were not detected. Survival was not affected by serum ferritin and there were no instances of death directly related to iron overload. The current study is unique in its strict adherence to WHO criteria for selecting study patients and providing information on long-term survival, practical prognostic factors, baseline risk of leukemic transformation and the prevalence of JAK2, MPL and IDH mutations.

  20. WHO-defined ‘myelodysplastic syndrome with isolated del(5q)' in 88 consecutive patients: survival data, leukemic transformation rates and prevalence of JAK2, MPL and IDH mutations

    PubMed Central

    Patnaik, M M; Lasho, T L; Finke, C M; Gangat, N; Caramazza, D; Holtan, S G; Pardanani, A; Knudson, R A; Ketterling, R P; Chen, D; Hoyer, J D; Hanson, C A; Tefferi, A

    2010-01-01

    The 2008 World Health Organization (WHO) criteria were used to identify 88 consecutive Mayo Clinic patients with ‘myelodysplastic syndrome with isolated del(5q)' (median age 74 years; 60 females). In all, 60 (68%) patients were followed up to the time of their death. Overall median survival was 66 months; leukemic transformation was documented in five (5.7%) cases. Multivariable analysis identified age ⩾70 years (P=0.01), transfusion need at diagnosis (P=0.04) and dysgranulopoiesis (P=0.02) as independent predictors of shortened survival; the presence of zero (low risk), one (intermediate risk) or ⩾2 (high risk) risk factors corresponded to median survivals of 102, 52 and 27 months, respectively. Janus kinase 2 (JAK2), thrombopoietin receptor (MPL), isocitrate dehydrogenase 1 (IDH1) and IDH2 mutational analysis was performed on archived bone marrows in 78 patients; JAK2V617F and MPLW515L mutations were shown in five (6.4%) and three (3.8%) patients, respectively, and did not seem to affect phenotype or prognosis. IDH mutations were not detected. Survival was not affected by serum ferritin and there were no instances of death directly related to iron overload. The current study is unique in its strict adherence to WHO criteria for selecting study patients and providing information on long-term survival, practical prognostic factors, baseline risk of leukemic transformation and the prevalence of JAK2, MPL and IDH mutations. PMID:20485371

  1. Thrombosis in Philadelphia negative classical myeloproliferative neoplasms: a narrative review on epidemiology, risk assessment, and pathophysiologic mechanisms.

    PubMed

    Ball, Somedeb; Thein, Kyaw Zin; Maiti, Abhishek; Nugent, Kenneth

    2018-05-01

    Thrombosis is common in cancer patients and is associated with increased morbidity and mortality. Myeloproliferative neoplasms (MPN) are common malignancies in elderly individuals and are known for a high incidence of thrombotic complications. Different risk factors have been identified in studies, and risk models have been developed to identify patients with MPN at higher risk for thrombosis. Several pathophysiological mechanisms help explain the increased likelihood of thrombosis in these patients. Factors, such as leukocyte and platelet activation leading to the formation of leukocyte-platelet aggregates, activation of the coagulation cascade by microparticles, high levels of inflammatory cytokines, and endothelial dysfunction have a crucial role in thrombosis in MPN patients. Recent studies have demonstrated a significant association between the allele burden of specific genetic mutations (mainly JAK2V617F) associated with MPN and the incidence of thrombotic events, thus suggesting a possible role for these mutations in thrombogenesis.

  2. Heterozygous defects in PAX6 gene and congenital hypopituitarism.

    PubMed

    Takagi, Masaki; Nagasaki, Keisuke; Fujiwara, Ikuma; Ishii, Tomohiro; Amano, Naoko; Asakura, Yumi; Muroya, Koji; Hasegawa, Yukihiro; Adachi, Masanori; Hasegawa, Tomonobu

    2015-01-01

    The prevalence of congenital hypopituitarism (CH) attributable to known transcription factor mutations appears to be rare and other causative genes for CH remain to be identified. Due to the sporadic occurrence of CH, de novo chromosomal rearrangements could be one of the molecular mechanisms participating in its etiology, especially in syndromic cases. To identify the role of copy number variations (CNVs) in the etiology of CH and to identify novel genes implicated in CH. We enrolled 88 (syndromic: 30; non-syndromic: 58) Japanese CH patients. We performed an array comparative genomic hybridization screening in the 30 syndromic CH patients. For all the 88 patients, we analyzed PAX6 by PCR-based sequencing. We identified one heterozygous 310-kb deletion of the PAX6 enhancer region in one patient showing isolated GH deficiency (IGHD), cleft palate, and optic disc cupping. We also identified one heterozygous 6.5-Mb deletion encompassing OTX2 in a patient with bilateral anophthalmia and multiple pituitary hormone deficiency. We identified a novel PAX6 mutation, namely p.N116S in one non-syndromic CH patient showing IGHD. The p.N116S PAX6 was associated with an impairment of the transactivation capacities of the PAX6-binding elements. This study showed that heterozygous PAX6 mutations are associated with CH patients. PAX6 mutations may be associated with diverse clinical features ranging from severely impaired ocular and pituitary development to apparently normal phenotype. Overall, this study identified causative CNVs with a possible role in the etiology of CH in <10% of syndromic CH patients. © 2015 European Society of Endocrinology.

  3. Influence of diet, menstruation and genetic factors on iron status: a cross-sectional study in Spanish women of childbearing age.

    PubMed

    Blanco-Rojo, Ruth; Toxqui, Laura; López-Parra, Ana M; Baeza-Richer, Carlos; Pérez-Granados, Ana M; Arroyo-Pardo, Eduardo; Vaquero, M Pilar

    2014-03-06

    The aim of this study was to investigate the combined influence of diet, menstruation and genetic factors on iron status in Spanish menstruating women (n = 142). Dietary intake was assessed by a 72-h detailed dietary report and menstrual blood loss by a questionnaire, to determine a Menstrual Blood Loss Coefficient (MBLC). Five selected SNPs were genotyped: rs3811647, rs1799852 (Tf gene); rs1375515 (CACNA2D3 gene); and rs1800562 and rs1799945 (HFE gene, mutations C282Y and H63D, respectively). Iron biomarkers were determined and cluster analysis was performed. Differences among clusters in dietary intake, menstrual blood loss parameters and genotype frequencies distribution were studied. A categorical regression was performed to identify factors associated with cluster belonging. Three clusters were identified: women with poor iron status close to developing iron deficiency anemia (Cluster 1, n = 26); women with mild iron deficiency (Cluster 2, n = 59) and women with normal iron status (Cluster 3, n = 57). Three independent factors, red meat consumption, MBLC and mutation C282Y, were included in the model that better explained cluster belonging (R2 = 0.142, p < 0.001). In conclusion, the combination of high red meat consumption, low menstrual blood loss and the HFE C282Y mutation may protect from iron deficiency in women of childbearing age. These findings could be useful to implement adequate strategies to prevent iron deficiency anemia.

  4. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila.

    PubMed

    Perkins, L A; Johnson, M R; Melnick, M B; Perrimon, N

    1996-11-25

    Corkscrew (csw) encodes a nonreceptor protein tyrosine phosphatase (PTPase) that has been implicated in signaling from the Torso receptor tyrosine kinase (RTK). csw mutations, unlike tor mutations, are associated with zygotic lethality, indicating that Csw plays additional roles during development. We have conducted a detailed phenotypic analysis of csw mutations to identify these additional functions of Csw. Our results indicate that Csw operates positively downstream of other Drosophila RTKs such as the Drosophila epidermal growth factor receptor (DER), the fibroblast growth factor receptor (Breathless), and likely other RTKs. This model is substantiated by specific dosage interactions between csw and DER. It is proposed that Csw is part of the evolutionarily conserved "signaling cassette" that operates downstream of all RTKs. In support of this hypothesis, we demonstrate that SHP-2, a vertebrate PTPase similar to Csw and previously implicated in RTK signaling, encodes the functional vertebrate homologue of Csw.

  5. Prognostic value of mutational characteristics in gastrointestinal stromal tumors: a single-center experience in 275 cases.

    PubMed

    Wang, Ming; Xu, Jia; Zhao, Wenyi; Tu, Lin; Qiu, Weiqing; Wang, Chaojie; Shen, Yangyin; Liu, Qiang; Cao, Hui

    2014-01-01

    The objective of this study was to investigate the impact of KIT/PDGFRA mutations on the prognosis of gastrointestinal stromal tumors (GISTs). In the present study, genotype analyses were performed based on GIST samples from 275 patients. The relationship between mutation and clinicopathological characteristics were explored. All factors were evaluated for their impacts on relapse-free survival (RFS). Briefly, the results of genotype analyses showed that mutations were identified in 258 (93.8 %) patients, and deletion was the most frequent type of mutation accounting for 47.3 % (122/258) of all mutation cases, followed by substitution (87/258, 33.7 %) and duplication (49/258, 19.0 %). Moreover, for KIT exon 11 mutation, the most frequently involved area was from codon 557 to 560. Deep analyses showed that the mutation types were correlated with tumor location (P = 0.005), tumor size (P = 0.022), mitosis rate (P < 0.001), risk grade (P < 0.001), and relapse (P = 0.004). Furthermore, delW557-K558 correlated with mitosis rate (P = 0.042) and relapse (P = 0.036), and delTyr568/570 correlated with tumor origin (P = 0.018). Most importantly, mitotic rate [HR = 2.901 (95 % CI 1.094-7.695), P = 0.032] and risk grade [HR = 9.629 (95 % CI 1.997-46.416), P = 0.005] would be the representative traditional prognostic factors, and deletion with >3 codons would be an novel independent predictor of poor outcome for RFS in GIST patients with deletion mutation of KIT exon 11 [HR = 7.970 (95 % CI 1.774-35.803), P = 0.007]. All results indicated that mutation determined clinicopathological features and prognosis of GISTs, and more than three codons involvement may be a novel adverse indicator.

  6. Mutations in TP53 are a prognostic factor in colorectal hepatic metastases undergoing surgical resection.

    PubMed

    Molleví, David G; Serrano, Teresa; Ginestà, Mireia M; Valls, Joan; Torras, Jaume; Navarro, Matilde; Ramos, Emilio; Germà, Josep R; Jaurrieta, Eduardo; Moreno, Víctor; Figueras, Joan; Capellà, Gabriel; Villanueva, Alberto

    2007-06-01

    The aim of this study was to analyze the prognostic value of TP53 mutations in a consecutive series of patients with hepatic metastases (HMs) from colorectal cancer undergoing surgical resection. Ninety-one patients with liver metastases from colorectal carcinoma were included. Mutational analysis of TP53, exons 4-10, was performed by single-strand conformation polymorphism and sequencing. P53 and P21 protein immunostaining was assessed. Multivariate Cox models were adjusted for gender, number of metastasis, resection margin, presence of TP53 mutations and chemotherapy treatment. Forty-six of 91 (50.05%) metastases showed mutations in TP53, observed mainly in exons 5-8, although 14.3% (n = 13) were located in exons 9 and 10. Forty percent (n = 22) were protein-truncating mutations. TP53 status associated with multiple (> or =3) metastases (65.6%, P = 0.033), advanced primary tumor Dukes' stage (P = 0.011) and younger age (<57 years old, P = 0.03). Presence of mutation associated with poor prognosis in univariate (P = 0.017) and multivariate Cox model [hazard ratio (HR) = 1.80, 95% confidence interval (CI) = 1.07-3.06, P = 0.028]. Prognostic value was maintained in patients undergoing radical resection (R0 series, n = 79, P = 0.014). Mutation associated with a worse outcome in chemotherapy-treated patients (HR = 2.54, 95% CI = 1.12-5.75, P = 0.026). The combination of > or =3 metastases and TP53 mutation identified a subset of patients with very poor prognosis (P = 0.009). P53 and P21 protein immunostaining did not show correlation with survival. TP53 mutational status seems to be an important prognostic factor in patients undergoing surgical resection of colorectal cancer HMs.

  7. Loss-of-function thrombospondin-1 mutations in familial pulmonary hypertension

    PubMed Central

    Stearman, Robert S.; Bull, Todd M.; Calabrese, David W.; Tripp-Addison, Megan L.; Wick, Marilee J.; Broeckel, Ulrich; Robbins, Ivan M.; Wheeler, Lisa A.; Cogan, Joy D.; Loyd, James E.

    2012-01-01

    Most patients with familial pulmonary arterial hypertension (FPAH) carry mutations in the bone morphogenic protein receptor 2 gene (BMPR2). Yet carriers have only a 20% risk of disease, suggesting that other factors influence penetrance. Thrombospondin-1 (TSP1) regulates activation of TGF-β and inhibits endothelial and smooth muscle cell proliferation, pathways coincidentally altered in pulmonary arterial hypertension (PAH). To determine whether a subset of FPAH patients also have mutations in the TSP1 gene (THBS1) we resequenced the type I repeats of THBS1 encoding the TGF-β regulation and cell growth inhibition domains in 60 FPAH probands, 70 nonfamilial PAH subjects, and in large control groups. We identified THBS1 mutations in three families: a novel missense mutation in two (Asp362Asn), and an intronic mutation in a third (IVS8+255 G/A). Neither mutation was detected in population controls. Mutant 362Asn TSP1 had less than half of the ability of wild-type TSP1 to activate TGF-β. Mutant 362Asn TSP1 also lost the ability to inhibit growth of pulmonary arterial smooth muscle cells and was over threefold less effective at inhibiting endothelial cell growth. The IVS8+255 G/A mutation decreased and/or eliminated local binding of the transcription factors SP1 and MAZ but did not affect RNA splicing. These novel mutations implicate THBS1 as a modifier gene in FPAH. These THBS1 mutations have implications in the genetic evaluation of FPAH patients. However, since FPAH is rare, these data are most relevant as evidence for the importance of TSP1 in pulmonary vascular homeostasis. Further examination of THBS1 in the pathogenesis of PAH is warranted. PMID:22198906

  8. Differential Effects of HNF-1α Mutations Associated with Familial Young-Onset Diabetes on Target Gene Regulation

    PubMed Central

    Galán, Maria; García-Herrero, Carmen-Maria; Azriel, Sharona; Gargallo, Manuel; Durán, Maria; Gorgojo, Juan-Jose; Andía, Victor-Manuel; Navas, Maria-Angeles

    2011-01-01

    Hepatocyte nuclear factor 1-α (HNF-1α) is a homeodomain transcription factor expressed in a variety of tissues (including liver and pancreas) that regulates a wide range of genes. Heterozygous mutations in the gene encoding HNF-1α (HNF1A) cause familial young-onset diabetes, also known as maturity-onset diabetes of the young, type 3 (MODY3). The variability of the MODY3 clinical phenotype can be due to environmental and genetic factors as well as to the type and position of mutations. Thus, functional characterization of HNF1A mutations might provide insight into the molecular defects explaining the variability of the MODY3 phenotype. We have functionally characterized six HNF1A mutations identified in diabetic patients: two novel ones, p.Glu235Gly and c-57-64delCACGCGGT;c-55G>C; and four previously described, p.Val133Met, p.Thr196Ala, p.Arg271Trp and p.Pro379Arg. The effects of mutations on transcriptional activity have been measured by reporter assays on a subset of HNF-1α target promoters in Cos7 and Min6 cells. Target DNA binding affinities have been quantified by electrophoretic mobility shift assay using bacterially expressed glutathione-S-transferase (GST)-HNF-1α fusion proteins and nuclear extracts of transfected Cos7 cells. Our functional studies revealed that mutation c-57-64delCACGCGGT;c-55G>C reduces HNF1A promoter activity in Min6 cells and that missense mutations have variable effects. Mutation p.Arg271Trp impairs HNF-1α activity in all conditions tested, whereas mutations p.Val133Met, p.Glu235Gly and p.Pro379Arg exert differential effects depending on the target promoter. In contrast, substitution p.Thr196Ala does not appear to alter HNF-1α function. Our results suggest that HNF1A mutations may have differential effects on the regulation of specific target genes, which could contribute to the variability of the MODY3 clinical phenotype. PMID:21170474

  9. Promoter mutation is a common variant in GJC2-associated Pelizaeus-Merzbacher-like disease.

    PubMed

    Meyer, E; Kurian, M A; Morgan, N V; McNeill, A; Pasha, S; Tee, L; Younis, R; Norman, A; van der Knaap, M S; Wassmer, E; Trembath, R C; Brueton, L; Maher, E R

    2011-12-01

    Pelizaeus-Merzbacher-like disease (PMLD) is a clinically and genetically heterogeneous neurological disorder of cerebral hypomyelination. It is clinically characterised by early onset (usually infantile) nystagmus, impaired motor development, ataxia, choreoathetoid movements, dysarthria and progressive limb spasticity. We undertook autozygosity mapping studies in a large consanguineous family of Pakistani origin in which affected children had progressive lower limb spasticity and features of cerebral hypomyelination on MR brain imaging. SNP microarray and microsatellite marker analysis demonstrated linkage to chromosome 1q42.13-1q42.2. Direct sequencing of the gap junction protein gamma-2 gene, GJC2, identified a promoter region mutation (c.-167A>G) in the non-coding exon 1. The c.-167A>G promoter mutation was identified in a further 4 individuals from two families (who were also of Pakistani origin) with clinical and radiological features of PMLD in whom previous routine diagnostic screening of GJC2 had been reported as negative. A common haplotype was identified at the GJC2 locus in the three mutation-positive families, consistent with a common origin for the mutation and likely founder effect. This promoter mutation has only recently been reported in GJC2-PMLD but it has been postulated to affect the binding of the transcription factor SOX10 and appears to be a prevalent mutation, accounting for ~29% of reported patients with GJC2-PMLD. We propose that diagnostic screening of GJC2 should include sequence analysis of the non-coding exon 1, as well as the coding regions to avoid misdiagnosis or diagnostic delay in suspected PMLD. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. FGFR2 mutations are associated with poor outcomes in endometrioid endometrial cancer: An NRG Oncology/Gynecologic Oncology Group study

    PubMed Central

    Jeske, Yvette W.; Ali, Shamshad; Byron, Sara A; Gao, Feng; Mannel, Robert S; Ghebre, Rahel G; DiSilvestro, Paul A; Lele, Shashikant B; Pearl, Michael L; Schmidt, Amy P; Lankes, Heather A; Ramirez, Nilsa C; Rasty, Golnar; Powell, Matthew; Goodfellow, Paul J; Pollock, Pamela M

    2017-01-01

    Purpose Activating FGFR2 mutations have been identified in ~10% of endometrioid endometrial cancers (ECs). We have previously reported that mutations in FGFR2 are associated with shorter disease free survival (DFS) in stage I/II EC patients. Here we sought to validate the prognostic importance of FGFR2 mutations in a large, multi-institutional patient cohort. Methods Tumors were collected as part of the GOG 210 clinical trial “Molecular Staging of Endometrial Cancer” where samples underwent rigorous pathological review and had more than three years of detailed clinical follow-up. DNA was extracted and four exons encompassing the FGFR2 mutation hotspots were amplified and sequenced. Results Mutations were identified in 144 of the 973 endometrioid ECs, of which 125 were classified as known activating mutations and were included in the statistical analyses. Consistent with FGFR2 having an association with more aggressive disease, FGFR2 mutations were more common in patients initially diagnosed with stage III/IV EC (29/170;17%) versus stage I/II EC (96/803; 12%; p = 0.07, Chi-square test). Additionally, incidence of progression (progressed, recurred or died from disease) was significantly more prevalent (32/125, 26%) among patients with FGFR2 mutation versus wild type (120/848, 14%; p < 0.001, Chi-square test). Using Cox regression analysis adjusting for known prognostic factors, patients with FGFR2 mutation had significantly (p < 0.025) shorter progression-free survival (PFS; HR 1.903; 95% CI 1.177–3.076) and endometrial cancer specific survival (ECS; HR 2.013; 95% CI 1.096–3.696). Conclusion In summary, our findings suggest that clinical trials testing the efficacy of FGFR inhibitors in the adjuvant setting to prevent recurrence and death are warranted. PMID:28314589

  11. Novel Secondary Somatic Mutations in Ewing's Sarcoma and Desmoplastic Small Round Cell Tumors

    PubMed Central

    Janku, Filip; Ludwig, Joseph A.; Naing, Aung; Benjamin, Robert S.; Brown, Robert E.; Anderson, Pete; Kurzrock, Razelle

    2014-01-01

    Background Ewing's sarcoma (ES) and desmoplastic small round cell tumors (DSRCT) are small round blue cell tumors driven by an N-terminal containing EWS translocation. Very few somatic mutations have been reported in ES, and none have been identified in DSRCT. The aim of this study is to explore potential actionable mutations in ES and DSRCT. Methodology Twenty eight patients with ES or DSRCT had tumor tissue available that could be analyzed by one of the following methods: 1) Next-generation exome sequencing platform; 2) Multiplex PCR/Mass Spectroscopy; 3) Polymerase chain reaction (PCR)-based single- gene mutation screening; 4) Sanger sequencing; 5) Morphoproteomics. Principal Findings Novel somatic mutations were identified in four out of 18 patients with advanced ES and two of 10 patients with advanced DSRCT (six out of 28 (21.4%));KRAS (n = 1), PTPRD (n = 1), GRB10 (n = 2), MET (n = 2) and PIK3CA (n = 1). One patient with both PTPRD and GRB10 mutations and one with a GRB10 mutation achieved a complete remission (CR) on an Insulin like growth factor 1 receptor (IGF1R) inhibitor based treatment. One patient, who achieved a partial remission (PR) with IGF1R inhibitor treatment, but later developed resistance, demonstrated a KRAS mutation in the post-treatment resistant tumor, but not in the pre-treatment tumor suggesting that the RAF/RAS/MEK pathway was activated with progression. Conclusions We have reported several different mutations in advanced ES and DSRCT that have direct implications for molecularly-directed targeted therapy. Our technology agnostic approach provides an initial mutational roadmap used in the path towards individualized combination therapy. PMID:25119929

  12. Novel mutation in forkhead box G1 (FOXG1) gene in an Indian patient with Rett syndrome.

    PubMed

    Das, Dhanjit Kumar; Jadhav, Vaishali; Ghattargi, Vikas C; Udani, Vrajesh

    2014-03-15

    Rett syndrome (RTT) is a severe neurodevelopmental disorder characterized by the progressive loss of intellectual functioning, fine and gross motor skills and communicative abilities, deceleration of head growth, and the development of stereotypic hand movements, occurring after a period of normal development. The classic form of RTT involves mutation in MECP2 while the involvement of CDKL5 and FOXG1 genes has been identified in atypical RTT phenotype. FOXG1 gene encodes for a fork-head box protein G1, a transcription factor acting primarily as transcriptional repressor through DNA binding in the embryonic telencephalon as well as a number of other neurodevelopmental processes. In this report we have described the molecular analysis of FOXG1 gene in Indian patients with Rett syndrome. FOXG1 gene mutation analysis was done in a cohort of 34 MECP2/CDKL5 mutation negative RTT patients. We have identified a novel mutation (p. D263VfsX190) in FOXG1 gene in a patient with congenital variant of Rett syndrome. This mutation resulted into a frameshift, thereby causing an alteration in the reading frames of the entire coding sequence downstream of the mutation. The start position of the frameshift (Asp263) and amino acid towards the carboxyl terminal end of the protein was found to be well conserved across species using multiple sequence alignment. Since the mutation is located at forkhead binding domain, the resultant mutation disrupts the secondary structure of the protein making it non-functional. This is the first report from India showing mutation in FOXG1 gene in Rett syndrome. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Comprehensive mutation profiling of mucinous gastric carcinoma.

    PubMed

    Rokutan, Hirofumi; Hosoda, Fumie; Hama, Natsuko; Nakamura, Hiromi; Totoki, Yasushi; Furukawa, Eisaku; Arakawa, Erika; Ohashi, Shoko; Urushidate, Tomoko; Satoh, Hironori; Shimizu, Hiroko; Igarashi, Keiko; Yachida, Shinichi; Katai, Hitoshi; Taniguchi, Hirokazu; Fukayama, Masashi; Shibata, Tatsuhiro

    2016-10-01

    Mucinous gastric carcinoma (MGC) is a unique subtype of gastric cancer with a poor survival outcome. Comprehensive molecular profiles and putative therapeutic targets of MGC remain undetermined. We subjected 16 tumour-normal tissue pairs to whole-exome sequencing (WES) and an expanded set of 52 tumour-normal tissue pairs to subsequent targeted sequencing. The latter focused on 114 genes identified by WES. Twenty-two histologically differentiated MGCs (D-MGCs) and 46 undifferentiated MGCs (U-MGCs) were analysed. Chromatin modifier genes, including ARID1A (21%), MLL2 (19%), MLL3 (15%), and KDM6A (7%), were frequently mutated (47%) in MGC. We also identified mutations in potential therapeutic target genes, including MTOR (9%), BRCA2 (9%), BRCA1 (7%), and ERBB3 (6%). RHOA mutation was detected only in 4% of U-MGCs and in no D-MGCs. MYH9 was recurrently (13%) mutated in MGC, with all these being of the U-MGC subtype (p = 0.023). Three U-MGCs harboured MYH9 nonsense mutations. MYH9 knockdown enhanced cell migration and induced intracytoplasmic mucin and cellular elongation. BCOR mutation was associated with improved survival. In U-MGCs, the MLH1 expression status and combined mutation status (TP53/BCL11B or TP53/MLL2) were prognostic factors. A comparative analysis of driver genes revealed that the mutation profile of D-MGC was similar to that of intestinal-type gastric cancer, whereas U-MGC was a distinct entity, harbouring a different mutational profile to intestinal- and diffuse-type gastric cancers. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Novel FGFR1 mutations in Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism: evidence for the involvement of an alternatively spliced isoform.

    PubMed

    Gonçalves, Catarina; Bastos, Margarida; Pignatelli, Duarte; Borges, Teresa; Aragüés, José M; Fonseca, Fernando; Pereira, Bernardo D; Socorro, Sílvia; Lemos, Manuel C

    2015-11-01

    To determine the prevalence of fibroblast growth factor receptor 1 (FGFR1) mutations and their predicted functional consequences in patients with idiopathic hypogonadotropic hypogonadism (IHH). Cross-sectional study. Multicentric. Fifty unrelated patients with IHH (21 with Kallmann syndrome and 29 with normosmic IHH). None. Patients were screened for mutations in FGFR1. The functional consequences of mutations were predicted by in silico structural and conservation analysis. Heterozygous FGFR1 mutations were identified in six (12%) kindreds. These consisted of frameshift mutations (p.Pro33-Alafs*17 and p.Tyr654*) and missense mutations in the signal peptide (p.Trp4Cys), in the D1 extracellular domain (p.Ser96Cys) and in the cytoplasmic tyrosine kinase domain (p.Met719Val). A missense mutation was identified in the alternatively spliced exon 8A (p.Ala353Thr) that exclusively affects the D3 extracellular domain of FGFR1 isoform IIIb. Structure-based and sequence-based prediction methods and the absence of these variants in 200 normal controls were all consistent with a critical role for the mutations in the activity of the receptor. Oligogenic inheritance (FGFR1/CHD7/PROKR2) was found in one patient. Two FGFR1 isoforms, IIIb and IIIc, result from alternative splicing of exons 8A and 8B, respectively. Loss-of-function of isoform IIIc is a cause of IHH, whereas isoform IIIb is thought to be redundant. Ours is the first report of normosmic IHH associated with a mutation in the alternatively spliced exon 8A and suggests that this disorder can be caused by defects in either of the two alternatively spliced FGFR1 isoforms. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Drosophila as a model for intractable epilepsy: gilgamesh suppresses seizures in para(bss1) heterozygote flies.

    PubMed

    Howlett, Iris C; Rusan, Zeid M; Parker, Louise; Tanouye, Mark A

    2013-08-07

    Intractable epilepsies, that is, seizure disorders that do not respond to currently available therapies, are difficult, often tragic, neurological disorders. Na(+) channelopathies have been implicated in some intractable epilepsies, including Dravet syndrome (Dravet 1978), but little progress has been forthcoming in therapeutics. Here we examine a Drosophila model for intractable epilepsy, the Na(+) channel gain-of-function mutant para(bss1) that resembles Dravet syndrome in some aspects (parker et al. 2011a). In particular, we identify second-site mutations that interact with para(bss1), seizure enhancers, and seizure suppressors. We describe one seizure-enhancer mutation named charlatan (chn). The chn gene normally encodes an Neuron-Restrictive Silencer Factor/RE1-Silencing Transcription factor transcriptional repressor of neuronal-specific genes. We identify a second-site seizure-suppressor mutation, gilgamesh (gish), that reduces the severity of several seizure-like phenotypes of para(bss1)/+ heterozygotes. The gish gene normally encodes the Drosophila ortholog of casein kinase CK1g3, a member of the CK1 family of serine-threonine kinases. We suggest that CK1g3 is an unexpected but promising new target for seizure therapeutics.

  16. Noninvasive detection of activating estrogen receptor 1 (ESR1) mutations in estrogen receptor-positive metastatic breast cancer.

    PubMed

    Guttery, David S; Page, Karen; Hills, Allison; Woodley, Laura; Marchese, Stephanie D; Rghebi, Basma; Hastings, Robert K; Luo, Jinli; Pringle, J Howard; Stebbing, Justin; Coombes, R Charles; Ali, Simak; Shaw, Jacqueline A

    2015-07-01

    Activating mutations in the estrogen receptor 1 (ESR1) gene are acquired on treatment and can drive resistance to endocrine therapy. Because of the spatial and temporal limitations of needle core biopsies, our goal was to develop a highly sensitive, less invasive method of detecting activating ESR1 mutations via circulating cell-free DNA (cfDNA) and tumor cells as a "liquid biopsy." We developed a targeted 23-amplicon next-generation sequencing (NGS) panel for detection of hot-spot mutations in ESR1, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), tumor protein p53 (TP53), fibroblast growth factor receptor 1 (FGFR1), and fibroblast growth factor receptor 2 (FGFR2) in 48 patients with estrogen receptor-α-positive metastatic breast cancer who were receiving systemic therapy. Selected mutations were validated using droplet digital PCR (ddPCR). Nine baseline cfDNA samples had an ESR1 mutation. NGS detected 3 activating mutations in ESR1, and 3 hot-spot mutations in PIK3CA, and 3 in TP53 in baseline cfDNA, and the ESR1 p.D538G mutation in 1 matched circulating tumor cell sample. ddPCR analysis was more sensitive than NGS and identified 6 additional baseline cfDNA samples with the ESR1 p.D538G mutation at a frequency of <1%. In serial blood samples from 11 patients, 4 showed changes in cfDNA, 2 with emergence of a mutation in ESR1. We also detected a low frequency ESR1 mutation (1.3%) in cfDNA of 1 primary patient who was thought to have metastatic disease but was clear by scans. Early identification of ESR1 mutations by liquid biopsy might allow for cessation of ineffective endocrine therapies and switching to other treatments, without the need for tissue biopsy and before the emergence of metastatic disease. © 2015 American Association for Clinical Chemistry.

  17. Germline BAP1 mutations predispose to malignant mesothelioma

    PubMed Central

    Testa, Joseph R.; Cheung, Mitchell; Pei, Jianming; Below, Jennifer E.; Tan, Yinfei; Sementino, Eleonora; Cox, Nancy J.; Dogan, A. Umran; Pass, Harvey I.; Trusa, Sandra; Hesdorffer, Mary; Nasu, Masaki; Powers, Amy; Rivera, Zeyana; Comertpay, Sabahattin; Tanji, Mika; Gaudino, Giovanni; Yang, Haining; Carbone, Michele

    2011-01-01

    Because only a small fraction of asbestos-exposed individuals develop malignant mesothelioma1, and because mesothelioma clustering is observed in some families1, we searched for genetic predisposing factors. We discovered germline mutations in BAP1 (BRCA1-associated protein 1) in two families with a high incidence of mesothelioma. Somatic alterations affecting BAP1 were observed in familial mesotheliomas, indicating biallelic inactivation. Besides mesothelioma, some BAP1 mutation carriers developed uveal melanoma. Germline BAP1 mutations were also found in two of 26 sporadic mesotheliomas: both patients with mutant BAP1 were previously diagnosed with uveal melanoma. Truncating mutations and aberrant BAP1 expression were common in sporadic mesotheliomas without germline mutations. These results reveal a BAP1-related cancer syndrome characterized by mesothelioma and uveal melanoma. We hypothesize that other cancers may also be involved, and that mesothelioma predominates upon asbestos exposure. These findings will help identify individuals at high risk of mesothelioma who could be targeted for early intervention. PMID:21874000

  18. Prognostic factors of afatinib as a first-line therapy for advanced EGFR mutation-positive lung adenocarcinoma: a real-world, large cohort study.

    PubMed

    Liang, Sheng-Kai; Lee, Meng-Rui; Liao, Wei-Yu; Ho, Chao-Chi; Ko, Jen-Chung; Shih, Jin-Yuan

    2018-05-04

    Lung cancer remains the primary cause of cancer-related mortality worldwide. Several treatment modalities are available for lung cancer, including surgery, radiation, and chemotherapy. Among the chemotherapeutics available, afatinib has been shown to be effective for those with epidermal growth factor receptor ( EGFR ) mutation-positive lung adenocarcinoma. Herein, we analyzed the factors affecting the prognosis of patients who received afatinib as a first-line therapy for advanced EGFR mutation-positive lung adenocarcinoma in the real-world setting. Patients who received afatinib as a first-line therapy and were reimbursed by the National Health Insurance were recruited in this study. Data on patient characteristics and treatment courses were collected. In total, 259 patients were enrolled (median follow-up, 22.0 months). Of them, 82 (31.7%) were identified to have brain metastases at baseline, which were associated with poor Eastern Cooperative Oncology Group performance status, high incidence of central nervous system progression, and short overall survival. However, the results of our analysis showed that overall survival was not affected by reductions in the afatinib dosage or any upfront local treatments for brain tumors. Multivariate analyses showed that brain metastases at diagnosis and treatment response to afatinib are two important prognostic factors for the overall survival of patients with EGFR mutation-positive lung adenocarcinoma.

  19. Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract.

    PubMed

    Gimelli, Stefania; Caridi, Gianluca; Beri, Silvana; McCracken, Kyle; Bocciardi, Renata; Zordan, Paola; Dagnino, Monica; Fiorio, Patrizia; Murer, Luisa; Benetti, Elisa; Zuffardi, Orsetta; Giorda, Roberto; Wells, James M; Gimelli, Giorgio; Ghiggeri, Gian Marco

    2010-12-01

    Congenital anomalies of the kidney and the urinary tract (CAKUT) represent a major source of morbidity and mortality in children. Several factors (PAX, SOX,WNT, RET, GDFN, and others) play critical roles during the differentiation process that leads to the formation of nephron epithelia. We have identified mutations in SOX17, an HMG-box transcription factor and Wnt signaling antagonist, in eight patients with CAKUT (seven vesico-ureteric reflux, one pelvic obstruction). One mutation, c.775T>A (p.Y259N), recurred in six patients. Four cases derived from two small families; renal scars with urinary infection represented the main symptom at presentation in all but two patients. Transfection studies indicated a 5-10-fold increase in the levels of the mutant protein relative to wild-type SOX17 in transfected kidney cells. Moreover we observed a corresponding increase in the ability of SOX17 p.Y259N to inhibit Wnt/β-catenin transcriptional activity, which is known to regulate multiple stages of kidney and urinary tract development. In conclusion, SOX17 p.Y259N mutation is recurrent in patients with CAKUT. Our data shows that this mutation correlates with an inappropriate accumulation of SOX17-p.Y259N protein and inhibition of the β-catenin/Wnt signaling pathway. These data indicate a role of SOX17 in human kidney and urinary tract development and implicate the SOX17-p.Y259N mutation as a causative factor in CAKUT. © 2010 Wiley-Liss, Inc.

  20. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    PubMed

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  1. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes

    PubMed Central

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-01-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information. PMID:22384404

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Hiroaki

    Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence ofmore » pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.« less

  3. Identification of Novel Listeria monocytogenes Secreted Virulence Factors following Mutational Activation of the Central Virulence Regulator, PrfA▿ †

    PubMed Central

    Port, Gary C.; Freitag, Nancy E.

    2007-01-01

    Upon bacterial entry into the cytosol of infected mammalian host cells, the central virulence regulator PrfA of Listeria monocytogenes becomes activated and induces the expression of numerous factors which contribute to bacterial pathogenesis. The mechanism or signal by which PrfA becomes activated during the course of infection has not yet been determined; however, several amino acid substitutions within PrfA (known as PrfA* mutations) that appear to lock the protein into a constitutively activated state have been identified. In this study, the PrfA activation statuses of several L. monocytogenes mutant strains were subjected to direct isogenic comparison and the mutant with the highest activity, the prfA(L140F) mutant, was identified. The prfA(L140F) strain was subsequently used as a tool to identify gene products secreted as a result of PrfA activation. By use of two-dimensional gel electrophoresis followed by liquid chromatography-electrospray ionization-tandem mass spectroscopy analyses, 15 proteins were identified as up-regulated in the prfA(L140F) secretome, while the secretion of two proteins was found to be reduced. Although some of the proteins identified were known to be subject to direct regulation by PrfA, the majority have not previously been associated with PrfA regulation and their expression or secretion may be influenced indirectly by a PrfA-dependent regulatory pathway. Plasmid insertion inactivation of the genes encoding four novel secreted products indicated that three of the four have significant roles in L. monocytogenes virulence. The use of mutationally activated prfA alleles therefore provides a useful approach towards identifying gene products that contribute to L. monocytogenes pathogenesis. PMID:17938228

  4. Reversion of mtDNA depletion in a patient with TK2 deficiency.

    PubMed

    Vilà, M R; Segovia-Silvestre, T; Gámez, J; Marina, A; Naini, A B; Meseguer, A; Lombès, A; Bonilla, E; DiMauro, S; Hirano, M; Andreu, A L

    2003-04-08

    Mutations in the thymidine kinase 2 (TK2) gene cause a myopathic form of the mitochondrial DNA depletion syndrome (MDS). Here, the authors report the unusual clinical, biochemical, and molecular findings in a 14-year-old patient in whom pathogenic mutations were identified in the TK2 gene. This report extends the phenotypic expression of primary TK2 deficiency and suggests that factors other than TK2 may modify expression of the clinical phenotype in patients with MDS syndrome.

  5. Genetic Background and Environment Influence the Effects of Mutations in pykF and Help Reveal Mechanisms Underlying Their Benefit

    DTIC Science & Technology

    2015-08-01

    another trait (Losos 2011). All of these factors make it hard to identify adaptations. Mutations are the ultimate source of genetic variation that is...effects when added to the same evolved background (See Table 2.2 for results of one-way ANOVAs). Genetic background explains most (~ 88%) of the variation ...in fitness whereas the variation explained by different pykF alleles is negligible (~2%) compared to statistical noise (~8%) (Table 2.3). These

  6. Identification of rare paired box 3 variant in strabismus by whole exome sequencing

    PubMed Central

    Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang

    2017-01-01

    AIM To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. METHODS A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. RESULTS Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. CONCLUSION Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder. PMID:28861346

  7. Mutations in PRPF31 Inhibit Pre-mRNA Splicing of Rhodopsin Gene and Cause Apoptosis of Retinal Cells

    PubMed Central

    Yuan, Liya; Kawada, Mariko; Havlioglu, Necat; Tang, Hao; Wu, Jane Y.

    2007-01-01

    Mutations in human PRPF31 gene have been identified in patients with autosomal dominant retinitis pigmentosa (adRP). To begin to understand mechanisms by which defects in this general splicing factor cause retinal degeneration, we examined the relationship between PRPF31 and pre-mRNA splicing of photoreceptor-specific genes. We used a specific anti-PRPF31 antibody to immunoprecipitate splicing complexes from retinal cells and identified the transcript of rhodopsin gene (RHO) among RNA species associated with PRPF31-containing complexes. Mutant PRPF31 proteins significantly inhibited pre-mRNA splicing of intron 3 in RHO gene. In primary retinal cell cultures, expression of the mutant PRPF31 proteins reduced rhodopsin expression and caused apoptosis of rhodopsin-positive retinal cells. This primary retinal culture assay provides an in vitro model to study photoreceptor cell death caused by PRPF31 mutations. Our results demonstrate that mutations in PRPF31 gene affect RHO pre-mRNA splicing and reveal a link between PRPF31 and RHO, two major adRP genes. PMID:15659613

  8. Identification of rare paired box 3 variant in strabismus by whole exome sequencing.

    PubMed

    Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang

    2017-01-01

    To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder.

  9. A strongly selected mutation in the HIV-1 genome is independent of T cell responses and neutralizing antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Donglai; Wang, Chu; Hora, Bhavna

    Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Strongly selected mutations were identified by analyzing 5'-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 andmore » fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. In conclusion, the rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.« less

  10. A strongly selected mutation in the HIV-1 genome is independent of T cell responses and neutralizing antibodies

    DOE PAGES

    Liu, Donglai; Wang, Chu; Hora, Bhavna; ...

    2017-10-10

    Mutations rapidly accumulate in the HIV-1 genome after infection. Some of those mutations are selected by host immune responses and often cause viral fitness losses. This study is to investigate whether strongly selected mutations that are not associated with immune responses result in fitness losses. Strongly selected mutations were identified by analyzing 5'-half HIV-1 genome (gag/pol) sequences from longitudinal samples of subject CH0131. The K43R mutation in the gag gene was first detected at day 91 post screening and was fixed in the viral population at day 273 while the synonymous N323tc mutation was first detected at day 177 andmore » fixed at day 670. No conventional or cryptic T cell responses were detected against either mutation sites by ELISpot analysis. However, when fitness costs of both mutations were measured by introducing each mutation into their cognate transmitted/founder (T/F) viral genome, the K43R mutation caused a significant fitness loss while the N323tc mutation had little impact on viral fitness. In conclusion, the rapid fixation, the lack of detectable immune responses and the significant fitness cost of the K43R mutation suggests that it was strongly selected by host factors other than T cell responses and neutralizing antibodies.« less

  11. Cooperative Genome-Wide Analysis Shows Increased Homozygosity in Early Onset Parkinson's Disease

    PubMed Central

    Nalls, Michael A.; Martinez, Maria; Schulte, Claudia; Holmans, Peter; Gasser, Thomas; Hardy, John; Singleton, Andrew B.; Wood, Nicholas W.; Brice, Alexis; Heutink, Peter; Williams, Nigel; Morris, Huw R.

    2012-01-01

    Parkinson's disease (PD) occurs in both familial and sporadic forms, and both monogenic and complex genetic factors have been identified. Early onset PD (EOPD) is particularly associated with autosomal recessive (AR) mutations, and three genes, PARK2, PARK7 and PINK1, have been found to carry mutations leading to AR disease. Since mutations in these genes account for less than 10% of EOPD patients, we hypothesized that further recessive genetic factors are involved in this disorder, which may appear in extended runs of homozygosity. We carried out genome wide SNP genotyping to look for extended runs of homozygosity (ROHs) in 1,445 EOPD cases and 6,987 controls. Logistic regression analyses showed an increased level of genomic homozygosity in EOPD cases compared to controls. These differences are larger for ROH of 9 Mb and above, where there is a more than three-fold increase in the proportion of cases carrying a ROH. These differences are not explained by occult recessive mutations at existing loci. Controlling for genome wide homozygosity in logistic regression analyses increased the differences between cases and controls, indicating that in EOPD cases ROHs do not simply relate to genome wide measures of inbreeding. Homozygosity at a locus on chromosome19p13.3 was identified as being more common in EOPD cases as compared to controls. Sequencing analysis of genes and predicted transcripts within this locus failed to identify a novel mutation causing EOPD in our cohort. There is an increased rate of genome wide homozygosity in EOPD, as measured by an increase in ROHs. These ROHs are a signature of inbreeding and do not necessarily harbour disease-causing genetic variants. Although there might be other regions of interest apart from chromosome 19p13.3, we lack the power to detect them with this analysis. PMID:22427796

  12. Molecular genetic analysis of the F11 gene in 14 Turkish patients with factor XI deficiency: identification of novel and recurrent mutations and their inheritance within families

    PubMed Central

    Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul

    2018-01-01

    Background Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients’ families. Material and methods Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients’ F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson’s correlation coefficient and the nonparametric Mann-Whitney test. Results Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Discussion Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues with high fibrinolytic activity. PMID:27723456

  13. Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients

    PubMed Central

    PAPADOPOULOU, EIRINI; TSOULOS, NIKOLAOS; TSIRIGOTI, ANGELIKI; APESSOS, ANGELA; AGIANNITOPOULOS, KONSTANTINOS; METAXA-MARIATOU, VASILIKI; ZAROGOULIDIS, KONSTANTINOS; ZAROGOULIDIS, PAVLOS; KASARAKIS, DIMITRIOS; KAKOLYRIS, STYLIANOS; DAHABREH, JUBRAIL; VLASTOS, FOTIS; ZOUBLIOS, CHARALAMPOS; RAPTI, AGGELIKI; PAPAGEORGIOU, NIKI GEORGATOU; VELDEKIS, DIMITRIOS; GAGA, MINA; ARAVANTINOS, GERASIMOS; KARAVASILIS, VASILEIOS; KARAGIANNIDIS, NAPOLEON; NASIOULAS, GEORGE

    2015-01-01

    It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18–21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of EGFR mutations. Furthermore, KRAS mutation analysis in patients with a known smoking history revealed no difference in mutation frequency according to smoking status; however, a different mutation spectrum was observed. PMID:26622815

  14. Prognostic factors and recurrence of hepatitis B-related hepatocellular carcinoma after argon-helium cryoablation: a prospective study.

    PubMed

    Wang, Chunping; Lu, Yinying; Chen, Yan; Feng, Yongyi; An, Linjing; Wang, Xinzhen; Su, Shuhui; Bai, Wenlin; Zhou, Lin; Yang, Yongping; Xu, Dongping

    2009-01-01

    To determine the long-term prognosis of hepatocellular carcinoma (HCC) after argon-helium cryoablation and identify the risk factors that predict metastasis and recurrence. A total of 156 patients with hepatitis B-related HCC less than 5 cm in diameter who underwent curative cryoablation were followed up prospectively for tumor metastasis and recurrence. Immunohistochemistry was used to analyze the expression of vascular endothelial growth factor (VEGF). HBV basal core promoter (BCP) and precore mutations were detected by DNA sequence analysis. Post-treatment prognostic factors influencing survival, tumor metastasis and recurrence were assessed by univariate and multivariate analyses. The variables included the expression of VEGF in HCC tissues, clinical and pathologic characteristics of patients, and HBV features (HBV DNA level, HBV genotype, BCP mutation). The median follow-up period of the 156 patients was 37 months (range 8-48 months). The 1-, 2-, and 3-year overall survival rates were 92, 82 and 64%, respectively. The 1-, 2-, and 3-year recurrence-free survival rates were 72, 56 and 43%, respectively. Eighty-five patients (54.5%) had tumor recurrence or metastasis. The multivariate analysis showed that Child-Pugh class and the expression of VEGF in HCC tissues could be used as independent prognostic factors for overall survival. Meanwhile, the expression of VEGF in HCC tissues and HBV BCP mutations were found to be independent prognostic factors for recurrence-free survival. Strong expression of VEGF in HCC tissues and HBV BCP mutations are important risk predictors for recurrence or metastasis of HCC smaller than 5 cm in diameter.

  15. Absence of PITX3 mutation in a Tunisian family with congenital cataract and mental retardation

    PubMed Central

    Chograni, Manèl; Chaabouni, Myriam; Chelly, Imen; Helayem, Mohamed Bechir

    2010-01-01

    Purpose The PITX3 (pituitary homeobox 3) gene encodes for a homeobox bicoid-like transcription factor. When one allele is mutated, it leads to dominant cataract and anterior segment mesenchymal dysgenesis in humans. When both copies are mutated, homozygous mutation contributes to microphtalmia with brain malformations. In the current study, a family with autosomal recessive congenital cataract (ARCC) associated with mental retardation (MR) was examined to identify PITX3 mutations. Methods Sequencing of the PITX3 gene was performed on two affected and three unaffected members of the studied Tunisian family. The results were analyzed with Sequencing Analysis 5.2 and SeqScape. Results No mutation in the four exons of PITX3 was revealed. Two substitution polymorphisms, c.439C>T and c.930C>A, were detected in exons 3 and 4, respectively. These alterations did not segregate with the disease. Conclusions Although PITX3 was shown to be essential to normal embryonic eye and brain development in vertebrates, we report the absence of PITX3 mutations in a family presenting congenital cataract and mental retardation. PMID:20376326

  16. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia.

    PubMed

    Vannucchi, Alessandro M; Antonioli, Elisabetta; Guglielmelli, Paola; Pancrazzi, Alessandro; Guerini, Vittoria; Barosi, Giovanni; Ruggeri, Marco; Specchia, Giorgina; Lo-Coco, Francesco; Delaini, Federica; Villani, Laura; Finotto, Silvia; Ammatuna, Emanuele; Alterini, Renato; Carrai, Valentina; Capaccioli, Gloria; Di Lollo, Simonetta; Liso, Vincenzo; Rambaldi, Alessandro; Bosi, Alberto; Barbui, Tiziano

    2008-08-01

    Among 994 patients with essential thrombocythemia (ET) who were genotyped for the MPLW515L/K mutation, 30 patients carrying the mutation were identified (3.0%), 8 of whom also displayed the JAK2V671F mutation. MPLW515L/K patients presented lower hemoglobin levels and higher platelet counts than did wild type (wt) MPL; these differences were highly significant compared with MPLwt/JAK2V617F-positive patients. Reduced hemoglobin and increased platelet levels were preferentially associated with the W515L and W515K alleles, respectively. MPL mutation was a significant risk factor for microvessel disturbances, suggesting platelet hyperreactivity associated with constitutively active MPL; arterial thromboses were increased only in comparison to MPLwt/JAK2wt patients. MPLW515L/K patients presented reduced total and erythroid bone marrow cellularity, whereas the numbers of megakaryocytes, megakaryocytic clusters, and small-sized megakaryocytes were all significantly increased. These data indicate that MPLW515L/K mutations do not define a distinct phenotype in ET, although some differences depended on the JAK2V617F mutational status of the counterpart.

  17. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter.

    PubMed

    Prié, Dominique; Huart, Virginie; Bakouh, Naziha; Planelles, Gabrielle; Dellis, Olivier; Gérard, Bénédicte; Hulin, Philippe; Benqué-Blanchet, François; Silve, Caroline; Grandchamp, Bernard; Friedlander, Gérard

    2002-09-26

    Epidemiologic studies suggest that genetic factors confer a predisposition to the formation of renal calcium stones or bone demineralization. Low serum phosphate concentrations due to a decrease in renal phosphate reabsorption have been reported in some patients with these conditions, suggesting that genetic factors leading to a decrease in renal phosphate reabsorption may contribute to them. We hypothesized that mutations in the gene coding for the main renal sodium-phosphate cotransporter (NPT2a) may be present in patients with these disorders. We studied 20 patients with urolithiasis or bone demineralization and persistent idiopathic hypophosphatemia associated with a decrease in maximal renal phosphate reabsorption. The coding region of the gene for NPT2a was sequenced in all patients. The functional consequences of the mutations identified were analyzed by expressing the mutated RNA in Xenopus laevis oocytes. Two patients, one with recurrent urolithiasis and one with bone demineralization, were heterozygous for two distinct mutations. One mutation resulted in the substitution of phenylalanine for alanine at position 48, and the other in a substitution of methionine for valine at position 147. Phosphate-induced current and sodium-dependent phosphate uptake were impaired in oocytes expressing the mutant NPT2a. Coinjection of oocytes with wild-type and mutant RNA indicated that the mutant protein had altered function. Heterozygous mutations in the NPT2a gene may be responsible for hypophosphatemia and urinary phosphate loss in persons with urolithiasis or bone demineralization. Copyright 2002 Massachusetts Medical Society

  18. Atypical radiological findings in achondroplasia with uncommon mutation of the fibroblast growth factor receptor-3 (FGFR-3) gene (Gly to Cys transition at codon 375)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimuri, Gen; Fukushima, Yoshimitsu; Ohashi, Hirofumi

    1995-11-20

    The recent discovery of mutations in the FGFR-3 (fibroblast growth factor receptor-3) gene (FGFR3) as the cause of achondroplasia has provided new insight into understanding genetic diseases. It was surprising from the viewpoint of molecular genetics that most patients with achondroplasia showed the same mutation at nucleotide 1138, leading to a single amino acid substitution from glycine to arginine at codon 380 (Gly380Arg). All 39 patients examined by two groups had the Gly380Arg; 38 patients and the other demonstrated a G to A and a G to C transition at nucleotide 1138, respectively. Subsequently another group disclosed a G tomore » A transition at the same nucleotide 1138 in 21/23 patients of diverse ethnic origin, although mutations were not identified in two patients. To date, a total of 193 patients with the mutation of the G380Arg have been reported; a single patient with another mutation resulting in a substitution from glycine to cysteine at codon 375 (Gly375Cys) has been described. The presence of this common mutation is consistent with the clinical fact that achondroplastic individuals show less phenotypic variability than is unusual for autosomal dominant diseases. We encountered a Japanese boy with the Gly375Cys. His mother with achondroplasia has the same mutation. The molecular investigation of these patients was reported elsewhere. Here we report the clinical and radiological findings in this boy who demonstrated some atypical manifestations from those of typical achondroplasia. 8 refs., 1 fig.« less

  19. Epidermal growth factor receptor gene mutation defines distinct subsets among small adenocarcinomas of the lung.

    PubMed

    Haneda, Hiroshi; Sasaki, Hidefumi; Shimizu, Shigeki; Endo, Katsuhiko; Suzuki, Eriko; Yukiue, Haruhiro; Kobayashi, Yoshihiro; Yano, Motoki; Fujii, Yoshitaka

    2006-04-01

    Epidermal growth factor receptor (EGFR) gene mutations are frequently detected in lung cancer, especially in adenocarcinoma, in females, and non-smoking patients. EGFR mutations are closely associated with clinical response to EGFR tyrosine kinase inhibitor. Bronchioloalveolar carcinoma (BAC) appearance is a good predictor of response to this agent. Noguchi et al. subdivided small peripheral adenocarcinoma of the lung into two groups. One group was characterized with tumor cell growth replacing the normal alveolar cells with varying degree of fibrosis (types A-C), and the other shows non-replacing and destructive growth (types D-F). Using probes for the 13 mutations which have been previously described, we have genotyped the EGFR gene status in surgically resected atypical adenomatous hyperplasias (AAH) and small peripheral adenocarcinomas up to 2 cm in diameter using TaqMan PCR assay. In 95 small-sized adenocarcinomas, the EGFR mutations were detected in 37 patients (38.9%), and no mutations were found in five AAHs. In small peripheral adenocarcinomas, EGFR mutations were found 47.1% of types A, B, or C adenocarcinomas; it was less frequent (16%) in Noguchi's types D, E or F adenocarcinomas. These results suggest that type D, F adenocarcinomas are not derived from the less malignant types A-C adenocarcinomas; rather, they have arisen de novo by distinct mechanisms. Although types A and B adenocarcinomas are almost 100% cured by surgery, some type C adenocarcinoma show lymph node metastasis and relapse. EGFR mutation analysis may help identify patients who will respond to treatment with tyrosine kinase inhibitors, e.g., gefitinib.

  20. Germline BRCA mutation in male carriers-ripe for precision oncology?

    PubMed

    Leão, Ricardo Romão Nazário; Price, Aryeh Joshua; James Hamilton, Robert

    2018-04-01

    Prostate cancer (PC) is one of the known heritable cancers with individual variations attributed to genetic factors. BRCA1 and BRCA2 are tumour suppressor genes with crucial roles in repairing DNA and thereby maintaining genomic integrity. Germline BRCA mutations predispose to multiple familial tumour types including PC. We performed a Pubmed database search along with review of reference lists from prominent articles to capture papers exploring the association between BRCA mtuations and prostate cancer risk and prognosis. Articles were retrieved until May 2017 and filtered for relevance, and publication type. We explored familial PC genetics; discussed the discovery and magnitude of the association between BRCA mutations and PC risk and outcome; examined implications of factoring BRCA mutations into PC screening; and discussed the rationale for chemoprevention in this high-risk population. We confirmed that BRCA1/2 mutations confer an up to 4.5-fold and 8.3-fold increased risk of PC, respectively. BRCA2 mutations are associated with an increased risk of high-grade disease, progression to metastatic castration-resistant disease, and 5-year cancer-specific survival rates of 50 to 60%. Despite the growing body of research on DNA repair genes, deeper analysis is needed to understand the aetiological role of germline BRCA mutations in the natural history of PC. There is a need for awareness to screen for this marker of PC risk. There is similarly an opportunity for structured PC screening programs for BRCA mutation carriers. Finally, further research is required to identify potential chemopreventive strategies for this high-risk subgroup.

  1. Mutational Analysis of the Rhodopsin Gene in Sector Retinitis Pigmentosa.

    PubMed

    Napier, Maria L; Durga, Dash; Wolsley, Clive J; Chamney, Sarah; Alexander, Sharon; Brennan, Rosie; Simpson, David A; Silvestri, Giuliana; Willoughby, Colin E

    2015-01-01

    To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland. A case series of sector RP in a tertiary ocular genetics clinic. Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent. The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced. Rhodopsin mutational status. A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO. The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.

  2. Mutations in PROP1 cause familial combined pituitary hormone deficiency.

    PubMed

    Wu, W; Cogan, J D; Pfäffle, R W; Dasen, J S; Frisch, H; O'Connell, S M; Flynn, S E; Brown, M R; Mullis, P E; Parks, J S; Phillips, J A; Rosenfeld, M G

    1998-02-01

    Combined pituitary hormone deficiency (CPHD) in man denotes impaired production of growth hormone (GH) and one or more of the other five anterior pituitary hormones. Mutations of the pituitary transcription factor gene POU1F1 (the human homologue of mouse Pit1) are responsible for deficiencies of GH, prolactin and thyroid stimulating hormone (TSH) in Snell and Jackson dwarf mice and in man, while the production of adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH) is preserved. The Ames dwarf (df) mouse displays a similar phenotype, and appears to be epistatic to Snell and Jackson dwarfism. We have recently positionally cloned the putative Ames dwarf gene Prop1, which encodes a paired-like homeodomain protein that is expressed specifically in embryonic pituitary and is necessary for Pit1 expression. In this report, we have identified four CPHD families with homozygosity or compound heterozygosity for inactivating mutations of PROP1. These mutations in the human PROP1 gene result in a gene product with reduced DNA-binding and transcriptional activation ability in comparison to the product of the murine df mutation. In contrast to individuals with POU1F1 mutations, those with PROP1 mutations cannot produce LH and FSH at a sufficient level and do not enter puberty spontaneously. Our results identify a major cause of CPHD in humans and suggest a direct or indirect role for PROP1 in the ontogenesis of pituitary gonadotropes, as well as somatotropes, lactotropes and caudomedial thyrotropes.

  3. Differential Effects of CSF-1R D802V and KIT D816V Homologous Mutations on Receptor Tertiary Structure and Allosteric Communication

    PubMed Central

    Da Silva Figueiredo Celestino Gomes, Priscila; Panel, Nicolas; Laine, Elodie; Pascutti, Pedro Geraldo; Solary, Eric; Tchertanov, Luba

    2014-01-01

    The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind. PMID:24828813

  4. Is RNASEL:p.Glu265* a modifier of early-onset breast cancer risk for carriers of high-risk mutations?

    PubMed

    Nguyen-Dumont, Tú; Teo, Zhi L; Hammet, Fleur; Roberge, Alexis; Mahmoodi, Maryam; Tsimiklis, Helen; Park, Daniel J; Pope, Bernard J; Lonie, Andrew; Kapuscinski, Miroslav K; Mahmood, Khalid; Goldgar, David E; Giles, Graham G; Winship, Ingrid; Hopper, John L; Southey, Melissa C

    2018-02-08

    Breast cancer risk for BRCA1 and BRCA2 pathogenic mutation carriers is modified by risk factors that cluster in families, including genetic modifiers of risk. We considered genetic modifiers of risk for carriers of high-risk mutations in other breast cancer susceptibility genes. In a family known to carry the high-risk mutation PALB2:c.3113G>A (p.Trp1038*), whole-exome sequencing was performed on germline DNA from four affected women, three of whom were mutation carriers. RNASEL:p.Glu265* was identified in one of the PALB2 carriers who had two primary invasive breast cancer diagnoses before 50 years. Gene-panel testing of BRCA1, BRCA2, PALB2 and RNASEL in the Australian Breast Cancer Family Registry identified five carriers of RNASEL:p.Glu265* in 591 early onset breast cancer cases. Three of the five women (60%) carrying RNASEL:p.Glu265* also carried a pathogenic mutation in a breast cancer susceptibility gene compared with 30 carriers of pathogenic mutations in the 586 non-carriers of RNASEL:p.Glu265* (5%) (p < 0.002). Taqman genotyping demonstrated that the allele frequency of RNASEL:p.Glu265* was similar in affected and unaffected Australian women, consistent with other populations. Our study suggests that RNASEL:p.Glu265* may be a genetic modifier of risk for early-onset breast cancer predisposition in carriers of high-risk mutations. Much larger case-case and case-control studies are warranted to test the association observed in this report.

  5. A marked response to icotinib in a patient with large cell neuroendocrine carcinoma harboring an EGFR mutation: A case report.

    PubMed

    Wang, Yuehong; Shen, Yi Hong; Ma, Shanni; Zhou, Jianying

    2015-09-01

    The present study reports the case of an 84-year-old male with primary pulmonary large cell neuroendocrine carcinoma (LCNEC) harboring an epidermal growth factor receptor (EGFR) gene mutation that exhibited a long-lasting response to the EGFR-tyrosine kinase inhibitor (EGFR-TKI) icotinib. The patient had an extensive smoking history, a poor performance status, and presented with an irregular mass in the middle lobe of the right lung on computed tomography (CT) and an enlarged left supraclavicular lymph node on physical examination. Right middle lobe bronchial brushing during fiberoptic bronchoscopy identified poorly-differentiated cancer cells. The left supraclavicular lymph node was biopsied and a diagnosis of metastatic LCNEC was determined. Furthermore, an EGFR exon 19 deletion was identified by DNA sequencing. Following diagnosis, icotinib was administered at a dose of 125 mg three times a day. Chest CT scans were performed after 1 month of treatment, which indicated that the tumor was in partial remission. This marked response to icotinib lasted for 8 months. Thus, the present case illustrates the possibility of identifying EGFR mutations in LCNEC and indicates that EGFR-tyrosine kinase inhibitors may be an alternative treatment strategy for patients with LCNEC harboring activating EGFR mutations.

  6. Precision medicine driven by cancer systems biology.

    PubMed

    Filipp, Fabian V

    2017-03-01

    Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance.

  7. Screening strategies for a highly polymorphic gene: DHPLC analysis of the Fanconi anemia group A gene.

    PubMed

    Rischewski, J; Schneppenheim, R

    2001-01-30

    Patients with Fanconi anemia (Fanc) are at risk of developing leukemia. Mutations of the group A gene (FancA) are most common. A multitude of polymorphisms and mutations within the 43 exons of the gene are described. To examine the role of heterozygosity as a risk factor for malignancies, a partially automatized screening method to identify aberrations was needed. We report on our experience with DHPLC (WAVE (Transgenomic)). PCR amplification of all 43 exons from one individual was performed on one microtiter plate on a gradient thermocycler. DHPLC analysis conditions were established via melting curves, prediction software, and test runs with aberrant samples. PCR products were analyzed twice: native, and after adding a WT-PCR product. Retention patterns were compared with previously identified polymorphic PCR products or mutants. We have defined the mutation screening conditions for all 43 exons of FancA using DHPLC. So far, 40 different sequence variations have been detected in more than 100 individuals. The native analysis identifies heterozygous individuals, and the second run detects homozygous aberrations. Retention patterns are specific for the underlying sequence aberration, thus reducing sequencing demand and costs. DHPLC is a valuable tool for reproducible recognition of known sequence aberrations and screening for unknown mutations in the highly polymorphic FancA gene.

  8. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  9. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  10. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  11. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  12. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  13. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    PubMed Central

    2011-01-01

    Background Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Methods Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. Results EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Conclusions Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series. PMID:21266046

  14. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer.

    PubMed

    Peraldo-Neia, Caterina; Migliardi, Giorgia; Mello-Grand, Maurizia; Montemurro, Filippo; Segir, Raffaella; Pignochino, Ymera; Cavalloni, Giuliana; Torchio, Bruno; Mosso, Luciano; Chiorino, Giovanna; Aglietta, Massimo

    2011-01-25

    Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.

  15. The genetic background of generalized pustular psoriasis: IL36RN mutations and CARD14 gain-of-function variants.

    PubMed

    Sugiura, Kazumitsu

    2014-06-01

    Generalized pustular psoriasis (GPP) is often present in patients with existing or prior psoriasis vulgaris (PV; "GPP with PV"). However, cases of GPP have been known to arise without a history of PV ("GPP alone"). There has long been debate over whether GPP alone and GPP with PV are distinct subtypes that are etiologically different from each other. We recently reported that the majority of GPP alone cases is caused by recessive mutations of IL36RN. In contrast, only a few exceptional cases of GPP with PV were found to have recessive IL36RN mutations. Very recently, we also reported that CARD14 p.Asp176His, a gain-of-function variant, is a predisposing factor for GPP with PV; in contrast, the variant is not associated with GPP alone in the Japanese population. These results suggest that GPP alone is genetically different from GPP with PV. IL36RN mutations are also found in some patients with severe acute generalized exanthematous pustulosis, palmar-plantar pustulosis, and acrodermatitis continua of hallopeau. CARD14 mutations and variants are causal or disease susceptibility factors of PV, GPP, or pityriasis rubra pilaris, depending on the mutation or variant position of CARD14. It is clinically important to analyze IL36RN mutations in patients with sterile pustulosis. For example, identifying recessive IL36RN mutations leads to early diagnosis of GPP, even at the first episode of pustulosis. In addition, individuals with IL36RN mutations are very susceptible to GPP or GPP-related generalized pustulosis induced by drugs (e.g., amoxicillin), infections, pregnancy, or menstruation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. A Cytogenetic Abnormality and Rare Coding Variants Identify ABCA13 as a Candidate Gene in Schizophrenia, Bipolar Disorder, and Depression

    PubMed Central

    Knight, Helen M.; Pickard, Benjamin S.; Maclean, Alan; Malloy, Mary P.; Soares, Dinesh C.; McRae, Allan F.; Condie, Alison; White, Angela; Hawkins, William; McGhee, Kevin; van Beck, Margaret; MacIntyre, Donald J.; Starr, John M.; Deary, Ian J.; Visscher, Peter M.; Porteous, David J.; Cannon, Ronald E.; St Clair, David; Muir, Walter J.; Blackwood, Douglas H.R.

    2009-01-01

    Schizophrenia and bipolar disorder are leading causes of morbidity across all populations, with heritability estimates of ∼80% indicating a substantial genetic component. Population genetics and genome-wide association studies suggest an overlap of genetic risk factors between these illnesses but it is unclear how this genetic component is divided between common gene polymorphisms, rare genomic copy number variants, and rare gene sequence mutations. We report evidence that the lipid transporter gene ABCA13 is a susceptibility factor for both schizophrenia and bipolar disorder. After the initial discovery of its disruption by a chromosome abnormality in a person with schizophrenia, we resequenced ABCA13 exons in 100 cases with schizophrenia and 100 controls. Multiple rare coding variants were identified including one nonsense and nine missense mutations and compound heterozygosity/homozygosity in six cases. Variants were genotyped in additional schizophrenia, bipolar, depression (n > 1600), and control (n > 950) cohorts and the frequency of all rare variants combined was greater than controls in schizophrenia (OR = 1.93, p = 0.0057) and bipolar disorder (OR = 2.71, p = 0.00007). The population attributable risk of these mutations was 2.2% for schizophrenia and 4.0% for bipolar disorder. In a study of 21 families of mutation carriers, we genotyped affected and unaffected relatives and found significant linkage (LOD = 4.3) of rare variants with a phenotype including schizophrenia, bipolar disorder, and major depression. These data identify a candidate gene, highlight the genetic overlap between schizophrenia, bipolar disorder, and depression, and suggest that rare coding variants may contribute significantly to risk of these disorders. PMID:19944402

  17. Thyroid hyperfunctioning adenomas with and without Gsp/TSH receptor mutations show similar clinical features.

    PubMed

    Arturi, F; Capula, C; Chiefari, E; Filetti, S; Russo, D

    1998-01-01

    Activating mutations of Gs alpha protein (gsp) and TSH receptor (TSH-R) identified in autonomously hyperfunctioning thyroid adenomas have been proposed as the primary event responsible for this disease. Since mutations have not been detected in 100% (ranging from less than 10% to 90%) of the patients, we evaluated whether the presence of gsp and TSH-R mutations cause differences in the clinical and biochemical parameters of the affected patients. Fifteen consecutive patients (11 women and 4 men) with autonomously hyperfunctioning thyroid adenomas who underwent thyroidectomy, previously examined for the presence of gsp or TSH-R mutations, were investigated. In all of the patients we examined plasma free T3, free T4, TSH levels and ultrasound volume of the nodules. The patients with mutations in gsp or TSH-R were similar to the patients without mutations for clinical presentation, sex distribution and mean age. Furthermore, basal serum FT3, TSH and tumor volume in the patients with mutations were not significantly different from the group without mutations. Our preliminary data demonstrate that no significant differences are present in the two groups of patients examined, suggesting that factors other than gsp or TSH-R mutations play a role in the clinical presentation of the disease.

  18. A meta-analysis of prognostic value of KIT mutation status in gastrointestinal stromal tumors

    PubMed Central

    Jiang, Zhiqiang; Zhang, Jian; Li, Zhi; Liu, Yingjun; Wang, Daohai; Han, Guangsen

    2016-01-01

    Numerous types of KIT mutations have been reported in gastrointestinal stromal tumors (GISTs); however, controversy still exists regarding their clinicopathological significance. In this study, we reviewed the publicly available literature to assess the data by a meta-analysis to characterize KIT mutations and different types of KIT mutations in prognostic prediction in patients with GISTs. Twenty-eight studies that included 4,449 patients were identified and analyzed. We found that KIT mutation status was closely correlated with size of tumors and different mitosis indexes, but not with tumor location. KIT mutation was also observed to be significantly correlated with tumor recurrence, metastasis, as well as the overall survival of patients. Interestingly, there was higher risk of progression in KIT exon 9-mutated patients than in exon 11-mutated patients. Five-year relapse-free survival (RFS) rate was significantly higher in KIT exon 11-deleted patients than in those with other types of KIT exon 11 mutations. In addition, RFS for 5 years was significantly worse in patients bearing KIT codon 557–558 deletions than in those bearing other KIT exon 11 deletions. Our results strongly support the hypothesis that KIT mutation status is another evaluable factor for prognosis prediction in GISTs. PMID:27350754

  19. Targeted mutation analysis of endometrial clear cell carcinoma.

    PubMed

    Hoang, Lien N; McConechy, Melissa K; Meng, Bo; McIntyre, John B; Ewanowich, Carol; Gilks, Cyril Blake; Huntsman, David G; Köbel, Martin; Lee, Cheng-Han

    2015-04-01

    Endometrial clear cell carcinomas (CCC) constitute fewer than 5% of all carcinomas of the endometrium. Currently, little is known regarding the genetic basis of endometrial CCC. We performed genomic and immunohistochemical analyses on 14 rigorously reviewed pure endometrial CCC. The genomic analysis consisted of sequencing the coding regions of 26 genes implicated previously in endometrial carcinoma. Twelve of 14 tumours displayed a prototypical CCC immunophenotype [napsin A+, hepatocyte nuclear factor-1β (HNF1β(+) ) and oestrogen receptor(-) ] and all showed intact mismatch repair protein expression. We detected mutations in 11 of 14 tumours, and there was a predominance of mutations involving genes that are mutated more frequently in endometrial serous carcinomas than in endometrioid carcinomas. Two tumours displayed a prototypical serous carcinoma mutation profile (concurrent TP53 and PPP2R1A mutations, without PTEN, CTNNB1 or ARID1A mutation). No mutations in PTEN, CTNNB1 or POLE were identified. The overall mutation profile of this cohort of endometrial CCC appears to be more serous-like than endometrioid-like, with a minor subset in the TP53-mutated CCC showing serous carcinoma profile. These findings provide new insights into the molecular features of morphologically prototypical endometrial CCC, and underscore the need for further investigations into the oncogenesis of endometrial CCC. © 2014 John Wiley & Sons Ltd.

  20. Genes for hereditary sensory and autonomic neuropathies: a genotype–phenotype correlation

    PubMed Central

    Rotthier, Annelies; Baets, Jonathan; Vriendt, Els De; Jacobs, An; Auer-Grumbach, Michaela; Lévy, Nicolas; Bonello-Palot, Nathalie; Kilic, Sara Sebnem; Weis, Joachim; Nascimento, Andrés; Swinkels, Marielle; Kruyt, Moyo C.; Jordanova, Albena; De Jonghe, Peter

    2009-01-01

    Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype–phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis. PMID:19651702

  1. Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation.

    PubMed

    Rotthier, Annelies; Baets, Jonathan; De Vriendt, Els; Jacobs, An; Auer-Grumbach, Michaela; Lévy, Nicolas; Bonello-Palot, Nathalie; Kilic, Sara Sebnem; Weis, Joachim; Nascimento, Andrés; Swinkels, Marielle; Kruyt, Moyo C; Jordanova, Albena; De Jonghe, Peter; Timmerman, Vincent

    2009-10-01

    Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype-phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis.

  2. The first case of NSHL by direct impression on EYA1 gene and identification of one novel mutation in MYO7A in the Iranian families.

    PubMed

    Razmara, Ehsan; Bitarafan, Fatemeh; Esmaeilzadeh-Gharehdaghi, Elika; Almadani, Navid; Garshasbi, Masoud

    2018-03-01

    Targeted next-generation sequencing (NGS) provides a consequential opportunity to elucidate genetic factors in known diseases, particularly in profoundly heterogeneous disorders such as non-syndromic hearing loss (NSHL). Hearing impairments could be classified into syndromic and non-syndromic types. This study intended to assess the significance of mutations in these genes to the autosomal recessive/dominant non-syndromic genetic load among Iranian families. Two families were involved in this research and two patients were examined by targeted next-generation sequencing. Here we report two novel mutations in the MYO7A and EYA1 genes in two patients detected by targeted NGS. They were confirmed by Sanger sequencing and quantitative real-time PCR techniques. In this investigation, we identified a novel mutation in MYO7A , c.3751G>C, p.A1251P, along with another previously identified mutation (c.1708C>T) in one of the cases. This mutation is located in the MYTH4 protein domain which is a pivotal domain for the myosin function. Another finding in this research was a novel de-novo deletion which deletes the entire EYA1 coding region (EX1-18 DEL). Mutations in EYA1 gene have been found in branchiootorenal (BOR) syndrome. Interestingly the patient with EYA1 deletion did not show any other additional clinical implications apart from HL. This finding might argue for the sole involvement of EYA1 function in the mechanism of hearing. This investigation exhibited that the novel mutations in MYO7A , c.3751G>C, p.A1251P, and EYA1 , EX1-18 DEL, were associated with NSHL. Our research increased the mutation spectrum of hearing loss in the Iranian population.

  3. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies.

    PubMed

    Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S; Singh, Rajesh R; Roy-Chowdhuri, Sinchita

    2015-08-28

    Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.

  4. SDN-1/syndecan regulates growth factor signaling in distal tip cell migrations in C. elegans.

    PubMed

    Schwabiuk, Megan; Coudiere, Ludivine; Merz, David C

    2009-10-01

    Mutations in the sdn-1/syndecan gene act as genetic enhancers of the ventral-to-dorsal distal tip cell (DTC) migration defects caused by a weak allele of the netrin receptor gene unc-5. The sdn-1(ev697) allele was identified in a genetic screen for enhancers of unc-5 DTC migration defects, and carried a nonsense mutation predicted to truncate the SDN-1 protein prior to the transmembrane domain. The enhancement of unc-5 caused by an sdn-1 mutation was rescued by expression of wild-type sdn-1 in the hypodermis or nervous system rather than the DTCs, indicating a cell non-autonomous function of sdn-1. The enhancement was also partially reversed by mutations in the egl-17/FGF or egl-20/Wnt genes, suggesting that sdn-1 affects UNC-5 function through a mis-regulation of signaling in growth factor pathways. egl-20 reporter constructs exhibited increased and mis-localized EGL-20 distribution in sdn-1 mutants compared to wild-type animals. Finally, using loss of function mutations, we show that egl-17/Fgf and egl-20/Wnt are partially redundant in regulating the migration pattern of the posterior DTC, as double mutants exhibit significant frequencies of defects in migration phases along both the anteroposterior and dorsoventral axes. Together these results suggest that SDN-1 affects UNC-5 function by regulating the proper extracellular distribution of growth factors.

  5. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

    PubMed Central

    Racher, Hilary; Phelps, Ian G.; Toedt, Grischa; Kennedy, Julie; Wunderlich, Kirsten A.; Sorusch, Nasrin; Abdelhamed, Zakia A.; Natarajan, Subaashini; Herridge, Warren; van Reeuwijk, Jeroen; Horn, Nicola; Boldt, Karsten; Parry, David A.; Letteboer, Stef J.F.; Roosing, Susanne; Adams, Matthew; Bell, Sandra M.; Bond, Jacquelyn; Higgins, Julie; Morrison, Ewan E.; Tomlinson, Darren C.; Slaats, Gisela G.; van Dam, Teunis J. P.; Huang, Lijia; Kessler, Kristin; Giessl, Andreas; Logan, Clare V.; Boyle, Evan A.; Shendure, Jay; Anazi, Shamsa; Aldahmesh, Mohammed; Al Hazzaa, Selwa; Hegele, Robert A.; Ober, Carole; Frosk, Patrick; Mhanni, Aizeddin A.; Chodirker, Bernard N.; Chudley, Albert E.; Lamont, Ryan; Bernier, Francois P.; Beaulieu, Chandree L.; Gordon, Paul; Pon, Richard T.; Donahue, Clem; Barkovich, A. James; Wolf, Louis; Toomes, Carmel; Thiel, Christian T.; Boycott, Kym M.; McKibbin, Martin; Inglehearn, Chris F.; Stewart, Fiona; Omran, Heymut; Huynen, Martijn A.; Sergouniotis, Panagiotis I.; Alkuraya, Fowzan S.; Parboosingh, Jillian S.; Innes, A Micheil; Willoughby, Colin E.; Giles, Rachel H.; Webster, Andrew R.; Ueffing, Marius; Blacque, Oliver; Gleeson, Joseph G.; Wolfrum, Uwe; Beales, Philip L.; Gibson, Toby

    2015-01-01

    Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and three pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localise to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1/CEP90 and C21orf2/LRRC76 as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2-variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease. PMID:26167768

  6. A pilot systematic genomic comparison of recurrence risks of hepatitis B virus-associated hepatocellular carcinoma with low- and high-degree liver fibrosis.

    PubMed

    Yoo, Seungyeul; Wang, Wenhui; Wang, Qin; Fiel, M Isabel; Lee, Eunjee; Hiotis, Spiros P; Zhu, Jun

    2017-12-07

    Chronic hepatitis B virus (HBV) infection leads to liver fibrosis, which is a major risk factor in hepatocellular carcinoma (HCC) and an independent risk factor of recurrence after HCC tumor resection. The HBV genome can be inserted into the human genome, and chronic inflammation may trigger somatic mutations. However, how HBV integration and other genomic changes contribute to the risk of tumor recurrence with regards to the different degree of liver fibrosis is not clearly understood. We sequenced mRNAs of 21 pairs of tumor and distant non-neoplastic liver tissues of HBV-HCC patients and performed comprehensive genomic analyses of our RNAseq data and public available HBV-HCC sequencing data. We developed a robust pipeline for sensitively identifying HBV integration sites based on sequencing data. Simulations showed that our method outperformed existing methods. Applying it to our data, 374 and 106 HBV host genes were identified in non-neoplastic liver and tumor tissues, respectively. When applying it to other RNA sequencing datasets, consistently more HBV integrations were identified in non-neoplastic liver than in tumor tissues. HBV host genes identified in non-neoplastic liver samples significantly overlapped with known tumor suppressor genes. More significant enrichment of tumor suppressor genes was observed among HBV host genes identified from patients with tumor recurrence, indicating the potential risk of tumor recurrence driven by HBV integration in non-neoplastic liver tissues. We also compared SNPs of each sample with SNPs in a cancer census database and inferred samples' pathogenic SNP loads. Pathogenic SNP loads in non-neoplastic liver tissues were consistently higher than those in normal liver tissues. Additionally, HBV host genes identified in non-neoplastic liver tissues significantly overlapped with pathogenic somatic mutations, suggesting that HBV integration and somatic mutations targeting the same set of genes are important to tumorigenesis. HBV integrations and pathogenic mutations showed distinct patterns between low and high liver fibrosis patients with regards to tumor recurrence. The results suggest that HBV integrations and pathogenic SNPs in non-neoplastic tissues are important for tumorigenesis and different recurrence risk models are needed for patients with low and high degrees of liver fibrosis.

  7. A novel, de novo mutation in the PRKAG2 gene: infantile-onset phenotype and the signaling pathway involved.

    PubMed

    Xu, Yanchun; Gray, A; Hardie, D Grahame; Uzun, Alper; Shaw, Sunil; Padbury, James; Phornphutkul, Chanika; Tseng, Yi-Tang

    2017-08-01

    PRKAG2 encodes the γ 2 -subunit isoform of 5'-AMP-activated protein kinase (AMPK), a heterotrimeric enzyme with major roles in the regulation of energy metabolism in response to cellular stress. Mutations in PRKAG2 have been implicated in a unique hypertrophic cardiomyopathy (HCM) characterized by cardiac glycogen overload, ventricular preexcitation, and hypertrophy. We identified a novel, de novo PRKAG2 mutation (K475E) in a neonate with prenatal onset of HCM. We aimed to investigate the cellular impact, signaling pathways involved, and therapeutic options for K475E mutation using cells stably expressing human wild-type (WT) or the K475E mutant. In human embryonic kidney-293 cells, the K475E mutation induced a marked increase in the basal phosphorylation of T172 and AMPK activity, reduced sensitivity to AMP in allosteric activation, and a loss of response to phenformin. In H9c2 cardiomyocytes, the K475E mutation induced inhibition of AMPK and reduced the response to phenformin and increases in the phosphorylation of p70S6 kinase (p70S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). Primary fibroblasts from the patient with the K475E mutation also showed marked increases in the phosphorylation of p70S6K and 4E-BP1 compared with those from age-matched, nondiseased controls. Moreover, overexpression of K475E induced hypertrophy in H9c2 cells, which was effectively reversed by treatment with rapamycin. Taken together, we have identified a novel, de novo infantile-onset PRKAG2 mutation causing HCM. Our study suggests the K475E mutation induces alteration in basal AMPK activity and results in a hypertrophy phenotype involving the mechanistic target of rapamycin signaling pathway, which can be reversed with rapamycin. NEW & NOTEWORTHY We identified a novel, de novo PRKAG2 mutation (K475E) in the cystathionine β-synthase 3 repeat, a region critical for AMP binding but with no previous reported mutation. Our data suggest the mutation affects AMP-activated protein kinase activity, activates cell growth pathways, and results in cardiac hypertrophy, which can be reversed with rapamycin. Copyright © 2017 the American Physiological Society.

  8. Towards a dietary prevention of hereditary breast cancer.

    PubMed

    Kotsopoulos, Joanne; Narod, Steven A

    2005-03-01

    Inheritance of a deleterious mutation in BRCA1 or BRCA2 confers a high lifetime risk of developing breast cancer. Variation in penetrance between individuals suggests that factors other than the gene mutation itself may influence the risk of cancer in susceptible women. Several risk factors have been identified which implicate estrogen-induced growth stimulation as a probable contributor to breast cancer pre-disposition. The protein products of both of these genes appear to help preserve genomic integrity via their participation in the DNA damage response and repair pathways. To date, the evidence for a cancer-protective role of dietary nutrients, for the most part those with antioxidant properties, has been based on women without any known genetic pre-disposition and it is important to identify and evaluate dietary factors which may modify the risk of cancer in BRCA carriers. Here we propose that diet modification may modulate the risk of hereditary breast cancer by decreasing DNA damage (possibly linked to estrogen exposure) or by enhancing DNA repair. The prevention of hereditary breast cancer through diet is an attractive complement to current management strategies and deserves exploration.

  9. New Genes and New Insights from Old Genes: Update on Alzheimer Disease

    PubMed Central

    Ringman, John M.; Coppola, Giovanni

    2013-01-01

    Purpose of Review: This article discusses the current status of knowledge regarding the genetic basis of Alzheimer disease (AD) with a focus on clinically relevant aspects. Recent Findings: The genetic architecture of AD is complex, as it includes multiple susceptibility genes and likely nongenetic factors. Rare but highly penetrant autosomal dominant mutations explain a small minority of the cases but have allowed tremendous advances in understanding disease pathogenesis. The identification of a strong genetic risk factor, APOE, reshaped the field and introduced the notion of genetic risk for AD. More recently, large-scale genome-wide association studies are adding to the picture a number of common variants with very small effect sizes. Large-scale resequencing studies are expected to identify additional risk factors, including rare susceptibility variants and structural variation. Summary: Genetic assessment is currently of limited utility in clinical practice because of the low frequency (Mendelian mutations) or small effect size (common risk factors) of the currently known susceptibility genes. However, genetic studies are identifying with confidence a number of novel risk genes, and this will further our understanding of disease biology and possibly the identification of therapeutic targets. PMID:23558482

  10. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma.

    PubMed

    Singh, Dinesh K; Kollipara, Rahul K; Vemireddy, Vamsidara; Yang, Xiao-Li; Sun, Yuxiao; Regmi, Nanda; Klingler, Stefan; Hatanpaa, Kimmo J; Raisanen, Jack; Cho, Steve K; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara; Mashimo, Tomoyuki; Wang, Shan; Humphries, Caroline G; Mickey, Bruce; Maher, Elizabeth A; Zheng, Hongwu; Kim, Ryung S; Kittler, Ralf; Bachoo, Robert M

    2017-01-24

    Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Alu-mediated recombination defect in IGF1R: haploinsufficiency in a patient with short stature.

    PubMed

    Harmel, Eva-Maria; Binder, Gerhard; Barnikol-Oettler, Anja; Caliebe, Janina; Kiess, Wieland; Losekoot, Monique; Ranke, Michael B; Rappold, Gudrun A; Schlicke, Marina; Stobbe, Heike; Wit, Jan M; Pfäffle, Roland; Klammt, Jürgen

    2013-01-01

    The insulin-like growth factor (IGF) receptor (IGF1R) is essential for normal development and growth. IGF1R mutations cause IGF-1 resistance resulting in intrauterine and postnatal growth failure. The phenotypic spectrum related to IGF1R mutations remains to be fully understood. Auxological and endocrinological data of a patient identified previously were assessed. The patient's fibroblasts were studied to characterize the IGF1R deletion, mRNA fate, protein expression and signalling capabilities. The boy, who carries a heterozygous IGF1R exon 6 deletion caused by Alu element-mediated recombination and a heterozygous SHOX variant (p.Met240Ile), was born appropriate for gestational age but developed proportionate short stature postnatally. IGF-1 levels were low-normal. None of the stigmata associated with SHOX deficiency or sporadically observed in IGF1R mutation carriers were present. Nonsense-mediated mRNA decay led to a substantial decline of IGF1R dosage and IGF-1-dependent receptor autophosphorylation but not impaired downstream signalling. We present the first detailed report of an intragenic IGF1R deletion identified in a patient who, apart from short stature, deviates from all established markers that qualify a growth-retarded child for IGF1R analysis. Although such children will usually escape routine clinical mutation screenings, they can contribute to the understanding of factors and mechanisms that cooperate with the IGF1R. © 2013 S. Karger AG, Basel.

  12. Influence of Gene Expression on Hardness in Wheat

    PubMed Central

    Nirmal, Ravi C.; Wrigley, Colin

    2016-01-01

    Puroindoline (Pina and Pinb) genes control grain texture or hardness in wheat. Wild-type/soft alleles lead to softer grain while a mutation in one or both of these genes results in a hard grain. Variation in hardness in genotypes with identical Pin alleles (wild-type or mutant) is known but the molecular basis of this is not known. We now report the identification of wheat genotypes with hard grain texture and wild-type/soft Pin alleles indicating that hardness in wheat may be controlled by factors other than mutations in the coding region of the Pin genes. RNA-Seq analysis was used to determine the variation in the transcriptome of developing grains of thirty three diverse wheat genotypes including hard (mutant Pin) and soft (wild type) and those that were hard without having Pin mutations. This defined the role of pin gene expression and identified other candidate genes associated with hardness. Pina was not expressed in hard wheat with a mutation in the Pina gene. The ratio of Pina to Pinb expression was generally lower in the hard non mutant genotypes. Hardness may be associated with differences in Pin expression and other factors and is not simply associated with mutations in the PIN protein coding sequences. PMID:27741295

  13. Mutations in eukaryotic release factors 1 and 3 act as general nonsense suppressors in Drosophila.

    PubMed Central

    Chao, Anna T; Dierick, Herman A; Addy, Tracie M; Bejsovec, Amy

    2003-01-01

    In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens. PMID:14573473

  14. Genetic risk factors for inhibitors in haemophilia A.

    PubMed

    Bardi, Edit; Astermark, Jan

    2015-02-01

    The current most serious side effect of haemophilia treatment is inhibitor development. Significant progress has been made over the last decades to understand why this complication occurs in some patients and it seems clear that both genetic and non-genetic factors are involved. Several issues however remain to be settled. A review was undertaken to summarise some key findings regarding the current view and available data on genetic markers of potential importance within this area. The causative F8 mutation, together with the HLA class II alleles, plays a pivotal pathophysiological role in inhibitor development. The types of mutation most frequently associated with inhibitors are large deletions, nonsense mutations, inversions, small deletions/insertions without A-runs, splice-site mutations at conserved nucleotides and certain missense mutations. Regarding HLA class II allele, it has been hard to consistently identify risk alleles. Ethnicity has consistently been associated with inhibitor risk, but the causality of this has so far not been resolved. Among immune regulatory molecules, several polymorphic molecules have been suggested to be of importance. Most of these need additional studies and immune system challenges have to be fully evaluated. Inhibitor risk should be further defined, as patients in the future may be offered non-immunogenic treatments. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Predicting response to EGFR inhibitors in metastatic colorectal cancer: current practice and future directions.

    PubMed

    Shankaran, Veena; Obel, Jennifer; Benson, Al B

    2010-01-01

    The identification of KRAS mutational status as a predictive marker of response to antibodies against the epidermal growth factor receptor (EGFR) has been one of the most significant and practice-changing recent advances in colorectal cancer research. Recently, data suggesting a potential role for other markers (including BRAF mutations, loss of phosphatase and tension homologue deleted on chromosome ten expression, and phosphatidylinositol-3-kinase-AKT pathway mutations) in predicting response to anti-EGFR therapy have emerged. Ongoing clinical trials and correlative analyses are essential to definitively identify predictive markers and develop therapeutic strategies for patients who may not derive benefit from anti-EGFR therapy. This article reviews recent clinical trials supporting the predictive role of KRAS, recent changes to clinical guidelines and pharmaceutical labeling, investigational predictive molecular markers, and newer clinical trials targeting patients with mutated KRAS.

  16. Mutations in DSTYK and dominant urinary tract malformations.

    PubMed

    Sanna-Cherchi, Simone; Sampogna, Rosemary V; Papeta, Natalia; Burgess, Katelyn E; Nees, Shannon N; Perry, Brittany J; Choi, Murim; Bodria, Monica; Liu, Yan; Weng, Patricia L; Lozanovski, Vladimir J; Verbitsky, Miguel; Lugani, Francesca; Sterken, Roel; Paragas, Neal; Caridi, Gianluca; Carrea, Alba; Dagnino, Monica; Materna-Kiryluk, Anna; Santamaria, Giuseppe; Murtas, Corrado; Ristoska-Bojkovska, Nadica; Izzi, Claudia; Kacak, Nilgun; Bianco, Beatrice; Giberti, Stefania; Gigante, Maddalena; Piaggio, Giorgio; Gesualdo, Loreto; Vukic, Durdica Kosuljandic; Vukojevic, Katarina; Saraga-Babic, Mirna; Saraga, Marijan; Gucev, Zoran; Allegri, Landino; Latos-Bielenska, Anna; Casu, Domenica; State, Matthew; Scolari, Francesco; Ravazzolo, Roberto; Kiryluk, Krzysztof; Al-Awqati, Qais; D'Agati, Vivette D; Drummond, Iain A; Tasic, Velibor; Lifton, Richard P; Ghiggeri, Gian Marco; Gharavi, Ali G

    2013-08-15

    Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood. We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members). We also performed a sequence analysis in 311 unrelated patients, as well as histologic and functional studies. Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single, rare, deleterious variant within these linkage intervals, a heterozygous splice-site mutation in the dual serine-threonine and tyrosine protein kinase gene (DSTYK). This variant, which resulted in aberrant splicing of messenger RNA, was present in all affected family members. Additional, independent DSTYK mutations, including nonsense and splice-site mutations, were detected in 7 of 311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in developmental defects in multiple organs, which suggested loss of fibroblast growth factor (FGF) signaling. Consistent with this finding is the observation that DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated phosphorylation of extracellular-signal-regulated kinase (ERK), the principal signal downstream of receptor tyrosine kinases. We detected independent DSTYK mutations in 2.3% of patients with congenital abnormalities of the kidney or urinary tract, a finding that suggests that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling. (Funded by the National Institutes of Health and others.).

  17. Mutations in DSTYK and Dominant Urinary Tract Malformations

    PubMed Central

    Sanna-Cherchi, Simone; Nees, Shannon N.; Perry, Brittany J.; Choi, Murim; Bodria, Monica; Liu, Yan; Weng, Patricia L.; Lozanovski, Vladimir J.; Verbitsky, Miguel; Lugani, Francesca; Sterken, Roel; Paragas, Neal; Caridi, Gianluca; Carrea, Alba; Dagnino, Monica; Materna-Kiryluk, Anna; Santamaria, Giuseppe; Murtas, Corrado; Ristoska-Bojkovska, Nadica; Izzi, Claudia; Kacak, Nilgun; Bianco, Beatrice; Giberti, Stefania; Gigante, Maddalena; Piaggio, Giorgio; Gesualdo, Loreto; Vukic, Durdica Kosuljandic; Vukojevic, Katarina; Saraga-Babic, Mirna; Saraga, Marijan; Gucev, Zoran; Allegri, Landino; Latos-Bielenska, Anna; Casu, Domenica; State, Matthew; Scolari, Francesco; Ravazzolo, Roberto; Kiryluk, Krzysztof; Al-Awqati, Qais; D'Agati, Vivette D.; Drummond, Iain A.; Tasic, Velibor; Lifton, Richard P.; Ghiggeri, Gian Marco; Gharavi, Ali G.

    2013-01-01

    BACKGROUND Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood. METHODS We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members). We also performed a sequence analysis in 311 unrelated patients, as well as histologic and functional studies. RESULTS Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single, rare, deleterious variant within these linkage intervals, a heterozygous splice-site mutation in the dual serine–threonine and tyrosine protein kinase gene (DSTYK). This variant, which resulted in aberrant splicing of messenger RNA, was present in all affected family members. Additional, independent DSTYK mutations, including nonsense and splice-site mutations, were detected in 7 of 311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in developmental defects in multiple organs, which suggested loss of fibroblast growth factor (FGF) signaling. Consistent with this finding is the observation that DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated phosphorylation of extracellular-signal-regulated kinase (ERK), the principal signal downstream of receptor tyrosine kinases. CONCLUSIONS We detected independent DSTYK mutations in 2.3% of patients with congenital abnormalities of the kidney or urinary tract, a finding that suggests that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling. (Funded by the National Institutes of Health and others.) PMID:23862974

  18. Two coexisting heterozygous frameshift mutations in PROP1 are responsible for a different phenotype of combined pituitary hormone deficiency.

    PubMed

    Ziemnicka, K; Budny, B; Drobnik, K; Baszko-Błaszyk, D; Stajgis, M; Katulska, K; Waśko, R; Wrotkowska, E; Słomski, R; Ruchała, M

    2016-08-01

    The role of genetic background in childhood-onset combined pituitary hormone deficiency (CPHD) has been extensively studied. The major contributors are the PROP1, POU1F1, LHX3, LHX4 and HESX1 genes coding transcription factors implicated in pituitary organogenesis. The clinical consequences of mutations encompass impaired synthesis of a growth hormone (GH) and one or more concurrent pituitary hormones (i.e. LH, FSH, TSH, PRL). Manifestation of the disorder may vary due to various mutation impacts on the final gene products or an influence of environmental factors during pituitary organogenesis. We describe the clinical and molecular characteristics of two brothers aged 47 and 39 years presenting an uncommon manifestation of congenital hypopituitarism. Sequencing of the PROP1, POU1F1, LHX3, LHX4 and HESX1 genes was performed to confirm the genetic origin of the disorder. A compound heterozygosity in the PROP1 gene has been identified for both probands. The first change represents a mutational hot spot (c.150delA, p.R53fsX164), whereas the second is a novel alteration (p.R112X) that leads to protein disruption. Based on precise genetic diagnosis, an in silico prediction of a p.R112X mutation on protein architecture was performed. The resulting clinical phenotype was surprisingly distinct compared to most patients with genetic alterations in PROP1 reported in the current literature. This may be caused by a residual activity of a newly identified p.R112X protein that preserves over 70 % of the homeodomain structure. This examination may confirm a key role of a DNA-binding homeodomain in maintaining PROP1 functionality and suggests a conceivable explanation of an unusual phenotype.

  19. A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads.

    PubMed

    Tagel, Mari; Tavita, Kairi; Hõrak, Rita; Kivisaar, Maia; Ilves, Heili

    2016-08-01

    Formation of microcolonies (papillae) permits easy visual screening of mutational events occurring in single colonies of bacteria. In this study, we have established a novel papillation assay employable in a wide range of pseudomonads including Pseudomonas aeruginosa and Pseudomonas putida for monitoring mutation frequency in distinct colonies. With the aid of this assay, we conducted a genome-wide search for the factors affecting mutation frequency in P. putida. Screening ∼27,000 transposon mutants for increased mutation frequency allowed us to identify 34 repeatedly targeted genes. In addition to genes involved in DNA replication and repair, we identified genes participating in metabolism and transport of secondary metabolites, cell motility, and cell wall synthesis. The highest effect on mutant frequency was observed when truA (tRNA pseudouridine synthase), mpl (UDP-N-acetylmuramate-alanine ligase) or gacS (multi-sensor hybrid histidine kinase) were inactivated. Inactivation of truA elevated the mutant frequency only in growing cells, while the deficiency of gacS affected mainly stationary-phase mutagenesis. Thus, our results demonstrate the feasibility of the assay for isolating mutants with elevated mutagenesis in growing as well as stationary-phase bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Targeted sequencing identifies genetic alterations that confer primary resistance to EGFR tyrosine kinase inhibitor (Korean Lung Cancer Consortium).

    PubMed

    Lim, Sun Min; Kim, Hye Ryun; Cho, Eun Kyung; Min, Young Joo; Ahn, Jin Seok; Ahn, Myung-Ju; Park, Keunchil; Cho, Byoung Chul; Lee, Ji-Hyun; Jeong, Hye Cheol; Kim, Eun Kyung; Kim, Joo-Hang

    2016-06-14

    Non-small-cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations may exhibit primary resistance to EGFR tyrosine kinase inhibitor (TKI). We aimed to examine genomic alterations associated with de novo resistance to gefitinib in a prospective study of NSCLC patients. One-hundred and fifty two patients with activating EGFR mutations were included in this study and 136 patients' tumor sample were available for targeted sequencing of genomic alterations in 22 genes using the Colon and Lung Cancer panel (Ampliseq, Life Technologies). All 132 patients with EGFR mutation were treated with gefitinib for their treatment of advanced NSCLC. Twenty patients showed primary resistance to EGFR TKI, and were classified as non-responders. A total of 543 somatic single-nucleotide variants (498 missense, 13 nonsense) and 32 frameshift insertions/deletions, with a median of 3 mutations per sample. TP53 was most commonly mutated (47%) and mutations in SMAD4 was also common (19%), as well as DDR2 (16%), PIK3CA (15%), STK11 (14%), and BRAF (7%). Genomic mutations in the PI3K/Akt/mTOR pathway were commonly found in non-responders (45%) compared to responders (27%), and they had significantly shorter progression-free survival and overall survival compared to patients without mutations (2.1 vs. 12.8 months, P=0.04, 15.7 vs. not reached, P<0.001). FGFR 1-3 alterations, KRAS mutations and TP53 mutations were more commonly detected in non-responders compared to responders. Genomic mutations in the PI3K/Akt/mTOR pathway were commonly identified in non-responders and may confer resistance to EGFR TKI. Screening lung adenocarcinoma patients with clinical cancer gene test may aid in selecting out those who show primary resistance to EGFR TKI (NCT01697163).

  1. Contralateral Prophylactic Mastectomy: Factors Predictive of Occult Malignancy or High-Risk Lesion and the Impact of MRI and Genetic Testing.

    PubMed

    Erdahl, Lillian M; Boughey, Judy C; Hoskin, Tanya L; Degnim, Amy C; Hieken, Tina J

    2016-01-01

    Despite decreasing rates of subsequent contralateral breast cancer after diagnosis of unilateral primary breast cancer, the proportion of patients electing contralateral prophylactic mastectomy (CPM) is increasing. Our aim was to identify risk factors associated with the identification of occult malignancy (OM) or high-risk lesion (HRL) in CPM to facilitate patient counseling and operative planning. We identified patients undergoing CPM in addition to mastectomy for index breast cancer between October 2008 and June 2013. Patient and tumor factors were analyzed to identify associations with OM or HRL in CPM. Among 740 CPM patients, an OM was identified in 4.1 % and an HRL was identified in 10.5 %. On multivariable analysis, factors associated with either occult finding included older age [odds ratio (OR) 1.37, per 10-year increase], invasive lobular index tumor histology (OR 2.60), progesterone receptor (PR)-positive index tumor (OR 1.79), and neoadjuvant therapy (OR 0.55). Overall, 244 patients (33 %) underwent BRCA testing, and 38 (16 %) had a deleterious mutation; 494 patients (67 %) had a preoperative breast MRI. Neither absence of a deleterious BRCA mutation nor a negative preoperative MRI decreased the likelihood of an occult finding in CPM. Although invasive cancer was identified infrequently in CPM specimens, the rate of HRL or OM in our study was 14.6 %. Older age and infiltrating lobular and PR-positive index breast cancers were associated with a higher risk of OM in CPM, while neoadjuvant therapy diminished the risk. BRCA testing and preoperative MRI were not associated with HRL or OM. This information is valuable for patient counseling and surgical planning.

  2. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies

    PubMed Central

    2014-01-01

    Background Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. Results We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. Conclusion Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required. PMID:24484525

  3. Gene expression profiling of long-lived dwarf mice: longevity-associated genes and relationships with diet, gender and aging

    PubMed Central

    Swindell, William R

    2007-01-01

    Background Long-lived strains of dwarf mice carry mutations that suppress growth hormone (GH) and insulin-like growth factor I (IGF-I) signaling. The downstream effects of these endocrine abnormalities, however, are not well understood and it is unclear how these processes interact with aging mechanisms. This study presents a comparative analysis of microarray experiments that have measured hepatic gene expression levels in long-lived strains carrying one of four mutations (Prop1df/df, Pit1dw/dw, Ghrhrlit/lit, GHR-KO) and describes how the effects of these mutations relate to one another at the transcriptional level. Points of overlap with the effects of calorie restriction (CR), CR mimetic compounds, low fat diets, gender dimorphism and aging were also examined. Results All dwarf mutations had larger and more consistent effects on IGF-I expression than dietary treatments. In comparison to dwarf mutations, however, the transcriptional effects of CR (and some CR mimetics) overlapped more strongly with those of aging. Surprisingly, the Ghrhrlit/lit mutation had much larger effects on gene expression than the GHR-KO mutation, even though both mutations affect the same endocrine pathway. Several genes potentially regulated or co-regulated with the IGF-I transcript in liver tissue were identified, including a DNA repair gene (Snm1) that is upregulated in proportion to IGF-I inhibition. A total of 13 genes exhibiting parallel differential expression patterns among all four strains of long-lived dwarf mice were identified, in addition to 30 genes with matching differential expression patterns in multiple long-lived dwarf strains and under CR. Conclusion Comparative analysis of microarray datasets can identify patterns and consistencies not discernable from any one dataset individually. This study implements new analytical approaches to provide a detailed comparison among the effects of life-extending mutations, dietary treatments, gender and aging. This comparison provides insight into a broad range of issues relevant to the study of mammalian aging. In this context, 43 longevity-associated genes are identified and individual genes with the highest level of support among all microarray experiments are highlighted. These results provide promising targets for future experimental investigation as well as potential clues for understanding the functional basis of lifespan extension in mammalian systems. PMID:17915019

  4. Contribution of a KCNH2 variant in genotyped long QT syndrome: Romano-Ward syndrome under double mutations and acquired long QT syndrome under heterozygote.

    PubMed

    Fujii, Yusuke; Matsumoto, Yuichi; Hayashi, Kenshi; Ding, Wei-Guang; Tomita, Yukinori; Fukumoto, Daisuke; Wada, Yuko; Ichikawa, Mari; Sonoda, Keiko; Ozawa, Junichi; Makiyama, Takeru; Ohno, Seiko; Yamagishi, Masakazu; Matsuura, Hiroshi; Horie, Minoru; Itoh, Hideki

    2017-07-01

    Long QT syndrome (LQTS) presents two clinical phenotypes, congenital and acquired forms. This study aims to evaluate the genetic contribution of a KCNH2 variant for the two LQTS phenotypes. From 1996 to 2014, genetic screening for LQTS probands was performed for five major genes: KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 and 389 probands were found to be mutation carriers. We analyzed the clinical phenotypes of p.His492Tyr carriers in KCNH2. Heterozygous p.His492Tyr variant was identified in 10 LQTS families. Six probands (mean age, 26±23 years) carried another mutation, and two of six had syncope associated with emotional stress or telephone ringing. The remaining four probands were significantly older at diagnosis (mean age, 42±33 years) and carried no other compound mutations. All the four probands had fatal arrhythmic events in the presence of additional precipitating factors such as culprit drugs in 2, hypokalemia in 1, and bradycardia in 1. The QTc interval of carriers with p.His492Tyr alone was 445±10ms and significantly shorter than that in double mutation carriers (481±40ms, p=0.041). KCNH2 p.His492Tyr variant presented Romano-Ward syndrome in the presence of another mutation and heterozygous carriers had mild phenotypes while even heterozygous carriers should be cared for not to encounter secondary factors because incidental factors could manifest "latent" form of p.His492Tyr heterozygous carriers. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  5. Genotype and phenotype relationships in 10 Pakistani unrelated patients with inherited factor VII deficiency.

    PubMed

    Borhany, M; Boijout, H; Pellequer, J-L; Shamsi, T; Moulis, G; Aguilar-Martinez, P; Schved, J-F; Giansily-Blaizot, M

    2013-11-01

    Inherited factor VII (FVII) deficiency is one of the commonest rare bleeding disorders. It is characterized by a wide molecular and clinical heterogeneity and an autosomal recessive pattern of inheritance. Factor VII-deficient patients are still scarcely explored in Pakistan although rare bleeding disorders became quite common as a result of traditional consanguineous marriages. The aim of the study was to give a first insight of F7 gene mutations in Pakistani population. Ten unrelated FVII-deficient patients living in Pakistan were investigated (median FVII:C = 2%; range = 2-37%). A clinical questionnaire was filled out for each patient and direct sequencing was performed on the coding regions, intron/exon boundaries and 5' and 3' untranslated regions of the F7 gene. Nine different mutations (eight missense mutations and one located within the F7 promoter) were identified on the F7 gene. Five of them were novel (p.Cys82Tyr, p.Cys322Ser, p.Leu357Phe, p.Thr410Ala, c-57C>T, the last being predicted to alter the binding site of transcription factor HNF-4). Half of the patients had single mutations in Cys residues involved in disulfide bridges. The p.Cys82Arg mutation was the most frequent in our series. Six of seven patients with FVII:C levels below 10% were homozygous in connection with the high percentage of consanguinity in our series. In addition, we graded the 10 patients according to three previously published classifications for rare bleeding disorders. The use of the bleeding score proposed by Tosetto and co-workers in 2006 appears to well qualify the bleeding tendency in our series. © 2013 John Wiley & Sons Ltd.

  6. The Bim deletion polymorphism clinical profile and its relation with tyrosine kinase inhibitor resistance in Chinese patients with non-small cell lung cancer.

    PubMed

    Zhao, Mingchuan; Zhang, Yishi; Cai, Weijing; Li, Jiayu; Zhou, Fei; Cheng, Ningning; Ren, Ruixin; Zhao, Chao; Li, Xuefei; Ren, Shengxiang; Zhou, Caicun; Hirsch, Fred R

    2014-08-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are widely used for the treatment of patients with advanced non-small cell lung cancer (NSCLC) who have EGFR mutations. Recent studies have indicated that some patients with positive mutations were refractory to EGFR TKIs if they harbored a B-cell chronic lymphocytic leukemia/lymphoma (Bcl-2)-like 11 (Bim) deletion polymorphism. The objective of the current work was to retrospectively study the Bim deletion polymorphism in Chinese patients with NSCLC and its correlation with the efficacy of EGFR TKIs. Distribution of the Bim polymorphism was detected using polymerase chain reaction analysis and direct sequencing of DNA from peripheral neutrophils in samples from 352 patients with NSCLC. Of the 352 patients, 166 who received TKI therapy and had an activating mutation identified were involved in further analysis. Progression-free survival (PFS) was the primary endpoint of the subsequent analyses, and the incidence of the Bim polymorphism and its relation to clinical benefit from EGFR TKIs also were investigated. In total, 45 of 352 patient samples (12.8%) had the Bim deletion polymorphism, which was distributed randomly with regard to various clinical characteristics. In patients with EGFR mutations who received treatment with TKIs, the median PFS and the median objective response rate were 4.7 months and 25%, respectively, for those with the Bim deletion polymorphism versus 11 months (P = .003) and 66% (P = .001), respectively, for those with wild-type Bim. Cox regression analysis identified Bim status (P = .016) and sex (P = .002) as independent factors predicting clinical benefit from EGFR TKIs in patients with EGFR-mutated NSCLC. The incidence of the Bim deletion polymorphism was approximately 13% in this study, and it was associated with a poor clinical response to EGFR TKIs in patients who had NSCLC with EGFR mutations. © 2014 American Cancer Society.

  7. Targeted next-generation sequencing reveals that a compound heterozygous mutation in phosphodiesterase 6a gene leads to retinitis pigmentosa in a Chinese family.

    PubMed

    Zhang, Shanshan; Li, Jie; Li, Shujin; Yang, Yeming; Yang, Mu; Yang, Zhenglin; Zhu, Xianjun; Zhang, Lin

    2018-04-25

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 70 causative genes identified to date. However, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing mutations are yet to be identified. The purpose of this study is to identify the causative mutations of a Chinese RP family. Targeted next-generation sequencing (NGS) for a total of 163 genes which involved in inherited retinal disorders were used to screen the possible causative mutations. Sanger sequencing was used to verify the mutations. As results, we identified two heterozygous mutations: a splicing site mutation c.1407 + 1G>C and a nonsense mutation c. 1957C>T (p.R653X) in phosphodiesterase 6A (PDE6A) gene in the RP patient. These two mutations are inherited from his father and mother, respectively. Furthermore, these mutations are unique in our in-house database and are rare in human genome databases, implicating that these two mutations are pathological. By using targeted NGS method, we identified a compound heterozygous mutation in PDE6A gene that is associated with RP in a Chinese family.

  8. Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin-Siris syndrome.

    PubMed

    Hempel, Annmarie; Pagnamenta, Alistair T; Blyth, Moira; Mansour, Sahar; McConnell, Vivienne; Kou, Ikuyo; Ikegawa, Shiro; Tsurusaki, Yoshinori; Matsumoto, Naomichi; Lo-Castro, Adriana; Plessis, Ghislaine; Albrecht, Beate; Battaglia, Agatino; Taylor, Jenny C; Howard, Malcolm F; Keays, David; Sohal, Aman Singh; Kühl, Susanne J; Kini, Usha; McNeill, Alisdair

    2016-03-01

    SOX11 is a transcription factor proposed to play a role in brain development. The relevance of SOX11 to human developmental disorders was suggested by a recent report of SOX11 mutations in two patients with Coffin-Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders. We used array based comparative genomic hybridisation and trio exome sequencing to identify children with intellectual disability who have deletions or de novo point mutations disrupting SOX11. The pathogenicity of the SOX11 mutations was assessed using an in vitro gene expression reporter system. Loss-of-function experiments were performed in xenopus by knockdown of Sox11 expression. We identified seven individuals with chromosome 2p25 deletions involving SOX11. Trio exome sequencing identified three de novo SOX11 variants, two missense (p.K50N; p.P120H) and one nonsense (p.C29*). The biological consequences of the missense mutations were assessed using an in vitro gene expression system. These individuals had microcephaly, developmental delay and shared dysmorphic features compatible with mild Coffin-Siris syndrome. To further investigate the function of SOX11, we knocked down the orthologous gene in xenopus. Morphants had significant reduction in head size compared with controls. This suggests that SOX11 loss of function can be associated with microcephaly. We thus propose that SOX11 deletion or mutation can present with a Coffin-Siris phenotype. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Identification of a novel loss-of-function PHEX mutation, Ala720Ser, in a sporadic case of adult-onset hypophosphatemic osteomalacia.

    PubMed

    Goljanek-Whysall, Katarzyna; Tridimas, Andreas; McCormick, Rachel; Russell, Nicki-Jayne; Sloman, Melissa; Sorani, Alan; Fraser, William D; Hannan, Fadil M

    2018-01-01

    Adults presenting with sporadic hypophosphatemia and elevations in circulating fibroblast growth factor-23 (FGF23) concentrations are usually investigated for an acquired disorder of FGF23 excess such as tumor induced osteomalacia (TIO). However, in some cases the underlying tumor is not detected, and such patients may harbor other causes of FGF23 excess. Indeed, coding-region and 3'UTR mutations of phosphate-regulating neutral endopeptidase (PHEX), which encodes a cell-surface protein that regulates circulating FGF23 concentrations, can lead to alterations in phosphate homeostasis, which are not detected until adulthood. Here, we report an adult female who presented with hypophosphatemic osteomalacia and raised serum FGF23 concentrations. The patient and her parents, who were her only first-degree relatives, had no history of rickets. The patient was thus suspected of having TIO. However, no tumor had been identified following extensive localization studies. Mutational analysis of the PHEX coding-region and 3'UTR was undertaken, and this revealed the patient to be heterozygous for a novel germline PHEX mutation (c.2158G>T; p.Ala720Ser). In vitro studies involving the expression of WT and mutant PHEX proteins in HEK293 cells demonstrated the Ala720Ser mutation to impair trafficking of PHEX, with ~20% of the mutant protein being expressed at the cell surface, compared to ~80% cell surface expression for WT PHEX (p<0.05). Thus, our studies have identified a pathogenic PHEX mutation in a sporadic case of adult-onset hypophosphatemic osteomalacia, and these findings highlight a role for PHEX gene analysis in some cases of suspected TIO, particularly when no tumor has been identified. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Relationship of driver oncogenes to long term pemetrexed response in non-small cell lung cancer

    PubMed Central

    Liang, Ying; Wakelee, Heather A.; Neal, Joel W.

    2015-01-01

    Background Pemetrexed is approved in the treatment of advanced stage non-squamous non-small-cell lung cancer (NSCLC). The length of response is variable, and we thus sought to identify which clinicopathologic characteristics are associated with long term disease control with pemetrexed. Methods Patients with metastatic NSCLC were identified who received pemetrexed (with or without bevacizumab) for 12 months or longer, either as maintenance treatment after first-line platinum-based chemotherapy or as subsequent treatment. Clinical and pathological characteristics were collected. Results Of a total of 196 patients who received pemetrexed starting in 2007, 25 patients were identified who received pemetrexed for over one year. Of these, 15 patients received pemetrexed with or without bevacizumab as maintenance treatment and 10 patients received pemetrexed as subsequent treatment. Fifteen of the 25 patients (60%) had an oncogenic driver mutation as follows: five (20%) had ROS1 gene rearrangements, four (16%) had ALK gene rearrangements, three (12%) had KRAS mutations, two (8%) had epidermal growth factor receptor (EGFR) mutations, and one (4%) had an NRAS mutation. The median overall survival (OS) was 42.2 months (95% confidence interval [CI]: 37.4–61.3) and median progression free survival (PFS) was 22.1 months (95% CI: 15.1–29.1). Patients with an oncogenic driver mutation had significantly better PFS (p=0.006) and OS (p=0.001). Conclusions Among patients with NSCLC who received pemetrexed for an extended time, those with ALK and ROS1 gene rearrangements are proportionally overrepresented compared with that anticipated in a general non-squamous NSCLC population, and patients with oncogenic driver mutations had improved outcomes. PMID:25665893

  11. Kinase Regulation by Hydrophobic Spine Assembly in Cancer

    PubMed Central

    Ahuja, Lalima G.; Meharena, Hiruy S.; Kannan, Natarajan; Kornev, Alexandr P.

    2014-01-01

    A new model of kinase regulation based on the assembly of hydrophobic spines has been proposed. Changes in their positions can explain the mechanism of kinase activation. Here, we examined mutations in human cancer for clues about the regulation of the hydrophobic spines by focusing initially on mutations to Phe. We identified a selected number of Phe mutations in a small group of kinases that included BRAF, ABL1, and the epidermal growth factor receptor. Testing some of these mutations in BRAF, we found that one of the mutations impaired ATP binding and catalytic activity but promoted noncatalytic allosteric functions. Other Phe mutations functioned to promote constitutive catalytic activity. One of these mutations revealed a previously underappreciated hydrophobic surface that functions to position the dynamic regulatory αC-helix. This supports the key role of the C-helix as a signal integration motif for coordinating multiple elements of the kinase to create an active conformation. The importance of the hydrophobic space around the αC-helix was further tested by studying a V600F mutant, which was constitutively active in the absence of the negative charge that is associated with the common V600E mutation. Many hydrophobic mutations strategically localized along the C-helix can thus drive kinase activation. PMID:25348715

  12. Impact of glucocerebrosidase mutations on motor and nonmotor complications in Parkinson's disease.

    PubMed

    Oeda, Tomoko; Umemura, Atsushi; Mori, Yuko; Tomita, Satoshi; Kohsaka, Masayuki; Park, Kwiyoung; Inoue, Kimiko; Fujimura, Harutoshi; Hasegawa, Hiroshi; Sugiyama, Hiroshi; Sawada, Hideyuki

    2015-12-01

    Homozygous mutations of the glucocerebrosidase gene (GBA) cause Gaucher disease (GD), and heterozygous mutations of GBA are a major risk factor for Parkinson's disease (PD). This study examined the impact of GBA mutations on the longitudinal clinical course of PD patients by retrospective cohort design. GBA-coding regions were fully sequenced in 215 PD patients and GD-associated GBA mutations were identified in 19 (8.8%) PD patients. In a retrospective cohort study, time to develop dementia, psychosis, wearing-off, and dyskinesia were examined. Survival time analysis followed a maximum 12-year observation (median 6.0 years), revealing that PD patients with GD-associated mutations developed dementia and psychosis significantly earlier than those without mutations (p < 0.001 and p = 0.017, respectively). Adjusted hazard ratios of GBA mutations were 8.3 for dementia (p < 0.001) and 3.1 for psychosis (p = 0.002). No statistically significant differences were observed for wearing-off and dyskinesia between the groups. N-isopropyl-p[(123)I] iodoamphetamine single-photon emission tomography pixel-by-pixel analysis revealed that regional cerebral blood flow was reduced in the bilateral parietal cortex, including the precuneus of GD-associated mutant PD patients, compared with matched PD controls without mutations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Risk factors for vascular complications and treatment patterns at diagnosis of 2389 PV and ET patients: Real-world data from the Swedish MPN Registry.

    PubMed

    Abdulkarim, Khadija; Samuelsson, Jan; Johansson, Peter; Andréasson, Björn

    2017-06-01

    The study mainly aimed at investigating possible correlations between peripheral blood counts, erythropoietin (EPO), JAK2 V617F mutation, and vascular complications prior to diagnosis of a population-based cohort of newly diagnosed patients with myeloproliferative neoplasms (MPN). The study comprises 1105 patients with polycythemia vera (PV) and 1284 patients with essential thrombocythemia (ET) registered in the Swedish MPN Registry. Vascular complications, prior to diagnosis, were registered in 37% of PV patients. In multivariate analysis, low hemoglobin was the only significant risk factor (P=.0120). Among ET patients, 35% had encountered a vascular complication. Risk factors for thromboembolic complications in ET were identified as age>65 years, white cell count>12×10 9 /L, and the presence of JAK2 V617F mutation (P=.0004, P=.0038, and P=.0016, respectively). A JAK2 V617F mutation was present in 71% of ET patients with vascular complications, compared to 60% in patients without. A majority of complications were thromboembolic, in both PV and ET. We conclude that vascular complications among newly diagnosed patients had affected more than one-third of our study population. Risk factors for vascular complications prior to diagnosis were lower hemoglobin in PV, and the presence of JAK2 V617F mutation, higher age, and leukocytosis in ET. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Genetic Testing in the Multidisciplinary Management of Melanoma.

    PubMed

    Rashid, Omar M; Zager, Jonathan S

    2015-10-01

    Melanoma is increasing in incidence and represents an aggressive type of cancer. Efforts have focused on identifying genetic factors in melanoma carcinogenesis to guide prevention, screening, early detection, and targeted therapy. This article reviews the hereditary risk factors associated with melanoma and the known molecular pathways and genetic mutations associated with this disease. This article also explores the controversies associated with genetic testing and the latest advances in identifying genetic targets in melanoma, which offer promise for future application in the multidisciplinary management of melanoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Protein Kinase Cδ Deficiency Causes Mendelian Systemic Lupus Erythematosus With B Cell–Defective Apoptosis and Hyperproliferation

    PubMed Central

    Belot, Alexandre; Kasher, Paul R.; Trotter, Eleanor W.; Foray, Anne-Perrine; Debaud, Anne-Laure; Rice, Gillian I.; Szynkiewicz, Marcin; Zabot, Marie-Therese; Rouvet, Isabelle; Bhaskar, Sanjeev S.; Daly, Sarah B.; Dickerson, Jonathan E.; Mayer, Josephine; O’Sullivan, James; Juillard, Laurent; Urquhart, Jill E.; Fawdar, Shameem; Marusiak, Anna A.; Stephenson, Natalie; Waszkowycz, Bohdan; Beresford, Michael W.; Biesecker, Leslie G.; Black, Graeme C. M.; René, Céline; Eliaou, Jean-François; Fabien, Nicole; Ranchin, Bruno; Cochat, Pierre; Gaffney, Patrick M.; Rozenberg, Flore; Lebon, Pierre; Malcus, Christophe; Crow, Yanick J.; Brognard, John; Bonnefoy, Nathalie

    2014-01-01

    Objective Systemic lupus erythematosus (SLE) is a prototype autoimmune disease that is assumed to occur via a complex interplay of environmental and genetic factors. Rare causes of monogenic SLE have been described, providing unique insights into fundamental mechanisms of immune tolerance. The aim of this study was to identify the cause of an autosomal-recessive form of SLE. Methods We studied 3 siblings with juvenile-onset SLE from 1 consanguineous kindred and used next-generation sequencing to identify mutations in the disease-associated gene. We performed extensive biochemical, immunologic, and functional assays to assess the impact of the identified mutations on B cell biology. Results We identified a homozygous missense mutation in PRKCD, encoding protein kinase δ (PKCδ), in all 3 affected siblings. Mutation of PRKCD resulted in reduced expression and activity of the encoded protein PKCδ (involved in the deletion of autoreactive B cells), leading to resistance to B cell receptor– and calcium-dependent apoptosis and increased B cell proliferation. Thus, as for mice deficient in PKCδ, which exhibit an SLE phenotype and B cell expansion, we observed an increased number of immature B cells in the affected family members and a developmental shift toward naive B cells with an immature phenotype. Conclusion Our findings indicate that PKCδ is crucial in regulating B cell tolerance and preventing self-reactivity in humans, and that PKCδ deficiency represents a novel genetic defect of apoptosis leading to SLE. PMID:23666743

  16. Prognostic factors for acute myeloid leukaemia in adults--biological significance and clinical use.

    PubMed

    Liersch, Ruediger; Müller-Tidow, Carsten; Berdel, Wolfgang E; Krug, Utz

    2014-04-01

    Acute myeloid leukaemia (AML) is a heterogeneous disease. Prognosis of AML is influenced both by patient-specific as well as disease-specific factors. Age is the most prominent patient-specific risk factor, while chromosomal aberrations are the strongest disease-specific risk factors. For patients with cytogenetically normal AML, prognosis can be specified by mutational status of the genes NPM1, FLT3 and CEBPA. A growing number of recurrent mutations in additional genes have recently been identified, for which the prognostic effect yet has to be determined. Performance status, geriatric assessment, secondary leukaemia following myelodysplastic syndrome or cytotoxic treatment, common laboratory parameters, leukaemic stem cell frequency, bone marrow microenvironment, gene expression levels, epigenetic changes, micro-RNA's as well as kinetics and depth of response to treatment influence prognosis of AML patients. Despite the high number of established risk factors, only few predictive markers exist which can truly aid therapy decisions in patients with AML. © 2014 John Wiley & Sons Ltd.

  17. Developmental disorders of the hypothalamus and pituitary gland associated with congenital hypopituitarism.

    PubMed

    Mehta, Ameeta; Dattani, Mehul T

    2008-02-01

    The pituitary gland is a complex organ secreting six hormones from five different cell types. It is the end product of a carefully orchestrated pattern of expression of signalling molecules and transcription factors. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of congenital hypopituitarism. These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, SOX2 and SOX3. The expression pattern of these transcription factors dictates the phenotype that results when the gene encoding the relevant transcription factor is mutated. The highly variable phenotype may consist of isolated hypopituitarism or more complex disorders such as septo-optic dysplasia and holoprosencephaly. However, the overall incidence of mutations in known transcription factors in patients with hypopituitarism is low, indicating that many genes remain to be identified; characterization of these will further elucidate the pathogenesis of this complex condition and also shed light on normal pituitary development and function.

  18. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility

    PubMed Central

    Young, Barry P.; Loewen, Christopher J.; Mayor, Thibault

    2016-01-01

    Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations. PMID:27448207

  19. Arrhythmogenic ventricular cardiomyopathy: A paradigm shift from right to biventricular disease

    PubMed Central

    Saguner, Ardan M; Brunckhorst, Corinna; Duru, Firat

    2014-01-01

    Arrhythmogenic ventricular cardiomyopathy (AVC) is generally referred to as arrhythmogenic right ventricular (RV) cardiomyopathy/dysplasia and constitutes an inherited cardiomyopathy. Affected patients may succumb to sudden cardiac death (SCD), ventricular tachyarrhythmias (VTA) and heart failure. Genetic studies have identified causative mutations in genes encoding proteins of the intercalated disk that lead to reduced myocardial electro-mechanical stability. The term arrhythmogenic RV cardiomyopathy is somewhat misleading as biventricular involvement or isolated left ventricular (LV) involvement may be present and thus a broader term such as AVC should be preferred. The diagnosis is established on a point score basis according to the revised 2010 task force criteria utilizing imaging modalities, demonstrating fibrous replacement through biopsy, electrocardiographic abnormalities, ventricular arrhythmias and a positive family history including identification of genetic mutations. Although several risk factors for SCD such as previous cardiac arrest, syncope, documented VTA, severe RV/LV dysfunction and young age at manifestation have been identified, risk stratification still needs improvement, especially in asymptomatic family members. Particularly, the role of genetic testing and environmental factors has to be further elucidated. Therapeutic interventions include restriction from physical exercise, beta-blockers, sotalol, amiodarone, implantable cardioverter-defibrillators and catheter ablation. Life-long follow-up is warranted in symptomatic patients, but also asymptomatic carriers of pathogenic mutations. PMID:24772256

  20. Clinical and genetic aspects of testicular germ cell tumours.

    PubMed

    Lutke Holzik, Martijn F; Sijmons, Rolf H; Hoekstra-Weebers, Josette Ehm; Sleijfer, Dirk T; Hoekstra, Harald J

    2008-02-15

    In this paper we review clinical and genetic aspects of testicular germ cell tumours (TGCTs). TGCT is the most common type of malignant disorder in men aged 1540 years. Its incidence has increased sharply in recent years. Fortunately, survival of patients with TGCT has improved enormously, which can chiefly be attributed to the cisplatin-based polychemotherapy that was introduced in the nineteen eighties to treat patients with metastasized TGCT. In addition, new strategies have been developed in the surgical approach to metastasized/non-metastasized TGCT and alterations have been made to the radiotherapy technique and radiation dose for seminoma. Family history of TGCT is among the strongest risk factors for this tumour type. Although this fact and others suggest the existence of genetic predisposition to develop TGCT, no germline mutations conferring high risk of developing TGCT have been identified so far. A small deletion, referred to as gr/gr, identified on the Y chromosome is probably associated with only a modest increase in TGCT risk, and linkage of familial TGCT to the Xq27 region has not been confirmed yet. Whether highly penetrant TGCT-predisposing mutations truly exist or familial clustering of TGCT can be explained by combinations of weak predispositions, shared in utero or postnatal risks factors and coincidental somatic mutations is an intriguing puzzle, still waiting to be solved.

  1. Direct interaction of Ski with either Smad3 or Smad4 is necessary and sufficient for Ski-mediated repression of transforming growth factor-beta signaling.

    PubMed

    Ueki, Nobuhide; Hayman, Michael J

    2003-08-29

    The oncoprotein Ski represses transforming growth factor (TGF)-beta signaling in an N-CoR-independent manner. However, the molecular mechanism(s) underlying this event has not been elucidated. Here, we identify an additional domain in Ski that mediates interaction with Smad3 which is important for this repression. This domain is distinct from the previously reported N-terminal Smad3 binding domain in Ski. Individual alanine substitution of several residues in the domain significantly affected Ski-Smad3 interaction. Furthermore, combined mutations within this domain, together with those in the previously identified Smad3 binding domain, can completely abolish the interaction of Ski with Smad3, while mutation in each domain alone retained partial interaction. By introducing those mutations that abolish direct interaction with Smad3 or Smad4 individually, or in combination, we show that interaction of Ski with either Smad3 or Smad4 is sufficient for Ski-mediated repression of TGF-beta signaling. Furthermore our results clearly demonstrate that Ski does not disrupt Smad3-Smad4 heteromer formation, and recruitment of Ski to the Smad3/4 complex through binding to either Smad3 or Smad4 is both necessary and sufficient for repression.

  2. Integrative analysis of RUNX1 downstream pathways and target genes

    PubMed Central

    Michaud, Joëlle; Simpson, Ken M; Escher, Robert; Buchet-Poyau, Karine; Beissbarth, Tim; Carmichael, Catherine; Ritchie, Matthew E; Schütz, Frédéric; Cannon, Ping; Liu, Marjorie; Shen, Xiaofeng; Ito, Yoshiaki; Raskind, Wendy H; Horwitz, Marshall S; Osato, Motomi; Turner, David R; Speed, Terence P; Kavallaris, Maria; Smyth, Gordon K; Scott, Hamish S

    2008-01-01

    Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFβ, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications. PMID:18671852

  3. Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain

    PubMed Central

    2012-01-01

    Background The molecular mechanisms altered by the traditional mutation and screening approach during the improvement of antibiotic-producing microorganisms are still poorly understood although this information is essential to design rational strategies for industrial strain improvement. In this study, we applied comparative genomics to identify all genetic changes occurring during the development of an erythromycin overproducer obtained using the traditional mutate-and- screen method. Results Compared with the parental Saccharopolyspora erythraea NRRL 2338, the genome of the overproducing strain presents 117 deletion, 78 insertion and 12 transposition sites, with 71 insertion/deletion sites mapping within coding sequences (CDSs) and generating frame-shift mutations. Single nucleotide variations are present in 144 CDSs. Overall, the genomic variations affect 227 proteins of the overproducing strain and a considerable number of mutations alter genes of key enzymes in the central carbon and nitrogen metabolism and in the biosynthesis of secondary metabolites, resulting in the redirection of common precursors toward erythromycin biosynthesis. Interestingly, several mutations inactivate genes coding for proteins that play fundamental roles in basic transcription and translation machineries including the transcription anti-termination factor NusB and the transcription elongation factor Efp. These mutations, along with those affecting genes coding for pleiotropic or pathway-specific regulators, affect global expression profile as demonstrated by a comparative analysis of the parental and overproducer expression profiles. Genomic data, finally, suggest that the mutate-and-screen process might have been accelerated by mutations in DNA repair genes. Conclusions This study helps to clarify the mechanisms underlying antibiotic overproduction providing valuable information about new possible molecular targets for rationale strain improvement. PMID:22401291

  4. ESR1 Mutations Affect Anti-proliferative Responses to Tamoxifen through Enhanced Cross-Talk with IGF Signaling

    PubMed Central

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Ando’, Sebastiano; Fuqua, Suzanne AW

    2017-01-01

    It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers, however we do not yet know how to best treat these patients. We have modeled the three most frequent hormone binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR we identified mutations at high frequencies ranging from 12% for Y537N, 5% for Y537S, and 2% for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort, and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam. PMID:27178332

  5. Novel GALNT3 mutations causing hyperostosis-hyperphosphatemia syndrome result in low intact fibroblast growth factor 23 concentrations.

    PubMed

    Ichikawa, Shoji; Guigonis, Vincent; Imel, Erik A; Courouble, Mélanie; Heissat, Sophie; Henley, John D; Sorenson, Andrea H; Petit, Barbara; Lienhardt, Anne; Econs, Michael J

    2007-05-01

    Hyperostosis-hyperphosphatemia syndrome (HHS) is a rare metabolic disorder characterized by hyperphosphatemia and localized hyperostosis. HHS is caused by mutations in GALNT3, which encodes UDP-N-acetyl-alpha-D-galactosamine:polypeptide N- acetylgalactosaminyltransferase 3. Familial tumoral calcinosis (TC), characterized by ectopic calcifications and hyperphosphatemia, is caused by mutations in the GALNT3 or fibroblast growth factor 23 (FGF23) genes. Our objective was to identify mutations in FGF23 or GALNT3 and determine serum FGF23 levels in an HHS patient. Mutation detection in FGF23 and GALNT3 was performed by DNA sequencing, and serum FGF23 concentrations were measured by ELISA. A 5-year-old French boy with HHS and his family members participated. The patient presented with painful cortical lesions in his leg. Radiographs of the affected bone showed diaphyseal hyperostosis. The lesional tissue comprised trabeculae of immature, woven bone surrounded by fibrous tissue. Biochemistry revealed elevated phosphate, tubular maximum rate for phosphate reabsorption per deciliter of glomerular filtrate, and 1,25-dihydroxyvitamin D levels. The patient was a compound heterozygote for two novel GALNT3 mutations. His parents and brother were heterozygous for one of the mutations and had no biochemical abnormalities. Intact FGF23 level in the patient was low normal, whereas C-terminal FGF23 was elevated, a pattern similar to TC. The presence of GALNT3 mutations and elevated C-terminal, but low intact serum FGF23, levels in HHS resemble those seen in TC, suggesting that HHS and TC are different manifestations of the same disorder. The absence of biochemical abnormalities in the heterozygous individuals suggests that one normal allele is sufficient for secretion of intact FGF23.

  6. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair

    PubMed Central

    Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam

    2018-01-01

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. PMID:29488881

  7. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma

    DOE PAGES

    Behjati, Sam; Tarpey, Patrick S.; Haase, Kerstin; ...

    2017-06-23

    Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation,more » we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. Lastly, it may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike.« less

  8. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair.

    PubMed

    Hodel, Karl P; de Borja, Richard; Henninger, Erin E; Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam; Pursell, Zachary F

    2018-02-28

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. © 2018, Hodel et al.

  9. A common FGFR3 gene mutation is present in achondroplasia but not in hypochondroplasia.

    PubMed

    Stoilov, I; Kilpatrick, M W; Tsipouras, P

    1995-01-02

    Achondroplasia is the most common type of genetic dwarfism. It is characterized by disproportionate short stature and other skeletal anomalies resulting from a defect in the maturation of the chondrocytes in the growth plate of the cartilage. Recent studies mapped the achondroplasia gene on chromosome region 4p16.3 and identified a common mutation in the gene encoding the fibroblast growth factor receptor 3 (FGFR3). In an analysis of 19 achondroplasia families from a variety of ethnic backgrounds we confirmed the presence of the G380R mutation in 21 of 23 achondroplasia chromosomes studied. In contrast, the G380R mutation was not found in any of the 8 hypochondroplasia chromosomes studied. Furthermore, linkage studies in a 3-generation family with hypochondroplasia show discordant segregation with markers in the 4p16.3 region suggesting that at least some cases of hypochondroplasia are caused by mutations in a gene other than FGFR3.

  10. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behjati, Sam; Tarpey, Patrick S.; Haase, Kerstin

    Osteosarcoma is a primary malignancy of bone that affects children and adults. Here, we present the largest sequencing study of osteosarcoma to date, comprising 112 childhood and adult tumours encompassing all major histological subtypes. A key finding of our study is the identification of mutations in insulin-like growth factor (IGF) signalling genes in 8/112 (7%) of cases. We validate this observation using fluorescence in situ hybridization (FISH) in an additional 87 osteosarcomas, with IGF1 receptor (IGF1R) amplification observed in 14% of tumours. These findings may inform patient selection in future trials of IGF1R inhibitors in osteosarcoma. Analysing patterns of mutation,more » we identify distinct rearrangement profiles including a process characterized by chromothripsis and amplification. This process operates recurrently at discrete genomic regions and generates driver mutations. Lastly, it may represent an age-independent mutational mechanism that contributes to the development of osteosarcoma in children and adults alike.« less

  11. Profiling of Resistance Patterns & Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target Identification

    DTIC Science & Technology

    2010-06-01

    mutation si gnature i s prognostic in EGFR wild-type l ung adenocarcinomas and identifies Metastasis associated in colon cancer 1 (MACC1) as an EGFR...T790M mutation (N=7, blue curve) (AUC: area under the curve). Figure 3. EGFR dependency signature is a favorable prognostic factor. EGFR index...developed. T he si gnature w as shown t o b e prognostic regardless of EGFR status. T he results also suggest MACC1 to be a regulator of MET in NSCLC

  12. Novel intra-genic large deletions of CTNNB1 gene identified in WT desmoid-type fibromatosis.

    PubMed

    Colombo, Chiara; Urbini, Milena; Astolfi, Annalisa; Collini, Paola; Indio, Valentina; Belfiore, Antonino; Paielli, Nicholas; Perrone, Federica; Tarantino, Giuseppe; Palassini, Elena; Fiore, Marco; Pession, Andrea; Stacchiotti, Silvia; Pantaleo, Maria Abbondanza; Gronchi, Alessandro

    2018-06-14

    A wait and see approach for desmoid tumors (DT) has become part of the routine treatment strategy. However, predictive factors to select the risk of progressive disease are still lacking. A translational project was run in order to identify genomic signatures in patients enrolled within an Italian prospective observational study. Among 12 DT patients (ten CTNNB1-mutated and two WT) enrolled from our Institution only two patients (17%) showed a progressive disease. Tumor biopsies were collected for whole exome sequencing. Overall, DT exhibited low somatic sequence mutation rate and no additional recurrent mutation was found. In the two WT cases, two novel alterations were detected: a complex deletion of APC and a pathogenic mutation of LAMTOR2. Focusing on WT DT subtype, deep sequencing of CTNNB1, APC and LAMTOR2 was conducted on a retrospective series of 11 WT DT using a targeted approach. No other mutation of LAMTOR2 was detected, while APC was mutated in two cases. Low-frequency (mean reads of 16%) CTNNB1 mutations were discovered in five samples (45%) and two novel intra-genic deletions in CTNNB1 were detected in two cases. Both deletions and low frequency mutations of CTNNB1 were highly expressed. In conclusion, a minority of DT is WT for either CTNNB1, APC or any other gene involved in the WNT pathway. In this subgroup novel and hard to be detected molecular alterations in APC and CTNNB1 were discovered, contributing to explain a portion of the allegedly WT DT cases. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  13. FOXP2 variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum.

    PubMed

    Reuter, Miriam S; Riess, Angelika; Moog, Ute; Briggs, Tracy A; Chandler, Kate E; Rauch, Anita; Stampfer, Miriam; Steindl, Katharina; Gläser, Dieter; Joset, Pascal; Krumbiegel, Mandy; Rabe, Harald; Schulte-Mattler, Uta; Bauer, Peter; Beck-Wödl, Stefanie; Kohlhase, Jürgen; Reis, André; Zweier, Christiane

    2017-01-01

    Disruptions of the FOXP2 gene, encoding a forkhead transcription factor, are the first known monogenic cause of a speech and language disorder. So far, mainly chromosomal rearrangements such as translocations or larger deletions affecting FOXP2 have been reported. Intragenic deletions or convincingly pathogenic point mutations in FOXP2 have up to date only been reported in three families. We thus aimed at a further characterisation of the mutational and clinical spectrum. Chromosomal microarray testing, trio exome sequencing, multigene panel sequencing and targeted sequencing of FOXP2 were performed in individuals with variable developmental disorders, and speech and language deficits. We identified four different truncating mutations, two novel missense mutations within the forkhead domain and an intragenic deletion in FOXP2 in 14 individuals from eight unrelated families. Mutations occurred de novo in four families and were inherited from an affected parent in the other four. All index patients presented with various manifestations of language and speech impairment. Apart from two individuals with normal onset of speech, age of first words was between 4 and 7 years. Articulation difficulties such as slurred speech, dyspraxia, stuttering and poor pronunciation were frequently noted. Motor development was normal or only mildly delayed. Mild cognitive impairment was reported for most individuals. By identifying intragenic deletions or mutations in 14 individuals from eight unrelated families with variable developmental delay/cognitive impairment and speech and language deficits, we considerably broaden the mutational and clinical spectrum associated with aberrations in FOXP2. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. TMEM106B gene polymorphism is associated with age at onset in granulin mutation carriers and plasma granulin protein levels

    PubMed Central

    Cruchaga, Carlos; Graff, Caroline; Chiang, Huei-Hsin; Wang, Jun; Hinrichs, Anthony L.; Spiegel, Noah; Bertelsen, Sarah; Mayo, Kevin; Norton, Joanne B.; Morris, John C.; Goate, Alison

    2011-01-01

    Objective A recent genome-wide association study for frontotemporal lobar degeneration with TAR DNA-binding protein inclusions (FTLD-TDP), identified rs1990622 (TMEM106B) as a risk factor for FTLD-TDP. In this study we tested whether rs1990622 is associated with age at onset (AAO) in granulin (GRN) mutation carriers and with plasma GRN levels in mutation carriers and healthy elderly individuals. Design Rs1990622 was genotyped in GRN mutation carriers and tested for association with AAO using the Kaplan-Meier and a Cox proportional hazards model. Subjects We analyzed 50 affected and unaffected GRN mutation carriers from four previously reported FTLD-TDP families (HDDD1, FD1, HDDD2 and the Karolinska family). GRN plasma levels were also measured in 73 healthy, elderly individuals. Results The risk allele of rs1990622 is associated with a mean decrease of the age at onset of thirteen years (p=9.9×10−7), with lower plasma granulin levels in both healthy older adults (p = 4×10−4) and GRN mutation carriers (p=0.0027). Analysis of the HAPMAP database identified a non-synonymous single nucleotide polymorphism, rs3173615 (T185S) in perfect linkage disequilibrium with rs1990622. Conclusions The association of rs1990622 with AAO explains, in part, the wide range in the age at onset of disease among GRN mutation carriers. We hypothesize that rs1990622 or another variant in linkage disequilibrium could act in a manner similar to APOE in Alzheimer’s disease, increasing risk for disease in the general population and modifying AAO in mutation carriers. Our results also suggest that genetic variation in TMEM106B may influence risk for FTLD-TDP by modulating secreted levels of GRN. PMID:21220649

  15. BRAF mutation and anaplasia may be predictive factors of progression-free survival in adult pleomorphic xanthoastrocytoma.

    PubMed

    Tabouret, E; Bequet, C; Denicolaï, E; Barrié, M; Nanni, I; Metellus, P; Dufour, Henri; Chinot, O; Figarella-Branger, D

    2015-12-01

    Pleomorphic xanthoastrocytoma (PXA) is a rare, low-grade glioma that frequently occurs in pediatric patients. To analyze adult patients diagnosed with PXA and to search for pathological and molecular markers of diagnosis and prognosis. We retrospectively included patients older than 16 years with PXA who were referred to our institution between October 2003 and September 2013. All pathological diagnoses were reviewed by a neuropathologist. Histological characteristics and immunostaining of GFAP, OLIG2, neurofilament, CD34, Ki67, p53, p16, and IDH1 R132H were analyzed. The following molecular alterations were analyzed: mutations of IDH1/2, BRAF and the histone H3.3 and the EGFR amplification. Clinical data, treatment modalities, and patient outcome were recorded. We identified 16 adult patients with reviewed PXA diagnosis. No IDH neither histone H3.3 mutations were found; BRAF V600E mutation was recorded in six patients. Ten patients presented with anaplastic features. BRAF mutations were associated with lower Ki67, OLIG2 expression, and lack of p16 expression. Median PFS and OS were 41.5 months (95% CI: 11.4-71.6) and 71.4 months (95% CI: 15.5-127.3), respectively. BRAF mutation tended to be associated with greater PFS (p = 0.051), whereas anaplastic features were associated with minimal PFS (p = 0.042). PXA in adults PXA may present features distinct from pediatric PXA. Anaplastic features and BRAF mutation may potentially identify specific subgroups with distinct prognoses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A founder haplotype of APOE-Sendai mutation associated with lipoprotein glomerulopathy.

    PubMed

    Toyota, Kentaro; Hashimoto, Taeko; Ogino, Daisuke; Matsunaga, Akira; Ito, Minoru; Masakane, Ikuto; Degawa, Noriyuki; Sato, Hiroshi; Shirai, Sayuri; Umetsu, Kazuo; Tamiya, Gen; Saito, Takao; Hayasaka, Kiyoshi

    2013-05-01

    Lipoprotein glomerulopathy (LPG) is a hereditary disease characterized by lipoprotein thrombi in the glomerulus, hyperlipoproteinemia, and a marked increase in serum apolipoprotein E (APOE). More than 12 APOE mutations have been identified as causes of LPG, and APOE-Sendai (Arg145Pro) mutation was frequently detected in patients from the eastern part of Japan including Yamagata prefecture. Recently, effective therapy with intensive lipid-lowering agents was established, and epidemiologic data are required for early diagnosis. We determined the haplotype structure of APOE-Sendai in 13 patients from 9 unrelated families with LPG, and found that the haplotype of all APOE-Sendai mutations was identical, suggesting that APOE-Sendai mutation is common in Japanese patients probably through a founder effect. We also studied the gene frequency of APOE-Sendai in 2023 control subjects and 418 patients receiving hemodialysis in Yamagata prefecture using the TaqMan method, but did not identify any subjects carrying the mutation, indicating that it is very rare in the general population even in the eastern part of Japan. In addition to APOE mutation, other genetic and/or epigenetic factors are considered to be involved in the pathogenesis of LPG because of its low penetrance. The patients did not have a common haplotype of the counterpart APOE allele, and some patients had the same haplotype of the counterpart APOE allele as the asymptomatic carriers. These results suggest that the counterpart APOE allele is not likely associated with the onset of LPG. Further study is required to clarify the pathogenesis of LPG.

  17. Glucocerebrosidase Mutations in Parkinson Disease.

    PubMed

    O'Regan, Grace; deSouza, Ruth-Mary; Balestrino, Roberta; Schapira, Anthony H

    2017-01-01

    Following the discovery of a higher than expected incidence of Parkinson Disease (PD) in Gaucher disease, a lysosomal storage disorder, mutations in the glucocerebrocidase (GBA) gene, which encodes a lysosomal enzyme involved in sphingolipid degradation were explored in the context of idiopathic PD. GBA mutations are now known to be the single largest risk factor for development of idiopathic PD. Clinically, on imaging and pharmacologically, GBA PD is almost identical to idiopathic PD, other than certain features that can be identified in the specialist research setting but not in routine clinical practice. In patients with a known GBA mutation, it is possible to monitor for prodromal signs of PD. The clinical similarity with idiopathic PD and the chance to identify PD at a pre-clinical stage provides a unique opportunity to research therapeutic options for early PD, before major irreversible neurodegeneration occurs. However, to date, the molecular mechanisms which lead to this increased PD risk in GBA mutation carriers are not fully elucidated. Experimental models to define the molecular mechanisms and test therapeutic options include cell culture, transgenic mice and other in vivo models amenable to genetic manipulation, such as drosophilia. Some key pathological pathways of interest in the context of GBA mutations include alpha synuclein aggregation, lysosomal-autophagy axis changes and endoplasmic reticulum stress. Therapeutic agents that exploit these pathways are being developed and include the small molecule chaperone Ambroxol. This review aims to summarise the main features of GBA-PD and provide insights into the pathological relevance of GBA mutations on molecular pathways and the therapeutic implications for PD resulting from investigation of the role of GBA in PD.

  18. Calcium diacylglycerol guanine nucleotide exchange factor I (CalDAG-GEFI) gene mutations in a thrombopathic Simmental calf.

    PubMed

    Boudreaux, M K; Schmutz, S M; French, P S

    2007-11-01

    Simmental thrombopathia is an inherited platelet disorder that closely resembles the platelet disorders described in Basset Hounds and Eskimo Spitz dogs. Recently, two different mutations in the gene encoding calcium diacylglycerol guanine nucleotide exchange factor I (CalDAG-GEFI) were described to be associated with the Basset Hound and Spitz thrombopathia disorders, and a third distinct mutation was identified in CalDAG-GEFI in thrombopathic Landseers of European Continental Type. The gene encoding CalDAG-GEFI was sequenced using DNA obtained from normal cattle and from a thrombopathic calf studied in Canada. The affected calf was found to have a nucleotide change (c.701 T>C), which would result in the substitution of a proline for a leucine within structurally conserved region two (SCR2) of the catalytic domain of the protein. This change is likely responsible for the thrombopathic phenotype observed in Simmental cattle and underscores the critical nature of this signal transduction protein in platelets.

  19. Somatic profiling of the epidermal growth factor receptor pathway in tumours from patients with advanced colorectal cancer, treated with chemotherapy ± cetuximab

    PubMed Central

    Smith, Christopher G.; Fisher, David; Claes, Bart; Maughan, Timothy S.; Idziaszczyk, Shelley; Peuteman, Gilian; Harris, Rebecca; James, Michelle D.; Meade, Angela; Jasani, Bharat; Adams, Richard A.; Kenny, Sarah; Kaplan, Richard; Lambrechts, Diether; Cheadle, Jeremy P.

    2013-01-01

    Purpose To study the somatic molecular profile of the epidermal growth factor receptor (EGFR) pathway in advanced CRC (aCRC), its relationship to prognosis, the site of the primary and metastases, and response to cetuximab. Experimental Design We used Sequenom and Pyrosequencing for high-throughput somatic profiling the EGFR pathway in 1,976 tumours from patients with aCRC from the COIN trial (oxaliplatin and fluoropyrimidine chemotherapy ±cetuximab). Correlations between mutations, clinico-pathological, response and survival data were carried out. Results Sequenom and Pyrosequencing had 99.0% (9961/10063) genotype concordance. We identified thirteen different KRAS mutations in 42.3% of aCRCs, two BRAF mutations in 9.0%, four NRAS mutations in 3.6% and five PIK3CA mutations in 12.7%. 4.2% of aCRCs had microsatellite instability (MSI). KRAS and PIK3CA exon 9, but not exon 20, mutations co-occurred (P=8.9×10−4) as did MSI and BRAF mutations (P=5.3×10−10). KRAS mutations were associated with right colon cancers (P=5.2×10−5) and BRAF mutations with right (P=7.2×10−5) and transverse colon (P=9.8×10−6) cancers. KRAS mutations were associated with lung-only metastases (P=2.3×10−4), BRAF mutations with peritoneal (P=9.2×10−4) and nodal-only (P=3.7×10−5) metastases, and MSI (BRAFWT) with nodal-only metastases (P=2.9×10−4). MSI (BRAFWT) was associated with worse survival (HR=1.89, 95% CI 1.30-2.76, P=8.5×10−4). No mutations, subsets of mutations, or MSI-status were associated with response to cetuximab. Conclusions Our data support a functional co-operation between KRAS and PIK3CA in colorectal tumourigenesis and link somatic profiles to the sites of metastases. MSI was associated with poor prognosis in advanced disease, and no individual somatic profile was associated with response to cetuximab in COIN. PMID:23741067

  20. Identification of the cAMP response element that controls transcriptional activation of the insulin-like growth factor-I gene by prostaglandin E2 in osteoblasts

    NASA Technical Reports Server (NTRS)

    Thomas, M. J.; Umayahara, Y.; Shu, H.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1996-01-01

    Insulin-like growth factor-I (IGF-I), a multifunctional growth factor, plays a key role in skeletal growth and can enhance bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other agents that increase cAMP activated IGF-I gene transcription in primary rat osteoblast cultures through promoter 1 (P1), the major IGF-I promoter, and found that transcriptional induction was mediated by protein kinase A. We now have identified a short segment of P1 that is essential for full hormonal regulation and have characterized inducible DNA-protein interactions involving this site. Transient transfections of IGF-I P1 reporter genes into primary rat osteoblasts showed that the 328-base pair untranslated region of exon 1 was required for a full 5.3-fold response to PGE2; mutation in a previously footprinted site, HS3D (base pairs +193 to +215), reduced induction by 65%. PGE2 stimulated nuclear protein binding to HS3D. Binding, as determined by gel mobility shift assay, was not seen in nuclear extracts from untreated osteoblast cultures, was detected within 2 h of PGE2 treatment, and was maximal by 4 h. This DNA-protein interaction was not observed in cytoplasmic extracts from PGE2-treated cultures, indicating nuclear localization of the protein kinase A-activated factor(s). Activation of this factor was not blocked by cycloheximide (Chx), and Chx did not impair stimulation of IGF-I gene expression by PGE2. In contrast, binding to a consensus cAMP response element (CRE; 5'-TGACGTCA-3') from the rat somatostatin gene was not modulated by PGE2 or Chx. Competition gel mobility shift analysis using mutated DNA probes identified 5'-CGCAATCG-3' as the minimal sequence needed for inducible binding. All modified IGF-I P1 promoterreporter genes with mutations within this CRE sequence also showed a diminished functional response to PGE2. These results identify the CRE within the 5'-untranslated region of IGF-I exon 1 that is required for hormonal activation of IGF-I gene transcription by cAMP in osteoblasts.

  1. Gliomatosis cerebri: Prognosis based on current molecular markers.

    PubMed

    Maharaj, Monish M; Phan, Kevin; Xu, Joshua; Fairhall, Jacob; Reddy, Rajesh; Rao, Prashanth J V

    2017-09-01

    This study aims to review the literature and identify key molecular markers affecting the prognosis of Gliomatosis cerebri (2) to evaluate the level of evidence and identify outstanding markers requiring further study. A literature search was conducted across 5 major databases using the key terms: "Molecular markers" AND "Gliomatosis cerebri" OR "diffuse astrocytoma." Critical appraisal and data presentation was performed inline with the PRISMA guidelines. Following search strategy implementation, 11 studies were included in the final review process. Our data demonstrates significant prognostic value associated with IDH1 132H mutation and variable evidence surrounding the role of INA expression, MGMT promoter methylation and other factors. However, there are significant limitations in the level of evidence obtained. As the genetic basis for the pathogenesis of Gliomatosis cerebri continues to widen, there is little data on markers aside from IDH1 mutation available. IDH1 132H mutation has been demonstrated to have significant effect on survival, particularly in patients with Gliomatosis cerebri type 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Genetic contribution to neurodevelopmental outcomes in congenital heart disease: are some patients predetermined to have developmental delay?

    PubMed

    Rollins, Caitlin K; Newburger, Jane W; Roberts, Amy E

    2017-10-01

    Neurodevelopmental impairment is common in children with moderate to severe congenital heart disease (CHD). As children live longer and healthier lives, research has focused on identifying causes of neurodevelopmental morbidity that significantly impact long-term quality of life. This review will address the role of genetic factors in predicting neurodevelopmental outcome in CHD. A robust literature suggests that among children with various forms of CHD, those with known genetic/extracardiac anomalies are at highest risk of neurodevelopmental impairment. Advances in genetic technology have identified genetic causes of CHD in an increasing percentage of patients. Further, emerging data suggest substantial overlap between mutations in children with CHD and those that have previously been associated with neurodevelopmental disorders. Innate and patient factors appear to be more important in predicting neurodevelopmental outcome than medical/surgical variables. Future research is needed to establish a broader understanding of the mutations that contribute to neurodevelopmental disorders and the variations in expressivity and penetrance.

  3. Identification of HNF1A-MODY and HNF4A-MODY in Irish families: phenotypic characteristics and therapeutic implications.

    PubMed

    Kyithar, M P; Bacon, S; Pannu, K K; Rizvi, S R; Colclough, K; Ellard, S; Byrne, M M

    2011-12-01

    The prevalence of hepatocyte nuclear factor (HNF)-1A and HNF4A mutations, and the clinical implications following the genetic diagnosis of maturity-onset diabetes of the young (MODY) in the Irish population, remain unknown. The aim of this study was to establish the occurrence of HNF1A and HNF4A mutations in subjects classified clinically as MODY to identify novel mutations, and to determine the phenotypic features and response to therapy. A total of 36 unrelated index cases with a clinical diagnosis of MODY were analyzed for HNF1A/HNF4A mutations. OGTT was performed to determine the degree of glucose tolerance and insulin secretory response. Also, 38 relatives underwent OGTT and were tested for the relevant known mutations. HNF1A-/HNF4A-MODY subjects were compared with nine HNF1A mutation-negative relatives and 20 type 2 diabetic (T2DM) patients. Seven different HNF1A mutations were identified in 11/36 (30.5%) index cases, two of which were novel (S352fsdelG and F426X), as well as two novel HNF4A mutations (M1? and R290C; 6%). Family screening revealed 20 subjects with HNF1A and seven with HNF4A mutations. Only 51.6% of HNF1A mutation carriers were diagnosed with diabetes by age 25 years; 11 of the mutation carriers were overweight and four were obese. Insulin secretory response to glucose was significantly lower in HNF1A-MODY subjects than in T2DM patients and HNF1A mutation-negative relatives (P=0.01). Therapeutic changes occurred in 48% of mutation carriers following genetic diagnosis. There was an HNF1A-MODY pick-up rate of 30.5% and an HNF4A-MODY pick-up rate of 6% in Irish MODY families. Genetically confirmed MODY has significant therapeutic implications. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. [Genetic aspects of pancreatic cancer].

    PubMed

    Grigor'eva, I N; Efimova, O V; Suvorova, T S; Tov, N L

    2014-01-01

    The purpose of the review--to analyze the basic data on modifiable and genetic risk factors of pancreatic cancer (PC). PC is the most fatal disease that kills about 95% of patients. Among the known risk factors for PC only for smoking, obesity, and family history a positive association with the PC risk in meta-analyzes confirmed. The PC etiology remains unclear, more than 90% of patients acquire it sporadically. Currently, the most significant genes for PC include KRAS2, p16/CDKN2, TP53, SMAD4/DPC4. Mutations in the KRAS noted in 90% of cases of pancreatic ducts adenocarcinoma. p16/CDKN2A mutation is accompanied by a 38-fold increased risk of PC compared with the general population. TP53 mutations are associated not only with carcinogenesis but also PC metastasis, as well as SMAD4/DPC4 mutations. Study of the role of genetic aspects in the PC development is necessary both to identify individuals with high PC risk, as well as for the development of gene-specific treatments, such as inhibitors of proteins, histone deacetylase, and histone acetyltransferase (vorinostat, belinostat, entinostat, panobinostat, curcumin) are in clinical trials.

  5. Genetic causes of isolated and combined pituitary hormone deficiency.

    PubMed

    Giordano, Mara

    2016-12-01

    Research over the last 20 years has led to the elucidation of the genetic aetiologies of Isolated Growth Hormone Deficiency (IGHD) and Combined Pituitary Hormone Deficiency (CPHD). The pituitary plays a central role in growth regulation, coordinating the multitude of central and peripheral signals to maintain the body's internal balance. Naturally occurring mutation in humans and in mice have demonstrated a role for several factors in the aetiology of IGHD/CPHD. Mutations in the GH1 and GHRHR genes shed light on the phenotype and pathogenesis of IGHD whereas mutations in transcription factors such as HESX1, PROP1, POU1F1, LHX3, LHX4, GLI2 and SOX3 contributed to the understanding of CPHD. Depending upon the expression patterns of these molecules, the phenotype may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Although numerous monogenic causes of growth disorders have been identified, most of the patients with IGHD/CPHD remain with an explained aetiology as shown by the relatively low mutation detection rate. The introduction of novel diagnostic approaches is now leading to the disclosure of novel genetic causes in disorders characterized by pituitary hormone defects. Copyright © 2016. Published by Elsevier Ltd.

  6. Distinct molecular profile of diffuse cerebellar gliomas.

    PubMed

    Nomura, Masashi; Mukasa, Akitake; Nagae, Genta; Yamamoto, Shogo; Tatsuno, Kenji; Ueda, Hiroki; Fukuda, Shiro; Umeda, Takayoshi; Suzuki, Tomonari; Otani, Ryohei; Kobayashi, Keiichi; Maruyama, Takashi; Tanaka, Shota; Takayanagi, Shunsaku; Nejo, Takahide; Takahashi, Satoshi; Ichimura, Koichi; Nakamura, Taishi; Muragaki, Yoshihiro; Narita, Yoshitaka; Nagane, Motoo; Ueki, Keisuke; Nishikawa, Ryo; Shibahara, Junji; Aburatani, Hiroyuki; Saito, Nobuhito

    2017-12-01

    Recent studies have demonstrated that tumor-driving alterations are often different among gliomas that originated from different brain regions and have underscored the importance of analyzing molecular characteristics of gliomas stratified by brain region. Therefore, to elucidate molecular characteristics of diffuse cerebellar gliomas (DCGs), 27 adult, mostly glioblastoma cases were analyzed. Comprehensive analysis using whole-exome sequencing, RNA sequencing, and Infinium methylation array (n = 17) demonstrated their distinct molecular profile compared to gliomas in other brain regions. Frequent mutations in chromatin-modifier genes were identified including, noticeably, a truncating mutation in SETD2 (n = 4), which resulted in loss of H3K36 trimethylation and was mutually exclusive with H3F3A K27M mutation (n = 3), suggesting that epigenetic dysregulation may lead to DCG tumorigenesis. Alterations that cause loss of p53 function including TP53 mutation (n = 9), PPM1D mutation (n = 2), and a novel type of PPM1D fusion (n = 1), were also frequent. On the other hand, mutations and copy number changes commonly observed in cerebral gliomas were infrequent. DNA methylation profile analysis demonstrated that all DCGs except for those with H3F3A mutations were categorized in the "RTK I (PDGFRA)" group, and those DCGs had a gene expression signature that was highly associated with PDGFRA. Furthermore, compared with the data of 315 gliomas derived from different brain regions, promoter methylation of transcription factors genes associated with glial development showed a characteristic pattern presumably reflecting their tumor origin. Notably, SOX10, a key transcription factor associated with oligodendroglial differentiation and PDGFRA regulation, was up-regulated in both DCG and H3 K27M-mutant diffuse midline glioma, suggesting their developmental and biological commonality. In contrast, SOX10 was silenced by promoter methylation in most cerebral gliomas. These findings may suggest potential tailored targeted therapy for gliomas according to their brain region, in addition to providing molecular clues to identify the region-related cellular origin of DCGs.

  7. Modulation of Global Transcriptional Regulatory Networks as a Strategy for Increasing Kanamycin Resistance of the Translational Elongation Factor-G Mutants in Escherichia coli

    PubMed Central

    Mogre, Aalap; Veetil, Reshma T.; Seshasayee, Aswin Sai Narain

    2017-01-01

    Evolve and resequence experiments have provided us a tool to understand bacterial adaptation to antibiotics. In our previous work, we used short-term evolution to isolate mutants resistant to the ribosome targeting antibiotic kanamycin, and reported that Escherichia coli develops low cost resistance to kanamycin via different point mutations in the translation Elongation Factor-G (EF-G). Furthermore, we had shown that the resistance of EF-G mutants could be increased by second site mutations in the genes rpoD/cpxA/topA/cyaA. Mutations in three of these genes had been discovered in earlier screens for aminoglycoside resistance. In this work, we expand our understanding of these second site mutations, the goal being to understand how these mutations affect the activities of the mutated gene products to confer resistance. We show that the mutation in cpxA most likely results in an active Cpx stress response. Further evolution of an EF-G mutant in a higher concentration of kanamycin than what was used in our previous experiments identified the cpxA locus as a primary target for a significant increase in resistance. The mutation in cyaA results in a loss of catalytic activity and probably results in resistance via altered CRP function. Despite a reduction in cAMP levels, the CyaAN600Y mutant has a transcriptome indicative of increased CRP activity, pointing to an unknown role for CyaA and / or cAMP in gene expression. From the transcriptomes of double and single mutants, we describe the epistasis between the mutation in EF-G and these second site mutations. We show that the large scale transcriptomic changes in the topoisomerase I (FusAA608E-TopAS180L) mutant likely result from increased negative supercoiling in the cell. Finally, genes with known roles in aminoglycoside resistance were present among the misregulated genes in the mutants. PMID:29046437

  8. Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease.

    PubMed

    De Roeck, Arne; Van den Bossche, Tobi; van der Zee, Julie; Verheijen, Jan; De Coster, Wouter; Van Dongen, Jasper; Dillen, Lubina; Baradaran-Heravi, Yalda; Heeman, Bavo; Sanchez-Valle, Raquel; Lladó, Albert; Nacmias, Benedetta; Sorbi, Sandro; Gelpi, Ellen; Grau-Rivera, Oriol; Gómez-Tortosa, Estrella; Pastor, Pau; Ortega-Cubero, Sara; Pastor, Maria A; Graff, Caroline; Thonberg, Håkan; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; de Mendonça, Alexandre; Martins, Madalena; Borroni, Barbara; Padovani, Alessandro; Almeida, Maria Rosário; Santana, Isabel; Diehl-Schmid, Janine; Alexopoulos, Panagiotis; Clarimon, Jordi; Lleó, Alberto; Fortea, Juan; Tsolaki, Magda; Koutroumani, Maria; Matěj, Radoslav; Rohan, Zdenek; De Deyn, Peter; Engelborghs, Sebastiaan; Cras, Patrick; Van Broeckhoven, Christine; Sleegers, Kristel

    2017-09-01

    Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer's disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)-control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5-41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.

  9. Multifocal fibrosing thyroiditis and its association with papillary thyroid carcinoma using BRAF pyrosequencing.

    PubMed

    Frank, Renee; Baloch, Zubair W; Gentile, Caren; Watt, Christopher D; LiVolsi, Virginia A

    2014-09-01

    Multifocal fibrosing thyroiditis (MFT) is characterized by numerous foci of fibrosis in a stellate configuration with fibroelastotic and fibroblastic centers entrapping epithelial structures. MFT has been proposed as a risk factor for papillary thyroid carcinoma (PTC) development. We attempted to identify whether MFT showed such molecular changes and could possibly be related to PTC. We identified seven cases of PTC with MFT in our institutional pathology database and personal consult service of one of the authors (VAL) for the years 1999 to 2012. Areas of PTC, MFT, and normal tissue were selected for BRAF analysis. Macro-dissection, DNA extraction and PCR amplification, and pyrosequencing were performed to detect BRAF mutations in codon 600. All of the MFT lesions and normal thyroid tissue were negative for BRAF mutations. Of the seven PTCs analyzed, five (71 %) were negative for BRAF mutations, while two cases were positive. In our study, none of the MFT lesions harbored BRAF mutations, whereas 29 % (two of seven) PTCs in the same gland were positive. Hence, in this small study, we found no evidence that the MFT lesion is a direct precursor to PTC. It is likely an incidental bystander in the process and a reflection of the background thyroiditis.

  10. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms.

    PubMed

    Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B

    2013-11-05

    We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.

  11. Characterization of depression in prodromal Huntington disease in the neurobiological predictors of HD (PREDICT-HD) study.

    PubMed

    Epping, Eric A; Mills, James A; Beglinger, Leigh J; Fiedorowicz, Jess G; Craufurd, David; Smith, Megan M; Groves, Mark; Bijanki, Kelly R; Downing, Nancy; Williams, Janet K; Long, Jeffrey D; Paulsen, Jane S

    2013-10-01

    Depression causes significant morbidity and mortality, and this also occurs in Huntington Disease (HD), an inherited neurodegenerative illness with motor, cognitive, and psychiatric symptoms. The presentation of depression in this population remains poorly understood, particularly in the prodromal period before development of significant motor symptoms. In this study, we assessed depressive symptoms in a sample of 803 individuals with the HD mutation in the prodromal stage and 223 mutation-negative participants at the time of entry in the Neurobiological Predictors of HD (PREDICT-HD) study. Clinical and biological HD variables potentially related to severity of depression were analyzed. A factor analysis was conducted to characterize the symptom domains of depression in a subset (n=168) with clinically significant depressive symptoms. Depressive symptoms were found to be more prevalent in HD mutation carriers but did not increase with proximity to HD diagnosis and were not associated with length of the HD mutation. Increased depressive symptoms were significantly associated with female gender, self-report of past history of depression, and a slight decrease in functioning, but not with time since genetic testing. The factor analysis identified symptom domains similar to prior studies in other populations. These results show that individuals with the HD mutation are at increased risk to develop depressive symptoms at any time during the HD prodrome. The clinical presentation appears to be similar to other populations. Severity and progression are not related to the HD mutation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Somatic mutations affect key pathways in lung adenocarcinoma

    PubMed Central

    Ding, Li; Getz, Gad; Wheeler, David A.; Mardis, Elaine R.; McLellan, Michael D.; Cibulskis, Kristian; Sougnez, Carrie; Greulich, Heidi; Muzny, Donna M.; Morgan, Margaret B.; Fulton, Lucinda; Fulton, Robert S.; Zhang, Qunyuan; Wendl, Michael C.; Lawrence, Michael S.; Larson, David E.; Chen, Ken; Dooling, David J.; Sabo, Aniko; Hawes, Alicia C.; Shen, Hua; Jhangiani, Shalini N.; Lewis, Lora R.; Hall, Otis; Zhu, Yiming; Mathew, Tittu; Ren, Yanru; Yao, Jiqiang; Scherer, Steven E.; Clerc, Kerstin; Metcalf, Ginger A.; Ng, Brian; Milosavljevic, Aleksandar; Gonzalez-Garay, Manuel L.; Osborne, John R.; Meyer, Rick; Shi, Xiaoqi; Tang, Yuzhu; Koboldt, Daniel C.; Lin, Ling; Abbott, Rachel; Miner, Tracie L.; Pohl, Craig; Fewell, Ginger; Haipek, Carrie; Schmidt, Heather; Dunford-Shore, Brian H.; Kraja, Aldi; Crosby, Seth D.; Sawyer, Christopher S.; Vickery, Tammi; Sander, Sacha; Robinson, Jody; Winckler, Wendy; Baldwin, Jennifer; Chirieac, Lucian R.; Dutt, Amit; Fennell, Tim; Hanna, Megan; Johnson, Bruce E.; Onofrio, Robert C.; Thomas, Roman K.; Tonon, Giovanni; Weir, Barbara A.; Zhao, Xiaojun; Ziaugra, Liuda; Zody, Michael C.; Giordano, Thomas; Orringer, Mark B.; Roth, Jack A.; Spitz, Margaret R.; Wistuba, Ignacio I.; Ozenberger, Bradley; Good, Peter J.; Chang, Andrew C.; Beer, David G.; Watson, Mark A.; Ladanyi, Marc; Broderick, Stephen; Yoshizawa, Akihiko; Travis, William D.; Pao, William; Province, Michael A.; Weinstock, George M.; Varmus, Harold E.; Gabriel, Stacey B.; Lander, Eric S.; Gibbs, Richard A.; Meyerson, Matthew; Wilson, Richard K.

    2009-01-01

    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment. PMID:18948947

  13. [Genetic hypophosphatemia: recent advances in physiopathogenic concept].

    PubMed

    Beraud, G; Perimenis, P; Velayoudom, Fr-L; Wemeau, J-L; Vantyghem, M-Chr

    2005-04-01

    Renal proximal tubular reabsorption of phosphate and intestinal absorption both regulate phosphate homeostasis. Brush-border membrane Npt2a cotransporter is the key element in proximal tubular P (i) reabsorption. Inactivating mutations of Npt2a cause bone demineralisation and urolithiasis. An excess of a phosphaturic factor, called "Phosphatonin", could modulate phosphate reabsorption by inhibition on Npt2a. Inactivating mutation of PHEX, an endopeptidase-membrane coding gene, is responsible for X-linked Hypophosphatemia (XLH), because of an impaired degradation of phosphatonine by PHEX product. Autosomic Dominant Hypophosphatemic Rickets (ADHR) is explained by a mutation preventing FGF23 (one of the best identified phosphatonines) from cleavage. According recent data, FGF23, MEPE (Matrix Extracellular Phosphoglycoprotein) et FRP4 (frizzled related protein-4) are 3 putative "phosphatonines".

  14. Mitochondrial C4375T mutation might be a molecular risk factor in a maternal Chinese hypertensive family under haplotype C.

    PubMed

    Chen, Hong; Sun, Min; Fan, Zhen; Tong, Maoqing; Chen, Guodong; Li, Danhui; Ye, Jihui; Yang, Yumin; Zhu, Yongding; Zhu, Jianhua

    2017-12-04

    Here, we reported a Han Chinese essential hypertensive pedigree based on clinical hereditary and molecular data. To know the molecular basis on this family, mitochondrial genome of one proband from the family was identified through direct sequencing analysis. The age of onset year and affected degree of patients are different in this family. And matrilineal family members carrying C4375T mutation and belong to Eastern Asian halopgroup C. Phylogenetic analysis shows 4375C is highly conservative in 17 species. It is suggested that these mutations might participate in the development of hypertension in this family. And halopgroup C might play a modifying role on the phenotype in this Chinese hypertensive family.

  15. Current perspectives on CHEK2 mutations in breast cancer

    PubMed Central

    Apostolou, Panagiotis; Papasotiriou, Ioannis

    2017-01-01

    Checkpoint kinase 2 (CHEK2) is a serine/threonine kinase which is activated upon DNA damage and is implicated in pathways that govern DNA repair, cell cycle arrest or apoptosis in response to the initial damage. Loss of kinase function has been correlated with different types of cancer, mainly breast cancer. CHEK2 functionality is affected by different missense or deleterious mutations. CHEK2*1100delC and I157T are most studied in populations all over the world. Although these variants have been identified in patients with breast cancer, their frequency raises doubts about their importance as risk factors. The present article reviews the recent advances in research on CHEK2 mutations, focusing on breast cancer, based on the latest experimental data. PMID:28553140

  16. Current perspectives on CHEK2 mutations in breast cancer.

    PubMed

    Apostolou, Panagiotis; Papasotiriou, Ioannis

    2017-01-01

    Checkpoint kinase 2 (CHEK2) is a serine/threonine kinase which is activated upon DNA damage and is implicated in pathways that govern DNA repair, cell cycle arrest or apoptosis in response to the initial damage. Loss of kinase function has been correlated with different types of cancer, mainly breast cancer. CHEK2 functionality is affected by different missense or deleterious mutations. CHEK2*1100delC and I157T are most studied in populations all over the world. Although these variants have been identified in patients with breast cancer, their frequency raises doubts about their importance as risk factors. The present article reviews the recent advances in research on CHEK2 mutations, focusing on breast cancer, based on the latest experimental data.

  17. Homozygous single base deletion in TUSC3 causes intellectual disability with developmental delay in an Omani family.

    PubMed

    Al-Amri, Ahmed; Saegh, Abeer Al; Al-Mamari, Watfa; El-Asrag, Mohammed E; Ivorra, Jose L; Cardno, Alastair G; Inglehearn, Chris F; Clapcote, Steven J; Ali, Manir

    2016-07-01

    Intellectual disability (ID) is the term used to describe a diverse group of neurological conditions with congenital or juvenile onset, characterized by an IQ score of less than 70 and difficulties associated with limitations in cognitive function and adaptive behavior. The condition can be inherited or caused by environmental factors. The genetic forms are heterogeneous, with mutations in over 500 known genes shown to cause the disorder. We report a consanguineous Omani family in which multiple individuals have ID and developmental delay together with some variably present features including short stature, microcephaly, moderate facial dysmorphism, and congenital malformations of the toes or hands. Homozygosity mapping combined with whole exome next generation sequencing identified a novel homozygous single base pair deletion in TUSC3, c.222delA, p.R74 fs. The mutation segregates with the disease phenotype in a recessive manner and is absent in 60,706 unrelated individuals from various disease-specific and population genetic studies. TUSC3 mutations have been previously identified as causing either syndromic or non-syndromic ID in patients from France, Italy, Iran and Pakistan. This paper supports the previous clinical descriptions of the condition caused by TUSC3 mutations and describes the seventh family with mutations in this gene, thus contributing to the genetic spectrum of mutations. This is the first report of a family from the Arabian peninsula with this form of ID. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Identification of a novel splicing mutation within SLC17A8 in a Korean family with hearing loss by whole-exome sequencing.

    PubMed

    Ryu, Nari; Lee, Seokwon; Park, Hong-Joon; Lee, Byeonghyeon; Kwon, Tae-Jun; Bok, Jinwoong; Park, Chan Ik; Lee, Kyu-Yup; Baek, Jeong-In; Kim, Un-Kyung

    2017-09-05

    Hereditary hearing loss (HHL) is a common genetically heterogeneous disorder, which follows Mendelian inheritance in humans. Because of this heterogeneity, the identification of the causative gene of HHL by linkage analysis or Sanger sequencing have shown economic and temporal limitations. With recent advances in next-generation sequencing (NGS) techniques, rapid identification of a causative gene via massively parallel sequencing is now possible. We recruited a Korean family with three generations exhibiting autosomal dominant inheritance of hearing loss (HL), and the clinical information about this family revealed that there are no other symptoms accompanied with HL. To identify a causative mutation of HL in this family, we performed whole-exome sequencing of 4 family members, 3 affected and an unaffected. As the result, A novel splicing mutation, c.763+1G>T, in the solute carrier family 17, member 8 (SLC17A8) gene was identified in the patients, and the genotypes of the mutation were co-segregated with the phenotype of HL. Additionally, this mutation was not detected in 100 Koreans with normal hearing. Via NGS, we detected a novel splicing mutation that might influence the hearing ability within the patients with autosomal dominant non-syndromic HL. Our data suggests that this technique is a powerful tool to discover causative genetic factors of HL and facilitate diagnoses of the primary cause of HHL. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A PLK4 mutation causing azoospermia in a man with Sertoli cell-only syndrome.

    PubMed

    Miyamoto, T; Bando, Y; Koh, E; Tsujimura, A; Miyagawa, Y; Iijima, M; Namiki, M; Shiina, M; Ogata, K; Matsumoto, N; Sengoku, K

    2016-01-01

    About 15% of couples wishing to have children are infertile; approximately half these cases involve a male factor. Polo-like kinase 4 (PLK-4) is a member of the polo protein family and a key regulator of centriole duplication. Male mice with a point mutation in the Plk4 gene show azoospermia associated with germ cell loss. Mutational analysis of 81 patients with azoospermia and Sertoli cell-only syndrome (SCOS) identified one man with a heterozygous 13-bp deletion in the Ser/Thr kinase domain of PLK4. Division of centrioles occurred in wild-type PLK4-transfected cells, but was hampered in PLK-4-mutant transfectants, which also showed abnormal nuclei. Thus, this PLK4 mutation might be a cause of human SCOS and nonobstructive azoospermia. © 2015 American Society of Andrology and European Academy of Andrology.

  20. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates

    PubMed Central

    Straimer, Judith; Gnädig, Nina F.; Witkowski, Benoit; Amaratunga, Chanaki; Duru, Valentine; Ramadani, Arba Pramundita; Dacheux, Mélanie; Khim, Nimol; Zhang, Lei; Lam, Stephen; Gregory, Philip D.; Urnov, Fyodor D.; Mercereau-Puijalon, Odile; Benoit-Vical, Françoise; Fairhurst, Rick M.; Ménard, Didier; Fidock, David A.

    2015-01-01

    The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites. PMID:25502314

  1. Genetic structure of farmer-managed varieties in clonally-propagated crops.

    PubMed

    Scarcelli, N; Tostain, S; Vigouroux, Y; Luong, V; Baco, M N; Agbangla, C; Daïnou, O; Pham, J L

    2011-08-01

    The relative role of sexual reproduction and mutation in shaping the diversity of clonally propagated crops is largely unknown. We analyzed the genetic diversity of yam-a vegetatively-propagated crop-to gain insight into how these two factors shape its diversity in relation with farmers' classifications. Using 15 microsatellite loci, we analyzed 485 samples of 10 different yam varieties. We identified 33 different genotypes organized in lineages supported by high bootstrap values. We computed the probability that these genotypes appeared by sexual reproduction or mutation within and between each lineage. This allowed us to interpret each lineage as a product of sexual reproduction that has evolved by mutation. Moreover, we clearly noted a similarity between the genetic structure and farmers' classifications. Each variety could thus be interpreted as being the product of sexual reproduction having evolved by mutation. This highly structured diversity of farmer-managed varieties has consequences for the preservation of yam diversity.

  2. Unravelling signal escape through maintained EGFR activation in advanced non-small cell lung cancer (NSCLC): new treatment options

    PubMed Central

    Remon, Jordi; Besse, Benjamin

    2016-01-01

    The discovery of activating epidermal growth factor receptor (EGFR) mutations has opened up a new era in the development of more effective treatments for patients with non-small cell lung cancer (NSCLC). However, patients with EGFR-activating mutated NSCLC treated with EGFR tyrosine kinase inhibitors (TKIs) ultimately develop acquired resistance (AR). Among known cases of patients with AR, 70% of the mechanisms involved in the development of AR to EGFR TKI have been identified and may be categorised as either secondary EGFR mutations such as the T790M mutation, activation of bypass track signalling pathways such as MET amplification, or histologic transformation. EGFR-mutant NSCLC tumours maintain oncogenic addiction to the EGFR pathway beyond progression with EGFR TKI. Clinical strategies that can be implemented in daily clinical practice to potentially overcome this resistance and prolong the outcome in this subgroup of patients are presented. PMID:27843631

  3. Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts

    PubMed Central

    Li, S; Li, L; Zhu, Y; Huang, C; Qin, Y; Liu, H; Ren-Heidenreich, L; Shi, B; Ren, H; Chu, X; Kang, J; Wang, W; Xu, J; Tang, K; Yang, H; Zheng, Y; He, J; Yu, G; Liang, N

    2014-01-01

    Background: Determining the somatic mutations of epidermal growth factor receptor (EGFR)-pathway networks is the key to effective treatment for non-small cell lung cancer (NSCLC) with tyrosine kinase inhibitors (TKIs).The somatic mutation frequencies and their association with gender, smoking history and histology was analysed and reported in this study. Methods: Five thousand one hundred and twenty-five NSCLC patients' pathology samples were collected, and EGFR, KRAS, BRAF and PIK3CA mutations were detected by multiplex testing. The mutation status of EGFR, KRAS, BRAF and PIK3CA and their association with gender, age, smoking history and histological type were evaluated by appropriate statistical analysis. Results: EGFR, KRAS, BRAF and PIK3CA mutation rates revealed 36.2%, 8.4%, 0.5% and 3.3%, respectively, across the 5125 pathology samples. For the first time, evidence of KRAS mutations were detected in two female, non-smoking patients, age 5 and 14, with NSCLC. Furthermore, we identified 153 double and coexisting mutations and 7 triple mutations. Interestingly, the second drug-resistant mutations, T790M or E545K, were found in 44 samples from patients who had never received TKI treatments. Conclusions: EGFR exons 19, 20 and 21, and BRAF mutations tend to happen in females and non-smokers, whereas KRAS mutations were more inclined to males and smokers. Activating and resistant mutations to EGFR-TKI drugs can coexist and ‘second drug-resistant mutations', T790M or E545K, may be primary mutations in some patients. These results will help oncologists to decide candidates for mutation testing and EGFR-TKI treatment. PMID:24743704

  4. Association Between Radiation Necrosis and Tumor Biology After Stereotactic Radiosurgery for Brain Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Jacob A.; Bennett, Elizabeth E.; Xiao, Roy

    Background: The primary dose-limiting toxicity of stereotactic radiosurgery (SRS) is radiation necrosis (RN), which occurs after approximately 5% to 10% of treatments. This adverse event may worsen neurologic deficits, increase the frequency and cost of imaging, and necessitate prolonged treatment with steroids or antiangiogenic agents. Previous investigations have primarily identified lesion size and dosimetric constraints as risk factors for RN in small populations. We hypothesized that disease histology, receptor status, and mutational status are associated with RN. Methods and Materials: All patients presenting with brain metastasis between 1997 and 2015 who underwent SRS and subsequent radiographic follow-up at a singlemore » tertiary-care institution were eligible for inclusion. The primary outcome was the cumulative incidence of radiographic RN. Multivariate competing risks regression was used to identify biological risk factors for RN. Results: 1939 patients (5747 lesions) were eligible for inclusion; 285 patients (15%) experienced radiographic RN after the treatment of 427 (7%) lesions. After SRS, the median time to RN was 7.6 months. After multivariate analysis, graded prognostic assessment, renal pathology, lesion diameter, and the heterogeneity index remained independently predictive of RN in the pooled cohort. In subset analyses of individual pathologies, HER2-amplified status (hazard ratio [HR] 2.05, P=.02), BRAF V600+ mutational status (HR 0.33, P=.04), lung adenocarcinoma histology (HR 1.89, P=.04), and ALK rearrangement (HR 6.36, P<.01) were also associated with RN. Conclusions: In the present investigation constituting the largest series of RN, several novel risk factors were identified, including renal histology, lung adenocarcinoma histology, HER2 amplification, and ALK/BRAF mutational status. These risk factors may be used to guide clinical trial design incorporating biological risk stratification or dose escalation. Future studies determining the optimal timing of targeted therapies are warranted to further define the risk of RN.« less

  5. Whole-Exome Sequencing in Two Extreme Phenotypes of Response to VEGF-Targeted Therapies in Patients With Metastatic Clear Cell Renal Cell Carcinoma.

    PubMed

    Fay, Andre P; de Velasco, Guillermo; Ho, Thai H; Van Allen, Eliezer M; Murray, Bradley; Albiges, Laurence; Signoretti, Sabina; Hakimi, A Ari; Stanton, Melissa L; Bellmunt, Joaquim; McDermott, David F; Atkins, Michael B; Garraway, Levi A; Kwiatkowski, David J; Choueiri, Toni K

    2016-07-01

    Advances in next-generation sequencing have provided a unique opportunity to understand the biology of disease and mechanisms of sensitivity or resistance to specific agents. Renal cell carcinoma (RCC) is a heterogeneous disease and highly variable clinical responses have been observed with vascular endothelial growth factor (VEGF)-targeted therapy (VEGF-TT). We hypothesized that whole-exome sequencing analysis might identify genotypes associated with extreme response or resistance to VEGF-TT in metastatic (mRCC). Patients with mRCC who had received first-line sunitinib or pazopanib and were in 2 extreme phenotypes of response were identified. Extreme responders (ERs) were defined as those with partial response or complete response for 3 or more years (n=13) and primary refractory patients (PRPs) were defined as those with progressive disease within the first 3 months of therapy (n=14). International Metastatic RCC Database Consortium prognostic scores were not significantly different between the groups (P=.67). Considering the genes known to be mutated in RCC at significant frequency, PBRM1 mutations were identified in 7 ERs (54%) versus 1 PRP (7%) (P=.01). In addition, mutations in TP53 (n=4) were found only in PRPs (P=.09). Our data suggest that mutations in some genes in RCC may impact response to VEGF-TT. Copyright © 2016 by the National Comprehensive Cancer Network.

  6. Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae.

    PubMed

    Jin, Feng-Jie; Katayama, Takuya; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-11-01

    Genomic mapping of mutations using next-generation sequencing technologies has facilitated the identification of genes contributing to fundamental biological processes, including human diseases. However, few studies have used this approach to identify mutations contributing to heterologous protein production in industrial strains of filamentous fungi, such as Aspergillus oryzae. In a screening of A. oryzae strains that hyper-produce human lysozyme (HLY), we previously isolated an AUT1 mutant that showed higher production of various heterologous proteins; however, the underlying factors contributing to the increased heterologous protein production remained unclear. Here, using a comparative genomic approach performed with whole-genome sequences, we attempted to identify the genes responsible for the high-level production of heterologous proteins in the AUT1 mutant. The comparative sequence analysis led to the detection of a gene (AO090120000003), designated autA, which was predicted to encode an unknown cytoplasmic protein containing an alpha/beta-hydrolase fold domain. Mutation or deletion of autA was associated with higher production levels of HLY. Specifically, the HLY yields of the autA mutant and deletion strains were twofold higher than that of the control strain during the early stages of cultivation. Taken together, these results indicate that combining classical mutagenesis approaches with comparative genomic analysis facilitates the identification of novel genes involved in heterologous protein production in filamentous fungi.

  7. Correlation of Merkel cell polyomavirus positivity with PDGFRα mutations and survivin expression in Merkel cell carcinoma.

    PubMed

    Batinica, M; Akgül, B; Silling, S; Mauch, C; Zigrino, P

    2015-07-01

    Merkel cell carcinoma (MCC) is a neuroendocrine cancer of the skin postulated to originate through Merkel cell polyomavirus (MCPyV) oncogenesis and/or by mutations in molecules implicated in the regulation of cell growth and survival. Despite the fact that MCPvV is detected more broadly within the population, only a part of the infected people also develop MCC. It is thus conceivable that together, virus and for example mutations, are necessary for disease development. However, apart from a correlation between MCPyV positivity or mutations and MCC development, less is known about the association of these factors with progressive disease. To analyze MCPyV positivity, load and integration in MCC as well as presence of mutations in PDGFRα and TP53 genes and correlate these with clinical features and disease progression to identify features with prognostic value for clinical progression. This is a study on a MCC population group of 64 patients. MCPyV positivity, load and integration in parallel to mutations in the PDGFRα and TP53 were analyzed on genomic DNA from MCC specimens. In addition, expression of PDGFRα, survivin and p53 proteins was analyzed by immunodetection in tissues specimens. All these parameters were analyzed as function of patient's disease progression status. 83% of MCCs were positive for the MCPyV and among these 36% also displayed virus-T integration. Viral load ranged from 0.006 to 943 viral DNA copies/β-globin gene and was highest in patients with progressive disease. We detected more than one mutation within the PDGFRα gene and identified two new SNPs in 36% of MCC patients, whereas no mutations were found in TP53 gene. Survivin was expressed in 78% of specimens. We could not correlate either mutations in PDGFR or expression of PDGFR, p53 and surviving either to the disease progression or to the MCPyV positivity. In conclusion, our data indicate that the viral positivity when associated with high viral load, correlates with poor disease outcome. Frequent mutations in the PDGFRα gene and high survivin expression were found in MCC independent of the viral positivity. These data suggest that these three factors independently contribute to Merkel cell carcinoma development and that only the viral load can be used as indicator of disease progression in virus positive patients. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Analysis of SOX10 mutations identified in Waardenburg-Hirschsprung patients: Differential effects on target gene regulation.

    PubMed

    Chan, Kwok Keung; Wong, Corinne Kung Yen; Lui, Vincent Chi Hang; Tam, Paul Kwong Hang; Sham, Mai Har

    2003-10-15

    SOX10 is a member of the SOX gene family related by homology to the high-mobility group (HMG) box region of the testis-determining gene SRY. Mutations of the transcription factor gene SOX10 lead to Waardenburg-Hirschsprung syndrome (Waardenburg-Shah syndrome, WS4) in humans. A number of SOX10 mutations have been identified in WS4 patients who suffer from different extents of intestinal aganglionosis, pigmentation, and hearing abnormalities. Some patients also exhibit signs of myelination deficiency in the central and peripheral nervous systems. Although the molecular bases for the wide range of symptoms displayed by the patients are still not clearly understood, a few target genes for SOX10 have been identified. We have analyzed the impact of six different SOX10 mutations on the activation of SOX10 target genes by yeast one-hybrid and mammalian cell transfection assays. To investigate the transactivation activities of the mutant proteins, three different SOX target binding sites were introduced into luciferase reporter gene constructs and examined in our series of transfection assays: consensus HMG domain protein binding sites; SOX10 binding sites identified in the RET promoter; and Sox10 binding sites identified in the P0 promoter. We found that the same mutation could have different transactivation activities when tested with different target binding sites and in different cell lines. The differential transactivation activities of the SOX10 mutants appeared to correlate with the intestinal and/or neurological symptoms presented in the patients. Among the six mutant SOX10 proteins tested, much reduced transactivation activities were observed when tested on the SOX10 binding sites from the RET promoter. Of the two similar mutations X467K and 1400del12, only the 1400del12 mutant protein exhibited an increase of transactivation through the P0 promoter. While the lack of normal SOX10 mediated activation of RET transcription may lead to intestinal aganglionosis, overexpression of genes coding for structural myelin proteins such as P0 due to mutant SOX10 may explain the dysmyelination phenotype observed in the patients with an additional neurological disorder. Copyright 2003 Wiley-Liss, Inc.

  9. SHOX interacts with the chondrogenic transcription factors SOX5 and SOX6 to activate the aggrecan enhancer.

    PubMed

    Aza-Carmona, Miriam; Shears, Debbie J; Yuste-Checa, Patricia; Barca-Tierno, Verónica; Hisado-Oliva, Alfonso; Belinchón, Alberta; Benito-Sanz, Sara; Rodríguez, J Ignacio; Argente, Jesús; Campos-Barros, Angel; Scambler, Peter J; Heath, Karen E

    2011-04-15

    SHOX (short stature homeobox-containing gene) encodes a transcription factor implicated in skeletal development. SHOX haploinsufficiency has been demonstrated in Leri-Weill dyschondrosteosis (LWD), a skeletal dysplasia associated with disproportionate short stature, as well as in a variable proportion of cases with idiopathic short stature (ISS). In order to gain insight into the SHOX signalling pathways, we performed a yeast two-hybrid screen to identify SHOX-interacting proteins. Two transcription factors, SOX5 and SOX6, were identified. Co-immunoprecipitation assays confirmed the existence of the SHOX-SOX5 and SHOX-SOX6 interactions in human cells, whereas immunohistochemical studies demonstrated the coexpression of these proteins in 18- and 32-week human fetal growth plates. The SHOX homeodomain and the SOX6 HMG domain were shown to be implicated in the SHOX-SOX6 interaction. Moreover, different SHOX missense mutations, identified in LWD and ISS patients, disrupted this interaction. The physiological importance of these interactions was investigated by studying the effect of SHOX on a transcriptional target of the SOX trio, Agc1, which encodes one of the main components of cartilage, aggrecan. Our results show that SHOX cooperates with SOX5/SOX6 and SOX9 in the activation of the upstream Agc1 enhancer and that SHOX mutations affect this activation. In conclusion, we have identified SOX5 and SOX6 as the first two SHOX-interacting proteins and have shown that this interaction regulates aggrecan expression, an essential factor in chondrogenesis and skeletal development.

  10. FOXC2 disease-mutations identified in lymphedema-distichiasis patients cause both loss and gain of protein function

    PubMed Central

    Tavian, Daniela; Missaglia, Sara; Maltese, Paolo E.; Michelini, Sandro; Fiorentino, Alessandro; Ricci, Maurizio; Serrani, Roberta; Walter, Michael A.; Bertelli, Matteo

    2016-01-01

    Dominant mutations in the FOXC2 gene cause a form of lymphedema primarily of the limbs that usually develops at or after puberty. In 90-95% of patients, lymphedema is accompanied by distichiasis. FOXC2 is a member of the forkhead/winged-helix family of transcription factors and plays essential roles in different developmental pathways and physiological processes. We previously described six unrelated families with primary lymphedema-distichiasis in which patients showed different FOXC2 mutations located outside of the forkhead domain. Of those, four were missense mutations, one a frameshift mutation, and the last a stop mutation. To assess their pathogenic potential, we have now examined the subcellular localization and the transactivation activity of the mutated FOXC2 proteins. All six FOXC2 mutant proteins were able to localize into the nucleus; however, the frameshift truncated protein appeared to be sequestered into nuclear aggregates. A reduction in the ability to activate FOXC1/FOXC2 response elements was detected in 50% of mutations, while the remaining ones caused an increase of protein transactivation activity. Our data reveal that either a complete loss or a significant gain of FOXC2 function can cause a perturbation of lymphatic vessel formation leading to lymphedema. PMID:27276711

  11. Activating mutations affecting the Dbl homology domain of SOS2 cause Noonan syndrome

    PubMed Central

    Cordeddu, Viviana; Yin, Jiani C.; Gunnarsson, Cecilia; Virtanen, Carl; Drunat, Séverine; Lepri, Francesca; De Luca, Alessandro; Rossi, Cesare; Ciolfi, Andrea; Pugh, Trevor J.; Bruselles, Alessandro; Priest, James R.; Pennacchio, Len A.; Lu, Zhibin; Danesh, Arnavaz; Quevedo, Rene; Hamid, Alaa; Martinelli, Simone; Pantaleoni, Francesca; Gnazzo, Maria; Daniele, Paola; Lissewski, Christina; Bocchinfuso, Gianfranco; Stella, Lorenzo; Odent, Sylvie; Philip, Nicole; Faivre, Laurence; Vlckova, Marketa; Seemanova, Eva; Digilio, Cristina; Zenker, Martin; Zampino, Giuseppe; Verloes, Alain; Dallapiccola, Bruno; Roberts, Amy E.; Cavé, Hélène; Gelb, Bruce D.; Neel, Benjamin G.; Tartaglia, Marco

    2015-01-01

    The RASopathies constitute a family of autosomal dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering son of sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its auto-inhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the Dbl homology domain. PMID:26173643

  12. Comparison of Epidermal Growth Factor Receptor Mutations between Metastatic Lymph Node Diagnosed by EBUS-TBNA and Primary Tumor in Non-Small Cell Lung Cancer

    PubMed Central

    Kang, Hyo Jae; Hwangbo, Bin; Lee, Jin Soo; Kim, Moon Soo; Lee, Jong Mog; Lee, Geon-Kook

    2016-01-01

    Introduction Although the use of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is increasing for epidermal growth factor receptor (EGFR) testing in lung cancer, the discordance rate in EGFR mutations between lymph node (LN) samples obtained by EBUS-TBNA and primary tumor (PT) is not well known. Thus, we compared the EGFR mutation status of LN samples obtained by EBUS-TBNA and PTs to estimate the efficacy of using EBUS-TBNA specimens for EGFR testing in advanced, non-squamous, non-small cell lung cancer (NSCLC). Materials and Methods Using data of patients from the EBUS-TBNA database (N = 1914) obtained between January 2009 and January 2013, we identified 100 treatment-naïve, advanced, non-squamous NSCLC patients (stage 3 and 4) with matched LN specimens obtained by EBUS-TBNA and PT specimens. Of these, 74 patients with paired specimens were feasible for EGFR mutation analysis, which we performed using a direct sequencing method. Results Of the 74 cases, at least one major [exon 19 deleted (19del) and L858R] or minor (T790M, exon 20 insertion, and other point mutations) EGFR mutation was detected in 31 cases (41.9%), which included PT (n = 31, 41.9%) and LN (n = 28, 37.8%) specimens. Major mutations were detected in 25 PT (33.8%, 19del = 13, L858R = 12) and 22 LN (29.8%, 19del = 11, L858R = 11) specimens. The discordance rate in major mutations between matched PT and LN specimens was 4.1% (3/74). Among minor mutations, T790M was detected in LN specimen only in 2 cases with L858R in PT and LN. The discordance rate major and minor EGFR mutations combined between matched PT and LN specimens was 12% (9/74). Conclusions We observed a high concordance rate of major EGFR mutations between matched LN specimens sampled by EBUS-TBNA and PTs, suggesting that LN samples obtained by EBUS-TBNA from advanced non-squamous NSCLC patients are effective for use in EGFR mutation testing. PMID:27685950

  13. Proteogenomics connects somatic mutations to signalling in breast cancer.

    PubMed

    Mertins, Philipp; Mani, D R; Ruggles, Kelly V; Gillette, Michael A; Clauser, Karl R; Wang, Pei; Wang, Xianlong; Qiao, Jana W; Cao, Song; Petralia, Francesca; Kawaler, Emily; Mundt, Filip; Krug, Karsten; Tu, Zhidong; Lei, Jonathan T; Gatza, Michael L; Wilkerson, Matthew; Perou, Charles M; Yellapantula, Venkata; Huang, Kuan-lin; Lin, Chenwei; McLellan, Michael D; Yan, Ping; Davies, Sherri R; Townsend, R Reid; Skates, Steven J; Wang, Jing; Zhang, Bing; Kinsinger, Christopher R; Mesri, Mehdi; Rodriguez, Henry; Ding, Li; Paulovich, Amanda G; Fenyö, David; Ellis, Matthew J; Carr, Steven A

    2016-06-02

    Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans-effects against the Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.

  14. Identification and Analysis of Mot3, a Zinc Finger Protein That Binds to the Retrotransposon Ty Long Terminal Repeat (δ) in Saccharomyces cerevisiae

    PubMed Central

    Madison, Jon M.; Dudley, Aimée M.; Winston, Fred

    1998-01-01

    Spt3 and Mot1 are two transcription factors of Saccharomyces cerevisiae that are thought to act in a related fashion to control the function of TATA-binding protein (TBP). Current models suggest that while Spt3 and Mot1 do not directly interact, they do function in a related fashion to stabilize the TBP-TATA interaction at particular promoters. Consistent with this model, certain combinations of spt3 and mot1 mutations are inviable. To identify additional proteins related to Spt3 and Mot1 functions, we screened for high-copy-number suppressors of the mot1 spt3 inviability. This screen identified a previously unstudied gene, MOT3, that encodes a zinc finger protein. We show that Mot3 binds in vitro to three sites within the retrotransposon Ty long terminal repeat (δ) sequence. One of these sites is immediately 5′ of the δ TATA region. Although a mot3 null mutation causes no strong phenotypes, it does cause some mild phenotypes, including a very modest increase in Ty mRNA levels, partial suppression of transcriptional defects caused by a mot1 mutation, and partial suppression of an spt3 mutation. These results, in conjunction with those of an independent study of Mot3 (A. Grishin, M. Rothenberg, M. A. Downs, and K. J. Blumer, Genetics, in press), suggest that this protein plays a varied role in gene expression that may be largely redundant with other factors. PMID:9528759

  15. Drug Resistance Mechanisms in Non-Small Cell Lung Carcinoma

    PubMed Central

    Wangari-Talbot, Janet; Hopper-Borge, Elizabeth

    2014-01-01

    Lung cancer is the most commonly diagnosed cancer in the world. “Driver” and “passenger” mutations identified in lung cancer indicate that genetics play a major role in the development of the disease, progression, metastasis and response to therapy. Survival rates for lung cancer treatment have remained stagnant at ~15% over the past 40 years in patients with disseminated disease despite advances in surgical techniques, radiotherapy and chemotherapy. Resistance to therapy; either intrinsic or acquired has been a major hindrance to treatment leading to great interest in studies seeking to understand and overcome resistance. Genetic information gained from molecular analyses has been critical in identifying druggable targets and tumor profiles that may be predictors of therapeutic response and mediators of resistance. Mutated or overexpressed epidermal growth factor receptor (EGFR) and translocations in the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) genes (EML4-ALK) are examples of genetic aberrations resulting in targeted therapies for both localized and metastatic disease. Positive clinical responses have been noted in patients harboring these genetic mutations when treated with targeted therapies compared to patients lacking these mutations. Resistance is nonetheless a major factor contributing to the failure of targeted agents and standard cytotoxic agents. In this review, we examine molecular mechanisms that are potential drivers of resistance in non-small cell lung carcinoma, the most frequently diagnosed form of lung cancer. The mechanisms addressed include resistance to molecular targeted therapies as well as conventional chemotherapeutics through the activity of multidrug resistance proteins. PMID:24634705

  16. [Clinical significance and distribution of BRCA genes mutation in sporadic high grade serous ovarian cancer].

    PubMed

    Liu, W L; Wang, Z Z; Zhao, J Z; Hou, Y Y; Wu, X X; Li, W; Dong, B; Tong, T T; Guo, Y J

    2017-01-25

    Objective: To investigate the mutations of BRCA genes in sporadic high grade serous ovarian cancer (HGSOC) and study its clinical significance. Methods: Sixty-eight patients between January 2015 and January 2016 from the Affiliated Cancer Hospital of Zhengzhou University were collected who were based on pathological diagnosis of ovarian cancer and had no reported family history, and all patients firstly hospitalized were untreated in other hospitals before. (1) The BRCA genes were detected by next-generation sequencing (NGS) method. (2) The serum tumor markers included carcinoembryonic antigen (CEA), CA(125), CA(199), and human epididymis protein 4 (HE4) were detected by the chemiluminescence methods, and their correlation was analyzed by Pearson linear correlation. Descriptive statistics and comparisons were performed using two-tailed t -tests, Pearson's chi square test, Fisher's exact tests or logistic regression analysis as appropriate to research the clinicopathologic features associated with BRCA mutations, including age, International Federation of Gynecology and Obstetrics (FIGO) stage, platinum-based chemotherapy sensitivity, distant metastases, serum tumor markers (STM) . Results: (1) Fifteen cases (22%, 15/68) BRCA mutations were identified (BRCA1: 11 cases; BRCA2: 4 cases), and four novel mutations were observed. (2) The levels of CEA, CA(199), and HE4 were lower in BRCA mutations compared to that in control group, while no significant differences were found ( P >0.05), but the level of CA(125) was much higher in BRCA mutation group than that in controls ( t =-3.536, P =0.003). Further linear regression analysis found that there was a significant linear correlation between CA(125) and HE4 group ( r =0.494, P <0.01), and the same correlation as CEA and CA(199) group ( r =0.897, P <0.01). (3) Single factor analysis showed that no significant differences were observed in onset age, FIGO stage, distant metastasis, and STM between BRCA(+) and BRCA(-) group ( P >0.05), while significant differences were found in CA(125) and sensitivity to platinum-based chemotherapy between the patients with BRCA mutation and wild type ( P <0.05). The multiple factors analysis showed that the high level of CA(125) was a independent risk factor of BRCA mutations in sporadic HGSOC ( P =0.007). Conclusion: The combination of CA(125) with BRCA have great clinical significance, the mutation of BRCA gene could guild the clinical chemotherapy regiments.

  17. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

    PubMed

    Dormeyer, Miriam; Lübke, Anastasia L; Müller, Peter; Lentes, Sabine; Reuß, Daniel R; Thürmer, Andrea; Stülke, Jörg; Daniel, Rolf; Brantl, Sabine; Commichau, Fabian M

    2017-06-01

    Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Dupuytren’s and Ledderhose Diseases in a Family with LMNA-Related Cardiomyopathy and a Novel Variant in the ASTE1 Gene

    PubMed Central

    Zaragoza, Michael V.; Nguyen, Cecilia H. H.; Widyastuti, Halida P.; McCarthy, Linda A.; Grosberg, Anna

    2017-01-01

    Dupuytren’s disease (palmar fibromatosis) involves nodules in fascia of the hand that leads to flexion contractures. Ledderhose disease (plantar fibromatosis) is similar with nodules of the foot. While clinical aspects are well-described, genetic mechanisms are unknown. We report a family with cardiac disease due to a heterozygous LMNA mutation (c.736C>T, p.Gln246Stop) with palmar/plantar fibromatosis and investigate the hypothesis that a second rare DNA variant increases the risk for fibrotic disease in LMNA mutation carriers. The proband and six family members were evaluated for the cardiac and hand/feet phenotypes and tested for the LMNA mutation. Fibroblast RNA studies revealed monoallelic expression of the normal LMNA allele and reduced lamin A/C mRNAs consistent with LMNA haploinsufficiency. A novel, heterozygous missense variant (c.230T>C, p.Val77Ala) in the Asteroid Homolog 1 (ASTE1) gene was identified as a potential risk factor in fibrotic disease using exome sequencing and family studies of five family members: four LMNA mutation carriers with fibromatosis and one individual without the LMNA mutation and no fibromatosis. With a possible role in epidermal growth factor receptor signaling, ASTE1 may contribute to the increased risk for palmar/plantar fibromatosis in patients with Lamin A/C haploinsufficiency. PMID:29104234

  19. Neurofilament L gene is not a genetic factor of sporadic and familial Parkinson's disease.

    PubMed

    Rahner, Nils; Holzmann, Carsten; Krüger, Rejko; Schöls, Ludger; Berger, Klaus; Riess, Olaf

    2002-09-27

    Mutations in two genes, alpha-synuclein and parkin, have been identified as some rare causes for familial Parkinson's disease (PD). alpha-Synuclein and parkin protein have subsequently been identified in Lewy bodies (LB). To gain further insight into the pathogenesis of PD we investigated the role of neurofilament light (NF-L), another component of LB aggregation. A detailed mutation search of the NF-L gene in 328 sporadic and familial PD patients of German ancestry revealed three silent DNA changes (G163A, C224T, C487T) in three unrelated patients. Analysis of the promoter region of the NF-L gene identified a total of three base pair substitutions defining five haplotypes. Association studies based on these haplotypes revealed no significant differences between PD patients and 344 control individuals. Therefore, NF-L is unlikely to play a major role in the pathogenesis of PD.

  20. Exome sequencing identifies SUCO mutations in mesial temporal lobe epilepsy.

    PubMed

    Sha, Zhiqiang; Sha, Longze; Li, Wenting; Dou, Wanchen; Shen, Yan; Wu, Liwen; Xu, Qi

    2015-03-30

    Mesial temporal lobe epilepsy (mTLE) is the main type and most common medically intractable form of epilepsy. Severity of disease-based stratified samples may help identify new disease-associated mutant genes. We analyzed mRNA expression profiles from patient hippocampal tissue. Three of the seven patients had severe mTLE with generalized-onset convulsions and consciousness loss that occurred over many years. We found that compared with other groups, patients with severe mTLE were classified into a distinct group. Whole-exome sequencing and Sanger sequencing validation in all seven patients identified three novel SUN domain-containing ossification factor (SUCO) mutations in severely affected patients. Furthermore, SUCO knock down significantly reduced dendritic length in vitro. Our results indicate that mTLE defects may affect neuronal development, and suggest that neurons have abnormal development due to lack of SUCO, which may be a generalized-onset epilepsy-related gene. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. ZNF687 Mutations in Severe Paget Disease of Bone Associated with Giant Cell Tumor.

    PubMed

    Divisato, Giuseppina; Formicola, Daniela; Esposito, Teresa; Merlotti, Daniela; Pazzaglia, Laura; Del Fattore, Andrea; Siris, Ethel; Orcel, Philippe; Brown, Jacques P; Nuti, Ranuccio; Strazzullo, Pasquale; Benassi, Maria Serena; Cancela, M Leonor; Michou, Laetitia; Rendina, Domenico; Gennari, Luigi; Gianfrancesco, Fernando

    2016-02-04

    Paget disease of bone (PDB) is a skeletal disorder characterized by focal abnormalities of bone remodeling, which result in enlarged and deformed bones in one or more regions of the skeleton. In some cases, the pagetic tissue undergoes neoplastic transformation, resulting in osteosarcoma and, less frequently, in giant cell tumor of bone (GCT). We performed whole-exome sequencing in a large family with 14 PDB-affected members, four of whom developed GCT at multiple pagetic skeletal sites, and we identified the c.2810C>G (p.Pro937Arg) missense mutation in the zinc finger protein 687 gene (ZNF687). The mutation precisely co-segregated with the clinical phenotype in all affected family members. The sequencing of seven unrelated individuals with GCT associated with PDB (GCT/PDB) identified the same mutation in all individuals, unravelling a founder effect. ZNF687 is highly expressed during osteoclastogenesis and osteoblastogenesis and is dramatically upregulated in the tumor tissue of individuals with GCT/PDB. Interestingly, our preliminary findings showed that ZNF687, indicated as a target gene of the NFkB transcription factor by ChIP-seq analysis, is also upregulated in the peripheral blood of PDB-affected individuals with (n = 5) or without (n = 6) mutations in SQSTM1, encouraging additional studies to investigate its potential role as a biomarker of PDB risk. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance

    PubMed Central

    Andersson, Dan I

    2017-01-01

    Abstract Antibiotic resistance can be acquired by mutation or horizontal transfer of a resistance gene, and generally an acquired mechanism results in a predictable increase in phenotypic resistance. However, recent findings suggest that the environment and/or the genetic context can modify the phenotypic expression of specific resistance genes/mutations. An important implication from these findings is that a given genotype does not always result in the expected phenotype. This dissociation of genotype and phenotype has important consequences for clinical bacteriology and for our ability to predict resistance phenotypes from genetics and DNA sequences. A related problem concerns the degree to which the genes/mutations currently identified in vitro can fully explain the in vivo resistance phenotype, or whether there is a significant additional amount of presently unknown mutations/genes (genetic ‘dark matter’) that could contribute to resistance in clinical isolates. Finally, a very important question is whether/how we can identify the genetic features that contribute to making a successful pathogen, and predict why some resistant clones are very successful and spread globally? In this review, we describe different environmental and genetic factors that influence phenotypic expression of antibiotic resistance genes/mutations and how this information is needed to understand why particular resistant clones spread worldwide and to what extent we can use DNA sequences to predict evolutionary success. PMID:28333270

  3. ZNF687 Mutations in Severe Paget Disease of Bone Associated with Giant Cell Tumor

    PubMed Central

    Divisato, Giuseppina; Formicola, Daniela; Esposito, Teresa; Merlotti, Daniela; Pazzaglia, Laura; Del Fattore, Andrea; Siris, Ethel; Orcel, Philippe; Brown, Jacques P.; Nuti, Ranuccio; Strazzullo, Pasquale; Benassi, Maria Serena; Cancela, M. Leonor; Michou, Laetitia; Rendina, Domenico; Gennari, Luigi; Gianfrancesco, Fernando

    2016-01-01

    Paget disease of bone (PDB) is a skeletal disorder characterized by focal abnormalities of bone remodeling, which result in enlarged and deformed bones in one or more regions of the skeleton. In some cases, the pagetic tissue undergoes neoplastic transformation, resulting in osteosarcoma and, less frequently, in giant cell tumor of bone (GCT). We performed whole-exome sequencing in a large family with 14 PDB-affected members, four of whom developed GCT at multiple pagetic skeletal sites, and we identified the c.2810C>G (p.Pro937Arg) missense mutation in the zinc finger protein 687 gene (ZNF687). The mutation precisely co-segregated with the clinical phenotype in all affected family members. The sequencing of seven unrelated individuals with GCT associated with PDB (GCT/PDB) identified the same mutation in all individuals, unravelling a founder effect. ZNF687 is highly expressed during osteoclastogenesis and osteoblastogenesis and is dramatically upregulated in the tumor tissue of individuals with GCT/PDB. Interestingly, our preliminary findings showed that ZNF687, indicated as a target gene of the NFkB transcription factor by ChIP-seq analysis, is also upregulated in the peripheral blood of PDB-affected individuals with (n = 5) or without (n = 6) mutations in SQSTM1, encouraging additional studies to investigate its potential role as a biomarker of PDB risk. PMID:26849110

  4. Mechanisms and Clinical Activity of an EGFR and HER2 Exon 20-selective Kinase Inhibitor in Non-small Cell Lung Cancer

    PubMed Central

    Robichaux, Jacqulyne P.; Elamin, Yasir Y.; Tan, Zhi; Carter, Brett W.; Zhang, Shuxing; Liu, Shengwu; Li, Shuai; Chen, Ting; Poteete, Alissa; Estrada-Bernal, Adriana; Le, Anh T.; Truini, Anna; Nilsson, Monique B.; Sun, Huiying; Roarty, Emily; Goldberg, Sarah B.; Brahmer, Julie R.; Altan, Mehmet; Lu, Charles; Papadimitrakopoulou, Vassiliki; Politi6, Katerina; Doebele, Robert C.; Wong, Kwok-Kin; Heymach, John V.

    2018-01-01

    Although most activating mutations of epidermal growth factor receptor (EGFR)-mutant non–small cell lung cancers (NSCLCs) are sensitive to available EGFR tyrosine kinase inhibitors (TKIs), a subset with alterations in exon 20 of EGFR and HER2 are intrinsically resistant and lack an effective therapy. We used in silico, in vitro, and in vivo testing to model structural alterations induced by exon 20 mutations and to identify effective inhibitors. 3D modeling indicated alterations restricted the size of the drug-binding pocket, limiting the binding of large, rigid inhibitors. We found that poziotinib, owing to its small size and flexibility, can circumvent these steric changes and is a potent inhibitor of the most common EGFR and HER2 exon 20 mutants. Poziotinib demonstrated greater activity than approved EGFR TKIs in vitro and in patient-derived xenograft models of EGFR or HER2 exon 20 mutant NSCLC and in genetically engineered mouse models of NSCLC. In a phase 2 trial, the first 11 patients with NSCLC with EGFR exon 20 mutations receiving poziotinib had a confirmed objective response rate of 64%. These data identify poziotinib as a potent, clinically active inhibitor of EGFR and HER2 exon 20 mutations and illuminate the molecular features of TKIs that may circumvent steric changes induced by these mutations. PMID:29686424

  5. Novel mutations of the AGXT gene causing primary hyperoxaluria type 1.

    PubMed

    Yuen, Yuet-Ping; Lai, Chi-Kong; Tong, Gensy Mei-Wah; Wong, Ping-Nam; Wong, Francis Kim-Ming; Mak, Siu-Ka; Lo, Kin-Yee; Wong, Andrew Kui-Man; Tong, Sui-Fan; Chan, Yan-Wo; Lam, Ching-Wan

    2004-01-01

    Primary hyperoxaluria type 1 (PH1), an inherited cause of nephrolithiasis, is due to a functional defect of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). A definitive PH1 diagnosis can be established by analyzing AGT activity in liver tissue or mutation analysis of the AGXT gene. The molecular basis of PH1 in three Chinese patients, two with adult-onset and one with childhood-onset recurrent nephrolithiasis, was established by analyzing the entire AGXT gene. Three novel mutations (c2T>C, c817insAG and c844C>T) and two previously reported mutations (c33insC and 679-IVS6+2delAAgt) were identified. c2T>C converts the initiation codon from ATG to ACG, which predicts significant reduction, if not complete abolition, of protein translation. c817insAG leads to a frameshift and changes the amino acid sequence after codon 274. c844C>T changes glutamine at codon 282 to a termination codon, resulting in protein truncation. This is the first report describing AGXT gene mutations in Chinese patients with PH1. AGXT genotypes cannot fully explain the clinical heterogeneity of PH1, and other factors involved in disease pathogenesis remain to be identified. Our experience emphasizes the importance of excluding PH1 in patients with recurrent nephrolithiasis to avoid delay or inappropriate management.

  6. Immune defects caused by mutations in the ubiquitin system.

    PubMed

    Etzioni, Amos; Ciechanover, Aaron; Pikarsky, Eli

    2017-03-01

    The importance of the ubiquitin system in health and disease has been widely recognized in recent decades, with better understanding of the various components of the system and their function. Ubiquitination, which is essential to almost all biological processes in eukaryotes, was also found to play an important role in innate and adaptive immune responses. Thus it is not surprising that mutations in genes coding for components of the ubiquitin system cause immune dysregulation. The first defect in the system was described 30 years ago and is due to mutations in the nuclear factor κB (NF-κB) essential modulator, a key regulator of the NF-κB pathway. With use of novel sequencing techniques, many additional mutations in different genes involved in ubiquitination and related to immune system function were identified. This can be clearly illustrated in mutations in the different activation pathways of NF-κB, which result in aberrations in production of various proinflammatory cytokines. The inherited diseases typically manifest with immunodeficiency, autoimmunity, or autoinflammation. In this perspective we provide a short description of the ubiquitin system, with specific emphasis given to its role in the immune system. The various immunodeficiency conditions identified thus far in association with defective ubiquitination are discussed in more detail. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism

    PubMed Central

    Kapoor, Ritika R; Flanagan, Sarah E; Arya, Ved Bhushan; Shield, Julian P; Ellard, Sian; Hussain, Khalid

    2013-01-01

    Background Congenital hyperinsulinism (CHI) is a clinically heterogeneous condition. Mutations in eight genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A and HNF1A) are known to cause CHI. Aim To characterise the clinical and molecular aspects of a large cohort of patients with CHI. Methodology Three hundred patients were recruited and clinical information was collected before genotyping. ABCC8 and KCNJ11 genes were analysed in all patients. Mutations in GLUD1, HADH, GCK and HNF4A genes were sought in patients with diazoxide-responsive CHI with hyperammonaemia (GLUD1), raised 3-hydroxybutyrylcarnitine and/or consanguinity (HADH), positive family history (GCK) or when CHI was diagnosed within the first week of life (HNF4A). Results Mutations were identified in 136/300 patients (45.3%). Mutations in ABCC8/KCNJ11 were the commonest genetic cause identified (n=109, 36.3%). Among diazoxide-unresponsive patients (n=105), mutations in ABCC8/KCNJ11 were identified in 92 (87.6%) patients, of whom 63 patients had recessively inherited mutations while four patients had dominantly inherited mutations. A paternal mutation in the ABCC8/KCNJ11 genes was identified in 23 diazoxide-unresponsive patients, of whom six had diffuse disease. Among the diazoxide-responsive patients (n=183), mutations were identified in 41 patients (22.4%). These include mutations in ABCC8/KCNJ11 (n=15), HNF4A (n=7), GLUD1 (n=16) and HADH (n=3). Conclusions A genetic diagnosis was made for 45.3% of patients in this large series. Mutations in the ABCC8 gene were the commonest identifiable cause. The vast majority of patients with diazoxide-responsive CHI (77.6%) had no identifiable mutations, suggesting other genetic and/or environmental mechanisms. PMID:23345197

  8. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  9. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  10. Factor v leiden mutation in patients with breast cancer with a central venous catheter: risk of deep vein thrombosis.

    PubMed

    Curigliano, Giuseppe; Mandalà, Mario; Sbanotto, Alberto; Colleoni, Marco; Ferretti, Gianluigi; Bucciarelli, Paolo; Peruzzotti, Giulia; de Braud, Filippo; De Pas, Tommaso; Spitaleri, Gianluca; Pietri, E; Orsi, Franco; Banfi, Maria G; Goldhirsch, Aron

    2006-01-01

    The objective of this study was to analyze the influence of the prothrombotic factor V Leiden (FVL) and G20210A prothrombin mutations on the frequency of the first episode of catheter-related deep vein thrombosis (DVT) in a cohort of patients with locally advanced or metastatic breast cancer during continuous venous insult (infusion of 5-fluorouracil-based chemotherapy). Between January 1999 and February 2001, we retrospectively analyzed the incidence of first DVT in 300 consecutive patients with locally advanced or metastatic breast cancer treated at a single institution with a combination of chemotherapy administered continuously through a totally implanted access port. We identified 25 women (study group) with catheter-related DVT. For each of the 25 patients, we selected 2 women eligible for identical chemotherapy who had similar age, stage of disease, and prognostic features as a control group. The prothrombotic FVL and prothrombin mutation G20210A genotype analyses were performed in all patients. Analyses were performed on blinded samples, and all patients signed a specific informed consent form. A total of 25 cases (with thrombosis) and 50 frequency-matched controls were evaluated for FVL. Five cases and 2 controls were found with the mutation in the FVL, for incidences of 20% (95% CI, 9%-39%) and 4% (95% CI, 1%-14%), respectively. Thus, the frequency of the mutation was significantly higher in the cases than in controls (P = 0.04), and a logistic regression analysis, adjusted by age, yielded an odds ratio of 6.1 (95% CI, 1.1%-34.3%; P = 0.04). Time from start of infusion chemotherapy to thrombosis was not significantly different between those with the mutation (median, 31 days) and without the mutation (median, 43 days; P = 0.6). Only 1 subject (in the case group) was found with the G20210A mutation in the prothrombin gene. Factor V Leiden carriers with locally advanced or metastatic breast cancer are at high risk of catheter-related DVT during chemotherapy. Clinicians should be aware of this increased risk, and alternative cytotoxic treatments not requiring continuous infusions should be considered for these patients.

  11. Oncogenic Activation of Fibroblast Growth Factor Receptor-3 and RAS Genes as Non-Overlapping Mutual Exclusive Events in Urinary Bladder Cancer.

    PubMed

    Pandith, Arshad A; Hussain, Aashaq; Khan, Mosin S; Shah, Zafar A; Wani, M Saleem; Siddiqi, Mushtaq A

    2016-01-01

    Urinary bladder cancer is a common malignancy in the West and ranks as the 7th most common cancer in our region of Kashmir, India. FGFR3 mutations are frequent in superficial urothelial carcinoma (UC) differing from the RAS gene mutational pattern. The aim of this study was to analyze the frequency and association of FGFR3 and RAS gene mutations in UC cases. Paired tumor and adjacent normal tissue specimens of 65 consecutive UC patients were examined. DNA preparations were evaluated for the occurrence of FGFR3 and RAS gene mutations by PCR-SCCP and DNA sequencing. Somatic point mutations of FGFR3 were identified in 32.3% (21 of 65). The pattern and distribution were significantly associated with low grade/stage (<0.05). The overall mutations in exon 1 and 2 in all the forms of RAS genes aggregated to 21.5% and showed no association with any clinic-pathological parameters. In total, 53.8% (35 of 65) of the tumors studied had mutations in either a RAS or FGFR3 gene, but these were totally mutually exclusive in and none of the samples showed both the mutational events in mutually exclusive RAS and FGFR3. We conclude that RAS and FGFR3 mutations in UC are mutually exclusive and non-overlapping events which reflect activation of oncogenic pathways through different elements.

  12. CDH1 mutations in gastric cancer patients from northern Brazil identified by Next- Generation Sequencing (NGS)

    PubMed Central

    El-Husny, Antonette; Raiol-Moraes, Milene; Amador, Marcos; Ribeiro-dos-Santos, André M.; Montagnini, André; Barbosa, Silvanira; Silva, Artur; Assumpção, Paulo; Ishak, Geraldo; Santos, Sidney; Pinto, Pablo; Cruz, Aline; Ribeiro-dos-Santos, Ândrea

    2016-01-01

    Abstract Gastric cancer is considered to be the fifth highest incident tumor worldwide and the third leading cause of cancer deaths. Developing regions report a higher number of sporadic cases, but there are only a few local studies related to hereditary cases of gastric cancer in Brazil to confirm this fact. CDH1 germline mutations have been described both in familial and sporadic cases, but there is only one recent molecular description of individuals from Brazil. In this study we performed Next Generation Sequencing (NGS) to assess CDH1 germline mutations in individuals who match the clinical criteria for Hereditary Diffuse Gastric Cancer (HDGC), or who exhibit very early diagnosis of gastric cancer. Among five probands we detected CDH1 germline mutations in two cases (40%). The mutation c.1023T > G was found in a HDGC family and the mutation c.1849G > A, which is nearly exclusive to African populations, was found in an early-onset case of gastric adenocarcinoma. The mutations described highlight the existence of gastric cancer cases caused by CDH1 germline mutations in northern Brazil, although such information is frequently ignored due to the existence of a large number of environmental factors locally. Our report represent the first CDH1 mutations in HDGC described from Brazil by an NGS platform. PMID:27192129

  13. Gene mutations in children with chronic pancreatitis.

    PubMed

    Witt, H

    2001-01-01

    In the last few years, several genes have been identified as being associated with hereditary and idiopathic chronic pancreatitis (CP), i.e. PRSS1, CFTR and SPINK1. In this study, we investigated 164 unrelated children and adolescents with CP for mutations in disease-associated genes by direct DNA sequencing, SSCP, RFLP and melting curve analysis. In 15 patients, we detected a PRSS1 mutation (8 with A16V, 5 with R122H, 2 with N29I), and in 34 patients, a SPINK1 mutation (30 with N34S, 4 with others). SPINK1 mutations were predominantly found in patients without a family history (29/121). Ten patients were homozygous for N34S, SPINK1 mutations were most common in 'idiopathic' CP, whereas patients with 'hereditary' CP predominantly showed a PRSS1 mutation (R122H, N29I). In patients without a family history, the most common PRSS1 mutation was A16V (7/121). In conclusion, our data suggest that CP may be inherited in a dominant, recessive or multigenetic manner as a result of mutations in the above-mentioned or as yet unidentified genes. This challenges the concept of idiopathic CP as a nongenetic disorder and the differentiation between hereditary and idiopathic CP. Therefore, we propose to classify CP as either 'primary CP' (with or without a family history) or 'secondary CP' caused by toxic, metabolic or other factors.

  14. Germline Mutations in BMPR1A/ALK3 Cause a Subset of Cases of Juvenile Polyposis Syndrome and of Cowden and Bannayan-Riley-Ruvalcaba Syndromes*

    PubMed Central

    Zhou, Xiao-Ping; Woodford-Richens, Kelly; Lehtonen, Rainer; Kurose, Keisuke; Aldred, Micheala; Hampel, Heather; Launonen, Virpi; Virta, Sanno; Pilarski, Robert; Salovaara, Reijo; Bodmer, Walter F.; Conrad, Beth A.; Dunlop, Malcolm; Hodgson, Shirley V.; Iwama, Takeo; Järvinen, Heikki; Kellokumpu, Ilmo; Kim, J. C.; Leggett, Barbara; Markie, David; Mecklin, Jukka-Pekka; Neale, Kay; Phillips, Robin; Piris, Juan; Rozen, Paul; Houlston, Richard S.; Aaltonen, Lauri A.; Tomlinson, Ian P. M.; Eng, Charis

    2001-01-01

    Juvenile polyposis syndrome (JPS) is an inherited hamartomatous-polyposis syndrome with a risk for colon cancer. JPS is a clinical diagnosis by exclusion, and, before susceptibility genes were identified, JPS could easily be confused with other inherited hamartoma syndromes, such as Bannayan-Riley-Ruvalcaba syndrome (BRRS) and Cowden syndrome (CS). Germline mutations of MADH4 (SMAD4) have been described in a variable number of probands with JPS. A series of familial and isolated European probands without MADH4 mutations were analyzed for germline mutations in BMPR1A, a member of the transforming growth-factor β–receptor superfamily, upstream from the SMAD pathway. Overall, 10 (38%) probands were found to have germline BMPR1A mutations, 8 of which resulted in truncated receptors and 2 of which resulted in missense alterations (C124R and C376Y). Almost all available component tumors from mutation-positive cases showed loss of heterozygosity (LOH) in the BMPR1A region, whereas those from mutation-negative cases did not. One proband with CS/CS-like phenotype was also found to have a germline BMPR1A missense mutation (A338D). Thus, germline BMPR1A mutations cause a significant proportion of cases of JPS and might define a small subset of cases of CS/BRRS with specific colonic phenotype. PMID:11536076

  15. Prognostic and predictive values of oncogenic BRAF, NRAS, c-KIT and MITF in cutaneous and mucous melanoma.

    PubMed

    Pracht, M; Mogha, A; Lespagnol, A; Fautrel, A; Mouchet, N; Le Gall, F; Paumier, V; Lefeuvre-Plesse, C; Rioux-Leclerc, N; Mosser, J; Oger, E; Adamski, H; Galibert, M-D; Lesimple, T

    2015-08-01

    Mutations of BRAF, NRAS and c-KIT oncogenes are preferentially described in certain histological subtypes of melanoma and linked to specific histopathological features. BRAF-, MEK- and KIT-inhibitors led to improvement in overall survival of patients harbouring mutated metastatic melanoma. To assess the prevalence and types of BRAF, NRAS, c-KIT and MITF mutations in cutaneous and mucous melanoma and to correlate mutation status with clinicopathological features and outcome. Clinicopathological features and mutation status of 108 samples and of 98 consecutive patients were, respectively, assessed in one retrospective and one prospective study. Clinicopathological features were correlated with mutation status and the predictive value of these mutations was studied. This work identified significant correlations between BRAF mutations and melanoma occurring on non-chronic sun-damaged skin and superficial spreading melanoma (P < 0.05) on one hand, and between NRAS mutations and nodular melanoma (P < 0.05) on the other hand. Younger age (P < 0.05), microscopic (P < 0.05) and macroscopic (P < 0.05) lymphatic involvement at diagnosis of primary melanoma were significantly linked to BRAF mutations. A mutated status was a positive predictive factor of a response to BRAF inhibitors (OR = 3.44). Mutated melanoma showed a significantly (P = 0.038) higher objective response rate to cytotoxic chemotherapy (26.3%) than wild-type tumours (6.7%). Clinical and pathological characteristics of the primary melanoma differed between wild-type and BRAF- or NRAS-mutated tumours. Patients with BRAF-mutated tumours were younger at diagnosis of primary melanoma. Patients carrying mutations showed better responses better to specific kinase inhibitors and interestingly also to systemic cytotoxic chemotherapy. © 2015 European Academy of Dermatology and Venereology.

  16. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian Acute Myeloid Leukemia Study Group

    PubMed Central

    Paschka, Peter; Schlenk, Richard F.; Gaidzik, Verena I.; Herzig, Julia K.; Aulitzky, Teresa; Bullinger, Lars; Späth, Daniela; Teleanu, Veronika; Kündgen, Andrea; Köhne, Claus-Henning; Brossart, Peter; Held, Gerhard; Horst, Heinz-A.; Ringhoffer, Mark; Götze, Katharina; Nachbaur, David; Kindler, Thomas; Heuser, Michael; Thol, Felicitas; Ganser, Arnold; Döhner, Hartmut; Döhner, Konstanze

    2015-01-01

    We studied 1696 patients (18 to 61 years) with acute myeloid leukemia for ASXL1 mutations and identified these mutations in 103 (6.1%) patients. ASXL1 mutations were associated with older age (P<0.0001), male sex (P=0.041), secondary acute myeloid leukemia (P<0.0001), and lower values for bone marrow (P<0.0001) and circulating (P<0.0001) blasts. ASXL1 mutations occurred in all cytogenetic risk-groups; normal karyotype (40%), other intermediate-risk cytogenetics (26%), high-risk (24%) and low-risk (10%) cytogenetics. ASXL1 mutations were associated with RUNX1 (P<0.0001) and IDH2R140 mutations (P=0.007), whereas there was an inverse correlation with NPM1 (P<0.0001), FLT3-ITD (P=0.0002), and DNMT3A (P=0.02) mutations. Patients with ASXL1 mutations had a lower complete remission rate (56% versus 74%; P=0.0002), and both inferior event-free survival (at 5 years: 15.9% versus 29.0%; P=0.02) and overall survival (at 5 years: 30.3% versus 45.7%; P=0.0004) compared to patients with wildtype ASXL1. In multivariable analyses, ASXL1 and RUNX1 mutation as a single variable did not have a significant impact on prognosis. However, we observed a significant interaction (P=0.04) for these mutations, in that patients with the genotype ASXL1mutated/RUNX1mutated had a higher risk of death (hazard ratio 1.8) compared to patients without this genotype. ASXL1 mutation, particularly in the context of a coexisting RUNX1 mutation, constitutes a strong adverse prognostic factor in acute myeloid leukemia. PMID:25596267

  17. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian Acute Myeloid Leukemia Study Group.

    PubMed

    Paschka, Peter; Schlenk, Richard F; Gaidzik, Verena I; Herzig, Julia K; Aulitzky, Teresa; Bullinger, Lars; Späth, Daniela; Teleanu, Veronika; Kündgen, Andrea; Köhne, Claus-Henning; Brossart, Peter; Held, Gerhard; Horst, Heinz-A; Ringhoffer, Mark; Götze, Katharina; Nachbaur, David; Kindler, Thomas; Heuser, Michael; Thol, Felicitas; Ganser, Arnold; Döhner, Hartmut; Döhner, Konstanze

    2015-03-01

    We studied 1696 patients (18 to 61 years) with acute myeloid leukemia for ASXL1 mutations and identified these mutations in 103 (6.1%) patients. ASXL1 mutations were associated with older age (P<0.0001), male sex (P=0.041), secondary acute myeloid leukemia (P<0.0001), and lower values for bone marrow (P<0.0001) and circulating (P<0.0001) blasts. ASXL1 mutations occurred in all cytogenetic risk-groups; normal karyotype (40%), other intermediate-risk cytogenetics (26%), high-risk (24%) and low-risk (10%) cytogenetics. ASXL1 mutations were associated with RUNX1 (P<0.0001) and IDH2(R140) mutations (P=0.007), whereas there was an inverse correlation with NPM1 (P<0.0001), FLT3-ITD (P=0.0002), and DNMT3A (P=0.02) mutations. Patients with ASXL1 mutations had a lower complete remission rate (56% versus 74%; P=0.0002), and both inferior event-free survival (at 5 years: 15.9% versus 29.0%; P=0.02) and overall survival (at 5 years: 30.3% versus 45.7%; P=0.0004) compared to patients with wildtype ASXL1. In multivariable analyses, ASXL1 and RUNX1 mutation as a single variable did not have a significant impact on prognosis. However, we observed a significant interaction (P=0.04) for these mutations, in that patients with the genotype ASXL1(mutated)/RUNX1(mutated) had a higher risk of death (hazard ratio 1.8) compared to patients without this genotype. ASXL1 mutation, particularly in the context of a coexisting RUNX1 mutation, constitutes a strong adverse prognostic factor in acute myeloid leukemia. Copyright© Ferrata Storti Foundation.

  18. p.H1069Q mutation in ATP7B and biochemical parameters of copper metabolism and clinical manifestation of Wilson's disease.

    PubMed

    Gromadzka, Graznya; Schmidt, Harmut H J; Genschel, Janine; Bochow, Bettina; Rodo, M; Tarnacka, Beatek; Litwin, Thomas; Chabik, Grzegorz; Członkowska, Anna

    2006-02-01

    We compared the effect of the p.H1069Q mutation and other non-p.H1069Q mutations in ATP7B on the phenotypic expression of Wilson's disease (WD), and assessed whether the clinical phenotype of WD in compound heterozygotes depends on the type of mutation coexisting with the p.H1069Q. One hundred forty-two patients with clinically, biochemically, and genetically diagnosed WD were studied. The mutational analysis of ATP7B was performed by direct sequencing. A total number of 26 mutations in ATP7B were identified. The p.His1069Gln was the most common mutation (allelic frequency: 72%). Seventy-three patients were homozygous for this mutation. Of compound heterozygotes, 37 had frameshift/nonsense mutation, and 20 had other missense mutation on one of their ATP7B alleles. Twelve patients had two non-p.H1069Q mutations. Patients homozygous for the p.H1069Q mutation had the less severe disturbances of copper metabolism and the latest presentation of first WD symptoms. The most severely disturbed copper metabolism and the earliest age at initial disease manifestation was noticed in non-p.H1069Q patients. In compound heterozygotes, the type of mutation coexisting with the p.H1069Q to a small extent influenced WD phenotype. The phenotype of WD varied considerably among patients with the same genotype. The p.H1069Q mutation is associated with late WD manifestation and with a mild disruption of copper metabolism. In compound heterozygotes, the phenotype of WD to a small extent depends on the type of mutation coexisting with the p.H1069Q. Besides genotype, additional modifying factors seem to determine WD manifestations. Copyright (c) 2005 Movement Disorder Society.

  19. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling.

    PubMed

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Andò, Sebastiano; Fuqua, Suzanne A W

    2016-06-01

    The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam.

  20. A Simple Model-Based Approach to Inferring and Visualizing Cancer Mutation Signatures

    PubMed Central

    Shiraishi, Yuichi; Tremmel, Georg; Miyano, Satoru; Stephens, Matthew

    2015-01-01

    Recent advances in sequencing technologies have enabled the production of massive amounts of data on somatic mutations from cancer genomes. These data have led to the detection of characteristic patterns of somatic mutations or “mutation signatures” at an unprecedented resolution, with the potential for new insights into the causes and mechanisms of tumorigenesis. Here we present new methods for modelling, identifying and visualizing such mutation signatures. Our methods greatly simplify mutation signature models compared with existing approaches, reducing the number of parameters by orders of magnitude even while increasing the contextual factors (e.g. the number of flanking bases) that are accounted for. This improves both sensitivity and robustness of inferred signatures. We also provide a new intuitive way to visualize the signatures, analogous to the use of sequence logos to visualize transcription factor binding sites. We illustrate our new method on somatic mutation data from urothelial carcinoma of the upper urinary tract, and a larger dataset from 30 diverse cancer types. The results illustrate several important features of our methods, including the ability of our new visualization tool to clearly highlight the key features of each signature, the improved robustness of signature inferences from small sample sizes, and more detailed inference of signature characteristics such as strand biases and sequence context effects at the base two positions 5′ to the mutated site. The overall framework of our work is based on probabilistic models that are closely connected with “mixed-membership models” which are widely used in population genetic admixture analysis, and in machine learning for document clustering. We argue that recognizing these relationships should help improve understanding of mutation signature extraction problems, and suggests ways to further improve the statistical methods. Our methods are implemented in an R package pmsignature (https://github.com/friend1ws/pmsignature) and a web application available at https://friend1ws.shinyapps.io/pmsignature_shiny/. PMID:26630308

Top