Sample records for factor nf kappa

  1. FBI-1 enhances transcription of the nuclear factor-kappaB (NF-kappaB)-responsive E-selectin gene by nuclear localization of the p65 subunit of NF-kappaB.

    PubMed

    Lee, Dong-Kee; Kang, Jae-Eun; Park, Hye-Jin; Kim, Myung-Hwa; Yim, Tae-Hee; Kim, Jung-Min; Heo, Min-Kyu; Kim, Kyu-Yeun; Kwon, Ho Jeong; Hur, Man-Wook

    2005-07-29

    The POZ domain is a highly conserved protein-protein interaction motif found in many regulatory proteins. Nuclear factor-kappaB (NF-kappaB) plays a key role in the expression of a variety of genes in response to infection, inflammation, and stressful conditions. We found that the POZ domain of FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) interacted with the Rel homology domain of the p65 subunit of NF-kappaB in both in vivo and in vitro protein-protein interaction assays. FBI-1 enhanced NF-kappaB-mediated transcription of E-selectin genes in HeLa cells upon phorbol 12-myristate 13-acetate stimulation and overcame gene repression by IkappaB alpha or IkappaB beta. In contrast, the POZ domain of FBI-1, which is a dominant-negative form of FBI-1, repressed NF-kappaB-mediated transcription, and the repression was cooperative with IkappaB alpha or IkappaB beta. In contrast, the POZ domain tagged with a nuclear localization sequence polypeptide of FBI-1 enhanced NF-kappaB-responsive gene transcription, suggesting that the molecular interaction between the POZ domain and the Rel homology domain of p65 and the nuclear localization by the nuclear localization sequence are important in the transcription enhancement mediated by FBI-1. Confocal microscopy showed that FBI-1 increased NF-kappaB movement into the nucleus and increased the stability of NF-kappaB in the nucleus, which enhanced NF-kappaB-mediated transcription of the E-selectin gene. FBI-1 also interacted with IkappaB alpha and IkappaB beta.

  2. Regulation of the nuclear factor (NF)-kappaB pathway by ISGylation.

    PubMed

    Minakawa, Miki; Sone, Takayuki; Takeuchi, Tomoharu; Yokosawa, Hideyoshi

    2008-12-01

    Post-translational modification with ISG15 (interferon-stimulated gene 15 kDa) (ISGylation) is mediated by a sequential reaction similar to ubiquitination, and various target proteins for ISGylation have been identified. We previously reported that ISGylation of the E2 ubiquitin-conjugating enzyme Ubc13 suppresses its E2 activity. Ubc13 forms a heterodimer with Uev1A, a ubiquitin-conjugating enzyme variant, and the Ubc13-Uev1A complex catalyzes the assembly of a Lys63-linked polyubiquitin chain, which plays a non-proteolytic role in the nuclear factor (NF)-kappaB pathway. In this study, we examined the effect of ISGylation on tumor necrosis factor receptor-associated factor (TRAF)-6/transforming growth factor beta-activated kinase (TAK)-1-dependent NF-kappaB activation. We found that expression of the ISGylation system suppresses NF-kappaB activation via TRAF6 and TAK1 and that the level of polyubiquitinated TRAF6 is reduced by expression of the ISGylation system. Taken together, the results suggest that the NF-kappaB pathway is negatively regulated by ISGylation.

  3. Transcription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon.

    PubMed

    Inan, M S; Tolmacheva, V; Wang, Q S; Rosenberg, D W; Giardina, C

    2000-12-01

    The transcription factor nuclear factor (NF)-kappaB regulates the expression of genes that can influence cell proliferation and death. Here we analyze the contribution of NF-kappaB to the regulation of epithelial cell turnover in the colon. Immunohistochemical, immunoblot, and DNA binding analyses indicate that NF-kappaB complexes change as colonocytes mature: p65-p50 complexes predominate in proliferating epithelial cells of the colon, whereas the p50-p50 dimer is prevalent in mature epithelial cells. NF-kappaB1 (p50) knockout mice were used to study the role of NF-kappaB in regulating epithelial cell turnover. Knockout animals lacked detectable NF-kappaB DNA binding activity in isolated epithelial cells and had significantly longer crypts with a more extensive proliferative zone than their wild-type counterparts (as determined by proliferating cell nuclear antigen staining and in vivo bromodeoxyuridine labeling). Gene expression profiling reveals that the NF-kappaB1 knockout mice express the potentially growth-enhancing tumor necrosis factor (TNF)-alpha and nerve growth factor-alpha genes at elevated levels, with in situ hybridization localizing some of the TNF-alpha expression to epithelial cells. TNF-alpha is NF-kappaB regulated, and its upregulation in NF-kappaB1 knockouts may result from an alleviation of p50-p50 repression. NF-kappaB complexes may therefore influence cell proliferation in the colon through their ability to selectively activate and/or repress gene expression.

  4. MicroRNA-22 and microRNA-140 suppress NF-{kappa}B activity by regulating the expression of NF-{kappa}B coactivators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, Akemi; Otsuka, Motoyuki, E-mail: otsukamo-tky@umin.ac.jp; Kojima, Kentaro

    2011-08-12

    Highlights: {yields} miRNAs were screened for their ability to regulate NF-{kappa}B activity. {yields} miRNA-22 and miRNA-140-3p suppress NF-{kappa}B activity by regulating coactivators. {yields} miRNA-22 targets nuclear receptor coactivator 1 (NCOA1). {yields} miRNA-140-3p targets nuclear receptor-interacting protein 1 (NRIP1). -- Abstract: Nuclear factor {kappa}B (NF-{kappa}B) is a transcription factor that regulates a set of genes that are critical to many biological phenomena, including liver tumorigenesis. To identify microRNAs (miRNAs) that regulate NF-{kappa}B activity in the liver, we screened 60 miRNAs expressed in hepatocytes for their ability to modulate NF-{kappa}B activity. We found that miRNA-22 and miRNA-140-3p significantly suppressed NF-{kappa}B activity bymore » regulating the expression of nuclear receptor coactivator 1 (NCOA1) and nuclear receptor-interacting protein 1 (NRIP1), both of which are NF-{kappa}B coactivators. Our results provide new information about the roles of miRNAs in the regulation of NF-{kappa}B activity.« less

  5. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  6. Porcine arterivirus activates the NF-{kappa}B pathway through I{kappa}B degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Myeong; Kleiboeker, Steven B.

    2005-11-10

    Nuclear factor-kappaB (NF-{kappa}B) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-{kappa}B in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-{kappa}B activation was characterized by translocation of NF-{kappa}B from the cytoplasm to the nucleus, increased DNA binding activity, and NF-{kappa}B-regulated gene expression. NF-{kappa}B activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-{kappa}B activation. Degradationmore » of I{kappa}B protein was detected late in PRRSV infection, and overexpression of the dominant negative form of I{kappa}B{alpha} (I{kappa}B{alpha}DN) significantly suppressed NF-{kappa}B activation induced by PRRSV. However, I{kappa}B{alpha}DN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-{kappa}B DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-{kappa}B was activated by PRRSV infection. Moreover, NF-{kappa}B-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-{kappa}B activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV.« less

  7. NF-kappaB transcription factor is required for inhibitory avoidance long-term memory in mice.

    PubMed

    Freudenthal, Ramiro; Boccia, Mariano M; Acosta, Gabriela B; Blake, Mariano G; Merlo, Emiliano; Baratti, Carlos M; Romano, Arturo

    2005-05-01

    Although it is generally accepted that memory consolidation requires regulation of gene expression, only a few transcription factors (TFs) have been clearly demonstrated to be specifically involved in this process. Increasing research data point to the participation of the Rel/nuclear factor-kappaB (NF-kappaB) family of TFs in memory and neural plasticity. Here we found that two independent inhibitors of NF-kappaB induced memory impairment in the one-trial step-through inhibitory avoidance paradigm in mice: post-training administration of the drug sulfasalazine and 2 h pretraining administration of a double-stranded DNA oligonucleotide containing the NF-kappaB consensus sequence (kappaB decoy). Conversely, one base mutation of the kappaB decoy (mut-kappaB decoy) injection did not affect long-term memory. Accordingly, the kappaB decoy inhibited NF-kappaB in hippocampus 2 h after injection but no inhibition was found with mut-kappaB decoy administration. A temporal course of hippocampal NF-kappaB activity after training was determined. Unexpectedly, an inhibition of NF-kappaB was found 15 min after training in shocked and unshocked groups when compared with the naïve group. Hippocampal NF-kappaB was activated 45 min after training in both shocked and unshocked groups, decreasing 1 h after training and returning to basal levels 2 and 4 h after training. On the basis of the latter results, we propose that activation of NF-kappaB in hippocampus is part of the molecular mechanism involved in the storage of contextual features that constitute the conditioned stimulus representation. The results presented here provide the first evidence to support NF-kappaB activity being regulated in hippocampus during consolidation, stressing the role of this TF as a conserved molecular mechanism for memory storage.

  8. Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1.

    PubMed

    Lin, Ling; Peng, Stanford L

    2006-04-15

    Forkhead transcription factors play critical roles in the maintenance of immune homeostasis. In this study, we demonstrate that this regulation most likely involves intricate interactions between the forkhead family members and inflammatory transcription factors: the forkhead member Foxd1 coordinates the regulation of the activity of two key inflammatory transcription factors, NF-AT and NF-kappaB, with Foxd1 deficiency resulting in multiorgan, systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autologous MLRs. Foxd1-deficient T cells possess increased activity of both NF-AT and NF-kappaB: the former correlates with the ability of Foxd1 to regulate casein kinase 1, an NF-AT inhibitory kinase; the latter with the ability of Foxd1 to regulate Foxj1, which regulates the NF-kappaB inhibitory subunit IkappaB beta. Thus, Foxd1 modulates inflammatory reactions and prevents autoimmunity by directly regulating anti-inflammatory regulators of the NF-AT pathway, and by coordinating the suppression of the NF-kappaB pathway via Foxj1. These findings indicate the presence of a general network of forkhead proteins that enforce T cell quiescence.

  9. Analysis and Quantitation of NF-[kappa]B Nuclear Translocation in Tumor Necrosis Factor Alpha (TNF-[alpha]) Activated Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Fuseler, John W.; Merrill, Dana M.; Rogers, Jennifer A.; Grisham, Matthew B.; Wolf, Robert E.

    2006-07-01

    Nuclear factor kappa B (NF-[kappa]B) is a heterodimeric transcription factor typically composed of p50 and p65 subunits and is a pleiotropic regulator of various inflammatory and immune responses. In quiescent cells, p50/p65 dimers are sequestered in the cytoplasm bound to its inhibitors, the I-[kappa]Bs, which prevent entry into the nucleus. Following cellular stimulation, the I-[kappa]Bs are rapidly degraded, activating NF-[kappa]B. The active form of NF-[kappa]B rapidly translocates into the nucleus, binding to consensus sequences in the promoter/enhancer region of various genes, promoting their transcription. In human vascular endothelial cells activated with tumor necrosis factor-alpha, the activation and translocation of NF-[kappa]B is rapid, reaching maximal nuclear localization by 30 min. In this study, the appearance of NF-[kappa]B (p65 subunit, p65-NF-[kappa]B) in the nucleus visualized by immunofluorescence and quantified by morphometric image analysis (integrated optical density, IOD) is compared to the appearance of activated p65-NF-[kappa]B protein in the nucleus determined biochemically. The appearance of p65-NF-[kappa]B in the nucleus measured by fluorescence image analysis and biochemically express a linear correlation (R2 = 0.9477). These data suggest that localization and relative protein concentrations of NF-[kappa]B can be reliably determined from IOD measurements of the immunofluorescent labeled protein.

  10. NF-kappaB mediates FGF signal regulation of msx-1 expression.

    PubMed

    Bushdid, P B; Chen, C L; Brantley, D M; Yull, F; Raghow, R; Kerr, L D; Barnett, J V

    2001-09-01

    The nuclear factor-kappaB (NF-kappaB) family of transcription factors is involved in proliferation, differentiation, and apoptosis in a stage- and cell-dependent manner. Recent evidence has shown that NF-kappaB activity is necessary for both chicken and mouse limb development. We report here that the NF-kappaB family member c-rel and the homeodomain gene msx-1 have partially overlapping expression patterns in the developing chick limb. In addition, inhibition of NF-kappaB activity resulted in a decrease in msx-1 mRNA expression. Sequence analysis of the msx-1 promoter revealed three potential kappaB-binding sites similar to the interferon-gamma (IFN-gamma) kappaB-binding site. These sites bound to c-Rel, as shown by electrophoretic mobility shift assay (EMSA). Furthermore, inhibition of NF-kappaB activity significantly reduced transactivation of the msx-1 promoter in response to FGF-2/-4, known stimulators of msx-1 expression. These results suggest that NF-kappaB mediates the FGF-2/-4 signal regulation of msx-1 gene expression. Copyright 2001 Academic Press.

  11. IKK{epsilon} modulates RSV-induced NF-{kappa}B-dependent gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao Xiaoyong; Indukuri, Hemalatha; Liu Tianshuang

    2010-12-20

    Respiratory syncytial virus (RSV), a negative-strand RNA virus, is the most common cause of epidemic respiratory disease in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B). In this study we have investigated the role of the non canonical I{kappa}B kinase (IKK){epsilon} in modulating RSV-induced NF-{kappa}B activation. Our results show that inhibition of IKK{epsilon} activation results in significant impairment of viral-induced NF-{kappa}B-dependent gene expression, through a reduction in NF-{kappa}B transcriptional activity, without changes in nuclear translocation or DNA-binding activity. Absencemore » of IKK{epsilon} results in a significant decrease of RSV-induced NF-{kappa}B phosphorylation on serine 536, a post-translational modification important for RSV-induced NF-{kappa}B-dependent gene expression, known to regulate NF-{kappa}B transcriptional activity without affecting nuclear translocation. This study identifies a novel mechanism by which IKK{epsilon} regulates viral-induced cellular signaling.« less

  12. The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rascle, Anne; Neumann, Tanja; Raschta, Anne-Sarah

    2009-01-01

    LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-{kappa}B target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-{kappa}B activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-{kappa}B activity by TNF-{alpha} synergizes induction of NF-{kappa}B target genes by LMX1B. Chromatin immunoprecipitation demonstratedmore » that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized {kappa}B site, and that LMX1B recruitment correlates with increased NF-{kappa}B DNA association. IL-6 promoter-reporter assays showed that the {kappa}B site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-{kappa}B target genes is affected in the kidney of Lmx1b{sup -/-} knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-{kappa}B target genes in cooperation with nuclear p50/p65 NF-{kappa}B.« less

  13. The effects of dexamethasone on rat brain cortical nuclear factor kappa B (NF-{kappa}B) in endotoxic shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Zhi; Kang Jinsong; Li Yang

    2006-08-01

    To explore the molecular mechanism of brain tissue injury induced by lipopolysaccharide (LPS), we studied the effects of endotoxic shock on rat brain cortex NF-{kappa}B and the effects of dexamethasone on these changes. Rats were randomly divided into LPS, LPS + dexamethasone, and control groups. The DNA-binding activity of NF-{kappa}B was observed using electrophoretic mobility shift assay (EMSA). Protein expression in nuclear extracts was studied using Western blots, and nuclear translocation was observed using immunohistochemistry. These indices were assayed at 1 h and 4 h after intravenous injection of LPS (4 mg.kg{sup -1}). EMSA showed significantly increased NF-{kappa}B DNA-binding activitymore » in nuclear extracts from the LPS group at both 1 h and 4 h after LPS injection, compared with the control group (P < 0.01). For the LPS group, the NF-{kappa}B DNA-binding activity was greater at 1 h than at 4 h (P < 0.05). The expression of p65 and p50 protein in the nuclear extracts was also increased, as compared with the control group. However, the expression of p65 and p50 protein from cytosolic extracts did not show any significant change. Dexamethasone down-regulated not only NF-{kappa}B DNA-binding activity but also the expression of p65 protein in the nuclear extracts. From these data, we have concluded that NF-{kappa}B activation and nuclear translocation of NF-{kappa}B play a key role in the molecular mechanism of brain tissue injury in endotoxic shock. Dexamethasone may alleviate brain injury by inhibiting NF-{kappa}B activation.« less

  14. Transcription factor NF-kappaB regulates inducible CD83 gene expression in activated T lymphocytes.

    PubMed

    McKinsey, T A; Chu, Z; Tedder, T F; Ballard, D W

    2000-01-01

    The immunoglobulin superfamily member CD83 is expressed on the surface of mature dendritic cells that present processed antigens to T lymphocytes. In addition, T cells acquire CD83 expression following mitogenic stimulation in vitro. Here we report two lines of evidence demonstrating that this inducible lymphocyte response is genetically programmed by transcription factor NF-kappaB and contingent upon proteolytic breakdown of its cytoplasmic inhibitor IkappaBalpha. First, signal-dependent induction of CD83 mRNA expression is blocked in both transformed and primary T cells harboring a degradation-resistant mutant of IkappaBalpha that constitutively represses NF-kappaB. Second, as revealed in gel retardation assays, the IkappaBalpha constitutive repressor prevents the inducible interaction of NF-kappaB with consensus recognition sites identified in the CD83 promoter. Given that IkappaBalpha is functionally coupled to the T-cell antigen receptor, these findings suggest that the downstream transcription unit for CD83 is triggered by NF-kappaB during an adaptive immune response.

  15. EWS-FLI1 inhibits TNF{alpha}-induced NF{kappa}B-dependent transcription in Ewing sarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagirand-Cantaloube, Julie, E-mail: julie.cantaloube@crbm.cnrs.fr; Laud, Karine, E-mail: karine.laud@curie.fr; Institut Curie, Genetique et biologie des cancers, Paris

    2010-09-03

    Research highlights: {yields} EWS-FLI1 interferes with TNF-induced activation of NF{kappa}B in Ewing sarcoma cells. {yields} EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NF{kappa}B binding to DNA. {yields} EWS-FLI1 reduces TNF-stimulated NF{kappa}B-dependent transcriptional activation. {yields} Constitutive NF{kappa}B activity is not affected by EWS-FLI1. {yields} EWS-FLI1 physically interacts with NF{kappa}B p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NF{kappa}B) is a tightly regulated transcription factor controllingmore » cell survival, proliferation and differentiation, as well as tumorigenesis. NF{kappa}B activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NF{kappa}B activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NF{kappa}B basal activity, but impairs TNF-induced NF{kappa}B-driven transcription, at least in part through inhibition of NF{kappa}B binding to DNA. We detected an in vivo physical interaction between the fusion protein and NF{kappa}B p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NF{kappa}B.« less

  16. NF-kappaB activation in cancer: a challenge for ubiquitination- and proteasome-based therapeutic approach.

    PubMed

    Amit, Sharon; Ben-Neriah, Yinon

    2003-02-01

    Nuclear factor-kappa B (NF-kappaB) activation relies primarily on ubiquitin-mediated degradation of its inhibitor IkappaB. NF-kappaB plays an important role in many aspects of tumor development, progression, and therapy. Some types of cancer are characterized by constitutive NF-kappaB activity, whereas in others such activity is induced following chemotherapy. NF-kappaB-harboring tumors are generally resistant to chemotherapy and their eradication requires NF-kappaB inhibition. Here we describe the mechanisms of NF-kappaB activation in normal and tumor cells, review prevalent notions regarding the factor's contribution to tumorigenicity and discuss present and future options for NF-kappaB inhibition in cancer. The ubiquitination-mediated activation of NF-kappaB is intersected by another cancer-associated protein, beta-catenin. We, therefore, compare the related activation pathways and discuss the possibility of differential targeting of the involved ubiquitination machinery. Copyright 2002 Elsevier Science Ltd.

  17. Plant extracts from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor NF-kappaB.

    PubMed

    Riehemann, K; Behnke, B; Schulze-Osthoff, K

    1999-01-08

    Activation of transcription factor NF-kappaB is elevated in several chronic inflammatory diseases and is responsible for the enhanced expression of many proinflammatory gene products. Extracts from leaves of stinging nettle (Urtica dioica) are used as antiinflammatory remedies in rheumatoid arthritis. Standardized preparations of these extracts (IDS23) suppress cytokine production, but their mode of action remains unclear. Here we demonstrate that treatment of different cells with IDS23 potently inhibits NF-kappaB activation. An inhibitory effect was observed in response to several stimuli, suggesting that IDS23 suppressed a common NF-kappaB pathway. Inhibition of NF-kappaB activation by IDS23 was not mediated by a direct modification of DNA binding, but rather by preventing degradation of its inhibitory subunit IkappaB-alpha. Our results suggests that part of the antiinflammatory effect of Urtica extract may be ascribed to its inhibitory effect on NF-kappaB activation.

  18. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls.

    PubMed

    Baud, Véronique; Karin, Michael

    2009-01-01

    Nuclear factor kappaB (NF-kappaB) transcription factors have a key role in many physiological processes such as innate and adaptive immune responses, cell proliferation, cell death, and inflammation. It has become clear that aberrant regulation of NF-kappaB and the signalling pathways that control its activity are involved in cancer development and progression, as well as in resistance to chemotherapy and radiotherapy. This article discusses recent evidence from cancer genetics and cancer genome studies that support the involvement of NF-kappaB in human cancer, particularly in multiple myeloma. The therapeutic potential and benefit of targeting NF-kappaB in cancer, and the possible complications and pitfalls of such an approach, are explored.

  19. Antiinflammatory effects of glucocorticoids in brain cells, independent of NF-kappa B.

    PubMed

    Bourke, E; Moynagh, P N

    1999-08-15

    Glucocorticoids are potent antiinflammatory drugs. They inhibit the expression of proinflammatory cytokines and adhesion molecules. It has recently been proposed that the underlying basis to such inhibition is the induction of the protein I kappa B, which inhibits the transcription factor NF-kappa B. The latter is a key activator of the genes encoding cytokines and adhesion molecules. The present study shows that the synthetic glucocorticoid, dexamethasone, inhibits the induction of the proinflammatory cytokine IL-8 and the adhesion molecules VCAM-1 and ICAM-1 in human 1321N1 astrocytoma and SK.N.SH neuroblastoma cells. However, dexamethasone failed to induce I kappa B or inhibit activation of NF-kappa B by IL-1 in the two cell types. EMSA confirmed the identity of the activated NF-kappa B by demonstrating that an oligonucleotide, containing the wild-type NF-kappa B-binding motif, inhibited formation of the NF-kappa B-DNA complexes whereas a mutated form of the NF-kappa B-binding motif was ineffective. In addition, supershift analysis showed that the protein subunits p50 and p65 were prevalent components in the activated NF-kappa B complexes. The lack of effect of dexamethasone on the capacity of IL-1 to activate NF-kappa B correlated with its inability to induce I kappa B and the ability of IL-1 to cause degradation of I kappa B, even in the presence of dexamethasone. The results presented in this paper strongly suggest that glucocorticoids may exert antiinflammatory effects in cells of neural origin by a mechanism(s) independent of NF-kappa B.

  20. NF-kappaB modulators from Valeriana officinalis.

    PubMed

    Jacobo-Herrera, Nadia J; Vartiainen, Nina; Bremner, Paul; Gibbons, Simon; Koistinaho, Jari; Heinrich, Michael

    2006-10-01

    Valeriana officinalis (Valerianaceae) has been of great interest for its therapeutic uses for treating mild nervous tension and temporary sleeping problems. In traditional European medicine it has been also reported as an antiinflammatory remedy. This study reports that the EtOAc extract of the underground parts of V. officinalis showed inhibitory activity against NF-kappaB at 100 microg/mL in the IL-6/Luc assay on HeLa cells and provided protection against excitotoxicity in primary brain cell cultures at micromolar concentrations. Bioassay-guided fractionation of the EtOAc extract led to the isolation of three known sesquiterpenes: acetylvalerenolic acid (1), valerenal (2) and valerenic acid (3), 1 and 3 were active as inhibitors of NF-kappaB at a concentration of 100 microg/mL. Acetylvalerenolic acid (1) reduced NF-kappaB activity to 4%, whereas valerenic acid (3) reduced NF-kappaB activity to 25%. Copyright 2006 John Wiley & Sons, Ltd.

  1. RRM2 induces NF-{kappa}B-dependent MMP-9 activation and enhances cellular invasiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duxbury, Mark S.; Whang, Edward E.

    2007-03-02

    Ribonucleotide reductase is a dimeric enzyme that catalyzes conversion of ribonucleotide 5'-diphosphates to their 2'-deoxynucleotide forms, a rate-limiting step in the production of 2'-deoxyribonucleoside 5'-triphosphates required for DNA synthesis. The ribonucleotide reductase M2 subunit (RRM2) is a determinant of malignant cellular behavior in a range of human cancers. We examined the effect of RRM2 overexpression on pancreatic adenocarcinoma cellular invasiveness and nuclear factor-{kappa}B (NF-{kappa}B) transcription factor activity. RRM2 overexpression increases pancreatic adenocarcinoma cellular invasiveness and MMP-9 expression in a NF-{kappa}B-dependent manner. RNA interference (RNAi)-mediated silencing of RRM2 expression attenuates cellular invasiveness and NF-{kappa}B activity. NF-{kappa}B is a key mediator ofmore » the invasive phenotypic changes induced by RRM2 overexpression.« less

  2. NF-{kappa}B regulates Lef1 gene expression in chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Kangsun; Choi, Yoo Duk; Nam, Jong Hee

    The relation of Wnt/{beta}-catenin signaling to osteoarthritis progression has been revealed with little information on the underlying molecular mechanism. In this study we found overexpression of Lef1 in cartilage tissue of osteoarthritic patients and elucidated molecular mechanism of NF-{kappa}B-mediated Lef1 gene regulation in chondrocytes. Treatment of IL-1{beta} augmented Lef1 upregulation and nuclear translocation of NF-{kappa}B in chondrocytes. Under IL-1{beta} signaling, treatment of NF-{kappa}B nuclear translocation inhibitor SN-50 reduced Lef1 expression. A conserved NF-{kappa}B-binding site between mouse and human was selected through bioinformatic analysis and mapped at the 14 kb upstream of Lef1 transcription initiation site. NF-{kappa}B binding to the sitemore » was confirmed by chromatin immunoprecipitation assay. Lef1 expression was synergistically upregulated by interactions of NF-{kappa}B with Lef1/{beta}-catenin in chondrocytes. Our results suggest a pivotal role of NF-{kappa}B in Lef1 expression in arthritic chondrocytes or cartilage degeneration.« less

  3. Regulation of NF-{kappa}B activity in astrocytes: effects of flavonoids at dietary-relevant concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spilsbury, Alison; Vauzour, David; Spencer, Jeremy P.E.

    Highlights: Black-Right-Pointing-Pointer We tested the hypothesis that low concentrations of flavonoids inhibit NF-{kappa}B in astrocytes. Black-Right-Pointing-Pointer Primary cultured astrocytes possess a functional {kappa}B-system, measured using luciferase assays. Black-Right-Pointing-Pointer Seven flavonoids (100 nM-1 {mu}M) failed to reduce NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer Four flavonoids (100 nM-1 {mu}M) failed to reduce TNFa-stimulated NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer (-)-Epicatechin did not regulate nuclear translocation of the NF-{kappa}B subunit, p65. -- Abstract: Neuroinflammation plays an important role in the progression of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Sustained activation of nuclear transcription factor {kappa}B (NF-{kappa}B) is thought to play an importantmore » role in the pathogenesis of neurodegenerative disorders. Flavonoids have been shown to possess antioxidant and anti-inflammatory properties and we investigated whether flavonoids, at submicromolar concentrations relevant to their bioavailability from the diet, were able to modulate NF-{kappa}B signalling in astrocytes. Using luciferase reporter assays, we found that tumour necrosis factor (TNF{alpha}, 150 ng/ml) increased NF-{kappa}B-mediated transcription in primary cultures of mouse cortical astrocytes, which was abolished on co-transfection of a dominant-negative I{kappa}B{alpha} construct. In addition, TNF{alpha} increased nuclear localisation of p65 as shown by immunocytochemistry. To investigate potential flavonoid modulation of NF-{kappa}B activity, astrocytes were treated with flavonoids from different classes; flavan-3-ols ((-)-epicatechin and (+)-catechin), flavones (luteolin and chrysin), a flavonol (kaempferol) or the flavanones (naringenin and hesperetin) at dietary-relevant concentrations (0.1-1 {mu}M) for 18 h. None of the flavonoids modulated constitutive or

  4. Different effects of antisense RelA p65 and NF-kappaB1 p50 oligonucleotides on the nuclear factor-kappaB mediated expression of ICAM-1 in human coronary endothelial and smooth muscle cells.

    PubMed

    Voisard, R; Huber, N; Baur, R; Susa, M; Ickrath, O; Both, A; Koenig, W; Hombach, V

    2001-01-01

    Activation of nuclear factor-kappaB (NF-kappaB) is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-alpha (TNF-alpha) induced and NF-kappaB mediated expression of intercellular adhesion molecule-1 (ICAM-1) can be inhibited by antisense RelA p65 and NF-kappaB1 p50 oligonucleotides (RelA p65 and NF-kappaB1 p50). Smooth muscle cells (SMC) from human coronary plaque material (HCPSMC, plaque material of 52 patients), SMC from the human coronary media (HCMSMC), human endothelial cells (EC) from umbilical veins (HUVEC), and human coronary EC (HCAEC) were successfully isolated (HCPSMC, HUVEC), identified and cultured (HCPSMC, HCMSMC, HUVEC, HCAEC). 12 hrs prior to TNF-alpha stimulus (20 ng/mL, 6 hrs) RelA p65 and NF-kappaB1 p50 (1, 2, 4, 10, 20, and 30 microM) and controls were added for a period of 18 hrs. In HUVEC and HCAEC there was a dose dependent inhibition of ICAM-1 expression after adding of both RelA p65 and NF-kappaB1 p50. No inhibitory effect was seen after incubation of HCMSMC with RelA p65 and NF-kappaB1 p50. A moderate inhibition of ICAM-1 expression was found after simultaneous addition of RelA p65 and NF-kappaB1 p50 to HCPSMC, no inhibitory effect was detected after individual addition of RelA p65 and NF-kappaB1 p50. The data point out that differences exist in the NF-kappaB mediated expression of ICAM-1 between EC and SMC. Experimental antisense strategies directed against RelA p65 and NF-kappaB1 p50 in early atherosclerosis and restenosis are promising in HCAEC but will be confronted with redundant pathways in HCMSMC and HCPSMC.

  5. NF-kappaB activation in hypothalamic pro-opiomelanocortin neurons is essential in illness- and leptin-induced anorexia.

    PubMed

    Jang, Pil-Geum; Namkoong, Cherl; Kang, Gil Myoung; Hur, Man-Wook; Kim, Seung-Whan; Kim, Geun Hyang; Kang, Yeoungsup; Jeon, Min-Jae; Kim, Eun Hee; Lee, Myung-Shik; Karin, Michael; Baik, Ja-Hyun; Park, Joong-Yeol; Lee, Ki-Up; Kim, Young-Bum; Kim, Min-Seon

    2010-03-26

    Anorexia and weight loss are prevalent in infectious diseases. To investigate the molecular mechanisms underlying these phenomena, we established animal models of infection-associated anorexia by administrating bacterial and viral products, lipopolysaccharide (LPS) and human immunodeficiency virus-1 transactivator protein (Tat). In these models, we found that the nuclear factor-kappaB (NF-kappaB), a pivotal transcription factor for inflammation-related proteins, was activated in the hypothalamus. In parallel, administration of LPS and Tat increased hypothalamic pro-inflammatory cytokine production, which was abrogated by inhibition of hypothalamic NF-kappaB. In vitro, NF-kappaB activation directly stimulated the transcriptional activity of pro-opiomelanocortin (POMC), a precursor of anorexigenic melanocortin, and mediated the stimulatory effects of LPS, Tat, and pro-inflammatory cytokines on POMC transcription, implying the involvement of NF-kappaB in controlling feeding behavior. Consistently, hypothalamic injection of LPS and Tat caused a significant reduction in food intake and body weight, which was prevented by blockade of NF-kappaB and melanocortin. Furthermore, disruption of I kappaB kinase-beta, an upstream kinase of NF-kappaB, in POMC neurons attenuated LPS- and Tat-induced anorexia. These findings suggest that infection-associated anorexia and weight loss are mediated via NF-kappaB activation in hypothalamic POMC neurons. In addition, hypothalamic NF-kappaB was activated by leptin, an important anorexigenic hormone, and mediates leptin-stimulated POMC transcription, indicating that hypothalamic NF-kappaB also serves as a downstream signaling pathway of leptin.

  6. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  7. The cachectic mediator proteolysis inducing factor activates NF-kappaB and STAT3 in human Kupffer cells and monocytes.

    PubMed

    Watchorn, Tammy M; Dowidar, Nabil; Dejong, Cornelis H C; Waddell, Ian D; Garden, O James; Ross, James A

    2005-10-01

    A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells, the resident macrophages of the liver, and in monocytes, resulting in the production of pro-inflammatory cytokines. Normal liver tissue was obtained from patients undergoing partial hepatectomy and Kupffer cells were isolated. Monocytes were isolated from peripheral blood. Following exposure to native PIF, pro-inflammatory cytokine production from Kupffer cells and monocytes was measured and the NF-kappaB and STAT3 transcriptional pathways were investigated using electrophoretic mobility shift assays. We demonstrate that PIF is able to activate the transcription factor NF-kappaB and NF-kappaB-inducible genes in human Kupffer cells, and in monocytes, resulting in the production of pro-inflammatory cytokines such as TNF-alpha, IL-8 and IL-6. PIF enhances the expression of the cell surface molecules LFA-1 and CD14 on macrophages. PIF also activates the transcription factor STAT3 in Kupffer cells. The pro-inflammatory effects of PIF, mediated via NF-kappaB and STAT3, are important in macrophage behaviour and may contribute to the inflammatory pro-cachectic process in the liver.

  8. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genetos, Damian C., E-mail: dgenetos@ucdavis.edu; Karin, Norman J.; Geist, Derik J.

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that themore » P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.« less

  9. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jian; Tan Juan; Zhang Xihui

    2010-05-10

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-kappaB (NF-kappaB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-kappaB pathway through the action of its transactivator, BTas. Both cellular IKKbeta and IkappaBalpha also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-kappaB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKalpha and IKKbeta), which may bemore » responsible for regulation of IKK kinase activity and persistent NF-kappaB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-kappaB. Together, this study suggests that BFV activates the NF-kappaB pathway through BTas to enhance viral transcription.« less

  10. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription.

    PubMed

    Wang, Jian; Tan, Juan; Zhang, Xihui; Guo, Hongyan; Zhang, Qicheng; Guo, Tingting; Geng, Yunqi; Qiao, Wentao

    2010-05-10

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-kappaB (NF-kappaB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-kappaB pathway through the action of its transactivator, BTas. Both cellular IKKbeta and IkappaBalpha also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-kappaB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKalpha and IKKbeta), which may be responsible for regulation of IKK kinase activity and persistent NF-kappaB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-kappaB. Together, this study suggests that BFV activates the NF-kappaB pathway through BTas to enhance viral transcription. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3–1 cells

    PubMed Central

    Finotti, Alessia; Borgatti, Monica; Bezzerri, Valentino; Nicolis, Elena; Lampronti, Ilaria; Dechecchi, Maria; Mancini, Irene; Cabrini, Giulio; Saviano, Michele; Avitabile, Concetta; Romanelli, Alessandra; Gambari, Roberto

    2012-01-01

    One of the clinical features of cystic fibrosis (CF) is a deep inflammatory process, which is characterized by production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against CF to reduce the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. In order to demonstrate that TFD against NF-kappaB interferes with the NF-kappaB pathway we proved, by chromatin immunoprecipitation (ChIP) that treatment with TFD oligodeoxyribonucleotides of cystic fibrosis IB3–1 cells infected with Pseudomonas aeruginosa leads to a decrease occupancy of the Il-8 gene promoter by NF-kappaB factors. In order to develop more stable therapeutic molecules, peptide nucleic acids (PNAs) based agents were considered. In this respect PNA-DNA-PNA (PDP) chimeras are molecules of great interest from several points of view: (1) they can be complexed with liposomes and microspheres; (2) they are resistant to DNases, serum and cytoplasmic extracts; (3) they are potent decoy molecules. By using electrophoretic mobility shift assay and RT-PCR analysis we have demonstrated that (1) the effects of PDP/PDP NF-kappaB decoy chimera on accumulation of pro-inflammatory mRNAs in P.aeruginosa infected IB3–1 cells reproduce that of decoy oligonucleotides; in particular (2) the PDP/PDP chimera is a strong inhibitor of IL-8 gene expression; (3) the effect of PDP/PDP chimeras, unlike those of ODN-based decoys, are observed even in the absence of protection with lipofectamine. These informations are of great impact, in our opinion, for the development of stable molecules to be used in non-viral gene therapy of cystic fibrosis. PMID:22772035

  12. NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope.

    PubMed

    Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido

    2004-03-01

    The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.

  13. Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NF{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliseev, Roman A.; Schwarz, Edward M.; Zuscik, Michael J.

    2006-01-01

    The transcription factor NF{kappa}B is constitutively activated in various tumor cells where it promotes proliferation and represses apoptosis. The bone morphogenetic proteins (BMPs) delay cell proliferation and promote differentiation and apoptosis of bone cells through activation of Smad downstream effectors and via Smad-independent mechanisms. Thus, NF{kappa}B and BMP pathways play opposing roles in regulating osteoblastic cell fate. Here, we show that in osteosarcoma Saos2 osteoblasts, NF{kappa}B regulates the activity of the BMP/Smad signaling. Inhibition of NF{kappa}B by overexpression of mI{kappa}B leads to the induction of osteoblast differentiation. Saos2 cells overexpressing mI{kappa}B (Saos2-mI{kappa}B) exhibit higher expression of osteoblast phenotypic genes suchmore » as alkaline phosphatase, Runx2 and osteocalcin and are more responsive to BMP2 in comparison to wild-type cells (Saos2-wt) or empty vector infected controls (Saos2-EV). Furthermore, BMP-2 signaling and Smad phosphorylation are significantly increased in Saos2-mI{kappa}B cells in comparison to Saos2-EV cells. Inhibition of NF{kappa}B signaling in Saos2-mI{kappa}B cells is associated with decreased expression of the BMP signaling inhibitor Smad7. While gain of Smad7 function in Saos2-mI{kappa}B cells results in inhibition of BMP signaling, anti-sense knockdown of Smad7 in Saos2-EV cells leads to upregulation of BMP signaling. We therefore conclude that in osteosarcoma Saos2 cells, NF{kappa}B represses BMP/Smad signaling and BMP2-induced differentiation through Smad7.« less

  14. Pre-folding IkappaBalpha alters control of NF-kappaB signaling.

    PubMed

    Truhlar, Stephanie M E; Mathes, Erika; Cervantes, Carla F; Ghosh, Gourisankar; Komives, Elizabeth A

    2008-06-27

    Transcription complex components frequently show coupled folding and binding but the functional significance of this mode of molecular recognition is unclear. IkappaBalpha binds to and inhibits the transcriptional activity of NF-kappaB via its ankyrin repeat (AR) domain. The beta-hairpins in ARs 5-6 in IkappaBalpha are weakly-folded in the free protein, and their folding is coupled to NF-kappaB binding. Here, we show that introduction of two stabilizing mutations in IkappaBalpha AR 6 causes ARs 5-6 to fold cooperatively to a conformation similar to that in NF-kappaB-bound IkappaBalpha. Free IkappaBalpha is degraded by a proteasome-dependent but ubiquitin-independent mechanism, and this process is slower for the pre-folded mutants both in vitro and in cells. Interestingly, the pre-folded mutants bind NF-kappaB more weakly, as shown by both surface plasmon resonance and isothermal titration calorimetry in vitro and immunoprecipitation experiments from cells. One consequence of the weaker binding is that resting cells containing these mutants show incomplete inhibition of NF-kappaB activation; they have significant amounts of nuclear NF-kappaB. Additionally, the weaker binding combined with the slower rate of degradation of the free protein results in reduced levels of nuclear NF-kappaB upon stimulation. These data demonstrate clearly that the coupled folding and binding of IkappaBalpha is critical for its precise control of NF-kappaB transcriptional activity.

  15. Dexamethasone potently enhances phorbol ester-induced IL-1beta gene expression and nuclear factor NF-kappaB activation.

    PubMed

    Wang, Y; Zhang, J J; Dai, W; Lei, K Y; Pike, J W

    1997-07-15

    The synthetic glucocorticoid dexamethasone, an immunosuppressive and anti-inflammatory agent, was investigated for its effect on PMA-mediated expression of the inflammatory cytokine IL-1beta in the human monocytic leukemic cell line THP-1. PMA alone induced the production of low levels of IL-1beta in THP-1 cells, whereas dexamethasone alone had no effect. However, dexamethasone potently enhanced PMA-mediated IL-1beta production. Using a selective and potent inhibitor of protein kinase C, we found that synergistic interaction between PMA and dexamethasone requires protein kinase C activation. PMA has been known to activate nuclear factor NF-kappaB in THP-1 cells. Using an oligonucleotide probe corresponding to an NF-kappaB DNA-binding motif of the IL-1beta gene promoter in gel electrophoresis mobility shift assays, we demonstrated that PMA-induced NF-kappaB activation was greatly potentiated by dexamethasone. Our results indicate that glucocorticoids can be positive regulators of inflammatory cytokine gene expression during monocytic cell differentiation.

  16. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Jana V., E-mail: Jana.maier@kit.edu; Volz, Yvonne; Berger, Caroline

    2010-10-22

    Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulatemore » the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.« less

  17. TAK1 regulates NF-{Kappa}B and AP-1 activation in airway epithelial cells following RSV infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Nilay; Liu Tianshuang; Garofalo, Roberto P.

    2011-09-30

    Respiratory syncytial virus (RSV) is the most common cause of epidemic respiratory diseases in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B) and AP-1. In this study, we have investigated the signaling pathway leading to activation of these two transcription factors in response to RSV infection. Our results show that IKK{beta} plays a key role in viral-induced NF-{kappa}B activation, while JNK regulates AP-1-dependent gene transcription, as demonstrated by using kinase inactive proteins and chemical inhibitors of the two kinases.more » Inhibition of TAK1 activation, by overexpression of kinase inactive TAK1 or using cells lacking TAK1 expression, significantly reduced RSV-induced NF-{kappa}B and AP-1 nuclear translocation and DNA-binding activity, as well as NF-{kappa}B-dependent gene expression, identifying TAK1 as an important upstream signaling molecule regulating RSV-induced NF-{kappa}B and AP-1 activation. - Highlights: > IKK{beta} is a major kinase involved in RSV-induced NF-{kappa}B activation. > JNK regulates AP-1-dependent gene transcription in RSV infection. > TAK1 is a critical upstream signaling molecule for both pathways in infected cells.« less

  18. Porcine circovirus type 2 induces the activation of nuclear factor kappa B by I{kappa}B{alpha} degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Li; Kwang, Jimmy; Wang Jin

    The transcription factor NF-{kappa}B is commonly activated upon virus infection and a key player in the induction and regulation of the host immune response. The present study demonstrated for the first time that porcine circovirus type 2 (PCV2), which is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome, can activate NF-{kappa}B in PCV2-infected PK15 cells. In PCV2-infected cells, NF-{kappa}B was activated concomitantly with viral replication, which was characterized by increased DNA binding activity, translocation of NF-{kappa}B p65 from the cytoplasm to the nucleus, as well as degradation and phosphorylation of I{kappa}B{alpha} protein. We further demonstratedmore » PCV2-induced activation of NF-{kappa}B and colocalization of p65 nuclear translocation with virus replication in cultured cells. Treatment of cells with CAPE, a selective inhibitor of NF-{kappa}B activation, reduced virus protein expression and progeny production followed by decreasing PCV2-induced apoptotic caspase activity, indicating the involvement of this transcription factor in induction of cell death. Taken together, these data suggest that NF-{kappa}B activation is important for PCV2 replication and contributes to virus-mediated changes in host cells. The results presented here provide a basis for understanding molecular mechanism of PCV2 infection.« less

  19. NF-kappaB: Two Sides of the Same Coin.

    PubMed

    Pires, Bruno R B; Silva, Rafael C M C; Ferreira, Gerson M; Abdelhay, Eliana

    2018-01-09

    Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.

  20. Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action.

    PubMed

    Miller, Susanne C; Huang, Ruili; Sakamuru, Srilatha; Shukla, Sunita J; Attene-Ramos, Matias S; Shinn, Paul; Van Leer, Danielle; Leister, William; Austin, Christopher P; Xia, Menghang

    2010-05-01

    Nuclear factor-kappa B (NF-kappaB) is a transcription factor that plays a critical role across many cellular processes including embryonic and neuronal development, cell proliferation, apoptosis, and immune responses to infection and inflammation. Dysregulation of NF-kappaB signaling is associated with inflammatory diseases and certain cancers. Constitutive activation of NF-kappaB signaling has been found in some types of tumors including breast, colon, prostate, skin and lymphoid, hence therapeutic blockade of NF-kappaB signaling in cancer cells provides an attractive strategy for the development of anticancer drugs. To identify small molecule inhibitors of NF-kappaB signaling, we screened approximately 2800 clinically approved drugs and bioactive compounds from the NIH Chemical Genomics Center Pharmaceutical Collection (NPC) in a NF-kappaB mediated beta-lactamase reporter gene assay. Each compound was tested at fifteen different concentrations in a quantitative high throughput screening format. We identified nineteen drugs that inhibited NF-kappaB signaling, with potencies as low as 20 nM. Many of these drugs, including emetine, fluorosalan, sunitinib malate, bithionol, narasin, tribromsalan, and lestaurtinib, inhibited NF-kappaB signaling via inhibition of IkappaBalpha phosphorylation. Others, such as ectinascidin 743, chromomycin A3 and bortezomib utilized other mechanisms. Furthermore, many of these drugs induced caspase 3/7 activity and had an inhibitory effect on cervical cancer cell growth. Our results indicate that many currently approved pharmaceuticals have previously unappreciated effects on NF-kappaB signaling, which may contribute to anticancer therapeutic effects. Comprehensive profiling of approved drugs provides insight into their molecular mechanisms, thus providing a basis for drug repurposing. Published by Elsevier Inc.

  1. NF-{kappa}B p65 represses {beta}-catenin-activated transcription of cyclin D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Injoo; Choi, Yong Seok; Jeon, Mi-Ya

    2010-12-03

    Research highlights: {yields} Cyclin D1 transcription is directly activated by {beta}-catenin; however, {beta}-catenin-induced cyclin D1 transcription is reduced by NF-{kappa}B p65. {yields} Protein-protein interaction between NF-{kappa}B p65 and {beta}-catenin might be responsible for p65-mediated repression of cyclin D1. {yields} One of five putative binding sites, located further upstream of other sites, is the major {beta}-catenin binding site in the cyclin D1 promoter. {yields} NF-{kappa}B binding site in cyclin D1 is occupied not only by p65 but also by {beta}-catenin, which is dynamically regulated by the signal. -- Abstract: Signaling crosstalk between the {beta}-catenin and NF-{kappa}B pathways represents a functional network.more » To test whether the crosstalk also occurs on their common target genes, the cyclin D1 promoter was used as a model because it contains binding sites for both proteins. {beta}-catenin activated transcription from the cyclin D1 promoter, while co-expression of NF-{kappa}B p65 reduced {beta}-catenin-induced transcription. Chromatin immunoprecipitation revealed lithium chloride-induced binding of {beta}-catenin on one of the T-cell activating factor binding sites. More interestingly, {beta}-catenin binding was greatly reduced by NF-{kappa}B p65, possibly by the protein-protein interaction between the two proteins. Such a dynamic and complex binding of {beta}-catenin and NF-{kappa}B on promoters might contribute to the regulated expression of their target genes.« less

  2. Direct covalent modification as a strategy to inhibit nuclear factor-kappa B.

    PubMed

    Pande, Vineet; Sousa, Sérgio F; Ramos, Maria João

    2009-01-01

    Nuclear Factor-KkappaB (NF-kappaB) is a transcription factor whose inappropriate activation may result in the development of a number of diseases including cancer, inflammation, neurodegeneration and AIDS. Recent studies on NF-kappaB mediated pathologies, made therapeutic interventions leading to its inhibition an emerging theme in pharmaceutical research. NF-kappaB resides in the cytoplasm and is activated by several time-dependent factors, leading to proteasome-dependent degradation of its inhibitory protein (IkappaB), resulting in free NF-kappaB (p50 and p65 subunits, involved in disease states), which binds to target DNA sites, further resulting in enhanced transcription of several disease associated proteins. The complex pathway of NF-kappaB, finally leading to its DNA binding, has attracted several approaches interfering with this pathway. One such approach is that of a direct covalent modification of NF-kappaB. In this article, we present a critical review on the pharmacological agents that have been studied as inhibitors of NF-kappaB by covalently modifying redox-regulated cysteine residues in its subunits, ultimately resulting in the inhibition of kappaB DNA recognition and binding. Beginning with a general overview of NF-kappaB pathway and several possibilities of chemical interventions, the significance of redox-regulation in NF-kappaB activation and DNA binding is presented. Further, protein S-thiolation, S-nitrosylation and irreversible covalent modification are described as regular biochemical events in the cell, having provided a guideline for the development of NF-kappaB inhibitors discussed further. Although just a handful of inhibitors, with most of them being alkylating agents have been studied in the present context, this approach presents potential for the development of a new class of NF-kappaB-inhibitors.

  3. TRIM45 negatively regulates NF-{kappa}B-mediated transcription and suppresses cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Mio; Sato, Tomonobu; Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer NF-{kappa}B plays an important role in cell survival and carcinogenesis. Black-Right-Pointing-Pointer TRIM45 negatively regulates TNF{alpha}-induced NF-{kappa}B-mediated transcription. Black-Right-Pointing-Pointer TRIM45 overexpression suppresses cell growth. Black-Right-Pointing-Pointer TRIM45 acts as a repressor for the NF-{kappa}B signal and regulates cell growth. -- Abstract: The NF-{kappa}B signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-{kappa}B is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-{kappa}B signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin-proteasome system. It has been reported that overexpression of TRIM45, one ofmore » the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNF{alpha}-induced NF-{kappa}B-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-{kappa}B signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-{kappa}B signal and regulates cell growth.« less

  4. Prevalence of mutations in hepatitis C virus core protein associated with alteration of NF-kappaB activation.

    PubMed

    Mann, Elizabeth A; Stanford, Sandra; Sherman, Kenneth E

    2006-10-01

    The hepatitis C virus (HCV) core protein is a key structural element of the virion but also affects a number of cellular pathways, including nuclear factor kappaB (NF-kappaB) signaling. NF-kappaB is a transcription factor that regulates both anti-apoptotic and pro-inflammatory genes and its activation may contribute to HCV-mediated pathogenesis. Amino acid sequence divergence in core is seen at the genotype level as well as within patient isolates. Recent work has implicated amino acids 9-11 of core in the modulation of NF-kappaB activation. We report that the sequence RKT is highly conserved (93%) at this position across all HCV genotypes, based on sequences collected in the Los Alamos HCV database. Of the 13 types of variants present in the database, the two most prevalent substitutions are RQT and RKP. We further show that core encoding RKP fails to activate NF-kappaB signaling in vitro while NF-kappaB activation by core encoding RQT does not differ from control RKT core. The effect of RKP core is specific to NF-kappaB signaling as activator protein 1 (AP-1) activity is not altered. Further studies are needed to assess potential associations between specific amino acid substitutions at positions 9-11 and liver disease progression and/or response to treatment in individual patients.

  5. NBBA, a synthetic small molecule, inhibits TNF-{alpha}-induced angiogenesis by suppressing the NF-{kappa}B signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam Hee; Jung, Hye Jin; Shibasaki, Futoshi

    2010-01-15

    Nuclear factor-{kappa}B (NF-{kappa}B) is a crucial transcription factor that contributes to cancer development by regulating a number of genes involved in angiogenesis and tumorigenesis. Here, we describe (Z)-N-(3-(7-nitro-3-oxobenzo[d][1,2]selenazol-2(3H)-yl)benzylidene) propan-2-amine oxide (NBBA) as a new anti-angiogenic small molecule that targets NF-{kappa}B activity. NBBA showed stronger growth inhibition on human umbilical vein endothelial cells (HUVECs) than on the cancer cell lines we tested. Moreover, NBBA inhibited tumor necrosis factor-alpha (TNF-{alpha})-induced tube formation and invasion of HUVECs. In addition, NBBA suppressed the neovascularization of chorioallantonic membrane from growing chick embryos in vivo. To address the mode of action of the compound, the effectmore » of NBBA on TNF-{alpha}-induced NF-{kappa}B transcription activity was investigated. NBBA suppressed TNF-{alpha}-induced c-Jun N-terminal kinase phosphorylation, which resulted in suppression of transcription of NF-{kappa}B and its target genes, including interleukin-8, interleukin-1{alpha}, and epidermal growth factor. Collectively, these results demonstrated that NBBA is a new anti-angiogenic small molecule that targets the NF-{kappa}B signaling pathway.« less

  6. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the I{kappa}B/NF-{kappa}B cascade by facilitating I{kappa}B kinase renaturation and blocking its further denaturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan

    2005-07-01

    Heat shock (HS) treatment has been previously shown to suppress the I{kappa}B/nuclear factor-{kappa}B (NF-{kappa}B) cascade by denaturing, and thus inactivating I{kappa}B kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayedmore » TNF-{alpha}-induced I{kappa}B{alpha} degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the I{kappa}B{alpha} stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade by facilitating the renaturation of IKK and blocking its further denaturation.« less

  7. NF-{kappa}B inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Caiyun; Zhou Yamei; Pinkerton, Kent E.

    2008-07-15

    Apoptosis is a vital mechanism for the regulation of cell turnover and plays a critical role in tissue homeostasis and development of many disease processes. Previous studies have demonstrated the apoptotic effect of tobacco smoke; however, the molecular mechanisms by which tobacco smoke triggers apoptosis remain unclear. In the present study we investigated the effects of tobacco smoke on the induction of apoptosis in the lungs of rats and modulation of nuclear factor-kappa B (NF-{kappa}B) in this process. Exposure of rats to 80 mg/m{sup 3} tobacco smoke significantly induced apoptosis in the lungs. Tobacco smoke resulted in inhibition of NF-{kappa}Bmore » activity, noted by suppression of inhibitor of {kappa}B (I{kappa}B) kinase (IKK), accumulation of I{kappa}B{alpha}, decrease of NF-{kappa}B DNA binding activity, and downregulation of NF-{kappa}B-dependent anti-apoptotic proteins, including Bcl-2, Bcl-xl, and inhibitors of apoptosis. Initiator caspases for the death receptor pathway (caspase 8) and the mitochondrial pathway (caspase 9) as well as effector caspase 3 were activated following tobacco smoke exposure. Tobacco smoke exposure did not alter the levels of p53 and Bax proteins. These findings suggest the role of NF-{kappa}B pathway in tobacco smoke-induced apoptosis.« less

  8. NF-kappaB signaling blockade by Bay 11-7085 during early cardiac morphogenesis induces alterations of the outflow tract in chicken heart.

    PubMed

    Hernández-Gutierrez, S; García-Peláez, I; Zentella-Dehesa, A; Ramos-Kuri, M; Hernández-Franco, P; Hernández-Sánchez, F; Rojas, E

    2006-07-01

    Nuclear factor kappaB (NF-kappaB) is a pleiotropic transcription factor implicated in the regulation of diverse morphologic cardiac alterations, for which the p50 and p65 subunits form the most prevalent dimeric form in the heart. NF-kappaB is inactivated by proteins of the IkappaB family, which trap it in the cytoplasm. It is not known whether NF-kappaB influences cardiac development. Here we investigated the role of NF-kappaB in regulating transcription in chicken heart morphogenesis. Specifically, we tested whether NF-kappaB activation is required for normal formation of the outflow tract (OFT) during a critical stage of heart development. We designed a reporter vector with kappaB binding sites for Rel family members in the promoter, upstream from the cDNA of Green Fluorescent Protein (GFP). This construct was injected directly into the developing heart of chicken embryos. NF-kappaB activation was subsequently inhibited by administration of the specific pharmacological agent Bay 11-7085. We found that forced NF-kappaB expression was associated with multiple congenital cardiac alterations of the OFT (mainly IVC, DORV and great arteries stenosis). These findings indicate that blockade of NF-kappaB induces apoptosis and is an important factor in the development of OFT during cardiogenesis. However, it remains unknown which members of the Rel family are relevant in this process.

  9. NF-kappaB: Two Sides of the Same Coin

    PubMed Central

    Silva, Rafael C. M. C.; Ferreira, Gerson M.; Abdelhay, Eliana

    2018-01-01

    Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target. PMID:29315242

  10. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xia, E-mail: zhongxia1977@126.com; Li, Xiaonan; Liu, Fuli

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibitedmore » TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.« less

  11. Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export.

    PubMed

    Chen, Yao; Li, Hong Hai; Fu, Jing; Wang, Xue Feng; Ren, Yi Bin; Dong, Li Wei; Tang, Shan Hua; Liu, Shu Qing; Wu, Meng Chao; Wang, Hong Yang

    2007-12-01

    p28(GANK) (also known as PSMD10, p28 and gankyrin) is an ankyrin repeat anti-apoptotic oncoprotein that is commonly overexpressed in hepatocellular carcinomas and increases the degradation of p53 and Rb. NF-kappaB (nuclear factor-kappaB) is known to be sequestered in the cytoplasm by I kappaB (inhibitor of NF-kappaB) proteins, but much less is known about the cytoplasmic retention of NF-kappaB by other cellular proteins. Here we show that p28(GANK) inhibits NF-kappaB activity. As a nuclear-cytoplasmic shuttling protein, p28(GANK) directly binds to NF-kappaB/RelA and exports RelA from nucleus through a chromosomal region maintenance-1 (CRM-1) dependent pathway, which results in the cytoplasmic retention of NF-kappaB/RelA. We demonstrate that all the ankyrin repeats of p28(GANK) are required for the interaction with RelA and that the N terminus of p28(GANK), which contains the nuclear export sequence (NES), is responsible for suppressing NF-kappaB/RelA nuclear translocation. These results suggest that overexpression of p28(GANK) prevents the nuclear localization and inhibits the activity of NF-kappaB/RelA.

  12. Pyropheophorbide-a methyl ester-mediated photosensitization activates transcription factor NF-kappaB through the interleukin-1 receptor-dependent signaling pathway.

    PubMed

    Matroule, J Y; Bonizzi, G; Morlière, P; Paillous, N; Santus, R; Bours, V; Piette, J

    1999-01-29

    Pyropheophorbide-a methyl ester (PPME) is a second generation of photosensitizers used in photodynamic therapy. We demonstrated that PPME photosensitization activated NF-kappaB transcription factor in colon cancer cells. Unexpectedly, this activation occurred in two separate waves, i.e. a rapid and transient one and a second slower but sustained phase. The former was due to photosensitization by PPME localized in the cytoplasmic membrane which triggered interleukin-1 receptor internalization and the transduction pathways controlled by the interleukin-1 type I receptor. Indeed, TRAF6 dominant negative mutant abolished NF-kappaB activation by PPME photosensitization, and TRAF2 dominant negative mutant was without any effect, and overexpression of IkappaB kinases increased gene transcription controlled by NF-kappaB. Oxidative stress was not likely involved in the activation. On the other hand, the slower and sustained wave could be the product of the release of ceramide through activation of the acidic sphingomyelinase. PPME localization within the lysosomal membrane could explain why ceramide acted as second messenger in NF-kappaB activation by PPME photosensitization. These data will allow a better understanding of the molecular basis of tumor eradication by photodynamic therapy, in particular the importance of the host cell response in the treatment.

  13. NIK and IKKbeta interdependence in NF-kappaB signalling--flux analysis of regulation through metabolites.

    PubMed

    Kim, Hong-Bum; Evans, Iona; Smallwood, Rod; Holcombe, Mike; Qwarnstrom, Eva E

    2010-02-01

    Activation of the transcription factor NF-kappaB is central to control of immune and inflammatory responses. Cytokine induced activation through the classical or canonical pathway relies on degradation of the inhibitor, IkappaBalpha and regulation by the IKKbeta kinase. In addition, the NF-kappaB is activated through the NF-kappaB-inducing kinase, NIK. Analysis of the IKK/NIK inter-relationship and its impact on NF-kappaB control, were analysed by mathematical modelling, using matrix formalism and stoichiometrically balanced reactions. The analysis considered a range of bio-reactions and core metabolites and their role in relation to kinase activation and in control of specific steps of the NF-kappaB pathway. The model predicts a growth-rate and time-dependent transfer of the primary kinase activity from IKKbeta to NIK. In addition, it suggests that NIK/IKKbeta interdependence is controlled by intermediates of phosphoribosylpyrophosphate (PRPP) within the glycolysis pathway, and thus, identifies a link between specific metabolic events and kinase activation in inflammatory signal transduction. Subsequent in vitro experiments, carried out to validate the impact of IKK/NIK interdependence, confirmed signal amplification at the level of the NF-kappaB/IkappaBalpha complex control in the presence of both kinases. Further, they demonstrate that the induced potentiation is due to synergistic enhancement of relA-dependent activation. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  14. Over-expression of Flt3 induces NF-kappaB pathway and increases the expression of IL-6.

    PubMed

    Takahashi, Shinichiro; Harigae, Hideo; Ishii, Keiko Kumura; Inomata, Mitsue; Fujiwara, Tohru; Yokoyama, Hisayuki; Ishizawa, Kenichi; Kameoka, Junichi; Licht, Jonathan D; Sasaki, Takeshi; Kaku, Mitsuo

    2005-08-01

    Activating mutations or over-expression of the Flt3 is prevalent in acute myeloblastic leukemia (AML), associated with activation of Ras/MAP kinase and other signaling pathways. In this study, we addressed the role of Flt3 in the activation of nuclear factor-kappa B (NF-kappaB), which is a target molecule of these kinase pathways. In BaF3 cells stably expressing Flt3, a NF-kappaB-responsive reporter was upregulated and its target gene, IL-6, was increased by the involvement of Flt3-ERK/MAPK-NF-kappaB pathway. Furthermore, we found a modest positive correlation (r=0.35, p=0.096) between Flt3 and IL-6 mRNA expression in 24 AML specimens. These results suggest a role of Flt3 over-expression in NF-kappaB pathway.

  15. Evaluation of NF-kappaB Signaling in T Cells

    DTIC Science & Technology

    2009-01-01

    ranging from myelomas (46) to breast cancer (47) to esophageal cancer (48), to name a few. NF-κB activation is also implicated in several leukemias and...nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer . J Clin Invest 100:2952-2960. 48. Abdel-Latif, M. M., J. O’Riordan, H. J...42), cyclin D1 (43), and cyclin E (44, 45). Furthermore, NF-κB activity has been linked to the proliferation of various types of cancer cells

  16. Nuclear IL-33 is a transcriptional regulator of NF-{kappa}B p65 and induces endothelial cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and ismore » involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.« less

  17. Activation of the Transcription Factor NF-[Kappa]B by Retrieval Is Required for Long-Term Memory Reconsolidation

    ERIC Educational Resources Information Center

    Maldonado, Hector; Romano, Arturo; Merlo, Emiliano; Freudenthal, Ramiro

    2005-01-01

    Several studies support that stored memories undergo a new period of consolidation after retrieval. It is not known whether this process, termed reconsolidation, requires the same transcriptional mechanisms involved in consolidation. Increasing evidence supports the participation of the transcription factor NF-[Kappa]B in memory. This was…

  18. Corneal NF-kappaB activity is necessary for the retention of transparency in the cornea of UV-B-exposed transgenic reporter mice.

    PubMed

    Alexander, George; Carlsen, Harald; Blomhoff, Rune

    2006-04-01

    To determine the dynamics of Nuclear Factor-kappaB (NF-kappaB) in murine corneal pathology and the role of NF-kappaB in maintaining corneal clarity after ultraviolet B radiation insult, transgenic mice containing NF-kappaB-luciferase reporter were exposed to LPS (bacterial lipopolysaccharide), TNF-alpha (Tumor Necrosis Factor-alpha) or 4 kJ m(-2) UV-B radiation. NF-kappaB decoy oligonucleotides were also administered in some of the UV-B experiments. Following various exposure times, the mice were sacrificed and whole eyes or corneal tissues were obtained. Whole eyes were examined for scattering using a point-source optical imaging technique. Tissue homogenates were examined for luciferase activity using a luminometer. TNF-alpha and LPS-injected NF-kappaB-luciferase transgenic mice demonstrated 3-10-fold increases in cornea NF-kappaB with peak activities at 4 and 6 hr post-injection, respectively. Mice exposed to 4 kJ m(-2) UV-B exhibited a 3-fold increase in NF-kappaB activity 4 hr post-exposure. The administration of NF-kappaB-decoy oligonucleotides to mice had the effect of reducing UV-B-induced NF-kappaB activity in the cornea and significantly increasing the amount of light scattering in UV-B exposed corneas 7 days post-UV-B exposure when compared to sham injected mice. These results indicate that NF-kappaB is activated in cornea in pathologies that involves increased plasma levels of LPS and TNF-alpha, as well as direct UV-B exposure, and suggest that NF-kappaB activation play an essential part in the corneal healing process.

  19. Induction of oncogene addiction shift to NF-{kappa}B by camptothecin in solid tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko

    2009-12-04

    The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-{kappa}B activity driven by I{kappa}B kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-{kappa}B inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in thismore » study present an example of the shift in signals that support the survival of solid tumor cells to NF-{kappa}B during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-{kappa}B inhibitors.« less

  20. Pim-2 activates API-5 to inhibit the apoptosis of hepatocellular carcinoma cells through NF-kappaB pathway.

    PubMed

    Ren, Ke; Zhang, Wei; Shi, Yujun; Gong, Jianping

    2010-06-01

    Pim-2 is proved to be relevant to the tumorigenesis of hepatocellular carcinoma (HCC), but the mechanism is unclear. We studied the relationship among Pim-2, NF-kappaB and API-5. In our experiment, expression level of the three factors and phosphorylation level of API-5, as well as NF-kappaB activity, were detected in HCC tissues and the nontumorous controls. Then Pim-2 gene was transfected into nontumorous liver cells L02, and Pim-2 SiRNA was transfected into hepatoblastoma cell line HepG2. Parthenolide was added as NF-kappaB inhibitor. The same detections as above were repeated in the cells, along with the apoptosis analysis. We found the levels of Pim-2, NF-kappaB and API-5, as well as NF-kappaB activity, were significantly higher in HCC tissues. Pim-2 level was increased in L02 cells after the transfection of Pim-2 gene, but decreased in HepG2 cells after the transfection of Pim-2 SiRNA. The levels of NF-kappaB and API-5, as well as NF-kappaB activity and API-5 phosphorylation level, were in accordance with Pim-2 level, but could be reversed by Parthenolide. Cell apoptosis rates were negatively correlated with API-5 phosphorylation level. Therefore, we infer that Pim-2 could activate API-5 to inhibit the apoptosis of liver cells, and NF-kappaB is the key regulator.

  1. Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat.

    PubMed

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-kappaB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-kappaB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-kappaB super- repressor IkappaBalpha resulted in an inhibition of the NF-kappaB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IkappaBalpha overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-kappaB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-kappaB pathway in the development of neuropathic pain after peripheral nerve injury.

  2. Nuclear factor kappa B: a potential target for anti-HIV chemotherapy.

    PubMed

    Pande, V; Ramos, M J

    2003-08-01

    The Nuclear Factor Kappa B (NF-kappaB) is a lymphoid-specific transcription factor, which is sequestered in the cytoplasm by the protein IkappaB. NF-kappaB plays a major role in the regulation of HIV-1 gene expression. Upon activation, NF-kappaB is released from IkappaB, moves to the nucleus, and binds to its sites on the HIV long terminal repeat to start transcription of integrated HIV genome. The present review focuses on the NF-kappaB as a potential target for the development of chemotherapy against HIV-1. Beginning from the viral-binding to reverse transcription, integration, and gene expression, to the virion maturation, the life cycle of HIV presents drug-targets at all the stages. As a result, many drugs have been developed and have entered clinical trials. Some of the most important of these are reverse transcriptase and protease inhibitors, which have been used mostly in clinical studies in the form of combined therapy. But, this combined therapy has presented the problem of resistance, due to mutations in the virus. However, targeting NF-kappaB for the suppression of virus does not present the problem of resistance, as NF-kappaB is a normal part of the human T-4 cell, and is not subject to mutations, as is the virus. An overview of the NF-kappaB system and its role in HIV-1 is presented, followed by a critical review of its current and potential synthetic inhibitors. The drugs studied against NF-kappaB fall mainly into three categories: (1) Antioxidants, against oxidative stress conditions, which aid in NF-kappaB activation, (2) IkappaB phosphorylation and degradation inhibitors (the phosphorylation and degradation of IkappaB is necessary to make NF-kappaB free and move to the nucleus), and (3) NF-kappaB DNA binding inhibitors. The antioxidants include N-Acetyl-L-cysteine (NAC), alpha-Lipoic acid, glutathione monoester, pyrrolidine dithiocarbamate, and tepoxalin, of which NAC is the best studied. The IkappaB phosphorylation and degradation inhibitors

  3. Identification of a novel A20-binding inhibitor of nuclear factor-kappa B activation termed ABIN-2.

    PubMed

    Van Huffel, S; Delaei, F; Heyninck, K; De Valck, D; Beyaert, R

    2001-08-10

    The nuclear factor kappaB (NF-kappaB) plays a central role in the regulation of genes implicated in immune responses, inflammatory processes, and apoptotic cell death. The zinc finger protein A20 is a cellular inhibitor of NF-kappaB activation by various stimuli and plays a critical role in terminating NF-kappaB responses. The underlying mechanism for NF-kappaB inhibition by A20 is still unknown. A20 has been shown to interact with several proteins including tumor necrosis factor (TNF) receptor-associated factors 2 and 6, as well as the inhibitory protein of kappaB kinase (IKK) gamma protein. Here we report the cloning and characterization of ABIN-2, a previously unknown protein that binds to the COOH-terminal zinc finger domain of A20. NF-kappaB activation induced by TNF and interleukin-1 is inhibited by overexpression of ABIN-2. The latter also inhibits NF-kappaB activation induced by overexpression of receptor-interacting protein or TNF receptor-associated factor 2. In contrast, NF-kappaB activation by overexpression of IKKbeta or direct activators of the IKK complex, such as Tax, cannot be inhibited by ABIN-2. These results indicate that ABIN-2 interferes with NF-kappaB activation upstream of the IKK complex and that it might contribute to the NF-kappaB-inhibitory function of A20.

  4. A new structural class of proteasome inhibitors that prevent NF-kappa B activation.

    PubMed

    Lum, R T; Kerwar, S S; Meyer, S M; Nelson, M G; Schow, S R; Shiffman, D; Wick, M M; Joly, A

    1998-05-01

    The multicatalytic proteinase or proteasome is a highly conserved cellular structure that is responsible for the ATP-dependent proteolysis of many proteins involved in important regulatory cellular processes. We have identified a novel class of inhibitors of the chymotrypsin-like proteolytic activity of the 20S proteasome that exhibit IC50 values ranging from 0.1 to 0.5 microgram/mL (0.1 to 1 microM). In cell proliferation assays, these compounds inhibit growth with an IC50 ranging from 5 to 10 micrograms/mL (10-20 microM). A representative member of this class of inhibitors was tested in other biological assays. CVT-634 (5-methoxy-1-indanone-3-acetyl-leu-D-leu-1-indanylamide) prevented lipopolysaccharide (LPS), tumor necrosis factor (TNF)-, and phorbol ester-induced activation of nuclear factor kappa B (NF-kappa B) in vitro by preventing signal-induced degradation of I kappa B-alpha. In these studies, the I kappa B-alpha that accumulated was hyperphosphorylated, indicating that CVT-634 did not inhibit I kappa B-alpha kinase, the enzyme responsible for signal-induced phosphorylation of I kappa B-alpha. In vivo studies indicated that CVT-634 prevented LPS-induced TNF synthesis in a murine macrophage cell line. In addition, in mice pretreated with CVT-634 at 25 and 50 mg/kg and subsequently treated with LPS, serum TNF levels were significantly lower (225 +/- 59 and 83 +/- 41 pg/mL, respectively) than in those mice that were treated only with LPS (865 +/- 282 pg/mL). These studies suggest that specific inhibition of the chymotrypsin-like activity of the proteasome is sufficient to prevent signal-induced NF-kappa B activation and that the proteasome is a novel target for the identification of agents that may be useful in the treatment of diseases whose etiology is dependent upon the activation of NF-kappa B.

  5. Curcumin Modulates the Radiosensitivity of Colorectal Cancer Cells by Suppressing Constitutive and Inducible NF-{kappa}B Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandur, Santosh K.; Deorukhkar, Amit; Pandey, Manoj K.

    2009-10-01

    Purpose: Radiation therapy is an integral part of the preoperative treatment of rectal cancers. However, only a minority of patients achieve a complete pathologic response to therapy because of resistance of these tumors to radiation therapy. This resistance may be mediated by constitutively active pro-survival signaling pathways or by inducible/acquired mechanisms in response to radiation therapy. Simultaneous inhibition of these pathways can sensitize these tumors to radiation therapy. Methods and Materials: Human colorectal cancer cells were exposed to clinically relevant doses of gamma rays, and the mechanism of their radioresistance was investigated. We characterized the transcription factor nuclear factor-{kappa}B (NF-{kappa}B)more » activation as a mechanism of inducible radioresistance in colorectal cancer and used curcumin, the active ingredient in the yellow spice turmeric, to overcome this resistance. Results: Curcumin inhibited the proliferation and the post-irradiation clonogenic survival of multiple colorectal cancer cell lines. Radiation stimulated NF-{kappa}B activity in a dose- and time-dependent manner, whereas curcumin suppressed this radiation-induced NF-{kappa}B activation via inhibition of radiation-induced phosphorylation and degradation of inhibitor of {kappa}B alpha, inhibition of inhibitor of {kappa}B kinase activity, and inhibition of Akt phosphorylation. Curcumin also suppressed NF-{kappa}B-regulated gene products (Bcl-2, Bcl-x{sub L}, inhibitor of apoptosis protein-2, cyclooxygenase-2, and cyclin D1). Conclusions: Our results suggest that transient inducible NF-{kappa}B activation provides a prosurvival response to radiation that may account for development of radioresistance. Curcumin blocks this signaling pathway and potentiates the antitumor effects of radiation therapy.« less

  6. Chronic intermittent hypoxia activates nuclear factor-{kappa}B in cardiovascular tissues in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Harly; Ye Xiaobing; Wilson, David

    2006-05-05

    Obstructive sleep apnea (OSA) is an important risk factor for cardiovascular morbidity and mortality. The mechanisms through which OSA promotes the development of cardiovascular disease are poorly understood. In this study, we tested the hypotheses that chronic exposure to intermittent hypoxia and reoxygenation (CIH) is a major pathologic factor causing cardiovascular inflammation, and that CIH-induces cardiovascular inflammation and pathology by activating the NF-{kappa}B pathway. We demonstrated that exposure of mice to CIH activated NF-{kappa}B in cardiovascular tissues, and that OSA patients had markedly elevated monocyte NF-{kappa}B activity, which was significantly decreased when obstructive apneas and their resultant CIH were eliminatedmore » by nocturnal CPAP therapy. The elevated NF-{kappa}B activity induced by CIH is accompanied by and temporally correlated to the increased expression of iNOS protein, a putative and important NF-{kappa}B-dependent gene product. Thus, CIH-mediated NF-{kappa}B activation may be a molecular mechanism linking OSA and cardiovascular pathologies seen in OSA patients.« less

  7. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Guoping; Liu, Dongxu; Liu, Jing

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likelymore » that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.« less

  8. Neutrality of the canonical NF-kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro.

    PubMed

    Benedict, Chris A; Angulo, Ana; Patterson, Ginelle; Ha, Sukwon; Huang, Huang; Messerle, Martin; Ware, Carl F; Ghazal, Peter

    2004-01-01

    Cytomegalovirus (CMV) is known to rapidly induce activation of nuclear factor kappaB (NF-kappaB) after infection of fibroblast and macrophage cells. NF-kappaB response elements are present in the enhancer region of the CMV major immediate-early promoter (MIEP), and activity of the MIEP is strongly upregulated by NF-kappaB in transient-transfection assays. Here we investigate whether the NF-kappaB-dependent pathway is required for initiating or potentiating human and murine CMV replication in vitro. We show that expression of a dominant negative mutant of the inhibitor of NF-kappaB-alpha (IkappaBalphaM) does not alter the replication kinetics of human or mouse CMV in cultured cells. In addition, mouse embryo fibroblasts genetically deficient for p65/RelA actually showed elevated levels of MCMV replication. Mutation of all NF-kappaB response elements within the enhancer of the MIEP in a recombinant mouse CMV containing the human MIEP (hMCMV-ES), which we have previously shown to replicate in murine fibroblasts with kinetics equivalent to that of wild-type mouse CMV, did not negatively affect replication in fibroblasts. Taken together, these data show that, for CMV replication in cultured fibroblasts activation of the canonical NF-kappaB pathway and binding of NF-kappaB to the MIEP are dispensable, and in the case of p65 may even interfere, thus uncovering a previously unrecognized level of complexity in the host regulatory network governing MIE gene expression in the context of a viral infection.

  9. High-level replication of human immunodeficiency virus in thymocytes requires NF-kappaB activation through interaction with thymic epithelial cells.

    PubMed

    Chêne, L; Nugeyre, M T; Barré-Sinoussi, F; Israël, N

    1999-03-01

    We have previously demonstrated that interaction of infected thymocytes with autologous thymic epithelial cells (TEC) is a prerequisite for a high level of human immunodeficiency virus type 1 (HIV-1) replication in thymocytes (M. Rothe, L. Chêne, M. Nugeyre, F. Barré-Sinoussi, and N. Israël, J. Virol. 72:5852-5861, 1998). We report here that this activation of HIV replication takes place at the transcriptional level through activation of the Rel/NF-kappaB transcription factors. We first demonstrate that an HIV-1 provirus (SF-2 strain) very effectively replicates in thymocytes cocultured with TEC whereas this provirus, with kappaB sites deleted, fails to replicate. We provide evidence that several NF-kappaB complexes are constitutively found in the nuclei of thymocytes either freshly isolated from the thymus or maintained in coculture with autologous or heterologous TEC. The prevalent complex is the heterodimer p50-p65. NF-kappaB activity is tightly correlated with the transcriptional activity of a long terminal repeat (LTR) of HIV-1 transfected in thymocytes. The cotransfection of this LTR with a mutated IkappaBalpha molecule formally demonstrates that LTR transactivation is regulated by members of the Rel/NF-kappaB family in thymocytes. We also showed that tumor necrosis factor (TNF) and to a lesser extent interleukin-1 (IL-1), secreted within the coculture, induce NF-kappaB activity and a correlative LTR transactivation. However IL-7, a crucial factor for thymopoiesis that is secreted mainly by TEC, is a necessary cofactor for NF-kappaB activation elicited by TNF or IL-1. Together, these data indicate that NF-kappaB activation, required for a high level of HIV replication in thymocytes, is regulated in a specific manner in the thymic microenvironment which provides the necessary cytokines: TNF, IL-1, and IL-7.

  10. African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B.

    PubMed

    Rodríguez, Clara I; Nogal, María L; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda

    2002-04-01

    African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-kappaB. Thus, transient transfection of the viral IAP increases the activity of an NF-kappaB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-kappaB-dependent gene. NF-kappaB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-kappaB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-kappaB activity seems to be the consequence of higher IkappaB kinase (IKK) basal activity in these cells. The NF-kappaB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2.

  11. Salicylates inhibit flavivirus replication independently of blocking nuclear factor kappa B activation.

    PubMed

    Liao, C L; Lin, Y L; Wu, B C; Tsao, C H; Wang, M C; Liu, C I; Huang, Y L; Chen, J H; Wang, J P; Chen, L K

    2001-09-01

    Flaviviruses comprise a positive-sense RNA genome that replicates exclusively in the cytoplasm of infected cells. Whether flaviviruses require an activated nuclear factor(s) to complete their life cycle and trigger apoptosis in infected cells remains elusive. Flavivirus infections quickly activate nuclear factor kappa B (NF-kappaB), and salicylates have been shown to inhibit NF-kappaB activation. In this study, we investigated whether salicylates suppress flavivirus replication and virus-induced apoptosis in cultured cells. In a dose-dependent inhibition, we found salicylates within a range of 1 to 5 mM not only restricted flavivirus replication but also abrogated flavivirus-triggered apoptosis. However, flavivirus replication was not affected by a specific NF-kappaB peptide inhibitor, SN50, and a proteosome inhibitor, lactacystin. Flaviviruses also replicated and triggered apoptosis in cells stably expressing IkappaBalpha-DeltaN, a dominant-negative mutant that antagonizes NF-kappaB activation, as readily as in wild-type BHK-21 cells, suggesting that NF-kappaB activation is not essential for either flavivirus replication or flavivirus-induced apoptosis. Salicylates still diminished flavivirus replication and blocked apoptosis in the same IkappaBalpha-DeltaN cells. This inhibition of flaviviruses by salicylates could be partially reversed by a specific p38 mitogen-activated protein (MAP) kinase inhibitor, SB203580. Together, these results show that the mechanism by which salicylates suppress flavivirus infection may involve p38 MAP kinase activity but is independent of blocking the NF-kappaB pathway.

  12. Polycystin-1 promotes PKC{alpha}-mediated NF-{kappa}B activation in kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzi, Manuela; Aguiari, Gianluca; Trimi, Viky

    2006-11-17

    Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-{kappa}B signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293{sup CTT}), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-{kappa}B nuclear levels and NF-{kappa}B-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-{kappa}B promoter activation was mediated by PKC{alpha}more » because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293{sup CTT} cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-{kappa}B inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKC{alpha}-mediated NF-{kappa}B signalling and cell survival.« less

  13. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65.

    PubMed

    Masuhara, Masaaki; Sato, Takuya; Hada, Naoto; Hakeda, Yoshiyuki

    2009-01-01

    Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.

  14. Human immunodeficiency virus type 1 Nef protein inhibits NF-kappa B induction in human T cells.

    PubMed Central

    Niederman, T M; Garcia, J V; Hastings, W R; Luria, S; Ratner, L

    1992-01-01

    Human immunodeficiency virus type 1 (HIV-1) can establish a persistent and latent infection in CD4+ T lymphocytes (W. C. Greene, N. Engl. J. Med. 324:308-317, 1991; S. M. Schnittman, M. C. Psallidopoulos, H. C. Lane, L. Thompson, M. Baseler, F. Massari, C. H. Fox, N. P. Salzman, and A. S. Fauci, Science 245:305-308, 1989). Production of HIV-1 from latently infected cells requires host cell activation by T-cell mitogens (T. Folks, D. M. Powell, M. M. Lightfoote, S. Benn, M. A. Martin, and A. S. Fauci, Science 231:600-602, 1986; D. Zagury, J. Bernard, R. Leonard, R. Cheynier, M. Feldman, P. S. Sarin, and R. C. Gallo, Science 231:850-853, 1986). This activation is mediated by the host transcription factor NF-kappa B [G. Nabel and D. Baltimore, Nature (London) 326:711-717, 1987]. We report here that the HIV-1-encoded Nef protein inhibits the induction of NF-kappa B DNA-binding activity by T-cell mitogens. However, Nef does not affect the DNA-binding activity of other transcription factors implicated in HIV-1 regulation, including SP-1, USF, URS, and NF-AT. Additionally, Nef inhibits the induction of HIV-1- and interleukin 2-directed gene expression, and the effect on HIV-1 transcription depends on an intact NF-kappa B-binding site. These results indicate that defective recruitment of NF-kappa B may underlie Nef's negative transcriptional effects on the HIV-1 and interleukin 2 promoters. Further evidence suggests that Nef inhibits NF-kappa B induction by interfering with a signal derived from the T-cell receptor complex. Images PMID:1527859

  15. Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-kappaB decoy molecules.

    PubMed

    Crinelli, Rita; Carloni, Elisa; Menotta, Michele; Giacomini, Elisa; Bianchi, Marzia; Ambrosi, Gianluca; Giorgi, Luca; Magnani, Mauro

    2010-05-25

    Oligonucleotide (ODN) decoys are synthetic ODNs containing the DNA binding sequence of a transcription factor. When delivered to cells, these molecules can compete with endogenous sequences for binding the transcription factor, thus inhibiting its ability to activate the expression of target genes. Modulation of gene expression by decoy ODNs against nuclear factor-kappaB (NF-kappaB), a transcription factor regulating many genes involved in immunity, has been achieved in a variety of immune/inflammatory disorders. However, the successful use of transcription factor decoys depends on an efficient means to bring the synthetic DNA to target cells. It is known that single-walled carbon nanotubes (SWCNTs), under certain conditions, are able to cross the cell membrane. Thus, we have evaluated the possibility to functionalize SWCNTs with decoy ODNs against NF-kappaB in order to improve their intracellular delivery. To couple ODNs to CNTs, we have exploited the carbodiimide chemistry which allows covalent binding of amino-modified ODNs to carboxyl groups introduced onto SWCNTs through oxidation. The effective binding of ODNs to nanotubes has been demonstrated by a combination of microscopic, spectroscopic, and electrophoretic techniques. The uptake and subcellular distribution of ODN decoys bound to SWCNTs was analyzed by fluorescence microscopy. ODNs were internalized into macrophages and accumulated in the cytosol. Moreover, no cytotoxicity associated with SWCNT administration was observed. Finally, NF-kappaB-dependent gene expression was significantly reduced in cells receiving nanomolar concentrations of SWCNT-NF-kappaB decoys compared to cells receiving SWCNTs or SWCNTs functionalized with a nonspecific ODN sequence, demonstrating both efficacy and specificity of the approach.

  16. T cell-intrinsic requirement for NF-kappa B induction in postdifferentiation IFN-gamma production and clonal expansion in a Th1 response.

    PubMed

    Corn, Radiah A; Aronica, Mark A; Zhang, Fuping; Tong, Yingkai; Stanley, Sarah A; Kim, Se Ryoung Agnes; Stephenson, Linda; Enerson, Ben; McCarthy, Susan; Mora, Ana; Boothby, Mark

    2003-08-15

    NF-kappaB/Rel transcription factors are linked to innate immune responses and APC activation. Whether and how the induction of NF-kappaB signaling in normal CD4(+) T cells regulates effector function are not well-understood. The liberation of NF-kappaB dimers from inhibitors of kappaB (IkappaBs) constitutes a central checkpoint for physiologic regulation of most forms of NF-kappaB. To investigate the role of NF-kappaB induction in effector T cell responses, we targeted inhibition of the NF-kappaB/Rel pathway specifically to T cells. The Th1 response in vivo is dramatically weakened when T cells defective in their NF-kappaB induction (referred to as IkappaBalpha(DeltaN) transgenic cells) are activated by a normal APC population. Analyses in vivo, and IL-12-supplemented T cell cultures in vitro, reveal that the mechanism underlying this T cell-intrinsic requirement for NF-kappaB involves activation of the IFN-gamma gene in addition to clonal expansion efficiency. The role of NF-kappaB in IFN-gamma gene expression includes a modest decrease in Stat4 activation, T box expressed in T cell levels, and differentiation efficiency along with a more prominent postdifferentiation step. Further, induced expression of Bcl-3, a trans-activating IkappaB-like protein, is decreased in T cells as a consequence of NF-kappaB inhibition. Together, these findings indicate that NF-kappaB induction in T cells regulates efficient clonal expansion, Th1 differentiation, and IFN-gamma production by Th1 lymphocytes at a control point downstream from differentiation.

  17. Thalidomide suppresses NF-kappa B activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester.

    PubMed

    Majumdar, Sekhar; Lamothe, Betty; Aggarwal, Bharat B

    2002-03-15

    Thalidomide ([+]-alpha-phthalimidoglutarimide), a psychoactive drug that readily crosses the blood-brain barrier, has been shown to exhibit anti-inflammatory, antiangiogenic, and immunosuppressive properties through a mechanism that is not fully established. Due to the central role of NF-kappaB in these responses, we postulated that thalidomide mediates its effects through suppression of NF-kappaB activation. We investigated the effects of thalidomide on NF-kappaB activation induced by various inflammatory agents in Jurkat cells. The treatment of these cells with thalidomide suppressed TNF-induced NF-kappaB activation, with optimum effect occurring at 50 microg/ml thalidomide. These effects were not restricted to T cells, as other hematopoietic and epithelial cell types were also inhibited. Thalidomide suppressed H(2)O(2)-induced NF-kappaB activation but had no effect on NF-kappaB activation induced by PMA, LPS, okadaic acid, or ceramide, suggesting selectivity in suppression of NF-kappaB. The suppression of TNF-induced NF-kappaB activation by thalidomide correlated with partial inhibition of TNF-induced degradation of an inhibitory subunit of NF-kappaB (IkappaBalpha), abrogation of IkappaBalpha kinase activation, and inhibition of NF-kappaB-dependent reporter gene expression. Thalidomide abolished the NF-kappaB-dependent reporter gene expression activated by overexpression of TNFR1, TNFR-associated factor-2, and NF-kappaB-inducing kinase, but not that activated by the p65 subunit of NF-kappaB. Overall, our results clearly demonstrate that thalidomide suppresses NF-kappaB activation specifically induced by TNF and H(2)O(2) and that this may contribute to its role in suppression of proliferation, inflammation, angiogenesis, and the immune system.

  18. CAPERalpha is a novel Rel-TAD-interacting factor that inhibits lymphocyte transformation by the potent Rel/NF-kappaB oncoprotein v-Rel.

    PubMed

    Dutta, Jui; Fan, Gaofeng; Gélinas, Céline

    2008-11-01

    The Rel/NF-kappaB transcription factors are constitutively activated in many human cancers. The Rel proteins in this family are implicated in leukemia/lymphomagenesis, but the mechanism is not completely understood. Previous studies showed that the transcription activation domains (TADs) of the viral oncoprotein v-Rel and its cellular Rel/NF-kappaB homologues c-Rel and RelA are key determinants of their different transforming activities in primary lymphocytes. Substitution of a Rel TAD for that of RelA conferred a strong transforming phenotype upon RelA, which otherwise failed to transform cells. To gain insights into protein interactions that influence cell transformation by the Rel TADs, we identified factors that interact with the TAD of v-Rel, the most oncogenic member of the Rel/NF-kappaB family. We report that the coactivator for transcription factors AP-1 and estrogen receptors, CAPERalpha, interacts with the v-Rel TAD and potently synergizes v-Rel-mediated transactivation. Importantly, coexpression of CAPERalpha markedly reduced and delayed v-Rel's transforming activity in primary lymphocytes, whereas a dominant-negative mutant enhanced the kinetics of v-Rel-mediated transformation. Furthermore, small interfering RNA-mediated knockdown of CAPERalpha in v-Rel-transformed lymphocytes significantly enhanced colony formation in soft agar. Since the potency of Rel-mediated transactivation is an important determinant of lymphocyte transformation, as is Rel's ability to induce transcriptional repression, these data suggest that CAPERalpha's interaction with the Rel TAD could modulate Rel/NF-kappaB's transforming activity by facilitating expression or dampening repression of specific gene subsets important for oncogenesis. Overall, this study identifies CAPERalpha as a new transcriptional coregulator for v-Rel and reveals an important role in modulating Rel's oncogenic activity.

  19. NF-kappaB mediates mitogen-activated protein kinase pathway-dependent iNOS expression in human melanoma.

    PubMed

    Uffort, Deon G; Grimm, Elizabeth A; Ellerhorst, Julie A

    2009-01-01

    Tumor expression of inducible nitric oxide synthase (iNOS) predicts poor outcomes for melanoma patients. We have reported the regulation of melanoma iNOS by the mitogen-activated protein kinase (MAPK) pathway. In this study, we test the hypothesis that NF-kappaB mediates this regulation. Western blotting of melanoma cell lysates confirmed the constitutive expression of iNOS. Western blot detected baseline levels of activated nuclear extracellular signal-regulated kinase and NF-kappaB. Indirect immunofluorescence confirmed the presence of NF-kappaB p50 and p65 in melanoma cell nuclei, with p50 being more prevalent. Electrophoretic mobility shift assay demonstrated baseline NF-kappaB activity, the findings confirmed by supershift analysis. Treatment of melanoma cells with the MEK inhibitor U0126 decreased NF-kappaB binding to its DNA recognition sequence, implicating the MAPK pathway in NF-kappaB activation. Two specific NF-kappaB inhibitors suppressed iNOS expression, demonstrating regulation of iNOS by NF-kappaB. Several experiments indicated the presence of p50 homodimers, which lack a transactivation domain and rely on the transcriptional coactivator Bcl-3 to carry out this function. Bcl-3 was detected in melanoma cells and co-immunoprecipitated with p50. These data suggest that the constitutively activated melanoma MAPK pathway stimulates activation of NF-kappaB hetero- and homodimers, which, in turn, drive iNOS expression and support melanoma tumorigenesis.

  20. Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimers, Kerstin; Buchholz, Katja; Werchau, Hermann

    2005-01-20

    Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-{kappa}B). The activation of NF-{kappa}B has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-{kappa}B in A549 cells. Electromobility shift assays show increased NF-{kappa}B complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cellsmore » revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-{kappa}B depends on the C-terminus of the RSV M2-1 protein, as shown by NF-{kappa}B-induced gene expression of a reporter gene construct.« less

  1. Distinct roles of NF-{kappa}B p50 in the regulation of acetaminophen-induced inflammatory mediator production and hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dambach, Donna M.; Pharmaceutical Research Institute, Bristol-Myers Squibb, Princeton, NJ 08543; Durham, Stephen K.

    2006-03-01

    Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. In addition to inducing direct cellular damage, oxidants can activate transcription factors including NF-{kappa}B, which regulate the production of inflammatory mediators implicated in hepatotoxicity. Here, we investigated the role of APAP-induced oxidative stress and NF-{kappa}B in inflammatory mediator production. Treatment of mice with APAP (300 mg/kg, i.p.) resulted in centrilobular hepatic necrosis and increased serum aminotransferase levels. This was correlated with depletion of hepatic glutathione and CuZn superoxide dismutase (SOD). APAP administration also increased expression of the proinflammatory mediators, interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF{alpha}), macrophage chemotactic protein-1 (MCP-1), andmore » KC/gro, and the anti-inflammatory cytokine, interleukin-10 (IL-10). Pretreatment of mice with the antioxidant, N-acetylcysteine (NAC) prevented APAP-induced depletion of glutathione and CuZnSOD, as well as hepatotoxicity. NAC also abrogated APAP-induced increases in TNF{alpha}, KC/gro, and IL-10, but augmented expression of the anti-inflammatory cytokines interleukin-4 (IL-4) and transforming growth factor-{beta} (TGF{beta}). No effects were observed on IL-1{beta} or MCP-1 expression. To determine if NF-{kappa}B plays a role in regulating mediator production, we used transgenic mice with a targeted disruption of the gene for NF-{kappa}B p50. As observed with NAC pretreatment, the loss of NF-{kappa}B p50 was associated with decreased ability of APAP to upregulate TNF{alpha}, KC/gro, and IL-10 expression and increased expression of IL-4 and TGF{beta}. However, in contrast to NAC pretreatment, the loss of p50 had no effect on APAP-induced hepatotoxicity. These data demonstrate that APAP-induced cytokine expression in the liver is influenced by oxidative stress and that this is dependent, in part, on NF-{kappa}B. However, NF-{kappa}B p50

  2. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1.

    PubMed

    Reuter, Simone; Schnekenburger, Michael; Cristofanon, Silvia; Buck, Isabelle; Teiten, Marie-Hélène; Daubeuf, Sandrine; Eifes, Serge; Dicato, Mario; Aggarwal, Bharat B; Visvikis, Athanase; Diederich, Marc

    2009-02-01

    Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions.

  3. Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20.

    PubMed

    Lin, Su-Chang; Chung, Jee Y; Lamothe, Betty; Rajashankar, Kanagalaghatta; Lu, Miao; Lo, Yu-Chih; Lam, Amy Y; Darnay, Bryant G; Wu, Hao

    2008-02-15

    Nuclear factor kappaB (NF-kappaB) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-kappaB activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-kappaB activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways.

  4. Inhibition of NF-kappaB-mediated transcription and induction of apoptosis in human breast cancer cells by epoxypseudoisoeugenol-2-methyl butyrate.

    PubMed

    Ma, Guoyi; Tabanca, Nurhayat; Husnu Can Baser, K; Kirimer, Nese; Pasco, David S; Khan, Ikhlas A; Khan, Shabana I

    2009-03-01

    Breast cancer is one of the most prevalent woman cancers. Genomic instability, accumulative mutations, and subsequent changes in intracellular signaling cascades play key roles in the development of human breast cancers. Activation of nuclear factor-kappaB (NF-kappaB) has been implicated in oncogenesis of breast cancers and is known to be associated with resistance to anticancer agents and apoptosis. Blocking NF-kappaB signaling may represent a therapeutic strategy in breast cancer therapy. The objective of this study is to investigate the in vitro effects of epoxypseudoisoeugenol-2-methyl butyrate (EPB), a phenylpropranoid isolated from Pimpinella corymbosa, on the activation of NF-kappaB, cell growth, cell cycle progression and apoptosis in MCF-7 (estrogen-dependent) and BT-549 (estrogen-independent) breast cancer cells. Transcriptional activity of NF-kappaB was measured by cell based reporter gene assay. Cell proliferation was determined by MTT assay. Cell cycle analysis was carried out by flow cytometry and apoptosis was observed by DAPI staining assy. EPB inhibited the NF-kappaB-mediated transcription activity induced by tumor necrosis factor-alpha (TNF-alpha) and phorbol myristate acetate (PMA) in MCF-7 cells. EPB also inhibited constitutive NF-kappaB transcriptional activity in BT-549 cells. EPB inhibited the proliferation of both MCF-7 and BT-549 cells in a concentration- and time-dependent manner. EPB induced cell cycle arrest in G(1)/G(0) phase and apoptosis in both MCF-7 and BT 549 cells. These in vitro results indicated that EPB has a potential for use against both hormone-dependent and hormone-independent breast cancers and its effects seem to be mediated by inhibiting the NF-kappaB activity.

  5. The Role of the Noncanonical NF-KappaB Pathway in Colon Cancer

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-13-1-0321 TITLE: The Role of the Noncanonical NF -KappaB Pathway in Colon Cancer PRINCIPAL INVESTIGATOR: Yatrik Shah...2013 - 29 May 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0321 The Role of the Noncanonical NF -KappaB Pathway in Colon Cancer 5b...inflammatory bowel disease samples that the non-canonical NF -κB2 signaling cascade is highly activated in intestinal epithelial cells compared to normal

  6. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in Mouse macrophage cells by inhibition of transcription factor NF-kappaB.

    PubMed

    Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae

    2008-08-01

    The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.

  7. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Yuji, E-mail: ysakuma@gancen.asahi.yokohama.jp; Yamazaki, Yukiko; Nakamura, Yoshiyasu

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cellsmore » cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.« less

  8. Influence of deoxynivalenol on NF-kappaB activation and IL-8 secretion in human intestinal Caco-2 cells.

    PubMed

    Van De Walle, Jacqueline; Romier, Béatrice; Larondelle, Yvan; Schneider, Yves-Jacques

    2008-04-01

    Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. In human intestinal Caco-2 cells, DON activates the mitogen-activated protein kinases (MAPKs). We hypothesized a link between DON ingestion and intestinal inflammation, and used Caco-2 cells to assess the effects of DON, at plausible intestinal concentrations (250-10,000 ng/ml), on inflammatory mediators acting downstream the MAPKs cascade i.e. activation of nuclear factor-kappaB (NF-kappaB) and interleukin-8 (IL-8) secretion. In addition, Caco-2 cells were co-exposed to pro-inflammatory stimuli in order to mimic an inflamed intestinal epithelium. Dose-dependent increases in NF-kappaB activity and IL-8 secretion were observed, reaching 1.4- and 7.6-fold, respectively using DON at 10 microg/ml. Phosphorylation of inhibitor-kappaB (IkappaB) increased (1.6-fold) at DON levels <0.5 microg/ml. Exposure of Caco-2 cells to pro-inflammatory agents, i.e. 25 ng/ml interleukin-1beta, 100 ng/ml tumor necrosis factor-alpha or 10 microg/ml lipopolysaccharides, activated NF-kappaB and increased IL-8 secretion. Synergistic interactions between these stimuli and DON were observed. These data show that DON induces NF-kappaB activation and IL-8 secretion dose-dependently in Caco-2 cells, and this effect was accentuated upon pro-inflammatory stimulation, suggesting DON exposure could cause or exacerbate intestinal inflammation.

  9. Regulation of adhesion and growth of fibrosarcoma cells by NF-kappa B RelA involves transforming growth factor beta.

    PubMed Central

    Perez, J R; Higgins-Sochaski, K A; Maltese, J Y; Narayanan, R

    1994-01-01

    The NF-kappa B transcription factor is a pleiotropic activator that participates in the induction of a wide variety of cellular genes. Antisense oligomer inhibition of the RelA subunit of NF-kappa B results in a block of cellular adhesion and inhibition of tumor cell growth. Investigation of the molecular basis for these effects showed that in vitro inhibition of the growth of transformed fibroblasts by relA antisense oligonucleotides can be reversed by the parental-cell-conditioned medium. Cytokine profile analysis of these cells treated with relA antisense oligonucleotides revealed inhibition of transforming growth factor beta 1 (TGF-beta 1 to the transformed fibroblasts reversed the inhibitory effects of relA antisense oligomers on soft agar colony formation and cell adhesion to the substratum. Direct inhibition of TGF-beta 1 expression by antisense phosphorothioates to TGF-beta 1 mimicked the in vitro effects of blocking cell adhesion that are elicited by antisense relA oligomers. These results may explain the in vitro effects of relA antisense oligomers on fibrosarcoma cell growth and adhesion. Images PMID:8035811

  10. BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes.

    PubMed

    Cismasiu, Valeriu B; Duque, Javier; Paskaleva, Elena; Califano, Danielle; Ghanta, Sailaja; Young, Howard A; Avram, Dorina

    2009-01-15

    BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we

  11. Escherichia coli K1 inhibits proinflammatory cytokine induction in monocytes by preventing NF-kappaB activation.

    PubMed

    Selvaraj, Suresh K; Prasadarao, Nemani V

    2005-08-01

    Phagocytes are well-known effectors of the innate immune system to produce proinflammatory cytokines and chemokines such as tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, and IL-8 during infections. Here, we show that infection of monocytes with wild-type Escherichia coli K1, which causes meningitis in neonates, suppresses the production of cytokines and chemokines (TNF-alpha, regulated on activation, normal T expressed and secreted, macrophage-inflammatory protein-1beta, IL-1beta, and IL-8). In contrast, infection of monocytes with a mutant E. coli, which lacks outer membrane protein A (OmpA- E. coli) resulted in robust production of cytokines and chemokines. Wild-type E. coli K1 (OmpA+ E. coli) prevented the phosphorylation and its degradation of inhibitor of kappaB, thereby blocking the translocation of nuclear factor (NF)-kappaB to the nucleus. OmpA+ E. coli-infected cells, subsequently subjected to lipopolysaccharide challenge, were crippled severely in their ability to activate NF-kappaB to induce cytokine/chemokine production. Selective inhibitors of the extracellular signal-regulated kinase (ERK) 1/2 pathway and p38 mitogen-activated protein kinase (MAPK), but not Jun N-terminal kinase, significantly reduced the activation of NF-kappaB and the production of cytokines and chemokines induced by OmpA- E. coli, indicating a role for these kinases in the NF-kappaB/cytokine pathway. It is interesting that the phosphorylation of ERK 1/2 and p38 MAPK was notably reduced in monocytes infected with OmpA+ E. coli when compared with monocytes infected with OmpA- E. coli, suggesting that the modulation of upstream events common for NF-kappaB and MAPKs by the bacterium is possible. The ability of OmpA+ E. coli K1 to inhibit the macrophage response temporarily may enable bacterial survival and growth within the host for the onset of meningitis by E. coli K1.

  12. c-Rel, an NF-[kappa]B Family Transcription Factor, Is Required for Hippocampal Long-Term Synaptic Plasticity and Memory Formation

    ERIC Educational Resources Information Center

    Ahn, Hyung Jin; Hernandez, Caterina M.; Levenson, Jonathan M.; Lubin, Farah D.; Liou, Hsiou-Chi; Sweatt, J. David

    2008-01-01

    Transcription is a critical component for consolidation of long-term memory. However, relatively few transcriptional mechanisms have been identified for the regulation of gene expression in memory formation. In the current study, we investigated the activity of one specific member of the NF-[kappa]B transcription factor family, c-Rel, during…

  13. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-{alpha}-induced apoptosis via NF-{kappa}B in mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Cheng-Fei; Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang; Han, Ya-Ling, E-mail: hanyaling53@gmail.com

    2011-03-25

    Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified asmore » a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this

  14. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    PubMed

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  15. Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons.

    PubMed

    Culmsee, Carsten; Siewe, Jan; Junker, Vera; Retiounskaia, Marina; Schwarz, Stephanie; Camandola, Simonetta; El-Metainy, Shahira; Behnke, Hagen; Mattson, Mark P; Krieglstein, Josef

    2003-09-17

    The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and activation of p53 precedes apoptosis in many cell types. Controversial reports exist on the role of the transcription factor nuclear factor-kappaB (NF-kappaB) in p53-mediated apoptosis, depending on the cell type and experimental conditions. Therefore, we sought to elucidate the role of NF-kappaB in p53-mediated neuron death. In cultured neurons DNA damaging compounds induced activation of p53, whereas NF-kappaB activity declined significantly. The p53 inhibitor pifithrin-alpha (PFT) preserved NF-kappaB activity and protected neurons against apoptosis. Immunoprecipitation experiments revealed enhanced p53 binding to the transcriptional cofactor p300 after induction of DNA damage, whereas binding of p300 to NF-kappaB was reduced. In contrast, PFT blocked the interaction of p53 with the cofactor, whereas NF-kappaB binding to p300 was enhanced. Most interestingly, similar results were observed after oxygen glucose deprivation in cultured neurons and in ischemic brain tissue. Ischemia-induced repression of NF-kappaB activity was prevented and brain damage was reduced by the p53 inhibitor PFT in a dose-dependent manner. It is concluded that a balanced competitive interaction of p53 and NF-kappaB with the transcriptional cofactor p300 exists in neurons. Exposure of neurons to lethal stress activates p53 and disrupts NF-kappaB binding to p300, thereby blocking NF-kappaB-mediated survival signaling. Inhibitors of p53 provide pronounced neuroprotective effects because they block p53-mediated induction of cell death and concomitantly enhance NF-kappaB-induced survival signaling.

  16. Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells.

    PubMed

    Oh, Jung Hwa; Kwon, Taeg Kyu

    2009-05-01

    We here investigated the functional effect of withaferin A on airway inflammation and its action mechanism. Withaferin A inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human lung epithelial A549 cells stimulated with tumor necrosis factor-alpha (TNF-alpha), resulting in the suppression of leukocyte adhesion to lung epithelial A549 cells. In addition, withaferin A inhibited TNF-alpha-induced expression of adhesion molecules (ICAM-1 and VCAM-1) protein and mRNA in a dose-dependent manner. Withaferin A prevented DNA binding activity of nuclear factor-kappaB (NF-kappaB) and nuclear translocation of NF-kappaB. It also inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK), which are upstream in the regulation of adhesion molecules by TNF-alpha. Furthermore, withaferin A inhibited U937 monocyte adhesion to A549 cells stimulated by TNF-alpha, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-alpha. Taken together, these results suggest that withaferin A inhibits cell adhesion through inhibition of ICAM-1 and VCAM-1 expression, at least in part, by blocking Akt and down-regulating NF-kappaB activity.

  17. TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-kappaB.

    PubMed

    Garrison, J B; Samuel, T; Reed, J C

    2009-04-02

    Marginal zone mucosa-associated lymphoid tissue (MALT) B-cell lymphoma is the most common extranodal non-Hodgkin lymphoma. The t(11;18)(q21;q21) translocation occurs frequently in MALT lymphomas and creates a chimeric NF-kappaB-activating protein containing the baculoviral IAP repeat (BIR) domains of c-IAP2 (inhibitor of apoptosis protein 2) fused with portions of the MALT1 protein. The BIR1 domain of c-IAP2 interacts directly with TRAF2 (TNFalpha-receptor-associated factor-2), but its role in NF-kappaB activation is still unclear. Here, we investigated the role of TRAF2 in c-IAP2/MALT1-induced NF-kappaB activation. We show the BIR1 domain of c-IAP2 is essential for NF-kappaB activation, whereas BIR2 and BIR3 domains are not. Studies of c-IAP2/MALT1 BIR1 mutant (E47A/R48A) that fails to activate NF-kappaB showed loss of TRAF2 binding, but retention of TRAF6 binding, suggesting that interaction of c-IAP2/MALT1 with TRAF6 is insufficient for NF-kappaB induction. In addition, a dominant-negative TRAF2 mutant or downregulation of TRAF2 achieved by small interfering RNA inhibited NF-kappaB activation by c-IAP2/MALT1 showing that TRAF2 is indispensable. Comparisons of the bioactivity of intact c-IAP2/MALT1 oncoprotein and BIR1 E47A/R48A c-IAP2/MALT1 mutant that cannot bind TRAF2 in a lymphoid cell line provided evidence that TRAF2 interaction is critical for c-IAP2/MALT1-mediated increases in the NF-kappaB activity, increased expression of endogenous NF-kappaB target genes (c-FLIP, TRAF1), and resistance to apoptosis.

  18. Nuclear factor-kappaB activation correlates with better prognosis and Akt activation in human gastric cancer.

    PubMed

    Lee, Byung Lan; Lee, Hye Seung; Jung, Jieun; Cho, Sung Jin; Chung, Hee-Yong; Kim, Woo Ho; Jin, Young-Woo; Kim, Chong Soon; Nam, Seon Young

    2005-04-01

    Because the biological significance of constitutive nuclear factor-kappaB (NF-kappaB) activation in human gastric cancer is unclear, we undertook this study to clarify the regulatory mechanism of NF-kappaB activation and its clinical significance. Immunohistochemistry for NF-kappaB/RelA was done on 290 human gastric carcinoma specimens placed on tissue array slides. The correlations between NF-kappaB activation and clinicopathologic features, prognosis, Akt activation, tumor suppressor gene expression, or Bcl-2 expression were analyzed. We also did luciferase reporter assay, Western blot analysis, and reverse transcription-PCR using the SNU-216 human gastric cancer cell line transduced with retroviral vectors containing constitutively active Akt or the NF-kappaB repressor mutant of IkappaBalpha. Nuclear expression of RelA was found in 18% of the gastric carcinomas and was higher in early-stage pathologic tumor-node-metastasis (P = 0.019). A negative correlation was observed between NF-kappaB activation and lymphatic invasion (P = 0.034) and a positive correlation between NF-kappaB activation and overall survival rate of gastric cancer patients (P = 0.0228). In addition, NF-kappaB activation was positively correlated with pAkt (P = 0.047), p16 (P = 0.004), adenomatous polyposis coli (P < 0.001), Smad4 (P = 0.002), and kangai 1 (P < 0.001) expression. An in vitro study showed that NF-kappaB activity in gastric cancer cells is controlled by and controls Akt. NF-kappaB activation was frequently observed in early-stage gastric carcinoma and was significantly correlated with better prognosis and Akt activation. These findings suggest that NF-kappaB activation is a valuable prognostic variable in gastric carcinoma.

  19. Inverse expression of estrogen receptor-beta and nuclear factor-kappaB in urinary bladder carcinogenesis.

    PubMed

    Kontos, Stylianos; Kominea, Athina; Melachrinou, Maria; Balampani, Eleni; Sotiropoulou-Bonikou, Georgia

    2010-09-01

    To investigate the expression of nuclear factor-kappaB (NF-kappaB) and estrogen receptor-beta (ER-beta) signalling pathways in bladder urothelial carcinoma according to clinicopathological features, in order to elucidate their role during carcinogenesis. Immunohistochemical methodology was carried out on formalin-fixed, paraffin-embedded sections from urinary bladder carcinomas of 140 patients (94 males and 46 females) who underwent transurethral resection of bladder neoplasms. Correlations between ER-beta and NF-kappaB, and tumor grade and T-stage were evaluated, along with demographic data, sex and age. A significant decrease in ER-beta expression in the nucleus of bladder cells during loss of cell differentiation (r(s) = -0.61, P-value < 0.001, test of trend P-value = 0.003) and in muscle invasive carcinomas (T2-T4; test of trend P-value < 0.001) was found. p65 Subunit of NF-kappaB was expressed in the nucleus and in the cytoplasm of bladder epithelial cells. A strong positive association between tumor grade and nuclear expression of NF-kappaB was shown. No correlation between NF-kappaB, nuclear or cytoplasmic staining, with T-stage was observed. An inverse correlation between ER-beta and nuclear p65 immunoreactivity was observed (r(s) = -0.45, P-value < 0.001). There was no correlation with demographic data. Our immunohistochemical study suggests the possible inverse regulation of NF-kappaB and ER-beta transcription factor during bladder carcinogenesis. Selective ER-beta agonists and agents, inhibitors of NF-kappaB, might represent a possible new treatment strategy for bladder urothelial tumors.

  20. Lymphotoxin activation by human T-cell leukemia virus type I-infected cell lines: role for NF-kappa B.

    PubMed

    Paul, N L; Lenardo, M J; Novak, K D; Sarr, T; Tang, W L; Ruddle, N H

    1990-11-01

    Human T-cell leukemia virus type I (HTLV-I)-infected T-cell lines constitutively produce high levels of biologically active lymphotoxin (LT; tumor necrosis factor-beta) protein and LT mRNA. To understand the regulation of LT transcription by HTLV-I, we analyzed the ability of a series of deletions of the LT promoter to drive the chloramphenicol acetyltransferase (CAT) reporter gene in HTLV-I-positive MT-2 cells. The smallest LT promoter fragment (-140 to +77) that was able to drive CAT activity contained a site that was similar to the immunoglobulin kappa-chain NF-kappa B-binding site. Since the HTLV-I tax gene activates the nuclear form of NF-kappa B, this finding suggested a possible means of HTLV-I activation of LT production. We found that the LT kappa B-like site specifically formed a complex with NF-kappa B-containing nuclear extract from MT-2, C81-66-45, and other activated T cells. Mutation of the LT kappa B site in the context of the LT promoter (-293 to +77) (mutant M1) reduced the ability of the promoter to drive the CAT gene in HTLV-I-infected and noninfected human T-cell lines. These data suggest a general role for NF-kappa B activation in the induction of LT gene transcription. Activation of LT in HTLV-I-infected cells may explain the pathology associated with HTLV-I infection, including the hypercalcemia that is prevalent in adult T-cell leukemia.

  1. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-{kappa}B activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roeder-Stolinski, Carmen; Fischaeder, Gundula; Oostingh, Gertie Janneke

    2008-09-01

    Styrene is a volatile organic compound (VOC) that is widely used as a solvent in many industrial settings. Chronic exposure to styrene can result in irritation of the mucosa of the upper respiratory tract. Contact of styrene with epithelial cells stimulates the expression of a variety of inflammatory mediators, including the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). To characterise the underlying mechanisms of the induction of inflammatory signals by styrene, we investigated the influence of this compound on the induction of oxidative stress and the activation of the nuclear factor-kappa B (NF-{kappa}B) signalling pathway in human lung epithelial cells (A549).more » The results demonstrate that styrene-induced MCP-1 expression, as well as the expression of the oxidative stress marker glutathione S-transferase (GST), is associated with a concentration dependent pattern of NF-{kappa}B activity. An inhibitor of NF-{kappa}B, IKK-NBD, and the anti-inflammatory antioxidant N-acetylcysteine (NAC) were both effective in suppressing styrene-induced MCP-1 secretion. In addition, NAC was capable of inhibiting the upregulation of GST expression. Our findings suggest that the activation of the NF-{kappa}B signalling pathway by styrene is mediated via a redox-sensitive mechanism.« less

  2. Proteasome and NF-kappaB inhibiting phaeophytins from the green alga Cladophora fascicularis.

    PubMed

    Huang, Xinping; Li, Min; Xu, Bo; Zhu, Xiaobin; Deng, Zhiwei; Lin, Wenhan

    2007-03-21

    Chemical examination of the green alga Cladophora fascicularis resulted in the isolation and characterization of a new porphyrin derivative, porphyrinolactone (1), along with five known phaeophytins 2-6 and fourteen sterols and cycloartanes. The structure of 1 was determined on the basis of spectroscopic analyses and by comparison of its NMR data with those of known phaeophytins. Compounds 1-6 displayed moderate inhibition of tumor necrosis factor alpha (TNF-alpha) induced nuclear factor-kappaB (NF-kappaB) activation, while 2 and 4 displayed potential inhibitory activity toward proteasome chymotripsin-like activation. The primary structure-activity relationship was also discussed.

  3. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachem, Ahmed; Yacoub, Daniel; Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Givenmore » that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against

  4. Relationship between carbachol hyperstimulation-induced pancreatic intracellular trypsinogen and NF-kappa B activation in rats in vitro.

    PubMed

    Jiang, Chunfang; Zheng, Hai; Liu, Sunan; Fang, Kaifeng

    2008-02-01

    The relationship between intracellular trypsinogen activation and NF-kappa B activation in rat pancreatic acinar cells induced by M3 cholinergic receptor agonist (carbachol) hyperstimulation was studied. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, the active protease inhibitor (pefabloc) and NF-kappa B inhibitor (PDTC) in vitro. Intracellular trypsin activity was measured by using a fluorogenic substrate. The activity of NF-kappa B was monitored by using electrophoretic mobility shift assay. The results showed that after pretreatment with 2 mmol/L pefabloc, the activities of trypsin and NF-kappa B in pancreatic acinar cells treated with high concentrations of carbachol (10(-3) mol/L) in vitro was significantly decreased as compared with control group (P<0.01). The addition of 10(-2) mol/L PDTC resulted in a significant decrease of NF-kappa B activities in pancreatic acinar cells after treated with high concentrations of carbachol (10(-3) mol/L) in vitro, but the intracellular trypsinogen activity was not obviously inhibited (P>0.05). It was concluded that intracellular trypsinogen activation is likely involved in the regulation of high concentrations of carbachol-induced NF-kappa B activation in pancreatic acinar cells in vitro. NF-kappa B activation is likely not necessary for high concentrations of carbachol-induced trypsinogen activation in pancreatic acinar cells in vitro.

  5. Synergistic activation of NF-{kappa}B by nontypeable H. influenzae and S. pneumoniae is mediated by CK2, IKK{beta}-I{kappa}B{alpha}, and p38 MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kweon, Soo-Mi; Wang, Beinan; Rixter, Davida

    2006-12-15

    In review of the past studies on NF-{kappa}B regulation, most of them have focused on investigating how NF-{kappa}B is activated by a single inducer at a time. Given the fact that, in mixed bacterial infections in vivo, multiple inflammation inducers, including both nontypeable Haemophilus influenzae (NTHi) and Streptococcus pneumoniae, are present simultaneously, a key issue that has yet to be addressed is whether NTHi and S. pneumoniae simultaneously activate NF-{kappa}B and the subsequent inflammatory response in a synergistic manner. Here, we show that NTHi and S. pneumoniae synergistically induce NF-{kappa}B-dependent inflammatory response via activation of multiple signaling pathways in vitromore » and in vivo. The classical IKK{beta}-I{kappa}B{alpha} and p38 MAPK pathways are involved in synergistic activation of NF-{kappa}B via two distinct mechanisms, p65 nuclear translocation-dependent and -independent mechanisms. Moreover, casein kinase 2 (CK2) is involved in synergistic induction of NF-{kappa}B via a mechanism dependent on phosphorylation of p65 at both Ser536 and Ser276 sites. These studies bring new insights into the molecular mechanisms underlying the NF-{kappa}B-dependent inflammatory response in polymicrobial infections and may lead to development of novel therapeutic strategies for modulating inflammation in mixed infections for patients with otitis media and chronic obstructive pulmonary diseases.« less

  6. Curcumin Regulates Low-Linear Energy Transfer {gamma}-Radiation-Induced NF{kappa}B-Dependent Telomerase Activity in Human Neuroblastoma Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.ed; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh

    2011-03-15

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NF{kappa}B regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NF{kappa}B-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NF{kappa}B-dependent regulation was investigated either by luciferase reporter assays using pNF{kappa}B-, pGL3-354-, pGL3-347-, or pUSE-I{kappa}B{alpha}-Luc, p50/p65, or RelA siRNA-transfectedmore » cells. NF{kappa}B activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NF{kappa}B. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NF{kappa}B becomes functionally activated after IR and mediates TA upregulation by binding to the {kappa}B-binding region in the promoter region of the TERT gene. Consistently, elimination of the NF{kappa}B-recognition site on the telomerase promoter or inhibition of NF{kappa}B by the I{kappa}B{alpha} mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NF{kappa}B overexpressed cells. Furthermore, curcumin

  7. Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2.

    PubMed Central

    Duckett, C S; Gedrich, R W; Gilfillan, M C; Thompson, C B

    1997-01-01

    CD30 is a lymphoid cell-specific surface receptor which was originally identified as an antigen expressed on Hodgkin's lymphoma cells. Activation of CD30 induces the nuclear factor kappaB (NF-kappaB) transcription factor. In this study, we define the domains in CD30 which are required for NF-kappaB activation. Two separate elements of the cytoplasmic domain which were capable of inducing NF-kappaB independently of one another were identified. The first domain (domain 1) mapped to a approximately 120-amino-acid sequence in the membrane-proximal region of the CD30 cytoplasmic tail, between residues 410 and 531. A second, more carboxy-terminal region (domain 2) was identified between residues 553 and 595. Domain 2 contains two 5- to 10-amino-acid elements which can mediate the binding of CD30 to members of the tumor necrosis factor receptor-associated factor (TRAF) family of signal transducing proteins. Coexpression of CD30 with TRAF1 or TRAF2 but not TRAF3 augmented NF-kappaB activation through domain 2 but not domain 1. NF-kappaB induction through domain 2 was inhibited by coexpression of either full-length TRAF3 or dominant negative forms of TRAF1 or TRAF2. In contrast, NF-kappaB induction by domain 1 was not affected by alterations in TRAF protein levels. Together, these data support a model in which CD30 can induce NF-kappaB by both TRAF-dependent and -independent mechanisms. TRAF-dependent induction of NF-kappaB appears to be regulated by the relative levels of individual TRAF proteins in the cell. PMID:9032281

  8. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistancemore » in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.« less

  9. Effects of Cot expression on the nuclear translocation of NF-kappaB in RBL-2H3 cells.

    PubMed

    Chikamatsu, Satomi; Furuno, Tadahide; Kinoshita, Yosuke; Inoh, Yoshikazu; Hirashima, Naohide; Teshima, Reiko; Nakanishi, Mamoru

    2007-03-01

    Cot is a serine/threonine protein kinase and is classified as a mitogen-activated protein (MAP) kinase kinase kinase. Overexpression of this protein has been shown to activate the extracellular signal-regulated kinase, the c-Jun N-terminal kinase, and the p38 MAP kinase pathways and to stimulate NF-AT and NF-kappaB-dependent transcription. Here we have shown that Cot kinase activity is intimately involved in the high affinity receptor for IgE (FcvarepsilonRI)-mediated nuclear translocation of NF-kappaB1 independent of NF-kappaB-inducing kinase (NIK) in rat basophilic leukemia (RBL-2H3) cells. A transfected green fluorescent protein-tagged NF-kappaB1 (GFP-NF-kappaB1) resided in the cytoplasm in RBL-2H3 cells and it remained in the cytoplasm even when Cot tagged with red fluorescent protein (Cot-RFP) was co-expressed. Western blotting analysis showed that IkappaB kinases (IKKs) were expressed in RBL-2H3 cells but NIK was not. GFP-NF-kappaB1 translocated from the cytoplasm to the nucleus after the aggregation of FcvarepsilonRI in Cot-transfected cells but not in kinase-deficient Cot-transfected cells. This finding gives a new insight into the role of Cot in the FcvarepsilonRI-mediated NF-kappaB activation in mast cells.

  10. Lymphotoxin activation by human T-cell leukemia virus type I-infected cell lines: role for NF-kappa B.

    PubMed Central

    Paul, N L; Lenardo, M J; Novak, K D; Sarr, T; Tang, W L; Ruddle, N H

    1990-01-01

    Human T-cell leukemia virus type I (HTLV-I)-infected T-cell lines constitutively produce high levels of biologically active lymphotoxin (LT; tumor necrosis factor-beta) protein and LT mRNA. To understand the regulation of LT transcription by HTLV-I, we analyzed the ability of a series of deletions of the LT promoter to drive the chloramphenicol acetyltransferase (CAT) reporter gene in HTLV-I-positive MT-2 cells. The smallest LT promoter fragment (-140 to +77) that was able to drive CAT activity contained a site that was similar to the immunoglobulin kappa-chain NF-kappa B-binding site. Since the HTLV-I tax gene activates the nuclear form of NF-kappa B, this finding suggested a possible means of HTLV-I activation of LT production. We found that the LT kappa B-like site specifically formed a complex with NF-kappa B-containing nuclear extract from MT-2, C81-66-45, and other activated T cells. Mutation of the LT kappa B site in the context of the LT promoter (-293 to +77) (mutant M1) reduced the ability of the promoter to drive the CAT gene in HTLV-I-infected and noninfected human T-cell lines. These data suggest a general role for NF-kappa B activation in the induction of LT gene transcription. Activation of LT in HTLV-I-infected cells may explain the pathology associated with HTLV-I infection, including the hypercalcemia that is prevalent in adult T-cell leukemia. Images PMID:1976820

  11. Pasteurella haemolytica leukotoxin and endotoxin induced cytokine gene expression in bovine alveolar macrophages requires NF-kappaB activation and calcium elevation.

    PubMed

    Hsuan, S L; Kannan, M S; Jeyaseelan, S; Prakash, Y S; Malazdrewich, C; Abrahamsen, M S; Sieck, G C; Maheswaran, S K

    1999-05-01

    In bovine alveolar macrophages (BAMs), exposure to leukotoxin (Lkt) and endotoxin (LPS) from Pasteurella haemolytica results in expression of inflammatory cytokine genes and intracellular calcium ([Ca2+]i) elevation. Leukotoxin from P. haemolytica interacts only with leukocytes and platelets from ruminant species. Upregulation of cytokine genes in different cells by LPS involves activation of the transcription factor NF-kappaB (NF-kappaB), resulting in its translocation from the cytoplasm to the nucleus. Using immunocytochemical staining and confocal imaging, we studied whether NF-kappaB activation represents a common mechanism for the expression of multiple cytokine genes in BAMs (Lkt-susceptible cells) stimulated with Lkt and LPS. Bovine pulmonary artery endothelial cells and porcine alveolar macrophages were used as nonsusceptible cells. The role of Ca2+ and tyrosine kinases in NF-kappaB activation and inflammatory cytokine gene expression was studied, since an inhibitor of tyrosine kinases attenuates LPS-induced [Ca2+]i elevation in BAMs. The results are summarized as follows: (a) Lkt induced NF-kappaB activation and [Ca2+]i elevation only in BAMs, while LPS effects were demonstrable in all cell types; (b) chelation of [Ca2+]i blocked NF-kappaB activation and IL-1beta, TNFalpha, and IL-8 mRNA expression; and (c) tyrosine kinase inhibitor herbimycin A blocked expression of all three cytokine genes in BAMs stimulated with Lkt, while only the expression of IL-1beta was blocked in BAMs stimulated with LPS. We conclude that cytokine gene expression in BAMs requires NF-kappaB activation and [Ca2+]i elevation, and Lkt effects exhibit cell type- and species specificity. Copyright 1999 Academic Press.

  12. Proteomic screening of variola virus reveals a unique NF-kappaB inhibitor that is highly conserved among pathogenic orthopoxviruses.

    PubMed

    Mohamed, Mohamed R; Rahman, Masmudur M; Lanchbury, Jerry S; Shattuck, Donna; Neff, Chris; Dufford, Max; van Buuren, Nick; Fagan, Katharine; Barry, Michele; Smith, Scott; Damon, Inger; McFadden, Grant

    2009-06-02

    Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein-protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-kappaB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-kappaB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-kappaB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses.

  13. The nuclear factor kappa B (NF-κB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Fei, E-mail: zhufei@zju.edu.cn; Yue, Wanfu; Wang, Yongxia

    Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor which controls the expression of various genes involved in immune responses. However, it is not clear whether NF-κB activation is critical for phagocytosis when Staphylococcus aureus is the pathogen. Using oligonucleotide microarrays, we investigated whether NF-κB cascade genes are altered in a mouse leukemic monocyte macrophage cell line (RAW 264.7) when the cells were stimulated to activate a host innate immune response against live S. aureus or heat-inactivated S. aureus (HISA). NF-κB cascade genes such as Nfκb1, Nfκbiz, Nfκbie, Rel, Traf1 and Tnfaip3 were up-regulated by all treatments at onemore » hour after incubation. NF-κB play an important role in activating phagocytosis in RAW 264.7 cells infected with S. aureus. Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus and decreased the expression of NFκB1, IL1α, IL1β and TLR2 in this cell line. Our results demonstrate that S. aureus may activate the NF-κB pathway and that NF-κB activation is required for phagocytosis of S. aureus by macrophages. - Highlights: • NF-κB cascade genes such as Nfκb1 and Traf1 were up-regulated by heat-inactivated S. aureus. • Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus. • NF-κB activation is required for phagocytosis of S. aureus by macrophages.« less

  14. An essential complementary role of NF-kappaB pathway to microbicidal oxidants in Drosophila gut immunity.

    PubMed

    Ryu, Ji-Hwan; Ha, Eun-Mi; Oh, Chun-Taek; Seol, Jae-Hong; Brey, Paul T; Jin, Ingnyol; Lee, Dong Gun; Kim, Jaesang; Lee, Daekee; Lee, Won-Jae

    2006-08-09

    In the Drosophila gut, reactive oxygen species (ROS)-dependent immunity is critical to host survival. This is in contrast to the NF-kappaB pathway whose physiological function in the microbe-laden epithelia has yet to be convincingly demonstrated despite playing a critical role during systemic infections. We used a novel in vivo approach to reveal the physiological role of gut NF-kappaB/antimicrobial peptide (AMP) system, which has been 'masked' in the presence of the dominant intestinal ROS-dependent immunity. When fed with ROS-resistant microbes, NF-kappaB pathway mutant flies, but not wild-type flies, become highly susceptible to gut infection. This high lethality can be significantly reduced by either re-introducing Relish expression to Relish mutants or by constitutively expressing a single AMP to the NF-kappaB pathway mutants in the intestine. These results imply that the local 'NF-kappaB/AMP' system acts as an essential 'fail-safe' system, complementary to the ROS-dependent gut immunity, during gut infection with ROS-resistant pathogens. This system provides the Drosophila gut immunity the versatility necessary to manage sporadic invasion of virulent pathogens that somehow counteract or evade the ROS-dependent immunity.

  15. LPS-induced NF-{kappa}B expression in THP-1Blue cells correlates with neopterin production and activity of indoleamine 2,3-dioxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroecksnadel, Sebastian; Jenny, Marcel; Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck

    2010-09-03

    Research highlights: {yields} LPS induces NF-{kappa}B, neopterin formation and tryptophan degradation in THP-1 cells. {yields} Close dose- and time-dependent correlations exist between these biochemical events. {yields} Data provides some evidence for a parallel induction of them upon TLR stimulation. {yields} Results can be of considerable relevance also in vivo. -- Abstract: Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-{gamma} (IFN-{gamma}). In parallel, IFN-{gamma} induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-{kappa}B (NF-{kappa}B) is induced bymore » ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-{kappa}B expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-{kappa}B activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-{kappa}B inducible reporter system. In cells stimulated with LPS, a significant induction of NF-{kappa}B was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-{kappa}B activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-{kappa}B, neopterin

  16. Nuclear NF-kappaB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer.

    PubMed

    Arun, Pattatheyil; Brown, Matthew S; Ehsanian, Reza; Chen, Zhong; Van Waes, Carter

    2009-10-01

    Aberrant nuclear activation and phosphorylation of the canonical NF-kappaB subunit RELA/p65 at Serine-536 by inhibitor kappaB kinase is prevalent in head and neck squamous cell carcinoma (HNSCC), but the role of other kinases in NF-kappaB activation has not been well defined. Here, we investigated the prevalence and function of p65-Ser276 phosphorylation by protein kinase A (PKA) in the malignant phenotype and gene transactivation, and studied p65-Ser276 as a potential target for therapy. Phospho and total p65 protein expression and localization were determined in HNSCC tissue array and in cell lines. The effects of the PKA inhibitor H-89 on NF-kappaB activation, downstream gene expression, cell proliferation and cell cycle were examined. Knockdown of PKA by specific siRNA confirmed the specificity. NF-kappaB p65 phosphorylated at Ser276 was prevalent in HNSCC and adjacent dysplastic mucosa, but localized to the cytoplasm in normal mucosa. In HNSCC lines, tumor necrosis factor-alpha (TNF-alpha) significantly increased, whereas H-89 inhibited constitutive and TNF-alpha-induced nuclear p65 (Ser276) phosphorylation, and significantly suppressed NF-kappaB and target gene IL-8 reporter activity. Knockdown of PKA by small interfering RNA inhibited NF-kappaB, IL-8, and BCL-XL reporter gene activities. H-89 suppressed cell proliferation, induced cell death, and blocked the cell cycle in G(1)-S phase. Consistent with its biological effects, H-89 down-modulated expression of NF-kappaB-related genes Cyclin D1, BCL2, BCL-XL, COX2, IL-8, and VEGF, as well as induced cell cycle inhibitor p21(CIP1/WAF1), while suppressing proliferative marker Ki67. NF-kappaB p65 (Ser276) phosphorylation by PKA promotes the malignant phenotype and holds potential as a therapeutic target in HNSCC.

  17. Hantaan virus nucleocapsid protein binds to importin alpha proteins and inhibits tumor necrosis factor alpha-induced activation of nuclear factor kappa B.

    PubMed

    Taylor, Shannon L; Frias-Staheli, Natalia; García-Sastre, Adolfo; Schmaljohn, Connie S

    2009-02-01

    Hantaviruses such as Hantaan virus (HTNV) and Andes virus cause two human diseases, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome, respectively. For both, disease pathogenesis is thought to be immunologically mediated and there have been numerous reports of patients with elevated levels of proinflammatory and inflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), in their sera. Multiple viruses have developed evasion strategies to circumvent the host cell inflammatory process, with one of the most prevalent being the disruption of nuclear factor kappa B (NF-kappaB) activation. We hypothesized that hantaviruses might also moderate host inflammation by interfering with this pathway. We report here that the nucleocapsid (N) protein of HTNV was able to inhibit TNF-alpha-induced activation of NF-kappaB, as measured by a reporter assay, and the activation of endogenous p65, an NF-kappaB subunit. Surprisingly, there was no defect in the degradation of the inhibitor of NF-kappaB (IkappaB) protein, nor was there any alteration in the level of p65 expression in HTNV N-expressing cells. However, immunofluorescence antibody staining demonstrated that cells expressing HTNV N protein and a green fluorescent protein-p65 fusion had limited p65 nuclear translocation. Furthermore, we were able to detect an interaction between HTNV N protein and importin alpha, a nuclear import molecule responsible for shuttling NF-kappaB to the nucleus. Collectively, our data suggest that HTNV N protein can sequester NF-kappaB in the cytoplasm, thus inhibiting NF-kappaB activity. These findings, which were obtained using cells transfected with cDNA representing the HTNV N gene, were confirmed using HTNV-infected cells.

  18. TLR3-mediated NF-{kappa}B signaling in human esophageal epithelial cells.

    PubMed

    Lim, Diana M; Narasimhan, Sneha; Michaylira, Carmen Z; Wang, Mei-Lun

    2009-12-01

    Despite its position at the front line against ingested pathogens, very little is presently known about the role of the esophageal epithelium in host innate immune defense. As a key player in the innate immune response, Toll-like receptor (TLR) signaling has not been well characterized in human esophageal epithelial cells. In the present study, we investigated the inflammatory response and signaling pathways activated by TLR stimulation of human esophageal cells in vitro. Using quantitative RT-PCR, we profiled the expression pattern of human TLRs 1-10 in primary esophageal keratinocytes (EPC2), immortalized nontransformed esophageal keratinocytes (EPC2-hTERT), and normal human esophageal mucosal biopsies and found that TLRs 1, 2, 3, and 5 were expressed both in vivo and in vitro. Using the cytokine IL-8 as a physiological read out of the inflammatory response, we found that TLR3 is the most functional of the expressed TLRs in both primary and immortalized esophageal epithelial cell lines in response to its synthetic ligand polyinosinic polycytidylic acid [poly(I:C)]. Through reporter gene studies, we show that poly(I:C)-induced NF-kappaB activation is critical for the transactivation of the IL-8 promoter in vitro and that nuclear translocation of NF-kappaB occurs at an early time point following poly(I:C) stimulation of esophageal epithelial cells. Importantly, we also show that poly(I:C) stimulation induces the NF-kappaB-dependent esophageal epithelial expression of TLR2, leading to enhanced epithelial responsiveness of EPC2-hTERT cells to TLR2 ligand stimulation, suggesting an important regulatory role for TLR3-mediated NF-kappaB signaling in the innate immune response of esophageal epithelial cells. Our findings demonstrate for the first time that TLR3 is highly functional in the human esophageal epithelium and that TLR3-mediated NF-kappaB signaling may play an important regulatory role in esophageal epithelial homeostasis.

  19. Time-dependent modulation of thioredoxin reductase activity might contribute to sulforaphane-mediated inhibition of NF-kappaB binding to DNA.

    PubMed

    Heiss, Elke; Gerhäuser, Clarissa

    2005-01-01

    The chemopreventive agent sulforaphane (SFN) exerts anti-inflammatory activity by thiol-dependent inhibition of nuclear factor kappaB (NF-kappaB) DNA binding. To further analyze the underlying mechanisms, we focused on the thioredoxin/thioredoxin reductase (TrxR) system as a key redox mechanism regulating NF-kappaB DNA binding. Using cultured Raw 264.7 mouse macrophages as a model, 1-chloro-2,4-dinitrobenzene (CDNB), a known inhibitor of TrxR, was identified as an inhibitor of lipopolysaccharide (LPS)-mediated nitric oxide (NO) production and of NF-kappaB DNA binding. CDNB and SFN acted synergistically with respect to inhibition of LPS-induced NO release, and we consequently identified SFN as a novel inhibitor of TrxR enzymatic activity in vitro. Short-term treatment of Raw macrophages with SFN or CDNB resulted in the inhibition of TrxR activity in vivo with half-maximal inhibitory concentration of 25.0 +/- 3.5 microM and 9.4 +/- 3.7 microM, respectively, whereas after a 24-h treatment with 25 microM SFN, TrxR activity was >1.5-fold elevated. In additional experiments, we could exclude that inhibition of trans-activating activity of NF-kappaB contributed to the reduced expression of pro-inflammatory proteins by SFN, based on transient transfection experiments with a (kappaB)(2)- chloramphenicol acetyltransferase construct and a lack of inhibition of protein kinase A activity. These findings further emphasize the importance of redox modulation or thiol reactivity for the regulation of NF-kappaB-dependent transcription by SFN. Antioxid. Redox Signal. 7, 1601-1611. Antioxid. Redox Signal. 7, 1601-1611.

  20. A Pro-Inflammatory Role for Nuclear Factor Kappa B in Childhood Obstructive Sleep Apnea Syndrome

    PubMed Central

    Israel, Lee P.; Benharoch, Daniel; Gopas, Jacob; Goldbart, Aviv D.

    2013-01-01

    Study Objectives: Childhood obstructive sleep apnea syndrome (OSAS) is associated with an elevation of inflammatory markers such as C-reactive protein (CRP) that correlates with specific morbidities and subsides following intervention. In adults, OSAS is associated with activation of the transcription factor nuclear factor kappa B (NF-kB). We explored the mechanisms underlying NF-kB activation, based on the hypothesis that specific NF-kB signaling is activated in children with OSAS. Design: Adenoid and tonsillar tissues from children with OSAS and matched controls were immunostained against NF-kB classical (p65 and p50) and alternative (RelB and p52) pathway subunits, and NF-kB-dependent cytokines: interleukin (IL)- 1α, IL-1β, tumor necrosis factor-α, and IL-8). Serum CRP levels were measured in all subjects. NF-kB induction was evaluated by a luciferase-NF-kB reporter assay in L428 cells constitutively expressing NF-kB and in Jurkat cells with inducible NF-kB expression. p65 translocation to the nucleus, reflecting NF-kB activation, was measured in cells expressing fluorescent NF-kB-p65-GFP (green fluorescent protein). Setting: Sleep research laboratory. Patients or Participants: Twenty-five children with OSAS and 24 without OSAS. Interventions: N/A. Measurements and Results: Higher expression of IL-1α and classical NF-kB subunits p65 and p50 was observed in adenoids and tonsils of children with OSAS. Patient serum induced NF-kB activity, as measured by a luciferase-NF-kB reporter assay and by induction of p65 nuclear translocation in cells permanently transfected with GFP-p65 plasmid. IL-1β showed increased epithelial expression in OSAS tissues. Conclusions: Nuclear factor kappa B is locally and systemically activated in children with obstructive sleep apnea syndrome. This observation may motivate the search for new anti-inflammatory strategies for controlling nuclear factor kappa B activation in obstructive sleep apnea syndrome. Citation: Israel LP

  1. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis.

    PubMed

    Csaki, Constanze; Mobasheri, Ali; Shakibaei, Mehdi

    2009-01-01

    Currently available treatments for osteoarthritis (OA) are restricted to nonsteroidal anti-inflammatory drugs, which exhibit numerous side effects and are only temporarily effective. Thus novel, safe and more efficacious anti-inflammatory agents are needed for OA. Naturally occurring polyphenolic compounds, such as curcumin and resveratrol, are potent agents for modulating inflammation. Both compounds mediate their effects by targeting the NF-kappaB signalling pathway. We have recently demonstrated that in chondrocytes resveratrol modulates the NF-kappaB pathway by inhibiting the proteasome, while curcumin modulates the activation of NF-kappaB by inhibiting upstream kinases (Akt). However, the combinational effects of these compounds in chondrocytes has not been studied and/or compared with their individual effects. The aim of this study was to investigate the potential synergistic effects of curcumin and resveratrol on IL-1beta-stimulated human chondrocytes in vitro using immunoblotting and electron microscopy. Treatment with curcumin and resveratrol suppressed NF-kappaB-regulated gene products involved in inflammation (cyclooxygenase-2, matrix metalloproteinase (MMP)-3, MMP-9, vascular endothelial growth factor), inhibited apoptosis (Bcl-2, Bcl-xL, and TNF-alpha receptor-associated factor 1) and prevented activation of caspase-3. IL-1beta-induced NF-kappaB activation was suppressed directly by cocktails of curcumin and resveratrol through inhibition of Ikappakappa and proteasome activation, inhibition of IkappaBalpha phosphorylation and degradation, and inhibition of nuclear translocation of NF-kappaB. The modulatory effects of curcumin and resveratrol on IL-1beta-induced expression of cartilage specific matrix and proinflammatory enzymes were mediated in part by the cartilage-specific transcription factor Sox-9. We propose that combining these natural compounds may be a useful strategy in OA therapy as compared with separate treatment with each individual

  2. Screening for anti-inflammatory activity of 12 Arnica (Asteraceae) species assessed by inhibition of NF-kappaB and release of human neutrophil elastase.

    PubMed

    Ekenäs, Catarina; Zebrowska, Anna; Schuler, Barbara; Vrede, Tobias; Andreasen, Katarina; Backlund, Anders; Merfort, Irmgard; Bohlin, Lars

    2008-12-01

    Several species in the genus Arnica have been used in traditional medicine to treat inflammatory-related disorders. Extracts of twelve Arnica species and two species closely related to arnica ( Layia hieracioides and Madia sativa) were investigated for inhibition of human neutrophil elastase release and inhibition of transcription factor NF-kappaB. Statistical analyses reveal significant differences in inhibitory capacities between extracts. Sesquiterpene lactones of the helenanolide type, of which some are known inhibitors of human neutrophil elastase release and NF-kappaB, are present in large amounts in the very active extracts of A. montana and A. chamissonis. Furthermore, A. longifolia, which has previously not been investigated, shows a high activity similar to that of A. montana and A. chamissonis in both bioassays. Sesquiterpene lactones of the xanthalongin type are present in large amounts in A. longifolia and other active extracts and would be interesting to evaluate further. COX-2:cyclooxygenase 2 EMSA:electrophoretic mobility shift assay fMLP: N-formyl-methionyl-leucyl-phenylalanine HaCaT:human keratinocyte HNE:human neutrophil elastase IkappaB:inhibitory subunit of kappaB iNOS:inducible nitric oxide synthase NF-kappaB:nuclear factor kappaB PAF:platelet activating factor STL:sesquiterpene lactone TNF-alpha:tumor necrosis factor alpha.

  3. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-{kappa}B and MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ci Xinxin; Song Yu; Zeng Fanqin

    2008-07-18

    Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS.more » Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.« less

  4. Cisplatin induces apoptosis in oral squamous carcinoma cells by the mitochondria-mediated but not the NF-kappaB-suppressed pathway.

    PubMed

    Azuma, M; Tamatani, T; Ashida, Y; Takashima, R; Harada, K; Sato, M

    2003-04-01

    Cisplatin (CDDP) is a potent DNA-damaging anticancer agent, and its cytotoxic action is exerted by the induction of apoptosis. However, activation of the transcription factor NF-kappaB results in protection against apoptosis. We examined the molecular mechanisms involved in the induction of apoptosis by CDDP as regards both suppression of NF-kappaB and activation of caspases. Human oral squamous carcinoma cells (B88) were employed in this study. We found that CDDP treatment affected neither NF-kappaB activity nor the expression levels of antiapoptotic proteins, including TRAF-1, TRAF-2, and cFLIP, in B88 cells. However, two apoptosome molecules, cytochrome c and Apaf-1, were significantly augmented in the cytoplasm by CDDP treatment. Further, the activation of caspase-9 and caspase-3, downstream molecules leading to mitochondria-mediated apoptosis, were detected after treatment with CDDP. Finally, apoptosis was also clearly observed, as evidenced by cleavage of PARP through the activation of caspase-3. These findings suggest that CDDP exerts its apoptotic action by the mitochondria-mediated activation of caspases but not by the activation of caspases due to the inhibition of NF-kappaB activity that follows the suppression of antiapoptotic proteins.

  5. Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-{kappa}B pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Liping; Wang, Shixuan; Hu, Chaofeng

    2011-04-15

    Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor {kappa}B (NF-{kappa}B) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cellsmore » increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-{kappa}B activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-{kappa}B activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.« less

  6. NIK and Cot cooperate to trigger NF-kappaB p65 phosphorylation.

    PubMed

    Wittwer, Tobias; Schmitz, M Lienhard

    2008-06-27

    The serine/threonine kinase Cot triggers NF-kappaB-dependent transactivation and activation of various MAPKinases. Here we identify Cot as a novel p65 interacting protein kinase. Cot expression induces p65 phosphorylation at serines 536 and 468 in dependence from its kinase function. Accordingly, shRNA-mediated knockdown of Cot expression interferes with TNF-induced NF-kappaB-dependent gene expression. Also the C-terminally truncated, oncogenic form of Cot is able to trigger p65 phosphorylation. In vitro kinase assays and dominant negative mutants revealed that NIK functions downstream of Cot to mediate p65 phosphorylation.

  7. Thalidomide in rat liver cirrhosis: blockade of tumor necrosis factor-alpha via inhibition of degradation of an inhibitor of nuclear factor-kappaB.

    PubMed

    Paul, Shelley Chireyath; Lv, Peng; Xiao, Yan-Jv; An, Ping; Liu, Shi-Quan; Luo, He-Sheng

    2006-01-01

    Thalidomide inhibited tumor necrosis factor-alpha (TNF-alpha) effectively in many trials. The aim of this study was to investigate the effect of thalidomide on the expression of nuclear factor-kappaB (NF-kappaB), inhibitor of NF-kappaB (IkappaB) and TNF-alpha in a rat model of liver cirrhosis. Liver cirrhosis was achieved by intraperitoneal injection of carbon tetrachloride thrice weekly, and thalidomide (10 or 100 mg/kg/day) was given daily by intragastric route for 8 weeks. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), prealbumin (PA), hyaluronic acid (HA) and laminin (LN), and hydroxyproline (HYP), NF-kappaBp65, alpha-smooth muscle actin (alpha-SMA) protein and TNF-alpha mRNA were studied in the liver, IkappaBalpha and TNF-alpha protein in the cytoplasm and NF-kappaBp65 protein in the nucleus. Compared with nontreated cirrhotic rats, the histopathology of rats given thalidomide (100 mg/kg) was significantly better. Serum ALT, AST, HA and LN and HYP content in the liver were significantly decreased and PA was elevated (p < 0.01) in this group; the expression of TNF-alpha mRNA and protein, NF-kappaBp65 and alpha-SMA were significantly decreased and IkappaBalpha protein was also elevated (p < 0.01). Thalidomide downregulates NF-kappaB-induced TNF-alpha and activates hepatic stellate cells (HSC) via inhibition of IkappaB degradation to prevent liver cirrhosis. Copyright 2006 S. Karger AG, Basel.

  8. Effects of age and sedentary lifestyle on skeletal muscle NF-kappaB signaling in men.

    PubMed

    Buford, Thomas W; Cooke, Matthew B; Manini, Todd M; Leeuwenburgh, Christiaan; Willoughby, Darryn S

    2010-05-01

    Nuclear factor kappa B (NF-kappaB) is a critical signaling molecule of disuse-induced skeletal muscle atrophy. However, few studies have carefully investigated whether similar pathways are modulated with physical activity and age. The present study examined lean mass, maximal force production, and skeletal muscle NF-kappaB signaling in 41 men categorized as sedentary (OS, N = 13, 63.85 +/- 6.59 year), physically active (OA, N = 14, 60.71 +/- 5.54 year), or young and sedentary (YS, N = 14, 21.35 +/- 3.84 year). Muscle tissue from the vastus lateralis was assayed for messenger RNA (mRNA) expression of the beta subunit of IkB kinase (IKKbeta), cytosolic protein content of phosphorylated inhibitor of kappa B alpha (pIKBalpha), and nuclear content of NF-kappaB subunits p50 and p65. When compared with YS, OS demonstrated age-related muscle atrophy and reduced isokinetic knee extension torque. Physical activity in older individuals preserved maximal isokinetic knee extension torque. OS muscle contained 50% more pIKBalpha than OA and 61% more pIKBalpha than YS. Furthermore, nuclear p65 was significantly elevated in OS compared with YS. OS muscle did not differ from either of the other two groups for nuclear p50 or for mRNA expression of IKKbeta. These results indicate that skeletal muscle content of nuclear-bound p65 is elevated by age in humans. The elevation in nuclear-bound p65 appears to be at least partially due to significant increases in pIKBalpha. A sedentary lifestyle appears to play some role in increased IKBalpha; however, further research is needed to identify downstream effects of this increase.

  9. Novel synergistic mechanism for sst2 somatostatin and TNFalpha receptors to induce apoptosis: crosstalk between NF-kappaB and JNK pathways.

    PubMed

    Guillermet-Guibert, J; Saint-Laurent, N; Davenne, L; Rochaix, P; Cuvillier, O; Culler, M D; Pradayrol, L; Buscail, L; Susini, C; Bousquet, C

    2007-02-01

    Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.

  10. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation.

    PubMed Central

    Brown, Sharron A N; Richards, Christine M; Hanscom, Heather N; Feng, Sheau-Line Y; Winkles, Jeffrey A

    2003-01-01

    Fn14 is a growth-factor-inducible immediate-early-response gene encoding a 102-amino-acid type I transmembrane protein. The human Fn14 protein was recently identified as a cell-surface receptor for the tumour necrosis factor (TNF) superfamily member named TWEAK (TNF-like weak inducer of apoptosis). In the present paper, we report that the human TWEAK extracellular domain can also bind the murine Fn14 protein. Furthermore, site-specific mutagenesis and directed yeast two-hybrid interaction assays revealed that the TNFR-associated factor (TRAF) 1, 2, 3 and 5 adaptor molecules bind the murine Fn14 cytoplasmic tail at an overlapping, but non-identical, amino acid sequence motif. We also found that TWEAK treatment of quiescent NIH 3T3 cells stimulates inhibitory kappaBalpha phosphorylation and transcriptional activation of a nuclear factor-kappaB (NF-kappaB) enhancer/luciferase reporter construct. Fn14 overexpression in transiently transfected NIH 3T3 cells also promotes NF-kappaB activation, and this cellular response requires an intact TRAF binding site. These results indicate that Fn14 is a functional TWEAK receptor that can associate with four distinct TRAF family members and stimulate the NF-kappaB transcription factor signalling pathway. PMID:12529173

  11. Reactive oxygen species mediate liver injury through parenchymal nuclear factor-kappaB inactivation in prolonged ischemia/reperfusion.

    PubMed

    Llacuna, Laura; Marí, Montserrat; Lluis, Josep M; García-Ruiz, Carmen; Fernández-Checa, José C; Morales, Albert

    2009-05-01

    Nuclear factor (NF)-kappaB participates in ischemia/reperfusion (I/R) hepatic signaling, stimulating both protective mechanisms and the generation of inflammatory cytokines. After analyzing NF-kappaB activation during increasing times of ischemia in murine I/R, we observed that the nuclear translocation of p65 paralleled Src and IkappaB tyrosine phosphorylation, which peaked after 60 minutes of ischemia. After extended ischemic periods (90 to 120 minutes) however, nuclear p65 levels were inversely correlated with the progressive induction of oxidative stress. Despite this profile of NF-kappaB activation, inflammatory genes, such as tumor necrosis factor (TNF) and interleukin (IL)-1beta, predominantly induced by Kupffer cells, increased throughout time during ischemia (30 to 120 minutes), whereas protective NF-kappaB-dependent genes, such as manganese superoxide dismutase (Mn-SOD), expressed in parenchymal cells, decreased. Consistent with this behavior, gadolinium chloride pretreatment abolished TNF/IL-1beta up-regulation during ischemia without affecting Mn-SOD levels. Interestingly, specific glutathione (GSH) up-regulation in hepatocytes by S-adenosylmethionine increased Mn-SOD expression and protected against I/R-mediated liver injury despite TNF/IL-1beta induction. Similar protection was achieved by administration of the SOD mimetic MnTBAP. In contrast, indiscriminate hepatic GSH depletion by buthionine-sulfoximine before I/R potentiated oxidative stress and decreased both nuclear p65 and Mn-SOD expression levels, increasing TNF/IL-1beta up-regulation and I/R-induced liver damage. Thus, the divergent role of NF-kappaB activation in selective liver cell populations underlies the dichotomy of NF-kappaB in hepatic I/R injury, illustrating the relevance of specifically maintaining NF-kappaB activation in parenchymal cells.

  12. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-{kappa}B in human aortic smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manea, Adrian, E-mail: adrian.manea@icbp.ro; Tanase, Laurentia I.; Raicu, Monica

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-{kappa}B (NF-{kappa}B) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-{kappa}B signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-{alpha} (TNF{alpha}), a potent inducer of both Nox and NF-{kappa}B, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysismore » showed that inhibition of NF-{kappa}B pathway reduced significantly the TNF{alpha}-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-{kappa}B elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-{kappa}B significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-{kappa}B proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-{kappa}B is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-{kappa}B and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.« less

  13. Inhibition of GSK3 differentially modulates NF-{kappa}B, CREB, AP-1 and {beta}-catenin signaling in hepatocytes, but fails to promote TNF-{alpha}-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetschel, Frank; Kern, Claudia; Lang, Simona

    2008-04-01

    Glycogen synthase kinase-3 (GSK-3) is known to modulate cell survival and apoptosis through multiple intracellular signaling pathways. However, its hepatoprotective function and its role in activation of NF-{kappa}B and anti-apoptotic factors are poorly understood and remain controversial. Here we investigated whether inhibition of GSK-3 could induce apoptosis in the presence of TNF-{alpha} in primary mouse hepatocytes. We show that pharmacological inhibition of GSK-3 in primary mouse hepatocytes does not lead to TNF-{alpha}-induced apoptosis despite reduced NF-{kappa}B activity. Enhanced stability of I{kappa}B-{alpha} appears to be responsible for lower levels of nuclear NF-{kappa}B and hence reduced transactivation. Additionally, inhibition of GSK-3 wasmore » accompanied by marked upregulation of {beta}-catenin, AP-1, and CREB transcription factors. Stimulation of canonical Wnt signaling and CREB activity led to elevated levels of anti-apoptotic factors. Hence, survival of primary mouse hepatocytes may be caused by the activation and/or upregulation of other key regulators of liver homeostasis and regeneration. These signaling molecules may compensate for the compromised anti-apoptotic function of NF-{kappa}B and allow survival of hepatocytes in the presence of TNF-{alpha} and GSK-3 inhibition.« less

  14. Protective effects of grape seed proanthocyanidin extracts on cerebral cortex of streptozotocin-induced diabetic rats through modulating AGEs/RAGE/NF-kappaB pathway.

    PubMed

    Lu, Mei; Xu, Ling; Li, Baoying; Zhang, Weidong; Zhang, Chengmei; Feng, Hong; Cui, Xiaopei; Gao, Haiqing

    2010-01-01

    Diabetic encephalopathy is a severe complication in patients with long-term hyperglycemia. Oxidative stress is thought to be closely implicated in this disorder, so in this study, we examined whether grape seed proanthocyanidin extract (GSPE), a naturally occurring antioxidant derived from grape seeds, could reduce the injuries in the cerebral cortex of diabetic rats by modulating advanced glycation end products (AGEs)/the receptor for AGEs (RAGE)/nuclear factor-kappa B p65 (NF-kappaB p65) pathway, which is crucial in oxidative stress. Body weight and serum AGEs were tested; cerebral cortexes were isolated for morphological observations and the pyramidal cell layers were immunohistochemically stained for the detection of RAGE, NF-kappaB p65, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) as well. For RAGE and NF-kappaB p65, quantitative reverse transcriptase coupled to polymerase chain reaction (RT-PCR) was employed for determination of mRNA levels, and western blot was used to detect protein expression. Our results showed that long term hyperglycemia in diabetic rats caused the degeneration of neurons and the up-regulation of serum AGEs, and also the up-regulation of RAGE, NF-kappaB p65, VCAM-1 and ICAM-1 in the brain. We found that GSPE treatment improved the pathological changes of diabetic rats by modulating the AGEs/RAGE/NF-kappaB p65 pathway. This study enables us to further understand the key role that the AGEs/RAGE/NF-kappaB pathway plays in the pathogenesis of diabetic encephalopathy, and confirms that GSPE might be a therapeutical means to the prevention and treatment of this disorder.

  15. Stimulation of interleukin-13 expression by human T-cell leukemia virus type 1 oncoprotein Tax via a dually active promoter element responsive to NF-kappaB and NFAT.

    PubMed

    Silbermann, Katrin; Schneider, Grit; Grassmann, Ralph

    2008-11-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein transforms human lymphocytes and is critical for the pathogenesis of HTLV-1-induced adult T-cell leukaemia. In HTLV-transformed cells, Tax upregulates interleukin (IL)-13, a cytokine with proliferative and anti-apoptotic functions that is linked to leukaemogenesis. Tax-stimulated IL-13 is thought to result in autocrine stimulation of HTLV-infected cells and thus may be relevant to their growth. The causal transactivation of the IL-13 promoter by Tax is predominantly dependent on a nuclear factor of activated T cells (NFAT)-binding P element. Here, it was shown that the isolated IL-13 Tax-responsive element (IL13TaxRE) was sufficient to mediate IL-13 transactivation by Tax and NFAT1. However, cyclosporin A, a specific NFAT inhibitor, revealed that Tax transactivation of IL13TaxRE or wild-type IL-13 promoter was independent of NFAT and that NFAT did not contribute to IL-13 upregulation in HTLV-transformed cells. By contrast, Tax stimulation was repressible by an efficient nuclear factor (NF)-kappaB inhibitor (IkBaDN), indicating the requirement for NF-kappaB. The capacity of NF-kappaB to stimulate IL13TaxRE was demonstrated by a strong response to NF-kappaB in reporter assays and by direct binding of NF-kappaB to IL13TaxRE. Thus, IL13TaxRE in the IL-13 promoter represents a dually active promoter element responsive to NF-kappaB and NFAT. Together, these results indicate that Tax causes IL-13 upregulation in HTLV-1-infected cells via NF-kappaB.

  16. [Effects of granulocyte-macrophage colony stimulating factor on nuclear factor-KappaB activation in multiple organs of hemorrhage-induced acute lung injury in mice].

    PubMed

    Wang, Qian; Song, Yong; Shi, Yi

    2007-05-01

    To investigate the effects of nuclear factor-KappaB (NF-KappaB) activation in multiple organs of hemorrhage-induced acute lung injury (ALI) by the specific granulocyte-macrophage colony stimulating factor (GM-CSF)-neutralizing antibody (22E9) and dexamethasone (DEX) in mice. Twenty male C57BL/6 mice were used to reproduce a model of hemorrhagic shock by cardiac puncture. Before cardiac puncture, mice in different groups were transnasally administered with phosphate buffered solution (PBS, PCG group), PBS plus 1 microg 22E9 (HS1 group), PBS plus 10 microg 22E9 (HS10 group) and PBS plus 20 microg DEX (DEX group), respectively. In negative control group (NCG group) received cardiac puncture without shock followed by transnasal administration with PBS without shock. Lungs, hearts, livers and kidneys tissues of mice were harvested at 4 hours after hemorrhagic shock. The activities of NF-KappaB in different organs was determined by electrophoretic mobility shift assay (EMSA). The tumor necrosis factor-alpha (TNF-alpha) in lung and heart were determined by enzyme-linked immunosorbent assay (ELISA). 22E9 in both low or high doses could significantly inhibit NF-KappaB activities in lung, heart and liver, and elevated NF-KappaB activity in kidney compared with those of PCG group (all P<0.05). The effect of 22E9 was much better in HS1 group than in HS10 group (all P<0.05). DEX significantly strengthened NF-KappaB activity in kidney (P<0.05) and didn't significantly inhibit NF-KappaB activities in heart and liver compared with those of PCG group. 22E9 significantly inhibited TNF-alpha in lung and heart, while DEX significantly inhibited TNF-alpha in heart (all P<0.05). 22E9 can inhibit the NF-KappaB activation and inflammatory reaction in multiple organs after hemorrhage-induced ALI and reduce injury in multiple organs, while DEX has no significant effect.

  17. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies

    PubMed Central

    Gambhir, Sahil; Vyas, Dinesh; Hollis, Michael; Aekka, Apporva; Vyas, Arpita

    2015-01-01

    Nuclear factor kappa B (NF-κB) has an established role in the regulation of innate immunity and inflammation. NF-κB is also involved in critical mechanisms connecting inflammation and cancer development. Recent investigations suggest that the NF-κB signaling cascade may be the central mediator of gastrointestinal malignancies including esophageal, gastric and colorectal cancers. This review will explore NF-κB’s function in inflammation-associated gastrointestinal malignancies, highlighting its oncogenic contribution to each step of carcinogenesis. NF-κB’s role in the inflammation-to-carcinoma sequence in gastrointestinal malignancies warrants stronger emphasis upon targeting this pathway in achieving greater therapeutic efficacy. PMID:25805923

  18. Rosiglitazone attenuates NF-{kappa}B-dependent ICAM-1 and TNF-{alpha} production caused by homocysteine via inhibiting ERK{sub 1/2}/p38MAPK activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yong-Ping; Liu, Yu-Hui; Chen, Jia

    2007-08-17

    Previous studies demonstrated an important interaction between nuclear factor-kappaB (NF-{kappa}B) activation and homocysteine (Hcy)-induced cytokines expression in endothelial cells and vascular smooth muscle cells. However, the underlying mechanism remains illusive. In this study, we investigated the effects of Hcy on NF-{kappa}B-mediated sICAM-1, TNF-{alpha} production and the possible involvement of ERK{sub 1/2}/p38MAPK pathway. The effects of rosiglitazone intervention were also examined. Our results show that Hcy increased the levels of sICAM-1 and TNF-{alpha} in cultured human umbilical vein endothelial cells (HUVECs) in a time- and concentration-dependent manner. This effect was significantly depressed by rosiglitazone and different inhibitors (PDTC, NF-{kappa}B inhibitor; PD98059,more » MEK inhibitor; SB203580, p38MAPK specific inhibitor; and staurosporine, PKC inhibitor). Next, we investigated the effect of Hcy on ERK{sub 1/2}/p38MAPK pathway and NF-{kappa}B activity in HUVECs. The results show that Hcy activated both ERK{sub 1/2}/p38MAPK pathway and NF-{kappa}B-DNA-binding activity. These effects were markedly inhibited by rosiglitazone as well as other inhibitors (SB203580, PD98059, and PDTC). Further, the pretreatment of staurosporine abrogated ERK{sub 1/2}/p38MAPK phosphorylation, suggesting that Hcy-induced ERK{sub 1/2}/p38MAPK activation is associated with PKC activity. Our results provide evidence that Hcy-induced NF-{kappa}B activation was mediated by activation of ERK{sub 1/2}/p38MAPK pathway involving PKC activity. Rosiglitazone reduces the NF-{kappa}B-mediated sICAM-1 and TNF-{alpha} production induced by Hcy via inhibition of ERK{sub 1/2}/p38MAPK pa0011thw.« less

  19. Inhibition by antioxidants of nitric oxide synthase expression in murine macrophages: role of nuclear factor kappa B and interferon regulatory factor 1.

    PubMed Central

    Hecker, M.; Preiss, C.; Klemm, P.; Busse, R.

    1996-01-01

    1. In view of the potential deleterious effects of high amounts of nitric oxide (NO) produced by the inducible isoform of NO synthase (iNOS) in inflammation, the prevention of the expression of this enzyme represents an important therapeutic goal. In cytokine-stimulated cells, activation of nuclear factor kappa B (NF-kappa B) is crucial for the increase in iNOS gene expression. Since NF-kappa B activation appears to involve a redox-sensitive step, we have investigated whether three structurally unrelated antioxidants, 5,7-dihydroxyflavone (chrysin), 3,4-dichloroisocoumarin (DCI) and N-acetyl 5-hydroxytryptamine (N-acetylserotonin, NAS), affect iNOS expression in cultured RAW 264.7 monocyte/macrophages stimulated with bacterial lipopolysaccharide (LPS, 140 ng ml-1) and interferon-gamma (IFN gamma, 5 u ml-1). 2. During a 6 h incubation period neither LPS nor IFN gamma alone exerted a significant effect but when combined, caused a prominent increase in nitrite formation, iNOS mRNA and protein abundance. Co-incubation with chrysin (50 microM), DCI (50 microM) or NAS (1 mM) markedly attenuated this increase in iNOS gene expression. 3. DCI, but not chrysin or NAS, prevented the activation of NF-kappa B in cells exposed to LPS plus IFN gamma for 30 min. In contrast, all three antioxidants significantly blunted the DNA-binding activity of interferon regulatory factor 1 (IRF-1), which mediates the synergistic effect of IFN gamma on iNOS gene expression in cells treated for 2 h with LPS plus IFN gamma. 4. DCI thus appears to inhibit iNOS gene expression at the transcriptional level by preventing the activation of both NF-kappa B and IRF-1. The inhibitory effect of DCI on NF-kappa B activation, however, does not seem to be related to its antioxidative properties, since DCI, unlike chrysin or NAS, is a potent serine protease inhibitor which stabilizes the inactive NF-kappa B complex by protecting the inhibitory I kappa B-alpha subunit from proteolytic degradation. 5. The

  20. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. Inmore » cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that

  1. Assessment of hypoxia and TNF-alpha response by a vector with HRE and NF-kappaB response elements.

    PubMed

    Chen, Zhilin; Eadie, Ashley L; Hall, Sean R; Ballantyne, Laurel; Ademidun, David; Tse, M Yat; Pang, Stephen C; Melo, Luis G; Ward, Christopher A; Brunt, Keith R

    2017-01-01

    Hypoxia and inflammatory cytokine activation (H&I) are common processes in many acute and chronic diseases. Thus, a single vector that responds to both hypoxia and inflammatory cytokines, such as TNF-alpha, is useful for assesing the severity of such diseases. Adaptation to hypoxia is regulated primarily by hypoxia inducible transcription factor (HIF alpha) nuclear proteins that engage genes containing a hypoxia response element (HRE). Inflammation activates a multitude of cytokines, including TNF-alpha, that invariably modulate activation of the nuclear factor kappa B (NF-kB) transcription factor. We constructed a vector that encompassed both a hypoxia response element (HRE), and a NF-kappaB responsive element. We show that this vector was functionally responsive to both hypoxia and TNF-alpha, in vitro and in vivo . Thus, this vector might be suitable for the detection and assessment of hypoxia or TNF-alpha.

  2. TNF-{alpha} promotes cell survival through stimulation of K{sup +} channel and NF{kappa}B activity in corneal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-11-15

    Tumor necrosis factor (TNF-{alpha}) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-{alpha} also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-{alpha} stimulation induced activation of a voltage-gated K{sup +} channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-{alpha} on downstream events included NF{kappa}B nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-{alpha} induced increases inmore » p21 expression resulting in partial cell cycle attenuation in the G{sub 1} phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-{alpha}-induced K{sup +} channel activity effectively prevented NF{kappa}B nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-{alpha}. In conclusion, TNF-{alpha} promotes survival of HCE cells through sequential stimulation of K{sup +} channel and NF{kappa}B activities. This response to TNF-{alpha} is dependent on stimulating K{sup +} channel activity because following suppression of K{sup +} channel activity TNF-{alpha} failed to activate NF{kappa}B nuclear translocation and binding to nuclear DNA.« less

  3. Lack of NF-kappaB p50 exacerbates degeneration of hippocampal neurons after chemical exposure and impairs learning.

    PubMed

    Kassed, C A; Willing, A E; Garbuzova-Davis, S; Sanberg, P R; Pennypacker, K R

    2002-08-01

    The roles of activated NF-kappaB subunits in the CNS remain to be discerned. Members of this family of transcription factors are essential to diverse physiological processes and can be activated by pathogens, stress, pharmacological agents, and trauma. We are particularly interested in long-term NF-kappaB activation and its involvement in neuroplastic changes in the brain resulting from acquisition of memory as well as injury. Here, we use lesioning by the limbic-specific neurotoxicant trimethyltin (TMT) as a model in which to examine activation of the NF-kappaB p50 subunit before, during, and after neuronal degeneration. Neurons in wild-type mice that survived TMT-induced injury contained activated p50 and did not label with Fluoro-Jade, a histochemical marker of degenerating neurons. Granule cells of the wild-type dentate gyrus subregion, an area particularly vulnerable to TMT-induced degeneration, contained less activated p50 protein than CA regions. We compared the extent of degeneration in wild-type and p50-null mice and found a fivefold increase in death of hippocampal neurons in mice lacking p50. The hippocampus is key to processes of learning and memory, and NF-kappaB has reported involvement in these processes. The enhanced hippocampal degeneration in p50-null mice prompted us to evaluate their basal learning abilities, and we discovered that difficulties in task acquisition were an additional consequence of p50 ablation. These results indicate that absence of p50 negatively modulates learning ability as well as hippocampal responsiveness to brain injury after a chemical-induced lesion.

  4. NF-kappaB Activity in Macrophages Determines Metastatic Potential of Breast Tumor Cells

    DTIC Science & Technology

    2011-08-01

    Cheng DS, Chodosh LA, Blackwell TS, Yull FE: Activation of nuclear factor kappa B in mammary epithelium promotes milk loss during mammary... microbial products (15, 16). To date, the potential role of macrophages in the fetal lung innate immune response has not been closely examined. Studies...In this model, microbial products initially activate NF-kB in lung macrophages. The release of inflammatory mediators, particularly IL-1b and/or TNF-a

  5. Ectodomain shedding of TNF receptor 1 induced by protein synthesis inhibitors regulates TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Hirotsugu; Tsukumo, Yoshinori; Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501

    2008-04-01

    The transcription factor nuclear factor {kappa}B (NF-{kappa}B) plays a major role in the inducible resistance to death receptor-mediated apoptosis. It has been established that the protein synthesis inhibitor cycloheximide (CHX) sensitizes many types of cells to tumor necrosis factor (TNF)-{alpha}-induced apoptosis, mainly due to its ability to block de novo synthesis of cellular FLICE-inhibitory protein (c-FLIP). Nevertheless, we have surprisingly found that CHX, as well as its structural analogue acetoxycycloheximide (Ac-CHX), prevents TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8 in human lung carcinoma A549 cells. Both CHX and Ac-CHX reduced the expression of cell surface TNF receptor 1 (TNF-R1) in amore » dose-dependent manner, while Ac-CHX was approximately 100-fold more effective than CHX. Consistent with this observation, Ac-CHX induced the proteolytic cleavage of TNF-R1 and its release into the culture medium. CHX and Ac-CHX profoundly decreased constitutive and inducible expression of c-FLIP, whereas these compounds potentiated TNF-{alpha}-induced caspase-8 activation only when metalloprotease inhibitors were present. Thus, our results indicate that ectodomain shedding of TNF-R1 induced by protein synthesis inhibitors regulates TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8.« less

  6. Angiotensin II and the transcription factor Rel/NF-kappaB link environmental water shortage with memory improvement.

    PubMed

    Frenkel, L; Freudenthal, R; Romano, A; Nahmod, V E; Maldonado, H; Delorenzi, A

    2002-01-01

    One of the essential requirements even in the most ancient life forms is to be able to preserve body fluid medium. In line with such requirement, animals need to perform different behaviors to cope with water shortages. As angiotensin II (ANGII) is involved on a widespread range of functions in vertebrates, including memory modulation, an integrative role, in response to an environmental water shortage, has been envisioned. Previous work on the semi-terrestrial and brackish-water crab Chasmagnathus granulatus showed that endogenous ANGII enhanced an associative long-term memory and, in addition, that high salinity environment induces both an increase of brain ANGII levels and memory improvement. Here, we show that in the crab Chasmagnathus air exposure transiently increases blood sodium concentration, significantly increases brain ANGII immunoreactivity, and has a facilitatory effect on memory that is abolished by a non-selective ANGII receptor antagonist, saralasin. Furthermore, Rel/NF-kappaB, a transcription factor activated by ANGII in mammals and during memory consolidation in Chasmagnathus brain, is induced in the crab's brain by air exposure. Moreover, nuclear brain NF-kappaB is activated by ANGII, and this effect is reversed by saralasin. Our results constitute the first demonstration in an invertebrate that cognitive functions are modulated by an environmental stimulus through a neuropeptide and give evolutionary support to the role of angiotensins in memory processes. Moreover, these results suggest that angiotensinergic system is preserved across evolution not only in its structure and molecular mechanisms, but also in its capability of coordinating specific adaptative responses.

  7. Inhibition of TNF-alpha-induced NF-kappaB activation and IL-8 release in A549 cells with the proteasome inhibitor MG-132.

    PubMed

    Fiedler, M A; Wernke-Dollries, K; Stark, J M

    1998-08-01

    The working hypothesis of the studies described herein was that inhibition of proteasome-mediated IkappaB degradation would inhibit TNF-alpha-induced nuclear factor-kappaB (NF-kappaB) activation, interleukin-8 (IL-8) gene transcription, and IL-8 protein release in A549 cells. Mutational analysis of the 5' flanking region of the IL-8 gene confirmed that an intact NF-kappaB site is necessary for TNF-alpha-induced IL-8 gene transcription. The addition of TNF-alpha to A549 cells resulted in rapid loss of IkappaB from the cytoplasm of cells, associated with a corresponding increase in NF-kappaB-binding activity in nuclear extracts from the cells. However, pretreatment of the cells with the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132, 10 microM) reversed the effects of TNF-alpha on IL-8 release from A549 cells (as determined with an enzyme-linked immunosorbent assay [ELISA]) and on IL-8 gene transcription (as determined with reporter-gene assays). MG-132 reversed the effects of TNF-alpha on IkappaB degradation as determined by Western blot analysis. IkappaB phosphorylation and ubiquination were not altered by MG-132, which implies that the effects of MG-132 were secondary to proteasome inhibition. MG-132 also reversed the increase in NF-kappaB binding in nuclear extracts from TNF-alpha-treated cells. These studies show that inhibition of proteasome-mediated IkappaB degradation results in inhibition of TNF-alpha induced IL-8 production in A549 cells by limiting NF-kappaB-mediated gene transcription.

  8. Nuclear translocation of the 1,25D{sub 3}-MARRS (membrane associated rapid response to steroids) receptor protein and NF{kappa}B in differentiating NB4 leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenqing; Beilhartz, Greg; Roy, Yvette

    2010-04-15

    1,25 Dihydroxyvitamin D{sub 3} (1,25D{sub 3}) primes NB4 promyelocytic leukemia cells to differentiate along the monocyte/macrophage lineage through a non-genomic mechanism. Here we show that NB4 cells express high levels of the recently identified membrane receptor for 1,25D{sub 3}, which is a distinct gene product from the classical nuclear vitamin D receptor. This 57 kDa protein, named 1,25D{sub 3}-MARRS (Membrane Activated Rapid Response to Steroids)/ERp57/PIA3 appears to associate in a complex with the transcription factor, nuclear factor kappa B (NF{kappa}B). In unstimulated cells, 1,25D{sub 3}-MARRS can be co-immunoprecipitated with antibodies directed at NF{kappa}B, and NF{kappa}B is co-precipitated when antibodies againstmore » 1,25D{sub 3}-MARRS or ERp57 are used. Confocal microscopy and subcellular fractionation studies demonstrate that both 1,25D{sub 3}-MARRS and NF{kappa}B begin translocating to the nucleus within minutes of co-stimulation with 1,25D{sub 3} and phorbol ester. The predominant nuclear localization of both proteins precedes the expression of the monocyte/macrophage phenotype and suggests that this event may be critical to the differentiation pathway. This suggests a role for 1,25D{sub 3}-MARRS in the nucleus as a regulator of gene expression. Here it may also regulate the activity of NF{kappa}B and other factors with which it may be interacting.« less

  9. Incensole acetate, a novel anti-inflammatory compound isolated from Boswellia resin, inhibits nuclear factor-kappa B activation.

    PubMed

    Moussaieff, Arieh; Shohami, Esther; Kashman, Yoel; Fride, Ester; Schmitz, M Lienhard; Renner, Florian; Fiebich, Bernd L; Munoz, Eduardo; Ben-Neriah, Yinon; Mechoulam, Raphael

    2007-12-01

    Boswellia resin is a major anti-inflammatory agent in herbal medical tradition, as well as a common food supplement. Its anti-inflammatory activity has been attributed to boswellic acid and its derivatives. Here, we re-examined the anti-inflammatory effect of the resin, using inhibitor of nuclear factor-kappaB alpha (IkappaB alpha) degradation in tumor necrosis factor (TNF) alpha-stimulated HeLa cells for a bioassay-guided fractionation. We thus isolated two novel nuclear factor-kappaB (NF-kappaB) inhibitors from the resin, their structures elucidated as incensole acetate (IA) and its nonacetylated form, incensole (IN). IA inhibited TAK/TAB-mediated IkappaB kinase (IKK) activation loop phosphorylation, resulting in the inhibition of cytokine and lipopolysaccharide-mediated NF-kappaB activation. It had no effect on IKK activity in vitro, and it did not suppress IkappaB alpha phosphorylation in costimulated T-cells, indicating that the kinase inhibition is neither direct nor does it affect all NF-kappaB activation pathways. The inhibitory effect seems specific; IA did not interfere with TNFalpha-induced activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase. IA treatment had a robust anti-inflammatory effect in a mouse inflamed paw model. Cembrenoid diterpenoids, specifically IA and its derivatives, may thus constitute a potential novel group of NF-kappaB inhibitors, originating from an ancient anti-inflammatory herbal remedy.

  10. Enhanced IL-1{beta}-induced IL-8 production in cystic fibrosis lung epithelial cells is dependent of both mitogen-activated protein kinases and NF-{kappa}B signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muselet-Charlier, Celine; Universite Pierre et Marie Curie-Paris 6, Paris, UMR-S719, F-75012; Roque, Telma

    2007-06-01

    Transcription nuclear factor-{kappa}B (NF-{kappa}B) is hyperactivated in cystic fibrosis (CF) lung epithelial cells, and participates in exaggerated IL-8 production in the CF lung. We recently found that rapid activation of NF-{kappa}B occurred in a CF lung epithelial IB3-1 cell line (CF cells) upon IL-1{beta} stimulation, which was not observed in its CFTR-corrected lung epithelial S9 cell line (corrected cells). To test whether other signaling pathways such as that of mitogen-activated protein kinases (MAPKs) could be involved in IL-1{beta}-induced IL-8 production of CF cells, we investigated ERK1/2, JNK, and p38MAP signaling compared to NF-{kappa}B. Within 30 min, exposure to IL-1{beta} causedmore » high activation of NF-{kappa}B, ERK1/2, p38MAP but not JNK in CF cells compared to corrected cells. Treatment of IL-1{beta}-stimulated CF cells with a series of chemical inhibitors of NF-{kappa}B, ERK1/2, and p38MAP, when used separately, reduced slightly IL-8 production. However, when used together, these inhibitors caused a blockade in IL-1{beta}-induced IL-8 production in CF cells. Understanding of the cross-talk between NF-{kappa}B and MAPKs signaling in CF lung epithelial cells may help in developing new therapeutics to reduce lung inflammation in patients with CF.« less

  11. Inactivation of IkappaBbeta by the tax protein of human T-cell leukemia virus type 1: a potential mechanism for constitutive induction of NF-kappaB.

    PubMed

    McKinsey, T A; Brockman, J A; Scherer, D C; Al-Murrani, S W; Green, P L; Ballard, D W

    1996-05-01

    In resting T lymphocytes, the transcription factor NF-kappaB is sequestered in the cytoplasm via interactions with members of the I kappa B family of inhibitors, including IkappaBalpha and IkappaBbeta. During normal T-cell activation, IkappaBalpha is rapidly phosphorylated, ubiquitinated, and degraded by the 26S proteasome, thus permitting the release of functional NF-kappaB. In contrast to its transient pattern of nuclear induction during an immune response, NF-kappaB is constitutively activated in cells expressing the Tax transforming protein of human T-cell leukemia virus type I (HTLV-1). Recent studies indicate that HTLV-1 Tax targets IkappaBalpha to the ubiquitin-proteasome pathway. However, it remains unclear how this viral protein induces a persistent rather than transient NF-kappaB response. In this report, we provide evidence that in addition to acting on IkappaBalpha, Tax stimulates the turnover Of IkappaBbeta via a related targeting mechanism. Like IkappaBalpha, Tax-mediated breakdown of IkappaBbeta in transfected T lymphocytes is blocked either by cell-permeable proteasome inhibitors or by mutation Of IkappaBbeta at two serine residues present within its N-terminal region. Despite the dual specificity of HTLV-1 Tax for IkappaBalpha and IkappaBbeta at the protein level, Tax selectively stimulates NF-kappaB-directed transcription of the IkappaBalpha gene. Consequently, IkappaBbeta protein expression is chronically downregulated in HTLV-1-infected T lymphocytes. These findings with IkappaBbeta provide a potential mechanism for the constitutive activation of NF-kappaB in Tax-expressing cells.

  12. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse

    PubMed Central

    Miraghazadeh, Bahar; Cook, Matthew C.

    2018-01-01

    NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease. PMID:29686669

  13. Requirement of NF-kappa B Activation in Different Mice Brain Areas during Long-Term Memory Consolidation in Two Contextual One-Trial Tasks with Opposing Valences

    PubMed Central

    Salles, Angeles; Krawczyk, Maria del C.; Blake, Mariano; Romano, Arturo; Boccia, Mariano M.; Freudenthal, Ramiro

    2017-01-01

    NF-kappa B is a transcription factor whose activation has been shown to be necessary for long-term memory consolidation in several species. NF-kappa B is activated and translocates to the nucleus of cells in a specific temporal window during consolidation. Our work focuses on a one trial learning tasks associated to the inhibitory avoidance (IA) setting. Mice were trained either receiving or not a footshock when entering a dark compartment (aversive vs. appetitive learning). Regardless of training condition (appetitive or aversive), latencies to step-through during testing were significantly different to those measured during training. Additionally, these testing latencies were also different from those of a control group that only received a shock unrelated to context. Moreover, nuclear NF-kappa B DNA-binding activity was augmented in the aversive and the appetitive tasks when compared with control and naïve animals. NF-kappa B inhibition by Sulfasalazine injected either in the Hippocampus, Amygdala or Nucleus accumbens immediately after training was able to impair retention in both training versions. Our results suggest that NF-kappa B is a critical molecular step, in different brain areas on memory consolidation. This was the case for both the IA task and also the modified version of the same task where the footshock was omitted during training. This work aims to further investigate how appetitive and aversive memories are consolidated. PMID:28439227

  14. WDR5 is essential for assembly of the VISA-associated signaling complex and virus-triggered IRF3 and NF-kappaB activation.

    PubMed

    Wang, Yan-Yi; Liu, Li-Juan; Zhong, Bo; Liu, Tian-Tian; Li, Ying; Yang, Yan; Ran, Yong; Li, Shu; Tien, Po; Shu, Hong-Bing

    2010-01-12

    Viral infection causes activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and cellular antiviral response. The mitochondrial outer membrane protein VISA acts as a critical adapter for assembling a virus-induced complex that signals NF-kappaB and IRF3 activation. Using a biochemical purification approach, we identified the WD repeat protein WDR5 as a VISA-associated protein. WDR5 was recruited to VISA in a viral infection dependent manner. Viral infection also caused translocation of WDR5 from the nucleus to mitochondria. Knockdown of WDR5 impaired the formation of virus-induced VISA-associated complex. Consistently, knockdown of WDR5 inhibited virus-triggered activation of IRF3 and NF-kappaB as well as transcription of the IFNB1 gene. These findings suggest that WDR5 is essential in assembling a virus-induced VISA-associated complex and plays an important role in virus-triggered induction of type I IFNs.

  15. CARMA3 is overexpressed in colon cancer and regulates NF-{kappa}B activity and cyclin D1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer CARMA3 expression is elevated in colon cancers. Black-Right-Pointing-Pointer CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. Black-Right-Pointing-Pointer CARMA3 upregulates cyclinD1 through NF-{kappa}B activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression andmore » TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-I{kappa}B levels and NF-{kappa}B activity and its overexpression increased p-I{kappa}B expression and NF-{kappa}B activity. NF-{kappa}B inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-{kappa}B mediated upregulation of cyclin D1.« less

  16. Modulation of NF-kappaB activation in Theileria annulata-infected cloned cell lines is associated with detection of parasite-dependent IKK signalosomes and disruption of the actin cytoskeleton.

    PubMed

    Schmuckli-Maurer, Jacqueline; Kinnaird, Jane; Pillai, Sreerekha; Hermann, Pascal; McKellar, Sue; Weir, William; Dobbelaere, Dirk; Shiels, Brian

    2010-02-01

    Apicomplexan parasites within the genus Theileria have the ability to induce continuous proliferation and prevent apoptosis of the infected bovine leukocyte. Protection against apoptosis involves constitutive activation of the bovine transcription factor NF-kappaB in a parasite-dependent manner. Activation of NF-kappaB is thought to involve recruitment of IKK signalosomes at the surface of the macroschizont stage of the parasite, and it has been postulated that additional host proteins with adaptor or scaffolding function may be involved in signalosome formation. In this study two clonal cell lines were identified that show marked differences in the level of activated NF-kappaB. Further characterization of these lines demonstrated that elevated levels of activated NF-kappaB correlated with increased resistance to cell death and detection of parasite-associated IKK signalosomes, supporting results of our previous studies. Evidence was also provided for the existence of host- and parasite-dependent NF-kappaB activation pathways that are influenced by the architecture of the actin cytoskeleton. Despite this influence, it appears that the primary event required for formation of the parasite-dependent IKK signalosome is likely to be an interaction between a signalosome component and a parasite-encoded surface ligand.

  17. Evidence for activation of nuclear factor kappaB in obstructive sleep apnea.

    PubMed

    Yamauchi, Motoo; Tamaki, Shinji; Tomoda, Koichi; Yoshikawa, Masanori; Fukuoka, Atsuhiko; Makinodan, Kiyoshi; Koyama, Noriko; Suzuki, Takahiro; Kimura, Hiroshi

    2006-12-01

    Obstructive sleep apnea (OSA) is a risk factor for atherosclerosis, and atherosclerosis evolves from activation of the inflammatory cascade. We propose that activation of the nuclear factor kappaB (NF-kappaB), a key transcription factor in the inflammatory cascade, occurs in OSA. Nine age-matched, nonsmoking, and non-hypertensive men with OSA symptoms and seven similar healthy subjects were recruited for standard polysomnography followed by the collection of blood samples for monocyte nuclear p65 concentrations (OSA and healthy groups). In the OSA group, p65 and of monocyte production of tumor necrosis factor alpha (TNF-alpha) were measured at the same time and after the next night of continuous positive airway pressure (CPAP). p65 Concentrations in the OSA group were significantly higher than in the control group [median, 0.037 ng/microl (interquartile range, 0.034 to 0.051) vs 0.019 ng/microl (interquartile range, 0.013 to 0.032); p = 0.008], and in the OSA group were significantly correlated with apnea-hypopnea index and time spent below an oxygen saturation of 90% (r = 0.77 and 0.88, respectively) after adjustment for age and BMI. One night of CPAP resulted in a reduction in p65 [to 0.020 ng/mul (interquartile range, 0.010 to 0.036), p = 0.04] and levels of TNF-alpha production in cultured monocytes [16.26 (interquartile range, 7.75 to 24.85) to 7.59 ng/ml (interquartile range, 5.19 to 12.95), p = 0.01]. NF-kappaB activation occurs with sleep-disordered breathing. Such activation of NF-kappaB may contribute to the pathogenesis of atherosclerosis in OSA patients.

  18. Phytomedicines prepared from Arnica flowers inhibit the transcription factors AP-1 and NF-kappaB and modulate the activity of MMP1 and MMP13 in human and bovine chondrocytes.

    PubMed

    Jäger, Christoph; Hrenn, Andrea; Zwingmann, Jörn; Suter, Andreas; Merfort, Irmgard

    2009-10-01

    Arnica preparations have long been used for the symptomatic treatment of rheumatic complaints and recent clinical trials have demonstrated the beneficial effects of Arnica preparations in the treatment of osteoarthritis (OA). The efficacy of Arnica is presumed to be mainly due to its anti-inflammatory properties and inhibition of the transcription factor NF-kappaB. Here we provide further insights into its molecular mode of action. Arnica preparations suppress MMP1 and MMP13 mRNA levels in bovine and human articular chondrocytes in a concentration-dependent manner and in a low concentration range. This suppression may be due to inhibition of DNA binding of the transcription factors AP-1 and NF-kappaB. Interestingly, sesquiterpene lactones present in the preparations were always more active than the pure compounds, demonstrating the advantage of using plant preparations. Georg Thieme Verlag KG Stuttgart, New York.

  19. Functional characterization of bovine TIRAP and MyD88 in mediating bacterial lipopolysaccharide-induced endothelial NF-kappaB activation and apoptosis.

    PubMed

    Cates, Elizabeth A; Connor, Erin E; Mosser, David M; Bannerman, Douglas D

    2009-11-01

    Mastitis is a prevalent disease in dairy cows. Gram-negative bacteria, which express the pro-inflammatory molecule lipopolysaccharide (LPS), are responsible for the majority of acute clinical cases of mastitis. Previous studies have identified differential susceptibility of human and bovine endothelial cells (EC) to the pro-inflammatory and injury-inducing effects of LPS. The Toll-like receptor (TLR)-4 signaling pathway, which is activated by LPS, has been well studied in humans, but not in ruminants. Human myeloid differentiation-factor 88 (MyD88) and TIR-domain containing adaptor protein (TIRAP) are critical proteins in the LPS-induced NF-kappaB and apoptotic signaling pathways. To assess the role of the bovine orthologs of these proteins in bovine TLR-4 signaling, dominant-negative constructs were expressed in bovine EC, and LPS-induced NF-kappaB activation and apoptosis evaluated. The results from this study indicate that bovine MyD88 and TIRAP play functional roles in transducing LPS signaling from TLR-4 to downstream effector molecules involved in NF-kappaB activation, and that TIRAP promotes apoptotic signaling.

  20. Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages.

    PubMed

    Kim, Byung Hak; Hong, Seong Su; Kwon, Soon Woo; Lee, Hwa Young; Sung, Hyeran; Lee, In-Jeong; Hwang, Bang Yeon; Song, Sukgil; Lee, Chong-Kil; Chung, Daehyun; Ahn, Byeongwoo; Nam, Sang-Yoon; Han, Sang-Bae; Kim, Youngsoo

    2008-11-01

    Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.

  1. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression.

    PubMed

    Huerta-Yepez, Sara; Vega, Mario; Jazirehi, Ali; Garban, Hermes; Hongo, Fumiya; Cheng, Genhong; Bonavida, Benjamin

    2004-06-24

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to be selective in the induction of apoptosis in cancer cells with minimal toxicity to normal tissues and this prompted its potential therapeutic application in cancer. However, not all cancers are sensitive to TRAIL-mediated apoptosis and, therefore, TRAIL-resistant cancer cells must be sensitized first to become sensitive to TRAIL. Treatment of prostate cancer (CaP) cell lines (DU145, PC-3, CL-1, and LNCaP) with nitric oxide donors (e.g. (Z)-1-[2-(2-aminoethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1, 2-diolate (DETANONOate)) sensitized CaP cells to TRAIL-induced apoptosis and synergy was achieved. The mechanism by which DETANONOate mediated the sensitization was examined. DETANONOate inhibited the constitutive NF-kappa B activity as assessed by EMSA. Also, p50 was S-nitrosylated by DETANONOate resulting in inhibition of NF-kappa B. Inhibition of NF-kappa B activity by the chemical inhibitor Bay 11-7085, like DETANONOate, sensitized CaP to TRAIL apoptosis. In addition, DETANONOate downregulated the expression of Bcl-2 related gene (Bcl-(xL)) which is under the transcriptional regulation of NF-kappa B. The regulation of NF-kappa B and Bcl-(xL) by DETANONOate was corroborated by the use of Bcl-(xL) and Bcl-x kappa B reporter systems. DETANONOate inhibited luciferase activity in the wild type and had no effect on the mutant cells. Inhibition of NF-kappa B resulted in downregulation of Bcl-(xL) expression and sensitized CaP to TRAIL-induced apoptosis. The role of Bcl-(xL) in the regulation of TRAIL apoptosis was corroborated by inhibiting Bcl-(xL) function by the chemical inhibitor 2-methoxyantimycin A(3) and this resulted in sensitization of the cells to TRAIL apoptosis. Signaling by DETANONOate and TRAIL for apoptosis was examined. DETANONOate altered the mitochondria by inducing membrane depolarization and releasing modest amounts of cytochrome c and Smac/DIABLO in the absence of

  2. In vitro anticancer property of a novel thalidomide analogue through inhibition of NF-kappaB activation in HL-60 cells.

    PubMed

    Li, Min; Sun, Wan; Yang, Ya-ping; Xu, Bo; Yi, Wen-yuan; Ma, Yan-xia; Li, Zhong-jun; Cui, Jing-rong

    2009-01-01

    To investigate the anticancer property and possible mechanism of action of a novel sugar-substituted thalidomide derivative (STA-35) on HL-60 cells in vitro. TNF-alpha-induced NF-kappaB activation was determined using a reporter gene assay. The MTT assay was used to measure cytotoxicity of the compound. The appearance of apoptotic Sub-G1 cells was detected by flow cytometry analysis. PARP cleavage and protein expression of NF-kappaB p65 and its inhibitor IkappaB were viewed by Western blotting. TA-35 (1-20 micromol/L) suppressed TNF-alpha-induced NF-kappaB activation in transfected cells (HEK293/pNiFty-SEAP) in a dose- (1-20 micromol/L) and time-dependent (0-48 h) manner. It was also shown that STA-35 exerted a dose-dependent inhibitory effect on HL-60 cell proliferation with an IC(50) value of 9.05 micromol/L. In addition, STA-35 induced apoptosis in HL-60 cells, as indicated by the appearance of a Sub-G1 peak in the cell cycle distribution, as well as poly ADP-ribose polymerase (PARP) cleavage. Subsequently, both NF-kappaB p65 and its inhibitor IkappaB gradually accumulated in cytoplasmic extracts in a dose- and time-dependent manner, indicating the blockage of NF-kappaB translocation induced by TNF-alpha from the cytoplasm to the nucleus. A novel sugar-substituted thalidomide derivative, STA-35, is potent toward HL-60 cells in vitro and induces apoptosis by the suppression of NF-kappaB activation.

  3. Dexamethasone inhibits IL-12p40 production in lipopolysaccharide-stimulated human monocytic cells by down-regulating the activity of c-Jun N-terminal kinase, the activation protein-1, and NF-kappa B transcription factors.

    PubMed

    Ma, Wei; Gee, Katrina; Lim, Wilfred; Chambers, Kelly; Angel, Jonathan B; Kozlowski, Maya; Kumar, Ashok

    2004-01-01

    IL-12 plays a critical role in the development of cell-mediated immune responses and in the pathogenesis of inflammatory and autoimmune disorders. Dexamethasone (DXM), an anti-inflammatory glucocorticoid, has been shown to inhibit IL-12p40 production in LPS-stimulated monocytic cells. In this study, we investigated the molecular mechanism by which DXM inhibits IL-12p40 production by studying the role of the mitogen-activated protein kinases (MAPKs), and the key transcription factors involved in human IL-12p40 production in LPS-stimulated monocytic cells. A role for c-Jun N-terminal kinase (JNK) MAPK in LPS-induced IL-12p40 regulation in a promonocytic THP-1/CD14 cell line was demonstrated by using specific inhibitors of JNK activation, SP600125 and a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase-1 mutant. To identify transcription factors regulating IL-12p40 gene transcription, extensive deletion analyses of the IL-12p40 promoter was performed. The results revealed the involvement of a sequence encompassing the AP-1-binding site, in addition to that of NF-kappaB. The role of AP-1 in IL-12p40 transcription was confirmed by using antisense c-fos and c-jun oligonucleotides. Studies conducted to understand the regulation of AP-1 and NF-kappaB activation by JNK MAPK revealed that both DXM and SP600125 inhibited IL-12p40 gene transcription by inhibiting the activation of AP-1 and NF-kappaB transcription factors as revealed by luciferase reporter and gel mobility shift assays. Taken together, our results suggest that DXM may inhibit IL-12p40 production in LPS-stimulated human monocytic cells by down-regulating the activation of JNK MAPK, the AP-1, and NF-kappaB transcription factors.

  4. Genistein enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitors and inhibits nuclear factor kappa B in nonsmall cell lung cancer cell lines.

    PubMed

    Gadgeel, Shirish M; Ali, Shadan; Philip, Philip A; Wozniak, Antoinette; Sarkar, Fazlul H

    2009-05-15

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have shown modest clinical benefit in patients with relapsed nonsmall cell lung cancer (NSCLC). Down-regulation of Akt appears to correlate with the antitumor activity of EGFR-TKIs. Akt activates nuclear factor kappa B (NF-kappaB), which transcribes genes important for cell survival, invasion, and metastasis. The authors hypothesized that genistein, through the inhibition of NF-kappaB, could enhance the activity of EGFR-TKIs in NSCLCs. Three NSCLC cell lines with various EGFR mutation status and sensitivities to EGFR-TKIs were selected: H3255 (L858R), H1650 (del E746-A750), and H1781 (wild-type EGFR). Cells were treated with erlotinib, gefitinib, genistein, or the combination of each of the EGFR-TKIs with genistein. Cell survival and apoptosis were assessed, and expression levels of EGFR, pAkt, cyclooxygenase-2 (COX-2), E-cadherin, prostaglandin E(2) (PGE(2)), and NF-kappaB were measured. Both EGFR-TKIs demonstrated growth inhibition and apoptosis in each of the cell lines, but H1650 and H1781 were much less sensitive. Genistein demonstrated some antitumor activity in all cell lines, but enhanced growth inhibition and apoptosis when combined with the EGFR-TKIs in each of the cell lines. Both combinations down-regulated NF-kappaB significantly more than either agent alone in H3255. In addition, the combinations reduced the expression of EGFR, pAkt, COX-2, and PGE(2,) consistent with inactivation of NF-kappaB. The authors concluded that genistein enhances the antitumor effects of EGFR-TKIs in 3 separate NSCLC cell lines. This enhanced activity is in part because of greater reduction in the DNA-binding activity of NF-kappaB when EGFR-TKIs were combined with genistein.

  5. Persistent tumor necrosis factor signaling in normal human fibroblasts prevents the complete resynthesis of I kappa B-alpha.

    PubMed

    Poppers, D M; Schwenger, P; Vilcek, J

    2000-09-22

    Transcription factor NF-kappa B is normally sequestered in the cytoplasm, complexed with I kappa B inhibitory proteins. Tumor necrosis factor (TNF) and interleukin-1 induce I kappa B-alpha phosphorylation, leading to I kappa B-alpha degradation and translocation of NF-kappa B to the nucleus where it activates genes important in inflammatory and immune responses. TNF and interleukin-1 actions are typically terminated by desensitization, and I kappa B-alpha reappearance normally occurs within 30-60 min. We found that in normal human FS-4 fibroblasts maintained in the presence of TNF, I kappa B-alpha protein failed to return to base-line levels for up to 15 h. Removal of TNF at any time during the 15-h period resulted in complete I kappa B-alpha resynthesis, suggesting that I kappa B-alpha reappearance was prevented by continued TNF signaling. Long term exposure of FS-4 fibroblasts to TNF led to a persistent presence of I kappa B-alpha mRNA, sustained I kappa B kinase activation, continuous proteasome-mediated degradation of I kappa B-alpha, and sustained nuclear localization of NF-kappa B. Continuous exposure of FS-4 cells to TNF did not lead to a sustained activation of p38 or ERK mitogen-activated protein kinases, suggesting that not all TNF-induced signaling pathways are persistently activated. These findings challenge the notion that all cytokine-mediated signals are rapidly terminated by desensitization and illustrate the need to elucidate the process of deactivation of TNF-induced signaling.

  6. The lymphotoxin promoter is stimulated by HTLV-I tax activation of NF-kappa B in human T-cell lines.

    PubMed

    Paul, N L; Millet, I; Ruddle, N H

    1993-07-01

    The HTLV-I transcriptional activator tax was used to gain insight into the mechanism of lymphotoxin (LT; TNF-beta) gene induction. Tax-expressing cell lines produce LT biologic activity. An LT promoter (LT-293) CAT construct that contained an NF-kappa B site was active in the LT-producing C81-66-45 cell line, which contains defective HTLV-I but expresses tax. The observation that a mutated LT-kappa B construct (M1-CAT) was inactive in C81-66-45, confirmed the importance of NF-kappa B in LT gene expression. Tax was transfected into HTLV-I-negative human T-cell lines. Jurkat T cells stably expressing tax contained elevated levels of NF-kappa B that directly bound to the LT-kappa B site. Tax co-transfected with reporter constructs into Jurkat cells maximally activated HTLV-I-LTR-CAT and kappa B-fos-CAT and also activated LT-293 to a lesser extent. In JM T cells, tax induced LT-293 activity by two- to four-fold, though there was no induction of M1-CAT. The increase in LT-293 CAT activity mirrored the increase in LT biologic activity seen under these conditions. These studies, the first to demonstrate induction of LT promoter activity over basal levels, indicate that HTLV-I tax causes low-level activation of both endogenous LT and the LT promoter, at least in part through activation of NF-kappa B.

  7. Expression of NF-kappaB and IkappaB proteins in skeletal muscle of gastric cancer patients

    PubMed Central

    Rhoads, Mary G.; Kandarian, Susan C.; Pacelli, Fabio; Doglietto, Giovan Battista; Bossola, Maurizio

    2011-01-01

    The mechanisms eliciting cancer cachexia are not well understood. Wasting of skeletal muscle is problematic because it is responsible for the clinical deterioration in cancer patients and the ability to tolerate cancer treatment. Animal studies suggest that nuclear factor of kappa B (NF-κB) signaling is important in the progression of muscle wasting due to several types of tumors. However, there are no published studies in humans on a role for NF-κB in cancer cachexia. In this project we studied the rectus abdominis muscle from patients with gastric tumors (n=14) and age matched control subjects (n=10) for markers of NF-κB activation. Nuclear levels of p65, p50, and Bcl-3 were the same in both groups of subjects. However, phospho-p65 was elevated by 25% in muscles of cancer patients. In addition, expression of the inhibitor of kappa B alpha (IκBα), was decreased by 25% in cancer patients. Decreased expression of IκBα reflects its degradation by one of the IκBα kinases and is a marker of NF-κB activation. Interestingly, there was no correlation between the stage of cancer and the extent of IκBα decrease, nor was there a correlation between the degree of cachexia and decreased IκBα levels. This suggests that the activation of NF-κB is an early and sustained event in gastric cancer. The work implicates the NF-κB signaling in the initiation and progression of cancer cachexia in humans and demonstrates the need for additional study of this pathway; it also recommends NF-κB signaling as a therapeutic target for the amelioration of cachexia as has been suggested from rodent studies. PMID:19857958

  8. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration ofmore » SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.« less

  9. [Expressions of HSP 70 and NF-kappaB in the peripheral blood lymphocyte of chronic gastritis patients of different syndrome patterns].

    PubMed

    Hu, Ling; Zheng, Xiao-Feng; Yan, Xue-Hui

    2012-09-01

    To study the expressions of heat shock protein 70 (HSP 70) and nuclear factor-kappa B (NF-kappaB) in the peripheral blood lymphocyte of chronic gastritis (CG) patients of Pi-Wei hygropyrexia syndrome (PWHS) and Pi-qi deficiency syndrome (PQDS), and to explore their correlation with Helicobacter pylori (Hp) infection. Recruited were totally 86 CG patients who visited at the clinics of gastroenterology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, including 67 patients of PWHS (30 of predominant-dampness, 30 of equal dampness and heat, and 30 of predominant-heat) and 19 patients of PQDS. Another 12 volunteers from healthy employees and students of Guangzhou University of Traditional Chinese Medicine were recruited as the control group. Their peripheral blood was collected. The Hp infection was detected using ASSURE Hp rapid test. The expressions of HSP 70 and NF-kappaB in the peripheral blood lymphocyte were detected using flow cytometry. The Hp infection rate was 37. 31% in the GS patients of PWHS and 36. 84% in the GS patients of PQDS (P>0.05). Compared with the control group, the expression of HSP 70 decreased in the PWHS predominant-heat group, and the expression of NF-kappaB increased in the PWHS predominant-heat group and the PQDS group (P<0.05). The expression of NF-kappaB were higher in the positive Hp infection patients of PWHS and PQDS than in the control group (P<0.05). The expression of HSP 70 was higher in the positive Hp infection patients of PQDS than in the negative Hp infection patients of PQDS (P<0.05). Besides, the coefficient correlation was -0. 023 between HSP 70 and Hp infection, and 0. 027 between NF-KB and Hp infection (P>0.05). The increased expression of NF-KB in the peripheral blood lymphocyte of CG patients of PWHS and PQDS might reflect the pathogenic roles of "inner evil" in Chinese medicine theories. The increased expression of HSP 70 in CG patients of PQDS and decreased expression of HSP 70 in CG

  10. Thermodynamics reveal that helix four in the NLS of NF-kappaB p65 anchors IkappaBalpha, forming a very stable complex.

    PubMed

    Bergqvist, Simon; Croy, Carrie H; Kjaergaard, Magnus; Huxford, Tom; Ghosh, Gourisankar; Komives, Elizabeth A

    2006-07-07

    IkappaBalpha is an ankyrin repeat protein that inhibits NF-kappaB transcriptional activity by sequestering NF-kappaB outside of the nucleus in resting cells. We have characterized the binding thermodynamics and kinetics of the IkappaBalpha ankyrin repeat domain to NF-kappaB(p50/p65) using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). SPR data showed that the IkappaBalpha and NF-kappaB associate rapidly but dissociate very slowly, leading to an extremely stable complex with a K(D,obs) of approximately 40 pM at 37 degrees C. As reported previously, the amino-terminal DNA-binding domain of p65 contributes little to the overall binding affinity. Conversely, helix four of p65, which forms part of the nuclear localization sequence, was essential for high-affinity binding. This was surprising, given the small size of the binding interface formed by this part of p65. The NF-kappaB(p50/p65) heterodimer and p65 homodimer bound IkappaBalpha with almost indistinguishable thermodynamics, except that the NF-kappaB p65 homodimer was characterized by a more favorable DeltaH(obs) relative to the NF-kappaB(p50/p65) heterodimer. Both interactions were characterized by a large negative heat capacity change (DeltaC(P,obs)), approximately half of which was contributed by the p65 helix four that was necessary for tight binding. This could not be accounted for readily by the small loss of buried non-polar surface area and we hypothesize that the observed effect is due to additional folding of some regions of the complex.

  11. Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-kappaB via mitogen-activated protein kinase pathways in mouse macrophage cells.

    PubMed

    Han, Kyu Yeon; Kwon, Taek Hwan; Lee, Tae Hoon; Lee, Sung-Joon; Kim, Sung-Hoon; Kim, Jiyoung

    2008-04-30

    A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-kappaB and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-kappaB in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-kappaB. In addition, phosphorylation of IkappaB-alpha protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-kappaB. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.

  12. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells to bed rest to astronauts.

    PubMed

    Zwart, Sara R; Pierson, Duane; Mehta, Satish; Gonda, Steve; Smith, Scott M

    2010-05-01

    NF-kappaB is a transcriptional activator of many genes, including some that lead to muscle atrophy and bone resorption-significant concerns for astronauts. NF-kappaB activation is inhibited by eicosapentaenoic acid (EPA), but the influence of this omega-3 fatty acid on the effects of weightlessness are unknown. We report here cellular, ground analogue, and spaceflight findings. We investigated the effects of EPA on differentiation of RAW264.7 monocyte/macrophage cells induced by receptor activator of NF-kappaB ligand (RANKL) and on activation of NF-kappaB by tumor necrosis factor alpha (TNF-alpha) or exposure to modeled weightlessness. EPA (50 microM for 24 hours) inhibited RANKL-induced differentiation and decreased activation of NF-kappaB induced by 0.2 microg/mL of TNF-alpha for 30 minutes or by modeled weightlessness for 24 hours (p < .05). In human studies, we evaluated whether NF-kappaB activation was altered after short-duration spaceflight and determined the relationship between intake of omega-3 fatty acids and markers of bone resorption during bed rest and the relationship between fish intake and bone mineral density after long-duration spaceflight. NF-kappaB was elevated in crew members after short-duration spaceflight, and higher consumption of fish (a rich source of omega-3 fatty acids) was associated with reduced loss of bone mineral density after flight (p < .05). Also supporting the cell study findings, a higher intake of omega-3 fatty acids was associated with less N-telopeptide excretion during bed rest (Pearson r = -0.62, p < .05). Together these data provide mechanistic cellular and preliminary human evidence of the potential for EPA to counteract bone loss associated with spaceflight. (c) 2010 American Society for Bone and Mineral Research.

  13. Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin.

    PubMed

    Chiang, Yi-Ming; Lo, Chiu-Ping; Chen, Yi-Ping; Wang, Sheng-Yang; Yang, Ning-Sun; Kuo, Yueh-Hsiung; Shyur, Lie-Fen

    2005-10-01

    Ethyl caffeate, a natural phenolic compound, was isolated from Bidens pilosa, a medicinal plant popularly used for treating certain inflammatory syndromes. The purpose of this study was to investigate the structural activity, and the anti-inflammatory functions and mechanism(s) of ethyl caffeate. Ethyl caffeate was found to markedly suppress the lipopolysaccharide (LPS)-induced nitric oxide (NO) production (IC(50) = 5.5 microg ml(-1)), mRNA and protein expressions of inducible nitric oxide synthase (iNOS), and prostaglandin E(2) (PGE(2)) production in RAW 264.7 macrophages. Transient gene expression assays using human cox-2 promoter construct revealed that ethyl caffeate exerted an inhibitory effect on cox-2 transcriptional activity in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells. Immunohistochemical studies of mouse skin demonstrated that TPA-induced COX-2 expression was significantly inhibited by ethyl caffeate with a superior effect to that of celecoxib, a nonsteroidal anti-inflammatory drug. The phosphorylation and degradation of inhibitor kappaB (IkappaB) and the translocation of nuclear transcription factor-kappaB (NF-kappaB) into the nucleus, as well as the activation of mitogen-activated protein kinases (MAPKs) induced by LPS in macrophages, were not affected by ethyl caffeate. Ethyl caffeate, however, could inhibit NF-kappaB activation by impairing the binding of NF-kappaB to its cis-acting element. These results suggest that ethyl caffeate suppresses iNOS and COX-2 expressions partly through the inhibition of the NF-kappaB.DNA complex formation. Structure-activity relationship analyses suggested that the catechol moiety and alpha,beta-unsaturated ester group in ethyl caffeate are important and essential structural features for preventing NF-kappaB.DNA complex formation. This study provides an insight into the probable mechanism(s) underlying the anti-inflammatory and therapeutic properties of ethyl caffeate.

  14. The flavonoid, fisetin, inhibits UV radiation-induced oxidative stress and the activation of NF-kappaB and MAPK signaling in human lens epithelial cells.

    PubMed

    Yao, Ke; Zhang, Li; Zhang, Yidong; Ye, PanPan; Zhu, Ning

    2008-01-01

    Ultraviolet (UV) radiation-induced oxidative stress plays a significant role in the progression of cataracts. This study investigated the photoprotective effect of fisetin on UV radiation-induced oxidative stress in human lens epithelial cells and the possible molecular mechanism involved. SRA01/04 cells exposed to different doses of ultraviolet B (UVB) were cultured with various concentrations of fisetin and subsequently monitored for cell viability by the 4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. The effect of fisetin on the generation of reactive oxygen species (ROS) of SRA01/04 cells was determined by flow cytometry. Translocation of nuclear factor kappa-B (NF-kappaB) was examined by immunocytochemistry. Expression of NF-kappaB/P65, inhibiter kappa B (IkappaB), and mitogen activated protein kinase (MAPK) proteins were measured by western blot. Treatment of SRA01/04 cells with fisetin inhibited UVB-induced cell death and the generation of ROS. Fisetin inhibited UVB-induced activation and translocation of NF-kappaB/p65, which was mediated through an inhibition of the degradation and activation of IkappaB. Fisetin also inhibited UVB-induced phosphorylation of the p38 and c-Jun N-terminal kinase (JNK) proteins of the MAPK family at various time points studied. The flavonoid, fisetin, could be useful in attenuation of UV radiation-induced oxidative stress and the activation of NF-kappaB and MAPK signaling in human lens epithelial cells, which suggests that fisetin has a potential protective effect against cataractogenesis.

  15. Zinc deficiency induces vascular pro-inflammatory parameters associated with NF-kappaB and PPAR signaling.

    PubMed

    Shen, Huiyun; Oesterling, Elizabeth; Stromberg, Arnold; Toborek, Michal; MacDonald, Ruth; Hennig, Bernhard

    2008-10-01

    Marginal intake of dietary zinc can be associated with increased risk of cardiovascular diseases. In the current study we hypothesized that vascular dysfunction and associated inflammatory events are activated during a zinc deficient state. We tested this hypothesis using both vascular endothelial cells and mice lacking the functional LDL-receptor gene. Zinc deficiency increased oxidative stress and NF-kappaB DNA binding activity, and induced COX-2 and E-selectin gene expression, as well as monocyte adhesion in cultured endothelial cells. The NF-kappaB inhibitor CAPE significantly reduced the zinc deficiency-induced COX-2 expression, suggesting regulation through NF-kappaB signaling. PPAR can inhibit NF-kappaB signaling, and our previous data have shown that PPAR transactivation activity requires adequate zinc. Zinc deficiency down-regulated PPARalpha expression in cultured endothelial cells. Furthermore, the PPARgamma agonist rosiglitazone was unable to inhibit the adhesion of monocytes to endothelial cells during zinc deficiency, an event which could be reversed by zinc supplementation. Our in vivo data support the importance of PPAR dysregulation during zinc deficiency. For example, rosiglitazone induced inflammatory genes (e.g., MCP-1) only during zinc deficiency, and adequate zinc was required for rosiglitazone to down-regulate pro-inflammatory markers such as iNOS. In addition, rosiglitazone increased IkappaBalpha protein expression only in zinc adequate mice. Finally, plasma data from LDL-R-deficient mice suggest an overall pro-inflammatory environment during zinc deficiency and support the concept that zinc is required for proper anti-inflammatory or protective functions of PPAR. These studies suggest that zinc nutrition can markedly modulate mechanisms of the pathology of inflammatory diseases such as atherosclerosis.

  16. FLICE-like inhibitory protein (FLIP) protects against apoptosis and suppresses NF-kappaB activation induced by bacterial lipopolysaccharide.

    PubMed

    Bannerman, Douglas D; Eiting, Kristine T; Winn, Robert K; Harlan, John M

    2004-10-01

    Bacterial lipopolysaccharide (LPS) via its activation of Toll-like receptor-4 contributes to much of the vascular injury/dysfunction associated with gram-negative sepsis. Inhibition of de novo gene expression has been shown to sensitize endothelial cells (EC) to LPS-induced apoptosis, the onset of which correlates with decreased expression of FLICE-like inhibitory protein (FLIP). We now have data that conclusively establish a role for FLIP in protecting EC against LPS-induced apoptosis. Overexpression of FLIP protected against LPS-induced apoptosis, whereas down-regulation of FLIP using antisense oligonucleotides sensitized EC to direct LPS killing. Interestingly, FLIP overexpression suppressed NF-kappaB activation induced by LPS, but not by phorbol ester, suggesting a specific role for FLIP in mediating LPS activation. Conversely, mouse embryo fibroblasts (MEF) obtained from FLIP -/- mice showed enhanced LPS-induced NF-kappaB activation relative to those obtained from wild-type mice. Reconstitution of FLIP-/- MEF with full-length FLIP reversed the enhanced NF-kappaB activity elicited by LPS in the FLIP -/- cells. Changes in the expression of FLIP had no demonstrable effect on other known LPS/Tlr-4-activated signaling pathways including the p38, Akt, and Jnk pathways. Together, these data support a dual role for FLIP in mediating LPS-induced apoptosis and NF-kappaB activation.

  17. The hemoglobin receptor protein of porphyromonas gingivalis inhibits receptor activator NF-kappaB ligand-induced osteoclastogenesis from bone marrow macrophages.

    PubMed

    Fujimura, Yuji; Hotokezaka, Hitoshi; Ohara, Naoya; Naito, Mariko; Sakai, Eiko; Yoshimura, Mamiko; Narita, Yuka; Kitaura, Hideki; Yoshida, Noriaki; Nakayama, Koji

    2006-05-01

    Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent fashion. HbR markedly inhibited RANKL-induced osteoclastogenesis when present in the culture for the first 24 h after addition of RANKL, whereas no significant inhibition was observed when HbR was added after 24 h or later, implying that HbR might interfere with only the initial stage of RANKL-mediated differentiation. HbR tightly bound to bone marrow macrophages and had the ability to induce phosphorylation of ERK, p38, NF-kappaB, and Akt. RANKL-induced phosphorylation of ERK, p38, and NF-kappaB was not suppressed by HbR, but that of Akt was markedly suppressed. HbR inhibited RANKL-mediated induction of c-Fos and NFATc1. HbR could induce beta interferon (IFN-beta) from bone marrow macrophages, but the induction level of IFN-beta might not be sufficient to suppress RANKL-mediated osteoclastogenesis, implying presence of an IFN-beta-independent pathway in HbR-mediated inhibition of osteoclastogenesis. Since rapid and extensive destruction of the alveolar bone causes tooth loss, resulting in loss of the gingival crevice that is an anatomical niche for periodontal pathogens such as P. gingivalis, the suppressive effect of HbR on osteoclastogenesis may help the microorganism exist long in the niche.

  18. A novel form of the RelA nuclear factor kappaB subunit is induced by and forms a complex with the proto-oncogene c-Myc.

    PubMed Central

    Chapman, Neil R; Webster, Gill A; Gillespie, Peter J; Wilson, Brian J; Crouch, Dorothy H; Perkins, Neil D

    2002-01-01

    Members of both Myc and nuclear factor kappaB (NF-kappaB) families of transcription factors are found overexpressed or inappropriately activated in many forms of human cancer. Furthermore, NF-kappaB can induce c-Myc gene expression, suggesting that the activities of these factors are functionally linked. We have discovered that both c-Myc and v-Myc can induce a previously undescribed, truncated form of the RelA(p65) NF-kappaB subunit, RelA(p37). RelA(p37) encodes the N-terminal DNA binding and dimerization domain of RelA(p65) and would be expected to function as a trans-dominant negative inhibitor of NF-kappaB. Surprisingly, we found that RelA(p37) no longer binds to kappaB elements. This result is explained, however, by the observation that RelA(p37), but not RelA(p65), forms a high-molecular-mass complex with c-Myc. These results demonstrate a previously unknown functional and physical interaction between RelA and c-Myc with many significant implications for our understanding of the role that both proteins play in the molecular events underlying tumourigenesis. PMID:12027803

  19. FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-kappaB and activating protein-1.

    PubMed

    Lungu, Gina; Covaleda, Lina; Mendes, Odete; Martini-Stoica, Heidi; Stoica, George

    2008-06-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tumor invasion and metastasis. Here, we investigate the effect of fibroblast growth factor-1 (FGF-1) on the expression of MMP-9 in ENU1564, an ethyl-N-nitrosourea-induced rat mammary adenocarcinoma cell line. We observed that FGF-1 induces a dose-dependent increase in MMP-9 mRNA, protein, and activity in ENU1564 cells. To gain insight into the molecular mechanism of MMP-9 regulation by FGF-1, we investigated the role of components of PI3K-Akt and MEK1/2-ERK signaling pathways in our system since NF-kappaB and AP-1 transcription factor binding sites have been characterized in the upstream region of the MMP-9 gene. We demonstrated that FGF-1 increases Akt phosphorylation, triggers nuclear translocation of NF-kappaBp65, and enhances degradation of cytoplasmic IkappaBalpha. Pretreatment of cells with LY294002, a PI3K inhibitor, significantly inhibited MMP-9 protein expression in FGF-1-treated cells. Conversely, our data show that FGF-1 increases ERK phosphorylation in ENU1564 cells, increases c-jun and c-fos mRNA expression in a time-dependent manner, and triggers nuclear translocation of c-jun. Pretreatment of cells with PD98059, a MEK1/2 inhibitor significantly inhibited MMP-9 protein expression in FGF-1 treated cells. Finally, we observed increased DNA binding of NF-kappaB and AP-1 in FGF-1-treated cells and that mutation of either NF-kappaB or AP-1 response elements prevented MMP-9 promoter activation by FGF-1. Taken together, these results demonstrated that FGF-1-induced MMP-9 expression in ENU1564 cells is associated with increasing DNA binding activities of NF-kappaB and AP-1 and involve activation of a dual signaling pathway, PI3K-Akt and MEK1/2-ERK. (c) 2007 Wiley-Liss, Inc.

  20. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities.

    PubMed

    Srinivasan, Balasubramanian; Johnson, Thomas E; Lad, Rahul; Xing, Chengguo

    2009-11-26

    Chalcone is a privileged structure, demonstrating promising anti-inflammatory and anticancer activities. One potential mechanism is to suppress nuclear factor kappa B (NF-kappaB) activation. The structures of chalcone-based NF-kappaB inhibitors vary significantly that there is minimum information about their structure-activity relationships (SAR). This study aims to establish SAR of chalcone-based compounds to NF-kappaB inhibition, to explore the feasibility of developing simple chalcone-based potent NF-kappaB inhibitors, and to evaluate their anticancer activities. Three series of chalcones were synthesized in one to three steps with the key step being aldol condensation. These candidates demonstrated a wide range of NF-kappaB inhibitory activities, some of low micromolar potency, establishing that structural complexity is not required for NF-kappaB inhibition. Lead compounds also demonstrate potent cytotoxicity against lung cancer cells. Their cytotoxicities correlate moderately well with their NF-kappaB inhibitory activities, suggesting that suppressing NF-kappaB activation is likely responsible for at least some of the cytotoxicities. One lead compound effectively inhibits lung tumor growth with no signs of adverse side effects.

  1. TNF{alpha} acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-{kappa}B-dependent pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas, Martin A.; Carnevale, Romina P.; Proietti, Cecilia J.

    2008-02-01

    Tumor necrosis factor {alpha} (TNF{alpha}) enhances proliferation of chemically-induced mammary tumors and of T47D human cell line through not fully understood pathways. Here, we explored the intracellular signaling pathways triggered by TNF{alpha}, the participation of TNF{alpha} receptor (TNFR) 1 and TNFR2 and the molecular mechanism leading to breast cancer growth. We demonstrate that TNF{alpha} induced proliferation of C4HD murine mammary tumor cells and of T47D cells through the activation of p42/p44 MAPK, JNK, PI3-K/Akt pathways and nuclear factor-kappaB (NF-{kappa}B) transcriptional activation. A TNF{alpha}-specific mutein selectively binding to TNFR1 induced p42/p44 MAPK, JNK, Akt activation, NF-{kappa}B transcriptional activation and cell proliferation,more » just like wild-type TNF{alpha}, while a mutein selective for TNFR2 induced only p42/p44 MAPK activation. Interestingly, blockage of TNFR1 or TNFR2 with specific antibodies was enough to impair TNF{alpha} signaling and biological effect. Moreover, in vivo TNF{alpha} administration supported C4HD tumor growth. We also demonstrated, for the first time, that injection of a selective inhibitor of NF-{kappa}B activity, Bay 11-7082, resulted in regression of TNF{alpha}-promoted tumor. Bay 11-7082 blocked TNF{alpha} capacity to induce cell proliferation and up-regulation of cyclin D1 and of Bcl-x{sub L}in vivo and in vitro. Our results reveal evidence for TNF{alpha} as a breast tumor promoter, and provide novel data for a future therapeutic approach using TNF{alpha} antagonists and NF-{kappa}B pharmacological inhibitors in established breast cancer treatment.« less

  2. IkappaB is a sensitive target for oxidation by cell-permeable chloramines: inhibition of NF-kappaB activity by glycine chloramine through methionine oxidation.

    PubMed

    Midwinter, Robyn G; Cheah, Fook-Choe; Moskovitz, Jackob; Vissers, Margret C; Winterbourn, Christine C

    2006-05-15

    Hypochlorous acid (HOCl) is produced by the neutrophil enzyme, myeloperoxidase, and reacts with amines to generate chloramines. These oxidants react readily with thiols and methionine and can affect cell-regulatory pathways. In the present study, we have investigated the ability of HOCl, glycine chloramine (Gly-Cl) and taurine chloramine (Tau-Cl) to oxidize IkappaBalpha, the inhibitor of NF-kappaB (nuclear factor kappaB), and to prevent activation of the NF-kappaB pathway in Jurkat cells. Glycine chloramine (Gly-Cl) and HOCl were permeable to the cells as determined by oxidation of intracellular GSH and inactivation of glyceraldehyde-3-phosphate dehydrogenase, whereas Tau-Cl showed no detectable cell permeability. Both Gly-Cl (20-200 muM) and HOCl (50 microM) caused oxidation of IkappaBalpha methionine, measured by a shift in electrophoretic mobility, when added to the cells in Hanks buffer. In contrast, a high concentration of Tau-Cl (1 mM) in Hanks buffer had no effect. However, Tau-Cl in full medium did modify IkappaBalpha. This we attribute to chlorine exchange with other amines in the medium to form more permeable chloramines. Oxidation by Gly-Cl prevented IkappaBalpha degradation in cells treated with TNFalpha (tumour necrosis factor alpha) and inhibited nuclear translocation of NF-kappaB. IkappaBalpha modification was reversed by methionine sulphoxide reductase, with both A and B forms required for complete reduction. Oxidized IkappaBalpha persisted intracellularly for up to 6 h. Reversion occurred in the presence of cycloheximide, but was prevented if thioredoxin reductase was inhibited, suggesting that it was due to endogenous methionine sulphoxide reductase activity. These results show that cell-permeable chloramines, either directly or when formed in medium, could regulate NF-kappaB activation via reversible IkappaBalpha oxidation.

  3. Evidence for nucleotide receptor modulation of cross talk between MAP kinase and NF-kappa B signaling pathways in murine RAW 264.7 macrophages.

    PubMed

    Aga, Mini; Watters, Jyoti J; Pfeiffer, Zachary A; Wiepz, Gregory J; Sommer, Julie A; Bertics, Paul J

    2004-04-01

    Extracellular nucleotides such as ATP are present in abundance at sites of inflammation and tissue damage, and these agents exert a potent modulatory effect on macrophage/monocyte function via the nucleotide receptor P2X(7). In this regard, after exposure to bacterial LPS, P2X(7) activation augments expression of the inducible nitric oxide (NO) synthase and production of NO in macrophages. Because P2X(7) has been reported to stimulate certain members of the MAP kinase family (ERK1/2) and can enhance the DNA-binding activity of NF-kappa B, we tested the hypothesis that LPS and nucleotides regulate NF-kappa B-dependent inflammatory events via cross talk with MAPK-associated pathways. In this regard, the present studies revealed that cotreatment of macrophages with LPS and the P2X(7)-selective ligand 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) results in the cooperative activation of NF-kappa B DNA-binding activity and a sustained attenuation of levels of the NF-kappa B inhibitory protein I kappa B alpha. Interestingly, a persistent reduction in I kappa B alpha levels is also observed when the MEK1/2 inhibitor U0126 is coadministered with LPS, suggesting that components of the MEK/ERK pathway are involved in regulating I kappa B alpha protein expression and/or turnover. The observation that U0126 and BzATP exhibit overlapping actions with respect to LPS-induced changes in I kappa B alpha levels is supported by the finding that Ras activation, which is upstream of MEK/ERK activation, is reduced upon macrophage cotreatment with BzATP and LPS compared with the effects of BzATP treatment alone. These data are consistent with the concept that the Ras/MEK/ERK pathways are involved in regulating NF-kappa B/I kappa B-dependent inflammatory mediator production and suggest a previously unidentified mechanism by which nucleotides can modulate LPS-induced action via cross talk between NF-kappa B and Ras/MEK/MAPK-associated pathways.

  4. Metastatic function of BMP-2 in gastric cancer cells: The role of PI3K/AKT, MAPK, the NF-{kappa}B pathway, and MMP-9 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Myoung Hee; Oh, Sang Cheul; Lee, Hyun Joo

    2011-07-15

    Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-{kappa}B, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of I{kappa}B{alpha} and the nuclear translocation/activation of NF-{kappa}B.more » Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-{kappa}B. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-{kappa}B inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-{kappa}B and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.« less

  5. Nuclear factor-kappa B decoy suppresses nerve injury and improves mechanical allodynia and thermal hyperalgesia in a rat lumbar disc herniation model.

    PubMed

    Suzuki, Munetaka; Inoue, Gen; Gemba, Takefumi; Watanabe, Tomoko; Ito, Toshinori; Koshi, Takana; Yamauchi, Kazuyo; Yamashita, Masaomi; Orita, Sumihisa; Eguchi, Yawara; Ochiai, Nobuyasu; Kishida, Shunji; Takaso, Masashi; Aoki, Yasuchika; Takahashi, Kazuhisa; Ohtori, Seiji

    2009-07-01

    Nuclear factor-kappa B (NF-kappaB) is a gene transcriptional regulator of inflammatory cytokines. We investigated the transduction efficiency of NF-kappaB decoy to dorsal root ganglion (DRG), as well as the decrease in nerve injury, mechanical allodynia, and thermal hyperalgesia in a rat lumbar disc herniation model. Forty rats were used in this study. NF-kappaB decoy-fluorescein isothiocyanate (FITC) was injected intrathecally at the L5 level in five rats, and its transduction efficiency into DRG measured. In another 30 rats, mechanical pressure was placed on the DRG at the L5 level and nucleus pulposus harvested from the rat coccygeal disc was transplanted on the DRG. Rats were classified into three groups of ten animals each: a herniation + decoy group, a herniation + oligo group, and a herniation only group. For behavioral testing, mechanical allodynia and thermal hyperalgesia were evaluated. In 15 of the herniation rats, their left L5 DRGs were resected, and the expression of activating transcription factor 3 (ATF-3) and calcitonin gene-related peptide (CGRP) was evaluated immunohistochemically compared to five controls. The total transduction efficiency of NF-kappaB decoy-FITC in DRG neurons was 10.8% in vivo. The expression of CGRP and ATF-3 was significantly lower in the herniation + decoy group than in the other herniation groups. Mechanical allodynia and thermal hyperalgesia were significantly suppressed in the herniation + decoy group. NF-kappaB decoy was transduced into DRGs in vivo. NF-kappaB decoy may be useful as a target for clarifying the mechanism of sciatica caused by lumbar disc herniation.

  6. The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-kappaB activation in A549 cells.

    PubMed

    Byrd, Matthew S; Pang, Bing; Mishra, Meenu; Swords, W Edward; Wozniak, Daniel J

    2010-06-29

    In order for the opportunistic Gram-negative pathogen Pseudomonas aeruginosa to cause an airway infection, the pathogen interacts with epithelial cells and the overlying mucous layer. We examined the contribution of the biofilm polysaccharide Psl to epithelial cell adherence and the impact of Psl on proinflammatory signaling by flagellin. Psl has been implicated in the initial attachment of P. aeruginosa to biotic and abiotic surfaces, but its direct role in pathogenesis has not been evaluated (L. Ma, K. D. Jackson, R. M. Landry, M. R. Parsek, and D. J. Wozniak, J. Bacteriol. 188:8213-8221, 2006). Using an NF-kappaB luciferase reporter system in the human epithelial cell line A549, we show that both Psl and flagellin are necessary for full activation of NF-kappaB and production of the interleukin 8 (IL-8) chemokine. We demonstrate that Psl does not directly stimulate NF-kappaB activity, but indirectly as a result of increasing contact between bacterial cells and epithelial cells, it facilitates flagellin-mediated proinflammatory signaling. We confirm differential adherence of Psl and/or flagellin mutants by scanning electron microscopy and identify Psl-dependent membrane structures that may participate in adherence. Although we hypothesized that Psl would protect P. aeruginosa from recognition by the epithelial cell line A549, we instead observed a positive role for Psl in flagellin-mediated NF-kappaB activation, likely as a result of increasing contact between bacterial cells and epithelial cells.

  7. Manipulation of NF-KappaBetta Activity in the Macrophage Lineage as a Novel Therapeutic Approach

    DTIC Science & Technology

    2007-05-01

    Sadikot, J. W. Christman, and T. S. Blackwell. 2003. Bioluminescent detection of endotoxin effects on HIV-1 LTR-driven transcription in vivo. J...differences in proliferation rates, expression of downstream gene expression and effects mediated by altered macrophages on associated epithelial...kappaB activity within macrophages has significant effects on mammary ductal development. 15. SUBJECT TERMS NF-kappaB, macrophages, mammary ductal

  8. Sulforaphane protects against cytokine- and streptozotocin-induced {beta}-cell damage by suppressing the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mi-Young; Kim, Eun-Kyung; Moon, Woo-Sung

    2009-02-15

    Sulforaphane (SFN) is an indirect antioxidant that protects animal tissues from chemical or biological insults by stimulating the expression of several NF-E2-related factor-2 (Nrf2)-regulated phase 2 enzymes. Treatment of RINm5F insulinoma cells with SFN increases Nrf2 nuclear translocation and expression of phase 2 enzymes. In this study, we investigated whether the activation of Nrf2 by SFN treatment or ectopic overexpression of Nrf2 inhibited cytokine-induced {beta}-cell damage. Treatment of RIN cells with IL-1{beta} and IFN-{gamma} induced {beta}-cell damage through a NF-{kappa}B-dependent signaling pathway. Activation of Nrf2 by treatment with SFN and induction of Nrf2 overexpression by transfection with Nrf2 prevented cytokinemore » toxicity. The mechanism by which Nrf2 activation inhibited NF-{kappa}B-dependent cell death signals appeared to involve the reduction of oxidative stress, as demonstrated by the inhibition of cytokine-induced H{sub 2}O{sub 2} production. The protective effect of SFN was further demonstrated by the restoration of normal insulin secreting responses to glucose in cytokine-treated rat pancreatic islets. Furthermore, pretreatment with SFN blocked the development of type 1 diabetes in streptozotocin-treated mice.« less

  9. Inhibition of EGR-1 and NF-kappa B gene expression by dexamethasone during phorbol ester-induced human monocytic differentiation.

    PubMed

    Hass, R; Brach, M; Gunji, H; Kharbanda, S; Kufe, D

    1992-10-20

    The treatment of human myeloid leukemia cells (HL-60, U-937, THP-1) with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with growth arrest and appearance of a differentiated monocytic phenotype. While previous studies have reported that the glucocorticoid dexamethasone blocks phenotypic characteristics of monocytic differentiation, we demonstrated in the present work that dexamethasone delays the effects of TPA on the loss of U-937 cell proliferation. We also demonstrated that this glucocorticoid inhibits TPA-induced increases in expression of the EGR-1 early response gene. The results of nuclear run-on assays and half-life experiments indicated that this effect of dexamethasone is regulated at the post-transcriptional level. Similar studies were performed for the NF-kappa B gene. While TPA treatment was associated with transient increases in NF-kappa B mRNA levels, this induction was blocked by dexamethasone. In contrast, dexamethasone had no significant effect on the activation of pre-existing NF-kappa B protein as determined in DNA-binding assays. Taken together, these findings suggest that the activated glucocorticoid receptor inhibits signaling pathways which include expression of the EGR-1 and NF-kappa B genes and that such effects may contribute to a block in TPA-induced monocytic differentiation.

  10. HTLV-I Tax protein binds to MEKK1 to stimulate IkappaB kinase activity and NF-kappaB activation.

    PubMed

    Yin, M J; Christerson, L B; Yamamoto, Y; Kwak, Y T; Xu, S; Mercurio, F; Barbosa, M; Cobb, M H; Gaynor, R B

    1998-05-29

    NF-kappaB, a key regulator of the cellular inflammatory and immune response, is activated by the HTLV-I transforming and transactivating protein Tax. We show that Tax binds to the amino terminus of the protein kinase MEKK1, a component of an IkappaB kinase complex, and stimulates MEKK1 kinase activity. Tax expression increases the activity of IkappaB kinase beta (IKKbeta) to enhance phosphorylation of serine residues in IkappaB alpha that lead to its degradation. Dominant negative mutants of both IKKbeta and MEKK1 prevent Tax activation of the NF-kappaB pathway. Furthermore, recombinant MEKK1 stimulates IKKbeta phosphorylation of IkappaB alpha. Thus, Tax-mediated increases in NF-kappaB nuclear translocation result from direct interactions of Tax and MEKK1 leading to enhanced IKKbeta phosphorylation of IkappaB alpha.

  11. Rhinovirus stimulation of interleukin-6 in vivo and in vitro. Evidence for nuclear factor kappa B-dependent transcriptional activation.

    PubMed Central

    Zhu, Z; Tang, W; Ray, A; Wu, Y; Einarsson, O; Landry, M L; Gwaltney, J; Elias, J A

    1996-01-01

    To further understand the biology of rhinovirus (RV), we determined whether IL-6 was produced during RV infections and characterized the mechanism by which RV stimulates lung cell IL-6 production. In contrast to normals and minimally symptomatic volunteers, IL-6 was detected in the nasal washings from patients who developed colds after RV challenge. RV14 and RV1A, major and minor receptor group RVs, respectively, were potent stimulators of IL-6 protein production in vitro. These effects were associated with significant increases in IL-6 mRNA accumulation and gene transcription. RV was also a potent stimulator of IL-6 promoter-driven luciferase activity. This stimulation was modestly decreased by mutation of the nuclear factor (NF)-IL-6 site and abrogated by mutation of the NF-kappa B site in this promoter. An NF-kappa B-DNA binding activity, mediated by p65, p50, and p52 NF-kappa B moieties, was rapidly induced in RV-infected cells. Activator protein 1-DNA binding was not similarly altered. These studies demonstrate that IL-6 is produced during symptomatic RV infections, that RVs are potent stimulators of IL-6 elaboration, and that RV stimulation IL-6 production is mediated by an NF-kappa B-dependent transcriptional stimulation pathway. IL-6 may play an important role in the pathogenesis of RV infection, and NF-kappa B activation is likely to be an important event in RV-induced pathologies. PMID:8567963

  12. Rosmanol potently inhibits lipopolysaccharide-induced iNOS and COX-2 expression through downregulating MAPK, NF-kappaB, STAT3 and C/EBP signaling pathways.

    PubMed

    Lai, Ching-Shu; Lee, Jong Hun; Ho, Chi-Tang; Liu, Cheng Bin; Wang, Ju-Ming; Wang, Ying-Jan; Pan, Min-Hsiung

    2009-11-25

    Rosmanol is a natural polyphenol from the herb rosemary (Rosmarinus officinalis L.) with high antioxidant activity. In this study, we investigated the inhibitory effects of rosmanol on the induction of NO synthase (NOS) and COX-2 in RAW 264.7 cells induced by lipopolysaccharide (LPS). Rosmanol markedly inhibited LPS-stimulated iNOS and COX-2 protein and gene expression, as well as the downstream products, NO and PGE2. Treatment with rosmanol also reduced translocation of the nuclear factor-kappaB (NF-kappaB) subunits by prevention of the degradation and phosphorylation of inhibitor kappaB (IkappaB). Western blot analysis showed that rosmanol significantly inhibited translocation and phosphorylation of NF-kappaB, signal transducer and activator of transcription-3 (STAT3), and the protein expression of C/EBPbeta and C/EBPdelta. We also found that rosmanol suppressed LPS-induced phosphorylation of ERK1/2, p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Our results demonstrate that rosmanol downregulates inflammatory iNOS and COX-2 gene expression by inhibiting the activation of NF-kappaB and STAT3 through interfering with the activation of PI3K/Akt and MAPK signaling. Taken together, rosmanol might contribute to the potent anti-inflammatory effect of rosemary and may have potential to be developed into an effective anti-inflammatory agent.

  13. Myricetin down-regulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B.

    PubMed

    Lee, Kyung Mi; Kang, Nam Joo; Han, Jin Hee; Lee, Ki Won; Lee, Hyong Joo

    2007-11-14

    Abnormal expression of cyclooxygenase-2 (COX-2) has been implicated in the development of cancer. There are multiple lines of evidence that red wine exerts chemopreventive effects, and 3,5,4'-trihydroxy- trans-stilbene (resveratrol), which is a non-flavonoid polyphenol found in red wine, has been reported to be a natural chemopreventive agent. However, other phytochemicals might contribute to the cancer-preventive activities of red wine, and the flavonol content of red wines is about 30 times higher than that of resveratrol. Here we report that 3,3',4',5,5',7-hexahydroxyflavone (myricetin), one of the major flavonols in red wine, inhibits 12-O-tetradecanoylphorbol-13-acetate (phorbol ester)-induced COX-2 expression in JB6 P+ mouse epidermal (JB6 P+) cells by suppressing activation of nuclear factor kappa B (NF-kappaB). Myricetin at 10 and 20 microM inhibited phorbol ester-induced upregulation of COX-2 protein, while resveratrol at the same concentration did not exert significant effects. The phorbol ester-induced production of prostaglandin E 2 was also attenuated by myricetin treatment. Myricetin inhibited both COX-2 and NF-kappaB transactivation in phorbol ester-treated JB6 P+ cells, as determined using a luciferase assay. Myricetin blocked the phorbol ester-stimulated DNA binding activity of NF-kappaB, as determined using an electrophoretic mobility shift assay. Moreover, TPCK (N-tosyl-l-phenylalanine chloromethyl ketone), a NF-kappaB inhibitor, significantly attenuated COX-2 expression and NF-kappaB promoter activity in phorbol ester-treated JB6 P+ cells. In addition, red wine extract inhibited phorbol ester-induced COX-2 expression and NF-kappaB transactivation in JB6 P+ cells. Collectively, these data suggest that myricetin contributes to the chemopreventive effects of red wine through inhibition of COX-2 expression by blocking the activation of NF-kappaB.

  14. Insulin-like growth factor-binding protein-5 (IGFBP-5) inhibits TNF-{alpha}-induced NF-{kappa}B activity by binding to TNFR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jae Ryoung; Huh, Jae Ho; Lee, Yoonna

    2011-02-25

    Research highlights: {yields} Binding assays demonstrated that secreted- and cellular-IGFBP-5 interacted with TNFR1. {yields} The interaction between IGFBP-5 and TNFR1 was inhibited by TNF-{alpha} and was blocked TNF-{alpha}-activated NF-{kappa}B activity. {yields} IGFBP-5 interacted with TNFR1 through its N- and L-domains but the binding of L-domain to TNFR1 was blocked by TNF-{alpha}. {yields} Competition between the L-domain of IGFBP-5 and TNF-{alpha} blocked TNF-{alpha}-induced NF-{kappa}B activity. {yields} This study suggests that the L-domain of IGFBP-5 is a novel TNFR1 ligand that functions as a competitive TNF-{alpha} inhibitor. -- Abstract: IGFBP-5 is known to be involved in various cell phenomena such as proliferation,more » differentiation, and apoptosis. However, the exact mechanisms by which IGFBP-5 exerts its functions are unclear. In this study, we demonstrate for the first time that IGFBP-5 is a TNFR1-interacting protein. We found that ectopic expression of IGFBP-5 induced TNFR1 gene expression, and that IGFBP-5 interacted with TNFR1 in both an in vivo and an in vitro system. Secreted IGFBP-5 interacted with GST-TNFR1 and this interaction was blocked by TNF-{alpha}, demonstrating that IGFBP-5 might be a TNFR1 ligand. Furthermore, conditioned media containing secreted IGFBP-5 inhibited PMA-induced NF-{kappa}B activity and IL-6 expression in U-937 cells. Coimmunoprecipitation assays of TNFR1 and IGFBP-5 wild-type and truncation mutants revealed that IGFBP-5 interacts with TNFR1 through its N- and L-domains. However, only the interaction between the L-domain of IGFBP-5 and TNFR1 was blocked by TNF-{alpha} in a dose-dependent manner, suggesting that the L-domain of IGFBP-5 can function as a TNFR1 ligand. Competition between the L-domain of IGFBP-5 and TNF-{alpha} resulted in inhibition of TNF-{alpha}-induced NF-{kappa}{Beta} activity. Taken together, our results suggest that the L-domain of IGFBP-5 is a novel TNFR1 ligand that functions as a

  15. BCL10 aberations and NF-kappa B activation involving p65 are absent or rare in primary gastric MALT lymphoma.

    PubMed

    Hajder, Jelena; Marisavljević, Dragomir; Stanisavljević, Natasa; Mihaljević, Biljana; Kovcin, Vladimir; Marković, Olivera; Zivković, Radmila

    2014-11-01

    Mucosa-associated lymphoid tissue (MALT) lymphoma accounts for 5-17% non-Hodgkin lymphomas (NHL). The molecular pathogenesis of MALT lymphomas is not well-established. The aim of this study was to evaluate immunohistochemically determined nuclear coexpression of BCL10 and NF-kappaB (NF-kappaB) in tumor cells of gastric MALT lymphoma and its impact on the patogenesis and outcome of the disease. Medical records of 35 patients with newly diagnosed gastric MALT lymphoma were analyzed and biopsy specimens were immunostained for BCL10 and NF-kappaB expression (p65 subunit). The median age of 35 patients diagnosed with gastric MALT lymphoma was 63.5 years (male/female = 21/14). Symptoms were present in 23/35 (65.7%) patients with the weight loss as the most common symptom. Gastric MALT lymphomas were usually localized in the stomach corpus and corpus and antrum (45.7% and 31.2%, respectively). H. pylon infection was confirmed in 20 out of 30 (66.7%) patients. Treatment options were as follows: immunochemotherapy in 10 (28.5%) patients, surgery in 9 (25.8%) patients, combined surgery and chemotherapy in 14 (40%) patients and supportive measures in 2 (5.7%) patients. Complete remission was achieved in 13 (37.10/) patients and partial remission in two (5.7%/) patients. Sixteen (45.7%/) patients had disease progression (p < 0.001). Cytoplasmatic expression of BCL10 in tumor cells was detected in 19 (54.3%) specimens. Nuclear expression was detected in no specimen. Cytoplasmic expression of NF-kappaB was present in 22 (65.7%) specimens, but nuclear expression was not detected in any specimens. Nuclear expressions (activation)of NF-kappaB p65 subunit and BCL10 were not detected in specimens of gastric MALT lymphoma. The correlation of nuclear coexpression of BCL10 and NF-kappaB in gastric MALT lymphoma was not established. These results indicate that other mechanisms and signal pathways are active in lymphogenesis of gastric MALT lymphoma, as that apoptotic inhibition is not

  16. Ultraviolet B Radiation Stimulates the Interaction between Nuclear Factor of Activated T Cells 5 (NFAT5) and Nuclear Factor-Kappa B (NF-κB) in Human Lens Epithelial Cells.

    PubMed

    Chung, Inyoung; Hah, Young-Sool; Ju, SunMi; Kim, Ji-Hye; Yoo, Woong-Sun; Cho, Hee-Young; Yoo, Ji-Myong; Seo, Seong-Wook; Choi, Wan-Sung; Kim, Seong-Jae

    2017-07-01

    Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm 2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm 2 ) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.

  17. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-{kappa}B translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jawan, Bruno; Kao, Y.-H.; Department of Biological Sciences, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstratedmore » that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.« less

  18. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-{kappa}B signaling in cultured astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakita, Hiroki; Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601; Department of Neonatology, Aichi Human Service Center Central Hospital, 713-8 Kamiya-Cho, Kasugai 480-0392

    2009-07-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1{beta}, tumor necrosis factor-{alpha} and interferon-{gamma}, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol:more » APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-{kappa}B inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-{kappa}B p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-{kappa}B signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.« less

  19. Short communication: molecular characterization of dog and cat p65 subunits of NF-kappaB.

    PubMed

    Ishikawa, Shingo; Takemitsu, Hiroshi; Li, Gebin; Mori, Nobuko; Yamamoto, Ichiro; Arai, Toshiro

    2015-04-01

    Nuclear factor kappa B (NF-κB) plays an important role in the immune system. The p65 subunit is an important part of NF-κB unit, and studies of dog and cat p65 subunits of NF-κB (dp65 and cp65) are important in understanding their immune function. In this study, we described the molecular characterization of dp65 and cp65. The dp65 and cp65 complementary DNA encoded 542 and 555 amino acids, respectively, showing a high sequence homology with the mammalian p65 subunit (>87.5%). Quantitative polymerase chain reaction revealed that the p65 messenger RNA is highly expressed in the dog stomach and cat heart and adipose tissue. Functional NF-κB promoter-luciferase reporter vectors revealed that our isolated dp65 and cp65 cDNA encodes a functionally active protein. Transiently expressed dp65 and cp65 up-regulated pro-inflammatory cytokine expression levels in dog and cat, respectively. These findings suggest that dp65 and cp65 play important roles in regulating immune function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Constitutive activation of NF-kappa B and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus involve G alpha(13) and RhoA.

    PubMed

    Shepard, L W; Yang, M; Xie, P; Browning, D D; Voyno-Yasenetskaya, T; Kozasa, T; Ye, R D

    2001-12-07

    The Kaposi's sarcoma herpesvirus (KSHV) open reading frame 74 encodes a G protein-coupled receptor (GPCR) for chemokines. Exogenous expression of this constitutively active GPCR leads to cell transformation and vascular overgrowth characteristic of Kaposi's sarcoma. We show here that expression of KSHV-GPCR in transfected cells results in constitutive transactivation of nuclear factor kappa B (NF-kappa B) and secretion of interleukin-8, and this response involves activation of G alpha(13) and RhoA. The induced expression of a NF-kappa B luciferase reporter was partially reduced by pertussis toxin and the G beta gamma scavenger transducin, and enhanced by co-expression of G alpha(13) and to a lesser extent, G alpha(q). These results indicate coupling of KSHV-GPCR to multiple G proteins for NF-kappa B activation. Expression of KSHV-GPCR led to stress fiber formation in NIH 3T3 cells. To examine the involvement of the G alpha(13)-RhoA pathway in KSHV-GPCR-mediated NF-kappa B activation, HeLa cells were transfected with KSHV-GPCR alone and in combination with the regulator of G protein signaling (RGS) from p115RhoGEF or a dominant negative RhoA(T19N). Both constructs, as well as the C3 exoenzyme from Clostritium botulinum, partially reduced NF-kappa B activation by KSHV-GPCR, and by a constitutively active G alpha(13)(Q226L). KSHV-GPCR-induced NF-kappa B activation is accompanied by increased secretion of IL-8, a function mimicked by the activated G alpha(13) but not by an activated G alpha(q)(Q209L). These results suggest coupling of KSHV-GPCR to the G alpha(13)-RhoA pathway in addition to other G proteins.

  1. cAMP inhibits inducible nitric oxide synthase expression and NF-kappaB-binding activity in cultured rat hepatocytes.

    PubMed

    Harbrecht, B G; Taylor, B S; Xu, Z; Ramalakshmi, S; Ganster, R W; Geller, D A

    2001-08-01

    The inducible nitric oxide synthase (iNOS) is strongly expressed following inflammatory stimuli. Adenosine 3',5'-cyclic monophosphate (cAMP) increases iNOS expression and activity in a number of cell types but decreases cytokine-stimulated iNOS expression in hepatocytes. The mechanisms for this effect are unknown. Rat hepatocytes were stimulated with cytokines to induce iNOS and cultured with cAMP agonists dibutyryl-cAMP (dbcAMP), 8-bromo-cAMP, and forskolin (FSK). Nitric oxide synthesis was assessed by supernatant nitrite levels and iNOS expression was measured by Northern and Western blot analyses. Nuclear factor kappaB binding was assessed by electromobility shift assay. Cyclic AMP dose dependently decreased NO synthesis in response to a combination of proinflammatory cytokines or interleukin-1beta (IL-1beta) alone. The adenylate cyclase inhibitor SQ 22,536 increased cytokine- or IL-1beta-stimulated NO synthesis. dbcAMP decreased iNOS mRNA expression and iNOS protein expression. Both dbcAMP and glucagon decreased iNOS promoter activity in rat hepatocytes transfected with the murine iNOS promoter and decreased DNA binding of the transcription factor NF-kappaB. These data suggest that cAMP is important in hepatocyte iNOS expression and agents that alter cAMP levels may profoundly alter the response of hepatocytes to inflammatory stimuli through effects onthe iNOS promoter region and NF-kappaB. Copyright 2001 Academic Press.

  2. Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-kappaB pathway.

    PubMed

    Borthakur, Alip; Saksena, Seema; Gill, Ravinder K; Alrefai, Waddah A; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K

    2008-04-01

    Butyrate, a short chain fatty acid (SCFA) produced by bacterial fermentation of undigested carbohydrates in the colon, constitutes the major fuel for colonocytes. We have earlier shown the role of apically localized monocarboxylate transporter isoform 1 (MCT1) in transport of butyrate into human colonic Caco-2 cells. In an effort to study the regulation of MCT1 gene, we and others have cloned the promoter region of the MCT1 gene and identified cis elements for key transcription factors. A previous study has shown up-regulation of MCT1 expression, and activity by butyrate in AA/C1 human colonic epithelial cells, however, the detailed mechanisms of this up-regulation are not known. In this study, we demonstrate that butyrate, a substrate for MCT1, stimulates MCT1 promoter activity in Caco-2 cells. This effect was dose dependent and specific to butyrate as other predominant SCFAs, acetate, and propionate, were ineffective. Utilizing progressive deletion constructs of the MCT1 promoter, we showed that the putative butyrate responsive elements are in the -229/+91 region of the promoter. Butyrate stimulation of the MCT1 promoter was found to be independent of PKC, PKA, and tyrosine kinases. However, specific inhibitors of the NF-kappaB pathway, lactacystein (LC), and caffeic acid phenyl ester (CAPE) significantly reduced the MCT1 promoter stimulation by butyrate. Also, butyrate directly stimulated NF-kappaB-dependent luciferase reporter activity. Histone deacetylase (HDAC) inhibitor trichostatin A (TSA) also stimulated MCT1 promoter activity, however, unlike butyrate, this stimulation was unaltered by the NF-kappaB inhibitors. Further, the combined effect of butyrate, and TSA on MCT1 promoter activity was additive, indicating that their mechanisms of action were independent. Our results demonstrate the involvement of NF-kappaB pathway in the regulation of MCT1 promoter activity by butyrate. 2007 Wiley-Liss, Inc.

  3. IFN-{gamma} sensitizes MIN6N8 insulinoma cells to TNF-{alpha}-induced apoptosis by inhibiting NF-{kappa}B-mediated XIAP upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hun Sik; Kim, Sunshin; Lee, Myung-Shik

    2005-10-28

    Although X-linked inhibitor of apoptosis protein (XIAP) is an important intracellular suppressor of apoptosis in a variety of cell types, its role in cytokine-induced pancreatic {beta}-cell apoptosis remains unclear. Here, we found that: (i) XIAP level was inversely correlated with tumor necrosis factor (TNF)-{alpha}-induced apoptosis in MIN6N8 insulinoma cells; (ii) adenoviral XIAP overexpression abrogated the TNF-{alpha}-induced apoptosis through inhibition of caspase activity; (iii) downregulation of XIAP by antisense oligonucleotide or Smac peptide sensitized MIN6N8 cells to TNF-{alpha}-induced apoptosis; (iv) XIAP expression was induced by TNF-{alpha} through a nuclear factor-{kappa}B (NF-{kappa}B)-dependent pathway, and interferon (IFN)-{gamma} prevented such an induction in amore » manner independent of NF-{kappa}B, which presents a potential mechanism underlying cytotoxic IFN-{gamma}/TNF-{alpha} synergism. Taken together, our results suggest that XIAP is an important modulator of TNF-{alpha}-induced apoptosis of MIN6N8 cells, and XIAP regulation in pancreatic {beta}-cells might play an important role in pancreatic {beta}-cell apoptosis and in the pathogenesis of type 1 diabetes.« less

  4. Tumor necrosis factor-{alpha} induces MMP-9 expression via p42/p44 MAPK, JNK, and nuclear factor-{kappa}B in A549 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.-C.; Tseng, Hsiao-Wei; Hsieh, Hsi-Lung

    2008-06-15

    Matrix metalloproteinases (MMPs), in particular MMP-9, have been shown to be induced by cytokines including tumor necrosis factor-{alpha} (TNF-{alpha}) and contributes to airway inflammation. However, the mechanisms underlying MMP-9 expression induced by TNF-{alpha} in human A549 cells remain unclear. Here, we showed that TNF-{alpha} induced production of MMP-9 protein and mRNA is determined by zymographic, Western blotting, RT-PCR and ELISA assay, which were attenuated by inhibitors of MEK1/2 (U0126), JNK (SP600125), and NF-{kappa}B (helenalin), and transfection with dominant negative mutants of ERK2 ({delta}ERK) and JNK ({delta}JNK), and siRNAs for MEK1, p42 and JNK2. TNF-{alpha}-stimulated phosphorylation of p42/p44 MAPK and JNKmore » were attenuated by pretreatment with the inhibitors U0126 and SP600125 or transfection with dominant negative mutants of {delta}ERK and {delta}JNK. Furthermore, the involvement of NF-{kappa}B in TNF-{alpha}-induced MMP-9 production was consistent with that TNF-{alpha}-stimulated degradation of I{kappa}B-{alpha} and translocation of NF-{kappa}B into the nucleus which were blocked by helenalin, but not by U0126 and SP600125, revealed by immunofluorescence staining. The regulation of MMP-9 gene transcription by MAPKs and NF-{kappa}B was further confirmed by gene luciferase activity assay. MMP-9 promoter activity was enhanced by TNF-{alpha} in A549 cells transfected with wild-type MMP-9-Luc, which was inhibited by helenalin, U0126, or SP600125. In contrast, TNF-{alpha}-stimulated MMP-9 luciferase activity was totally lost in cells transfected with mutant-NF-{kappa}B MMP-9-luc. Moreover, pretreatment with actinomycin D and cycloheximide attenuated TNF-{alpha}-induced MMP-9 expression. These results suggest that in A549 cells, phosphorylation of p42/p44 MAPK, JNK, and transactivation of NF-{kappa}B are essential for TNF-{alpha}-induced MMP-9 gene expression.« less

  5. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549more » cells.« less

  6. Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals.

    PubMed

    Edmead, C E; Patel, Y I; Wilson, A; Boulougouris, G; Hall, N D; Ward, S G; Sansom, D M

    1996-10-15

    A major obstacle in understanding the signaling events that follow CD28 receptor ligation arises from the fact that CD28 acts as a costimulus to TCR engagement, making it difficult to assess the relative contribution of CD28 signals as distinct from those of the TCR. To overcome this problem, we have exploited the observation that activated human T cell blasts can be stimulated via the CD28 surface molecule in the absence of antigenic challenge; thus, we have been able to observe the response of normal T cells to CD28 activation in isolation. Using this system, we observed that CD28 stimulation by B7-transfected CHO cells induced a proliferative response in T cells that was not accompanied by measurable IL-2 production. However, subsequent analysis of transcription factor generation revealed that B7 stimulation induced both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) complexes, but not NF-AT. In contrast, engagement of the TCR by class II MHC/superantigen, either with or without CD28 ligation, resulted in the induction of NF-AT, AP-1, and NF-kappaB as well as IL-2 production. Using selective inhibitors, we investigated the signaling pathways involved in the CD28-mediated induction of AP-1 and NF-kappaB. This revealed that NF-kappaB generation was sensitive to chloroquine, an inhibitor of acidic sphingomyelinase, but not to the phosphatidylinositol 3-kinase inhibitor, wortmannin. In contrast, AP-1 generation was inhibited by wortmannin and was also variably sensitive to chloroquine. These data suggest that in activated normal T cells, CD28-derived signals can stimulate proliferation at least in part via NF-kappaB and AP-1 generation, and that this response uses both acidic sphingomyelinase and phosphatidylinositol 3-kinase-linked pathways.

  7. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} induces renal epithelial cell death through NF-{kappa}B-dependent and MAPK-independent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Dae Sik; Kwon, Chae Hwa; Park, Ji Yeon

    2006-11-01

    The peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) ligand 15d-PGJ{sub 2} induces cell death in renal proximal tubular cells. However, the underlying molecular mechanism(s) remains unidentified. The present study was undertaken to examine the roles of reactive oxygen species (ROS), mitogen-activated protein kinase, and NF-{kappa}B in opossum kidney (OK) cell death induced by 15d-PGJ{sub 2}. Treatment of OK cells with 15d-PGJ{sub 2} resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. 15d-PGJ{sub 2} increased ROS production and the effect was inhibited by catalase and N-acetylcysteine. The 15d-PGJ{sub 2}-induced cell death was also prevented by these antioxidants, suggesting thatmore » the cell death was associated with ROS generation. The PPAR{gamma} antagonist GW9662 did not prevent the 15d-PGJ{sub 2}-induced cell death. 15d-PGJ{sub 2} caused a transient activation of extracellular signal-regulated kinase (ERK). However, inhibitors (PD98059 and U0126) of MEK, an ERK upstream kinase, did not alter the 15d-PGJ{sub 2}-induced cell death. Transfection with constitutively active MEK and dominant-negative MEK had no effect on the cell death. 15d-PGJ{sub 2} inhibited the NF-{kappa}B transcriptional activity, which was accompanied by an inhibition of nuclear translocation of the NF-{kappa}B subunit p65 and impairment in DNA binding. Inhibition of NF-{kappa}B with a NF-{kappa}B specific inhibitor pyrrolidinecarbodithioate and transfection with I{kappa}B{alpha} (S32A/36A) caused cell death. These results suggest that the 5d-PGJ{sub 2}-induced OK cell death was associated with ROS production and NF-{kappa}B inhibition, but not with MAPK activation.« less

  8. Effect of Daisaikoto on Expressions of SIRT1 and NF-kappaB of Diabetic Fatty Liver Rats Induced by High-Fat Diet and Streptozotocin

    PubMed Central

    Qian, Weibin; Cai, Xinrui; Zhang, Xinying; Wang, Yingying; Qian, Qiuhai; Hasegawa, Junichi

    2016-01-01

    Background Daisaikoto (DSKT), a classical traditional Chinese herbal formula, has been used for treating digestive diseases for 1800 years in China. Therefore, in this study, we are going to investigate the effect of DSKT on diabetic fatty liver rats induced by a high-fat diet and streptozotocin (STZ), and the effects of DSKT on silent mating type information regulation 2 homolog 1 (SIRT1) and nuclear factor kappa B (NF-kappaB). Methods Diabetic fatty liver rat model was selected to establish a high-fat diet and STZ. Sixty Wistar rats were divided into six groups (n = 10): control group, high-fat diet + STZ group, simvastatin treatment group, DSKT low dose, medial dose and high dose treatment groups. After 8 weeks of drug intervention, body and liver weights, blood chemistry, blood glucose and insulin were examined. The expressions of sirtuin 1 and NF-kappaB in the liver were observed by RT-PCR and immunohistochemistry, respectively. Results A high-fat diet increased body, liver weights, and serum cholesterol concentrations. Intraperitoneal injection of STZ increased blood glucose and decreased body weights. DSKT improved them. Homeostasis model assessment-estimated insulin resistance (HOMA-IR) indices were increased in the high-fat diet groups. DSKT improved them too. In histological examinations of the liver, we observed a significant improvement after treatment. Immunostaining expression of NF-kappaB in the liver was improved by DSKT and simvastatin. The mRNA expressions of SIRT1 in the liver were increased by DSKT and simvastatin. Conclusion We have demonstrated that DSKT is capable of reversing dyslipidemia and insulin resistance induced by a high-fat diet and STZ. High dose DSKT reveals a stronger effect than simvastatin on the expressions of SIRT1 and NF-kappaB. Furthermore, DSKT has shown a strong dose-depended protective effect on diabetic fatty liver. PMID:27493486

  9. Potential down-regulation of salivary gland AQP5 by LPS via cross-coupling of NF-kappaB and p-c-Jun/c-Fos.

    PubMed

    Yao, Chenjuan; Purwanti, Nunuk; Karabasil, Mileva Ratko; Azlina, Ahmad; Javkhlan, Purevjav; Hasegawa, Takahiro; Akamatsu, Tetsuya; Hosoi, Toru; Ozawa, Koichiro; Hosoi, Kazuo

    2010-08-01

    The mRNA and protein levels of aquaporin (AQP)5 in the parotid gland were found to be potentially decreased by lipopolysaccharide (LPS) in vivo in C3H/HeN mice, but only weakly in C3H/HeJ, a TLR4 mutant mouse strain. In the LPS-injected mice, pilocarpine-stimulated saliva production was reduced by more than 50%. In a tissue culture system, the LPS-induced decrease in the AQP5 mRNA level was blocked completely by pyrrolidine dithiocarbamate, MG132, tyrphostin AG126, SP600125, and partially by SB203580, which are inhibitors for IkappaB kinase, 26S proteasome, ERK1/2, JNK, and p38 MAPK, respectively. In contrast, the expression of AQP1 mRNA was down-regulated by LPS and such down-regulation was blocked only by SP600125. The transcription factors NF-kappaB (p65 subunit), p-c-Jun, and c-Fos were increased by LPS given in vivo, whereas the protein-binding activities of the parotid gland extract toward the sequences for NF-kappaB but not AP-1-responsive elements present at the promoter region of the AQP5 gene were increased by LPS injection. Co-immunoprecipitation by using antibody columns suggested the physical association of the three transcription factors. These results suggest that LPS-induced potential down-regulation of expression of AQP5 mRNA in the parotid gland is mediated via a complex(es) of these two classes of transcription factors, NF-kappaB and p-c-Jun/c-Fos.

  10. Silencing of FKBP51 alleviates the mechanical pain threshold, inhibits DRG inflammatory factors and pain mediators through the NF-kappaB signaling pathway.

    PubMed

    Yu, Hong-Mei; Wang, Qi; Sun, Wen-Bo

    2017-09-05

    Neuropathic pain is chronic pain caused by lesions or diseases of the somatosensory system, currently available analgesics provide only temporal relief. The precise role of FK506 binding protein 51 (FKBP51) in neuropathic pain induced by chronic constriction injury (CCI) is not clear. The purpose of the present study was to investigate the effects and possible mechanisms of FKBP51 in neuropathic pain in the rat model of CCI. Our results showed that FKBP51 was obviously upregulated in a time-dependent manner in the dorsal root ganglion (DRG) of CCI rats. Additionally, silencing of FKBP51 remarkably attenuated mechanical allodynia and thermal hyperalgesia as reflected by paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in CCI rats. Moreover, knockdown of FKBP51 reduced the production of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression in the DRG of CCI rats. Furthermore, we revealed that inhibition of FKBP51 greatly suppressed the activation of the NF-kappaB (NF-κB) signaling in the DRG of CCI rats. Interestingly, similar to the FKBP51 siRNA (si-FKBP51), ammonium pyrrolidinedithiocarbamate (PDTC, an inhibitor of NF-κB) also alleviated neuropathic pain and neuro-inflammation, indicating that knockdown of FKBP51 alleviated neuropathic pain development of CCI rats by inhibiting the activation of NF-κB signaling pathway. Taken together, our findings indicate that FKBP51 may serve as a novel therapeutic target for neuropathic pain. Copyright © 2017. Published by Elsevier B.V.

  11. NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter.

    PubMed

    Borghaei, Ruth C; Rawlings, P Lyle; Javadi, Masoud; Woloshin, Joanna

    2004-03-26

    A 5T/6T polymorphic site in the matrix metalloproteinase-3 (MMP-3) promoter has been identified as a repressor element involved in inhibiting induction of MMP-3 transcription by interleukin 1; and the 6T allele has been associated with decreased expression of MMP-3 as compared to the 5T allele. Zinc-binding protein-89 (ZBP-89) was cloned from a yeast one-hybrid assay via its ability to interact with this site, but when the protein was over-expressed, it resulted in activation of the MMP-3 promoter rather than repression. Here we show that in nuclear extracts isolated from human gingival fibroblasts stimulated with IL-1, this site is bound by p50 and p65 components of NF-kappaB in addition to ZBP-89, and that recombinant p50 binds preferentially to the 6T binding site. These results are consistent with a role for NF-kappaB in limiting the cytokine induced expression of MMP-3.

  12. Glucocorticoids suppress tumor necrosis factor-alpha expression by human monocytic THP-1 cells by suppressing transactivation through adjacent NF-kappa B and c-Jun-activating transcription factor-2 binding sites in the promoter.

    PubMed

    Steer, J H; Kroeger, K M; Abraham, L J; Joyce, D A

    2000-06-16

    Glucocorticoid drugs suppress tumor necrosis factor-alpha (TNF-alpha) synthesis by activated monocyte/macrophages, contributing to an anti-inflammatory action in vivo. In lipopolysaccharide (LPS)-activated human monocytic THP-1 cells, glucocorticoids acted primarily on the TNF-alpha promoter to suppress a burst of transcriptional activity that occurred between 90 min and 3 h after LPS exposure. LPS increased nuclear c-Jun/ATF-2, NF-kappaB(1)/Rel-A, and Rel-A/C-Rel transcription factor complexes, which bound specifically to oligonucleotide sequences from the -106 to -88 base pair (bp) region of the promoter. The glucocorticoid, dexamethasone, suppressed nuclear binding activity of these complexes prior to and during the critical phase of TNF-alpha transcription. Site-directed mutagenesis in TNF-alpha promoter-luciferase reporter constructs showed that the adjacent c-Jun/ATF-2 (-106 to -99 bp) and NF-kappaB (-97 to -88 bp) binding sites each contributed to the LPS-stimulated expression. Mutating both sites largely prevented dexamethasone from suppressing TNF-alpha promoter-luciferase reporters. LPS exposure also increased nuclear Egr-1 and PU.1 abundance. The Egr-1/Sp1 (-172 to -161 bp) binding sites and the PU.1-binding Ets site (-116 to -110 bp) each contributed to the LPS-stimulated expression but not to glucocorticoid response. Dexamethasone suppressed the abundance of the c-Fos/c-Jun complex in THP-1 cell nuclei, but there was no direct evidence for c-Fos/c-Jun transactivation through sites in the -172 to -52 bp region. Small contributions to glucocorticoid response were attributable to promoter sequences outside the -172 to -88 bp region and to sequences in the TNF-alpha 3'-untranslated region. We conclude that glucocorticoids suppress LPS-stimulated secretion of TNF-alpha from human monocytic cells largely through antagonizing transactivation by c-Jun/ATF-2 and NF-kappaB complexes at binding sites in the -106 to -88 bp region of the TNF-alpha promoter.

  13. Gigantol isolated from the whole plants of Cymbidium goeringii inhibits the LPS-induced iNOS and COX-2 expression via NF-kappaB inactivation in RAW 264.7 macrophages cells.

    PubMed

    Won, Jong-Heon; Kim, Ji-Yeon; Yun, Kyung-Jin; Lee, Jin-Hee; Back, Nam-In; Chung, Hae-Gon; Chung, Sun A; Jeong, Tae-Sook; Choi, Myung-Sook; Lee, Kyung-Tae

    2006-10-01

    During our efforts to find bioactive natural products with anti-inflammatory activity, we isolated gigantol from the whole plants of Cymbidium goeringii (Orchidaceae) by activity-guided chromatographic fractionation. Gigantol was found to have potent inhibitory effects on LPS-induced nitric oxide (NO) and prostaglandin E (2) (PGE (2)) production in RAW 264.7 cells. Consistent with these findings, gigantol suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in RAW 264.7 cells in a concentration-dependent manner. Our data also indicate that gigantol is a potent inhibitor of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) release and influenced the mRNA expression levels of these cytokines in a dose-dependent manner. Furthermore, a reporter gene assay for nuclear factor kappa B (NF-kappaB) and an electromobility shift assay (EMSA) demonstrated that gigantol effectively inhibited the activation of NF-kappaB, which is necessary for the expression of iNOS, COX-2, TNF-alpha, IL-1beta and IL-6. Thus, our studies suggest that gigantol inhibits LPS-induced iNOS and COX-2 expression by blocking NF- kappaB activation.

  14. Inhibitory effect on activator protein-1, nuclear factor-kappaB, and cell transformation by extracts of strawberries (Fragaria x ananassa Duch.).

    PubMed

    Wang, Shiow Y; Feng, Rentian; Lu, Yongju; Bowman, Linda; Ding, Min

    2005-05-18

    The inhibitory effects of strawberry (Fragaria x ananassa Duch.) antioxidant enzymes on tetradecanoylphorbol-13-acetate (TPA) or ultraviolet-B (UVB) induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) were studied. The inhibitory effects of strawberry extracts on the proliferation and transformation of human and mouse cancer cells were also evaluated. Strawberries had high activities of glutathione peroxidase, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase. Strawberry extracts inhibited the proliferation of human lung epithelial cancer cell line A549 and decreased TPA-induced neoplastic transformation of JB6 P+ mouse epidermal cells. Pretreatment of JB6 P+ mouse epidermal cells with strawberry extract resulted in the inhibition of both UVB- and TPA-induced AP-1 and NF-kappaB transactivation. Furthermore, strawberry extract also blocked TPA-induced phosphorylation of extracellular signal-regulated kinases (ERKs) and UVB-induced phosphorylation of ERKs and JNK kinase in JB6 P+ mouse epidermal cell culture. These results suggest that the ability of strawberries to block UVB- and TPA-induced AP-1 and NF-kappaB activation may be due to their antioxidant properties and their ability to reduce oxidative stress. The oxidative events that regulate AP-1 and NF-kappaB transactivation can be important molecular targets for cancer prevention. The strawberries may be highly effective as a chemopreventive agent that acts by targeting the down-regulation of AP-1 and NF-kappaB activities, blocking MAPK signaling, and suppressing cancer cell proliferation and transformation.

  15. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasaki, Haruka; Yoshimura, Takeshi; Aoki, Naohito, E-mail: n-aoki@bio.mie-u.ac.jp

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLucmore » adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.« less

  16. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor {kappa}B p65 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Xia; Center for New Drugs Evaluation, Shandong University, Jinan 250012; Qu, Xian-Jun

    Research highlights: {yields} Permanent NF-{kappa}B p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. {yields} Baicalin can markedly inhibit the nuclear NF-{kappa}B p65 expression and m RNA levels after ischemia-reperfusion injury in rats. {yields} Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-{kappa}B p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at dosesmore » of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-{kappa}B p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 {+-} 0.7 to 1.2 {+-} 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-{kappa}B p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-{kappa}B p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-{kappa}B p65.« less

  17. The effects of thalidomide on the stimulation of NF-kappaB activity and TNF-alpha production by lipopolysaccharide in a human colonic epithelial cell line.

    PubMed

    Kim, You Sun; Kim, Joo Sung; Jung, Hyun Chae; Song, In Sung

    2004-04-30

    The immunomodulatory and anti-inflammatory effects of thalidomide are associated with inhibition of TNF-alpha levels. However, the mechanism by which thalidomide reduces TNF-alpha production remains elusive. NF-kappaB is known to play a central role in regulating inflammatory responses in patients with inflammatory bowel disease (IBD). We tested whether thalidomide acts through inhibiting NF-kappaB activity. HT-29 cells were stimulated with LPS (1 microg/ml) alone, or after pretreatment with thalidomide (100 microg/ml), and NF-kappaB activity was determined by gel mobility shift assays. RT-PCR was used to measure expression of the proinflammatory cytokine genes TNF-alpha, IL-1beta and IL-8. The level of TNF-alpha mRNA was also analyzed by real-time quantitative RT-PCR, and TNF-alpha protein was measured by ELISA. Thalidomide pretreatment did not affect NF-kappaB activity in HT-29 cells stimulated with LPS but production of TNF-alpha was depressed. Thalidomide was found to accelerate the degradation of TNF-alpha mRNA, but had little effect on IL-1beta or IL-8. These observations suggest that the immunomodulatory effect of thalidomide in colonic epithelial cells is associated with inhibition of TNF-alpha. However, it does not act by inhibiting NF-kappaB but rather by inducing degradation of TNF-alpha mRNA.

  18. Shikonin derivatives inhibited LPS-induced NOS in RAW 264.7 cells via downregulation of MAPK/NF-kappaB signaling.

    PubMed

    Cheng, Yu Wen; Chang, Ching Yi; Lin, Kou Lung; Hu, Chien Ming; Lin, Cheng Hui; Kang, Jaw Jou

    2008-11-20

    Shikonin/alkannin (SA) derivatives, analogs of naphthoquinone pigments, are the major components of root extracts of the Chinese medicinal herb (Lithospermum erythrorhizon; LE) and widely distributed in several folk medicines. In the present study, the effect and the underline molecular mechanism of shikonin derivatives isolated from root extracts of Lithospermum euchroma on lipopolysaccharide (LPS)-induced inflammatory response were investigated. Effects of five SA derivatives, including SA, acetylshikonin, beta,beta-dimethylacrylshikonin, 5,8-dihydroxy-1.4-naphthoquinone, and 1,4-naphthoquinone on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in mouse macrophage RAW264.7 cells were examined. Data suggested that SA derivatives inhibited LPS-induced NO and PGE(2) production, and iNOS protein expression. RT-PCR analysis showed that SA derivatives diminished LPS-induced iNOS mRNA expression. Moreover, the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in LPS-stimulated RAW 264.7 cells was concentration-dependently suppressed by SA derivatives. SA inhibited NF-kappaB activation by prevention of the degradation of inhibitory factor-kappaB and p65 level in nuclear fractions induced by LPS. Taken together, these results suggest that the anti-inflammatory properties of SA derivatives might result from inhibition of iNOS protein expression through the downregulation of NF-kappaB activation via suppression of phosphorylation of ERK, in LPS-stimulated RAW 264.7 cells.

  19. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin.

    PubMed

    Kasinski, Andrea L; Du, Yuhong; Thomas, Shala L; Zhao, Jing; Sun, Shi-Yong; Khuri, Fadlo R; Wang, Cun-Yu; Shoji, Mamoru; Sun, Aiming; Snyder, James P; Liotta, Dennis; Fu, Haian

    2008-09-01

    The nuclear factor-kappaB (NF-kappaB) signaling pathway has been targeted for therapeutic applications in a variety of human diseases, includuing cancer. Many naturally occurring substances, including curcumin, have been investigated for their actions on the NF-kappaB pathway because of their significant therapeutic potential and safety profile. A synthetic monoketone compound termed 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24) was developed from curcumin and exhibited potent anticancer activity. Here, we report a mechanism by which EF24 potently suppresses the NF-kappaB signaling pathway through direct action on IkappaB kinase (IKK). We demonstrate that 1) EF24 induces death of lung, breast, ovarian, and cervical cancer cells, with a potency about 10 times higher than that of curcumin; 2) EF24 rapidly blocks the nuclear translocation of NF-kappaB, with an IC(50) value of 1.3 microM compared with curcumin, with an IC(50) value of 13 microM; 3) EF24 effectively inhibits tumor necrosis factor (TNF)-alpha-induced IkappaB phosphorylation and degradation, suggesting a role of this compound in targeting IKK; and 4) EF24 indeed directly inhibits the catalytic activity of IKK in an in vitro-reconstituted system. Our study identifies IKK as an effective target for EF24 and provides a molecular explanation for a superior activity of EF24 over curcumin. The effective inhibition of TNF-alpha-induced NF-kappaB signaling by EF24 extends the therapeutic application of EF24 to other NF-kappaB-dependent diseases, including inflammatory diseases such as rheumatoid arthritis.

  20. Selenium reduces the proapoptotic signaling associated to NF-kappaB pathway and stimulates glutathione peroxidase activity during excitotoxic damage produced by quinolinate in rat corpus striatum.

    PubMed

    Santamaría, Abel; Vázquez-Román, Beatriz; La Cruz, Verónica Pérez-De; González-Cortés, Carolina; Trejo-Solís, Ma Cristina; Galván-Arzate, Sonia; Jara-Prado, Aurelio; Guevara-Fonseca, Jorge; Ali, Syed F

    2005-12-15

    Quinolinate (QUIN) neurotoxicity has been attributed to degenerative events in nerve tissue produced by sustained activation of N-methyl-D-aspartate receptor (NMDAr) and oxidative stress. We have recently described the protective effects that selenium (Se), an antioxidant, produces on different markers of QUIN-induced neurotoxicity (Santamaría et al., 2003, J Neurochem 86:479-488.). However, the mechanisms by which Se exerts its protective actions remain unclear. Since some of these events are thought to be related with inhibition of deadly molecular cascades through the activation of antioxidant selenoproteins, in this study we investigated the effects of Se on QUIN-induced cell damage elicited by the nuclear factor kappaB (NF-kappaB) pathway, as well as the time-course response of striatal glutathione peroxidase (GPx) activity. Se (sodium selenite, 0.625 mg/kg/day, i.p.) was administered to rats for 5 days, and 120 min after the last administration, animals received a single striatal injection of QUIN (240 nmol/mul). Twenty-four hours later, their striata were tested for the expression of IkappaB-alpha (the NF-kappaB cytosolic binding protein), the immunohistochemical expression of NF-kappaB (evidenced as nuclear expression of P65), caspase-3-like activation, and DNA fragmentation. Additional groups were killed at 2, 6, and 24 h for measurement of GPx activity. Se reduced the QUIN-induced decrease in IkappaB-alpha expression, evidencing a reduction in its cytosolic degradation. Se also prevented the QUIN-induced increase in P65-immunoreactive cells, suggesting a reduction of NF-kappaB nuclear translocation. Caspase-3-like activation and DNA fragmentation produced by QUIN were also inhibited by Se. Striatal GPx activity was stimulated by Se at 2 and 6 h, but not at 24 h postlesion. Altogether, these data suggest that the protective effects exerted by Se on QUIN-induced neurotoxicity are partially mediated by the inhibition of proapoptotic events underlying Ikappa

  1. Nuclear factor-kappaB bioluminescence imaging-guided transcriptomic analysis for the assessment of host-biomaterial interaction in vivo.

    PubMed

    Hsiang, Chien-Yun; Chen, Yueh-Sheng; Ho, Tin-Yun

    2009-06-01

    Establishment of a comprehensive platform for the assessment of host-biomaterial interaction in vivo is an important issue. Nuclear factor-kappaB (NF-kappaB) is an inducible transcription factor that is activated by numerous stimuli. Therefore, NF-kappaB-dependent luminescent signal in transgenic mice carrying the luciferase genes was used as the guide to monitor the biomaterials-affected organs, and transcriptomic analysis was further applied to evaluate the complex host responses in affected organs in this study. In vivo imaging showed that genipin-cross-linked gelatin conduit (GGC) implantation evoked the strong NF-kappaB activity at 6h in the implanted region, and transcriptomic analysis showed that the expressions of interleukin-6 (IL-6), IL-24, and IL-1 family were up-regulated. A strong luminescent signal was observed in spleen on 14 d, suggesting that GGC implantation might elicit the biological events in spleen. Transcriptomic analysis of spleen showed that 13 Kyoto Encyclopedia of Genes and Genomes pathways belonging to cell cycles, immune responses, and metabolism were significantly altered by GGC implants. Connectivity Map analysis suggested that the gene signatures of GGC were similar to those of compounds that affect lipid or glucose metabolism. GeneSetTest analysis further showed that host responses to GGC implants might be related to diseases states, especially the metabolic and cardiovascular diseases. In conclusion, our data provided a concept of molecular imaging-guided transcriptomic platform for the evaluation and the prediction of host-biomaterial interaction in vivo.

  2. Eupatilin inhibits T-cell activation by modulation of intracellular calcium flux and NF-kappaB and NF-AT activity.

    PubMed

    Kim, Young-Dae; Choi, Suck-Chei; Oh, Tae-Young; Chun, Jang-Soo; Jun, Chang-Duk

    2009-09-01

    Eupatilin, one of the pharmacologically active ingredients of Artemisia princeps, exhibits a potent anti-ulcer activity, but its effects on T-cell immunity have not been investigated. Here, we show that eupatilin has a profound inhibitory effect on IL-2 production in Jurkat T cells as well as in human peripheral blood leukocytes. Eupatilin neither influenced clustering of CD3 and LFA-1 to the immunological synapse nor inhibited conjugate formation between T cells and B cells in the presence or absence of superantigen (SEE). Eupatilin also failed to inhibit T-cell receptor (TCR) internalization, thereby, suggesting that eupatilin does not interfere with TCR-mediated signals on the membrane proximal region. In unstimulated T cells, eupatilin significantly induced apoptotic cell death, as evidenced by an increased population of annexin V(+)/PI(+) cells and cleavage of caspase-3 and PARP. To our surprise, however, once cells were activated, eupatilin had little effect on apoptosis, and instead slightly protected cells from activation-induced cell death, suggesting that apoptosis also is not a mechanism for eupatilin-induced T-cell suppression. On the contrary, eupatilin dramatically inhibited I-kappaBalpha degradation and NF-AT dephosphorylation and, consequently, inhibited NF-kappaB and NF-AT promoter activities in PMA/A23187-stimulated T cells. Interestingly, intracellular calcium flux was significantly perturbed in cells pre-treated with eupatilin, suggesting that calcium-dependent cascades might be targets for eupatilin action. Collectively, our results provide evidence for dual regulatory functions of eupatilin: (1) a pro-apoptotic effect on resting T cells and (2) an immunosuppressive effect on activated T cells, presumably through modulation of Ca(2+) flux. (c) 2009 Wiley-Liss, Inc.

  3. Clotrimazole ameliorates intestinal inflammation and abnormal angiogenesis by inhibiting interleukin-8 expression through a nuclear factor-kappaB-dependent manner.

    PubMed

    Thapa, Dinesh; Lee, Jong Suk; Park, Su-Young; Bae, Yun-Hee; Bae, Soo-Kyung; Kwon, Jun Bum; Kim, Kyoung-Jin; Kwak, Mi-Kyoung; Park, Young-Joon; Choi, Han Gon; Kim, Jung-Ae

    2008-11-01

    Increased interleukin (IL)-8 plays an important role not only in activation and recruitment of neutrophils but also in inducing exaggerated angiogenesis at the inflamed site. In the present study, we investigated the fact that clotrimazole (CLT) inhibits intestinal inflammation, and the inhibitory action is mediated through suppression of IL-8 expression. In the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model, CLT dose-dependently protected from the TNBS-induced weight loss, colon ulceration, and myeloperoxidase activity increase. In the lesion site, CLT also suppressed the TNBS-induced angiogenesis, IL-8 expression, and nuclear factor (NF)-kappaB activation. In a cellular model of colitis using tumor necrosis factor (TNF)-alpha-stimulated HT29 colon epithelial cells, treatment with CLT significantly suppressed TNF-alpha-mediated IL-8 induction and NF-kappaB transcriptional activity revealed by a luciferase reporter gene assay. Furthermore, cotreatment with CLT and pyrrolidine dithiocarbamate, a NF-kappaB inhibitor, synergistically reduced the NF-kappaB transcriptional activity as well as IL-8 expression. In an in vitro angiogenesis assay, CLT suppressed IL-8-induced proliferation, tube formation, and invasion of human umbilical vein endothelial cells. The in vivo angiogenesis assay using chick chorioallantoic membrane also showed that CLT significantly inhibited the IL-8-induced formation of new blood vessels. Taken together, these results suggest that CLT may prevent the progression of intestinal inflammation by not only down-regulating IL-8 expression but also inhibiting the action of IL-8 in both colon epithelial and vascular endothelial cells during pathogenesis of intestinal inflammation.

  4. A quantitative study of NF-kappaB activation by H2O2: relevance in inflammation and synergy with TNF-alpha.

    PubMed

    de Oliveira-Marques, Virgínia; Cyrne, Luísa; Marinho, H Susana; Antunes, Fernando

    2007-03-15

    Although the germicide role of H(2)O(2) released during inflammation is well established, a hypothetical regulatory function, either promoting or inhibiting inflammation, is still controversial. In particular, after 15 years of highly contradictory results it remains uncertain whether H(2)O(2) by itself activates NF-kappaB or if it stimulates or inhibits the activation of NF-kappaB by proinflammatory mediators. We investigated the role of H(2)O(2) in NF-kappaB activation using, for the first time, a calibrated and controlled method of H(2)O(2) delivery--the steady-state titration--in which cells are exposed to constant, low, and known concentrations of H(2)O(2). This technique contrasts with previously applied techniques, which disrupt cellular redox homeostasis and/or introduce uncertainties in the actual H(2)O(2) concentration to which cells are exposed. In both MCF-7 and HeLa cells, H(2)O(2) at extracellular concentrations up to 25 microM did not induce significantly per se NF-kappaB translocation to the nucleus, but it stimulated the translocation induced by TNF-alpha. For higher H(2)O(2) doses this stimulatory role shifts to an inhibition, which may explain published contradictory results. The stimulatory role was confirmed by the observation that 12.5 microM H(2)O(2), a concentration found during inflammation, increased the expression of several proinflammatory NF-kappaB-dependent genes induced by TNF-alpha (e.g., IL-8, MCP-1, TLR2, and TNF-alpha). The same low H(2)O(2) concentration also induced the anti-inflammatory gene coding for heme oxygenase-1 (HO-1) and IL-6. We propose that H(2)O(2) has a fine-tuning regulatory role, comprising both a proinflammatory control loop that increases pathogen removal and an anti-inflammatory control loop, which avoids an exacerbated harmful inflammatory response.

  5. [Nuclear factor-kappaB mRNA and protein expression in stomach tissue of rats with gastric ulcer recurrence and effect of jianwei yuyang granule on its expression].

    PubMed

    Ling, Jiang-Hong; Li, Jia-Bang; Shen, Ding-Zhu; Zhou, Bing

    2006-03-01

    To observe the inflammatory reaction, nuclear factor-kappaB (NF-kappaB) mRNA and protein expression in stomach tissue of rats with gastric ulcer recurrence and the effect of Jianwei Yuyang granule (JYG) on them. Gastric ulcer and its recurrent lesion were successively induced by acetic acid and interliukin1-beta (IL-1beta), and the model rats were divided into the sham operation group, the model group, the omeprazole (correction of omepraxole) group and the JYG group to observe the state of chronic inflammatory cell, neutrophil count, NF-kappaBmRNA and protein expression in stomach tissue. On the 16th and 92th day after administration, the increase of chronic inflammatory cell, neutrophil, NF-kappaBmRNA and protein expression in the model group was more significant than those in the sham operated group (P < 0.01), while that was lower in the JYG group than in the model group (P < 0.05, P <0.01), but with no remarkable difference to the omepraxole group. In addition, the mRNA and protein expression of NF-kappaB were correlated closely with the count of chronic inflammatory cell and neutrophil respectively (P < 0.01). NF-kappaB may play an important role in regulating inflammatory reaction during the healing and recurrence processes of gastric ulcer induced by acetic acid. JYG may suppress inflammatory reaction by inhibiting the activation and expression of NF-kappaB in stomach tissue, which may be one of the mechanisms of JYG in preventing the recurrence of gastric ulcer.

  6. Involvement of MAPKs, NF-{kappa}B and p300 co-activator in IL-1{beta}-induced cytosolic phospholipase A{sub 2} expression in canine tracheal smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, S.-F.; Lin, C.-C.; Chen, H.-C.

    2008-11-01

    Cytosolic phospholipase A{sub 2} (cPLA{sub 2}) plays a pivotal role in mediating agonist-induced arachidonic acid release for prostaglandin (PG) synthesis during stimulation with interleukin-1{beta} (IL-1{beta}). However, the mechanisms underlying IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis by canine tracheal smooth muscle cells (CTSMCs) have not been defined. IL-1{beta} induced cPLA{sub 2} protein and mRNA expression, PGE{sub 2} production, and phosphorylation of p42/p44 MAPK, p38 MAPK (ATF{sub 2}), and JNK (c-Jun) in a time- and concentration-dependent manner, determined by Western blotting, RT-PCR, and ELISA, which was attenuated by the inhibitors of MEK1/2 (U0126), p38 MAPK (SB202190), and JNK (SP600125), ormore » transfection with dominant negative mutants of MEK1/2, p38, and JNK, respectively. Furthermore, IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis was inhibited by a selective NF-{kappa}B inhibitor (helenalin) or transfection with dominant negative mutants of NF-{kappa}B inducing kinase (NIK), I{kappa}B kinase (IKK)-{alpha}, and IKK-{beta}. Consistently, IL-1{beta} stimulated both I{kappa}B-{alpha} degradation and NF-{kappa}B translocation into nucleus in these cells. NF-{kappa}B translocation was blocked by helenalin, but not by U0126, SB202190, and SP600125. MAPKs together with NF-{kappa}B-activated p300 recruited to cPLA{sub 2} promoter thus facilitating the binding of NF-{kappa}B to cPLA{sub 2} promoter region and expression of cPLA{sub 2} mRNA. IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} production was inhibited by actinomycin D and cycloheximide, indicating the involvement of transcriptional and translational events in these responses. These results suggest that in CTSMCs, IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis was independently mediated through activation of MAPKs and NF-{kappa}B pathways and was connected to p300 recruitment and activation.« less

  7. The nuclear-factor kappaB pathway is activated in pterygium.

    PubMed

    Siak, Jay Jyh Kuen; Ng, See Liang; Seet, Li-Fong; Beuerman, Roger W; Tong, Louis

    2011-01-05

    Pterygium is a prevalent ocular surface disease with unknown pathogenesis. The authors investigated the role of nuclear factor kappa B (NF-κB) transcription factors in pterygium. Surgically excised primary pterygia were studied compared with uninvolved conjunctiva tissues. NF-κB activation was evaluated using Western blot analysis, ELISA, and DNA-binding assays. Primary pterygium fibroblasts were treated with TNF-α (20 ng/mL), and NF-κB activation was evaluated using immunocytochemistry, Western blot analysis, phospho-IκBα ELISA, and DNA-binding assays. TNF-α stimulation of NF-κB target genes RelB, NFKB2, RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 in pterygium fibroblasts was compared with that in primary tenon fibroblasts by real-time PCR. Phosphorylation of IκBα (Ser32) was increased in pterygia tissues compared with uninvolved conjunctiva tissues, as determined by Western blot analysis and ELISA. IκBα expression was decreased, whereas nuclear RelA and p50 DNA-binding capacities were increased. Within 30 minutes of treatment with TNF-α, pterygium fibroblasts showed increased IκBα phosphorylation and nuclear translocation of RelA and p50. Treatment with TNF-α beyond 12 hours resulted in increased nuclear expression of RelB, p100, and p52. Furthermore, the upregulation of RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 expression was more pronounced in TNF-α-treated pterygium fibroblasts than in tenon fibroblasts. The NF-κB pathway is shown for the first time to be activated in pterygia tissues compared with normal conjunctiva tissues. Stimulation by the inflammatory cytokine TNF-α can activate both canonical and noncanonical NF-κB pathways in pterygium fibroblasts with concomitant upregulation of NF-κB target genes.

  8. Activation of peroxisome proliferator-activated receptor beta/delta inhibits lipopolysaccharide-induced cytokine production in adipocytes by lowering nuclear factor-kappaB activity via extracellular signal-related kinase 1/2.

    PubMed

    Rodríguez-Calvo, Ricardo; Serrano, Lucía; Coll, Teresa; Moullan, Norman; Sánchez, Rosa M; Merlos, Manuel; Palomer, Xavier; Laguna, Juan C; Michalik, Liliane; Wahli, Walter; Vázquez-Carrera, Manuel

    2008-08-01

    Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.

  9. Uncaria rhynchophylla and Rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-kappaB activity in kainic acid-treated rats.

    PubMed

    Hsieh, Ching-Liang; Ho, Tin-Yun; Su, Shan-Yu; Lo, Wan-Yu; Liu, Chung-Hsiang; Tang, Nou-Ying

    2009-01-01

    Our previous studies have shown that Uncaria rhynchophylla (UR) can reduce epileptic seizures. We hypothesized that UR and its major component rhynchophylline (RH), reduce epileptic seizures in rats treated with kainic acid (KA) by inhibiting nuclear factor-kappaB (NF-kappaB) and activator-protein-1 (AP-1) activity, and by eliminating superoxide anions. Therefore, the level of superoxide anions and the DNA binding activities of NF-kappaB and AP-1 were measured. Sprague-Dawley (SD) rats were pre-treated with UR (1.0 g/kg, i.p.), RH (0.25 mg/kg, i.p.), or valproic acid (VA, 250 mg/kg, i.p.) for 3 days and then KA was administered intra-peritoneal (i.p.). The results indicated that UR, RH, and VA can reduce epileptic seizures and the level of superoxide anions in the blood. Furthermore, KA was demonstrated to induce the DNA binding activities of NF-kappaB and AP-1. However, these inductions were inhibited by pre-treatment with UR, RH, or VA for 3 days. Moreover, UR and RH were shown to be involved in the suppression of c-Jun N-terminal kinase (JNK) phosphorylation. This study suggested that UR and RH have antiepileptic effects in KA-induced seizures and are associated with the regulation of the innate immune system via a reduction in the level of superoxide anions, JNK phosphorylation, and NF-kappaB activation.

  10. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  11. Nuclear Transcription Factor Kappa B Downregulation Reduces Chemoresistance in Bone Marrow-derived Cells Through P-glycoprotein Modulation.

    PubMed

    Loaiza, Brenda; Hernández-Gutierrez, Salomon; Montesinos, Juan Jose; Valverde, Mahara; Rojas, Emilio

    2016-02-01

    Nuclear transcription factor kappa B (NF-κB) is associated with many types of refractory cancer. However, despite multiple strategies to treat cancer and novel target drugs, multidrug resistance still causes relapses. The best-characterized mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein (P-gp). Because the direct inhibition of this protein is very toxic, other methods of multidrug resistance (MDR) regulation have been proposed. The MDR-1 promoter sequence contains a κB site, which is recognized by NF-κB. The aim of this work was to characterize whether NF-κB modulation changes the response of bone marrow-derived cells (BMDCs) to chemotherapy. We exposed BMDCs to etoposide and doxorubicin, two of the most used antineoplastic drugs. BMDCs presented high tolerance to these drugs, which correlated with high intrinsic P-gp activity and strong protein expression of NF-κB. To determine the mechanism behind the poor sensitivity of BMDCs to chemotherapy, we blocked the activity of the heterodimer protein NF-κB using the pharmacological inhibitor Bay 11-7085 and through the transfection of an adenovirus negative mutant of I kappa B alpha. The multidrug resistance phenotype of BMDCs was reversed by inhibiting the NF-κB pathway, and this change was accompanied by a decrease in P-gp activity. NF-κB is a possible target for improving the antineoplastic response. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  12. Altered anti-inflammatory response of mononuclear cells to neuropeptide PACAP is associated with deregulation of NF-{kappa}B in chronic pancreatitis.

    PubMed

    Michalski, Christoph W; Selvaggi, Federico; Bartel, Michael; Mitkus, Tomas; Gorbachevski, Andrej; Giese, Thomas; Sebastiano, Pierluigi Di; Giese, Nathalia A; Friess, Helmut

    2008-01-01

    Although it is recognized that neurogenic influences contribute to progression of chronic inflammatory diseases, the molecular basis of neuroimmune interactions in the pathogenesis of chronic pancreatitis (CP) is not well defined. Here we report that responsiveness of peripheral blood mononuclear cells (PBMC) to the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is altered in CP. Expression of PACAP and its receptors in human CP was analyzed with quantitative RT-PCR, laser-capture microdissection, and immunohistochemistry. Regulation of PACAP expression was studied in coculture systems using macrophages and acinar cells. Responsiveness of donor and CP PBMC to PACAP was determined based on cytokine profiles and NF-kappaB activation of LPS- or LPS+PACAP-exposed cells. Although donor and CP PBMC responded equally to LPS, PACAP-mediated counteraction of LPS-induced cytokine response was switched from inhibiting TNF-alpha to decreasing IL-1beta and increasing IL-10 secretion. The change of PACAP-mediated anti-inflammatory pattern was associated with altered activation of NF-kappaB: compared with LPS alone, a combination of LPS and PACAP had no effect on NF-kappaB p65 nuclear translocation in CP PBMC, whereas NF-kappaB was significantly decreased in donor PBMC. According to laser-capture microdissection and coculture experiments, PBMC also contributed to generation of a PACAP-rich intrapancreatic environment by upregulating PACAP expression in macrophages encountering apoptotic pancreatic acini. The nociceptive status of CP patients correlated with pancreatic PACAP levels and with IL-10 bias of PACAP-exposed CP PBMC. Thus the ability of PBMC to produce and to respond to PACAP might influence neuroimmune interactions that regulate pain and inflammation in CP.

  13. Chlamydia pneumoniae activates IKK/I kappa B-mediated signaling, which is inhibited by 4-HNE and following primary exposure.

    PubMed

    Donath, Bernadette; Fischer, Claudia; Page, Sharon; Prebeck, Sigrid; Jilg, Nikolaus; Weber, Marion; da Costa, Clarissa; Neumeier, Dieter; Miethke, Thomas; Brand, Korbinian

    2002-11-01

    Chlamydia pneumoniae may be involved in atherosclerosis by inducing inflammation as well as LDL oxidation. The transcription factor NF-kappa B is found in an active state in atherosclerotic lesions. This study examined the effect of C. pneumoniae exposure on the NF-kappa B system in human monocytic lineage cells. Short exposure to C. pneumoniae as well as chlamydial heat shock protein 60 activated NF-kappa B, accompanied by increased cytokine production. Incubation with C. pneumoniae-induced depletion of I kappa B-alpha and later I kappa B-epsilon which was preceded by I kappa B kinase complex activation. 4-Hydroxynonenal, an aldehyde LDL oxidation product, was shown to inhibit C. pneumoniae induced NF-kappa B activation by preventing I kappa B phosphorylation/proteolysis. During long-term incubation with C. pneumoniae I kappa B-alpha returned to baseline, whereas the levels of I kappa B-epsilon and p65 were upregulated. Interestingly, long-term preincubation with C. pneumoniae selectively prevented restimulation by this microorganism, which appears to be at least partly facilitated by inhibition of I kappa B proteolysis. C. pneumoniae-induced NF-kappa B activation as well as the inhibition of that effect under certain conditions may contribute to chronic inflammation with potential relevance to vascular disease.

  14. Small interfering RNA targeting nuclear factor kappa B to prevent vein graft stenosis in rat models.

    PubMed

    Meng, X B; Bi, X L; Zhao, H L; Feng, J B; Zhang, J P; Song, G M; Sun, W Y; Bi, Y W

    2013-01-01

    Intimal hyperplasia plays an important role in vein graft stenosis. Inflammatory injury, especially nuclear factor kappaB (NF-κB) gene activation, is highly involved in stenosis progression. We examined whether neointimal hyperplasia and vein graft stenosis could be inhibited by silencing the NF-κB gene with small interference RNA (siRNA). Sixty adult male Sprague-Dawley rats were randomly divided into a normal vein group, a vein graft group, a scrambled siRNA group, and an NF-κB siRNA group. We performed reverse interpositional grafting of the autologous external jugular vein to the abdominal aorta. Vein grafts were treated with liposome and gel complexes containing NF-κB siRNA or scrambled siRNA. The levels of monocyte chemoattractant protein -1, tumor necrosis factor-α, and NF-κB p65 in vessel tissues were evaluated after surgery for content of proliferating cell nuclear antigen (PCNA) and vascular wall thickness. NF-κB siRNA treated vein graft showed less neointimal formation and fewer positive PCNA cells (P < .05). In addition there were lower levels of, NF-κB p65 protein and of inflammatory mediators (P < .05) compared with the vein graft group. Our study suggested that siRNA transfection suppressed NF-κB expression, reduced inflammatory factors, lessened neointimal proliferation, and suppressed PCNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-kappaB activation in BV2 murine microglial cells.

    PubMed

    Oh, Young Taek; Lee, Jung Yeon; Lee, Jinhwa; Lee, Ju Hie; Kim, Ja-Eun; Ha, Joohun; Kang, Insug

    2010-05-03

    Oleamide (cis-9-octadecenamide) is an endogenous sleep-inducing fatty acid amide that accumulates in the cerebrospinal fluid of the sleep-deprived animals. Microglia are the major immune cells involved in neuroinflammation causing brain damage during infection, ischemia, and neurodegenerative disease. In this study, we examined the effects of oleamide on LPS-induced production of proinflammatory mediators and the mechanisms involved in BV2 microglia. Oleamide inhibited LPS-induced production of NO and prostaglandin E2 as well as expression of iNOS and COX-2. We showed that oleamide blocked LPS-induced NF-kappaB activation and phosphorylation of inhibitor kappaB kinase (IKK). We also showed that oleamide inhibited LPS-induced phosphorylation of Akt, p38 MAPK, and ERK, activation of PI 3-kinase, and accumulation of reactive oxygen species (ROS). Finally, we showed that a specific antagonist of the CB2 receptor, AM630, blocked the inhibitory effects of oleamide on LPS-induced production of proinflammatory mediators and activation of NF-kappaB. Taken together, our results suggest that oleamide shows an anti-inflammatory effect through inhibition of NF-kappaB activation in LPS-stimulated BV2 microglia. 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Evaluation of NF-kappaB Pathway Inhibition for Space Radiation Biology Research

    NASA Astrophysics Data System (ADS)

    Koch, Kristina; Hellweg, Christine; Baumstark-Khan, Christa; Schmitz, Claudia; Lau, Patrick; Testard, Isabelle; Reitz, Guenther

    Radiation is a potentially limiting factor for long term orbital and interplanetary missions. To improve risk estimation and to allow development of appropriate countermeasures, the study of the cellular radiation response is necessary. The anti-apoptotic factor nuclear factor κB (NF-κB) was identified as important modulating factor in the cellular response to heavy ions (Radiat. Res. 164: 527-530, 2005). This transcription factor could improve cellular survival after exposure to high radiation doses and influence the cancer risk of astronauts exposed to low doses of cosmic radiation. Therefore, the inhibition of selected NF-κB pathway compo-nents might help to identify possible pharmacological targets. It is supposed that the ATM kinase mediates the signal from damaged DNA in the nucleus to kinases in the cytoplasm. For liberation of NF-κB and its nuclear translocation, the inhibitor of NF-κB (IκB) has to be degraded in the proteasom. In this work, the efficacy and cytotoxicity of ATM, NF-κB and the proteasome inhibitors were analyzed using recombinant HEK-pNF-κB-d2EGFP/Neo cells. In the recommended concentration range, only the NF-κB inhibitor caffeic acid phenethyl ester (CAPE) displayed considerable cytotoxicity, while the others were not toxic. The inhibition of ATM by KU-55933 suppresses the X-ray and heavy ion (13 C, 35 MeV/u, LET 70 keV/m) induced activation of NF-κB dependent gene expression, indicating the central position of ATM in radiation induced NF-κB activation. CAPE and capsaicin partially inhibited NF-κB acti-vation by the cytokine tumor necrosis factor α. The proteasome inhibitor MG-132 completely abolished the activation and was therefore used for short-term incubation experiments with X-rays. MG-132 suppressed the X-ray induced NF-κB activation in HEK-pNF-κB-d2EGFP/Neo cells entirely. The results lead to the conclusion that ATM and the proteasomal degradation of IκB are essential prerequisites for radiation induced NF

  17. Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-kappaB in RAW 264.7 cells.

    PubMed

    Oh, Jung Hwa; Lee, Tae-Jin; Park, Jong-Wook; Kwon, Taeg Kyu

    2008-12-03

    Induction of inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production is thought to have beneficial immunomodulatory effects in acute and chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, withaferin A inhibited LPS-induced expression of both iNOS protein and mRNA in a dose-dependent manner. To investigate the mechanism by which withaferin A inhibits iNOS gene expression, we examined activation of mitogen-activated protein kinases (MAPKs) and Akt in Raw 264.7 cells. We did not observe any significant changes in the phosphorylation of p38 MAPK in cells treated with LPS alone or LPS plus withaferin A. However, LPS-induced Akt phosphorylation was markedly inhibited by withaferin A, while the phosphorylation of p42/p44 extracellular signal-regulated kinases (ERKs) was slightly inhibited by withaferin A treatment. Withaferin A prevented IkappaB phosphorylation, blocking the subsequent nuclear translocation of nuclear factor-kappaB (NF-kappaB) and inhibiting its DNA binding activity. LPS-induced p65 phosphorylation, which is mediated by extracellular signal-regulated kinase (ERK) and Akt pathways, was attenuated by withaferin A treatment. Moreover, LPS-induced NO production and NF-kappaB activation were inhibited by SH-6, a specific inhibitor of Akt. Taken together, these results suggest that withaferin A inhibits inflammation through inhibition of NO production and iNOS expression, at least in part, by blocking Akt and subsequently down-regulating NF-kappaB activity.

  18. NF-KappaB2/p52 Activation and Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2011-08-01

    biosynthetic enzymes including AKR1C3, CYP17A1, HSD3B2, and SRD5A1 were found to be elevated in CaP cells expressing NF-kappaB2/p52. Luciferase assays...RESULTS: Expression levels of androgen biosynthetic enzymes including AKR1C3, CYP17A1, HSD3B2, and SRD5A1 were found to be elevated in CaP cells

  19. Acetylation of the human T-cell leukemia virus type 1 Tax oncoprotein by p300 promotes activation of the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodewick, Julie; Lamsoul, Isabelle; Polania, Angela

    The oncogenic potential of the HTLV-1 Tax protein involves activation of the NF-{kappa}B pathway, which depends on Tax phosphorylation, ubiquitination and sumoylation. We demonstrate that the nuclei of Tax-expressing cells, including HTLV-1 transformed T-lymphocytes, contain a pool of Tax molecules acetylated on lysine residue at amino acid position 346 by the transcriptional coactivator p300. Phosphorylation of Tax on serine residues 300/301 was a prerequisite for Tax localization in the nucleus and correlated with its subsequent acetylation by p300, whereas sumoylation, resulting in the formation of Tax nuclear bodies in which p300 was recruited, favored Tax acetylation. Overexpression of p300 markedlymore » increased Tax acetylation and the ability of a wild type HTLV-1 provirus, -but not of a mutant provirus carrying an acetylation deficient Tax gene-, to activate gene expression from an integrated NF-{kappa}B-controlled promoter. Thus, Tax acetylation favors NF-{kappa}B activation and might play an important role in HTLV-1-induced cell transformation.« less

  20. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Fen; Yang, Shuang; Zhao, Dan

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pHmore » 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.« less

  1. A nuclear factor kappa B-derived inhibitor tripeptide inhibits UVB-induced photoaging process.

    PubMed

    Oh, Jee Eun; Kim, Min Seo; Jeon, Woo-Kwang; Seo, Young Kwon; Kim, Byung-Chul; Hahn, Jang Hee; Park, Chang Seo

    2014-12-01

    Ultraviolet (UV) irradiation on the skin induces photoaging which is characterized by keratinocyte hyperproliferation, generation of coarse wrinkles, worse of laxity and roughness. Upon UV irradiation, nuclear factor kappa B (NF-κB) is activated which plays a key role in signaling pathway leading to inflammation cascade and this activation stimulates expression of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1alpha (IL-1α) and a stress response gene cyclooxygenase-2 (COX-2). In addition, activation of NF-κB up-regulates the expression of matrix metalloprotease-1 (MMP-1) and consequently collagen in dermis is degraded. In this study, the effects of a NF-κB-derived inhibitor tripeptide on the UVB-induced photoaging and inflammation were investigated in vitro and in vivo. A NF-κB-derived inhibitor tripeptide (NF-κB-DVH) was synthesized based on the sequence of dimerization region of the subunit p65 of NF-κB. Its inhibitory activity was confirmed using chromatin immunoprecipitation assay and in situ proximate ligation assay. The effects of anti-photoaging and anti-inflammation were analyzed by Enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunochemistry. NF-κB-DVH significantly decreased UV-induced expression of TNF-α, IL-1α, MMP-1 and COX-2 while increased production of type I procollagen. Results showed NF-κB-DVH had strong anti-inflammatory activity probably by inhibiting NF-κB activation pathway and suggested to be used as a novel agent for anti-photoaging. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-kappaB activation.

    PubMed

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-05-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-alpha-evoked translocation of nuclear factor (NF)-kappaB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-kappaB and production of TNF-alpha in mouse macrophage RAW264.7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-alpha level and inhibited the LPS-evoked nuclear translocation of NF-kappaB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS.

  3. Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bin Hafeez, Bilal; Ahmed, Salahuddin; Wang, Naizhen

    2006-10-01

    Development of chemotherapy resistance and evasion from apoptosis in osteosarcoma, a primary malignant bone tumor, is often correlated with constitutive nuclear factor-{kappa}B (NF-{kappa}B) activation. Here, we investigated the ability of a polyphenolic fraction of green tea (GTP) that has been shown to have antitumor effects on various malignant cell lines to inhibit growth and induce apoptosis in human osteosarcoma SAOS-2 cells. Treatment of SAOS-2 cells with GTP (20-60 {mu}g/ml) resulted in reduced cell proliferation and induction of apoptosis, which correlated with decreased nuclear DNA binding of NF-{kappa}B/p65 and lowering of NF-{kappa}B/p65 and p50 levels in the cytoplasm and nucleus. GTPmore » treatment of cells reduced I{kappa}B-{alpha} phosphorylation but had no effect on its protein expression. Furthermore, GTP treatment resulted in the inhibition of IKK-{alpha} and IKK-{beta}, the upstream kinases that phosphorylate I{kappa}B-{alpha}. The increase in apoptosis in SAOS-2 cells was accompanied with decrease in the protein expression of Bcl-2 and concomitant increase in the levels of Bax. GTP treatment of SAOS-2 cells also resulted in significant activation of caspases as was evident by increased levels of cleaved caspase-3 and caspase-8 in these cells. Treatment of SAOS-2 cells with a specific caspase-3 inhibitor Ac-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO) and general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethyl ketone (Z-VAD-FMK) rescued SAOS-2 cells from GTP-induced apoptosis. Taken together, these results indicate that GTP is a candidate therapeutic for osteosarcoma that mediates its antiproliferative and apoptotic effects via activation of caspases and inhibition of NF-{kappa}B.« less

  4. Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation.

    PubMed

    Kawakami, Akio; Aikawa, Masanori; Nitta, Noriko; Yoshida, Masayuki; Libby, Peter; Sacks, Frank M

    2007-01-01

    Plasma apolipoprotein CIII (apoCIII) independently predicts risk for coronary heart disease (CHD). We recently reported that apoCIII directly enhances adhesion of human monocytes to endothelial cells (ECs), and identified the activation of PKC alpha as a necessary upstream event of enhanced monocyte adhesion. This study tested the hypothesis that apoCIII activates PKC alpha in human monocytic THP-1 cells, leading to NF-kappaB activation. Among inhibitors specific to PKC activators, phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor D609 limited apoCIII-induced PKC alpha activation and THP-1 cell adhesion. ApoCIII increased PC-PLC activity in THP-1 cells, resulting in PKC alpha activation. Pertussis toxin (PTX) inhibited apoCIII-induced PC-PLC activation and subsequent PKC alpha activation, implicating PTX-sensitive G protein pathway. ApoCIII further activated nuclear factor-kappaB (NF-kappaB) through PKC alpha in THP-1 cells and augmented beta1-integrin expression. The NF-kappaB inhibitor peptide SN50 partially inhibited apoCIII-induced beta1-integrin expression and THP-1 cell adhesion. ApoCIII-rich VLDL had similar effects to apoCIII alone. PTX-sensitive G protein pathway participates critically in PKC alpha stimulation in THP-1 cells exposed to apoCIII, activating NF-kappaB, and increasing beta1-integrin. This action causes monocytic cells to adhere to endothelial cells. Furthermore, because leukocyte NF-kappaB activation contributes to inflammatory aspects of atherogenesis, apoCIII may stimulate diverse inflammatory responses through monocyte activation.

  5. Evaluation of NF-B Signaling in T Cells

    DTIC Science & Technology

    2009-01-01

    of cancer cells, ranging from myelomas (46) to breast cancer (47) to esophageal cancer (48), to name a few. NF-κB activation is also implicated in...Sonenshein. 1997. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer . J Clin Invest 100:2952-2960. 48. Abdel-Latif, M... Cancer Res 3:345-353. 43. Hinz, M., D. Krappmann, A. Eichten, A. Heder, C. Scheidereit, and M. Strauss. 1999. NF-kappaB function in growth control

  6. Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-kappaB activation in macrophages.

    PubMed

    Kim, Jung-Hee; Jeong, Ji-Hye; Jeon, Sung-Tak; Kim, Ho; Ock, Jiyeon; Suk, Kyoungho; Kim, Sang-In; Song, Kyung-Sik; Lee, Won-Ha

    2006-06-01

    In the course of screening inhibitors of matrix metalloproteinase (MMP)-9 induction in macrophages, we isolated decursin, a coumarin compound, from the roots of Angelicae gigas. As a marker for the screening and isolation, we tested expression of MMP-9 in RAW264.7 cells and THP-1 cells after treatment with bacterial lipopolysaccharide (LPS), the TLR-4 ligand. Decursin suppressed MMP-9 expression in cells stimulated by LPS in a dose-dependent manner at concentrations below 60 microM with no sign of cytotoxicity. The suppressive effect of decursin was observed not only in cells stimulated with ligands for TLR4, TLR2, TLR3, and TLR9 but also in cells stimulated with interleukin (IL)-1beta, and tumor necrosis factor (TNF)-alpha, indicating that the molecular target of decursin is common signaling molecules induced by these stimulants. In addition to the suppression of MMP-9 expression, decursin blocked nitric oxide production and cytokine (IL-8, MCP-1, IL-1beta, and TNF-alpha) secretion induced by LPS. To find out the molecular mechanism responsible for the suppressive effect of decursin, we analyzed signaling molecules involved in the TLR-mediated activation of MMP-9 and cytokines. Decursin blocked phosphorylation of IkappaB and nuclear translocation of NF-kappaB in THP-1 cells activated with LPS. Furthermore, expression of a luciferase reporter gene under the promoter containing NF-kappaB binding sites was blocked by decursin. These data indicate that decursin is a novel inhibitor of NF-kappaB activation in signaling induced by TLR ligands and cytokines.

  7. [Effects of different nuclear factor kappaB dimers on the survival of immortalized neural progenitor cells].

    PubMed

    Gui, Ling-Li; Zhang, Chuan-Han; Liu, Zhi-Heng; Chen, Zhao-Jun; Zhu, Chang

    2008-04-01

    To investigate the effects of different nuclear factor (NF)-KB dimers on the survival of immortalized neural progenitor cells (INPCs). The control vector RC/CMV, containing the promoter of cytomegalovirus (CMV), and the expression vectors, RcCMV-p50 and RcCMV-p65, containing the coding regions of NF-KB subunits p50 and p65 genes, were transfected into the INPCs by liposome respectively. Stably transfected clones were screened out following G418 selection. Subsequently, the plasmid RcCMV-p50 was transiently transfected into the INPCs which had been stably transfected with the plasmid RcCMV-p65. The expression of p50 or p65 gene was detected in each cell strain by Western blotting. And the NF-KB DNA binding activity in the cell nuclear extracts was measured by electrophoresis mobility shift assay (EMSA). The expression of IkappaBalpha in the cytoplasm was detected by Western blotting. After oxygen and glucose deprivation for 13 h, the cell survival rate was measured by MTT assay. After gene transfection, five different cell strains were obtained: INPC, INPC/CMV, INPC/p50, INPC/p65, and INPC/p50p65. p50 or p65 gene was translated correctly and efficiently in the cell strains which had been transfected with the corresponding plasmids. EMSA showed that the INPC/p50, INPC/p65, and INPC/p50p65 cells all gave rise to NF-kappaB specific bands, which were composed of p50 homodimer, p65 homodimer, and p50 p65 heterodimer and p50 homodimer respectively. The expression of IkappaBbeta was increased significantly in the cytoplasm of the INPC/p65 and INPC/p50p65 cells. Games-Howell test showed that after oxygen and glucose deprivation for 13 h, the survival rates of the NPC/p65 and INPC/p50p65 cells were (6.0 +/- 1.0)% and (4.6 +/- 0.6)% respectively, both significantly lower than those of the INPC, INPC/CMV, and INPC/p50 cells [(72.5 +/- 6.2)%, (70.1 +/- 4.3)%, and (70.4 +/- 7.3)% respectively, all P < 0.05]. Overexpression of p50 gene and p65 gene directly enhance the DNA

  8. The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-kappaB signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats.

    PubMed

    Ochaion, A; Bar-Yehuda, S; Cohen, S; Amital, H; Jacobson, K A; Joshi, B V; Gao, Z G; Barer, F; Patoka, R; Del Valle, L; Perez-Liz, G; Fishman, P

    2008-08-15

    The A(3) adenosine receptor (A(3)AR) is over-expressed in inflammatory cells and was defined as a target to combat inflammation. Synthetic agonists to this receptor, such as IB-MECA and Cl-IB-MECA, exert an anti-inflammatory effect in experimental animal models of adjuvant- and collagen-induced arthritis. In this study we present a novel A(3)AR agonist, CF502, with high affinity and selectivity at the human A(3)AR. CF502 induced a dose dependent inhibitory effect on the proliferation of fibroblast-like synoviocytes (FLS) via de-regulation of the nuclear factor-kappa B (NF-kappaB) signaling pathway. Furthermore, CF502 markedly suppressed the clinical and pathological manifestations of adjuvant-induced arthritis (AIA) in a rat experimental model when given orally at a low dose (100 microg/kg). As is typical of other G-protein coupled receptors, the A(3)AR expression level was down-regulated shortly after treatment with agonist CF502 in paw and in peripheral blood mononuclear cells (PBMCs) derived from treated AIA animals. Subsequently, a decrease in the expression levels of protein kinase B/Akt (PKB/Akt), IkappaB kinase (IKK), I kappa B (IkappaB), NF-kappaB and tumor necrosis factor-alpha (TNF-alpha) took place. In addition, the expression levels of glycogen synthase kinase-3 beta (GSK-3beta), beta-catenin, and poly(ADP-ribose)polymerase (PARP), known to control the level and activity of NF-kappaB, were down-regulated upon treatment with CF502. Taken together, CF502 inhibits FLS growth and the inflammatory manifestations of arthritis, supporting the development of A(3)AR agonists for the treatment of rheumatoid arthritis.

  9. Low-Dose Radiation Promotes Dendritic Cell Migration and IL-12 Production via the ATM/NF-KappaB Pathway.

    PubMed

    Yu, Nan; Wang, Sinian; Song, Xiujun; Gao, Ling; Li, Wei; Yu, Huijie; Zhou, Chuanchuan; Wang, Zhenxia; Li, Fengsheng; Jiang, Qisheng

    2018-04-01

    For dendritic cells (DCs) to initiate an immune response, their ability to migrate and to produce interleukin-12 (IL-12) is crucial. It has been previously shown that low-dose radiation (LDR) promoted IL-12 production by DCs, resulting in increased DC activity that contributed to LDR hormesis in the immune system. However, the molecular mechanism of LDR-induced IL-12 production, as well as the effect of LDR on DC migration capacity require further elucidation. Using the JAWSII immortalized mouse dendritic cell line, we showed that in vitro X-ray irradiation (0.2 Gy) of DCs significantly increased DC migration and IL-12 production, and upregulated CCR7. The neutralizing antibody against CCR7 has been shown to abolish LDR-enhanced DC migration, demonstrating that CCR7 mediates LDR-promoting DC migration. We identified nuclear factor kappaB (NF-κB) as the central signaling pathway that mediated LDR-enhanced expression of IL-12 and CCR7 based on findings that 0.2 Gy X-ray irradiation activated NF-κB, showing increased nuclear p65 translocation and NF-κB DNA-binding activity, while an NF-κB inhibitor blocked LDR-enhanced expression of IL-12 and CCR7, as well as DC migration. Finally, we demonstrated that 0.2 Gy X-ray irradiation promoted ATM phosphorylation and reactive oxygen species generation; however, only the ATM inhibitor abolished the LDR-induced NF-κB-mediated expression of IL-12 and CCR7. Altogether, our data show that exposure to LDR resulted in a hormetic effect on DCs regarding CCR7-mediated migration and IL-12 production by activating the ATM/NF-κB pathway.

  10. Cell autonomous expression of inflammatory genes in biologically aged fibroblasts associated with elevated NF-kappaB activity.

    PubMed

    Kriete, Andres; Mayo, Kelli L; Yalamanchili, Nirupama; Beggs, William; Bender, Patrick; Kari, Csaba; Rodeck, Ulrich

    2008-07-16

    Chronic inflammation is a well-known corollary of the aging process and is believed to significantly contribute to morbidity and mortality of many age-associated chronic diseases. However, the mechanisms that cause age-associated inflammatory changes are not well understood. Particularly, the contribution of cell stress responses to age-associated inflammation in 'non-inflammatory' cells remains poorly defined. The present cross-sectional study focused on differences in molecular signatures indicative of inflammatory states associated with biological aging of human fibroblasts from donors aged 22 to 92 years. Gene expression profiling revealed elevated steady-state transcript levels consistent with a chronic inflammatory state in fibroblast cell-strains obtained from older donors. We also observed enhanced NF-kappaB DNA binding activity in a subset of strains, and the NF-kappaB profile correlated with mRNA expression levels characteristic of inflammatory processes, which include transcripts coding for cytokines, chemokines, components of the complement cascade and MHC molecules. This intrinsic low-grade inflammatory state, as it relates to aging, occurs in cultured cells irrespective of the presence of other cell types or the in vivo context. Our results are consistent with the view that constitutive activation of inflammatory pathways is a phenomenon prevalent in aged fibroblasts. It is possibly part of a cellular survival process in response to compromised mitochondrial function. Importantly, the inflammatory gene expression signature described here is cell autonomous, i.e. occurs in the absence of prototypical immune or pro-inflammatory cells, growth factors, or other inflammatory mediators.

  11. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax andmore » subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.« less

  12. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65

    PubMed Central

    Snow, Wanda M.; Pahlavan, Payam S.; Djordjevic, Jelena; McAllister, Danielle; Platt, Eric E.; Alashmali, Shoug; Bernstein, Michael J.; Suh, Miyoung; Albensi, Benedict C.

    2015-01-01

    Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory. PMID:26635523

  13. Role of thrombospondin-1 and nuclear factor-kappa B signaling pathways in anti-angiogenesis of infantile hemangioma.

    PubMed

    Xu, Weili; Li, Suolin; Yu, Fengxue; Zhang, Yongting; Yang, Xiaofeng; An, Wenting; Wang, Wenbo; Sun, Chi

    2018-06-12

    Propranolol (PRO) is the first-line drug for infantile hemangioma treatment. However, its mechanism of action remains unclear. Nuclear factor-kappa B (NF-κB) is highly expressed in tumors, directly or indirectly promoting angiogenesis. Thrombospondin-1 (TSP-1) is the most important anti-angiogenesis protein in vivo. These proteins mediate signaling pathways, probably playing an important role in hemangioma treatment. This study explored the synergistic regulation of TSP-1 and NF-κB signaling pathways in the treatment of hemangioma with PRO. The hemangioma-derived endothelial cells (HemECs) were sorted out from the specimens of proliferative hemangioma by flow cytometry. Furthermore, a BALB/c nude mice hemangioma model was established. Viability and proliferation of HemECs, and the role of TSP-1 and NF-κB signaling pathways were observed after PRO administration in vitro and in vivo. The expressions of TSP-1 and its receptor cluster of differentiation 36 (CD36) in HemECs gradually increased with the increase in PRO concentration, while the expressions of NF-κBp65, phosphorylated inhibitor of kappa B alpha (p-IκBα), and phosphorylated inhibitor of NF-κB kinase beta (p-IκKβ) weakened gradually (p < 0.05). In vivo, the tumors shrank gradually after PRO treatment, with increase in TSP-1 and CD36, and decrease in NF-κBp65, p-IκBα, and p-IκKβ (p < 0.05). Glucocorticoid improved the anti-angiogenesis mediated by TSP-1/CD36 and inhibited the angiogenesis mediated by NF-κB/IκB (p < 0.05). Negative regulation occurred between the two signaling pathways. The treatment of infantile hemangioma with PRO is promising to promote TSP-1-mediated anti-angiogenesis and block NF-κB-mediated angiogenesis.

  14. 1-Cinnamoyl-3,11-dihydroxymeliacarpin is a natural bioactive compound with antiviral and nuclear factor-{kappa}B modulating properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barquero, Andrea A.; Michelini, Flavia M.; Alche, Laura E.

    2006-06-09

    We have reported the isolation of the tetranortriterpenoid 1-cinnamoyl-3,11-dihydroxymeliacarpin (CDM) from partially purified leaf extracts of Melia azedarach L. (MA) that reduced both, vesicular stomatitis virus (VSV) and Herpes simplex virus type 1 (HSV-1) multiplication. CDM blocks VSV entry and the intracellular transport of VSV-G protein, confining it to the Golgi apparatus, by pre- or post-treatment, respectively. Here, we report that HSV-1 glycoproteins were also confined to the Golgi apparatus independently of the nature of the host cell. Considering that MA could be acting as an immunomodulator preventing the development of herpetic stromal keratitis in mice, we also examined anmore » eventual effect of CDM on NF-{kappa}B signaling pathway. CDM is able to impede NF-{kappa}B activation in HSV-1-infected conjunctival cells and leads to the accumulation of p65 NF-{kappa}B subunit in the cytoplasm of uninfected treated Vero cells. In conclusion, CDM is a pleiotropic agent that not only inhibits the multiplication of DNA and RNA viruses by the same mechanism of action but also modulates the NF-{kappa}B signaling pathway.« less

  15. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B.

    PubMed

    Tanaka, Yuka Tsuda; Tanaka, Kiyotaka; Kojima, Hiroyuki; Hamada, Tomoji; Masutani, Teruaki; Tsuboi, Makoto; Akao, Yukihiro

    2013-01-15

    Aging of skin is characterized by skin wrinkling, laxity, and pigmentation induced by several environmental stress factors. Histological changes during the photoaging of skin include hyperproliferation of keratinocytes and melanocytes causing skin wrinkles and pigmentation. Nuclear factor kappa B (NF-κB) is one of the representative transcription factors active in conjunction with inflammation. NF-κB is activated by stimulation such as ultraviolet rays and inflammatory cytokines and induces the expression of various genes such as those of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1). We screened several plant extracts for their possible inhibitory effect on the transcriptional activity of NF-κB. One of them, an extract from Cynara scolymus L., showed a greatest effect on the suppression of NF-κB transactivation. As a result, we found that cynaropicrin, which is a sesquiterpene lactone, inhibited the NF-κB-mediated transactivation of bFGF and MMP-1. Furthermore, it was confirmed that in an in vivo mouse model cynaropicrin prevented skin photoaging processes leading to the hyperproliferation of keratinocytes and melanocytes. These findings taken together indicate that cynaropicrin is an effective antiphotoaging agent that acts by inhibiting NF-κB-mediated transactivation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism.

    PubMed

    Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Abe, Jun-Ichi; Berk, Bradford C; Li, Jian-Dong; Yan, Chen

    2010-05-25

    Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-alpha-induced NF-kappaB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-alpha- or LPS-induced up-regulation of proinflammatory mediators, including TNF-alpha, IL-1beta, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-alpha- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-kappaB-dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca(2+) regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases.

  17. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-{alpha} and NF-{kappa}B pathways in lipopolysaccharide-stimulated mouse macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Tzung-Yan, E-mail: joyamen@mail.cgu.edu.tw; Lee, Ko-Chen; Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan

    2009-04-24

    Inflammation is involved in numerous diseases, including chronic inflammatory diseases and the development of cancer. Many plants possess a variety of biological activities, including antifungal, antibacterial and anti-inflammatory activities. However, our understanding of the anti-inflammatory effects of 6-gingerol is very limited. We used lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of 6-gingerol, which contains phenolic structure. We found that 6-gingerol exhibited an anti-inflammatory effect. 6-Gingerol could decrease inducible nitric oxide synthase and TNF-{alpha} expression through suppression of I-{kappa}B{alpha} phosphorylation, NF-{kappa}B nuclear activation and PKC-{alpha} translocation, which in turn inhibits Ca{sup 2+} mobilization and disruptionmore » of mitochondrial membrane potential in LPS-stimulated macrophages. Here, we demonstrate that 6-gingerol acts as an anti-inflammatory agent by blocking NF-{kappa}B and PKC signaling, and may be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.« less

  18. Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-{kappa}B in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Gong, E-mail: gong-feng@northwestern.edu; Anong Biotech Institute, Tianjin; Li Ying

    Nodularin is a natural toxin with multiple features, including inhibitor of protein phosphatases 1 and 2A as well as tumor initiator and promoter. One unique feature of nodularin is that this chemical is a hepatotoxin. It can accumulate into the liver after contact and lead to severe damage to hepatocyte, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling network triggering apoptosis. In current study, we investigated whether nodularin can induce Fas and FasL expression in HepG2 cell, a well used in vitro model for the study of human hepatocytes. Our data showed nodularinmore » induced Fas and FasL expression, at both mRNA and protein level, in a time- and dose-dependent manner. We also found nodularin induced apoptosis at the concentration and incubation time that Fas and FasL were significantly induced. Neutralizing antibody to FasL reduced nodularin-induced apoptosis. Further studies demonstrated that nodularin promoted nuclear translocation and activation of p65 subunit of NF-{kappa}B. By applying siRNA targeting p65, which knocked down p65 in HepG2 cells, we successfully impaired the activation of NF-{kappa}B by nodularin. In these p65 knockdown cells, we observed that Fas and FasL expression and apoptosis induced by nodularin were significantly reduced. These findings suggest the induction of Fas and FasL expression and thus cell apoptosis in HepG2 cells by nodularin is mediated through NF-{kappa}B pathway.« less

  19. Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha.

    PubMed

    Chou, Chia-Hung; Chen, Shee-Uan; Cheng, Jason Chia-Hsien

    2009-12-01

    To investigate the mechanism of interleukin-6 (IL-6) activity induced by ionizing radiation. Human umbilical vascular endothelial cells (HUVECs) were irradiated with different doses to induce IL-6. The IL-6 promoter assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to examine transcriptional regulation. Specific chemical inhibitors, decoy double-stranded oligodeoxynucleotides, and Western blotting were conducted to investigate the signal transduction pathway. Recombinant soluble human IL-6 receptor alpha-chain (sIL6-Ralpha) and specific small interfering RNA were used to evaluate the biologic function of radiation-induced IL-6. Four grays of radiation induced the highest level of IL-6 protein. The promoter assay and RT-PCR data revealed that the induction of IL-6 was mediated through transcriptional regulation. The p38 inhibitor SB203580, by blocking nuclear factor-kappaB (NF-kappaB) activation, prevented both the transcriptional and translational regulation of radiation-induced IL-6 expression. The addition of sIL6-Ralpha rescued HUVECs from radiation-induced death in an IL-6 concentratio-dependent manner. The antiapoptotic effect of combined sIL6-Ralpha and radiation-induced IL-6 was inhibited by mcl-1-specific small interfering RNA. Radiation transcriptionally induces IL-6 expression in endothelial cells through mitogen-activated protein kinase/p38-mediated NF-kappaB/IkappaB (inhibitor of NF-kappaB) complex activation. In the presence of sIL6-Ralpha, radiation-induced IL-6 expression acts through Mcl-1 expression to rescue endothelial cells from radiation-induced death.

  20. The MC160 Protein Expressed by the Dermatotropic Poxvirus Molluscum Contagiosum Virus Prevents Tumor Necrosis Factor Alpha-Induced NF-κB Activation via Inhibition of I Kappa Kinase Complex Formation

    PubMed Central

    Nichols, Daniel Brian; Shisler, Joanna L.

    2006-01-01

    The pluripotent cytokine tumor necrosis factor alpha (TNF-α) binds to its cognate TNF receptor I (TNF-RI) to stimulate inflammation via activation of the NF-κB transcription factor. To prevent the detrimental effects of TNF-α in keratinocytes infected with the molluscum contagiosum virus (MCV), this poxvirus is expected to produce proteins that block at least one step of the TNF-RI signal transduction pathway. One such product, the MC160 protein, is predicted to interfere with this cellular response because of its homology to other proteins that regulate TNF-RI-mediated signaling. We report here that expression of MC160 molecules did significantly reduce TNF-α-mediated NF-κB activation in 293T cells, as measured by gene reporter and gel mobility shift assays. Since we observed that MC160 decreased other NF-κB activation pathways, namely those activated by receptor-interacting protein, TNF receptor-associated factor 2, NF-κB-inducing kinase, or MyD88, we hypothesized that the MC160 product interfered with I kappa kinase (IKK) activation, an event common to multiple signal transduction pathways. Indeed, MC160 protein expression was associated with a reduction in in vitro IKK kinase activity and IKK subunit phosphorylation. Further, IKK1-IKK2 interactions were not detected in MC160-expressing cells, under conditions demonstrated to induce IKK complex formation, but interactions between the MC160 protein and the major IKK subunits were undetectable. Surprisingly, MC160 expression correlated with a decrease in IKK1, but not IKK2 levels, suggesting a mechanism for MC160 disruption of IKK1-IKK2 interactions. MCV has probably retained its MC160 gene to inhibit NF-κB activation by interfering with signaling via multiple biological mediators. In the context of an MCV infection in vivo, MC160 protein expression may dampen the cellular production of proinflammatory molecules and enhance persistent infections in host keratinocytes. PMID:16378960

  1. Modulation of the nuclear factor-kappa B (NF-κB) signalling pathway by glutamine in peritoneal macrophages of a murine model of protein malnutrition.

    PubMed

    da Silva Lima, Fabiana; Rogero, Marcelo Macedo; Ramos, Mayara Caldas; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-06-01

    Protein malnutrition affects resistance to infection by impairing the inflammatory response, modifying the function of effector cells, such as macrophages. Recent studies have revealed that glutamine-a non-essential amino acid, which could become conditionally essential in some situations like trauma, infection, post-surgery and sepsis-is able to modulate the synthesis of cytokines. The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappa B (NF-κB) signalling pathway of peritoneal macrophages from malnourished mice. Two-month-old male Balb/c mice were submitted to protein-energy malnutrition (n = 10) with a low-protein diet containing 2 % protein, whereas control mice (n = 10) were fed a 12 % protein-containing diet. The haemogram and analysis of plasma glutamine and corticosterone were evaluated. Peritoneal macrophages were pre-treated in vitro with glutamine (0, 0.6, 2 and 10 mmol/L) for 24 h and then stimulated with 1.25 μg LPS for 30 min, and the synthesis of TNF-α and IL-1α and the expression of proteins related to the NF-κB pathway were evaluated. Malnourished animals had anaemia, leucopoenia, lower plasma glutamine and increased corticosterone levels. TNF-α production of macrophages stimulated with LPS was significantly lower in cells from malnourished animals when cultivated in supraphysiological (2 and 10 mmol/L) concentrations of glutamine. Further, glutamine has a dose-dependent effect on the activation of macrophages, in both groups, when stimulated with LPS, inducing a decrease in TNF-α and IL-1α production and negatively modulating the NF-κB signalling pathway. These data lead us to infer that the protein malnutrition state interferes with the activation of macrophages and that higher glutamine concentrations, in vitro, have the capacity to act negatively in the NF-κB signalling pathway.

  2. [NF-kappaB-induced gp96 up-regulation promotes hepatocyte growth, cell cycle progression and transition].

    PubMed

    Feng, Cong; Wu, Bo; Fan, Hongxia; Li, Changfei; Meng, Songdong

    2014-10-04

    To investigate the mechanism of gp96 raised during hepatitis B virus (HBV) infection and the pathological mechanism. The mechanism of NF-KB activating gp96 expression was determined by bioinformatics analysis, luciferase reporter assay, real-time PCR and Western blot. The effect of over-expression and knockdown gp96 expression by transfection or RNA interference on hepatocyte proliferation, apoptosis and cell cycle was examined by CCK-8 and flow cytometry. The role of gp96 for HCC development was determined by epithelial-mesenchymal transition (EMT) and colony formation assay. NF-kB significantly increased the gp96 expression by binding to the NF-kappaB binding site. Over-expression and knockdown studies both show that gp96 promoted hepatocyte proliferation, inhibited apoptosis, and induced G0/G1 to S phase cell cycle progression. Moreover, gp96 induced epithelial-mesenchymal transition and increased colony formation ability of hepatocytes. Our results therefore provide insights in chronic HBV infection-induced gp96 expression, and indicate that elevated gp96 may contribute to HCC development during chronic inflammation.

  3. Anti-inflammatory function of Withangulatin A by targeted inhibiting COX-2 expression via MAPK and NF-kappaB pathways.

    PubMed

    Sun, Lijuan; Liu, Jianwen; Cui, Daling; Li, Jiyu; Yu, Youjun; Ma, Lei; Hu, Lihong

    2010-02-15

    Withangulatin A (WA), an active component isolated from Physalis angulata L., has been reported to possess anti-tumor and trypanocidal activities in model systems via multiple biochemical mechanisms. The aim of this study is to investigate its anti-inflammatory potential and the possible underlying mechanisms. In the current study, WA significantly suppressed mice T lymphocytes proliferation stimulated with LPS in a dose- and time-dependent manner and inhibited pro-inflammation cytokines (IL-2, IFN-gamma, and IL-6) dramatically. Moreover, WA targeted inhibited COX-2 expression mediated by MAPKs and NF-kappaB nuclear translocation pathways in mice T lymphocytes, and this result was further confirmed by the COX-1/2 luciferase reporter assay. Intriguingly, administration of WA inhibited the extent of mice ear swelling and decreased pro-inflammatory cytokines production in mice blood serum. Based on these evidences, WA influences the mice T lymphocytes function through targeted inhibiting COX-2 expression via MAPKs and NF-kappaB nuclear translocation signaling pathways, and this would make WA a strong candidate for further study as an anti-inflammatory agent. (c) 2009 Wiley-Liss, Inc.

  4. Attenuation of liver pro-inflammatory responses by Zingiber officinale via inhibition of NF-kappa B activation in high-fat diet-fed rats.

    PubMed

    Li, Xiao-Hong; McGrath, Kristine C-Y; Nammi, Srinivas; Heather, Alison K; Roufogalis, Basil D

    2012-03-01

    The aim of this study was to investigate whether treatment with a ginger (Zingiber officinale) extract of high-fat diet (HFD)-fed rats suppresses Nuclear factor-kappa B (NF-κB)-driven hepatic inflammation and to subsequently explore the molecular mechanisms in vitro. Adult male Sprague-Dawley rats were treated with an ethanolic extract of Zingiber officinale (400 mg/kg) along with a HFD for 6 weeks. Hepatic cytokine mRNA levels, cytokine protein levels and NF-κB activation were measured by real-time PCR, Western blot and an NF-κB nuclear translocation assay, respectively. In vitro, cell culture studies were carried out in human hepatocyte (HuH-7) cells by treatment with Zingiber officinale (100 μg/mL) for 24 hr prior to interleukin-1β (IL-1β, 8 ng/mL)-induced inflammation. We showed that Zingiber officinale treatment decreased cytokine gene TNFα and IL-6 expression in HFD-fed rats, which was associated with suppression of NF-κB activation. In vitro, Zingiber officinale treatment decreased NF-κB-target inflammatory gene expression of IL-6, IL-8 and serum amyloid A1 (SAA1), while it suppressed NF-κB activity, IκBα degradation and IκB kinase (IKK) activity. In conclusion, Zingiber officinale suppressed markers of hepatic inflammation in HFD-fed rats, as demonstrated by decreased hepatic cytokine gene expression and decreased NF-κB activation. The study demonstrates that the anti-inflammatory effect of Zingiber officinale occurs at least in part through the NF-κB signalling pathway. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  5. Targeting chronic inflammation in cerebral aneurysms: focusing on NF-kappaB as a putative target of medical therapy.

    PubMed

    Aoki, Tomohiro; Nishimura, M

    2010-03-01

    Cerebral aneurysms (CAs) are the main cause of life-threatening subarachnoid hemorrhage. Given its prevalence and endpoint, CA treatment is a public health issue. Effective medical treatment of CAs is lacking because the detailed mechanisms of CA formation are incompletely understood. The aim of this contribution is to review recent articles about CA formation, to suggest the underlying mechanisms of CA formation, and to discuss potential therapeutic targets for treatment. Articles were collected by an internet search of PubMed using the keywords 'intracranial' or 'cerebral aneurysm'. A review of articles about the pathogenesis of CA formation focusing on inflammation. Recent articles demonstrate that inflammation-related-molecule induction and inflammatory cell infiltration in CA walls and the close relationship between inflammatory responses and CA formation. From studies in experimental models, chronic inflammation triggered primarily by NF-kappaB activation in endothelial cells and subsequent macrophage infiltration have critical roles in CA formation. Inhibition of inflammation-related molecules in CA walls results in the decreased incidence of CA formation. Agents with anti-inflammatory activity (particularly anti- NF-kappaB effects) have potential as therapeutic drugs for CAs.

  6. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-κB) Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy

    PubMed Central

    Liu, Vincent Wing Sun; Yau, Wing Lung; Tam, Chun Wai; Yao, Kwok-Ming; Shiu, Stephen Yuen Wing

    2017-01-01

    A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin (IL)-6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT1 receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion. PMID:28561752

  7. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-κB) Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy.

    PubMed

    Liu, Vincent Wing Sun; Yau, Wing Lung; Tam, Chun Wai; Yao, Kwok-Ming; Shiu, Stephen Yuen Wing

    2017-05-31

    A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin ( IL ) -6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT₁ receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.

  8. Transcriptional up-regulation of nitric oxide synthase II by nuclear factor-kappaB at rostral ventrolateral medulla in a rat mevinphos intoxication model of brain stem death.

    PubMed

    Chan, Julie Y H; Wu, Carol H Y; Tsai, Ching-Yi; Cheng, Hsiao-Lei; Dai, Kuang-Yu; Chan, Samuel H H; Chang, Alice Y W

    2007-06-15

    As the origin of a 'life-and-death' signal that reflects central cardiovascular regulatory failure during brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate for mechanistic delineation of this vital phenomenon. Using a clinically relevant animal model that employed the organophosphate pesticide mevinphos (Mev) as the experimental insult, we evaluated the hypothesis that transcriptional up-regulation of nitric oxide synthase I or II (NOS I or II) gene expression by nuclear factor-kappaB (NF-kappaB) on activation of muscarinic receptors in the RVLM underlies brain stem death. In Sprague-Dawley rats maintained under propofol anaesthesia, co-microinjection of muscarinic M2R (methoctramine) or M4R (tropicamide), but not M1R (pirenzepine) or M3R (4-diphenylacetoxy-N-dimethylpiperidinium) antagonist significantly reduced the enhanced NOS I-protein kinase G signalling ('pro-life' phase) or augmented NOS II-peroxynitrite cascade ('pro-death' phase) in ventrolateral medulla, blunted the biphasic increase and decrease in baroreceptor reflex-mediated sympathetic vasomotor tone that reflect the transition from life to death, and diminished the elevated DNA binding activity or nucleus-bound translocation of NF-kappaB in RVLM neurons induced by microinjection of Mev into the bilateral RVLM. However, NF-kappaB inhibitors (diethyldithiocarbamate or pyrrolidine dithiocarbamate) or double-stranded kappaB decoy DNA preferentially antagonized the augmented NOS II-peroxynitrite cascade and the associated cardiovascular depression exhibited during the 'pro-death' phase. We conclude that transcriptional up-regulation of NOS II gene expression by activation of NF-kappaB on selective stimulation of muscarinic M2 or M4 subtype receptors in the RVLM underlies the elicited cardiovascular depression during the 'pro-death' phase in our Mev intoxication model of brain stem death.

  9. NF-kappa B activation correlates with disease phenotype in Crohn’s disease

    PubMed Central

    Han, Yoo Min; Koh, Jaemoon; Lee, Changhyun; Koh, Seong-Joon; Kim, ByeongGwan; Lee, Kook Lae; Im, Jong Pil; Kim, Joo Sung

    2017-01-01

    Background/Aims Unregulated activation of nuclear factor-κB (NF-κB) plays a critical role in the pathogenesis of Crohn’s disease. In this study, we investigated the clinical characteristics and disease outcome of Crohn’s disease patients with varying levels of the NF-κB activation. Methods Crohn’s disease patients who underwent surgical bowel resection were divided into two groups, based on the activation status of NF-κB. NF-κB activation was assessed by the immunoreactivity of nuclear NF-κB during immunohistochemical staining of bowel resection specimens. We compared the demographic, clinical and histologic characteristics between groups. Furthermore, the occurrence of reoperation, readmission, and medication change due to disease flare-up were investigated according to NF-κB activation status. Results Among 83 Crohn’s disease patients, 47 (56%) showed high NF-κB activity and 36 (44%) showed low NF-κB activity. Patients with high NF-κB activity had higher frequency of ileocolonic involvement (P = 0.028) and lower frequency of perianal involvement (P = 0.042) relative to those with low NF-κB activity. Total histologic scores were significantly higher in patients with high NF-κB activity than those with low NF-κB activity (P = 0.044). There was no significant difference in the frequency of reoperation, readmission, and medication change in relation to NF-κB activation status. Conclusions Crohn’s disease patients with high NF-κB activation showed specific clinical manifestations of higher frequency of ileocolonic involvement and lower frequency of perianal involvement relative to those with low NF-κB activation. High NF-κB activity was associated with higher histologic scores. However, the NF-κB activity did not affect the outcome and disease course after surgery. PMID:28753650

  10. A new assay format for NF-kappaB based on a DNA triple helix and a fluorescence resonance energy transfer.

    PubMed

    Altevogt, Dominik; Hrenn, Andrea; Kern, Claudia; Clima, Lilia; Bannwarth, Willi; Merfort, Irmgard

    2009-10-07

    Herein we report a feasibility study for a new concept to detect DNA binding protein NF-kappaB based on a DNA triple helix formation in combination with a fluorescence resonance energy transfer (FRET). The new principle avoids expensive antibodies and radioactivity and might have implications for assays of other DNA binding proteins.

  11. Nuclear factor kappa B-dependent Zif268 expression in hippocampus is required for recognition memory in mice.

    PubMed

    Zalcman, Gisela; Federman, Noel; de la Fuente, Verónica; Romano, Arturo

    2015-03-01

    Long-term memory formation requires gene expression after acquisition of new information. The first step in the regulation of gene expression is the participation of transcription factors (TFs) such as nuclear factor kappa B (NF-кB), which are present before the neuronal activity induced by training. It was proposed that the activation of these types of TFs allows a second step in gene regulation by induction of immediate-early genes (IEGs) whose protein products are, in turn, TFs. Between these IEGs, zif268 has been found to play a critical role in long-term memory formation and reprocessing after retrieval. Here we found in mice hippocampus that, on one hand, NF-кB was activated 45 min after training in a novel object recognition (NOR) task and that inhibiting NF-кB immediately after training by intrahippocampal administration of NF-кB Decoy DNA impaired NOR memory consolidation. On the other hand, Zif268 protein expression was induced 45 min after NOR training and the administration of DNA antisense to its mRNA post-training impaired recognition memory. Finally, we found that the inhibition of NF-кB by NF-кB Decoy DNA reduced significantly the training-induced Zif268 increment, indicating that NF-кB is involved in the regulation of Zif268 expression. Thus, the present results support the involvement of NF-кB activity-dependent Zif268 expression in the hippocampus during recognition memory consolidation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Constitutive Activation of NF-kappaB in Prostate Carcinoma Cells Through a Positive Feedback Loop: Implication of Inducible IKK-Related Kinase (IKKi)

    DTIC Science & Technology

    2006-08-01

    to IkB kinases. Intenational Immunology. 11: 1357-1362, 1999. 3. Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention...is in turn NF- kB-dependent, is typical for tumor cells (Orlowski and Baldwin, 2002; Zerbini et al., 2003; Greten and Karin, 2004). Those cytokines...Polo JR. (2000). J Neurochem 75: 1377–1389. Greten FR, Karin M. (2004). Cancer Lett 206: 193–199. Gupta S, Afaq F, Mukhtar H. (2002). Oncogene 21: 3727

  13. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-{kappa}B pathway in human epidermoid carcinoma A431 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm{sup 2}) and resveratrol (60 {mu}M) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition ofmore » A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-{kappa}B) pathway by blocking phosphorylation of serine 536 and inactivating NF-{kappa}B and subsequent degradation of I{kappa}B{alpha}, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.« less

  14. Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts.

    PubMed

    Vermes, C; Roebuck, K A; Chandrasekaran, R; Dobai, J G; Jacobs, J J; Glant, T T

    2000-09-01

    Particulate wear debris generated mechanically from prosthetic materials is phagocytosed by a variety of cell types within the periprosthetic space including osteoblasts, which cells with an altered function may contribute to periprosthetic osteolysis. Exposure of osteoblast-like osteosarcoma cells or bone marrow-derived primary osteoblasts to either metallic or polymeric particles of phagocytosable sizes resulted in a marked decrease in the steady-state messenger RNA (mRNA) levels of procollagen alpha1[I] and procollagen alpha1[III]. In contrast, no significant effect was observed for the osteoblast-specific genes, such as osteonectin and osteocalcin (OC). In kinetic studies, particles once phagocytosed, maintained a significant suppressive effect on collagen gene expression and type I collagen synthesis for up to five passages. Large particles of a size that cannot be phagocytosed also down-regulated collagen gene expression suggesting that an initial contact between cells and particles can generate gene responsive signals independently of the phagocytosis process. Concerning such signaling, titanium particles rapidly increased protein tyrosine phosphorylation and nuclear transcription factor kappaB (NF-kappaB) binding activity before the phagocytosis of particles. Protein tyrosine kinase (PTK) inhibitors such as genistein and the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the suppressive effect of titanium on collagen gene expression suggesting particles suppress collagen gene expression through the NF-kappaB signaling pathway. These results provide a mechanism by which particulate wear debris can antagonize the transcription of the procollagen alpha1[I] gene in osteoblasts, which may contribute to reduced bone formation and progressive periprosthetic osteolysis.

  15. Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation.

    PubMed

    Kanzawa, Noriyuki; Nishigaki, Kazuo; Hayashi, Takaya; Ishii, Yuichi; Furukawa, Souichi; Niiro, Ayako; Yasui, Fumihiko; Kohara, Michinori; Morita, Kouichi; Matsushima, Kouji; Le, Mai Quynh; Masuda, Takao; Kannagi, Mari

    2006-12-22

    Severe acute respiratory syndrome (SARS) is characterized by rapidly progressing respiratory failure resembling acute/adult respiratory distress syndrome (ARDS) associated with uncontrolled inflammatory responses. Here, we demonstrated that, among five accessory proteins of SARS coronavirus (SARS-CoV) tested, 3a/X1 and 7a/X4 were capable of activating nuclear factor kappa B (NF-kappaB) and c-Jun N-terminal kinase (JNK), and significantly enhanced interleukin 8 (IL-8) promoter activity. Furthermore, 3a/X1 and 7a/X4 expression in A549 cells enhanced production of inflammatory chemokines that were known to be up-regulated in SARS-CoV infection. Our results suggest potential involvement of 3a/X1 and 7a/X4 proteins in the pathological inflammatory responses in SARS.

  16. Hyperforin, the active component of St. John's wort, induces IL-8 expression in human intestinal epithelial cells via a MAPK-dependent, NF-kappaB-independent pathway.

    PubMed

    Zhou, Changcheng; Tabb, Michelle M; Sadatrafiei, Asal; Grün, Felix; Sun, Aixu; Blumberg, Bruce

    2004-11-01

    St. John's wort is widely used as an herbal antidepressant and is among the top-selling botanical products in the United States. Although St. John's wort has been reported to have minimal side effects compared with other antidepressants, here we show that hyperforin, the active component of St. John's wort, can stimulate interleukin-8 (IL-8) expression in human intestinal epithelia cells (IEC) and primary hepatocytes. Hyperforin is also able to induce expression of mRNA, encoding another major inflammatory mediator--intercellular adhesion molecule-1 (ICAM-1). IEC participate in the intestinal inflammatory process and serve as a first line of defense through bidirectional communication between host and infectious pathogens. Although hyperforin is a potent ligand for the steroid and xenobiotic receptor (SXR), we found that hyperforin induced IL-8 mRNA through an SXR-independent transcriptional activation pathway. IL-8 induction by hyperforin required the activation of AP-1 but not the NF-kappaB transcription factor, thereby distinguishing it from the NF-kappaB-dependent IL-8 induction mediated by tumor necrosis factor alpha (TNFalpha). Further study revealed that extracellular signal-regulated kinase 1 and 2 (ERK1/2) were required for the hyperforin-induced expression of IL-8. Our results suggest a previously unsuspected effect of St. John's wort in modulating the immune and inflammatory responses.

  17. Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer.

    PubMed

    Spirina, Ludmila V; Yunusova, Nataliya V; Kondakova, Irina V; Kolomiets, Larisa A; Koval, Valeriya D; Chernyshova, Alena L; Shpileva, Olga V

    2012-09-01

    Insulin-like growth factors (IGFs), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF-1), and nuclear factor kappa-B (NF-κB) are known to play an important role in endometrial cancer pathogenesis. However, the proteolytic regulation of these factors is still poorly understood. We studied the correlation between chymotrypsin-like activity of proteasomes and IGF-I, IGF-II, VEGF, HIF-1, and NF-κB levels in endometrial cancer tissues. It was shown that the total activity of proteasomes and the activity of the 20S and 26S proteasomes in malignant tumors were significantly higher than those observed in the normal endometrium. Negative relationships between the proteasome activity and IGF-I, HIF-1, and NF-κB p50 expressions were found. High 20S proteasome activity was associated with increase of HIF-1 level. Positive relationships between IGF-I expression and two classic forms of NF-κB p50 and p65 in endometrial cancer were revealed. The data obtained indicate the possible proteasomal regulation of growth and transcription factors. The major pool of IGF-I is located in the extracellular space, and it is likely that extracellular proteasomes also take part in the regulation of the IGF-I content. The present data show the evidence of proteasome regulation of growth and nuclear factors that can play an important role in cancer pathogenesis.

  18. A preferential p110alpha/gamma PI3K inhibitor attenuates experimental inflammation by suppressing the production of proinflammatory mediators in a NF-kappaB-dependent manner.

    PubMed

    Dagia, Nilesh M; Agarwal, Gautam; Kamath, Divya V; Chetrapal-Kunwar, Anshu; Gupte, Ravindra D; Jadhav, Mahesh G; Dadarkar, Shruta S; Trivedi, Jacqueline; Kulkarni-Almeida, Asha A; Kharas, Firuza; Fonseca, Lyle C; Kumar, Sanjay; Bhonde, Mandar R

    2010-04-01

    A promising therapeutic approach to diminish pathological inflammation is to inhibit the increased production and/or biological activity of proinflammatory cytokines (e.g., TNF-alpha, IL-6). The production of proinflammatory cytokines is controlled at the gene level by the activity of transcription factors, such as NF-kappaB. Phosphatidylinositol 3-kinase (PI3K), a lipid kinase, is known to induce the activation of NF-kappaB. Given this, we hypothesized that inhibitors of PI3K activation would demonstrate anti-inflammatory potential. Accordingly, we studied the effects of a preferential p110alpha/gamma PI3K inhibitor (compound 8C; PIK-75) in inflammation-based assays. Mechanism-based assays utilizing human cells revealed that PIK-75-mediated inhibition of PI3K activation is associated with dramatic suppression of downstream signaling events, including AKT phosphorylation, IKK activation, and NF-kappaB transcription. Cell-based assays revealed that PIK-75 potently and dose dependently inhibits in vitro and in vivo production of TNF-alpha and IL-6, diminishes the induced expression of human endothelial cell adhesion molecules (E-selectin, ICAM-1, and VCAM-1), and blocks human monocyte-endothelial cell adhesion. Most importantly, PIK-75, when administered orally in a therapeutic regimen, significantly suppresses the macroscopic and histological abnormalities associated with dextran sulfate sodium-induced murine colitis. The efficacy of PIK-75 in attenuating experimental inflammation is mediated, at least in part, due to the downregulation of pertinent inflammatory mediators in the colon. Collectively, these results provide first evidence that PIK-75 possesses anti-inflammatory potential. Given that PIK-75 is known to exhibit anti-cancer activity, the findings from this study thus reinforce the cross-therapeutic functionality of potential drugs.

  19. Salicylic acid and aspirin inhibit the activity of RSK2 kinase and repress RSK2-dependent transcription of cyclic AMP response element binding protein- and NF-kappa B-responsive genes.

    PubMed

    Stevenson, M A; Zhao, M J; Asea, A; Coleman, C N; Calderwood, S K

    1999-11-15

    Sodium salicylate (NaSal) and other nonsteroidal anti-inflammatory drugs (NSAIDs) coordinately inhibit the activity of NF-kappa B, activate heat shock transcription factor 1 and suppress cytokine gene expression in activated monocytes and macrophages. Because our preliminary studies indicated that these effects could be mimicked by inhibitors of signal transduction, we have studied the effects of NSAIDs on signaling molecules potentially downstream of LPS receptors in activated macrophages. Our findings indicate that ribosomal S6 kinase 2 (RSK2), a 90-kDa ribosomal S6 kinase with a critical role as an effector of the RAS-mitogen-activated protein kinase pathway and a regulator of immediate early gene transcription is a target for inhibition by the NSAIDs. NSAIDs inhibited the activity of purified RSK2 kinase in vitro and of RSK2 in mammalian cells and suppressed the phosphorylation of RSK2 substrates cAMP response element binding protein (CREB) and I-kappa B alpha in vivo. Additionally, NaSal inhibited the phosphorylation by RSK2 of CREB and I-kappa B alpha on residues crucial for their transcriptional activity in vivo and thus repressed CREB and NF-kappa B-dependent transcription. These experiments suggest that RSK2 is a target for NSAIDs in the inhibition of monocyte-specific gene expression and indicate the importance of RSK2 and related kinases in cell regulation, indicating a new area for anti-inflammatory drug discovery.

  20. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism

    PubMed Central

    2014-01-01

    Activation of nuclear factor-kappa B (NF- κB) as a mechanism of host defense against infection and stress is the central mediator of inflammatory responses. A normal (acute) inflammatory response is activated on urgent basis and is auto-regulated. Chronic inflammation that results due to failure in the regulatory mechanism, however, is largely considered as a critical determinant in the initiation and progression of various forms of cancer. Mechanistically, NF- κB favors this process by inducing various genes responsible for cell survival, proliferation, migration, invasion while at the same time antagonizing growth regulators including tumor suppressor p53. It has been shown by various independent investigations that a down regulation of NF- κB activity directly, or indirectly through the activation of the p53 pathway reduces tumor growth substantially. Therefore, there is a huge effort driven by many laboratories to understand the NF- κB signaling pathways to intervene the function of this crucial player in inflammation and tumorigenesis in order to find an effective inhibitor directly, or through the p53 tumor suppressor. We discuss here on the role of NF- κB in chronic inflammation and cancer, highlighting mutual antagonism between NF- κB and p53 pathways in the process. We also discuss prospective pharmacological modulators of these two pathways, including those that were already tested to affect this mutual antagonism. PMID:25152696

  1. Rare and Common Variants in CARD14, Encoding an Epidermal Regulator of NF-kappaB, in Psoriasis

    PubMed Central

    Jordan, Catherine T.; Cao, Li; Roberson, Elisha D.O.; Duan, Shenghui; Helms, Cynthia A.; Nair, Rajan P.; Duffin, Kristina Callis; Stuart, Philip E.; Goldgar, David; Hayashi, Genki; Olfson, Emily H.; Feng, Bing-Jian; Pullinger, Clive R.; Kane, John P.; Wise, Carol A.; Goldbach-Mansky, Raphaela; Lowes, Michelle A.; Peddle, Lynette; Chandran, Vinod; Liao, Wilson; Rahman, Proton; Krueger, Gerald G.; Gladman, Dafna; Elder, James T.; Menter, Alan; Bowcock, Anne M.

    2012-01-01

    Psoriasis is a common inflammatory disorder of the skin and other organs. We have determined that mutations in CARD14, encoding a nuclear factor of kappa light chain enhancer in B cells (NF-kB) activator within skin epidermis, account for PSORS2. Here, we describe fifteen additional rare missense variants in CARD14, their distribution in seven psoriasis cohorts (>6,000 cases and >4,000 controls), and their effects on NF-kB activation and the transcriptome of keratinocytes. There were more CARD14 rare variants in cases than in controls (burden test p value = 0.0015). Some variants were only seen in a single case, and these included putative pathogenic mutations (c.424G>A [p.Glu142Lys] and c.425A>G [p.Glu142Gly]) and the generalized-pustular-psoriasis mutation, c.413A>C (p.Glu138Ala); these three mutations lie within the coiled-coil domain of CARD14. The c.349G>A (p.Gly117Ser) familial-psoriasis mutation was present at a frequency of 0.0005 in cases of European ancestry. CARD14 variants led to a range of NF-kB activities; in particular, putative pathogenic variants led to levels >2.5× higher than did wild-type CARD14. Two variants (c.511C>A [p.His171Asn] and c.536G>A [p.Arg179His]) required stimulation with tumor necrosis factor alpha (TNF-α) to achieve significant increases in NF-kB levels. Transcriptome profiling of wild-type and variant CARD14 transfectants in keratinocytes differentiated probably pathogenic mutations from neutral variants such as polymorphisms. Over 20 CARD14 polymorphisms were also genotyped, and meta-analysis revealed an association between psoriasis and rs11652075 (c.2458C>T [p.Arg820Trp]; p value = 2.1 × 10−6). In the two largest psoriasis cohorts, evidence for association increased when rs11652075 was conditioned on HLA-Cw∗0602 (PSORS1). These studies contribute to our understanding of the genetic basis of psoriasis and illustrate the challenges faced in identifying pathogenic variants in common disease. PMID:22521419

  2. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT.

    PubMed

    Machuca, Catalina; Mendoza-Milla, Criselda; Córdova, Emilio; Mejía, Salvador; Covarrubias, Luis; Ventura, José; Zentella, Alejandro

    2006-02-21

    The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex) dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs) expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  3. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-{kappa}B and MAPK pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit; Pudhom, Khanitha

    Highlights: Black-Right-Pointing-Pointer A gedunin type limonoid from seeds of mangroves, 7-oxo-7-deacetoxygedunin, exhibits strong anti-osteoclastogenic activity. Black-Right-Pointing-Pointer Treatment with this limonoid results in significant decrease in expression of NFATc1 and osteoclast-related genes. Black-Right-Pointing-Pointer The mode of action of this limonoid is by inhibiting activation of the NF-{kappa}B and MAPK pathways which are activated by RANKL. -- Abstract: Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-{kappa}B (RANK) and its ligand, RANKL. Inmore » this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 {mu}M. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-{kappa}B p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.« less

  4. Role of adapter function in oncoprotein-mediated activation of NF-kappaB. Human T-cell leukemia virus type I Tax interacts directly with IkappaB kinase gamma.

    PubMed

    Jin, D Y; Giordano, V; Kibler, K V; Nakano, H; Jeang, K T

    1999-06-18

    Mechanisms by which the human T-cell leukemia virus type I Tax oncoprotein activates NF-kappaB remain incompletely understood. Although others have described an interaction between Tax and a holo-IkappaB kinase (IKK) complex, the exact details of protein-protein contact are not fully defined. Here we show that Tax binds to neither IKK-alpha nor IKK-beta but instead complexes directly with IKK-gamma, a newly characterized component of the IKK complex. This direct interaction with IKK-gamma correlates with Tax-induced IkappaB-alpha phosphorylation and NF-kappaB activation. Thus, our findings establish IKK-gamma as a key molecule for adapting an oncoprotein-specific signaling to IKK-alpha and IKK-beta.

  5. Medicinal mushroom Lingzhi or Reishi, Ganoderma lucidum (W.Curt.:Fr.) P. Karst., beta-glucan induces Toll-like receptors and fails to induce inflammatory cytokines in NF-kappaB inhibitor-treated macrophages.

    PubMed

    Batbayar, Sainkhuu; Kim, Mi Jeong; Kim, Ha Won

    2011-01-01

    Beta-Glucan of medicinal Lingzhi or Reishi mushroom, Ganoderma lucidum (BGG), possesses immunostimulatory and anti-tumor activities. Innate immune cells are activated by the binding of beta-glucan to the dectin-1 receptor. The present study investigated the immunostimulating activities of BGG, including binding to dectin-1, secretion of cytokines and reactive oxygen species, and induction of Toll-like receptors (TLRs) in RAW264.7 mouse macrophages. Reverse transcription-polymerase chain reaction and flow cytometry were used for the cytokine and TLR analyses. A mouse inflammation antibody array was used for protein-level cytokine analysis. BGG bound to dectin-1 and induced RAW264.7 cell secretion of several cytokines, including granulocyte colony-stimulating factor, interleukin (IL)-6, regulated upon activation normal T cell expressed and secreted (RANTES), tissue inhibitor of metalloproteinase-1, and tumor necrosis factor-alpha. The secretion of these cytokines was further increased by the addition of lipopolysaccharide (LPS). BGG also induced both nitric oxide and inducible nitric oxide synthase (iNOS). Treatment with an inhibitor of nuclear factor-kappa B (NF-kappaB) reduced the induction of IL-1, IL-6, and iNOS in a concentration-dependent manner. Expressions of TLR2, TLR4, and TLR6 were increased by BGG treatment, and addition of LPS induced further induction of TLR4 and TLR6. Our result indicates that BGG induces macrophage secretion of inflammatory cytokines, which can be potentiated by the presence of LPS, likely by binding to dectin-1 and TLR-2/6 receptors, which activate NF-kappaB and prompt the secretion of cytokines.

  6. A natural xanthone increases catalase activity but decreases NF-kappa B and lipid peroxidation in U-937 and HepG2 cell lines.

    PubMed

    Sahoo, Binay K; Zaidi, Adeel H; Gupta, Pankaj; Mokhamatam, Raveendra B; Raviprakash, Nune; Mahali, Sidhartha K; Manna, Sunil K

    2015-10-05

    Mangiferin, a C-glycosyl xanthone, has shown anti-inflammatory, antioxidant, and anti-tumorigenic activities. In the present study, we investigated the molecular mechanism for the antioxidant property of mangiferin. Considering the role of nuclear transcription factor kappa B (NF-κB) in inflammation and tumorigenesis, we hypothesized that modulating its activity will be a viable therapeutic target in regulating the redox-sensitive ailments. Our results show that mangiferin blocks several inducers, such as tumor necrosis factor (TNF), lypopolysaccharide (LPS), phorbol-12-myristate-13-acetate (PMA) or hydrogen peroxide (H2O2) mediated NF-κB activation via inhibition of reactive oxygen species generation. In silico docking studies predicted strong binding energy of mangiferin to the active site of catalase (-9.13 kcal/mol), but not with other oxidases such as myeloperoxidase, glutathione peroxidase, or inducible nitric oxide synthase. Mangiferin increased activity of catalase by 44%, but had no effect on myeloperoxidase activity in vitro. Fluorescence spectroscopy further revealed the binding of mangiferin to catalase at the single site with binding constant and binding affinity of 3.1×10(-7) M(-1) and 1.046 respectively. Mangiferin also inhibits TNF-induced lipid peroxidation and thereby protects apoptosis. Hence, mangiferin with its ability to inhibit NF-κB and increase the catalase activity may prove to be a potent therapeutic. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. GS143, an I{kappa}B ubiquitination inhibitor, inhibits allergic airway inflammation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie

    2008-09-26

    Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-{kappa}B (NF-{kappa}B) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of I{kappa}B ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-{kappa}B activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil andmore » lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that I{kappa}B ubiquitination inhibitor may have therapeutic potential against asthma.« less

  8. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotar

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa Bmore » kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. - Highlights: • Mangiferin prolongs survival in mice by inhibiting metastasis and tumor growth • Mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation • Mangiferin regulates the expression of MMPs, VLAs, and apoptosis regulatory proteins.« less

  9. Molecular Imaging of Smoke-Induced Changes in Nuclear Factor-Kappa B Expression in Murine Tissues Including the Lung.

    PubMed

    Syrkina, Olga; Hales, Charles H; Bonab, Ali A; Hamrahi, Victoria; Paul, Kasie; Jung, Walter J; Tompkins, Ronald G; Fischman, Alan J; Carter, Edward A

    Many inflammatory responses are mediated by activation of the transcription factor, nuclear factor-kappa B (NF-κB), and a wide variety of human diseases involve abnormal regulation of its expression. In this investigation, we evaluated the effect of smoke inhalation injury on NF-κB expression in lung using two strains of NF-κB reporter mice. Groups of reporter mice with viral thymidine kinase (TK) or "fire fly" luciferase (Luc) genes under control by the NF-κB promoter (TK/NF-κB mice and Luc/NF-κB mice) were subjected to nonlethal smoke inhalation injury. Sham-treated animals served as controls. Twenty-four hours (each animal was injected intravenously with either 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (FHBG) (~ 1.0 mCi) or luciferin (1.0 mg). One hour later, the TK/NF-κB mice were studied by micro-positron emission tomography (µ-PET) imaging using a Concord P4 µ-PET camera, and the Luc/NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. The µ-PET data demonstrated that smoke injury produced massive increases in NF-κB expression (FHBG-standardized uptake value: 3.1 vs 0.0) 24 hours after smoke inhalation, which was reduced 48 hours after smoke inhalation, but still significantly different than the control. Qualitative analysis of the bioluminescence data revealed a remarkably similar effect of burn NF-κB luciferase expression in vivo. Biodistribution studies of FHBG uptake and luciferase activity in lung tissue demonstrated a similar increase 24 hours after injury, which was reduced 48 hours later, but still significantly higher than the sham. The present data with these models providing longitudinal imaging data on the same mouse may prove useful in the examination of the factors producing lung injury by smoke inhalation, as well as the treatment(s) for the damage produced with and without burn injury.

  10. Constitutive Activation of NF-kappaB in Prostate Carcinoma Cells Through a Positive Feedback Loop: Implication of Inducible IKK-Related Kinase (IKKi)

    DTIC Science & Technology

    2004-08-01

    development in different tissues is strongly considered ( Greten and Karen, 2004). To assess the effect of w.t. IKKi and kinase inactive IKKi mutant...11: 1357-1362, 1999. 3. Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett. 206(2

  11. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549).

    PubMed

    Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri

    2017-10-01

    Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal

  12. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes

    PubMed Central

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Background: Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. Objective: In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Materials and Methods: Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11–7082. Results: Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11–7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Conclusions: Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. SUMMARY Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits

  13. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes.

    PubMed

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11-7082. Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11-7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits production of cartilage degrading PGE2 via inhibition of COX-2 expression

  14. Rituximab-induced inhibition of YY1 and Bcl-xL expression in Ramos non-Hodgkin's lymphoma cell line via inhibition of NF-kappa B activity: role of YY1 and Bcl-xL in Fas resistance and chemoresistance, respectively.

    PubMed

    Vega, Mario I; Jazirehi, Ali R; Huerta-Yepez, Sara; Bonavida, Benjamin

    2005-08-15

    Rituximab treatment of B non-Hodgkin's lymphoma (NHL) cell lines inhibits the constitutive NF-kappaB activity and results in the sensitization of tumor cells to both chemotherapy and Fas-induced apoptosis. Cells expressing dominant active IkappaB or treated with NF-kappaB-specific inhibitors were sensitive to both drugs and Fas agonist mAb (CH-11)-induced apoptosis. Down-regulation of Bcl-xL expression via inhibition of NF-kappaB activity correlated with chemosensitivity. The direct role of Bcl-xL in chemoresistance was demonstrated by the use of Bcl-xL-overexpressing Ramos cells, Ramos hemagglutinin (HA)-Bcl-x, which were not sensitized by rituximab to drug-induced apoptosis. However, inhibition of Bcl-xL in Ramos HA-Bcl-x resulted in sensitization to drug-induced apoptosis. The role of Bcl-xL expression in the regulation of Fas resistance was not apparent; Ramos HA-Bcl-x cells were as sensitive as the wild type to CH-11-induced apoptosis. Several lines of evidence support the direct role of the transcription repressor yin-yang 1 (YY1) in the regulation of resistance to CH-11-induced apoptosis. Inhibition of YY1 activity by either rituximab or the NO donor DETANONOate or after transfection with YY1 small interfering RNA resulted in up-regulation of Fas expression and sensitization to CH-11-induced apoptosis. These findings suggest two mechanisms underlying the chemosensitization and immunosensitization of B-NHL cells by rituximab via inhibition of NF-kappaB. The regulation of chemoresistance by NF-kappaB is mediated via Bcl-xL expression, whereas the regulation of Fas resistance by NF-kappaB is mediated via YY1 expression and activity. The potential clinical significance of these findings is discussed.

  15. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymesmore » (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.« less

  16. Anti-inflammatory activity of methylene chloride fraction from Glehnia littoralis extract via suppression of NF-kappa B and mitogen-activated protein kinase activity.

    PubMed

    Yoon, Taesook; Cheon, Myeong Sook; Lee, A Yeong; Lee, Do Yeon; Moon, Byeong Cheol; Chun, Jin Mi; Choo, Byung Kil; Kim, Ho Kyoung

    2010-01-01

    Glehnia littoralis (Umbelliferae) has been used traditionally in Korean, Japanese, and Chinese medicine for the treatment of immune-related diseases; however, its anti-inflammatory activity and underlying mechanism remain to be defined. We investigated the anti-inflammatory effect and inhibitory mechanism on inflammation by the methylene chloride fraction from Glehnia littoralis extract (MCF-GLE), which was more effective than Glehnia littoralis extract (GLE). MCF-GLE inhibited 12-O-Tetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation in an inflammatory edema mouse model. Also, MCF-GLE strongly inhibited the releases of nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) and significantly suppressed the mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-stimulated RAW 264.7 macrophage cells in a dose-dependent manner. Furthermore, MCF-GLE suppressed NF-kappaB activation and IkappaB-alpha degradation. MCF-GLE also attenuated the activation of ERK and JNK in a dose-dependent manner. These results indicate that MCF-GLE has an inhibitory effect on the in vivo and in vitro inflammatory reaction and is a possible therapeutic agent. Our results suggest that the anti-inflammatory properties of MCF-GLE may result from the inhibition of pro-inflammatory mediators, such as NO, PGE(2), TNF-alpha, and IL-1beta via suppression of NF-kappaB- and mitogen-activated protein kinases-dependent pathways.

  17. The preservative polyquaternium-1 increases cytoxicity and NF-kappaB linked inflammation in human corneal epithelial cells

    PubMed Central

    Paimela, Tuomas; Ryhänen, Tuomas; Kauppinen, Anu; Marttila, Liisa; Salminen, Antero

    2012-01-01

    Purpose In numerous clinical and experimental studies, preservatives present in eye drops have had detrimental effects on ocular epithelial cells. The aim of this study was to compare the cytotoxic and inflammatory effects of the preservative polyquaternium-1 (PQ-1) containing Travatan (travoprost 0.004%) and Systane Ultra eye drops with benzalkonium chloride (BAK) alone or BAK-preserved Xalatan (0.005% latanoprost) eye drops in HCE-2 human corneal epithelial cell culture. Methods HCE-2 cells were exposed to the commercial eye drops Travatan, Systane Ultra, Xalatan, and the preservative BAK. Cell viability was determined using colorimetric MTT (3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by release of lactate dehydrogenase (LDH). Induction of apoptosis was measured with a using a colorimetric caspase-3 assay kit. DNA binding of the nuclear factor kappa B (NF-κB) transcription factor, and productions of the proinflammatory cytokines, interleukins IL-6 and IL-8, were determined using an enzyme-linked immunosorbent assay (ELISA) method. Results Cell viability, as measured by the MTT assay, declined by up to 50% after exposure to Travatan or Systane Ultra solutions which contain 0.001% PQ-1. BAK at 0.02% rather than at 0.001% concentration evoked total cell death signs on HCE-2 cells. In addition, cell membrane permeability, as measured by LDH release, was elevated by sixfold with Travatan and by a maximum threefold with Systane Ultra. Interestingly, Travatan and Systane Ultra activated NF-κB and elevated the secretion of inflammation markers IL-6 by 3 to eightfold and IL-8 by 1.5 to 3.5 fold, respectively, as analyzed with ELISA. Conclusions Eye drops containing PQ-1 evoke cytotoxicity and enhance the NF-κB driven inflammation reaction in cultured HCE-2 cells. Our results indicate that these harmful effects of ocular solutions preserved with PQ-1 should be further evaluated in vitro and in vivo. PMID:22605930

  18. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotaro; Ichimura, Eri; Enomoto, Aya; Suzuki, Yuri; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Matsuda, Hideaki; Satou, Takao; Nishida, Shozo

    2016-09-01

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Antimicrobial activity-specific to Gram-negative bacteria and immune modulation-mediated NF-kappaB and Sp1 of a medaka beta-defensin.

    PubMed

    Zhao, Jiu-Gang; Zhou, Li; Jin, Jun-Yan; Zhao, Zhe; Lan, Jing; Zhang, Yi-Bin; Zhang, Qi-Ya; Gui, Jian-Fang

    2009-04-01

    Defensins are a group of cationic antimicrobial peptides which play an important role in the innate immune system by exerting their antimicrobial activity against pathogens. In this study, we cloned a novel beta-defensin cDNA from medaka (Oryzias latipes) by rapid amplification of cDNA ends (RACE) technique. The full-length cDNA consists of 480 bp, and the open reading frame (ORF) of 189 bp encodes a polypeptide of 63 amino acids (aa) with a predicted molecular weight of 7.44 kDa. Its genomic organization was analyzed, and Southern blot detection confirmed that only one copy of beta-defensin exists in the medaka HNI strain. RT-PCR, Western blot and immunohistochemistry detections showed that the beta-defensin transcript and protein could be detected in eyes, liver, kidney, blood, spleen and gill, and obviously prevalent expression was found in eyes. Antimicrobial activity of the medaka beta-defensin was evaluated, and the antibacterial activity-specific to Gram-negative bacteria was revealed. Furthermore, the lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, was demonstrated to be able to induce about 13-fold up-regulation of the beta-defensin within first 12h. In addition, promoter and promoter mutagenesis analysis were performed in the medaka beta-defensin. A proximal 100 base pair (bp) sequence (+26 to -73) and the next 1700 bp sequence (-73 to -1755) were demonstrated to be responsible for the basal promoter activity and for the transcription regulation. Three nuclear factor kappa B (NF-kappaB) cis-elements and a Sp1 cis-element were revealed by mutagenesis analysis to exist in the 5' flanking sequence, and they were confirmed to be responsible for the up-regulation of medaka beta-defensin stimulated by LPS. And, the Sp1 cis-element was further revealed to be related to the basal promoter activity, and transcriptional factor II D (TFIID) was found to be in charge of the gene transcription initiation. All the obtained

  20. Extracts of Bauhinia championii (Benth.) Benth. inhibit NF->B-signaling in a rat model of collagen-induced arthritis and primary synovial cells.

    PubMed

    Xu, Wei; Huang, Mingqing; Zhang, Yuqin; Li, Huang; Zheng, Haiyin; Yu, Lishuang; Chu, Kedan

    2016-06-05

    Bauhinia championii (Benth.) Benth. is used in Chinese traditional medicine to treat arthritis, especially has been used a long time ago on rheumatoid arthritis (RA) in She ethnic minority group. To investigate the anti-RA effect of Bauhinia championii (Benth.) Benth ethyl acetate extract (BCBEE) and the molecular bases of it. BCBEE was studied on a rat model of RA induced by Ⅱcollagen in vivo, as well as on primary synovial cells in vitro. After BCBEE treatment, in vivo, it was showed that paw and joint edema was inhibited, pathological joint changes was ameliorated and the levels of interleukin (IL)-1β and tumor necrosis factor-(TNF-α) was decreased significantly. The protein and mRNA expressions of nuclear factor->B (NF-κB)(p65), IκB, p-IκB and IκB kinase beta (IκKβ) were also down-regulated. Moreover, the in vitro study revealed that BCBEE treatment inhibited primary synovial cells proliferation, and promoted down-regulation of NF-κB(p65), IκB, p-IκB and IκKβ. Taken together, the present study demonstrates that BCBEE produces a protection in a rat model of RA induced by Ⅱcollagen via inhibiting paw and joint edema, ameliorating pathological joint changes and regulating the levels of cytokines and its action mechanism maybe is via down-regulating NF-κB(p65), IκB, p-IκB and IκKβ expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. The upregulation of receptor activator NF-kappaB ligand expression by interleukin-1alpha and Porphyromonas endodontalis in human osteoblastic cells.

    PubMed

    Chen, S-C; Huang, F-M; Lee, S-S; Li, M-Z; Chang, Y-C

    2009-04-01

    To investigate the receptor activator of nuclear factor-kappa B (NF-kappaB) ligand (RANKL) in osteoblastic cells stimulated with inflammatory mediators. The expression of RANKL in human osteoblastic cell line U2OS stimulated by pro-inflammatory cytokine interleukin (IL)-1alpha and black-pigmented bacteria Porphyromonas endodontalis was investigated by Western blot and enzyme-linked immunosorbent assay (ELISA). The significance of the results obtained from control and treated groups was statistically analysed by the paired Student's t-test. IL-1alpha was found to upregulate RANKL production in U2OS cells (P < 0.05). Investigations of the time dependence of RANKL expression in IL-1alpha-treated cells revealed a rapid accumulation of RANKL protein after 1 h of exposure; it remained elevated throughout the 24-h incubation period shown by Western blot and ELISA. In addition, P. endodontalis also increased RANKL expression in U2OS cells after 4-h incubation period demonstrated by Western blot and ELISA (P < 0.05). IL-1alpha and P. endodontalis may be involved in developing apical periodontitis through the stimulation of RANKL production.

  2. 18β-Glycyrrhetinic acid suppresses TNF-α induced matrix metalloproteinase-9 and vascular endothelial growth factor by suppressing the Akt-dependent NF-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Dilshara, Matharage Gayani; Park, Sang Rul; Choi, Yung Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kim, Gi-Young

    2014-08-01

    Little is known about the molecular mechanism through which 18β-glycyrrhetinic acid (GA) inhibits metastasis and invasion of cancer cells. Therefore, this study aimed to investigate the effects of GA on the expression of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) in various types of cancer cells. We found that treatment with GA reduces tumor necrosis factor-α (TNF-α)-induced Matrigel invasion with few cytotoxic effects. Our findings also showed that MMP-9 and VEGF expression increases in response to TNF-α; however, GA reverses their expression. In addition, GA inhibited inhibitory factor kappa B degradation, sustained nuclear factor-kappa B (NF-κB) subunits, p65 and p50, in the cytosol compartments, and consequently suppressed the TNF-α-induced DNA-binding activity and luciferase activity of NF-κB. Specific NF-κB inhibitors, pyrrolidine dithiocarbamate, MG132, and PS-1145, also attenuated TNF-α-mediated MMP-9 and VEGF expression as well as activity by suppressing their regulatory genes. Furthermore, phosphorylation of TNF-α-induced phosphatidyl-inositol 3 kinase (PI3K)/Akt was significantly downregulated in the presence of GA accompanying with the inhibition of NF-κB activity, and as presumed, the specific PI3K/Akt inhibitor LY294002 significantly decreased MMP-9 and VEGF expression as well as activity. These results suggest that GA operates as a potential anti-invasive agent by downregulating MMP-9 and VEGF via inhibition of PI3K/Akt-dependent NF-κB activity. Taken together, GA might be an effective anti-invasive agent by suppressing PI3K/Akt-mediated NF-κB activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Role of nuclear factor-kappa B activation in the adverse effects induced by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture.

    PubMed

    Dagher, Zeina; Garçon, Guillaume; Billet, Sylvain; Verdin, Anthony; Ledoux, Frédéric; Courcot, Dominique; Aboukais, Antoine; Shirali, Pirouz

    2007-01-01

    To contribute to improving knowledge on the adverse health effects induced by particulate matter (PM) air pollution, an extensive investigation was undertaken of the underlying mechanisms of action activated by PM(2.5) air pollution collected in Dunkerque, a strongly industrialized French seaside city. Their chemical and physical characteristics have been previously determined, and earlier in vitro short-term studies have shown them to cause dose-dependent and time-dependent oxidative damage, gene expression and protein secretion of inflammatory mediators, and apoptotic events in human lung epithelial cells (L132) in culture. Hence, this work studied the activation of nuclear factor-kappa B (NF-kappaB)/inhibitory kappa B (IkappaB) by Dunkerque city PM(2.5) in these target cells, by determination of phosphorylated p65 and phosphorylated IkappaBalpha protein levels in cytoplasmic extracts, and p65 and p50 DNA binding in nuclear extracts. In PM-exposed L132 cells, there were concentration- and/or time-dependent increases in nuclear p65 and cytoplasmic IkB-alpha phosphorylation, and nuclear p65 and p50 DNA binding. Taken together, these results showed that Dunkerque city PM(2.5) were involved in the activation of the NF-kappaB/IkappaB complex, notably through the occurrence of oxidative stress conditions, and, therefore, in the gene expression and protein secretion of inflammatory mediators in target L132 cells. Hence, these findings suggested that the activation of the NF-kappaB/IkappaB complex preceded cytotoxicity in Dunkerque city PM-exposed L132 cells. (c) 2007 John Wiley & Sons, Ltd.

  4. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes

    PubMed Central

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P.

    2016-01-01

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes. PMID:27574114

  5. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes.

    PubMed

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P

    2016-08-30

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes.

  6. Paeonol attenuates TNBS-induced colitis by inhibiting NF-{kappa}B and STAT1 transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, Kazuhiro; Ando, Takafumi; Maeda, Osamu

    2006-11-15

    Paeonol, a major phenolic component of Moutan Cortex, is known to have anti-inflammatory activity. However, the effect of Paeonol on colitis has not been evaluated and the molecular mechanism of its anti-inflammatory action remains unknown. The aim of this study was to determine if Paeonol enema attenuates trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. We also investigated the effects of Paeonol in colon cancer-derived CW-2 cells and T cell leukemia-derived Jurkat cells treated with tumor necrosis factor {alpha} (TNF{alpha}) and/or interferon {gamma} (IFN{gamma}), which play critical roles in TNBS-induced colitis. Paeonol enema attenuated TNBS-induced colitis judging by body weigh reduction,more » colon length and histological score. Myeloperoxidase activity and inducible nitric oxide synthase (iNOS) production in the colon were also reduced with Paeonol enema. In CW-2 cells, Paeonol inhibited iNOS protein and mRNA expression induced by costimulation of TNF{alpha} and IFN{gamma}. Furthermore, Paeonol reduced TNF{alpha}-induced NF-{kappa}B transactivation and IFN{gamma}-induced STAT1 transactivation in CW-2 cells and also in Jurkat cells. These findings suggest that Paeonol enema may be useful for the treatment of colitis.« less

  7. An aqueous stem bark extract of Mangifera indica (Vimang) inhibits T cell proliferation and TNF-induced activation of nuclear transcription factor NF-kappaB.

    PubMed

    Garrido, Gabino; Blanco-Molina, Magdalena; Sancho, Rocío; Macho, Antonio; Delgado, René; Muñoz, Eduardo

    2005-03-01

    A commercial aqueous stem bark extract of Mangifera indica L. (Vimang) has been reported to have antiinflammatory, immunomodulatory and antioxidant activities. The molecular basis for these diverse properties is still unknown. This study shows that a stem bark extract of M. indica inhibits early and late events in T cell activation, including CD25 cell surface expression, progression to the S-phase of the cell cycle and proliferation in response to T cell receptor (TCR) stimulation. Moreover, the extract prevented TNFalpha-induced IkappaBalpha degradation and the binding of NF-kappaB to the DNA. This study may help to explain at the molecular level some of the biological activities attributed to the aqueous stem bark extract of M. indica (Vimang).

  8. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways.

    PubMed

    Agbottah, Emmanuel; Yeh, Wen-I; Berro, Reem; Klase, Zachary; Pedati, Caitlin; Kehn-Hall, Kyleen; Wu, Weilin; Kashanchi, Fatah

    2008-06-10

    Human T-cell leukemia virus type-1 (HTLV-1) induces adult T-cell leukemia/lymphoma (ATL/L), a fatal lymphoproliferative disorder, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic progressive disease of the central nervous system after a long period of latent infection. Although the mechanism of transformation and leukemogenesis is not fully elucidated, there is evidence to suggest that the viral oncoprotein Tax plays a crucial role in these processes through the regulation of several pathways including NF-kappaB and the cell cycle pathways. The observation that NF-kappaB, which is strongly induced by Tax, is indispensable for the maintenance of the malignant phenotype of HTLV-1 by regulating the expression of various genes involved in cell cycle regulation and inhibition of apoptosis provides a possible molecular target for these infected cells. To develop potential new therapeutic strategies for HTLV-1 infected cells, in this present study, we initially screened a battery of NF-kappaB and CDK inhibitors (total of 35 compounds) to examine their effects on the growth and survival of infected T-cell lines. Two drugs namely BMS-345541 and Purvalanol A exhibited higher levels of growth inhibition and apoptosis in infected cell as compared to uninfected cells. BMS-345541 inhibited IKKbeta kinase activity from HTLV-1 infected cells with an IC50 (the 50% of inhibitory concentration) value of 50 nM compared to 500 nM from control cells as measured by in vitro kinase assays. The effects of Purvalanol A were associated with suppression of CDK2/cyclin E complex activity as previously shown by us. Combination of both BMS-345541 and Purvalanol A showed a reduced level of HTLV-1 p19 Gag production in cell culture. The apparent apoptosis in these infected cells were associated with increased caspase-3 activity and PARP cleavage. The potent and selective apoptotic effects of these drugs suggest that both BMS-345541 and Purvalanol A, which target

  9. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} down-regulates CXCR4 on carcinoma cells through PPAR{gamma}- and NF{kappa}B-mediated pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, Cynthia Lee; Lowthers, Erica Lauren; Blay, Jonathan

    2007-10-01

    The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE{sub 2}, PGA{sub 2}, PGD{sub 2}, PGJ{sub 2} and 15dPGJ{sub 2} each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD{sub 2} and its metabolites PGJ{sub 2} and 15dPGJ{sub 2}. Down-regulation was most rapid with the end-product 15dPGJ{sub 2} and was accompanied bymore » a marked reduction in CXCR4 mRNA. 15dPGJ{sub 2} is known to be a ligand for the nuclear receptor PPAR{gamma}. Down-regulation of CXCR4 was also observed with the PPAR{gamma} agonist rosiglitazone, while 15dPGJ{sub 2}-induced CXCR4 down-regulation was substantially diminished by the PPAR{gamma} antagonists GW9662 and T0070907. These data support the involvement of PPAR{gamma}. However, the 15dPGJ{sub 2} analogue CAY10410, which can act on PPAR{gamma} but which lacks the intrinsic cyclopentenone structure found in 15dPGJ{sub 2}, down-regulated CXCR4 substantially less potently than 15dPGJ{sub 2}. The cyclopentenone grouping is known to inhibit the activity of NF{kappa}B. Consistent with an additional role for NF{kappa}B, we found that the cyclopentenone prostaglandin PGA{sub 2} and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NF{kappa}B p50 and that 15dPGJ{sub 2} interfered with this p50 nuclear localization. These data suggest that 15dPGJ{sub 2} can down-regulate CXCR4 on cancer cells through both PPAR{gamma} and NF{kappa}B. 15dPGJ{sub 2}, present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.« less

  10. [Relationship between the expression levels of PAPP-A metalloproteinase and growth and transcriptional factors in endometrial cancer].

    PubMed

    Iunusova, N V; Spirina, L V; Kondakova, L A; Kolomiets, A L; Chernyshova, A L; Koval', V D; Nedosekov, V V; Savenkova, O V

    2013-01-01

    We have examined for the first time the relationship between the expression of PAPP-A metalloproteinase and insulin-like growth factors (IGF-I, IGF-II, VEGF) and transcription factors (NF-kappaB, HIF-1) playing an important role in pathogenesis of cancer. We also demonstrated a positive association between the level of PAPP-A metalloproteinase and the level of growth (VEGF and IGF-I) and transcription factors (NF-kappaB p50, NF-kappaB p65, HIF-1alpha). The current findings suggest an important role of PAPP-A in regulation of bioavailability of IGF-I, VEGF, activated forms of NF-kappaB, and alpha-subunits of HIF-1 in endometrial tumors.

  11. Prevention of ocular inflammation in endotoxin-induced uveitis with resveratrol by inhibiting oxidative damage and nuclear factor-kappaB activation.

    PubMed

    Kubota, Shunsuke; Kurihara, Toshihide; Mochimaru, Hiroshi; Satofuka, Shingo; Noda, Kousuke; Ozawa, Yoko; Oike, Yuichi; Ishida, Susumu; Tsubota, Kazuo

    2009-07-01

    Resveratrol is known as one of the antioxidant polyphenols contained in red wine and grape skin. The purpose of the present study was to investigate the role of resveratrol in ocular inflammation in endotoxin-induced uveitis (EIU). EIU was induced in male C57/B6 mice at the age of 6 weeks by a single intraperitoneal injection of lipopolysaccharide (LPS). Animals had received oral supplementation of resveratrol at the doses of 5, 50, 100, or 200 mg/kg for 5 days until LPS injection. Twenty-four hours after LPS administration, leukocyte adhesion to the retinal vasculature was examined with a concanavalin A lectin perfusion-labeling technique. Retinal and retinal pigment epithelium (RPE)-choroidal levels of intercellular adhesion molecule (ICAM)-1, monocyte chemotactic protein (MCP)-1, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nuclear translocation of nuclear factor (NF)-kappaB p65 were evaluated by enzyme-linked immunosorbent assay. Retinal and RPE-choroidal activities of silent information regulator two ortholog (SIRT) 1 were measured by deacetylase fluorometric assay. Resveratrol pretreatment led to significant and dose-dependent suppression of leukocyte adhesion to retinal vessels of EIU mice compared with vehicle application. Protein levels of MCP-1 and ICAM-1 in the retina and the RPE-choroid of EIU animals were significantly reduced by resveratrol administration. Importantly, resveratrol-treated animals showed significant decline of retinal 8-OHdG generation and nuclear NF-kappaB P65 translocation, both of which were upregulated after EIU induction. RPE-choroidal SIRT1 activity, reduced in EIU animals, was significantly augmented by treatment with resveratrol. Resveratrol prevented EIU-associated cellular and molecular inflammatory responses by inhibiting oxidative damage and redox-sensitive NF-kappaB activation.

  12. Polyunsaturated fatty acid induces cardioprotection against ischemia-reperfusion through the inhibition of NF-kappaB and induction of Nrf2

    PubMed Central

    Farías, Jorge G; Carrasco-Pozo, Catalina; Carrasco Loza, Rodrigo; Sepúlveda, Néstor; Álvarez, Pedro; Quezada, Mauricio; Quiñones, John; Molina, Víctor

    2016-01-01

    The mechanistic evidence to support the cardioprotective effects of polyunsaturated fatty acids (PUFA) are controversial. The aim was to test cardioprotective mechanisms induced by PUFA supplementation against cardiac ischemia-reperfusion (IR) injury. Ten-week-old male Wistar rats (225 ± 14 g, n = 14) were divided in two groups: rats without supplementation (n = 7) and a PUFA group, supplemented by PUFA (0.6 g/kg/day; DHA:EPA = 3:1) for eight weeks (n = 7). Hearts were perfused with Krebs–Henseleit buffer for 20 min (control conditions); others were subjected to control conditions, 30 min of global ischemia and 120 min of reperfusion (IR group). Infarct size (IS) and left ventricular developed pressure (LVDP) were measured at 120 min of reperfusion. Oxidative stress biomarkers (TBARS, total carbonyls), antioxidant status (CAT, catalase; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase activity and GSH/GSSG ratio), myeloperoxidase activity, ATP levels and nuclear transcription factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappaB (NF-κB) were determined in both experimental conditions. At the end of reperfusion, hearts supplemented with PUFA showed lower IS and a higher LVDP compared with the nonsupplemented rats. Hearts in the group supplemented with PUFA showed lower levels of oxidative stress markers and higher antioxidant activity, decreased MPO activity and NF-κB and Nrf2 activation compared with the nonsupplemented group. Cardioprotective effects of PUFA are exerted through induction of anti-inflammatory and antioxidant mechanism at tissue level. PMID:27190274

  13. Polyunsaturated fatty acid induces cardioprotection against ischemia-reperfusion through the inhibition of NF-kappaB and induction of Nrf2.

    PubMed

    Farías, Jorge G; Carrasco-Pozo, Catalina; Carrasco Loza, Rodrigo; Sepúlveda, Néstor; Álvarez, Pedro; Quezada, Mauricio; Quiñones, John; Molina, Víctor; Castillo, Rodrigo L

    2017-05-01

    The mechanistic evidence to support the cardioprotective effects of polyunsaturated fatty acids (PUFA) are controversial. The aim was to test cardioprotective mechanisms induced by PUFA supplementation against cardiac ischemia-reperfusion (IR) injury. Ten-week-old male Wistar rats (225 ± 14 g, n = 14) were divided in two groups: rats without supplementation ( n = 7) and a PUFA group, supplemented by PUFA (0.6 g/kg/day; DHA:EPA = 3:1) for eight weeks ( n = 7). Hearts were perfused with Krebs-Henseleit buffer for 20 min (control conditions); others were subjected to control conditions, 30 min of global ischemia and 120 min of reperfusion (IR group). Infarct size (IS) and left ventricular developed pressure (LVDP) were measured at 120 min of reperfusion. Oxidative stress biomarkers (TBARS, total carbonyls), antioxidant status (CAT, catalase; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase activity and GSH/GSSG ratio), myeloperoxidase activity, ATP levels and nuclear transcription factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappaB (NF-κB) were determined in both experimental conditions. At the end of reperfusion, hearts supplemented with PUFA showed lower IS and a higher LVDP compared with the nonsupplemented rats. Hearts in the group supplemented with PUFA showed lower levels of oxidative stress markers and higher antioxidant activity, decreased MPO activity and NF-κB and Nrf2 activation compared with the nonsupplemented group. Cardioprotective effects of PUFA are exerted through induction of anti-inflammatory and antioxidant mechanism at tissue level.

  14. Pharmacological Inhibition of Macrophage Toll-like Receptor 4/Nuclear Factor-kappa B Alleviates Rhabdomyolysis-induced Acute Kidney Injury.

    PubMed

    Huang, Rong-Shuang; Zhou, Jiao-Jiao; Feng, Yu-Ying; Shi, Min; Guo, Fan; Gou, Shen-Ju; Salerno, Stephen; Ma, Liang; Fu, Ping

    2017-09-20

    Acute kidney injury (AKI) is the most common and life-threatening systemic complication of rhabdomyolysis. Inflammation plays an important role in the development of rhabdomyolysis-induced AKI. This study aimed to investigate the kidney model of AKI caused by rhabdomyolysis to verify the role of macrophage Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. C57BL/6 mice were injected with a 50% glycerin solution at bilateral back limbs to induce rhabdomyolysis, and CLI-095 or pyrrolidine dithiocarbamate (PDTC) was intraperitoneally injected at 0.5 h before molding. Serum creatinine levels, creatine kinase, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and hematoxylin and eosin stainings of kidney tissues were tested. The infiltration of macrophage, mRNA levels, and protein expression of TLR4 and NF-κB were investigated by immunofluorescence double-staining techniques, reverse transcriptase-quantitative polymerase chain reaction, and Western blotting, respectively. In vitro, macrophage RAW264.7 was stimulated by ferrous myoglobin; the cytokines, TLR4 and NF-κB expressions were also detected. In an in vivo study, using CLI-095 or PDTC to block TLR4/NF-κB, functional and histologic results showed that the inhibition of TLR4 or NF-κB alleviated glycerol-induced renal damages (P < 0.01). CLI-095 or PDTC administration suppressed proinflammatory cytokine (TNF-α, IL-6, and IL-1β) production and macrophage infiltration into the kidney (P < 0.01). Moreover, in an in vitro study, CLI-095 or PDTC suppressed myoglobin-induced expression of TLR4, NF-κB, and proinflammatory cytokine levels in macrophage RAW264.7 cells (P < 0.01). The pharmacological inhibition of TLR4/NF-κB exhibited protective effects on rhabdomyolysis-induced AKI by the regulation of proinflammatory cytokine production and macrophage infiltration.

  15. Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa β and toll-like receptor pathways.

    PubMed

    Liu, Saixi; Shi, Wei; Guo, Cheng; Zhao, Xinguo; Han, Yu; Peng, Chao; Chai, Xueliang; Liu, Guangxu

    2016-07-01

    The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa β signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa β signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Yamagishi, Misa; Iida, Megumi; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Satou, Takao; Nishida, Shozo

    2016-05-05

    Mangiferin is a naturally occurring glucosyl xanthone, which induces apoptosis in various cancer cells. However, the molecular mechanism underlying mangiferin-induced apoptosis has not been clarified thus far. Therefore, we examined the molecular mechanism underlying mangiferin-induced apoptosis in multiple myeloma (MM) cell lines. We found that mangiferin decreased the viability of MM cell lines in a concentration-dependent manner. We also observed an increased number of apoptotic cells, caspase-3 activation, and a decrease in the mitochondrial membrane potential. In addition, mangiferin inhibited the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated inhibitor kappa B (IκB) and increased the expression of IκB protein, whereas no changes were observed in the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase 1/2 (JNK1/2), and mammalian target of rapamycin (mTOR). The molecular mechanism responsible for mangiferin-induced inhibition of nuclear translocation of NF-κB was a decrease in the expression of phosphorylated NF-κB-inducing kinase (NIK). Moreover, mangiferin decreased the expression of X-linked inhibitor of apoptosis protein (XIAP), survivin, and Bcl-xL proteins. Knockdown of NIK expression showed results similar to those observed with mangiferin treatment. Our results suggest that mangiferin induces apoptosis through the inhibition of nuclear translocation of NF-κB by suppressing NIK activation in MM cell lines. Our results provide a new insight into the molecular mechanism of mangiferin-induced apoptosis. Importantly, since the number of reported NIK inhibitors is limited, mangiferin, which targets NIK, may be a potential anticancer agent for the treatment of MM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Enhanced Expression of WD Repeat-Containing Protein 35 via Nuclear Factor-Kappa B Activation in Bupivacaine-Treated Neuro2a Cells

    PubMed Central

    Huang, Lei; Kondo, Fumio; Harato, Misako; Feng, Guo-Gang; Ishikawa, Naoshisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression. PMID:24466034

  18. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells

    PubMed Central

    Mencalha, Andre L.; Ferreira, Gerson M.; de Souza, Waldemir F.; Morgado-Díaz, José A.; Maia, Amanda M.; Corrêa, Stephany; Abdelhay, Eliana S. F. W.

    2017-01-01

    The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment. PMID:28107418

  19. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells.

    PubMed

    Pires, Bruno R B; Mencalha, Andre L; Ferreira, Gerson M; de Souza, Waldemir F; Morgado-Díaz, José A; Maia, Amanda M; Corrêa, Stephany; Abdelhay, Eliana S F W

    2017-01-01

    The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment.

  20. Gossypium herbaceam extracts inhibited NF-kappaB activation to attenuate spatial memory impairment and hippocampal neurodegeneration induced by amyloid-beta in rats.

    PubMed

    Ji, Chao; Aisa, Haji Akber; Yang, Nan; Li, Qing; Wang, Tao; Zhang, Ling; Qu, Kai; Zhu, Hai-Bo; Zuo, Ping-Ping

    2008-07-01

    Amyloid-beta (Abeta) is considered to be responsible for the pathogenesis of Alzheimer's disease. In the present study, the protective effect of Gossypium herbaceam extracts (GHE) on learning and memory impairment induced by Abeta were examined in vivo using Morris water maze and step through task. Furthermore, the antioxidant activity and neuroprotective effect of GHE was investigated with methods of histochemistry and biochemistry. These data showed that oral administration with GHE at the doses of 35, 70 and 140 mg/kg exerted an improved effect on the learning and memory impairment in rats induced by intracerebroventricular (i.c.v.) injection of 10 microg of Abeta(25-35). Subsequently, the GHE afforded a beneficial action on promotion on the activity of glutathione peroxidase and catalase, as well as inhibition on the NF-kappaB activation in the hippocampus followed by the presence of Abeta(25-35). Meanwhile, the number of degenerating neurons with an apoptotic feature was dramatically decreased in hippocampus after treatment with GHE, implicating that its antioxidant stress and inhibition of NF-kappaB activation could be involved in the mechanism underlying neuroprotection of GHE against Abeta-induced cell death. These findings suggested that GHE might be a potential agent for treatment of Alzheimer's disease.

  1. The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-kappaB activation in oesophageal cells, with a mechanism of action involving ROS.

    PubMed

    Jenkins, G J S; Cronin, J; Alhamdani, A; Rawat, N; D'Souza, F; Thomas, T; Eltahir, Z; Griffiths, A P; Baxter, J N

    2008-09-01

    Deoxycholic acid (DCA) is a secondary bile acid implicated in various cancers of the gastrointestinal (GI) tract. In oesophageal adenocarcinoma, DCA is believed to contribute to carcinogenesis during reflux where stomach contents enter the lower oesophagus. It is imperative that we understand the mechanisms whereby oesophageal carcinogens function in order that therapeutic options may be developed. We have previously shown that DCA can damage chromosomes and does so through its generation of reactive oxygen species (ROS). We show here, after detailed experiments, that DCA appears to have a non-linear dose response for DNA damage. DCA induces DNA damage (as measured by the micronucleus assay) at doses of 100 microM and higher in oesophageal OE33 cells, but fails to induce such DNA damage below this cut-off dose. We also show that in terms of NF-kappaB activation (as measured by up-regulation of two NF-kappaB target genes) by DCA, a similar dose response is observed. This dose-response data may be important clinically as DCA exposure to the oesophagus may be used as a way to identify the 10% of Barrett's oesophagus patients currently progressing to cancer from the 90% of patients who do not progress. Only quantitative studies measuring DCA concentrations in refluxates correlated with histological progression will answer this question. We further show here that ROS are behind DCAs ability to activate NF-kappaB as antioxidants (epigallocatechin gallate, resveratrol and vitamin C) abrogate DCAs ability to up-regulate NF-kappaB-controlled genes. In conclusion, low doses of DCA appear to be less biologically significant in vitro. If this were to be confirmed in vivo, it might suggest that reflux patients with low DCA concentrations may be at a lower risk of cancer progression compared to patients with high levels of DCA in their refluxate. Either way, antioxidant supplementation may possibly help prevent the deleterious effects of DCA in the whole GI tract.

  2. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway.

    PubMed

    Bhui, Kulpreet; Prasad, Sahdeo; George, Jasmine; Shukla, Yogeshwer

    2009-09-18

    Chemoprevention impels the pursuit for either single targeted or cocktail of multi-targeted agents. Bromelain, potential agent in this regard, is a pharmacologically active compound, present in stems and fruits of pineapple (Ananas cosmosus), endowed with anti-inflammatory, anti-invasive and anti-metastatic properties. Herein, we report the anti tumor-initiating effects of bromelain in 2-stage mouse skin tumorigenesis model. Pre-treatment of bromelain resulted in reduction in cumulative number of tumors (CNT) and average number of tumors per mouse. Preventive effect was also comprehended in terms of reduction in tumor volume up to a tune of approximately 65%. Components of the cell signaling pathways, connecting proteins involved in cell death were targeted. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in Bcl-2. A marked inhibition in cyclooxygenase-2 (Cox-2) expression and inactivation of nuclear factor-kappa B (NF-kappaB) was recorded, as phosphorylation and consequent degradation of I kappa B alpha was blocked by bromelain. Also, bromelain treatment curtailed extracellular signal regulated protein kinase (ERK1/2), p38 mitogen-activated protein kinase (MAPK) and Akt activity. The basis of anti tumor-initiating activity of bromelain was revealed by its time dependent reduction in DNA nick formation and increase in percentage prevention. Thus, modulation of inappropriate cell signaling cascades driven by bromelain is a coherent approach in achieving chemoprevention.

  3. 6-gingerol ameliorated doxorubicin-induced cardiotoxicity: role of nuclear factor kappa B and protein glycation.

    PubMed

    El-Bakly, Wesam M; Louka, Manal L; El-Halawany, Ali M; Schaalan, Mona F

    2012-12-01

    Doxorubicin is a widely used antitumour drug. Cardiotoxicity is considered a major limitation for its clinical use. The present study was designed to assess the possible antioxidant and antiapoptotic effects of 6-gingerol in attenuating doxorubicin-induced cardiac damage. Male albino rats were treated with either intraperitoneal doxorubicin (18 mg/kg divided into six equal doses for 2 weeks) and/or oral 6-gingerol (10 mg/kg starting 5 days before and continued till the end of the experiment). 6-gingerol significantly ameliorated the doxorubicin-induced elevation in the cardiac enzymes. The stimulation of oxidative stress by doxorubicin was evidenced by the significant decrease in the serum soluble receptor for advanced glycation endproduct allowing unopposed serum advanced glycation endproduct availability. Moreover, doxorubicin activated nuclear factor kappa B (NF-κB) which was indicated by an increase in its immunohistochemical staining in the nucleus. In addition, doxorubicin-induced cardiotoxicity was accompanied by elevation of cardiac caspase-3. Notably, pretreatment with 6-gingerol significantly ameliorated the changes in sRAGE, NF-κB and cardiac caspase-3. Cardiac enzymes showed significant positive correlation with NF-κB and caspase-3 but negative with serum sRAGE, suggesting their role in doxorubicin-induced cardiac injury. These findings were confirmed by cardiac tissue histopathology. 6-gingerol, a known single compound from ginger with anticancer activity, was shown to have a promising role in cardioprotection against doxorubicin-induced cardiotoxicity. This study suggested a novel mechanism for 6-gingerol cardioprotection, which might be mediated through its antioxidative effect and modulation of NF-κB as well as apoptosis.

  4. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin.

    PubMed

    Westergaard, Majken; Henningsen, Jeanette; Johansen, Claus; Rasmussen, Sofie; Svendsen, Morten Lyhne; Jensen, Uffe Birk; Schrøder, Henrik Daa; Staels, Bart; Iversen, Lars; Bolund, Lars; Kragballe, Knud; Kristiansen, Karsten

    2003-11-01

    Abnormal epidermal proliferation and differentiation characterize the inflammatory skin disease psoriasis. Here we demonstrate that expression of PPARdelta mRNA and protein is markedly upregulated in psoriatic lesions and that lipoxygenase products accumulating in psoriatic lesions are potent activators of PPARdelta. The expression levels of NF-kappaB p50 and p65 were not significantly altered in lesional compared with nonlesional psoriatic skin. In the basal layer of normal epidermis both p50 and p65 were sequestered in the cytoplasm, whereas p50, but not p65, localized to nuclei in the suprabasal layers, and this distribution was maintained in lesional psoriatic skin. In normal human keratinocytes PPAR agonists neither impaired IL-1beta-induced translocation of p65 nor IL-1beta-induced NF-kappaB DNA binding. We show that PPARdelta physically interacts with the N-terminal Rel homology domain of p65. Irrespective of the presence of agonists none of the PPAR subtypes decreased p65-mediated transactivation in keratinocytes. In contrast p65, but not p50, was a potent repressor of PPAR-mediated transactivation. The p65-dependent repression of PPARdelta- but not PPARalpha- or PPARgamma-mediated transactivation was partially relieved by forced expression of the coactivators p300 or CBP. We suggest that deficient NF-kappaB activation in chronic psoriatic plaques permitting unabated PPARdelta-mediated transactivation contributes to the pathologic phenotype of psoriasis.

  5. Clinical validation of nuclear factor kappa B expression in invasive breast cancer.

    PubMed

    Agrawal, Anil Kumar; Pielka, Ewa; Lipinski, Artur; Jelen, Michal; Kielan, Wojciech; Agrawal, Siddarth

    2018-01-01

    Breast cancer is the most commonly diagnosed cancer in Polish women. The expression of transcription nuclear factor kappa B, a key inducer of inflammatory response promoting carcinogenesis and cancer progression in breast cancer, is not well-established. We assessed the nuclear factor kappa B expression in a total of 119 invasive breast carcinomas and 25 healthy control samples and correlated this expression pattern with several clinical and pathologic parameters including histologic type and grade, tumor size, lymph node status, estrogen receptor status, and progesterone receptor status. The data used for the analysis were derived from medical records. An immunohistochemical analysis of nuclear factor kappa B, estrogen receptor, and progesterone receptor was carried out and evaluation of stainings was performed. The expression of nuclear factor kappa B was significantly higher than that in the corresponding healthy control samples. No statistical difference was demonstrated in nuclear factor kappa B expression in relation to age, menopausal status, lymph node status, tumor size and location, grade and histologic type of tumor, and hormonal status (estrogen receptor and progesterone receptor). Nuclear factor kappa B is significantly overexpressed in invasive breast cancer tissues. Although nuclear factor kappa B status does not correlate with clinicopathological findings, it might provide important additional information on prognosis and become a promising object for targeted therapy.

  6. Cinnamaldehyde inhibits the tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-{kappa}B activation: Effects upon I{kappa}B and Nrf2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, atmore » the transcriptional level. Moreover, in TNF{alpha}-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-{kappa}B, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein I{kappa}B-{alpha}, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNF{alpha}-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment

  7. Fisetin inhibits TNF-α/NF-κB-induced IL-8 expression by targeting PKCδ in human airway epithelial cells.

    PubMed

    Lee, Seoghyun; Ro, Hyunju; In, Hyun Ju; Choi, Ji-Hee; Kim, Mun-Ock; Lee, Jinhyuk; Hong, Sung-Tae; Lee, Su Ui

    2018-08-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), a natural flavonoid, is a therapeutic agent for respiratory inflammatory diseases such as chronic obstructive pulmonary disease (COPD). However, detailed molecular mechanisms regarding the target protein of fisetin remain unknown. Fisetin significantly reduces tumour necrosis factor alpha (TNF-α)-induced interleukin (IL)-8 levels by inhibiting both nuclear factor kappa B (NF-κB) transcriptional activity and the phosphorylation of its upstream effectors. We show that fisetin prevents interactions between protein kinase C (PKC)δ and TNF receptor-associated factor 2 (TRAF2), thereby inhibiting the inhibitor of kappa B kinase (IKK)/NF-κB downstream signalling cascade. Furthermore, we found that fisetin directly binds to PKCδ in vitro. Our findings provide evidence that fisetin inhibits the TNF-α-activated IKK/NF-κB cascade by targeting PKCδ, thereby mediating inflammatory diseases such as COPD. These data suggest that fisetin is a good therapeutic drug for the treatment of inflammatory lung diseases, such as COPD, by inhibiting the TNF-α/NF-κB signalling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Pulsatile equibiaxial stretch inhibits thrombin-induced RhoA and NF-{kappa}B activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Jason H.; Kaunas, Roland; Radeff-Huang, Julie

    2008-07-18

    This study investigated interactions between the effects of mechanical stretch and thrombin on RhoA activation in rat aortic smooth muscle cells (RASMC). Equibiaxial, pulsatile stretch, or thrombin produced a significant increase in RhoA activation. Surprisingly, in combination, 30 min of stretch inhibited the ability of thrombin to activate RhoA. NO donors and 8-bromo-cGMP significantly inhibited thrombin-induced RhoA activation. Interestingly, the nitric oxide synthase (NOS) inhibitor L-NAME increased basal RhoA activity, suggesting that NOS activity exerts a tonic inhibition on RhoA. Stretching RASMC increases nitrite production, consistent with the idea that NO contributes to the inhibitory effects of stretch. Thrombin stimulatesmore » MAP kinase and NF-{kappa}B pathways through Rho and these responses were blocked by 8-bromo-cGMP or stretch and restored by L-NAME. These data suggest that stretch, acting through NO and cGMP, can prevent the ability of thrombin to stimulate Rho signaling pathways that contribute to pathophysiological proliferative and inflammatory responses.« less

  9. Expression of apoptosis related proteins: RAIDD, ZIP kinase, Bim/BOD, p21, Bax, Bcl-2 and NF-kappaB in brains of patients with Down syndrome.

    PubMed

    Engidawork, E; Gulesserian, T; Seidl, R; Cairns, N; Lubec, G

    2001-01-01

    Down syndrome (DS) is a genetic disease that exhibits significant neuropathological parallels with Alzheimer's disease (AD). One of the features of DS, neuronal loss, has been hypothesized to occur as a result of apoptosis. An increasing number of proteins are implicated in apoptosis and several of them were shown to be altered in AD, however, the knowledge in DS is far from complete. To further substantiate the hypothesis that apoptosis is the underlying mechanism for neuronal loss and contribute towards the current knowledge of apoptosis in DS, we analyzed the expression of apoptosis related proteins in frontal cortex and cerebellum of DS by western blot and ELISA techniques. Quantitative analysis revealed a significant increase in DS frontal (P < 0.0001) and cerebellar (P < 0.05) Bim/BOD (Bcl-2 interacting mediator of cell death/Bcl-2 related ovarian death gene), cerebellar Bcl-2 (P < 0.01) as well as p21 (P < 0.05) levels compared to controls. No significant change was detected in Bax, RAIDD (receptor interacting protein (RIP)-associated ICH-1/CED-3-homologus protein with death domain), ZIP (Zipper interacting protein) kinase and NF-kappaB p65 levels in both regions, although frontal cortex levels of RAIDD, Bcl-2 and p21 levels tended to increase. In addition, a 45 kDa truncated form of NF-kappaB p65 displayed a significant elevation (P < 0.05) in DS cerebellum. No significant correlation had been obtained between postmortem interval and level of the proteins analyzed. With regard to age, it was only NF-kappaB p65 that showed significant correlation (r = -0.8964, P = 0.0155, n = 9) in frontal cortex of controls. These findings provide further evidence that apoptosis indeed accounts for the neuronal loss in DS but Bax and RAIDD do not appear to take part in this process.

  10. Mutant human tumor suppressor p53 modulates the activation of mitogen-activated protein kinase and nuclear factor-kappaB, but not c-Jun N-terminal kinase and activated protein-1.

    PubMed

    Gulati, Anthony P; Yang, Yang-Ming; Harter, David; Mukhopadhyay, Asok; Aggarwal, Bharat B; Aggarwal, Bharat A; Benzil, Deborah L; Whysner, John; Albino, Anthony P; Murali, Raj; Jhanwar-Uniyal, Meena

    2006-01-01

    The roles of the mitogen-activated kinase protein (MAPK) pathway, nuclear factor-kappa B (NF-kappaB), and activator protein-1 (AP-1) in cellular responses to growth factors and mitogen are well established. However, the manner by which these proliferative pathways are affected by the tumor suppressor protein p53 is not fully understood. We report here the results of an investigation of the status of p53 on two human melanoma cell lines with wild-type p53 (SK-Mel-186) or mutant p53 (SK-Mel-110). The basal levels of the activated extracellular-signal regulated kinases 1 and 2 (ERK1/2) were high in cells with wild-type p53, but low in cells with mutant p53. The 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of ERK1/2 through the phosphorylation of threonine and tyrosine at 202 and 204, respectively, was demonstrated in both cell lines, however, in a discrete manner. TPA-induced activation of ERK1/2 was sustained in wild-type p53 cells, while only a transient activation was seen in mutant p53 cells. Inhibition of MAPK kinase (MEK), an upstream kinase, by U0126, blocked TPA-induced activation of ERK1/2 in wild-type p53 cells and in mutant p53 cells. Treatment of wild-type p53 (SK-Mel 186) cells with small interfering RNA (siRNA) of p53 displayed a transient induction of activation of ERK1/2 following TPA treatment, indicating that p53 has a role in the regulation of the activation of ERK1/2. NF-kappaB activity decreased significantly in cells with wild-type p53, while enhanced NF-kappaB activity was evident in cells with mutant p53. The expression of either wild-type or mutant p53 had a similar effect on TPA-induced Jun N-terminal kinase (JNK) activation, indicating specificity for the ERK pathway. Similarly, AP-1 binding activity showed a transient variation in both cell lines after TPA treatment but with different kinetics. These observations suggest that both wild-type and mutant p53 can modulate the activation pathways for ERK1/2, and NF-kappa

  11. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As amore » reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.« less

  12. Guggulsterone (GS) inhibits smokeless tobacco and nicotine-induced NF-κB and STAT3 pathways in head and neck cancer cells.

    PubMed

    Macha, Muzafar A; Matta, Ajay; Chauhan, S S; Siu, K W Michael; Ralhan, Ranju

    2011-03-01

    Understanding the molecular pathways perturbed in smokeless tobacco- (ST) associated head and neck squamous cell carcinoma (HNSCC) is critical for identifying novel complementary agents for effective disease management. Activation of nuclear factor-kappaB (NF-κB) and cyclooxygenase-2 (COX-2) was reported in ST-associated HNSCC by us [Sawhney,M. et al. (2007) Expression of NF-kappaB parallels COX-2 expression in oral precancer and cancer: association with smokeless tobacco. Int. J. Cancer, 120, 2545-2556]. In search of novel agents for treatment of HNSCC, we investigated the potential of guggulsterone (GS), (4,17(20)-pregnadiene-3,16-dione), a biosafe nutraceutical, in inhibiting ST- and nicotine-induced activation of NF-κB and signal transducer and activator of transcription (STAT) 3 pathways in HNSCC cells. GS inhibited the activation of NF-κB and STAT3 proteins in head and neck cancer cells. This inhibition of NF-κB by GS resulted from decreased phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha the inhibitory subunit of NF-κB. Importantly, treatment of HNSCC cells with GS abrogated both ST- and nicotine-induced nuclear activation of NF-κB and pSTAT3 proteins and their downstream targets COX-2 and vascular endothelial growth factor. Furthermore, GS treatment decreased the levels of ST- and nicotine-induced secreted interleukin-6 in culture media of HNSCC cells. In conclusion, our findings demonstrated that GS treatment abrogates the effects of ST and nicotine on activation of NF-κB and STAT3 pathways in HNSCC cells that contribute to inflammatory and angiogenic responses as well as its progression and metastasis. These findings provide a biologic rationale for further clinical investigation of GS as an effective complementary agent for inhibiting ST-induced head and neck cancer.

  13. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway.

    PubMed

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-05-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4(+) T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. © 2014 British Society for Immunology.

  14. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  15. Decursinol angelate blocks transmigration and inflammatory activation of cancer cells through inhibition of PI3K, ERK and NF-kappaB activation.

    PubMed

    Kim, Won-Jung; Lee, Min-Young; Kim, Jung-Hee; Suk, Kyoungho; Lee, Won-Ha

    2010-10-01

    Inflammation is known to be closely associated with the development of cancer. Decursinol angelate (DA), a coumarin compound isolated from Angelica gigas and related compounds have been shown to possess potent anti-inflammatory activities. However, little is known about their effects on the inflammatory processes associated with cancer. In this study, the anti-inflammatory effect of DA was evaluated in cancer cell lines with respect to cellular invasion through the extracellular matrix (ECM) and the expression of pro-inflammatory mediators such as cytokine, cell adhesion molecules and matrix metalloproteinase (MMP)-9. DA inhibited the invasion of fibrosarcoma cell line, HT1080 and breast cancer cell line, MDA-MB-231 in the Matrigel invasion assay. DA-mediated suppression of cancer cell invasion was accomplished by suppression of PI3K activity known to be associated with cytoskeletal rearrangement related to cellular migration. DA also suppressed the adhesion of cancer cells to ECM mediated by down-regulation of beta(1)-integrin expression levels. Furthermore, DA inhibited the expression of pro-inflammatory cytokines and MMP-9 through suppression of PI3K, ERK and NF-kappaB activation. These results demonstrate that DA suppresses invasion and inflammatory activation of cancer cells through modulation of PI3K/AKT, ERK and NF-kappaB. These anti-inflammatory activities of DA may contribute to its anti-cancer activity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Gene expression profiling of anti-GBM glomerulonephritis model: the role of NF-kappaB in immune complex kidney disease.

    PubMed

    Kim, Ju Han; Ha, Il Soo; Hwang, Chang-Il; Lee, Young-Ju; Kim, Jihoon; Yang, Seung-Hee; Kim, Yon Su; Cao, Yun Anna; Choi, Sangdun; Park, Woong-Yang

    2004-11-01

    Immune complexes may cause an irreversible onset of chronic renal disease. Most patients with chronic renal disease undergo a final common pathway, marked by glomerulosclerosis and interstitial fibrosis. We attempted to draw a molecular map of anti-glomerular basement membrane (GBM) glomerulonephritis in mice using oligonucleotide microarray technology. Kidneys were harvested at days 1, 3, 7, 11, and 16 after inducing glomerulonephritis by using anti-GBM antibody. In parallel with examining the biochemical and histologic changes, gene expression profiles were acquired against five pooled control kidneys. Gene expression levels were cross-validated by either reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, or immunohistochemistry. Pathologic changes in anti-GBM glomerulonephritis were confirmed in both BALB/c and C57BL/6 strains. Among the 13,680 spotted 65mer oligonucleotides, 1112 genes showing significant temporal patterns by permutation analysis of variance (ANOVA) with multiple testing correction [false discovery ratio (FDR) < 0.05] were chosen for cluster analysis. From the expression profile, acute inflammatory reactions characterized by the elevation of various cytokines, including interleukin (IL)-1 and IL-6, were identified within 3 days of disease onset. After 7 days, tissue remodeling response was prominent with highly induced extracellular-matrix (ECM) genes. Although cytokines related to lymphocyte activation were not detected, monocyte or mesangial cell proliferation-related genes were increased. Tumor necrosis factor-alpha (TNF-alpha) and nuclear factor-kappaB (NF-kappaB) pathway were consistently activated along the entire disease progression, inducing various target genes like complement 3, IL-1b, IL-6, Traf1, and Saa1. We made a large-scale gene expression time table for mouse anti-GBM glomerulonephritis model, providing a comprehensive overview on the mechanism governing the initiation and the progression of inflammatory

  17. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effectmore » of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  18. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells.

    PubMed

    Karki, Rajendra; Ho, Oak-Min; Kim, Dong-Wook

    2013-03-01

    Endovascular injury induces switching of contractile phenotype of vascular smooth muscle cells (VSMCs) to synthetic phenotype, thereby causing proliferation of VSMCs leading to intimal thickening. The purpose of this study was to assess the effect of magnolol on the proliferation of VSMCs in vitro and neointima formation in vivo, as well as the related cell signaling mechanisms. Tumor necrosis factor alpha (TNF-alpha) induced proliferation ofVSMCs was assessed using colorimetric assay. Cell cycle progression and mRNA expression of cell cycle associated molecules were determined by flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) respectively. The signaling molecules such as ERK1/2,JNK, P38 and NF-kappaB were determined by Western blot analysis. In addition, rat carotid artery balloon injury model was performed to assess the effect of magnolol on neointima formation in vivo. Oral administration of magnolol significantly inhibited intimal area and intimal/medial ratio (I/M). Our in vitro assays revealed magnolol dose dependently induced cell cycle arrest at G0/G1. Also, magnolol inhibited mRNA and protein expression of cyclin D1, cyclin E, CDK4 and CDK2 in vitro and in vivo. The cell cycle arrest was associated with inhibition of ERK1/2 phosphorylation and NF-kappaB translocation. Magnolol suppressed proliferation of VSMCs in vitro and attenuated neointima formation in vivo by inducing cell cycle arrest at G0/G1 through modulation of cyclin D1, cyclin E, CDK4 and CDK2 expression. Thus, the results suggest that magnolol could be a potential therapeutic candidate for the prevention of restenosis and atherosclerosis.

  19. Polyubiquitination events mediate polymethylmethacrylate (PMMA) particle activation of NF-kappaB pathway.

    PubMed

    Yamanaka, Yasuhiro; Karuppaiah, Kannan; Abu-Amer, Yousef

    2011-07-08

    The pathologic response to implant wear-debris constitutes a major component of inflammatory osteolysis and remains under intense investigation. Polymethylmethacrylate (PMMA) particles, which are released during implant wear and loosening, constitute a major culprit by virtue of inducing inflammatory and osteolytic responses by macrophages and osteoclasts, respectively. Recent work by several groups has identified important cellular entities and secreted factors that contribute to inflammatory osteolysis. In previous work, we have shown that PMMA particles contribute to inflammatory osteolysis through stimulation of major pathways in monocytes/macrophages, primarily NF-κB and MAP kinases. The former pathway requires assembly of large IKK complex encompassing IKK1, IKK2, and IKKγ/NEMO. We have shown recently that interfering with the NF-κB and MAPK activation pathways, through introduction of inhibitors and decoy molecules, impedes PMMA-induced inflammation and osteolysis in mouse models of experimental calvarial osteolysis and inflammatory arthritis. In this study, we report that PMMA particles activate the upstream transforming growth factor β-activated kinase-1 (TAK1), which is a key regulator of signal transduction cascades leading to activation of NF-κB and AP-1 factors. More importantly, we found that PMMA particles induce TAK1 binding to NEMO and UBC13. In addition, we show that PMMA particles induce TRAF6 and UBC13 binding to NEMO and that lack of TRAF6 significantly attenuates NEMO ubiquitination. Altogether, these observations suggest that PMMA particles induce ubiquitination of NEMO, an event likely mediated by TRAF6, TAK1, and UBC13. Our findings provide important information for better understanding of the mechanisms underlying PMMA particle-induced inflammatory responses.

  20. Impedimetric aptasensor for nuclear factor kappa B with peroxidase-like mimic coupled DNA nanoladders as enhancer.

    PubMed

    Peng, Kanfu; Zhao, Hongwen; Xie, Pan; Hu, Shuang; Yuan, Yali; Yuan, Ruo; Wu, Xiongfei

    2016-07-15

    In this work, we developed a sensitive and universal aptasensor for nuclear factor kappa B (NF-κB) detection based on peroxidase-like mimic coupled DNA nanoladders for signal amplification. The dsDNA formed by capture DNA S1 and NF-κB binding aptamer (NBA) was firstly assembled on electrode surface. The presence of target NF-κB then led to the leave of NBA from electrode surface and thus provided the binding sites for immobilizing initiator to trigger in situ formation of DNA nanoladders on electrode surface. Since the peroxidase-like mimic manganese (III) meso-tetrakis (4-Nmethylpyridyl)-porphyrin (MnTMPyP) interacts with DNA nanoladders via groove binding, the insoluble benzo-4-chlorohexadienone (4-CD) precipitation derived from the oxidation of 4-chloro-1-naphthol (4-CN) could be formed on electrode surface in the presence of H2O2, resulting in a significantly amplified EIS signal output for quantitative target analysis. As a result, the developed aptasensor showed a low detection limit of 7pM and a wide linear range of 0.01-20nM. Featured with high sensitivity and label-free capability, the proposed sensing scheme can thus offer new opportunities for achieving sensitive, selective and stable detection of different types of target proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Dietary turmeric modulates DMBA-induced p21{sup ras}, MAP kinases and AP-1/NF-{kappa}B pathway to alter cellular responses during hamster buccal pouch carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Rachana; Ingle, Arvind; Maru, Girish

    2008-11-01

    The chemopreventive efficacy of turmeric has been established in experimental systems. However, its mechanism(s) of action are not fully elucidated in vivo. The present study investigates the mechanism of turmeric-mediated chemoprevention in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis at 2, 4, 6, 10 and 12 weeks. Dietary turmeric (1%) led to decrease in DMBA-induced tumor burden and multiplicity, and enhanced the latency period in parallel, to its modulatory effects on oncogene products and various cellular responses during HBP tumorigenesis. DMBA-induced expression of ras oncogene product, p21 and downstream target, the mitogen-activated protein kinases were significantly decreased by turmeric duringmore » HBP carcinogenesis. Turmeric also diminished the DMBA-induced mRNA expression of proto-oncogenes (c-jun, c-fos) and NF-{kappa}B, leading to decreased protein levels and in further attenuation of DMBA-induced AP-1/NF-{kappa}B DNA-binding in the buccal pouch nuclear extracts. Besides, buccal pouch of hamsters receiving turmeric diet showed significant alterations in DMBA-induced effects: (a) decrease in cell proliferation (diminished PCNA and Bcl2 expression), (b) enhanced apoptosis (increased expression of Bax, caspase-3 and apoptotic index), (c) decrease in inflammation (levels of Cox-2, the downstream target of AP-1/NF-{kappa}B, and PGE2) and (d) aberrant expression of differentiation markers, the cytokeratins (1, 5, 8, and 18). Together, the protective effects of dietary turmeric converge on augmenting apoptosis of the initiated cells and decreasing cell proliferation in DMBA-treated animals, which in turn, is reflected in decreased tumor burden, multiplicity and enhanced latency period. Some of these biomarkers are likely to be helpful in monitoring clinical trials and evaluating drug effect measurements.« less

  2. Nuclear Factor Kappa B Activation and Peroxisome Proliferator-activated Receptor Transactivational Effects of Chemical Components of the Roots of Polygonum multiflorum.

    PubMed

    Sun, Ya Nan; Li, Wei; Song, Seok Bean; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2016-01-01

    Polygonum multiflorum is well-known as "Heshouwu" in traditional Chinese herbal medicine. In Northeast Asia, it is often used as a tonic to prevent premature aging of the kidney and liver, tendons, and bones and strengthening of the lower back and knees. To research the anti-inflammatory activities of components from P. multiflorum. The compounds were isolated by a combination of silica gel and YMC R-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-nuclear magnetic resonance, and mass spectrometry). The anti-inflammatory activities of the isolated compounds 1-15 were evaluated by luciferase reporter gene assays. Fifteen compounds (1-15) were isolated from the roots of P. multiflorum. Compounds 1-5 and 14-15 significantly inhibited tumor necrosis factor-α-induced nuclear factor kappa B-luciferase activity, with IC50 values of 24.16-37.56 μM. Compounds 1-5 also greatly enhanced peroxisome proliferator-activated receptors transcriptional activity with EC50 values of 18.26-31.45 μM. The anthraquinone derivatives were the active components from the roots of P. multiflorum as an inhibitor on inflammation-related factors in human hepatoma cells. Therefore, we suggest that the roots of P. multiflorum can be used to treat natural inflammatory diseases. This study presented that fifteen compounds (1-15) isolated from the roots of Polygonum multiflrum exert signifiant anti inflmmatory effects by inhibiting TNF α induced NF κB activation and PPARs transcription. Abbreviation used: NF κB: Nuclear factor kappa B, PPARs: Peroxisome proliferator activated receptors, PPREs: Peroxisome proliferator response elements, TNF α: Tumor necrosis factor α, ESI-MS: Electrospray ionization mass spectrometry, HepG2: Human hepatoma cells.

  3. Blunted activation of NF-{kappa}B and NF-{kappa}B-dependent gene expression by geranylgeranylacetone: Involvement of unfolded protein response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, Kunihiro; Hiramatsu, Nobuhiko; Okamura, Maro

    2008-01-04

    Geranylgeranylacetone (GGA), an anti-ulcer agent, has anti-inflammatory potential against experimental colitis and ischemia-induced renal inflammation. However, molecular mechanisms involved in its anti-inflammatory effects are largely unknown. We found that, in glomerular mesangial cells, GGA blocked activation of nuclear factor-{kappa}B and consequent induction of monocyte chemoattractant protein 1 (MCP-1) by inflammatory cytokines. It was inversely correlated with induction of unfolded protein response (UPR) evidenced by expression of 78 kDa glucose-regulated protein (GRP78) and suppression of endoplasmic reticulum stress-responsive alkaline phosphatase. Various inducers of UPR including tunicamycin, thapsigargin, A23187, 2-deoxyglucose, dithiothreitol, and AB{sub 5} subtilase cytotoxin reproduced the suppressive effects of GGA.more » Furthermore, attenuation of UPR by stable transfection with GRP78 diminished the anti-inflammatory effects of GGA. These results disclosed a novel, UPR-dependent mechanism underlying the anti-inflammatory potential of GGA.« less

  4. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB, JNK and p38 MAPK inactivation.

    PubMed

    Zhou, Hong Yu; Shin, Eun Myoung; Guo, Lian Yu; Youn, Ui Joung; Bae, KiHwan; Kang, Sam Sik; Zou, Li Bo; Kim, Yeong Shik

    2008-05-31

    The extracts or constituents from the bark of Magnolia (M.) obovata are known to have many pharmacological activities. 4-Methoxyhonokiol, a neolignan compound isolated from the stem bark of M. obovata, was found to exhibit a potent anti-inflammatory effect in different experimental models. Pretreatment with 4-methoxyhonokiol (i.p.) dose-dependently inhibited the dye leakage and paw swelling in an acetic-acid-induced vascular permeability assay and a carrageenan-induced paw edema assay in mice, respectively. In the lipopolysaccharide (LPS)-induced systemic inflammation model, 4-methoxyhonokiol significantly inhibited plasma nitric oxide (NO) release in mice. To identify the mechanisms underlying this anti-inflammatory action, we investigated the effect of 4-methoxyhonokiol on LPS-induced responses in a murine macrophage cell line, RAW 264.7. The results demonstrated that 4-methoxyhonokiol significantly inhibited LPS-induced NO production as well as the protein and mRNA expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, 4-methoxyhonokiol inhibited LPS-mediated nuclear factor-kappaB (NF-kappaB) activation via the prevention of inhibitor kappaB (IkappaB) phosphorylation and degradation. 4-Methoxyhonokiol had no effect on the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), whereas it attenuated the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH2-terminal kinase (JNK) in a concentration-dependent manner. Taken together, our data suggest that 4-methoxyhonokiol is an active anti-inflammatory constituent of the bark of M. obovata, and that its anti-inflammatory property might be a function of the inhibition of iNOS and COX-2 expression via down-regulation of the JNK and p38 MAP kinase signal pathways and inhibition of NF-kappaB activation in RAW 264.7 macrophages.

  5. Tumour Necrosis Factor-alpha and Nuclear Factor-kappa B Gene Variants in Sepsis.

    PubMed

    Acar, Leyla; Atalan, Nazan; Karagedik, E Hande; Ergen, Arzu

    2018-01-20

    The humoral system is activated and various cytokines are released due to infections in tissues and traumatic damage. Nuclear factor-kappa B dimers are encoded by nuclear factor-kappa B genes and regulate transcription of several crucial proteins of inflammation such as tumour necrosis factor-alpha. To investigate the possible effect of polymorphisms on tumour necrosis factor-alpha serum levels with clinical and prognostic parameters of sepsis by determining the nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A) gene polymorphisms and tumour necrosis factor-alpha serum levels. Case-control study. Seventy-two patients with sepsis and 104 healthy controls were included in the study. In order to determine the polymorphisms of nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A), polymerase chain reaction-restriction fragment length polymorphism analysis was performed and serum tumour necrosis factor-alpha levels were determined using an enzyme-linked immunosorbent assay. We observed no significant differences in tumour necrosis factor-alpha serum levels between the study groups. In the patient group, an increase in the tumour necrosis factor-alpha serum levels in patients carrying the tumour necrosis factor-alpha (-308 G/A) A allele compared to those without the A allele was found to be statistically significant. Additionally, an increase in the tumour necrosis factor-alpha serum levels in patients carrying tumour necrosis factor-alpha (-308 G/A) AA genotype compared with patients carrying the AG or GG genotypes was statistically significant. No significant differences were found in these 2 polymorphisms between the patient and control groups (p>0.05). Our results showed the AA genotype and the A allele of the tumour necrosis factor-alpha (-308 G/A) polymorphism may be used as a predictor of elevated tumour necrosis factor-alpha levels in patients with sepsis.

  6. Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-kappaB activation, and induces human osteoblastic and chondrocytic differentiation.

    PubMed

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Se-Kwon

    2010-03-30

    Ongoing efforts to search for naturally occurring, bioactive substances for the amelioration of arthritis have led to the discovery of natural products with substantial bioactive properties. The seahorse (Hippocampus kuda Bleeler), a telelost fish, is one source of known beneficial products, yet has not been utilized for arthritis research. In the present work, we have purified and characterized a bioactive peptide from seahorse hydrolysis. Among the hydrolysates tested, pronase E-derived hydrolysate exhibited the highest alkaline phosphatase (ALP) activity, a phenotype marker of osteoblast and chondrocyte differentiation. After its separation from the hydrolysate by several purification steps, the peptide responsible for the ALP activity was isolated and its sequence was identified as LEDPFDKDDWDNWK (1821Da). We have shown that the isolated peptide induces differentiation of osteoblastic MG-63 and chondrocytic SW-1353 cells by measuring ALP activity, mineralization and collagen synthesis. Our results indicate that the peptide acts during early to late stages of differentiation in MG-63 and SW-1353 cells. We also assessed the concentration dependence of the peptide's inhibition of MMP (-1, -3 and -13), iNOS and COX-2 expression after treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), a common form of phorbol ester. The peptide also inhibited NO production in MG-63 and SW-1353 cells. To elucidate the mechanisms by which the peptide acted, we examined its effects on TPA-induced MAPKs/NF-kappaB activation and determined that the peptide treatment significantly reduced p38 kinase/NF-kappaB in MG-63 cells and MAPKs/NF-kappaB in SW-1353 cells.

  7. Therapeutic microRNAs targeting the NF-kappa B Signaling Circuits of Cancers

    PubMed Central

    Tong, Lingying; Yuan, Ye; Wu, Shiyong

    2014-01-01

    MicroRNAs (miRNAs) not only directly regulate NF-κB expression, but also up- or down-regulate NF-κB activity via upstream and downstream signaling pathways of NF-κB. In many cancer cells, miRNA expressions are altered accompanied with an elevation of NF-κB, which often plays a role in promoting cancer development and progression as well as hindering the effectiveness of chemo and radiation therapies. Thus NF-κB-targeting miRNAs have been identified and characterized as potential therapeutics for cancer treatment and sensitizers of chemo and radiotherapies. However, due to cross-targeting and instability of miRNAs, some limitations of using miRNA as cancer therapeutics still exist. In this review, the mechanisms for miRNA-mediated alteration of NF-κB expression and activation in different types of cancers will be discussed. The results of therapeutic use of NF-κB-targeting miRNA for cancer treatment will be examined. Some limitations, challenges and potential strategies in future development of miRNA as cancer therapeutics are also assessed. PMID:25220353

  8. Lapatinib-induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors.

    PubMed

    Chen, Yun-Ju; Yeh, Ming-Hsin; Yu, Meng-Chieh; Wei, Ya-Ling; Chen, Wen-Shu; Chen, Jhen-Yu; Shih, Chih-Yu; Tu, Chih-Yen; Chen, Chia-Hung; Hsia, Te-Chun; Chien, Pei-Hsuan; Liu, Shu-Hui; Yu, Yung-Luen; Huang, Wei-Chien

    2013-11-12

    Triple-negative breast cancer (TNBC), a subtype of breast cancer with negative expressions of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is frequently diagnosed in younger women and has poor prognosis for disease-free and overall survival. Due to the lack of known oncogenic drivers for TNBC proliferation, clinical benefit from currently available targeted therapies is limited, and new therapeutic strategies are urgently needed. Triple-negative breast cancer cell lines were treated with proteasome inhibitors in combination with lapatinib (a dual epidermal growth factor receptor (EGFR)/HER2 tyrosine kinase inhibitor). Their in vitro and in vivo viability was examined by MTT assay, clonogenic analysis, and orthotopic xenograft mice model. Luciferase reporter gene, immunoblot, and RT-qPCR, immunoprecipitation assays were used to investigate the molecular mechanisms of action. Our data showed that nuclear factor (NF)-κB activation was elicited by lapatinib, independent of EGFR/HER2 inhibition, in TNBCs. Lapatinib-induced constitutive activation of NF-κB involved Src family kinase (SFK)-dependent p65 and IκBα phosphorylations, and rendered these cells more vulnerable to NF-κB inhibition by p65 small hairpin RNA. Lapatinib but not other EGFR inhibitors synergized the anti-tumor activity of proteasome inhibitors both in vitro and in vivo. Our results suggest that treatment of TNBCs with lapatinib may enhance their oncogene addiction to NF-κB, and thus augment the anti-tumor activity of proteasome inhibitors. These findings suggest that combination therapy of a proteasome inhibitor with lapatinib may benefit TNBC patients.

  9. Inhibiting the NF-kappaB pathway to assess its function in the cellular response to space radiation

    NASA Astrophysics Data System (ADS)

    Koch, Kristina; Baumstark-Khan, Christa; Hellweg, Christine; Testard, Isabelle; Reitz, Guenther

    2012-07-01

    Radiation is regarded as one of the limiting factors for space missions. Therefore the cellular radiation response needs to be studied in order to estimate risks and to develop appropriate countermeasures. Exposure of human cells to ionizing radiation can provoke cell cycle arrest, leading to cellular senescence or premature differentiation, and different types of cell death. Previous heavy ion experiments have shown that the Nuclear Factor κB (NF-κB) pathway is activated by fluences that can be reached during long-term missions and thereby NF-κB was identified as an important modulating factor in the cellular radiation response. It could improve cellular survival after exposure to high radiation doses and influence the cancer risk of astronauts. The classical and the genotoxic stress induced NF-κB pathway result in nuclear translocation of the p65/p50 dimer. Both pathways might contribute to the cellular radiation response. Chemical inhibitors were tested to suppress the NF-κB pathway in recombinant HEK-pNF-κB-d2EGFP/Neo cells. The efficacy and cytotoxicity of the inhibitors targeting different elements of the NF-κB pathway were analyzed and found mostly inappropriate as inhibitors were partly cytotoxic or unspecific. Alternatively a functional knock-out of RelA (p65) was used to identify the contribution of the NF-κB pathway to different cellular outcomes. Small hairpin RNA constructs (shRNA) were transfected into the HEK-pNF-κB-d2EGFP/Neo cell line. Their functionality was assessed by quantitative Reverse Transcriptase real-time PCR (qRT-PCR) to verify that the RelA mRNA amount was reduced by more than 80% in the knock-down cells The original cell line had been stably transfected with a reporter system to monitor NF-κB activation by measuring destabilized Enhanced Green Fluorescent Protein (d2EGFP)-expression. It was shown that after 18 hours d2EGFP reaches its highest expression level after activation of NF-κB and can be measured by FACS analysis

  10. The Nuclear Signaling of NF-κB – Current Knowledge, New Insights, and Future Perspectives

    PubMed Central

    Wan, Fengyi; Lenardo, Michael J.

    2011-01-01

    The nuclear factor-kappa B (NF-κB) transcription factor plays a critical role in diverse cellular processes associated with proliferation, cell death, development, as well as innate and adaptive immune responses. NF-κB is normally sequestered in the cytoplasm by a family of inhibitory proteins known as IκBs. The signal pathways leading to the liberation and nuclear accumulation of NF-κB, which can be activated by a wide variety of stimuli, have been extensively studied in the past two decades. After gaining access to the nucleus, NF-κB must be actively regulated to execute its fundamental function as a transcription factor. Recent studies have highlighted the importance of nuclear signaling in the regulation of NF-κB transcriptional activity. A non-Rel subunit of NF-κB, ribosomal protein S3 (RPS3), and numerous other nuclear regulators of NF-κB including Akirin, Nurr1, SIRT6, and others, have recently been identified, unveiling novel and exciting layers of regulatory specificity for NF-κB in the nucleus. Further insights into the nuclear events that govern NF-κB function will deepen our understanding of the elegant control of its transcriptional activity and better inform the potential rational design of therapeutics for NF-κB-associated diseases. PMID:19997086

  11. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells.

    PubMed

    Coll, Teresa; Alvarez-Guardia, David; Barroso, Emma; Gómez-Foix, Anna Maria; Palomer, Xavier; Laguna, Juan C; Vázquez-Carrera, Manuel

    2010-04-01

    Elevated plasma free fatty acids cause insulin resistance in skeletal muscle through the activation of a chronic inflammatory process. This process involves nuclear factor (NF)-kappaB activation as a result of diacylglycerol (DAG) accumulation and subsequent protein kinase Ctheta (PKCtheta) phosphorylation. At present, it is unknown whether peroxisome proliferator-activated receptor-delta (PPARdelta) activation prevents fatty acid-induced inflammation and insulin resistance in skeletal muscle cells. In C2C12 skeletal muscle cells, the PPARdelta agonist GW501516 prevented phosphorylation of insulin receptor substrate-1 at Ser(307) and the inhibition of insulin-stimulated Akt phosphorylation caused by exposure to the saturated fatty acid palmitate. This latter effect was reversed by the PPARdelta antagonist GSK0660. Treatment with the PPARdelta agonist enhanced the expression of two well known PPARdelta target genes involved in fatty acid oxidation, carnitine palmitoyltransferase-1 and pyruvate dehydrogenase kinase 4 and increased the phosphorylation of AMP-activated protein kinase, preventing the reduction in fatty acid oxidation caused by palmitate exposure. In agreement with these changes, GW501516 treatment reversed the increase in DAG and PKCtheta activation caused by palmitate. These effects were abolished in the presence of the carnitine palmitoyltransferase-1 inhibitor etomoxir, thereby indicating that increased fatty acid oxidation was involved in the changes observed. Consistent with these findings, PPARdelta activation by GW501516 blocked palmitate-induced NF-kappaB DNA-binding activity. Likewise, drug treatment inhibited the increase in IL-6 expression caused by palmitate in C2C12 and human skeletal muscle cells as well as the protein secretion of this cytokine. These findings indicate that PPARdelta attenuates fatty acid-induced NF-kappaB activation and the subsequent development of insulin resistance in skeletal muscle cells by reducing DAG accumulation

  12. Persistent activation of nuclear factor-kappa B and expression of pro-inflammatory cytokines in bone marrow cells after exposure of mice to protons

    NASA Astrophysics Data System (ADS)

    Rithidech, Kanokporn; Reungpatthanaphong, Paiboon; Honikel, Louise; Whorton, Elbert

    Protons are the most abundant component of solar particle events (SPEs) in space. Information is limited on early-and late-occurring in vivo biological effects of exposure to protons at doses and dose rates that are similar to what astronauts encounter in space. We conducted a study series to fill this knowledge gap. We focused on the biological effects of 100 MeV/n protons, which are one of the most abundant types of protons induced during SPEs. We gave BALB/cJ mice a whole-body exposure to 0.5 or 1.0 Gy of 100 MeV/n protons, delivered at 0.5 or 1.0 cGy/min. These doses and dose rates of protons were selected because they are comparable to those of SPEs taking place in space. For each dose and dose rate of 100 MeV/n protons, mice exposed to 0 Gy of protons served as sham controls. Mice included in this study were also part of a study series conducted to examine the extent and the mechanisms involved in in vivo induction of genomic instability (expressed as late-occurring chromosome instability) by 100 MeV/n protons. Bone marrow (BM) cells were collected from groups of mice for analyses at different times post-exposure, i.e. early time-points (1.5, 3, and 24 hr) and late time-points (1 and 6 months). At each harvest time, there were five mice per treatment group. Several endpoints were used to investigate the biological effects of 100 MeV/n protons in BM cells from irradiated and sham control mice. The scope of this study was to determine the dose-rate effects of 0.5 Gy of 100 MeV/n protons in BM cells on the kinetics of nuclear factor-kappa B (NF-kappa B) activation and the expression of selected NF-kappa B target proteins known to be involved in inflammatory response, i.e. pro-inflammatory cytokines (TNF-alpha, IL-1 beta, and IL-6). Significantly high levels (p values ranging from p¡0.01 and p¡0.05) of activated NF-kappa B were observed in BM cells collected from irradiated mice, relative to those obtained from the corresponding sham controls, at all time

  13. Molecular evidence for the existence of lipopolysaccharide-induced TNF-alpha factor (LITAF) and Rel/NF-kB pathways in disk abalone (Haliotis discus discus).

    PubMed

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Oh, Chulhong; Whang, Ilson; Lee, Jae-Seong; Jung, Sung-Ju; Choi, Cheol Young; Lee, Jehee

    2010-01-01

    The lipopolysaccharide-induced TNF-alpha factor (LITAF) and Rel family nuclear factor kappaB (Rel/NF-kB) are two important transcription factors which play major roles in the regulating inflammatory cytokine, apoptosis and immune related genes. Here, we report the discovery of disk abalone LITAF (AbLITAF) and Rel/NF-kB (AbRel/NF-kB) homologues and their immune responses. Full-length cDNA of AbLITAF consists of 441 bp open reading frame (ORF) that translates into putative peptide of 147 aa. Analysis of AbLITAF sequence showed it has characteristic LITAF (Zn(+2)) binding domain with two CXXC motifs. Phylogenetic analysis results further revealed that AbLITAF is a member of LITAF family. AbRel/NF-kB is 584 aa protein that contains several characteristic motifs including Rel homology domain (RHD), Rel protein signature, DNA binding motif, nuclear localization signal (NLS) and transcription factor immunoglobulin - like fold (TIG) similar to their invertebrate and vertebrate counterparts. Tissue specific analysis results showed that both AbLITAF and AbRel/NF-kB mRNA was expressed ubiquitously in all selected tissues in constitutive manner. However, constitutive expression of AbLITAF was higher than AbRel/NF-kB in all tissues except mantle. Upon immune challenge by bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Lysteria monocytogenes) and viral hemoragic septicemia virus (VHSV), AbLITAF showed the significant up-regulation in gills while AbRel/NF-kB transcription was not change significantly. Based on transcriptional response against immune challenge, we could suggest that regulation of TNF-alpha expression may have occurred mainly by LITAF activation rather than NF-kB in disk abalone. The cumulative data from other molluscs and our data with reference to TNF-alpha, LITAF and Rel/NF-kB from disk abalone provide strong evidence that LITAF and NF-kB are independent pathways likely to occur throughout the Phylum mollusca. 2010 Elsevier Ltd. All rights reserved.

  14. Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB.

    PubMed

    Liu, T Z; Lee, K T; Chern, C L; Cheng, J T; Stern, A; Tsai, L Y

    2001-10-01

    Excessive production of hydroxyl radicals in blood and liver has previously been demonstrated by us in rats with obstructive jaundice induced by common bile duct ligation (CBDL). In this study, we demonstrate overproduction of superoxide radicals in circulating blood of CBDL rats by the lucigenin-amplified chemiluminescence technique. To pinpoint the molecular agents that mediate these processes, we measured circulating proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta ( IL-1beta), and interleukin-6 (IL-6) in controls and CBDL rats. Concentrations of these cytokines in blood of CBDL rats were markedly elevated when compared to the controls (TNF-alpha: 36.7 +/- 5.0 vs 13.8 +/- 0.5 pg/mL; IL-6: 2,814 +/- 1,740 vs 0 pg/mL; IL-1beta: 11.9 +/- 2.6 vs 0 pg/mL). The overproduction of free radicals triggered by elevated cytokines in CBDL rats was correlated with the activation of NF-kappaB in hepatic tissue. Using the TdT-mediated dUTP nick-end label staining technique, we showed that hepatic tissue sections from CBDL rats had an increase in the apoptotic index (AI). Based on these findings, we propose that the severe hepatic injury in CBDL rats is mediated by a cycle that involves the activation of NF-kappaB by combined action of proinflammatory cytokines and reactive oxygen species (ROS). NF-KB, in turn, initiates the transcription of cytokine genes (eg, IL-6, IL-8, TNF-alpha), which triggers hepatic injury, at least in part, by a free radical-mediated apoptotic mechanism. Elevated ROS may be as a positive-feedback signal that triggers NF-KB reactivation; the severe hepatic injury of CBDL rats may result from perpetuation of this vicious cycle.

  15. Sensitization of U937 leukemia cells to doxorubicin by the MG132 proteasome inhibitor induces an increase in apoptosis by suppressing NF-kappa B and mitochondrial membrane potential loss

    PubMed Central

    2014-01-01

    Background The resistance of cancerous cells to chemotherapy remains the main limitation for cancer treatment at present. Doxorubicin (DOX) is a potent antitumor drug that activates the ubiquitin-proteasome system, but unfortunately it also activates the Nuclear factor kappa B (NF-кB) pathway leading to the promotion of tumor cell survival. MG132 is a drug that inhibits I kappa B degradation by the proteasome-avoiding activation of NF-кB. In this work, we studied the sensitizing effect of the MG132 proteasome inhibitor on the antitumor activity of DOX. Methods U937 human leukemia cells were treated with MG132, DOX, or both drugs. We evaluated proliferation, viability, apoptosis, caspase-3, -8, and −9 activity and cleavage, cytochrome c release, mitochondrial membrane potential, the Bcl-2 and Bcl-XL antiapoptotic proteins, senescence, p65 phosphorylation, and pro- and antiapoptotic genes. Results The greatest apoptosis percentage in U937 cells was obtained with a combination of MG132 + DOX. Likewise, employing both drugs, we observed a decrease in tumor cell proliferation and important caspase-3 activation, as well as mitochondrial membrane potential loss. Therefore, MG132 decreases senescence, p65 phosphorylation, and the DOX-induced Bcl-2 antiapoptotic protein. The MG132 + DOX treatment induced upregulation of proapoptotic genes BAX, DIABLO, NOXA, DR4, and FAS. It also induced downregulation of the antiapoptotic genes BCL-XL and SURVIVIN. Conclusion MG132 sensitizes U937 leukemia cells to DOX-induced apoptosis, increasing its anti-leukemic effectiveness. PMID:24495648

  16. 1-Deoxynojirimycin (DNJ) Ameliorates Indomethacin-Induced Gastric Ulcer in Mice by Affecting NF-kappaB Signaling Pathway

    PubMed Central

    Piao, Xuehua; Li, Shuangdi; Sui, Xiaodan; Guo, Lianyi; Liu, Xingmei; Li, Hongmei; Gao, Leming; Cai, Shusheng; Li, Yanrong; Wang, Tingting; Liu, Baohai

    2018-01-01

    Gastric ulcer (GU) is a main threat to public health. 1-Deoxynojirimycin (DNJ) has antioxidant and anti-inflammatory properties and may prevent GU but related mechanism remains unclear. DNJ was extracted from the supernatants of Bacillus subtilis by using ethanol and purified by using CM-Sepharose chromatography. A GU mouse model was induced by indomethacin. The functional role of DNJ in GU mice was explored by measuring the main molecules in the NF-KappaB pathway. After the model establishment, 40 GU mice were evenly assigned into five categories: IG (received vehicle control), LG (10 μg DNJ daily), MG (20 μg DNJ daily), HG (40 μg DNJ daily), and RG (0.5 mg ranitidine daily). Meanwhile, eight healthy mice were assigned as a control group (CG). After 1-month therapy, weight and gastric volume were investigated. The levels of serum inflammatory cytokines (IL-6 and TNF-α), antioxidant indices [superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)], and oxidant biomarker malondialdehyde (MDA) were examined via ELISA. Meanwhile, inflammatory cytokine (IL-6 and TNF-α) levels, and key molecules (NF-κB p65), cyclooxygenase 1 (COX-1 and COX2) involved in NF-κB pathway, were analyzed by using Western Blot. COX-1 and COX-2 levels were further measured by immunohistochemistry. The effects of DNJ on gastric functions were explored by measuring the changes of Motilin (MOT), Substance P (SP), Somatostatin (SS), and Vasoactive intestinal peptide (VIP) in GU mouse models with ELISA Kits. The results indicated that DNJ prevented indomethacin-caused increase of gastric volume. DNJ improved histopathology of GU mice when compared with the mice from IG group (P < 0.05). DNJ consumption decreased the levels of IL-6 and TNF-α (P < 0.05). DNJ increased antioxidant indices of GU mice by improving the activities of SOD, CAT and reduced GSH, and reduced MDA levels (P < 0.05). DNJ increased the levels of prostaglandin E2, COX-1, COX2, and reduced the levels of and

  17. R1: Platelets and Megakaryocytes contain functional NF-κB

    PubMed Central

    Spinelli, Sherry L.; Casey, Ann E.; Pollock, Stephen J.; Gertz, Jacqueline M.; McMillan, David H.; Narasipura, Srinivasa D.; Mody, Nipa A.; King, Michael R.; Maggirwar, Sanjay B.; Francis, Charles W.; Taubman, Mark B.; Blumberg, Neil; Phipps, Richard P.

    2010-01-01

    The Nuclear Factor (NF)-κB transcription factor family is well-known for their role in eliciting inflammation and promoting cell survival. We discovered that human megakaryocytes and platelets express the majority of NF-κB family members including the regulatory Inhibitor (I)-κB and Inhibitor Kappa Kinase (IKK) molecules. Objective Investigate the presence and role of NF-κB proteins in megakaryocytes and platelets. Methods and Results Anucleate platelets exposed to NF-κB inhibitors demonstrated impaired fundamental functions involved in repairing vascular injury and thrombus formation. Specifically, NF-κB inhibition diminished lamellapodia formation, decreased clot retraction times and reduced thrombus stability. Moreover, inhibition of I-κB-α phosphorylation (BAY-11-7082) reverts fully spread platelets back to a spheroid morphology. Addition of recombinant IKK-β or I-κB-α protein to BAY inhibitor-treated platelets partially restore platelet spreading in I-κB-α inhibited platelets, and addition of active IKK-β increased endogenous I-κB-α phosphorylation levels. Conclusions These novel findings support a crucial and non-classical role for the NF-κB family in modulating platelet function and reveal that platelets are sensitive to NF-κB inhibitors. As NF-κB inhibitors are being developed as anti-inflammatory and anti-cancer agents, they may have unintended effects on platelets. Based on these data, NF-κB is also identified as a new target to dampen unwanted platelet activation. PMID:20042710

  18. Lapatinib–induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors

    PubMed Central

    2013-01-01

    Introduction Triple-negative breast cancer (TNBC), a subtype of breast cancer with negative expressions of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is frequently diagnosed in younger women and has poor prognosis for disease-free and overall survival. Due to the lack of known oncogenic drivers for TNBC proliferation, clinical benefit from currently available targeted therapies is limited, and new therapeutic strategies are urgently needed. Methods Triple-negative breast cancer cell lines were treated with proteasome inhibitors in combination with lapatinib (a dual epidermal growth factor receptor (EGFR)/HER2 tyrosine kinase inhibitor). Their in vitro and in vivo viability was examined by MTT assay, clonogenic analysis, and orthotopic xenograft mice model. Luciferase reporter gene, immunoblot, and RT-qPCR, immunoprecipitation assays were used to investigate the molecular mechanisms of action. Results Our data showed that nuclear factor (NF)-κB activation was elicited by lapatinib, independent of EGFR/HER2 inhibition, in TNBCs. Lapatinib-induced constitutive activation of NF-κB involved Src family kinase (SFK)-dependent p65 and IκBα phosphorylations, and rendered these cells more vulnerable to NF-κB inhibition by p65 small hairpin RNA. Lapatinib but not other EGFR inhibitors synergized the anti-tumor activity of proteasome inhibitors both in vitro and in vivo. Our results suggest that treatment of TNBCs with lapatinib may enhance their oncogene addiction to NF-κB, and thus augment the anti-tumor activity of proteasome inhibitors. Conclusions These findings suggest that combination therapy of a proteasome inhibitor with lapatinib may benefit TNBC patients. PMID:24216290

  19. Non-canonical Wnt4 prevents skeletal aging and inflammation by inhibiting NF-κB

    PubMed Central

    Yu, Bo; Chang, Jia; Liu, Yunsong; Li, Jiong; Kevork, Kareena; Al-Hezaimi, Khalid; Graves, Dana T; Park, No-Hee; Wang, Cun-Yu

    2014-01-01

    Aging-related bone loss and osteoporosis affect millions of patients worldwide. Chronic inflammation associated with aging and arthritis promotes bone resorption and impairs bone formation. Here we show that Wnt4 attenuated bone loss in osteoporosis and skeletal aging by inhibiting nuclear factor-kappa B (NF-κB) via non-canonical Wnt signaling. Transgenic mice expressing Wnt4 from osteoblasts were significantly protected from bone loss and chronic inflammation induced by ovariectomy, tumor necrosis factor or natural aging. In addition to promoting bone formation, Wnt4 could inhibit osteoclast formation and bone resorption. Mechanistically, Wnt4 inhibited transforming growth factor beta-activated kinase 1-mediated NF-κB activation in macrophages and osteoclast precursors independent of β-catenin. Moreover, recombinant Wnt4 proteins were able to alleviate osteoporotic bone loss and inflammation by inhibiting NF-κB in vivo. Taken together, our results suggest that Wnt4 might be used as a therapeutic agent for treating osteoporosis by attenuating NF-κB. PMID:25108526

  20. Preventative effect of OMZ-SPT on lipopolysaccharide-induced acute lung injury and inflammation via nuclear factor-kappa B signaling in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ting; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014; Hou, Wanru

    Acute lung injury (ALI) is an early pathophysiologic change in acute respiratory distress syndrome and its management can be challenging. Omalizumab (Xolair™) is a recombinant DNA-derived, humanized antibody. OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. Here, we found that intramuscular administration of OMZ-SPT significantly improved survival and attenuated lung inflammation in female C57BL/6 mice suffering from lipopolysaccharide (LPS)-induced ALI. We also demonstrated that OMZ-SPT can inhibit expression of the inflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 by ELISA in mice suffering from LPS-induced ALI and a mouse macrophage line (RAW264.7 cells). In addition, we showedmore » that OMZ-SPT inhibited LPS-induced activation of nuclear factor-kappa B (NF-κB) signaling and total expression of NF-κB by western blotting. These data suggest that OMZ-SPT could be a novel therapeutic choice for ALI. - Highlights: • OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. • Omalizumab (Xolair™) have anti-inflammatory effects. • OMZ-SPT can inhibit inflammatory responses and lung injury in LPS-induced ALI mice. • Protective effect of OMZ-SPT on ALI is due to inhibition of NF-κB signaling. • OMZ-SPT could be a novel therapeutic choice for ALI.« less

  1. Lithospermum erythrorhizon extract inhibits Der p2-induced inflammatory response through alleviation of thymic stromal lymphopoietin, nuclear factor Kappa B, and inflammasome expression in human bronchial epithelial cells.

    PubMed

    Yen, Chung-Yang; Chiang, Wen-Dee; Liu, Shang-Yong; Wang, Kun-Teng; Liao, En-Chih; Hsieh, Ching-Liang

    2017-04-06

    Lithospermum erythrorhizon (LE) and Angelica sinensis (AS), widely used in several folk medicine for wound, pus discharge and dermatitis for the history of several hundred years in Asian countries. To investigate the therapeutic effect of LE and AS on Der p2-induced inflammatory response in human bronchial epithelial (BEAS-2B) cells. The effects of Der p2 stimulation on thymic stromal lymphopoietin (TSLP), the nuclear factor kappa B (NF-κB) pathway, the inflammasome (specifically, the apoptosis speck-like protein [ASC] and nod-like receptor 3 [NLRP3]), Caspase-1 and the signal transducer and activator of transcription (STAT) 3 pathway were evaluated in the human bronchial epithelial (BEAS-2B) cells. The results indicated that LE, AS, and LE+AS reduced TSLP, I kappa B kinase-α, and NLRP3 levels; LE and AS reduced Caspase-1; LE and LE+AS also reduced NF-κB p50, NF-κB p65, ASC, and STAT3 levels. Both LE and AS aqueous extracts exert anti-inflammatory effects in Der p2-stimulated BEAS-2B cells. These effects may involve multiple mechanisms, including the inhibition of TSLP production as well as the suppression of IKKα, Caspase-1 and NLRP3; however, additional studies are warranted to elucidate the underlying mechanisms. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. Expression of NF-kappaB dependent genes in human cells in response to heavy ion beams

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine; Baumstark-Khan, Christa; Ruland, Rebecca; Schmitz, Claudia; Lau, Patrick; Testard, Isabelle; Reitz, Guenther

    Space radiation is a primary concern for manned spaceflight and is a potentially limiting factor for long term orbital and interplanetary missions. Understanding of the cellular and molecular processes underlying cell death and transformation related events by space radiation may allow better risk estimation and development of appropriate countermeasures. The pathway leading to activation of the transcription factor nuclear factor κB (NF-κB) and increased transcription of its target gene might modulate cellular radiation response. Previous studies suggest a linear energy transfer (LET) dependency of transcription factor nuclear factor κB (NF-κB) activation: high LET radiation activates NF-κB more efficiently than low LET radiation. In this work, the relative expressions of several NF-κB regulated genes (Gadd45β, NFKBIA encoding the NF-κB inhibitor IκBα, and the anti-apoptotic genes XIAP, bcl-2, and bcl-xL) were examined by quantitative real-time Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR). Human embryonic cells with neuronal differentiation potential (HEK/293) were exposed to accelerated heavy ions or to X-rays (200 kV) or incubated in presence of the strong NF-κB activator tumor necrosis factor α (TNF-α). Target gene expression data were normalized to the expression index of several unregulated reference genes (B2M, GAPDH, PBGD, HPRT). NFKBIA expression is enhanced for 24 h after TNF-α treatment, while Gadd45β expression was only temporarily up-regulated. High doses of X-rays (8 and 16 Gy) and of 13 C ions (75 MeV/n, LET 33 keV/µm, 4.7 Gy) up-regulate NFKBIA and Gadd45β expression temporarily. 13 C ion with higher LET (35 MeV/n, 73 keV/µm) enhance NFKBIA expression already after 1 Gy, and a passing up-regulation of Bcl-2, bcl-xL and XIAP expression was observed 2 h after 0.5 Gy. 20 Ne (95 MeV/A, 80 keV/µm) and 36 Ar ions (95 MeV/A, 271 keV/µm) were the strongest inducers of Gadd45β, NFKBIA, and XIAP with doses from 0.5 to 3.8 Gy

  3. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells.

    PubMed

    Jones, Jane T; Qian, Xi; van der Velden, Jos L J; Chia, Shi Biao; McMillan, David H; Flemer, Stevenson; Hoffman, Sidra M; Lahue, Karolyn G; Schneider, Robert W; Nolin, James D; Anathy, Vikas; van der Vliet, Albert; Townsend, Danyelle M; Tew, Kenneth D; Janssen-Heininger, Yvonne M W

    2016-08-01

    Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor. Copyright

  4. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways.

    PubMed

    Nair, Rajan P; Duffin, Kristina Callis; Helms, Cynthia; Ding, Jun; Stuart, Philip E; Goldgar, David; Gudjonsson, Johann E; Li, Yun; Tejasvi, Trilokraj; Feng, Bing-Jian; Ruether, Andreas; Schreiber, Stefan; Weichenthal, Michael; Gladman, Dafna; Rahman, Proton; Schrodi, Steven J; Prahalad, Sampath; Guthery, Stephen L; Fischer, Judith; Liao, Wilson; Kwok, Pui-Yan; Menter, Alan; Lathrop, G Mark; Wise, Carol A; Begovich, Ann B; Voorhees, John J; Elder, James T; Krueger, Gerald G; Bowcock, Anne M; Abecasis, Gonçalo R

    2009-02-01

    Psoriasis is a common immune-mediated disorder that affects the skin, nails and joints. To identify psoriasis susceptibility loci, we genotyped 438,670 SNPs in 1,409 psoriasis cases and 1,436 controls of European ancestry. We followed up 21 promising SNPs in 5,048 psoriasis cases and 5,041 controls. Our results provide strong support for the association of at least seven genetic loci and psoriasis (each with combined P < 5 x 10(-8)). Loci with confirmed association include HLA-C, three genes involved in IL-23 signaling (IL23A, IL23R, IL12B), two genes that act downstream of TNF-alpha and regulate NF-kappaB signaling (TNIP1, TNFAIP3) and two genes involved in the modulation of Th2 immune responses (IL4, IL13). Although the proteins encoded in these loci are known to interact biologically, we found no evidence for epistasis between associated SNPs. Our results expand the catalog of genetic loci implicated in psoriasis susceptibility and suggest priority targets for study in other auto-immune disorders.

  5. c-rel activates but v-rel suppresses transcription from kappa B sites.

    PubMed Central

    Inoue, J; Kerr, L D; Ransone, L J; Bengal, E; Hunter, T; Verma, I M

    1991-01-01

    We show that the product of the protooncogene c-rel is a constituent of an NF-kappa B-like complex that binds to the kappa B site originally identified in the enhancer of immunoglobulin kappa light chain gene. c-rel protein synthesized in bacteria binds to the kappa B site in a sequence-specific manner. The rel-kappa B complex can be disrupted by incubation with anti-rel antibodies. The rel protein can form oligomers. The c-rel protein can activate transcription from promoters containing kappa B sites; v-rel, on the other hand, suppresses the transcription of genes linked to kappa B sites. Thus, v-rel may interfere with the normal transcriptional machinery of the cell by acting as a dominant negative mutant. Images PMID:2023921

  6. Porcine coronin 1A contributes to nuclear factor-kappa B (NF-κB) inactivation during Haemophilus parasuis infection.

    PubMed

    Liu, Chong; Wang, Yang; Zhang, Hengling; Cheng, Shuang; Charreyre, Catherine; Audonnet, Jean Christophe; Chen, Pin; He, Qigai

    2014-01-01

    Haemophilus parasuis (H.parasuis) is the etiological agent of porcine polyserositis and arthritis (Glässer's disease) characterized by fibrinous polyserositis, meningitis and polyarthritis, causing severe economic losses to the swine industry. Currently, the molecular basis of this infection is largely unkonwn. Coronin 1A (Coro1A) plays important roles in host against bacterial infection, yet little is known about porcine Coro1A. In this study, we investigated the molecular characterization of porcine Coro1A, revealing that porcine Coro1A was widely expressed in different tissues. Coro1A could be induced by lipopolysaccharide (LPS), polyinosinic acid-polycytidylic acid [poly (I:C)] and H.parasuis in porcine kidney-15 (PK-15) cells. Functional analyses revealed that porcine Coro1A suppressed the NF-κB activation during H.parasuis infection by inhibiting the degradation of IκBα and nuclear translocation of p65. Overexpression of porcine Coro1A inhibited the transcription of NF-κB-mediated downstream genes [Interleukin-6 (IL-6), Interleukin-8 (IL-8) and COX-2] through down-regulation of NF-κB. The results indicated that porcine Coro1A is an important immunity related gene that helps to inhibit NF-kB activation during H. parasuis infection.

  7. Tumor necrosis factor-{alpha} enhances IL-15-induced natural killer cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jiwon; Lee, Suk Hyung; Korea University of Science and Technology, Yusong, Daejeon 305-333

    2009-09-04

    The differentiation of natural killer (NK) cells is regulated by various factors including soluble growth factors and transcription factors. Here, we have demonstrated that tumor necrosis factor-{alpha} (TNF-{alpha}) is a positive regulator of NK cell differentiation. TNF-{alpha} augmented the IL-15-induced expression of NK1.1 and CD122 in mature NK cells, and TNF-{alpha} alone also induced NK cell maturation as well as IL-15. TNF-{alpha} also increased IFN-{gamma} production in NK cells in the presence of IL-15. Meanwhile, mRNA expression of several transcription factors, including T-bet and GATA-3, was increased by the addition of TNF-{alpha} and IL-15. In addition, TNF-{alpha} increased nuclear factor-kappamore » B (NF-{kappa}B) activity in NK cells and inhibition of NF-{kappa}B impeded TNF-{alpha}-enhanced NK cell maturation. Overall, these data suggest that TNF-{alpha} significantly increased IL-15-driven NK cell differentiation by increasing the expression of transcription factors that play crucial roles in NK cell maturation and inducing the NF-{kappa}B activity.« less

  8. [Effects of tanshinone- II A sulfonate on expression of nuclear factor-kappaB, vascular cell adhesion molecule-1 and hemorrheology during spinal cord ischemia reperfusion injury].

    PubMed

    Zhang, Li; An, Guo-Yao; Zhang, Wen-Guang; Chen, Kai

    2012-12-01

    To observe effects of Tanshinone- II A sulfonate on expression of Nuclear factor-kappaB (NF-kappaB), Vascular Cell Adhesion Molecule-1 (VCAM-1) and hemorrheology during spinal cord ischemia reperfusion injury,and explore the function and mechnism. Fifty-four New Zealand rabbits (aged 3 months,weighted 2.0 +/- 0.2 kg) were randomly divided into 6 in sham group (lumbar artery were separated in operation,0.8 ml/kg saline were injected at 0.5 h before and after operation), 24 in ischemia group ( lumbar artery were clipped after seperation, and the same dose of saline), 24 in Tanshinone group (lumbar artery were clipped after seperation, and the same dose of Tanshinone- II A sulfonate) . Abdomincal aorta blood were drawed after treatment respectively at 0.5 h, 1 h, 4 h and 8 h, and tesetd whole blood viscosity [high cut (mpa.s)/150(l/s), middle cut (mpa.s)/60(l/s) and low cut (mpa.s)/10(l/s)], capillary plasma viscosity, red cell aggregation index, rigid index, deformation index and electrophoresis index. Spinal cord tissues were divided into two sections,one fixed in 4% paraformaldehyde, another stored in liquid nitrogen. Immunohistochemical method and ELISA were used to test change of content of NF-kappaB and VCAM-1. 1) The expression of NF-kappaB in Tanshinone group were lowest, and in ischemia group were highest. 2) Compared with sham group, VCAM-1 in ischemia group at different time were obviously increased,especially at 0.5, 1 and 4 h (P<0.01), and had meaning at 8 h (P<0.05). Compare between Tanshinone group and ischemia group, VCAM-1 at 0.5 h were obviously decreased (P<0.01), and had meaning at 1 h, 4 h and 8 h (P<0.05). 3) There were no postive vasvular expression in sham group, and at 0.5 h in Tanshinone group and ischemia group. The highest postive vasvular expression in ischemia group were at 1 h, 4 h and 8 h, and had significant meaning at 1 h and 4 h between ischemia group and Tanshinone group (P<0.05), and 8 h were obviously most. 4) The whole blood

  9. An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B.

    PubMed

    Fishman, Pnina; Bar-Yehuda, Sara; Ohana, Gil; Barer, Faina; Ochaion, Avivit; Erlanger, Abigail; Madi, Lea

    2004-04-01

    A(3) adenosine receptor (A(3)AR) activation with the specific agonist CF101 has been shown to inhibit the development of colon carcinoma growth in syngeneic and xenograft murine models. In the present study, we looked into the effect of CF101 on the molecular mechanisms involved in the inhibition of HCT-116 colon carcinoma in mice. In tumor lesions derived from CF101-treated mice, a decrease in the expression level of protein kinase A (PKA) and an increase in glycogen synthase kinase-3 beta (GSK-3 beta) was observed. This gave rise to downregulation of beta-catenin and its transcriptional gene products cyclin D1 and c-Myc. Further mechanistic studies in vitro revealed that these responses were counteracted by the selective A(3)AR antagonist MRS 1523 and by the GSK-3 beta inhibitors lithium and SB216763, confirming that the observed effects were A(3)AR and GSK-3 beta mediated. CF101 downregulated PKB/Akt expression level, resulting in a decrease in the level and DNA-binding capacity of NF-kappa B, both in vivo and in vitro. Furthermore, the PKA and PKB/Akt inhibitors H89 and Worthmannin mimicked the effect of CF101, supporting their involvement in mediating the response to the agonist. This is the first demonstration that A(3)AR activation induces colon carcinoma growth inhibition via the modulation of the key proteins GSK-3 beta and NF-kappa B.

  10. Direct Activation of NADPH Oxidase 2 by 2-Deoxyribose-1-Phosphate Triggers Nuclear Factor Kappa B-Dependent Angiogenesis

    PubMed Central

    Vara, Dina; Watt, Joanna M.; Fortunato, Tiago M.; Mellor, Harry; Burgess, Matthew; Wicks, Kate; Mace, Kimberly; Reeksting, Shaun; Lubben, Anneke; Wheeler-Jones, Caroline P.D.

    2018-01-01

    Abstract Aims: Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells. Results: Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting, gene silencing of different NADPH oxidases (NOXs), and their regulatory cosubunits by small interfering RNA (siRNA) transfection, and experiments with inhibitors of the sugar transporter glucose transporter 1 (GLUT1) were utilized to demonstrate that dRP acts intracellularly by directly activating the endothelial NOX2 complex, but not NOX4. Increased reactive oxygen species generation in response to NOX2 activity leads to redox-dependent activation of the transcription factor nuclear factor kappa B (NF-κB), which, in turn, induces vascular endothelial growth factor receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, gene silencing by siRNA, and antibody-based receptor inhibition, we demonstrate that the activation of NF-κB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The upregulation of VEGFR2 and NOX2-dependent stimulation of angiogenesis by dRP were confirmed in excisional wound and Matrigel plug vascularization assays in vivo using NOX2−/− mice. Innovation: For the first time, we demonstrate that dRP acts intracellularly and stimulates superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex. Conclusions: This study describes a novel molecular mechanism underlying the proangiogenic activity of dRP, which involves the sequential activation of NOX2 and NF-κB and upregulation of VEGFR2. Antioxid. Redox Signal. 28, 110–130. PMID:28793782

  11. Immunotoxicity of ochratoxin A and aflatoxin B1 in combination is associated with the nuclear factor kappa B signaling pathway in 3D4/21 cells.

    PubMed

    Hou, Lili; Gan, Fang; Zhou, Xuan; Zhou, Yajiao; Qian, Gang; Liu, Zixuan; Huang, Kehe

    2018-05-01

    The co-contamination of cereals, grains, crops, and animal feeds by mycotoxins is a universal problem. Humans and animals are exposed to several mycotoxins simultaneously as evidenced by extensive studies on this topic. Yet, most studies have addressed the effects of mycotoxins individually. Aflatoxin B1 and ochratoxin A can induce immunotoxicity. However, it remains unclear whether a combination of these mycotoxins aggravates immunotoxicity and the potential mechanism underlying this effect. In this study, we used the cell line 3D4/21, swine alveolus macrophages and innate immune cell. The results showed that the percentage of cell inhibition, annexin V/PI-positive rates, and the expression of pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-6) significantly increased and the release of lactate dehydrogenase and phagocytotic index were significantly decreased at different concentrations of aflatoxin B1 and ochratoxin A combination when compared with control. The combination of aflatoxin B1 and ochratoxin A significantly decreased the production of GSH and increased reactive oxygen species level. However, N-acetylcysteine suppressed the oxidative stress and alleviated the immunotoxicity induced by the combination. The combination of aflatoxin B1 and ochratoxin A markedly enhanced the degradation of IκBa, the phosphorylation of nuclear factor kappa B (p65), and the translocation of activated nuclear factor kappa B (NF-κB) into the nuclei as demonstrated by western blotting and confocal laser scanning microscopy. These effects could be reversed by BAY 11-7082, a specific inhibitor of NF-κB. Taken together, a combination of aflatoxin B1 and ochratoxin A could aggravate immunotoxicity by activating the NF-κB signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms.

    PubMed

    Cho, Hyun-Ji; Jeong, Yun-Jeong; Park, Kwan-Kyu; Park, Yoon-Yub; Chung, Il-Kyung; Lee, Kwang-Gill; Yeo, Joo-Hong; Han, Sang-Mi; Bae, Young-Seuk; Chang, Young-Chae

    2010-02-17

    Bee venom has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and for the relief of pain in traditional oriental medicine. The purpose of this study is to elucidate the effects of bee venom on MMP-9 expression and determine possible mechanisms by which bee venom relieves or prevents the expression of MMP-9 during invasion and metastasis of breast cancer cells. We examined the expression and activity of MMP-9 and possible signaling pathway affected in PMA-induced MCF-7 cells. Bee venom was obtained from the National Institute of Agricultural Science and Technology of Korea. Matrigel invasion assay, wound-healing assay, zymography assay, western blot assay, electrophoretic mobility shift assay and luciferase gene assay were used for assessment. Bee venom inhibited cell invasion and migration, and also suppressed MMP-9 activity and expression, processes related to tumor invasion and metastasis, in PMA-induced MCF-7 cells. Bee venom specifically suppressed the phosphorylation of p38/JNK and at the same time, suppressed the protein expression, DNA binding and promoter activity of NF-kappaB. The levels of phosphorylated ERK1/2 and c-Jun did not change. We also investigated MMP-9 inhibition by melittin, apamin and PLA(2), representative single component of bee venom. We confirmed that PMA-induced MMP-9 activity was significantly decreased by melittin, but not by apamin and phospholipase A(2). These data demonstrated that the expression of MMP-9 was abolished by melittin, the main component of bee venom. Bee venom inhibits PMA-induced MMP-9 expression and activity by inhibition of NF-kappaB via p38 MAPK and JNK signaling pathways in MCF-7 cells. These results indicate that bee venom can be a potential anti-metastatic and anti-invasive agent. This useful effect may lead to future clinical research on the anti-cancer properties of bee venom. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  13. Inhibition of NF-kappa B pathway leads to deregulation of epithelial-mesenchymal transition and neural invasion in pancreatic cancer.

    PubMed

    Nomura, Alice; Majumder, Kaustav; Giri, Bhuwan; Dauer, Patricia; Dudeja, Vikas; Roy, Sabita; Banerjee, Sulagna; Saluja, Ashok K

    2016-12-01

    NF-κB has an essential role in the initiation and progression of pancreatic cancer and specifically mediates the induction of epithelial-mesenchymal transition and invasiveness. In this study, we demonstrate the importance of activated NF-κB signaling in EMT induction, lymphovascular metastasis, and neural invasion. Modulation of NF-κB activity was accomplished through the specific NF-κB inhibitor (BAY 11-7085), triptolide, and Minnelide treatment, as well as overexpression of IKBα repressor and IKK activator plasmids. In the classical lymphovascular metastatic cascade, inhibition of NF-κB decreased the expression of several EMT transcription factors (SNAI1, SNAI2, and ZEB1) and mesenchymal markers (VIM and CDH2) and decreased in vitro invasion, which was rescued by IKK activation. This was further demonstrated in vivo via BAY 11-7085 treatment in a orthotopic model of pancreatic cancer. In vivo NF-κB inhibition decreased tumor volume; decreased tumor EMT gene expression, while restoring cell-cell junctions; and decreasing overall metastasis. Furthermore, we demonstrate the importance of active NF-κB signaling in neural invasion. Triptolide treatment inhibits Nerve Growth Factor (NGF) mediated, neural-tumor co-culture in vitro invasion, and dorsal root ganglia (DRG) neural outgrowth through a disruption in tumor-neural cross talk. In vivo, Minnelide treatment decreased neurotrophin expression, nerve density, and sciatic nerve invasion. Taken together, this study demonstrates the importance of NF-κB signaling in the progression of pancreatic cancer through the modulation of EMT induction, lymphovascular invasion, and neural invasion.

  14. Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells (NF-κB) - a Friend, a Foe, or a Bystander - in the Neurodegenerative Cascade and Pathogenesis of Alzheimer's Disease.

    PubMed

    Marwarha, Gurdeep; Ghribi, Othman

    2017-01-01

    NF-κB is a ubiquitous transcription factor that was discovered three decades ago. Since its discovery, this protein complex has been implicated in numerous physiological and pathophysiological processes such as synaptic plasticity, learning and memory, inflammation, insulin resistance, and oxidative stress among other factors that are intricately involved and dysregulated in Alzheimer's disease (AD). We embarked on a methodical and an objective review of contemporary literature to integrate the indispensable physiological functions of NF-κB in neuronal phsyiology with the undesirable pathophysiological attributes of NF-κB in the etiopathogenesis of Alzheimer's disease. In our approach, we first introduced Alzheimer's disease and subsequently highlighted the multifaceted roles of NF-κB in the biological processes altered in the progression of Alzheimer's disease including synaptic transmission, synaptic plasticity, learning, and memory, neuronal survival and apoptosis, adult neurogenesis, regulation of neural processes and structural plasticity, inflammation, and Amyloid-β production and toxicity. Our comprehensive review highlights and dissects the physiological role of NF-κB from its pathological role in the brain and delineates both, its beneficial as well as deleterious, role in the etiopathogenesis of Alzheimer's disease. In light of our understanding of the duality of the role of NF-κB in the pathogenesis of Alzheimer's disease, further studies are warranted to dissect and understand the basis of the dichotomous effects of NF-κB, so that certain selective benevolent and benign attributes of NF-κB can be spared while targeting its deleterious attributes and facets that are integral in the pathogenesis of Alzheimer's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. A positive feedback loop involving EGFR/Akt/mTORC1 and IKK/NF-κB regulates head and neck squamous cell carcinoma proliferation

    PubMed Central

    Li, Zhipeng; Yang, Zejia; Passaniti, Antonino; Lapidus, Rena G.; Liu, Xuefeng; Cullen, Kevin J.; Dan, Han C.

    2016-01-01

    The overexpression or mutation of epidermal growth factor receptor (EGFR) has been associated with a number of cancers, including head and neck squamous cell carcinoma (HNSCC). Increasing evidence indicates that both the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of Rapamycin (mTOR) and the nuclear factor-kappa B (NF-κB) are constitutively active and contribute to aggressive HNSCC downstream of EGFR. However, whether these two oncogenic signaling pathways exhibit molecular and functional crosstalk in HNSCC is unclear. Our results now reveal that mTORC1, not mTORC2, contributes to NF-κB activation downstream of EGFR/PI3K/Akt signaling. Mechanistically, mTORC1 enhances the inhibitor of nuclear factor kappa-B kinase (IKK) activity to accelerate NF-κB signaling. Concomitantly, activated NF-κB/IKK up-regulates EGFR expression through positive feedback regulation. Blockage of NF-κB/IKK activity by the novel IKKβ specific inhibitor, CmpdA, leads to significant inhibition of cell proliferation and induction of apoptosis. CmpdA also sensitizes intrinsic cisplatin-resistant HNSCC cells to cisplatin treatment. Our findings reveal a new mechanism by which EGFR/PI3K/Akt/mTOR signaling promotes head and neck cancer progression and underscores the need for developing a therapeutic strategy for targeting IKK/NF-κB either as a single agent or in combination with cisplatin in head and neck cancer. PMID:26895469

  16. Anticarcinogenesis by dietary phytochemicals: cytoprotection by Nrf2 in normal cells and cytotoxicity by modulation of transcription factors NF-kappa B and AP-1 in abnormal cancer cells.

    PubMed

    Gopalakrishnan, Avanthika; Tony Kong, Ah-Ng

    2008-04-01

    Cancer statistics from the American Cancer Society and other sources are a stark reminder of our failure to combat this deadly disease. Chemoprevention entails the use of specific naturally occurring dietary or synthetic agents to thwart cancer development and progression. Some of these agents are believed to do so by protecting the cells or tissues from the malicious attack of exogenous carcinogens and/or endogenous reactive oxygen/nitrogen species (RONS) by inducing several detoxifying/antioxidant enzymes that appear to form stable conjugates such as glutathione, glucuronides or sulfates thus rendering the carcinogenic species harmless. This process of inducing the cellular defense enzymes is believed to be mediated by the antioxidant response elements (ARE) within the promoter regions of these genes. Nrf2, a redox sensitive transcription factor has been documented to play a central role in ARE-driven gene expression. Nrf2, under normal unstimulated conditions, remains sequestered in the cytosol by Keap1. The putative chemopreventive agents disrupt the Nrf2-Keap1 association, thereby releasing Nrf2 which then translocates to the nucleus and drives the gene expression of detoxifying enzymes. The role of other transcription factors such as NF-kappaB and AP-1 in carcinogenesis is well established. By modulating the activity of these transcription factors and their upstream signaling molecules, naturally occurring dietary phytochemicals appear to cause apoptosis in abnormal cells that over-express these factors, thereby inhibiting the promotion and progression. This review discusses the most current and up to date understanding of the possible signaling mechanisms by which these naturally dietary phytochemicals can differentially modulate signal transduction cascades such that they can bring about apoptosis/cell death in abnormal cancer cells but at the same time induce defensive enzymes to protect against carcinogenesis in normal cells.

  17. Genome-wide characterization and expression analysis of citrus NUCLEAR FACTOR-Y (NF-Y) transcription factors identified a novel NF-YA gene involved in drought-stress response and tolerance.

    PubMed

    Pereira, Suzam L S; Martins, Cristina P S; Sousa, Aurizangela O; Camillo, Luciana R; Araújo, Caroline P; Alcantara, Grazielle M; Camargo, Danielle S; Cidade, Luciana C; de Almeida, Alex-Alan F; Costa, Marcio G C

    2018-01-01

    Nuclear factor Y (NF-Y) is a ubiquitous transcription factor found in eukaryotes. It is composed of three distinct subunits called NF-YA, NF-YB and NF-YC. NF-Ys have been identified as key regulators of multiple pathways in the control of development and tolerance to biotic and abiotic factors. The present study aimed to identify and characterize the complete repertoire of genes coding for NF-Y in citrus, as well as to perform the functional characterization of one of its members, namely CsNFYA5, in transgenic tobacco plants. A total of 22 genes coding for NF-Y were identified in the genomes of sweet orange (Citrus sinensis) and Clementine mandarin (C. clementina), including six CsNF-YAs, 11 CsNF-YBs and five CsNF-YCs. Phylogenetic analyses showed that there is a NF-Y orthologous in the Clementine genome for each sweet orange NF-Y gene; this was not observed when compared to Arabidopsis thaliana. CsNF-Y proteins shared the same conserved domains with their orthologous proteins in other organisms, including mouse. Analysis of gene expression by RNA-seq and EST data demonstrated that CsNF-Ys have a tissue-specific and stress inducible expression profile. qRT-PCR analysis revealed that CsNF-YA5 exhibits differential expression in response to water deficit in leaves and roots of citrus plants. Overexpression of CsNF-YA5 in transgenic tobacco plants contributed to the reduction of H2O2 production under dehydration conditions and increased plant growth and photosynthetic rate under normal conditions and drought stress. These biochemical and physiological responses to drought stress promoted by CsNF-YA5 may confer a productivity advantage in environments with frequent short-term soil water deficit.

  18. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jian; Zhang, Lin; Dai, Weiqi

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and alsomore » prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.« less

  19. Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT

    PubMed Central

    Checker, Rahul; Sandur, Santosh K.; Sharma, Deepak; Patwardhan, Raghavendra S.; Jayakumar, S.; Kohli, Vineet; Sethi, Gautam; Aggarwal, Bharat B.; Sainis, Krishna B.

    2012-01-01

    Background Ursolic acid (UA), a pentacyclic triterpenoid carboxylic acid, is the major component of many plants including apples, basil, cranberries, peppermint, rosemary, oregano and prunes and has been reported to possess antioxidant and anti-tumor properties. These properties of UA have been attributed to its ability to suppress NF-κB (nuclear factor kappa B) activation. Since NF-κB, in co-ordination with NF-AT (nuclear factor of activated T cells) and AP-1(activator protein-1), is known to regulate inflammatory genes, we hypothesized that UA might exhibit potent anti-inflammatory effects. Methodology/Principal Findings The anti-inflammatory effects of UA were assessed in activated T cells, B cells and macrophages. Effects of UA on ERK, JNK, NF-κB, AP-1 and NF-AT were studied to elucidate its mechanism of action. In vivo efficacy of UA was studied using mouse model of graft-versus-host disease. UA inhibited activation, proliferation and cytokine secretion in T cells, B cells and macrophages. UA inhibited mitogen-induced up-regulation of activation markers and co-stimulatory molecules in T and B cells. It inhibited mitogen-induced phosphorylation of ERK and JNK and suppressed the activation of immunoregulatory transcription factors NF-κB, NF-AT and AP-1 in lymphocytes. Treatment of cells with UA prior to allogenic transplantation significantly delayed induction of acute graft-versus-host disease in mice and also significantly reduced the serum levels of pro-inflammatory cytokines IL-6 and IFN-γ. UA treatment inhibited T cell activation even when added post-mitogenic stimulation demonstrating its therapeutic utility as an anti-inflammatory agent. Conclusions/Significance The present study describes the detailed mechanism of anti-inflammatory activity of UA. Further, UA may find application in the treatment of inflammatory disorders. PMID:22363615

  20. Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation.

    PubMed

    Bonnet, Amandine; Randrianarison-Huetz, Voahangy; Nzounza, Patrycja; Nedelec, Martine; Chazal, Maxime; Waast, Laetitia; Pene, Sabrina; Bazarbachi, Ali; Mahieux, Renaud; Bénit, Laurence; Pique, Claudine

    2012-09-25

    The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4⁺ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4⁺ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. These data reveal that the

  1. Low nuclear body formation and tax SUMOylation do not prevent NF-kappaB promoter activation

    PubMed Central

    2012-01-01

    Background The Tax protein encoded by Human T-lymphotropic virus type 1 (HTLV-1) is a powerful activator of the NF-κB pathway, a property critical for HTLV-1-induced immortalization of CD4+ T lymphocytes. Tax permanently stimulates this pathway at a cytoplasmic level by activating the IκB kinase (IKK) complex and at a nuclear level by enhancing the binding of the NF-κB factor RelA to its cognate promoters and by forming nuclear bodies, believed to represent transcriptionally active structures. In previous studies, we reported that Tax ubiquitination and SUMOylation play a critical role in Tax localization and NF-κB activation. Indeed, analysis of lysine Tax mutants fused or not to ubiquitin or SUMO led us to propose a two-step model in which Tax ubiquitination first intervenes to activate IKK while Tax SUMOylation is subsequently required for promoter activation within Tax nuclear bodies. However, recent studies showing that ubiquitin or SUMO can modulate Tax activities in either the nucleus or the cytoplasm and that SUMOylated Tax can serve as substrate for ubiquitination suggested that Tax ubiquitination and SUMOylation may mediate redundant rather than successive functions. Results In this study, we analyzed the properties of a new Tax mutant that is properly ubiquitinated, but defective for both nuclear body formation and SUMOylation. We report that reducing Tax SUMOylation and nuclear body formation do not alter the ability of Tax to activate IKK, induce RelA nuclear translocation, and trigger gene expression from a NF-κB promoter. Importantly, potent NF-κB promoter activation by Tax despite low SUMOylation and nuclear body formation is also observed in T cells, including CD4+ primary T lymphocytes. Moreover, we show that Tax nuclear bodies are hardly observed in HTLV-1-infected T cells. Finally, we provide direct evidence that the degree of NF-κB activation by Tax correlates with the level of Tax ubiquitination, but not SUMOylation. Conclusions These

  2. Dynamic NF-κB and E2F interactions control the priority and timing of inflammatory signalling and cell proliferation

    PubMed Central

    Ankers, John M; Awais, Raheela; Jones, Nicholas A; Boyd, James; Ryan, Sheila; Adamson, Antony D; Harper, Claire V; Bridge, Lloyd; Spiller, David G; Jackson, Dean A; Paszek, Pawel; Sée, Violaine; White, Michael RH

    2016-01-01

    Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI: http://dx.doi.org/10.7554/eLife.10473.001 PMID:27185527

  3. The suppression of radiation-induced NF-{kappa}B activity by dexamethasone correlates with increased cell death in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Seon Young; Chung, Hee-Yong

    2005-10-21

    In this study, we show that dexamethasone treatment increases ionizing radiation-induced cell death by inducing the inhibitory {kappa}B{alpha} (I{kappa}B{alpha}) pathway in mice. The effect of dexamethasone on radiation-induced cell death was assessed by changes in total spleen cellularity and bone marrow colony-forming unit-granulocyte-macrophage (CFU-GM) contents after total body irradiation. While in vivo treatment of mice with dexamethasone alone (1 mg/kg/day, for 2 days) failed to elicit cell death in spleen cells, the combined treatment with dexamethasone (1 mg/kg/day, for 2 days) and {gamma}-rays (1 or 5 Gy) caused a 50-80% reduction in total cellularity in spleen and CFU-GM contents inmore » bone marrow. These results demonstrate that dexamethasone has a synergistic effect on radiation-induced cellular damages in vivo. Immunoblot analysis showed that dexamethasone treatment significantly increases I{kappa}B{alpha} expression in the spleens of irradiated mice. In addition, the dexamethasone treatment significantly reduced radiation-induced nuclear translocation of the nucleus factor-{kappa}B in the spleens of irradiated mice. These results indicate that dexamethasone treatment in vivo may increase radiation-induced cell damages by increasing I{kappa}B{alpha} expression in hematopoietic organs such as spleen and bone marrow.« less

  4. Glycyrrhetinic acid suppressed NF-κB activation in TNF-α-induced hepatocytes.

    PubMed

    Chen, Hong-Jhang; Kang, Shih-Pei; Lee, I-Jung; Lin, Yun-Lian

    2014-01-22

    Tumor necrosis factor-alpha (TNF-α) is a crucial inflammatory cytokine when hepatocytes are damaged. Glycyrrhiza uralensis Fisch. (Chinese licorice) has been widely used in Chinese herbal prescriptions for the treatment of liver diseases and as a food additive. Nuclear factor-kappa B (NF-κB) reporter gene assay in TNF-α-induced HepG2 was used as a screening platform. IκBα phosphorylation and p65 translocation were measured by Western blotting, and nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression were further confirmed in rat primary hepatocytes. Results showed that TNF-α enhanced NF-κB activity was significantly attenuated by glycyrrhetinic acid in a concentration-dependent manner in the NF-κB reporter gene assay. Glycyrrhetinic acid decreased the gene expression of iNOS through inhibited IκBα phosphorylation and p65 translocation in protein level. Furthermore, NO production and iNOS expression were reduced by glycyrrhetinic acid in TNF-α-induced rat primary hepatocytes. These results suggest that glycyrrhetinic acid may provide hepatoprotection against chronic liver inflammation through attenuating NF-κB activation to alleviate the inflammation.

  5. Fibroblast growth factor homologous factor 1 interacts with NEMO to regulate NF-κB signaling in neurons.

    PubMed

    König, Hans-Georg; Fenner, Beau J; Byrne, Jennifer C; Schwamborn, Robert F; Bernas, Tytus; Jefferies, Caroline A; Prehn, Jochen H M

    2012-12-15

    Neuronal survival and plasticity critically depend on constitutive activity of the transcription factor nuclear factor-κB (NF-κB). We here describe a role for a small intracellular fibroblast growth factor homologue, the fibroblast growth factor homologous factor 1 (FHF1/FGF12), in the regulation of NF-κB activity in mature neurons. FHFs have previously been described to control neuronal excitability, and mutations in FHF isoforms give rise to a form of progressive spinocerebellar ataxia. Using a protein-array approach, we identified FHF1b as a novel interactor of the canonical NF-κB modulator IKKγ/NEMO. Co-immunoprecipitation, pull-down and GAL4-reporter experiments, as well as proximity ligation assays, confirmed the interaction of FHF1 and NEMO and demonstrated that a major site of interaction occurred within the axon initial segment. Fhf1 gene silencing strongly activated neuronal NF-κB activity and increased neurite lengths, branching patterns and spine counts in mature cortical neurons. The effects of FHF1 on neuronal NF-κB activity and morphology required the presence of NEMO. Our results imply that FHF1 negatively regulates the constitutive NF-κB activity in neurons.

  6. Nonstructural proteins of respiratory syncytial virus suppress premature apoptosis by an NF-kappaB-dependent, interferon-independent mechanism and facilitate virus growth.

    PubMed

    Bitko, Vira; Shulyayeva, Olena; Mazumder, Barsanjit; Musiyenko, Alla; Ramaswamy, Murali; Look, Dwight C; Barik, Sailen

    2007-02-01

    The two nonstructural (NS) proteins NS1 and NS2 of respiratory syncytial virus (RSV) are abundantly expressed in the infected cell but are not packaged in mature progeny virions. We found that both proteins were expressed early in infection, whereas the infected cells underwent apoptosis much later. Coincident with NS protein expression, a number of cellular antiapoptotic factors were expressed or activated at early stages, which included NF-kappaB and phosphorylated forms of protein kinases AKT, phosphoinositide-dependent protein kinase, and glycogen synthase kinase. Using specific short interfering RNAs (siRNAs), we achieved significant knockdown of one or both NS proteins in the infected cell, which resulted in abrogation of the antiapoptotic functions and led to early apoptosis. NS-dependent suppression of apoptosis was observed in Vero cells that are naturally devoid of type I interferons (IFN). The siRNA-based results were confirmed by the use of NS-deleted RSV mutants. Early activation of epidermal growth factor receptor (EGFR) in the RSV-infected cell did not require NS proteins. Premature apoptosis triggered by the loss of NS or by apoptosis-promoting drugs caused a severe reduction of RSV growth. Finally, recombinantly expressed NS1 and NS2, individually and together, reduced apoptosis by tumor necrosis factor alpha, suggesting an intrinsic antiapoptotic property of both. We conclude that the early-expressed nonstructural proteins of RSV boost viral replication by delaying the apoptosis of the infected cell via a novel IFN- and EGFR-independent pathway.

  7. Activation of NF-kappa B Signaling Promotes Growth of Prostate Cancer Cells in Bone

    PubMed Central

    Jin, Renjie; Sterling, Julie A.; Edwards, James R.; DeGraff, David J.; Lee, Changki; Park, Serk In; Matusik, Robert J.

    2013-01-01

    Patients with advanced prostate cancer almost invariably develop osseous metastasis. Although many studies indicate that the activation of NF-κB signaling appears to be correlated with advanced cancer and promotes tumor metastasis by influencing tumor cell migration and angiogenesis, the influence of altered NF-κB signaling in prostate cancer cells within boney metastatic lesions is not clearly understood. While C4-2B and PC3 prostate cancer cells grow well in the bone, LNCaP cells are difficult to grow in murine bone following intraskeletal injection. Our studies show that when compared to LNCaP, NF-κB activity is significantly higher in C4-2B and PC3, and that the activation of NF-κB signaling in prostate cancer cells resulted in the increased expression of the osteoclast inducing genes PTHrP and RANKL. Further, conditioned medium derived from NF-κB activated LNCaP cells induce osteoclast differentiation. In addition, inactivation of NF-κB signaling in prostate cancer cells inhibited tumor formation in the bone, both in the osteolytic PC3 and osteoblastic/osteoclastic mixed C4-2B cells; while the activation of NF-κB signaling in LNCaP cells promoted tumor establishment and proliferation in the bone. The activation of NF-κB in LNCaP cells resulted in the formation of an osteoblastic/osteoclastic mixed tumor with increased osteoclasts surrounding the new formed bone, similar to metastases commonly seen in patients with prostate cancer. These results indicate that osteoclastic reaction is required even in the osteoblastic cancer cells and the activation of NF-κB signaling in prostate cancer cells increases osteoclastogenesis by up-regulating osteoclastogenic genes, thereby contributing to bone metastatic formation. PMID:23577181

  8. Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway.

    PubMed

    Xu, Yiming; Liu, Ling

    2017-09-01

    Influenza A viruses (IAV) result in severe public health problems with worldwide each year. Overresponse of immune system to IAV infection leads to complications, and ultimately causing morbidity and mortality. Curcumin has been reported to have anti-inflammatory ability. However, its molecular mechanism in immune responses remains unclear. We detected the pro-inflammatory cytokine secretion and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-related protein expression in human macrophages or mice infected by IAV with or without curcumin treatment. We found that the IAV infection caused a dramatic enhancement of pro-inflammatory cytokine productions of human macrophages and mice immune cells. However, curcumin treatment after IAV infection downregulated these cytokines production in a dose-dependent manner. Moreover, the NF-κB has been activated in human macrophages after IAV infection, while administration of curcumin inhibited NF-κB signaling pathway via promoting the expression of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and inhibiting the translocation of p65 from cytoplasm to nucleus. In summary, IAV infection could result in the inflammatory responses of immune cells, especially macrophages. Curcumin has the therapeutic potentials to relieve these inflammatory responses through inhibiting the NF-κB signaling pathway. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  9. NF-κB expression and its association with nutritional status in hemodialysis patients.

    PubMed

    Farage, Najla E; Stockler-Pinto, Milena B; Leal, Viviane O; Cardozo, Ludmila Lmf; Carraro-Eduardo, José Carlos; Fouque, Denis; Mafra, Denise

    2016-12-01

    This study aimed to evaluate the association among the expressions of pro- and anti-inflammatory nuclear factors (nuclear factor-kappaB, NF-κB and nuclear erythroid 2-related factor 2, Nrf2) and nutritional status in HD patients. This cross-sectional study included eighty-three HD patients. The peripheral blood mononuclear cells were isolated and processed for the evaluation of NF-κB and Nrf2 RNAm expression by quantitative real-time polymerase chain reaction. Muscle mass was estimated by creatinine index (CI) and percentage of body fat (%BF) by anthropometry. Seven-point subjective global assessment was also used to evaluate the nutritional status. The NF-κB expression was negatively correlated with CI (r = -0.54, p = 0.0001), serum albumin (r = -0.32, p = 0.02) and %BF (r = -0.61, p = 0.001). Multiple linear regression analysis revealed that NF-κB expression was independently associated with CI (β: -0.8, p = 0.013) and %BF (β: -0.42, p = 0.04). There was no correlation among Nrf2 and anthropometric and biochemical variables. The classical NF-κB activation seems to be associated with poor nutritional status in HD patients; however, the exact underlying mechanisms deserve further studies.

  10. Estrogen deficiency inhibits the odonto/osteogenic differentiation of dental pulp stem cells via activation of the NF-κB pathway.

    PubMed

    Wang, Yanping; Yan, Ming; Yu, Yan; Wu, Jintao; Yu, Jinhua; Fan, Zhipeng

    2013-06-01

    Various factors can affect the functions of dental pulp stem cells (DPSCs). However, little knowledge is available about the effects of estrogen deficiency on the differentiation of DPSCs. In this study, an estrogen-deficient rat model was constructed and multi-colony-derived DPSCs were obtained from the incisors of ovariectomized (OVX) or sham-operated rats. Odonto/osteogenic differentiation and the possible involvement of the nuclear factor kappa B (NF-κB) pathway in the OVX-DPSCs/Sham-DPSCs of these rats were then investigated. OVX-DPSCs presented decreased odonto/osteogenic capacity and an activated NF-κB pathway, as compared with Sham-DPSCs. When the cellular NF-κB pathway was specifically inhibited by BMS345541, the odonto/osteogenic potential in OVX-DPSCs was significantly upregulated. Thus, estrogen deficiency down-regulated the odonto/osteogenic differentiation of DPSCs by activating NF-κB signaling and inhibition of the NF-κB pathway effectively rescued the decreased differentiation potential of DPSCs.

  11. Differential control of growth, cell cycle progression, and expression of NF-{kappa}B in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh Tzechen; Brander Cancer Research Institute, New York Medical College, Hawthorne, NY 10532; Wijeratne, E. Kithsiri

    2005-11-11

    Ponicidin and oridonin are novel diterpenoids isolated from Rabdosia rubescens. We tested their effects in MCF-7 and MDA-MB-231 cells, as representing low and high invasive breast carcinoma, with normal MCF-10A cells. Clonogenicity and proliferation in MCF-7 cells were inhibited more significantly by ponicidin than oridonin, while the reverse was observed in MCF-10A cells. Ponicidin and oridonin induced S/G{sub 2}M arrest and G{sub 1}/S block in MCF-7 cells. In MCF-10A cells treated with either diterpenoid, induction of apoptosis was observed. Moreover, oridonin almost completely blocked MCF-10A progression from S to G{sub 2}/M phase; in contrast, ponicidin-treated MCF-10A cells showed no discernablemore » changes in cell cycle phase distribution. Neither diterpenoid affected growth of MDA-MB-231 cells, at the dose range effective for MCF-7 or MCF-10A cells. Ponicidin-treated MCF-7 cells expressed reduced levels of cyclin B1, cdc2, transcription factor E2F, and Rb including phosphorylation at S780. Less pronounced effects were found in cells treated with oridonin. Neither compound altered cyclin D1 and cdk4 in MCF-7 cells. In MCF-10A cells, oridonin was more active than ponicidin in inhibiting the expression of cyclin B1, cdc2, S780-phosphorylated Rb, and E2F. To further investigate induction of apoptosis in MCF-10A cells, we measured changes in NF-{kappa}B. Decreases in p65 or p50 forms of NF-{kappa}B and its upstream regulator I-{kappa}B were found in oridonin-treated MCF-10A and not MCF-7 cells. Taken together, these results provide a mechanistic framework for the cellular effects of ponicidin and oridonin in different stage breast cancer cells.« less

  12. Effect of nuclear factor kappa B on intercellular adhesion molecule-1 expression and neutrophil infiltration in lung injury induced by intestinal ischemia/reperfusion in rats

    PubMed Central

    Tian, Xiao-Feng; Yao, Ji-Hong; Li, Ying-Hua; Zhang, Xue-Song; Feng, Bing-An; Yang, Chun-Ming; Zheng, Shu-Sen

    2006-01-01

    AIM: To investigate the role of nuclear factor kappa B (NF-κB) in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R), and its effect on intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil infiltration. METHODS: Twenty-four Wistar rats were divided randomly into control, I/R and pyrrolidine dithiocarbamate (PDTC) treatment groups, n = 8 in each. I/R group and PDTC treatment group received superior mysenteric artery (SMA) occluding for 1 h and reperfusion for 2 h. PDTC group was administrated with intraperitoneal injection of 2% 100 mg/kg PDTC 1 h before surgery. Lung histology and bronchia alveolus lung fluid (BALF) protein were assayed. Serum IL-6, lung malondialdehyde (MDA) and myeloperoxidase (MPO) as well as the expression level of NF-κB and ICAM-1 were measured. RESULTS: Lung injury induced by intestinal I/R, was characterized by edema, hemorrhage and neutrophil infiltration as well as by the significant rising of BALF protein. Compared to control group, the levels of serum IL-6 and lung MDA and MPO increased significantly in I/R group (P = 0.001). Strong positive expression of NF-κB p65 and ICAM-1 was observed. After the administration of PDTC, the level of serum IL-6, lung MDA and MPO as well as NF-κB and ICAM-1 decreased significantly (P < 0.05) when compared to I/R group. CONCLUSION: The activation of NF-κB plays an important role in the pathogenesis of lung injury induced by intestinal I/R through upregulating the neutrophil infiltration and lung ICAM-1 expression. PDTC as an inhibitor of NF-κB can prevent lung injury induced by intestinal I/R through inhibiting the activity of NF-κB. PMID:16489637

  13. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    PubMed

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.

  14. African Swine Fever Virus IAP-Like Protein Induces the Activation of Nuclear Factor Kappa B

    PubMed Central

    Rodríguez, Clara I.; Nogal, María L.; Carrascosa, Angel L.; Salas, María L.; Fresno, Manuel; Revilla, Yolanda

    2002-01-01

    African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-κB. Thus, transient transfection of the viral IAP increases the activity of an NF-κB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-κB-dependent gene. NF-κB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-κB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-κB activity seems to be the consequence of higher IκB kinase (IKK) basal activity in these cells. The NF-κB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2. PMID:11907233

  15. TGF-beta-induced apoptosis in human thyrocytes is mediated by p27kip1 reduction and is overridden in neoplastic thyrocytes by NF-kappaB activation.

    PubMed

    Bravo, Susana B; Pampín, Sandra; Cameselle-Teijeiro, José; Carneiro, Carmen; Domínguez, Fernando; Barreiro, Francisco; Alvarez, Clara V

    2003-10-30

    Millions of people worldwide suffer goiter, a proliferative disease of the follicular cells of the thyroid that may become neoplastic. Thyroid neoplasms have low proliferative index, low apoptotic index and a high incidence of metastasis. TGF-beta is overexpressed in thyroid follicular tumor cells. To investigate the role of TGF-beta in thyroid tumor progression, we established cultures of human thyrocytes from different proliferative pathologies (Grave's disease, multinodular goiter, follicular adenoma, papillary carcinoma), lymph node metastasis, and a normal thyroid sample. All cultures maintained the thyrocyte phenotype. TGF-beta induced cell-cycle arrest in all cultures, in contrast with results reported for other epithelial tumors. In deprived medium, TGF-beta induced apoptosis in normal thyrocyte cultures and all neoplastic cultures except the metastatic cultures. This apoptosis was mediated by a reduction in p27kip1 levels, inducing cell-cycle initiation. Antisense p27 expression induced apoptosis in the absence of TGF-beta. By contrast, in cells in which p27 was overexpressed, TGF-beta had a survival effect. In growth medium, a net survival effect occurs in neoplastic thyrocytes only, not normal thyrocytes, due to activation of the NF-kappaB survival program. Together, these findings suggest that (a) thyroid neoplasms are due to reduced apoptosis, not increased division, in line with the low proliferative index of these pathologies, and (b) TGF-beta induces apoptosis in normal thyrocytes via p27 reduction, but that in neoplastic thyrocytes this effect is overridden by activation of the NF-kappaB program.

  16. Nuclear translocation and DNA-binding activity of NFKB (NF-kappaB) after exposure of human monocytes to pulsed ultra-wideband electromagnetic fields (1 kV/cm) fails to transactivate kappaB-dependent gene expression.

    PubMed

    Natarajan, M; Nayak, B K; Galindo, C; Mathur, S P; Roldan, F N; Meltz, M L

    2006-06-01

    The objective of this study was to investigate whether exposure of human monocytes to a pulsed ultra-wideband electromagnetic field (EMF) of 1 kV/cm average peak power triggers a signaling pathway responsible for the transcriptional regulation of NFKB (NF-kappaB)-dependent gene expression. Human Mono Mac 6 (MM6) cells were exposed intermittently to EMF pulses for a total of 90 min. The pulse width was 0.79+/-0.01 ns and the pulse repetition rate was 250 pps. The temperature of the medium was maintained at 37 degrees C in both sham- and EMF-exposed flasks. Total NFKB DNA-binding activity was measured in the nuclear extracts by the electrophoretic mobility shift assay. Cells exposed to the EMFs and incubated for 24 h postexposure showed a 3.5+/-0.2-fold increase in the NFKB DNA-binding activity. Since activation of NFKB was observed, the possibility of kappaB-dependent gene expression in response to exposure to the EMFs was investigated using NFKB signal-specific gene arrays. The results revealed no difference in the NFKB-dependent gene expression profiles at 8 or 24 h postexposure, indicating that activated NFKB does not lead to the differential expression of kappaB-dependent target genes. To determine whether the absence of the kappaB-dependent gene expression was due to compromised transcriptional regulation of NFKB, the functional activity of NFKB was examined in cells transiently transfected with Mercury Pathway constructs containing 4x NFKB binding sites associated either with the luciferase reporter system or a control vector. Pulsed EMF exposure did not induce NFKB-driven luciferase activity in these cells, indicating that the activation of NFKB at 24 h after the 1 kV/cm EMF exposure is functionally inactive. From these results, it is clear that the EMF-induced NFKB activation is only a transient response, with minimal or no downstream effect.

  17. Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-kappaB, u-PA and MMP-2 and -9.

    PubMed

    Ho, Yung-Tsuan; Yang, Jai-Sing; Li, Tsai-Chung; Lin, Jen-Jyh; Lin, Jaung-Geng; Lai, Kuang-Chi; Ma, Chia-Yu; Wood, W Gibson; Chung, Jing-Gung

    2009-07-08

    There is increasing evidence that urokinase-type plasminogen activator (u-PA) and matrix metalloproteinases (MMPs) play an important role in cancer metastasis and angiogenesis. Inhibition of u-PA and MMPs could suppress migration and invasion of cancer cells. Berberine, one of the main constituents of the plant Rhizoma coptidis, is a type of isoquinoline alkaloid, reported to have anti-cancer effects in different human cancer cell lines. There is however, no available information on effects of berberine on migration and invasion of human tongue cancer cells. Here, we report that berberine inhibited migration and invasion of human SCC-4 tongue squamous carcinoma cells. This action was mediated by the p-JNK, p-ERK, p-p38, IkappaK and NF-kappaB signaling pathways resulting in inhibition of MMP-2 and -9 in human SCC-4 tongue squamous carcinoma cells. Our Western blowing analysis also showed that berberine inhibited the levels of urokinase-plasminogen activator (u-PA). These results suggest that berberine down-regulates u-PA, MMP-2 and -9 expressions in SCC-4 cells through the FAK, IKK and NF-kappaB mediated pathways and a novel function of berberine is to inhibit the invasive capacity of malignant cells.

  18. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    PubMed

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K

    2010-02-19

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.

  19. PPARbeta/delta agonist stimulates human lung carcinoma cell growth through inhibition of PTEN expression: the involvement of PI3K and NF-kappaB signals.

    PubMed

    Han, ShouWei; Ritzenthaler, Jeffrey D; Zheng, Ying; Roman, Jesse

    2008-06-01

    Recent studies suggest that activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) promotes cancer cell survival. We previously demonstrated that a selective PPARbeta/delta agonist, GW501516, stimulated human non-small cell lung carcinoma (NSCLC) cell growth. Here, we explore the mechanisms responsible for this effect. We show that GW501516 decreased phosphate and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor known to decrease cell growth and induce apoptosis. Activation of PPARbeta/delta and phosphatidylinositol 3-kinase (PI3K)/Akt signaling was associated with inhibition of PTEN. GW501516 increased NF-kappaB DNA binding activity and p65 protein expression through activation of PPARbeta/delta and PI3K/Akt signals and enhanced the physical interactions between PPARbeta/delta and p65 protein. Conversely, inhibition of PI3K and silencing of p65 by small RNA interference (siRNA) blocked the effect of GW501516 on PTEN expression and on NSCLC cell proliferation. GW501516 also inhibited IKBalpha protein expression. Silencing of IKBalpha enhanced the effect of GW501516 on PTEN protein expression and on cell proliferation. It also augmented the GW501516-induced complex formation of PPARbeta/delta and p65 proteins. Overexpression of PTEN suppressed NSCLC cell growth and eliminated the effect of GW501516 on phosphorylation of Akt. Together, our observations suggest that GW501516 induces the proliferation of NSCLC cells by inhibiting the expression of PTEN through activation of PPARbeta/delta, which stimulates PI3K/Akt and NF-kappaB signaling. Overexpression of PTEN overcomes this effect and unveils PPARbeta/delta and PTEN as potential therapeutic targets in NSCLC.

  20. Dual mechanisms of NF-kappaB inhibition in carnosol-treated endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, K.-C.; Chuang, J.-J.; Hsieh, C.-W.

    2010-05-15

    The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFalpha-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking themore » degradation of the inhibitory protein IkappaBalpha in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-beta phosphorylation in pretreatments of less than 3 h. In TNFalpha-treated ECs, NF-kappaB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFalpha-induced singling pathways through the inhibition of IKK-beta activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.« less

  1. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 contributes to NF-κB activation.

    PubMed

    Fang, Ying; Fang, Liurong; Wang, Yang; Lei, Yingying; Luo, Rui; Wang, Dang; Chen, Huanchun; Xiao, Shaobo

    2012-04-30

    Nuclear factor-kappaB (NF-κB) is an inducible transcription factor that plays a key role in inflammation and immune responses, as well as in the regulation of cell proliferation and survival. Previous studies by our group and others have demonstrated that porcine reproductive and respiratory syndrome virus (PRRSV) infection could activate NF-κB in MARC-145 cells and alveolar macrophages. The nucleocapsid (N) protein was identified as an NF-κB activator among the structural proteins encoded by PRRSV; however, it remains unclear whether the nonstructural proteins (Nsps) contribute to NF-κB activation. In this study, we identified which Nsps can activate NF-κB and investigated the potential mechanism(s) by which they act. By screening the individual Nsps of PRRSV strain WUH3, Nsp2 exhibited great potential to activate NF-κB in MARC-145 and HeLa cells. Overexpression of Nsp2 induced IκBα degradation and nuclear translocation of NF-κB. Furthermore, Nsp2 also induced NF-κB-dependent inflammatory factors, including interleukin (IL)-6, IL-8, COX-2, and RANTES. Compared with the Nsp2 of the classical PRRSV strain, the Nsp2 of highly pathogenic PRRSV (HP-PRRSV) strains that possess a 30 amino acid (aa) deletion in Nsp2 displayed greater NF-κB activation. However, the 30-aa deletion was demonstrated to not be associated with NF-κB activation. Further functional domain analyses revealed that the hypervariable region (HV) of Nsp2 was essential for NF-κB activation. Taken together, these data indicate that PRRSV Nsp2 is a multifunctional protein participating in the modulation of host inflammatory response, which suggests an important role of Nsp2 in pathogenesis and disease outcomes.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yu; Wang, Wenhui; Wang, Qi

    Highlights: Black-Right-Pointing-Pointer 5-LOX is able to upregulate expression of NF-{kappa}B p65. Black-Right-Pointing-Pointer 5-LOX enhances nuclear translocation of NF-{kappa}B p65 via increasing p-I{kappa}B-{alpha} level. Black-Right-Pointing-Pointer 5-LOX stimulates transcriptional activity of NF-{kappa}B in hepatoma cells. Black-Right-Pointing-Pointer LTB4 activates transcriptional activity of NF-{kappa}B in hepatoma cells. -- Abstract: The issue that lipid metabolism enzyme and its metabolites regulate transcription factors in cancer cell is not fully understood. In this study, we first report that the lipid metabolism enzyme 5-Lipoxygenase (5-LOX) and its metabolite leukotriene B4 (LTB4) are capable of activating nuclear factor-{kappa}B (NF-{kappa}B) in hepatoma cells. We found that the treatment of MK886more » (an inhibitor of 5-LOX) or knockdown of 5-LOX was able to downregulate the expression of NF-{kappa}B p65 at the mRNA level and decreased the phosphorylation level of inhibitor {kappa}B{alpha} (I{kappa}B{alpha}) in the cytoplasm of hepatoma HepG2 or H7402 cells, which resulted in the decrease of the level of nuclear NF-{kappa}B p65. These were confirmed by immunofluorescence staining in HepG2 cell. Moreover, the above treatments were able to decrease the transcriptional activity of NF-{kappa}B in the cells. The LTB4, one of metabolites of 5-LOX, is responsible for 5-LOX-activated NF-{kappa}B in a dose-dependent manner. Thus, we conclude that the lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells. Our finding provides new insight into the significance of lipid metabolism in activation of transcription factors in cancer.« less

  3. Inhibition of IL-1{beta}-mediated inflammatory responses by the I{kappa}B{alpha} super-repressor in human fibroblast-like synoviocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young-Rae; Kweon, Suc-Hyun; Kwon, Kang-Beom

    The IL-1{beta}-NF-{kappa}B axis is a key pathway in the pathogenesis of rheumatoid arthritis (RA) and is central in the production of proinflammatory mediators in the inflamed synovium. Therefore, we examined whether fibroblast-like synoviocytes (FLS) could be spared from IL-1{beta}-induced toxicity by an overexpressing I{kappa}B super-repressor. Infection of FLS with Ad-I{kappa}B{alpha} (S32A, S36A), an adenovirus-containing mutant I{kappa}B{alpha}, inhibited IL-1{beta}-induced nuclear translocation and DNA binding of NF-{kappa}B. In addition, Ad-I{kappa}B{alpha} (S32A, S36A) prevented IL-1{beta}-induced inflammatory responses; namely, the production of chemokines, such as ENA-78 and RANTES, and activation of MMP-1 and MMP-3. Finally, increased cellular proliferation of FLS after IL-1{beta} treatment wasmore » significantly reduced by Ad-I{kappa}B{alpha} (S32A, S36A). However, Ad-I{kappa}B{beta} (S19A, S23A), the I{kappa}B{beta} mutant, was not effective in preventing IL-1{beta} toxicity. These results suggest that inhibition of I{kappa}B{alpha} degradation is a potential target for the prevention of joint destruction in patients with RA.« less

  4. Hyperbaric Oxygen and Ginkgo Biloba Extract Ameliorate Cognitive and Memory Impairment via Nuclear Factor Kappa-B Pathway in Rat Model of Alzheimer's Disease

    PubMed Central

    Zhang, Li-Da; Ma, Li; Zhang, Li; Dai, Jian-Guo; Chang, Li-Gong; Huang, Pei-Lin; Tian, Xiao-Qiang

    2015-01-01

    Background: Hyperbaric oxygen (HBO) and Ginkgo biloba extract (e.g., EGB 761) were shown to ameliorate cognitive and memory impairment in Alzheimer's disease (AD). However, the exact mechanism remains elusive. The aim of the present study was to investigate the possible mechanisms of HBO and EGB 761 via the function of nuclear factor kappa-B (NF-κB) pathway. Methods: AD rats were induced by injecting β-amyloid 25–35 into the hippocampus. All animals were divided into six groups: Normal, sham, AD model, HBO (2 atmosphere absolute; 60 min/d), EGB 761 (20 mg·kg−1·d−1), and HBO/EGB 761 groups. Morris water maze tests were used to assess cognitive, and memory capacities of rats; TdT-mediated dUTP Nick-End Labeling staining and Western blotting were used to analyze apoptosis and NF-κB pathway-related proteins in hippocampus tissues. Results: Morris water maze tests revealed that EGB 761 and HBO significantly improved the cognitive and memory ability of AD rats. In addition, the protective effect of combinational therapy (HBO/EGB 761) was superior to either HBO or EGB 761 alone. In line, reduced apoptosis with NF-κB pathway activation was observed in hippocampus neurons treated by HBO and EGB 761. Conclusions: Our results suggested that HBO and EGB 761 improve cognitive and memory capacity in a rat model of AD. The protective effects are associated with the reduced apoptosis with NF-κB pathway activation in hippocampus neurons. PMID:26608991

  5. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets.

    PubMed

    Albini, Adriana; Dell'Eva, Raffaella; Vené, Roberta; Ferrari, Nicoletta; Buhler, Donald R; Noonan, Douglas M; Fassina, Gianfranco

    2006-03-01

    Xanthohumol (XN), the principal flavonoid of the hop plant (Humulus lupulus L.) and a constituent of beer, has been suggested to have potential cancer chemopreventive activities. We have observed that most cancer chemopreventive agents show antiangiogenic properties in vitro and in vivo, a concept we termed "angioprevention." Here we show for the first time that XN can inhibit growth of a vascular tumor in vivo. Histopathology and in vivo angiogenesis assays indicated that tumor angiogenesis inhibition was involved. Further, we show the mechanisms for its inhibition of angiogenesis in vivo and related endothelial cell activities in vitro. XN repressed both the NF-kappaB and Akt pathways in endothelial cells, indicating that components of these pathways are major targets in the molecular mechanism of XN. Moreover, using in vitro analyses, we show that XN interferes with several points in the angiogenic process, including inhibition of endothelial cell invasion and migration, growth, and formation of a network of tubular-like structures. Our results suggest that XN can be added to the expanding list of antiangiogenic chemopreventive drugs whose potential in cancer prevention and therapy should be evaluated.

  6. TRIM44 Is a Poor Prognostic Factor for Breast Cancer Patients as a Modulator of NF-κB Signaling.

    PubMed

    Kawabata, Hidetaka; Azuma, Kotaro; Ikeda, Kazuhiro; Sugitani, Ikuko; Kinowaki, Keiichi; Fujii, Takeshi; Osaki, Akihiko; Saeki, Toshiaki; Horie-Inoue, Kuniko; Inoue, Satoshi

    2017-09-08

    Many of the tripartite motif (TRIM) proteins function as E3 ubiquitin ligases and are assumed to be involved in various events, including oncogenesis. In regard to tripartite motif-containing 44 (TRIM44), which is an atypical TRIM family protein lacking the RING finger domain, its pathophysiological significance in breast cancer remains unknown. We performed an immunohistochemical study of TRIM44 protein in clinical breast cancer tissues from 129 patients. The pathophysiological role of TRIM44 in breast cancer was assessed by modulating TRIM44 expression in MCF-7 and MDA-MB-231 breast cancer cells. TRIM44 strong immunoreactivity was significantly associated with nuclear grade ( p = 0.033), distant disease-free survival ( p = 0.031) and overall survival ( p = 0.027). Multivariate analysis revealed that the TRIM44 status was an independent prognostic factor for distant disease-free survival ( p = 0.005) and overall survival ( p = 0.002) of patients. siRNA-mediated TRIM44 knockdown significantly decreased the proliferation of MCF-7 and MDA-MB-231 cells and inhibited the migration of MDA-MB-231 cells. Microarray analysis and qRT-PCR showed that TRIM44 knockdown upregulated CDK19 and downregulated MMP1 in MDA-MB-231 cells. Notably, TRIM44 knockdown impaired nuclear factor-kappa B (NF-κB)-mediated transcriptional activity stimulated by tumor necrosis factor α (TNFα). Moreover, TRIM44 knockdown substantially attenuated the TNFα-dependent phosphorylation of the p65 subunit of NF-κB and IκBα in both MCF-7 and MDA-MB-231 cells. TRIM44 would play a role in the progression of breast cancer by promoting cell proliferation and migration, as well as by enhancing NF-κB signaling.

  7. Low susceptibility of NC/Nga mice to tumor necrosis factor-alpha-mediated lethality and hepatocellular damage with D-galactosamine sensitization.

    PubMed

    Koide, Naoki; Morikawa, Akiko; Naiki, Yoshikazu; Tumurkhuu, Gantsetseg; Yoshida, Tomoaki; Ikeda, Hiroshi; Yokochi, Takashi

    2009-02-01

    The susceptibility of NC/Nga mice to tumor necrosis factor (TNF)-alpha was examined by using sensitization with d-galactosamine (d-GalN). Administration of TNF-alpha and d-GalN killed none of the NC/Nga mice, whereas it killed all of the BALB/c mice. Treatment with TNF-alpha and d-GalN caused few hepatic lesions in NC/Nga mice but massive hepatocellular apoptosis in BALB/c mice. Unlike BALB/c mice, there was no elevation in caspase 3 and 8 activities in the livers of NC/Nga mice receiving TNF-alpha and d-GalN. On the other hand, administration of anti-Fas antibody definitely killed both NC/Nga and BALB/c mice via activation of caspases 3 and 8. Treatment with TNF-alpha and d-GalN led to translocation of nuclear factor (NF)-kappaB in NC/Nga and BALB/c mice. However, NF-kappaB translocation was sustained in NC/Nga mice, although it disappeared in BALB/c mice 7 h after the treatment. NF-kappaB inhibitors activated caspases 3 and 8, and enhanced TNF-alpha-mediated lethality in NC/Nga. Taken together, the low susceptibility of NC/Nga mice to TNF-alpha-mediated lethality was suggested to be responsible for the sustained NF-kappaB activation.

  8. Tn (N-acetyl-d-galactosamine-O-serine/threonine) immunization protects against hyperoxia-induced lung injury in adult mice through inhibition of the nuclear factor kappa B activity.

    PubMed

    Chen, Chung-Ming; Hwang, Jaulang; Chou, Hsiu-Chu; Shiah, Her-Shyong

    2018-06-01

    Prolonged hyperoxia exposure leads to inflammation and acute lung injury. Since hyperoxia activates nuclear factor kappa B (NF-κB) and proinflammatory mediators in lung fibroblasts and murine lungs, and proinflammatory cytokines upregulate Tn (N-acetyl-d-galactosamine-O-serine/threonine) expression in human gingival fibroblasts. We hypothesized connections exist between Tn expression and inflammation regulation. Thus, we immunized adult mice with Tn antigen to examine whether Tn vaccine can protect against hyperoxia-induced lung injury by inhibiting NF-κB activity and cytokine expression through the action of anti-Tn antibodies. Five-week-old female C57BL/6NCrlBltw mice were subcutaneously immunized with Tn antigen four times at biweekly intervals, and one additional immunization was performed at 1 week after the fourth immunization. Four days after the last immunization, mice were exposed to room air (RA) or hyperoxia (100% O 2 ) for up to 96 h. Four study groups were examined: carrier protein + RA (n = 6), Tn vaccine + RA (n = 6), carrier protein + O 2 (n = 6), and Tn vaccine + O 2 (n = 5). We observed that hyperoxia exposure reduced body weight, increased alveolar protein and cytokine (interleukin-6 and tumor necrosis factor-α) levels, increased mean linear intercept (MLI) values and lung injury scores, and increased lung NF-κB activity. By contrast, Tn immunization increased serum anti-Tn antibody titers and reduced the cytokine levels, MLI values, and lung injury scores. Furthermore, the alleviation of lung injury was accompanied by a reduction in NF-κB activity. Therefore, we proposed that Tn immunization attenuates hyperoxia-induced lung injury in adult mice by inhibiting the NF-κB activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Lycopene acts through inhibition of IκB kinase to suppress NF-κB signaling in human prostate and breast cancer cells.

    PubMed

    Assar, Emelia A; Vidalle, Magdalena Castellano; Chopra, Mridula; Hafizi, Sassan

    2016-07-01

    We studied the effect of the potent dietary antioxidant lycopene on multiple points along the nuclear factor kappa B (NF-κB) signaling pathway in prostate and breast cancer cells. Lycopene significantly inhibited prostate and breast cancer cell growth at physiologically relevant concentrations of ≥1.25 μM. Similar concentrations also caused a 30-40 % reduction in inhibitor of kappa B (IκB) phosphorylation in the cells, as determined by western blotting. Furthermore, the same degree of inhibition by lycopene was observed for NF-κB transcriptional activity, as determined by reporter gene assay. Concomitant with this, immunofluorescence staining of lycopene-treated cells showed a significant suppression (≥25 %) of TNF-induced NF-κB p65 subunit nuclear translocation. Further probing of lycopene's effects on upstream elements of the NF-κB pathway showed a 25 % inhibition of both activity of recombinant IκB kinase β (IKKβ) kinase in a cell-free in vitro assay, as well as activity of IKKβ immunoprecipitated from MDA-MB-231 cells treated with lycopene. In conclusion, the anticancer properties of lycopene may occur through inhibition of the NF-κB signaling pathway, beginning at the early stage of cytoplasmic IKK kinase activity, which then leads to reduced NF-κB-responsive gene regulation. Furthermore, these effects in cancer cells were observed at concentrations of lycopene that are relevant and achievable in vivo.

  10. Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages.

    PubMed

    Salari, Samira; Seibert, Tara; Chen, Yong-Xiang; Hu, Tieqiang; Shi, Chunhua; Zhao, Xiaoling; Cuerrier, Charles M; Raizman, Joshua E; O'Brien, Edward R

    2013-01-01

    Heat shock protein 27 (HSP27) shows attenuated expression in human coronary arteries as the extent of atherosclerosis progresses. In mice, overexpression of HSP27 reduces atherogenesis, yet the precise mechanism(s) are incompletely understood. Inflammation plays a central role in atherogenesis, and of particular interest is the balance of pro- and anti-inflammatory factors produced by macrophages. As nuclear factor-kappa B (NF-κB) is a key immune signaling modulator in atherogenesis, and macrophages are known to secrete HSP27, we sought to determine if recombinant HSP27 (rHSP27) alters NF-κB signaling in macrophages. Treatment of THP-1 macrophages with rHSP27 resulted in the degradation of an inhibitor of NF-κB, IκBα, nuclear translocation of the NF-κB p65 subunit, and increased NF-κB transcriptional activity. Treatment of THP-1 macrophages with rHSP27 yielded increased expression of a variety of genes, including the pro-inflammatory factors, IL-1β, and TNF-α. However, rHSP27 also increased the expression of the anti-inflammatory factors IL-10 and GM-CSF both at the mRNA and protein levels. Our study suggests that in macrophages, activation of NF-κB signaling by rHSP27 is associated with upregulated expression and secretion of key pro- and anti-inflammatory cytokines. Moreover, we surmise that it is the balance in expression of these mediators and antagonists of inflammation, and hence atherogenesis, that yields a favorable net effect of HSP27 on the vessel wall.

  11. Norepinephrine activates NF-κB transcription factor in cultured rat pineal gland.

    PubMed

    Villela, Darine; de Sá Lima, Larissa; Peres, Rafael; Peliciari-Garcia, Rodrigo Antonio; do Amaral, Fernanda Gaspar; Cipolla-Neto, José; Scavone, Cristóforo; Afeche, Solange Castro

    2014-01-17

    The circadian rhythm in mammalian pineal melatonin secretion is modulated by norepinephrine (NE) released at night. NE interaction with β1-adrenoceptors activates PKA that phosphorylates the transcription factor CREB, leading to the transcription and translation of the arylalkylamine-N-acetyltransferase (AANAT) enzyme. Several studies have reported the interplay between CREB and the nuclear factor-κB (NF-κB) and a circadian rhythm for this transcription factor was recently described in the rat pineal gland. In this work we studied a direct effect of NE on NF-κB activation and the role played by this factor on melatonin synthesis and Aanat transcription and activity. Cultured rat pineal glands were incubated in the presence of two different NF-κB inhibitors, pyrrolidine-dithiocarbamate or sodium salicylate, and stimulated with NE. Melatonin content was quantified by HPLC with electrochemical detection. AANAT activity was measured by a radiometric assay and the expression of Aanat mRNA was analyzed by real-time PCR. Gel shift assay was performed to study the NF-κB activation in cultured rat pineal glands stimulated by NE. Our results showed that the p50/p50 homodimer of NF-κB is activated by NE and that it has a role in melatonin synthesis, acting on Aanat transcription and activity. Here we present evidence that NF-κB is an important transcription factor that acts, directly or indirectly, on Aanat transcription and activity leading to a modulation of melatonin synthesis. NE plays a role in the translocation of NF-κB p50/p50 homodimer to the nucleus of pinealocytes, thus probably influencing the nocturnal pineal melatonin synthesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Mesangial cell Fas ligand: upregulation in human lupus nephritis and NF-kappaB-mediated expression in cultured human mesangial cells.

    PubMed

    Tsukinoki, Tomoko; Sugiyama, Hitoshi; Sunami, Reiko; Kobayashi, Mizuho; Onoda, Tetsuya; Maeshima, Yohei; Yamasaki, Yasushi; Makino, Hirofumi

    2004-09-01

    Fas ligand (FasL) is a well-known death factor; however, the role of FasL in the regulation of human glomerulonephritis remains unclear. We investigated the renal expression and localization of FasL in various forms of human glomerulonephritis by immunohistochemistry, utilizing confocal laser scanning microscopy. We further evaluated cytokine-induced FasL expression via nuclear factor (NF)kappaB in cultured human mesangial cells (HMC). The level of soluble FasL was measured by a specific enzyme-linked immunosorbent assay (ELISA). The frequency of glomerular FasL-positive cases was higher in lupus nephritis (37.9%) as compared with other forms of glomerulonephritis (8.7%). The glomerular FasL score in proliferative lupus nephritis was significantly higher than that in nonproliferative forms. Patients with a high apoptosis score, severe microhematuria, proteinuria, or decreased renal function had a high FasL score. Double immunolabelling demonstrated that the most prevalent phenotypes of FasL-positive cells were mesangial cells. In cultured HMC, interleukin (IL)1beta, lipopolysaccharide (LPS), or gamma interferon (IFN) upregulated membrane-bound FasL. IL1beta significantly, and LPS or gammaIFN weakly activated NFkappaB, but none of these agents activated NFkappaB/Rel-related nuclear factor of activated T cells (NFATc) or IFN regulatory factor-1. IL1beta-mediated NFkappaB was completely inhibited in the presence of lactacystin, a potent inhibitor of NFkappaB. Lactacystin-mediated inhibition of NFkappaB reduced FasL protein levels. Matrix metalloproteinase (MMP)-7, but not other MMPs (1, 2, 3, 8, or 9), significantly sensitized HMC to release soluble FasL after IL1beta stimulation. The results suggest that: (1) upregulation of mesangial FasL may contribute to the glomerular inflammation in proliferative lupus nephritis in vivo; (2) proinflammatory cytokines, in particular IL1beta, produced in nephritis can upregulate FasL via the transcription factor NFkappaB in HMC

  13. FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis.

    PubMed

    Wieckowski, Eva; Atarashi, Yoshinari; Stanson, Joanna; Sato, Taka-Aki; Whiteside, Theresa L

    2007-01-01

    Molecular mechanisms responsible for tumor resistance to apoptosis often involve the Fas/FasL pathway. While squamous cell carcinomas of the head and neck (SCCHN) express both Fas and FasL, their resistance to self-induced apoptosis or apoptosis mediated by Fas agonistic antibody (CH-11Ab) was independent of the level of Fas surface expression or the presence of soluble Fas in supernatants of primary or metastatic SCCHN cell lines. By in vitro immunoselection, using PCI-15A cell line treated with successive cycles of CH-11 Ab, Fas-resistant sublines with the parental genotype were selected. Such sublines failed to cleave caspase-8 upon Fas engagement and were resistant to CH-11 Ab, although they remained sensitive to VP-16 or staurosporin. In the presence of cycloheximide, the selected SCCHN sublines become susceptible to CH-11 Ab, and showed cleavage of caspase-8, suggesting that apoptosis resistance was mediated by an inhibitory protein(s) acting upstream of caspase-8. Overexpression of Fas-associated phosphatase 1 (FAP-1), but not cellular FLICE-inhibitory protein (cFLIP) in SCCHN sublines was documented by Western blots and RT-PCR analyses. The FAP-1+ selected sublines also downregulated cell surface Fas. A high phosphorylation level of IkappaB kappa, NFkappaB activation and upregulation of Bcl-2 expression were observed in the FAP-1+ sublines. Treatment with the phosphatase inhibitor, orthovanadate, or silencing of FAP-1 with siRNA abolished their resistance to apoptosis, suggesting that FAP-1 phosphatase activity could be responsible for NF-kappaB activation and resistance of SCCHN cells to Fas-mediated apoptosis. 2006 Wiley-Liss, Inc.

  14. Expression of iNOS and NF-κB in melasma: an immunohistochemical study.

    PubMed

    Samaka, Rehab Monir; Bakry, Ola Ahmed; Shoeib, Mohamed Abd El Monaem; Zaaza, Marwa M

    2014-10-01

    To investigate the role of inducible nitric oxide synthases (iNOS) and nuclear factor-kappa B (NF-κB) in the pathogenesis of melasma through their immunohistochemical (IHC) co-localization in skin of melasma and to correlate their expression with the clinical and the histopathological data. This prospective case-control study was conducted on 34 female patients with melasma and 30 age- and gender-matched healthy subjects as a control group for evaluation of IHC expression of iNOS and NF-κB in melasma. There were significant differences between lesional and perilesional skin regarding iNOS intensity, iNOS histo-score (H-score), NF-κB intensity, and NF-κB H-score (p < 0.001 for all). There were significant associations between the higher values of H-scores for both iNOS and NF-κB and positive family history (p = 0.002 and p = 0.001, respectively) and very severe melasma areas and severity index score (p < 0.001 and p = 0.001, respectively). There was a positive correlation between H-score values of both iNOS and NF-κB (r = +0.604 and p < 0.001). The IHC co-localization and direct correlation of both iNOS and NF-κB in melasma could provide evidence about their role as co-players in melanogenesis and might provide new targets for a more efficient treatment for melasma.

  15. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Seok; Chang, Jai Won; Han, Nam Jeong

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. Highmore » glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.« less

  16. Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis.

    PubMed

    Bi, Chao; Ma, Yu; Wang, Xiao-Fang; Zhang, Da-Peng

    2017-11-01

    Nuclear factor Y (NF-Y) family proteins are involved in many developmental processes and responses to environmental cues in plants, but whether and how they regulate phytohormone abscisic acid (ABA) signaling need further studies. In the present study, we showed that over-expression of the NF-YC9 gene confers ABA hypersensitivity in both the early seedling growth and stomatal response, while down-regulation of NF-YC9 does not affect ABA response in these processes. We also showed that over-expression of the NF-YC9 gene confers salt and osmotic hypersensitivity in early seedling growth, which is likely to be directly associated with the ABA hypersensitivity. Further, we observed that NF-YC9 physically interacts with the ABA-responsive bZIP transcription factor ABA-INSENSITIVE5 (ABI5), and facilitates the function of ABI5 to bind and activate the promoter of a target gene EM6. Additionally, NF-YC9 up-regulates expression of the ABI5 gene in response to ABA. These findings show that NF-YC9 may be involved in ABA signaling as a positive regulator and likely functions redundantly together with other NF-YC members, and support the model that the NF-YC9 mediates ABA signaling via targeting to and aiding the ABA-responsive transcription factors such as ABI5.

  17. Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences

    PubMed Central

    Zhang, Ye; Moreno-Villanueva, Maria; Krieger, Stephanie; Ramesh, Govindarajan T.; Neelam, Srujana; Wu, Honglu

    2017-01-01

    In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space. PMID:28561779

  18. Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences.

    PubMed

    Zhang, Ye; Moreno-Villanueva, Maria; Krieger, Stephanie; Ramesh, Govindarajan T; Neelam, Srujana; Wu, Honglu

    2017-05-31

    In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.

  19. Manipulation of Nf-KappaB Activity in the Macrophage Lineage as a Novel Therapeutic Approach

    DTIC Science & Technology

    2008-05-01

    agents used to inhibit the NF-B pathway. In humans, lung injury resulting from pneumonia , systemic infection, or trauma can cause ARDS (29, 30). The...Biochem. Biophys. Res. Commun . 253: 181–184. 5. Browder, W., T. Ha, L. Chuanfu, J. H. Kalbfleisch, D. A. Ferguson, Jr., and D. L. Williams. 1999. Early...Peschon, and C. M. Doerschuk. 2000. Roles of tumor necrosis factor receptor signaling during murine Escherichia coli pneumonia . Am. J. Respir. Cell Mol

  20. The effects of chromium picolinate and chromium histidinate administration on NF-κB and Nrf2/HO-1 pathway in the brain of diabetic rats.

    PubMed

    Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Gencoglu, Hasan; Ulas, Mustafa; Atalay, Mustafa; Sahin, Nurhan; Hayirli, Armagan; Komorowski, James R

    2012-12-01

    The objective of this experiment was to investigate the effects of supplemental chromium picolinate (CrPic) and chromium histidinate (CrHis) on nuclear factor-kappa B (NF-κB p65) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathway in diabetic rat brain. Nondiabetic (n = 45) and diabetic (n = 45) male Wistar rats were either not supplemented or supplemented with CrPic or CrHis via drinking water to consume 8 μg elemental chromium (Cr) per day for 12 weeks. Diabetes was induced by streptozotocin injection (40 mg/kg i.p., for 2 weeks) and maintained by high-fat feeding (40 %). Diabetes was associated with increases in cerebral NF-κB and 4-hydroxynonenal (4-HNE) protein adducts and decreased in cerebral nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha (IκBα) and Nrf2 levels. Both Cr chelates were effective to decrease levels of NF-κB and 4-HNE protein adducts and to increase levels of IκBα and Nrf2 in the brain of diabetic rats. However, responses of these increases and decreases were more notable when Cr was supplemented as CrHis than as CrPic. In conclusion, Cr may play a protective role in cerebral antioxidant defense system in diabetic subjects via the Nrf2 pathway by reducing inflammation through NF-κB p65 inhibition. Histidinate form of Cr was superior to picolinate form of Cr in reducing NF-κB expression and increasing Nrf2 expression in the brain of diabetic rats.

  1. Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells.

    PubMed

    Abbasi Habashi, Soraya; Sabouni, Farzaneh; Moghimi, Ali; Ansari Majd, Saeed

    2016-01-01

    Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. This study examined whether bromelain, the pineapple-derived extract, may exert an anti-inflammatory effect in primary microglia and may be neuroprotective by regulating microglial activation. Following the isolation of neonatal rat primary microglial cells, the activation profile of microglia was investigated by studying the effects of bromelain (5, 10, 20, and 30 µg/ml) on the levels of NO, inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in microglia treated with lipopolysaccharide (LPS) (1 µg/ml). Data were analyzed using Student's t-test. P values less than 0.05 were considered to be statistically significant, compared with the LPS-treated group without bromelain. Results showed that pretreatment of rat primary microglia with bromelain, decreased the production of NO induced by LPS (1 µg/ml) treatment in a dose-dependent manner. Bromelain (30 µg/ml) also significantly reduced the expression of iNOS at mRNA level and NF-κB at protein level. Moreover, the study of mitochondrial activity in microglia indicated that bromelain had no cytotoxicity at any of the applied doses, suggesting that the anti-inflammatory effects of bromelain are not due to cell death. Bromelain can be of potential use as an agent for alleviation of symptoms in neurodegenerative diseases.

  2. Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-kappaB-independent mechanism.

    PubMed

    Birrell, M A; McCluskie, K; Wong, S; Donnelly, L E; Barnes, P J; Belvisi, M G

    2005-05-01

    Consumption of a naturally occurring polyphenol, resveratrol, in particular through drinking moderate amounts of red wine, has been suggested to be beneficial to health. A plethora of in vitro studies published demonstrate various anti-inflammatory actions of resveratrol. The aim of this research was to determine whether any of these anti-inflammatory effects translate in vivo in a rodent model of LPS induced airway inflammation. Resveratrol reduced lung tissue neutrophilia to a similar magnitude as that achieved by treatment with budesonide. This was associated with a reduction in pro-inflammatory cytokines and prostanoid levels. Interestingly, the reduction did not appear to be due to an impact on NF-kappaB activation or the expression of the respective genes as suggested by various in vitro publications. These results suggest that resveratrol may possess anti-inflammatory properties via a novel mechanism. Elucidation of this mechanism may lead to potential new therapies for the treatment of chronic inflammation.

  3. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis.

    PubMed

    Hou, Jiwei; Ma, Tan; Cao, Honghui; Chen, Yabing; Wang, Cong; Chen, Xiang; Xiang, Zou; Han, Xiaodong

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease of unknown cause. It has been reported that both lung resident mesenchymal stem cells (LR-MSCs) and tumor necrosis factor-α (TNF-α) play important roles in the development of pulmonary fibrosis. However, the underlying connections between LR-MSCs and TNF-α in the pathogenesis of pulmonary fibrosis are still elusive. In this study, we found that the pro-inflammatory cytokine TNF-α and the transcription factor nuclear factor kappa B (NF-κB) p65 subunit were both upregulated in bleomycin-induced fibrotic lung tissue. In addition, we discovered that TNF-α promotes myofibroblast differentiation of LR-MSCs through activating NF-κB signaling. Interestingly, we also found that TNF-α promotes the expression of β-catenin. Moreover, we demonstrated that suppression of the NF-κB signaling could attenuate myofibroblast differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis which were accompanied with decreased expression of β-catenin. Our data implicates that inhibition of the NF-κB signaling pathway may provide a therapeutic strategy for pulmonary fibrosis, a disease that warrants more effective treatment approaches. © 2017 Wiley Periodicals, Inc.

  4. Transforming growth factor-β stimulates the expression of eotaxin/CC chemokine ligand 11 and its promoter activity through binding site for nuclear factor-κβ in airway smooth muscle cells.

    PubMed

    Matsukura, S; Odaka, M; Kurokawa, M; Kuga, H; Homma, T; Takeuchi, H; Notomi, K; Kokubu, F; Kawaguchi, M; Schleimer, R P; Johnson, M W; Adachi, M

    2010-05-01

    Chemokines ligands of CCR3 including eotaxin/CC chemokine ligand 11 (CCL11) may contribute to the pathogenesis of asthma. These chemokines and a growth factor (TGF-beta) may be involved in the process of airway remodelling. We analysed the effects of TGF-beta on the expression of CCR3 ligands in human airway smooth muscle (HASM) cells and investigated the mechanisms. HASM cells were cultured and treated with TGF-beta and Th2 cytokines IL-4 or IL-13. Expression of mRNA was analysed by real-time PCR. Secretion of CCL11 into the culture medium was analysed by ELISA. Transcriptional regulation of CCL11 was analysed by luciferase assay using CCL11 promoter-luciferase reporter plasmids. IL-4 or IL-13 significantly up-regulated the expression of mRNAs for CCL11 and CCL26. TGF-beta alone did not increase the expression of chemokine mRNAs, but enhanced the induction of only CCL11 by IL-4 or IL-13 among CCR3 ligands. Activity of the CCL11 promoter was stimulated by IL-4, and this activity was enhanced by TGF-beta. Activation by IL-4 or IL-4 plus TGF-beta was lost by mutation of the binding site for signal transducers and activators of transcription-6 (STAT6) in the promoter. Cooperative activation by IL-4 and TGF-beta was inhibited by mutation of the binding site for nuclear factor-kappaB (NF-kappaB) in the promoter. Pretreatment with an inhibitor of NF-kappaB and glucocorticoid fluticasone propionate significantly inhibited the expression of CCL11 mRNA induced by IL-4 plus TGF-beta, indicating the importance of NF-kappaB in the cooperative activation of CCL11 transcription by TGF-beta and IL-4. These results indicate that Th2 cytokines and TGF-beta may contribute to the pathogenesis of asthma by stimulating expression of CCL11. The transcription factors STAT6 and NF-kappaB may play pivotal roles in this process.

  5. Formononetin attenuates osteoclastogenesis via suppressing the RANKL-induced activation of NF-κB, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 signaling pathway.

    PubMed

    Huh, Jeong-Eun; Lee, Wong In; Kang, Jung Won; Nam, Dongwoo; Choi, Do-Young; Park, Dong-Suk; Lee, Sang Hoon; Lee, Jae-Dong

    2014-11-26

    Formononetin (1), a plant-derived phytoestrogen, possesses bone protective properties. To address the potential therapeutic efficacy and mechanism of action of 1, we investigated its antiosteoclastogenic activity and its effect on nuclear factor-kappaB ligand (RANKL)-induced bone-marrow-derived macrophages (BMMs). Compound 1 markedly inhibited RANKL-induced osteoclast differentiation in the absence of cytotoxicity, by regulating the expression of osteoprotegerin (OPG) and RANKL in BMMs and in cocultured osteoblasts. Compound 1 significantly inhibited RANKL-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated on activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) in a concentration-dependent manner. These effects were accompanied by a decrease in RANKL-induced activation of the NF-κB p65 subunit, degradation of inhibitor κBα (IκBα), induction of NF-κB, and phosphorylation of AKT, extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). NF-κB siRNA suppressed AKT, ERK, JNK, and p38 MAPK phosphorylation. Furthermore, 1 significantly suppressed c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key transcription factors during osteoclastogenesis. SP600125, a specific inhibitor of JNK, reduced RANKL-induced expression of phospho-c-Jun, c-Fos, and NFATc1 and inhibited osteoclast formation. These results suggested that 1 acted as an antiresorption agent by blocking osteoclast activation.

  6. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madonna, Rosalinda; Institute of Cardiology, and Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti; Shelat, Harnath

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiacmore » myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.« less

  7. NF90–NF45 is a selective RNA chaperone that rearranges viral and cellular riboswitches: biochemical analysis of a virus host factor activity

    PubMed Central

    Friedrich, Susann; Golbik, Ralph Peter

    2017-01-01

    Abstract The heterodimer NF90–NF45 is an RNA-binding protein complex that modulates the expression of various cellular mRNAs on the post-transcriptional level. Furthermore, it acts as a host factor that supports the replication of several RNA viruses. The molecular mechanisms underlying these activities have yet to be elucidated. Recently, we showed that the RNA-binding capabilities and binding specificity of NF90 considerably improves when it forms a complex with NF45. Here, we demonstrate that NF90 has a substrate-selective RNA chaperone activity (RCA) involving RNA annealing and strand displacement activities. The mechanism of the NF90-catalyzed RNA annealing was elucidated to comprise a combination of ‘matchmaking’ and compensation of repulsive charges, which finally results in the population of dsRNA products. Heterodimer formation with NF45 enhances ‘matchmaking’ of complementary ssRNAs and substantially increases the efficiency of NF90’s RCA. During investigations of the relevance of the NF90–NF45 RCA, the complex was shown to stimulate the first step in the RNA replication process of hepatitis C virus (HCV) in vitro and to stabilize a regulatory element within the mRNA of vascular endothelial growth factor (VEGF) by protein-guided changes of the RNAs’ structures. Thus, our study reveals how the intrinsic properties of an RNA-binding protein determine its biological activities. PMID:29040738

  8. Interleukin 2 transcription factors as molecular targets of cAMP inhibition: delayed inhibition kinetics and combinatorial transcription roles

    PubMed Central

    1994-01-01

    Elevation of cAMP can cause gene-specific inhibition of interleukin 2 (IL-2) expression. To investigate the mechanism of this effect, we have combined electrophoretic mobility shift assays and in vivo genomic footprinting to assess both the availability of putative IL-2 transcription factors in forskolin-treated cells and the functional capacity of these factors to engage their sites in vivo. All observed effects of forskolin depended upon protein kinase A, for they were blocked by introduction of a dominant negative mutant subunit of protein kinase A. In the EL4.E1 cell line, we report specific inhibitory effects of cAMP elevation both on NF-kappa B/Rel family factors binding at -200 bp, and on a novel, biochemically distinct "TGGGC" factor binding at -225 bp with respect to the IL-2 transcriptional start site. Neither NF-AT nor AP-1 binding activities are detectably inhibited in gel mobility shift assays. Elevation of cAMP inhibits NF-kappa B activity with delayed kinetics in association with a delayed inhibition of IL-2 RNA accumulation. Activation of cells in the presence of forskolin prevents the maintenance of stable protein- DNA interactions in vivo, not only at the NF-kappa B and TGGGC sites of the IL-2 enhancer, but also at the NF-AT, AP-1, and other sites. This result, and similar results in cyclosporin A-treated cells, imply that individual IL-2 transcription factors cannot stably bind their target sequences in vivo without coengagement of all other distinct factors at neighboring sites. It is proposed that nonhierarchical, cooperative enhancement of binding is a structural basis of combinatorial transcription factor action at the IL-2 locus. PMID:8113685

  9. p38 mitogen-activated protein kinase-induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury.

    PubMed

    Jiang, Shao-Yun; Zou, Yuan-Yuan; Wang, Jian-Tao

    2012-01-01

    In our previous study, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) played a neuroprotective role in retinal ischemia/reperfusion (I/R) injury in rats. However, the mechanism of NF-κB neuroprotection is still unclear. We hypothesize that p38 mitogen-activated protein kinase (MAPK) is expressed and NF-κB activity induced by p38 MAPK plays a neuroprotective role through antiapoptotic genes (B-cell lymphoma [Bcl]-2 and Bcl-XL) in retinal cells in retinal I/R injury. Retinal ischemia was induced by elevating intraocular pressure in rats. After retinal I/R, the p38 MAPK, NF-κB p65, Bcl-2, and Bcl-XL mRNA levels were measured with real-time polymerase chain reaction. NF-κB p65 activity was assessed with NF-κB enzyme-linked immunosorbent assay in retinal I/R injury and after application of the p38 MAPK inhibitor (SB203580). Furthermore, SB203580 and NF-κB p65 short interfering RNA (siRNA) were used in retinal I/R injury to examine the effects on Bcl-2 and Bcl-XL levels and nucleosome release in the retina and cell survival in the ganglion cell layer. The mRNA levels of NF-κB p65 and p38 MAPK reached a peak at 6 h after retinal I/R and then decreased gradually. The mRNA levels of Bcl-2 and Bcl-XL significantly increased at 2, 4, and 6 h, peaked at 8 h, and decreased gradually, but remained at a higher level compared with the normal control, which was accompanied by an increase in NF-κB p65 in nuclear extracts. After application of SB203580, the increase in the NF-κB p65 levels in the nucleus induced with I/R was completely abolished, and the mRNA expression of Bcl-2 and Bcl-XL decreased significantly compared with the I/R controls. In addition, NF-κB p65 siRNA inhibited Bcl-2 and Bcl-XL expression. Inhibition of the p38 MAPK-NF-κB pathway (using SB203580 or NF-κB p65 siRNA) increased retinal nucleosome release and decreased the number of ganglion cells. These findings provide evidence of crosstalk between p38 MAPK and NF-κB p65 and

  10. p38 mitogen-activated protein kinase–induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury

    PubMed Central

    Jiang, Shao-Yun; Zou, Yuan-Yuan

    2012-01-01

    Purpose In our previous study, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) played a neuroprotective role in retinal ischemia/reperfusion (I/R) injury in rats. However, the mechanism of NF-κB neuroprotection is still unclear. We hypothesize that p38 mitogen-activated protein kinase (MAPK) is expressed and NF-κB activity induced by p38 MAPK plays a neuroprotective role through antiapoptotic genes (B-cell lymphoma [Bcl]-2 and Bcl-XL) in retinal cells in retinal I/R injury. Methods Retinal ischemia was induced by elevating intraocular pressure in rats. After retinal I/R, the p38 MAPK, NF-κB p65, Bcl-2, and Bcl-XL mRNA levels were measured with real-time polymerase chain reaction. NF-κB p65 activity was assessed with NF-κB enzyme-linked immunosorbent assay in retinal I/R injury and after application of the p38 MAPK inhibitor (SB203580). Furthermore, SB203580 and NF-κB p65 short interfering RNA (siRNA) were used in retinal I/R injury to examine the effects on Bcl-2 and Bcl-XL levels and nucleosome release in the retina and cell survival in the ganglion cell layer. Results The mRNA levels of NF-κB p65 and p38 MAPK reached a peak at 6 h after retinal I/R and then decreased gradually. The mRNA levels of Bcl-2 and Bcl-XL significantly increased at 2, 4, and 6 h, peaked at 8 h, and decreased gradually, but remained at a higher level compared with the normal control, which was accompanied by an increase in NF-κB p65 in nuclear extracts. After application of SB203580, the increase in the NF-κB p65 levels in the nucleus induced with I/R was completely abolished, and the mRNA expression of Bcl-2 and Bcl-XL decreased significantly compared with the I/R controls. In addition, NF-κB p65 siRNA inhibited Bcl-2 and Bcl-XL expression. Inhibition of the p38 MAPK-NF-κB pathway (using SB203580 or NF-κB p65 siRNA) increased retinal nucleosome release and decreased the number of ganglion cells. Conclusions These findings provide evidence of crosstalk

  11. HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role

    PubMed Central

    Fochi, Stefania; Mutascio, Simona; Bertazzoni, Umberto; Zipeto, Donato; Romanelli, Maria G.

    2018-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4+/CD25+ T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins. PMID:29515558

  12. HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role.

    PubMed

    Fochi, Stefania; Mutascio, Simona; Bertazzoni, Umberto; Zipeto, Donato; Romanelli, Maria G

    2018-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4 + /CD25 + T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins.

  13. Novel insights into the role of NF-κB p50 in astrocyte-mediated fate specification of adult neural progenitor cells

    PubMed Central

    Bortolotto, Valeria; Grilli, Mariagrazia

    2017-01-01

    Within the CNS nuclear factor-kappa B (NF-κB) transcription factors are involved in a wide range of functions both in homeostasis and in pathology. Over the years, our and other groups produced a vast array of information on the complex involvement of NF-κB proteins in different aspects of postnatal neurogenesis. In particular, several extracellular signals and membrane receptors have been identified as being able to affect neural progenitor cells (NPC) and their progeny via NF-κB activation. A crucial role in the regulation of neuronal fate specification in adult hippocampal NPC is played by the NF-κB p50 subunit. NF-κB p50KO mice display a remarkable reduction in adult hippocampal neurogenesis which correlates with a selective defect in hippocampal-dependent short-term memory. Moreover absence of NF-κB p50 can profoundly affect the in vitro proneurogenic response of adult hippocampal NPC (ahNPC) to several endogenous signals and drugs. Herein we briefly review the current knowledge on the pivotal role of NF-κB p50 in the regulation of adult hippocampal neurogenesis. In addition we discuss more recent data that further extend the relevance of NF-κB p50 to novel astroglia-derived signals which can influence neuronal specification of ahNPC and to astrocyte-NPC cross-talk. PMID:28469638

  14. The TNF-α/NF-κB signaling pathway has a key role in methamphetamine–induced blood–brain barrier dysfunction

    PubMed Central

    Coelho-Santos, Vanessa; Leitão, Ricardo A; Cardoso, Filipa L; Palmela, Inês; Rito, Manuel; Barbosa, Marcos; Brito, Maria A; Fontes-Ribeiro, Carlos A; Silva, Ana P

    2015-01-01

    Methamphetamine (METH) is a psychostimulant that causes neurologic and psychiatric abnormalities. Recent studies have suggested that its neurotoxicity may also result from its ability to compromise the blood–brain barrier (BBB). Herein, we show that METH rapidly increased the vesicular transport across endothelial cells (ECs), followed by an increase of paracellular transport. Moreover, METH triggered the release of tumor necrosis factor-alpha (TNF-α), and the blockade of this cytokine or the inhibition of nuclear factor-kappa B (NF-κB) pathway prevented endothelial dysfunction. Since astrocytes have a crucial role in modulating BBB function, we further showed that conditioned medium obtained from astrocytes previously exposed to METH had a negative impact on barrier properties also via TNF-α/NF-κB pathway. Animal studies corroborated the in vitro results. Overall, we show that METH directly interferes with EC properties or indirectly via astrocytes through the release of TNF-α and subsequent activation of NF-κB pathway culminating in barrier dysfunction. PMID:25899299

  15. Combination of quercetin, cinnamaldehyde and hirudin protects rat dorsal root ganglion neurons against high glucose-induced injury through Nrf-2/HO-1 activation and NF-κB inhibition.

    PubMed

    Shi, Yue; Liang, Xiao-Chun; Zhang, Hong; Sun, Qing; Wu, Qun-Li; Qu, Ling

    2017-09-01

    To examine the effects of the combination of quercetin (Q), cinnamaldehyde (C) and hirudin (H), a Chinese medicine formula on high glucose (HG)-induced apoptosis of cultured dorsal root ganglion (DRG) neurons. DRG neurons exposed to HG (45 mmol/L) for 24 h were employed as an in vitro model of diabetic neuropathy. Cell viability, reactive oxygen species (ROS) level and apoptosis were determined. The expression of nuclear factor of Kappa B (NF-κB), inhibitory kappa Bα(IκBα), phosphorylated IκBα and Nf-E2 related factor 2 (Nrf2) were examined using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay. The expression of hemeoxygenase-1 (HO-1), interleukin-6 (IL-6), tumor necrosis factor (TNF-α) and caspase-3 were also examined by RT-PCR and Western blot assay. HG treatment markedly increased DRG neuron apoptosis via increasing intracellular ROS level and activating the NF-κB signaling pathway (P<0.05). Co-treatment with Q, C, H and their combination decreased HG-induced caspase-3 activation and apoptosis (P<0.05 or P<0.01). The expressions of NF-κB, IL-6 and TNF-α were down-regulated, and Nrf2/HO-1 expression was up-regulated (P<0.05 or P<0.01). QCH has better effect in scavenging ROS, activating Nrf-2/HO-1, and down-regulating the NF-κB pathway than other treatment group. DRG neurons' apoptosis was increased in diabetic conditions, which was reduced by QCH formula treatment. The possible reason could be activating Nrf-2/HO-1 pathway, scavenging ROS, and inhibition of NF-κB activation. The effect of QCH combination was better than each monomer or the combination of the two monomers.

  16. Primate Lentiviruses Modulate NF-κB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression

    PubMed Central

    Heusinger, Elena; Kirchhoff, Frank

    2017-01-01

    The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle. PMID:28261165

  17. Human T cell leukaemia virus type 2 tax protein mediates CC-chemokine expression in peripheral blood mononuclear cells via the nuclear factor kappa B canonical pathway.

    PubMed

    Barrios, C S; Castillo, L; Zhi, H; Giam, C-Z; Beilke, M A

    2014-01-01

    Retroviral co-infections with human immunodeficiency virus type-1 (HIV-1) and human T cell leukaemia virus type 1 (HTLV-1) or type 2 (HTLV-2) are prevalent in many areas worldwide. It has been observed that HIV-1/HTLV-2 co-infections are associated with slower rates of CD4(+) T cell decline and delayed progression to AIDS. This immunological benefit has been linked to the ability of Tax2, the transcriptional activating protein of HTLV-2, to induce the expression of macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4 and regulated upon activation normal T cell expressed and secreted (RANTES)/CCL5 and to down-regulate the expression of the CCR5 co-receptor in peripheral blood mononuclear cells (PBMCs). This study aimed to assess the role of Tax2-mediated activation of the nuclear factor kappa B (NF-κB) signalling pathway on the production of the anti-viral CC-chemokines MIP-1α, MIP-1β and RANTES. Recombinant Tax1 and Tax2 proteins, or proteins expressed via adenoviral vectors used to infect cells, were tested for their ability to activate the NF-κB pathway in cultured PBMCs in the presence or absence of NF-κB pathway inhibitors. Results showed a significant release of MIP-1α, MIP-1β and RANTES by PBMCs after the activation of p65/RelA and p50. The secretion of these CC-chemokines was significantly reduced (P < 0·05) by canonical NF-κB signalling inhibitors. In conclusion, Tax2 protein may promote innate anti-viral immune responses through the activation of the canonical NF-κB pathway. © 2013 British Society for Immunology.

  18. FAP-1 and NF-κB expressions in oral squamous cell carcinoma as potential markers for chemo-radio sensitivity and prognosis.

    PubMed

    Nariai, Y; Mishima, K; Yoshimura, Y; Sekine, J

    2011-04-01

    This study was designed to investigate the feasibility of using Fas-associated phosphatase-1 (FAP-1), nuclear factor kappa B (NF-κB) and p53 as markers for chemo-radio sensitivity in oral squamous cell carcinoma (OSCC). FAP-1 plays a role as an anti-apoptotic factor through Fas-dependent apoptosis after chemo-radiotherapy. NF-κB and p53 might be involved in modulation of FAP-1 expression. FAP-1, NF-κB and p53 expression were immunohistochemically examined using biopsy specimens in 50 OSCC patients treated with chemotherapy and/or radiotherapy. FAP-1 was expressed in 52%, NF-κB in 52% and p53 in 46% of patients. There was no significant difference in FAP-1, p53 or NF-κB expression according to the clinicopathological features. No correlation was found among FAP-1, p53 or NF-κB expression. FAP-1-positive cases showed a poorer survival rate than FAP-1-negative cases (P = 0.0409) and NF-κB-positive cases showed a poorer survival rate than NF-κB-negative cases (P = 0.0018). Multivariate analysis showed that FAP-1 expression, NF-κB expression, clinical stage and age were significant independent variables for survival (clinical stage: P = 0.0016; age: P = 0.0016; NF-κB: P = 0.0314; FAP-1: P = 0.0366). These results suggest that FAP-1 and NF-κB might play a role as chemo-radioresistant factor during chemo-radiotherapy, and FAP-1 and NF-κB expression in OSCC would be feasible markers for chemo-radio sensitivity and prognosis. Copyright © 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Magnesium isoglycyrrhizinate blocks fructose-induced hepatic NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder.

    PubMed

    Zhao, Xiao-Juan; Yang, Yan-Zi; Zheng, Yan-Jing; Wang, Shan-Chun; Gu, Hong-Mei; Pan, Ying; Wang, Shui-Juan; Xu, Hong-Jiang; Kong, Ling-Dong

    2017-08-15

    Magnesium isoglycyrrhizinate as a hepatoprotective agent possesses immune modulation and anti-inflammation, and treats liver diseases. But its effects on immunological-inflammatory and metabolic profiles for metabolic syndrome with liver injury and underlying potential mechanisms are not fully understood. In this study, magnesium isoglycyrrhizinate alleviated liver inflammation and lipid accumulation in fructose-fed rats with metabolic syndrome. It also suppressed hepatic inflammatory signaling activation by reducing protein levels of phosphorylation of nuclear factor-kappa B p65 (p-NF-κB p65), inhibitor of nuclear factor kappa-B kinase α/β (p-IKKα/β) and inhibitor of NF-κB α (p-IκBα) as well as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and Caspase-1 in rats, being consistent with its reduction of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels. Furthermore, magnesium isoglycyrrhizinate modulated lipid metabolism-related genes characterized by up-regulating peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1), and down-regulating sensor for fatty acids to control-1 (SREBP-1) and stearoyl-CoA desaturase 1 (SCD-1) in the liver of fructose-fed rats, resulting in the reduction of triglyceride and total cholesterol levels. These effective actions were further confirmed in fructose-exposed BRL-3A and HepG2 cells. The molecular mechanisms underpinning these observations suggest that magnesium isoglycyrrhizinate may inhibit NF-κB/NLRP3 inflammasome activation to reduce immunological-inflammatory response, which in turn may prevent liver lipid metabolic disorder and accumulation under high fructose condition. Thus, blockade of NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury with

  20. Homeobox a5 Promotes White Adipose Tissue Browning Through Inhibition of the Tenascin C/Toll-Like Receptor 4/Nuclear Factor Kappa B Inflammatory Signaling in Mice.

    PubMed

    Cao, Weina; Huang, Hongtao; Xia, Tianyu; Liu, Chenlong; Muhammad, Saeed; Sun, Chao

    2018-01-01

    Lipopolysaccharide (LPS) induces rapid increase in systemic inflammatory factors. As adipose tissue is a key contributor to the inflammatory response to numerous metabolic stimuli, it is important to understand the mechanism behind the LPS-induced inflammation in white adipose tissue (WAT). Homeobox a5 (Hoxa5) is an important transcription factor, which is highly expressed in adipose tissue, and its mRNA expression is increased at cold exposure in mice. So far, the function of Hoxa5 in adipose tissue browning has been poorly understood. So, the objective of this study was conducted to determine the role of Hoxa5 in adipose inflammatory response and white adipose browning in mice. LPS-induced inflammatory and cold-induced browning model were conducted. We compared the coordinated role of Hoxa5 in inflammation and thermogenesis of mice adipose. Transcriptional and methylation regulation was determined by luciferase assay, electrophoretic mobility shift assay, and bisulfite conversion experiment. Hoxa5 and tenascin C (TNC) were involved in WAT inflammation and browning in mice with LPS injection. Furthermore, Hoxa5 inhibited the TNC-involved activation of Toll-like receptor (TLR) 4/nuclear factor kappa B (NF-κB) signal pathway and promoted WAT browning. Moreover, we found that a BMP4/Smad1 signal, closely related to browning, was activated by Hoxa5. Hoxa5 relieved adipocyte inflammation by decreasing TNC-mediated TLR4 transducer and activator of the NF-κB pathway. Interestingly, descended methylation level increased Hoxa5 expression in cold exposure. Our findings demonstrated that Hoxa5 alleviated inflammation and enhanced browning of adipose tissue via negative control of TNC/TLR4/NF-κB inflammatory signaling and activating BMP4/Smad1 pathway. These findings indicated a novel potential means for the regulation of inflammation in adipocytes to prevent obesity and other inflammatory diseases.

  1. Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

    PubMed Central

    Abbasi Habashi, Soraya; Sabouni, Farzaneh; Moghimi, Ali; Ansari Majd, Saeed

    2016-01-01

    Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. This study examined whether bromelain, the pineapple-derived extract, may exert an anti-inflammatory effect in primary microglia and may be neuroprotective by regulating microglial activation. Methods: Following the isolation of neonatal rat primary microglial cells, the activation profile of microglia was investigated by studying the effects of bromelain (5, 10, 20, and 30 µg/ml) on the levels of NO, inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in microglia treated with lipopolysaccharide (LPS) (1 µg/ml). Data were analyzed using Student's t-test. P values less than 0.05 were considered to be statistically significant, compared with the LPS-treated group without bromelain. Results: Results showed that pretreatment of rat primary microglia with bromelain, decreased the production of NO induced by LPS (1 µg/ml) treatment in a dose-dependent manner. Bromelain (30 µg/ml) also significantly reduced the expression of iNOS at mRNA level and NF-κB at protein level. Moreover, the study of mitochondrial activity in microglia indicated that bromelain had no cytotoxicity at any of the applied doses, suggesting that the anti-inflammatory effects of bromelain are not due to cell death. Conclusion: Bromelain can be of potential use as an agent for alleviation of symptoms in neurodegenerative diseases. PMID:26459398

  2. Fisetin Imparts Neuroprotection in Experimental Diabetic Neuropathy by Modulating Nrf2 and NF-κB Pathways.

    PubMed

    Sandireddy, Reddemma; Yerra, Veera Ganesh; Komirishetti, Prashanth; Areti, Aparna; Kumar, Ashutosh

    2016-08-01

    The current study is aimed to assess the therapeutic potential of fisetin, a phytoflavonoid in streptozotocin (STZ)-induced experimental diabetic neuropathy (DN) in rats. Fisetin was administered (5 and 10 mg/kg) for 2 weeks (7th and 8th week) post STZ administration. Thermal and mechanical hyperalgesia were assessed by measuring tactile sensitivity to thermal and mechanical stimuli, respectively. Motor nerve conduction velocity (MNCV) was determined using power lab system and sciatic nerve blood flow (NBF) was determined using laser Doppler system. Nerve sections were processed for TUNEL assay and NF-κB, COX-2 immunohistochemical staining. Sciatic nerve homogenate was used for biochemical and Western blotting analysis. MNCV and sciatic NBF deficits associated with DN were ameliorated in fisetin administered rats. Fisetin treatment reduced the interleukin-6 and tumour necrosis factor-alpha in sciatic nerves of diabetic rats (p < 0.001). Protein expression studies have identified that the therapeutic benefit of fisetin might be through regulation of redox sensitive transcription factors such as nuclear erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB). Our study provides an evidence for the therapeutic potential of fisetin in DN through simultaneous targeting of NF-κB and Nrf2.

  3. Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages.

    PubMed

    Nadra, Imad; Boccaccini, Aldo R; Philippidis, Pandelis; Whelan, Linda C; McCarthy, Geraldine M; Haskard, Dorian O; Landis, R Clive

    2008-01-01

    Macrophages may promote a vicious cycle of inflammation and calcification in the vessel wall by ingesting neointimal calcific deposits (predominantly hydroxyapatite) and secreting tumor necrosis factor (TNF)alpha, itself a vascular calcifying agent. Here we have investigated whether particle size affects the proinflammatory potential of hydroxyapatite crystals in vitro and whether the nuclear factor (NF)-kappaB pathway plays a role in the macrophage TNFalpha response. The particle size and nano-topography of nine different crystal preparations was analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and gas sorbtion analysis. Macrophage TNFalpha secretion was inversely related to hydroxyapatite particle size (P=0.011, Spearman rank correlation test) and surface pore size (P=0.014). A necessary role for the NF-kappaB pathway was demonstrated by time-dependent I kappaB alpha degradation and sensitivity to inhibitors of I kappaB alpha degradation. To test whether smaller particles were intrinsically more bioactive, their mitogenic activity on fibroblast proliferation was examined. This showed close correlation between TNFalpha secretion and crystal-induced fibroblast proliferation (P=0.007). In conclusion, the ability of hydroxyapatite crystals to stimulate macrophage TNFalpha secretion depends on NF-kappaB activation and is inversely related to particle and pore size, with crystals of 1-2 microm diameter and pore size of 10-50 A the most bioactive. Microscopic calcific deposits in early stages of atherosclerosis may therefore pose a greater inflammatory risk to the plaque than macroscopically or radiologically visible deposits in more advanced lesions.

  4. Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity.

    PubMed

    Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K

    2013-04-01

    Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells. Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits. Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis. Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines. © 2013 Blackwell Publishing Ltd.

  5. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Wang; Chunhua, Ma, E-mail: machunhuabest@126.com; Shumin, Wang, E-mail: wangshuminch@126.com

    The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6)more » in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.« less

  6. Herpes simplex virus 2 modulates apoptosis and stimulates NF-{kappa}B nuclear translocation during infection in human epithelial HEp-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedowitz, Jamie C.; Blaho, John A.

    2005-11-25

    Virus-mediated apoptosis is well documented in various systems, including herpes simplex virus 1 (HSV-1). HSV-2 is closely related to HSV-1 but its apoptotic potential during infection has not been extensively scrutinized. We report that (i) HEp-2 cells infected with HSV-2(G) triggered apoptosis, assessed by apoptotic cellular morphologies, oligosomal DNA laddering, chromatin condensation, and death factor processing when a translational inhibitor (CHX) was added at 3 hpi. Thus, HSV-2 induced apoptosis but was unable to prevent the process from killing cells. (ii) Results from a time course of CHX addition experiment indicated that infected cell protein produced between 3 and 5more » hpi, termed the apoptosis prevention window, are required for blocking virus-induced apoptosis. This corresponds to the same prevention time frame as reported for HSV-1. (iii) Importantly, CHX addition prior to 3 hpi led to less apoptosis than that at 3 hpi. This suggests that proteins produced immediately upon infection are needed for efficient apoptosis induction by HSV-2. This finding is different from that observed previously with HSV-1. (iv) Infected cell factors produced during the HSV-2(G) prevention window inhibited apoptosis induced by external TNF{alpha} plus cycloheximide treatment. (v) NF-{kappa}B translocated to nuclei and its presence in nuclei correlated with apoptosis prevention during HSV-2(G) infection. (vi) Finally, clinical HSV-2 isolates induced and prevented apoptosis in HEp-2 cells in a manner similar to that of laboratory strains. Thus, while laboratory and clinical HSV-2 strains are capable of modulating apoptosis in human HEp-2 cells, the mechanism of HSV-2 induction of apoptosis differs from that of HSV-1.« less

  7. Gelam Honey Attenuates Carrageenan-Induced Rat Paw Inflammation via NF-κB Pathway

    PubMed Central

    Hussein, Saba Zuhair; Mohd Yusoff, Kamaruddin; Makpol, Suzana; Mohd Yusof, Yasmin Anum

    2013-01-01

    The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α. PMID:24015236

  8. Shikonin exerts anti-inflammatory effects in a murine model of lipopolysaccharide-induced acute lung injury by inhibiting the nuclear factor-kappaB signaling pathway.

    PubMed

    Liang, Dejie; Sun, Yong; Shen, Yongbin; Li, Fengyang; Song, Xiaojing; Zhou, Ershun; Zhao, Fuyi; Liu, Zhicheng; Fu, Yunhe; Guo, Mengyao; Zhang, Naisheng; Yang, Zhengtao; Cao, Yongguo

    2013-08-01

    Shikonin, an analog of naphthoquinone pigments isolated from the root of Lithospermum erythrorhyzon, was recently reported to exert beneficial anti-inflammatory effects both in vivo and in vitro. The present study aimed to investigate the potential therapeutic effect of shikonin in a murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Dexamethasone was used as a positive control to evaluate the anti-inflammatory effect of shikonin in the study. Pretreatment with shikonin (intraperitoneal injection) significantly inhibited LPS-induced increases in the macrophage and neutrophil infiltration of lung tissues and markedly attenuated myeloperoxidase activity. Furthermore, shikonin significantly reduced the concentrations of TNF-α, IL-6 and IL-1β in bronchoalveolar lavage fluid induced by LPS. Compared with the LPS group, lung histopathologic changes were less pronounced in the shikonin-pretreated mice. Additionally, Western blotting results showed that shikonin efficiently decreased nuclear factor-kappaB (NF-κB) activation by inhibiting the degradation and phosphorylation of IκBα. These results suggest that shikonin exerts anti-inflammatory properties in LPS-mediated ALI, possibly through inhibition of the NF-κB signaling pathway, which mediates the expression of pro-inflammatory cytokines. Shikonin may be a potential agent for the prophylaxis of ALI. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis

    PubMed Central

    Marino-Merlo, Francesca; Papaianni, Emanuela; Medici, Maria Antonietta; Macchi, Beatrice; Grelli, Sandro; Mosca, Claudia; Borner, Christoph; Mastino, Antonio

    2016-01-01

    The transcription factor nuclear factor-kappa B (NF-κB) is a crucial player of the antiviral innate response. Intriguingly, however, NF-κB activation is assumed to favour herpes simplex virus (HSV) infection rather than restrict it. Apoptosis, a form of innate response to viruses, is completely inhibited by HSV in fully permissive cells, but not in cells incapable to fully sustain HSV replication, such as immunocompetent cells. To resolve the intricate interplay among NF-κB signalling, apoptosis and permissiveness to HSV-1 in monocytic cells, we utilized U937 monocytic cells in which NF-κB activation was inhibited by expressing a dominant-negative IκBα. Surprisingly, viral production was increased in monocytic cells in which NF-κB was inhibited. Moreover, inhibition of NF-κB led to increased apoptosis following HSV-1 infection, associated with lysosomal membrane permeabilization. High expression of late viral proteins and induction of apoptosis occurred in distinct cells. Transcriptional analysis of known innate response genes by real-time quantitative reverse transcription-PCR excluded a contribution of the assayed genes to the observed phenomena. Thus, in monocytic cells NF-κB activation simultaneously serves as an innate process to restrict viral replication as well as a mechanism to limit the damage of an excessive apoptotic response to HSV-1 infection. This finding may clarify mechanisms controlling HSV-1 infection in monocytic cells. PMID:27584793

  10. Substances released from probiotic Lactobacillus rhamnosus GR-1 potentiate NF-κB activity in Escherichia coli-stimulated urinary bladder cells.

    PubMed

    Karlsson, Mattias; Scherbak, Nikolai; Khalaf, Hazem; Olsson, Per-Erik; Jass, Jana

    2012-11-01

    Lactobacillus rhamnosus GR-1 is a probiotic bacterium used to maintain urogenital health. The putative mechanism for its probiotic effect is by modulating the host immunity. Urinary tract infections (UTI) are often caused by uropathogenic Escherichia coli that frequently evade or suppress immune responses in the bladder and can target pathways, including nuclear factor-kappaB (NF-κB). We evaluated the role of L. rhamnosus GR-1 on NF-κB activation in E. coli-stimulated bladder cells. Viable L. rhamnosus GR-1 was found to potentiate NF-κB activity in E. coli-stimulated T24 bladder cells, whereas heat-killed lactobacilli demonstrated a marginal increase in NF-κB activity. Surface components released by trypsin- or LiCl treatment, or the resultant heat-killed shaved lactobacilli, had no effect on NF-κB activity. Isolation of released products from L. rhamnosus GR-1 demonstrated that the induction of NF-κB activity was owing to released product(s) with a relatively large native size. Several putative immunomodulatory proteins were identified, namely GroEL, elongation factor Tu and NLP/P60. GroEL and elongation factor Tu have previously been shown to elicit immune responses from human cells. Isolating and using immune-augmenting substances produced by lactobacilli is a novel strategy for the prevention or treatment of UTI caused by immune-evading E. coli. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Yunju; Lee, Soyoung; Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr

    A great number of people are suffering from allergic inflammatory diseases such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid contained in propolis, blue passion flower, and fruits. Several studies reported that chrysin has beneficial effects including anti-tumor and anti-oxidant activities. The aim of the present study was to elucidate whether chrysin modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. Chrysin inhibited immediate-type systemic hypersensitivitymore » and serum histamine release. Chrysin attenuated immunoglobulin E-mediated local anaphylaxis. These inhibitory effects of chrysin on the systemic and local allergic reaction were more potent than cromolyn, a known anti-allergic drug. Chrysin reduced histamine release from mast cells. The inhibitory effect of chrysin on the histamine release was mediated by the modulation of intracellular calcium. In addition, chrysin decreased gene expression of pro-inflammatory cytokines such as, tumor necrosis factor-{alpha}, IL (interleukin)-1{beta}, IL-4, and IL-6 in mast cells. The inhibitory effect of chrysin on the pro-inflammatory cytokine was nuclear factor-{kappa}B and caspase-1 dependent. Our findings provide evidence that chrysin inhibits mast cell-derived allergic inflammatory reactions by blocking histamine release and pro-inflammatory cytokine expression, and suggest the mechanisms of action. Furthermore, in vivo and in vitro anti-allergic inflammatory effect of chrysin suggests a possible therapeutic application of this agent in allergic inflammatory diseases. - Research Highlights: > Discovery of drugs for the allergic inflammation is important in human health. > Chrysin is a natural flavonoid contained in propolis, blue passion flower, and fruits

  12. Ultrasound microbubble-mediated transfection of NF-κB decoy oligodeoxynucleotide into gingival tissues inhibits periodontitis in rats in vivo

    PubMed Central

    Yamaguchi, Hiroyuki; Hosomichi, Jun; Suzuki, Jun-ichi; Hatano, Kasumi; Usumi-Fujita, Risa; Shimizu, Yasuhiro; Kaneko, Sawa; Ono, Takashi

    2017-01-01

    Periodontitis is a chronic infectious disease for which the fundamental treatment is to reduce the load of subgingival pathogenic bacteria by debridement. However, previous investigators attempted to implement a nuclear factor kappa B (NF-κB) decoy oligodeoxynucleotide (ODN) as a suppressor of periodontitis progression. Although we recently reported the effectiveness of the ultrasound-microbubble method as a tool for transfecting the NF-κB decoy ODN into healthy rodent gingival tissue, this technique has not yet been applied to the pathological gingiva of periodontitis animal models. Therefore, the aim of this study was to investigate the effectiveness of the technique in transfecting the NF-κB decoy ODN into rats with ligature-induced periodontitis. Micro computed tomography (micro-CT) analysis demonstrated a significant reduction in alveolar bone loss following treatment with the NF-κB decoy ODN in the experimental group. RT-PCR showed that NF-κB decoy ODN treatment resulted in significantly reduced expression of inflammatory cytokine transcripts within rat gingival tissues. Thus, we established a transcutaneous transfection model of NF-κB decoy ODN treatment of periodontal tissues using the ultrasound-microbubble technique. Our findings suggest that the NF-κB decoy ODN could be used as a significant suppressor of gingival inflammation and periodontal disease progression. PMID:29091721

  13. Hypoxia and P. gingivalis Synergistically Induce HIF-1 and NF-κB Activation in PDL Cells and Periodontal Diseases

    PubMed Central

    Gölz, L.; Memmert, S.; Rath-Deschner, B.; Jäger, A.; Appel, T.; Baumgarten, G.; Götz, W.; Frede, S.

    2015-01-01

    Periodontitis is characterized by deep periodontal pockets favoring the proliferation of anaerobic bacteria like Porphyromonas gingivalis (P. gingivalis), a periodontal pathogen frequently observed in patients suffering from periodontal inflammation. Therefore, the aim of the present study was to investigate the signaling pathways activated by lipopolysaccharide (LPS) of P. gingivalis (LPS-PG) and hypoxia in periodontal ligament (PDL) cells. The relevant transcription factors nuclear factor-kappa B (NF-κB) and hypoxia inducible factor-1 (HIF-1) were determined. In addition, we analyzed the expression of interleukin- (IL-) 1β, matrix metalloproteinase-1 (MMP-1), and vascular endothelial growth factor (VEGF) in PDL cells on mRNA and protein level. This was accomplished by immunohistochemistry of healthy and inflamed periodontal tissues. We detected time-dependent additive effects of LPS-PG and hypoxia on NF-κB and HIF-1α activation in PDL cells followed by an upregulation of IL-1β, MMP-1, and VEGF expression. Immunohistochemistry performed on tissue samples of gingivitis and periodontitis displayed an increase of NF-κB, HIF-1, and VEGF immunoreactivity in accordance with disease progression validating the importance of the in vitro results. To conclude, the present study underlines the significance of NF-κB and HIF-1α and their target genes VEGF, IL-1β, and MMP-1 in P. gingivalis and hypoxia induced periodontal inflammatory processes. PMID:25861162

  14. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes - Implications for osteoarthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imagawa, Kei, E-mail: k.Imagawa@soton.ac.uk; Tohoku University School of Medicine, Sendai; Andres, MC de

    Research highlights: {yields} Glucosamine and a NF-kB inhibitor reduce inflammation in OA. {yields} Cytokine induced demethylation of CpG site in IL1{beta} promoter prevented by glucosamine. {yields} Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OAmore » is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1{beta}, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1{beta} and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2

  15. Targeting Nuclear Factor kappa B for the Treatment of Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    J Immunol 163:5617-23, 1999 3. Mendonca M, Hardacre, M, Datzman, N, Comerford, K, Chin-Sinex, H, Sweeney C.: Inhibition of constitutive NFkappaB ...nuclear factor kappaB activation in 20:7342-51. PC3 cells by genistein is mediated via Akt signaling pathway. Clin 9. Huang S, DeGuzman A, Bucana CD

  16. Anti-inflammatory effects of physalin E from Physalis angulata on lipopolysaccharide-stimulated RAW 264.7 cells through inhibition of NF-κB pathway.

    PubMed

    Yang, Yan-Jun; Yi, Lang; Wang, Qing; Xie, Bing-Bing; Dong, Yan; Sha, Cong-Wei

    2017-04-01

    Physalin E is a naturally occurring seco-steroid isolated from the stems and aerial parts of Physalis angulata L. (Solanaceae). This study was aimed to explore the anti-inflammatory effects of physalin E on RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS) and the potential underlying mechanisms. The results showed that physalin E significantly inhibited LPS-induced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression and secretion in a dose-dependent manner. Unlike dexamethasone, these effects could not be blocked by miferstone (RU486). Meanwhile, physalin E reduced the degradation of I-kappa B protein in the cytoplasm and downregulated the nuclear factor-κB (NF-κB) p65 protein in the nuclear, which resulted in the inhibition of the NF-κB nuclear translocation. In conclusion, physalin E exerts its anti-inflammatory activities in LPS-induced macrophages. Physalin E can inhibit the production of inflammatory cytokines by targeting the NF-κB signaling pathway.

  17. UPP mediated Diabetic Retinopathy via ROS/PARP and NF-κB inflammatory factor pathways.

    PubMed

    Luo, D-W; Zheng, Z; Wang, H; Fan, Y; Chen, F; Sun, Y; Wang, W-J; Sun, T; Xu, X

    2015-01-01

    Diabetic retinopathy (DR) is a leading cause of blindness in adults at working age. Human diabetic retinopathy is characterized by the basement membrane thick, pericytes loss, microaneurysms formation, retina neovascularization and vitreous hemorrhage. To investigate whether UPP activated ROS/PARP and NF-κB inflammatory factor pathways in Diabetic Retinopathy, human retinal endothelial cells (HRECs) and rats with streptozotocin-induced diabetes were used to determine the effect of UPP on ROS generation, cell apoptosis, mitochondrial membrane potential (ΔΨm) and inflammatory factor protein expression, through flow cytometry assay, immunohistochemistry, Real-time PCR, Western blot analysis and ELISA. The levels of ROS and apoptosis and the expressions of UPP (Ub and E3) and inflammatory factor protein were increased in high glucose-induced HRECs and retina of diabetic rats, while ΔΨm was decreased. The UPP inhibitor and UbshRNA could attenuate these effects through inhibiting the pathway of ROS/PARP and the expression of NF-κB inflammatory factors, and the increased UPP was a result of high glucose-induced increase of ROS generation and NF-κBp65 expression, accompanied with the decrease of ΔΨm. Clinical study showed the overexpression of UPP and detachment of epiretinal membranes in proliferative DR (PDR) patients. It has been indicated that the pathogenic effect of UPP on DR was involved in the increase of ROS generation and NF-κB expression, which associated with the ROS/PARP and NF-κB inflammatory factor pathways. Our study supports a new insight for further application of UPP inhibitor in DR treatment.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Byung Hak; Lee, Jun-Young; Seo, Jee Hee

    Nuclear factor (NF)-{kappa}B regulates a central common signaling for immunity and cell survival. Artemisolide (ATM) was previously isolated as a NF-{kappa}B inhibitor from a plant of Artemisia asiatica. However, molecular basis of ATM on NF-{kappa}B activation remains to be defined. Here, we demonstrate that ATM is a typical inhibitor of I{kappa}B kinase {beta} (IKK{beta}), resulting in inhibition of lipopolysaccharide (LPS)-induced NF-{kappa}B activation in RAW 264.7 macrophages. ATM inhibited the kinase activity of highly purified IKK{beta} and also LPS-induced IKK activity in the cells. Moreover, the effect of ATM on IKK{beta} activity was completely abolished by substitution of Cys-179 residue ofmore » IKK{beta} to Ala residue, indicating direct targeting site of ATM. ATM could inhibit I{kappa}B{alpha} phosphorylation in LPS-activated RAW 264.7 cells and subsequently prevent NF-{kappa}B activation. Further, we demonstrate that ATM down-regulates NF-{kappa}B-dependent TNF-{alpha} expression. Taken together, this study provides a pharmacological potential of ATM in NF-{kappa}B-dependent inflammatory disorders.« less

  19. Increased IL-2 production in T cells by xanthohumol through enhanced NF-AT and AP-1 activity.

    PubMed

    Choi, Jin Myung; Kim, Hyun Jung; Lee, Kwang Youl; Choi, Hyun Jin; Lee, Ik-Soo; Kang, Bok Yun

    2009-01-01

    Xanthohumol (XN) is a major chalcone found in hop, which is used to add bitterness and flavor to beer. In this study, we investigated the effects of XN on the production of interlukin-2 (IL-2), a potent T cell growth factor. Treatment with XN significantly increased IL-2 production in mouse EL-4 T cells activated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io) in a dose-dependent manner. To further characterize its regulatory mechanism of XN on increased IL-2 production, the effects of XN on IL-2 promoter activity and the activity of several transcription factors modulating IL-2 expression were analyzed. XN enhanced activity of the IL-2 promoter, which contains distal and proximal regulatory elements in PMA/Io-activated EL-4 T cells. Furthermore, the activity of NF-AT and AP-1 was enhanced but NF-kappaB activity was not influenced by XN in PMA/Io-activated EL-4 T cells. These results suggest that XN increased IL-2 production at the transcriptional levels via the up-regulation of NF-AT and AP-1 in PMA/Io-activated EL-4 T cells.

  20. Cold induces reactive oxygen species production and activation of the NF-kappa B response in endothelial cells and inflammation in vivo.

    PubMed

    Awad, E M; Khan, S Y; Sokolikova, B; Brunner, P M; Olcaydu, D; Wojta, J; Breuss, J M; Uhrin, P

    2013-09-01

    Organs intended for transplantation are generally stored in the cold for better preservation of their function. However, following transplantation and reperfusion, the microvasculature of transplanted organs often proves to be activated. Extensive leukocyte adhesion and microthrombus formation contribute to failure of the transplanted organ. In this study we analyzed cold-induced changes to the activation status of cultured endothelial cells, possibly contributing to organ failure. We exposed human umbilical vein endothelial cells (HUVECs) to temperatures below 37 °C (mostly to 8 °C) for 30 min and upon rewarming to 37 °C kept incubating them for up to 24 h. We also in vivo locally exposed mice to cold. The exposure to low temperatures induced, in HUVECs, expression of the prothrombotic factors plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF) and of the inflammatory adhesion molecules, E-selectin, intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Furthermore, upon rewarming for 30 min, we detected activation of the inflammatory NF-κB pathway, as measured by transient NF-κB translocation to the nucleus and IκBα degradation. Using butylated hydroxytoluene (BHT), a scavenger of reactive oxygen species (ROS), we further demonstrated that cold-induced NF-κB activation depends on ROS production. Local exposure to cold also, in vivo, induced ROS production and ICAM-1 expression and resulted in leukocyte infiltration. Our results point to a causative link between ROS production and NF-κB activation, suppression of which had been shown to be beneficial during hypothermic storage and subsequent rewarming of organs for transplantation. © 2013 International Society on Thrombosis and Haemostasis.

  1. Distinct mechanisms for N-acetylcysteine inhibition of cytokine-induced E-selectin and VCAM-1 expression.

    PubMed

    Faruqi, R M; Poptic, E J; Faruqi, T R; De La Motte, C; DiCorleto, P E

    1997-08-01

    We have examined the effects of N-acetyl-L-cysteine (NAC), a well-characterized, thiol-containing antioxidant, on agonist-induced monocytic cell adhesion to endothelial cells (EC). NAC inhibited interleukin-1 (IL-1 beta)-induced, but not basal, adhesion with 50% inhibition at approximately 20 mM. Monocytic cell adhesion to EC in response to tumor necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), alpha-thrombin, or phorbol 12-myristate 13-acetate (PMA) was similarly inhibited by NAC. Unlike published studies with pyrrolidinedithiocarbamate, which specifically inhibited vascular cell adhesion molecule 1 (VCAM-1), NAC inhibited IL-1 beta-induced mRNA and cell surface expression of both E-selectin and VCAM-1. NAC had no effect on the half-life of E-selectin or VCAM-1 mRNA. Although NAC reduced nuclear factor-kappa B (NF-kappa B) activation in EC as measured by gel-shift assays using an oligonucleotide probe corresponding to the consensus NF-kappa B binding sites of the VCAM-1 gene (VCAM-NF-kappa B), the antioxidant had no appreciable effect when an oligomer corresponding to the consensus NF-kappa B binding site of the E-selectin gene (E-selectin-NF-kappa B) was used. Because NF-kappa B has been reported to be redox sensitive, we studied the effects of NAC on the EC redox environment. NAC caused an expected dramatic increase in the reduced glutathione (GSH) levels in EC. In vitro studies demonstrated that whereas the binding affinity of NF-kappa B to the VCAM-NF-kappa B oligomer peaked at a GSH-to-oxidized glutathione (GSSG) ratio of approximately 200 and decreased at higher ratios, the binding to the E-selectin-NF-kappa B oligomer appeared relatively unaffected even at ratios > 400, i.e., those achieved in EC treated with 40 mM NAC. These results suggest that NF-kappa B binding to its consensus sequences in the VCAM-1 and E-selectin gene exhibits marked differences in redox sensitivity, allowing for differential gene expression regulated by the same

  2. Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy.

    PubMed

    Peng, Kanfu; Xie, Pan; Yang, Zhe-Han; Yuan, Ruo; Zhang, Keqin

    2018-04-15

    In this work, an amplified electrochemical ratiometric aptasensor for nuclear factor kappa B (NF-κB) assay based on target binding-triggered ratiometric signal readout and polymerase-assisted protein recycling amplification strategy is described. To demonstrate the effect of "signal-off" and "signal-on" change for the dual-signal electrochemical ratiometric readout, the thiol-hairpin DNA (SH-HD) hybridizes with methylene blue (MB)-modified protection DNA (MB-PD) to form capture probes, which is rationally introduced for the construction of the assay platform. On the interface, the probes can specifically bind to target NF-κB and expose a toehold region which subsequently hybridizes with the ferrocene (Fc)-modified DNA strand to take the Fc group to the electrode surface, accompanied by displacing MB-PD to release the MB group from the electrode surface, leading to the both "signal-on" of Fc (I Fc ) and "signal-off" of MB (I MB ). In order to improve the sensitivity of the electrochemical aptasensor, phi29-assisted target protein recycling amplification strategy was designed to achieve an amplified ratiometric signal. With the above advantages, the prepared aptasensor exhibits a wide linear range of 0.1pgmL -1 to 15ngmL -1 with a low detection limit of 0.03pgmL -1 . This strategy provides a simple and ingenious approach to construct ratiometric electrochemical aptasensor and shows promising potential applications in multiple disease marker detection by changing the recognition probe. Copyright © 2017. Published by Elsevier B.V.

  3. Flavonoid glycosides from Olax mannii: Structure elucidation and effect on the nuclear factor kappa B pathway.

    PubMed

    Okoye, Festus B C; Sawadogo, Wamtinga Richard; Sendker, Jandirk; Aly, Amal H; Quandt, Bettina; Wray, Victor; Hensel, Andreas; Esimone, Charles O; Debbab, Abdessamad; Diederich, Marc; Proksch, Peter

    2015-12-24

    Olax mannii Oliv. (Olacaceae) is among the many medicinal plants used in Nigeria for the ethnomedicinal management of both cancer and inflammation. Such plants represent potential sources of innovative therapeutic agents for the treatment of cancer and other malignant disorders. While the majority of medicinal plants exert their anticancer effects by direct cytotoxicity on tumor cells, it is important that other mechanisms through which these plants can exhibit anticancer effects are investigated. Preliminary studies indicated that Olax mannii leaves are rich sources of novel flavonoid glycosides. The detailed chemistry as well the mechanisms through which these flavonoid constituents may exert their cancer chemo-preventive and therapeutic effects are, however, not yet investigated. The aim of this study is to carry out a detailed chemical investigation of Olax mannii leaves and the effects of the isolated constituents on the nuclear factor kappa B (NF-κB) pathway. A methanol leaf extract was subjected to various chromatographic separations to achieve isolation of flavonoid glycosides and the structures of the isolated compounds were elucidated by a combination of 1D and 2D NMR and high resolution mass spectrometry. Biological activities were assessed by measurement of cellular viability and proliferation using quantitative IncuCyte videomicroscopy, trypan blue staining and by quantification of the number of metabolically active K562 cells based on quantitation of ATP. The effect of the compounds on the inhibition of the NF-κB pathway as well as toxicity towards peripheral blood mononuclear cells to evaluate differential toxicity was also assayed. Chemical investigation of the methanol leaf extract of the plant material led to the isolation of three new flavonoid triglycosides, kaempferol 3-O-[α-D-apiofuranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O-α-L-rhamnopyranoside (1), kaempferol 3-O-[β-D-glucopyranosyl-(1 → 2)-α-L-arabinofuranoside]-7-O

  4. NF-κB Is the Transcription Factor for FGF-2 That Causes Endothelial Mesenchymal Transformation in Cornea

    PubMed Central

    Lee, Jeong Goo

    2012-01-01

    Purpose. To determine the role of nuclear factor-κB (NF-κB) during FGF-2–mediated endothelial mesenchymal transformation (EMT) in response to interleukin (IL)-1β stimulation in corneal endothelial cells (CECs). Methods. Expression and/or activation of IL-1 receptor–associated protein kinase (IRAK), TNF receptor–associated factor 6 (TRAF6), phosphatidylinositol 3-kinase (PI 3-kinase), IκB kinase (IKK), IκB, NF-κB, and FGF-2 were analyzed by immunoblot analysis. Cell proliferation was measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. NF-κB activity was measured by NF-κB ELISA kit, while binding of NF-κB to the promoter region of FGF-2 gene was determined by chromatin immunoprecipitation. Results. Brief stimulation of CECs with IL-1β upregulated expression of IRAK and TRAF6 and activated PI 3-kinase; expression of IRAK and TRAF6 reached maximum within 60 minutes, after which the expression disappeared, while PI 3-kinase activity was observed up to 4 hours after IL-1β stimulation. Use of specific inhibitor to PI 3-kinase or IRAK demonstrated that IRAK activates PI 3-kinase, the signaling of which phosphorylates IKKα/β and degrades IκB, subsequently leading to activation of NF-κB. The induction of FGF-2 by IL-1β was completely blocked by inhibitors to NF-κB activation (sulfasalazine) or PI 3-kinase (LY294002), and both inhibitors greatly blocked cell proliferation of CECs. Chromatin immunoprecipitation further demonstrated that NF-κB is the transcription factor of FGF-2 as NF-κB binds the putative NF-κB binding site of the FGF-2 promoter. Conclusions. These data suggest that IL-1β signaling combines the canonical pathway and the PI 3-kinase signaling to upregulate FGF-2 production through NF-κB, which plays a key role as a transcription factor of FGF-2 gene. PMID:22323467

  5. A Systems Biology Approach To Identify the Combination Effects of Human Herpesvirus 8 Genes on NF-κB Activation▿

    PubMed Central

    Konrad, Andreas; Wies, Effi; Thurau, Mathias; Marquardt, Gaby; Naschberger, Elisabeth; Hentschel, Sonja; Jochmann, Ramona; Schulz, Thomas F.; Erfle, Holger; Brors, Benedikt; Lausen, Berthold; Neipel, Frank; Stürzl, Michael

    2009-01-01

    Human herpesvirus 8 (HHV-8) is the etiologic agent of Kaposi's sarcoma and primary effusion lymphoma. Activation of the cellular transcription factor nuclear factor-kappa B (NF-κB) is essential for latent persistence of HHV-8, survival of HHV-8-infected cells, and disease progression. We used reverse-transfected cell microarrays (RTCM) as an unbiased systems biology approach to systematically analyze the effects of HHV-8 genes on the NF-κB signaling pathway. All HHV-8 genes individually (n = 86) and, additionally, all K and latent genes in pairwise combinations (n = 231) were investigated. Statistical analyses of more than 14,000 transfections identified ORF75 as a novel and confirmed K13 as a known HHV-8 activator of NF-κB. K13 and ORF75 showed cooperative NF-κB activation. Small interfering RNA-mediated knockdown of ORF75 expression demonstrated that this gene contributes significantly to NF-κB activation in HHV-8-infected cells. Furthermore, our approach confirmed K10.5 as an NF-κB inhibitor and newly identified K1 as an inhibitor of both K13- and ORF75-mediated NF-κB activation. All results obtained with RTCM were confirmed with classical transfection experiments. Our work describes the first successful application of RTCM for the systematic analysis of pathofunctions of genes of an infectious agent. With this approach, ORF75 and K1 were identified as novel HHV-8 regulatory molecules on the NF-κB signal transduction pathway. The genes identified may be involved in fine-tuning of the balance between latency and lytic replication, since this depends critically on the state of NF-κB activity. PMID:19129458

  6. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells.

    PubMed

    Berkovich, Liron; Earon, Gideon; Ron, Ilan; Rimmon, Adam; Vexler, Akiva; Lev-Ari, Shahar

    2013-08-19

    Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells' chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells.

  7. Human NF-κB1 Haploinsufficiency and Epstein-Barr Virus-Induced Disease-Molecular Mechanisms and Consequences.

    PubMed

    Hoeger, Birgit; Serwas, Nina Kathrin; Boztug, Kaan

    2017-01-01

    Nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κB1)-related human primary immune deficiencies have initially been characterized as defining a subgroup of common variable immunodeficiencies (CVIDs), representing intrinsic B-cell disorders with antibody deficiency and recurrent infections of various kind. Recent evidence indicates that NF-κB1 haploinsufficiency underlies a variable type of combined immunodeficiency (CID) affecting both B and T lymphocyte compartments, with a broadened spectrum of disease manifestations, including Epstein-Barr virus (EBV)-induced lymphoproliferative disease and immediate life-threatening consequences. As part of this review series focused on EBV-related primary immunodeficiencies, we discuss the current clinical and molecular understanding of monoallelic NFKB1 germline mutations with special focus on the emerging context of EBV-associated disease. We outline mechanistic implications of dysfunctional NF-κB1 in B and T cells and discuss the fatal relation of impaired T-cell function with the inability to clear EBV infections. Finally, we compare common and suggested treatment angles in the context of this complex disease.

  8. Human NF-κB1 Haploinsufficiency and Epstein–Barr Virus-Induced Disease—Molecular Mechanisms and Consequences

    PubMed Central

    Hoeger, Birgit; Serwas, Nina Kathrin; Boztug, Kaan

    2018-01-01

    Nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κB1)-related human primary immune deficiencies have initially been characterized as defining a subgroup of common variable immunodeficiencies (CVIDs), representing intrinsic B-cell disorders with antibody deficiency and recurrent infections of various kind. Recent evidence indicates that NF-κB1 haploinsufficiency underlies a variable type of combined immunodeficiency (CID) affecting both B and T lymphocyte compartments, with a broadened spectrum of disease manifestations, including Epstein–Barr virus (EBV)-induced lymphoproliferative disease and immediate life-threatening consequences. As part of this review series focused on EBV-related primary immunodeficiencies, we discuss the current clinical and molecular understanding of monoallelic NFKB1 germline mutations with special focus on the emerging context of EBV-associated disease. We outline mechanistic implications of dysfunctional NF-κB1 in B and T cells and discuss the fatal relation of impaired T-cell function with the inability to clear EBV infections. Finally, we compare common and suggested treatment angles in the context of this complex disease. PMID:29403474

  9. Cellular and molecular mechanisms of chronic rhinosinusitis and potential therapeutic strategies: review on cytokines, nuclear factor kappa B and transforming growth factor beta.

    PubMed

    Phan, N T; Cabot, P J; Wallwork, B D; Cervin, A U; Panizza, B J

    2015-07-01

    Chronic rhinosinusitis is characterised by persistent inflammation of the sinonasal mucosa. Multiple pathophysiological mechanisms are likely to exist. Previous research has focused predominantly on T-helper type cytokines to highlight the inflammatory mechanisms. However, proteins such as nuclear factor kappa B and transforming growth factor beta are increasingly recognised to have important roles in sinonasal inflammation and tissue remodelling. This review article explores the roles of T-helper type cytokines, nuclear factor kappa B and transforming growth factor beta in the pathophysiological mechanisms of chronic rhinosinusitis. An understanding of these mechanisms will allow for better identification and classification of chronic rhinosinusitis endotypes, and, ultimately, improved therapeutic strategies.

  10. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin-Hua; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Bauman, William A.

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 inmore » NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed

  11. Increased osteoblastic activity and expression of receptor activator of NF-kappaB ligand in nonuremic nephrotic syndrome.

    PubMed

    Freundlich, Michael; Alonzo, Evelyn; Bellorin-Font, Ezequiel; Weisinger, Jose R

    2005-07-01

    Patients with nephrotic syndrome (NS), even with normal GFR, often display altered mineral homeostasis and abnormal bone histology. However, the latter, mostly osteomalacia and increased bone resorption, cannot be readily explained by the prevalent concentrations of parathyroid hormone and vitamin D metabolites. The transmembrane receptor activator of NF-kappaB ligand (RANKL) of osteoblasts is essential for osteoclast formation and differentiation. Osteoblasts activity and the expression of RANKL were tested in cultures of normal human osteoblasts with sera obtained from patients with NS and normal GFR (129 +/- 26 ml/min per 1.73 m2) during relapse and remission of their NS. Osteoblasts that were cultured in vitro with sera during relapse displayed elevated concentrations of alkaline phosphatase (AP) and increased expression of RANKL. By contrast, during remission, AP concentrations were significantly lower (P < 0.05) and RANKL expression notably attenuated or absent. AP correlated with the proteinuria (r = 0.5, P < 0.05) and was not significantly affected by the therapeutic administration of corticosteroids. Whereas parathyroid hormone levels were normal (35 +/- 21 pg/ml), the serum markers of bone formation (osteocalcin and bone-specific alkaline phosphatase) were lower during relapse compared with remission. Thus, sera from patients with NS and normal GFR stimulate the activity of osteoblasts and upregulate their expression of RANKL. These alterations, more prominent during clinically active NS, are transient and reversible upon remission. These disturbances of bone biology may play an important pathogenic role in the abnormal bone histology observed in patients with NS even before a decline in GFR occurs.

  12. Differential regulation of p65 and c-Rel NF-kappaB transactivating activity by Cot, protein kinase C zeta and NIK protein kinases in CD3/CD28 activated T cells.

    PubMed

    Sánchez-Valdepeñas, Carmen; Punzón, Carmen; San-Antonio, Belén; Martin, Angel G; Fresno, Manuel

    2007-03-01

    It has been shown that phosphorylation of p65/RelA and c-Rel plays a role in the regulation of transcriptional activity of NF-kappaB independent on IkappaB degradation. In this study, we show that anti CD3/CD28 activation induces the transactivation activity of both p65/RelA and c-Rel in T cells using Gal4 dependent assays. Moreover, protein kinase C (PKC)zeta, Cot kinase and NF-kappaB-inducing kinase (NIK) seem to be involved in those processes in a different manner. Thus, transfection of dominant negative forms of Cot and PKCzeta inhibits CD3/CD28 induction of Gal4-p65 transactivation, whereas the kinase inactive versions of the 3 kinases inhibit induction of Gal4-c-Rel. Cot induction of Gal4-c-Rel transactivating activity seems to be mediated sequentially through PKCzeta and NIK activation, since dominant negative form of NIK blocks Cot and PKCzeta induction, whereas kinase inactive PKCzeta only blocks Cot activity. In contrast, the contribution of NIK to the transactivation function of p65/RelA seems to be negligible and more importantly NIK-KD did not inhibit induction by Cot and PKCzeta. Besides, the enhancing effect of Cot on Gal4-p65 was not decreased in mouse embryo fibroblasts from NIK deficient aly/aly mice in contrast with a greatest reduction on Gal4-c-Rel. By using Ser to Ala mutants in p65 and c-Rel transactivation domains, PKCzeta and NIK activities seem to be dependent of a restricted set of Ser in both proteins. In contrast, the enhancing effect of Cot seems to be less dependent of a particular set of Ser residues being partially abrogated by mutation of several Ser residues.

  13. Cross Talk in HEK293 Cells Between Nrf2, HIF, and NF-κB Activities upon Challenges with Redox Therapeutics Characterized with Single-Cell Resolution.

    PubMed

    Johansson, Katarina; Cebula, Marcus; Rengby, Olle; Dreij, Kristian; Carlström, Karl E; Sigmundsson, Kristmundur; Piehl, Fredrik; Arnér, Elias S J

    2017-02-20

    Many transcription factors with importance in health and disease are redox regulated. However, how their activities may be intertwined in responses to redox-perturbing stimuli is poorly understood. To enable in-depth characterization of this aspect, we here developed a methodology for simultaneous determination of nuclear factor E2-related factor 2 (Nrf2), hypoxia-inducible factor (HIF), and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation at single-cell resolution, using a new tool named pTRAF (plasmid for transcription factor reporter activation based upon fluorescence). The pTRAF allowed determination of Nrf2, HIF, and NF-κB activities in a high-resolution and high-throughput manner, and we here assessed how redox therapeutics affected the activities of these transcription factors in human embryonic kidney cells (HEK293). Cross talk was detected between the three signaling pathways upon some types of redox therapeutics, also by using inducers typically considered specific for Nrf2, such as sulforaphane or auranofin, hypoxia for HIF activation, or tumor necrosis factor alpha (TNFα) for NF-κB stimulation. Doxorubicin, at low nontoxic doses, potentiated TNFα-induced activation of NF-κB and HIF, without effects in stand-alone treatment. Stochastic activation patterns in cell cultures were also considerable upon challenges with several redox stimuli. A novel strategy was here used to study simultaneous activation of Nrf2, HIF, and NF-κB in single cells. The method can also be adapted for studies of other transcription factors. The pTRAF provides new opportunities for in-depth studies of transcription factor activities. In this study, we found that upon challenges of cells with several redox-perturbing conditions, Nrf2, HIF, and NF-κB are uniquely responsive to separate stimuli, but can also display marked cross talk to each other within single cells. Antioxid. Redox Signal. 26, 229-246.

  14. NF-κB mediates Gadd45β expression and DNA demethylation in the hippocampus during fear memory formation.

    PubMed

    Jarome, Timothy J; Butler, Anderson A; Nichols, Jessica N; Pacheco, Natasha L; Lubin, Farah D

    2015-01-01

    Gadd45-mediated DNA demethylation mechanisms have been implicated in the process of memory formation. However, the transcriptional mechanisms involved in the regulation of Gadd45 gene expression during memory formation remain unexplored. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) controls transcription of genes in neurons and is a critical regulator of synaptic plasticity and memory formation. In silico analysis revealed several NF-κB (p65/RelA and cRel) consensus sequences within the Gadd45β gene promoter. Whether NF-κB activity regulates Gadd45 expression and associated DNA demethylation in neurons during memory formation is unknown. Here, we found that learning in a fear conditioning paradigm increased Gadd45β gene expression and brain-derivedneurotrophic factor (BDNF) DNA demethylation in area CA1 of the hippocampus, both of which were prevented with pharmacological inhibition of NF-κB activity. Further experiments found that conditional mutations in p65/RelA impaired fear memory formation but did not alter changes in Gadd45β expression. The learning-induced increases in Gadd45β mRNA levels, Gadd45β binding at the BDNF gene and BDNF DNA demethylation were blocked in area CA1 of the c-rel knockout mice. Additionally, local siRNA-mediated knockdown of c-rel in area CA1 prevented fear conditioning-induced increases in Gadd45β expression and BDNF DNA demethylation, suggesting that c-Rel containing NF-κB transcription factor complex is responsible for Gadd45β regulation during memory formation. Together, these results support a novel transcriptional role for NF-κB in regulation of Gadd45β expression and DNA demethylation in hippocampal neurons during fear memory.

  15. Cyclic stretch induces cyclooxygenase-2 gene expression in vascular endothelial cells via activation of nuclear factor kappa-{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.

    2009-11-27

    Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-inducedmore » upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.« less

  16. Haloperidol Suppresses NF-kappaB to Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Response in RAW 264 Cells

    PubMed Central

    Yamamoto, Shunsuke; Ohta, Noriyuki; Matsumoto, Atsuhiro; Horiguchi, Yu; Koide, Moe; Fujino, Yuji

    2016-01-01

    Background Haloperidol, a tranquilizing agent, is administered both to treat symptoms of psychotic disorders and to sedate agitated and delirious patients. Notably, haloperidol has been suggested to inhibit the immune response through unknown mechanisms. We hypothesized that the sedative modulates the immune response via NF-κB. Material/Methods Using flow cytometry, we analyzed the effects of haloperidol on expression CD80 and CD86 in RAW 264 cells and in primary macrophages derived from bone marrow. Secretion of interleukin (IL)-1β, IL-6, and IL-12 p40 was measured by enzyme-linked immunosorbent assay. In addition, NF-κB activation was evaluated using a reporter assay based on secretory embryonic alkaline phosphatase. Finally, synthetic antagonists were used to identify the dopamine receptor that mediates the effects of haloperidol. Results Haloperidol inhibited NF-κB activation, and thereby suppressed expression of CD80, as well as secretion of IL-1β, IL-6, and IL-12 p40. CD80 and IL-6 levels were similarly attenuated by a D2-like receptor antagonist, but not by a D1-like receptor antagonist. Conclusions The data strongly suggest that haloperidol inhibits the immune response by suppressing NF-κB signaling via the dopamine D2 receptor. PMID:26842661

  17. Haloperidol Suppresses NF-kappaB to Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Response in RAW 264 Cells.

    PubMed

    Yamamoto, Shunsuke; Ohta, Noriyuki; Matsumoto, Atsuhiro; Horiguchi, Yu; Koide, Moe; Fujino, Yuji

    2016-02-04

    BACKGROUND Haloperidol, a tranquilizing agent, is administered both to treat symptoms of psychotic disorders and to sedate agitated and delirious patients. Notably, haloperidol has been suggested to inhibit the immune response through unknown mechanisms. We hypothesized that the sedative modulates the immune response via NF-κB. MATERIAL AND METHODS Using flow cytometry, we analyzed the effects of haloperidol on expression CD80 and CD86 in RAW 264 cells and in primary macrophages derived from bone marrow. Secretion of interleukin (IL)-1β, IL-6, and IL-12 p40 was measured by enzyme-linked immunosorbent assay. In addition, NF-κB activation was evaluated using a reporter assay based on secretory embryonic alkaline phosphatase. Finally, synthetic antagonists were used to identify the dopamine receptor that mediates the effects of haloperidol. RESULTS Haloperidol inhibited NF-κB activation, and thereby suppressed expression of CD80, as well as secretion of IL-1β, IL-6, and IL-12 p40. CD80 and IL-6 levels were similarly attenuated by a D2-like receptor antagonist, but not by a D1-like receptor antagonist. CONCLUSIONS The data strongly suggest that haloperidol inhibits the immune response by suppressing NF-kB signaling via the dopamine D2 receptor.

  18. The NF-κB pathway: regulation of the instability of atherosclerotic plaques activated by Fg, Fb, and FDPs.

    PubMed

    Cao, Yongjun; Zhou, Xiaomei; Liu, Huihui; Zhang, Yanlin; Yu, Xiaoyan; Liu, Chunfeng

    2013-11-01

    Recently, the molecular mechanism responsible for the instability of atherosclerotic plaques has gradually become a hot topic among researchers and clinicians. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play an important role in the processes of formation and development of atherosclerosis. In this study, we established and employed the transwell co-culture system of rabbit aortic endothelial cells and smooth muscle cells to explore the relationship between fibrin (Fb), fibrinogen (Fg), and/or their degradation products (FDPs) in relation to the instability of atherosclerotic plaques; meanwhile, we observed the effects of Fg, Fb, and FDPs on the mRNA levels of MMPs and VEGF as well as on the activation of nuclear factor-kappa B (NF-κB). We concluded that Fb, Fg, and FDPs are involved in the progression of the instability of atherosclerotic plaques via increasing the expression of MMPs and VEGF. This effect might be mediated by the NF-кB pathway.

  19. NF-κB DNA-binding activity in embryos responding to a teratogen, cyclophosphamide

    PubMed Central

    Torchinsky, Arkady; Lishanski, Lucy; Wolstein, Orit; Shepshelovich, Jeanne; Orenstein, Hasida; Savion, Shoshana; Zaslavsky, Zeev; Carp, Howard; Brill, Alexander; Dikstein, Rivka; Toder, Vladimir; Fein, Amos

    2002-01-01

    Background The Rel/NF-κB transcription factors have been shown to regulate apoptosis in different cell types, acting as inducers or blockers in a stimuli- and cell type-dependent fashion. One of the Rel/NF-κB subunits, RelA, has been shown to be crucial for normal embryonic development, in which it functions in the embryonic liver as a protector against TNFα-induced physiological apoptosis. This study assesses whether NF-κB may be involved in the embryo's response to teratogens. Fot this, we evaluated how NF-KappaB DNA binding activity in embryonic organs demonstraiting differential sensitivity to a reference teratogen, cyclophosphamide, correlates with dysmorphic events induced by the teratogen at the cellular level (excessive apoptosis) and at the organ level (structural anomalies). Results The embryonic brain and liver were used as target organs. We observed that the Cyclophosphamide-induced excessive apoptosis in the brain, followed by the formation of severe craniofacial structural anomalies, was accompanied by suppression of NF-κB DNA-binding activity as well as by a significant and lasting increase in the activity of caspases 3 and 8. However, in the liver, in which cyclophosphamide induced transient apoptosis was not followed by dysmorphogenesis, no suppression of NF-κB DNA-binding activity was registered and the level of active caspases 3 and 8 was significantly lower than in the brain. It has also been observed that both the brain and liver became much more sensitive to the CP-induced teratogenic insult if the embryos were exposed to a combined treatment with the teratogen and sodium salicylate that suppressed NF-κB DNA-binding activity in these organs. Conclusion The results of this study demonstrate that suppression of NF-κB DNA-binding activity in embryos responding to the teratogenic insult may be associated with their decreased resistance to this insult. They also suggest that teratogens may suppress NF-κB DNA-binding activity in the

  20. BZLF1, an Epstein-Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Thomas E.; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Kenney, Shannon C.

    We have previously demonstrated that the Epstein-Barr virus immediate-early BZLF1 protein interacts with, and is inhibited by, the NF-{kappa}B family member p65. However, the effects of BZLF1 on NF-{kappa}B activity have not been intensively studied. Here we show that BZLF1 inhibits p65-dependent gene expression. BZLF1 inhibited the ability of IL-1, as well as transfected p65, to activate the expression of two different NF-{kappa}B-responsive genes, ICAM-1 and I{kappa}B-{alpha}. BZLF1 also reduced the constitutive level of I{kappa}B-{alpha} protein in HeLa and A549 cells, and increased the amount of nuclear NF-{kappa}B to a similar extent as tumor necrosis factor-alpha (TNF-{alpha}) treatment. In spitemore » of this BZLF1-associated increase in the nuclear form of NF-{kappa}B, BZLF1 did not induce binding of NF-{kappa}B to NF-{kappa}B responsive promoters (as determined by chromatin immunoprecipitation assay) in vivo, although TNF-{alpha} treatment induced NF-{kappa}B binding as expected. Overexpression of p65 dramatically inhibited the lytic replication cycle of EBV in 293-EBV cells, confirming that NF-{kappa}B also inhibits BZLF1 transcriptional function. Our results are consistent with a model in which BZLF1 inhibits the transcriptional function of p65, resulting in decreased transcription of I{kappa}B-{alpha}, decreased expression of I{kappa}B-{alpha} protein, and subsequent translocation of NF-{kappa}B to the nucleus. This nuclear translocation of NF-{kappa}B may promote viral latency by negatively regulating BZLF1 transcriptional activity. In situations where p65 activity is limiting in comparison to BZLF1, the ability of BZLF1 to inhibit p65 transcriptional function may protect the virus from the host immune system during the lytic form of infection.« less

  1. Spatio-temporal modelling of the NF-κB intracellular signalling pathway: the roles of diffusion, active transport, and cell geometry.

    PubMed

    Terry, Alan J; Chaplain, Mark A J

    2011-12-07

    The nuclear factor kappa B (NF-κB) intracellular signalling pathway is central to many stressful, inflammatory, and innate immune responses. NF-κB proteins themselves are transcription factors for hundreds of genes. Experiments have shown that the NF-κB pathway can exhibit oscillatory dynamics-a negative feedback loop causes oscillatory nuclear-cytoplasmic translocation of NF-κB. Given that cell size and shape are known to influence intracellular signal transduction, we consider a spatio-temporal model of partial differential equations for the NF-κB pathway, where we model molecular movement by diffusion and, for several key species including NF-κB, by active transport as well. Through numerical simulations we find values for model parameters such that sustained oscillatory dynamics occur. Our spatial profiles and animations bear a striking resemblance to experimental images and movie clips employing fluorescent fusion proteins. We discover that oscillations in nuclear NF-κB may occur when active transport is across the nuclear membrane only, or when no species are subject to active transport. However, when active transport is across the nuclear membrane and NF-κB is additionally actively transported through the cytoplasm, oscillations are lost. Hence transport mechanisms in a cell will influence its response to activation of its NF-κB pathway. We also demonstrate that sustained oscillations in nuclear NF-κB are somewhat robust to changes in the shape of the cell, or the shape, location, and size of its nucleus, or the location of ribosomes. Yet if the cell is particularly flat or the nucleus sufficiently small, then oscillations are lost. Thus the geometry of a cell may partly determine its response to NF-κB activation. The NF-κB pathway is known to be constitutively active in several human cancers. Our spatially explicit modelling approach will allow us, in future work, to investigate targeted drug therapy of tumours. Copyright © 2011 Elsevier Ltd

  2. A20 Functional Domains Regulate Subcellular Localization and NF-Kappa B Activation

    DTIC Science & Technology

    2013-08-15

    that the first function to be described for A20 was that of an anti -apoptotic protein (55). They based their choice of experiments and preliminary...mediated apoptosis (55). After positive selection of the resulting clones with neomycin and verification of A20 expression, they compared the...Karposi sarcoma herpesvirus (KSHV) mediated cell transformation (72). K13 can directly activate NF-κB by interacting with the IKK complex and is

  3. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-{alpha}-induced vascular endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.

    2007-06-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-{alpha})-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-{alpha} induces various biological effects on vascular cells, TNF-{alpha} dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-{alpha} concentrations, we adopted the lower TNF-{alpha} (0.2 ng/ml) to rule out the possible involvement of other TNF-{alpha}-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-{alpha}-induced adhesion molecule expression and monocyte-endothelial monolayermore » binding. BSO attenuated the TNF-{alpha}-induced nuclear factor-kappaB (NF-{kappa}B) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-{alpha}. Inhibition of ERK, JNK, or NF-{kappa}B attenuates TNF-{alpha}-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-{alpha} induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-{kappa}B in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-{alpha}. Although AP-1 activation by the lower TNF-{alpha} was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-{alpha}-induced adhesion molecule expression.« less

  4. Comparative inhibitory effects of magnolol, honokiol, eugenol and bis-eugenol on cyclooxygenase-2 expression and nuclear factor-kappa B activation in RAW264.7 macrophage-like cells stimulated with fimbriae of Porphyromonas gingivalis.

    PubMed

    Murakami, Yukio; Kawata, Akifumi; Seki, Yuya; Koh, Teho; Yuhara, Kenji; Maruyama, Takehisa; Machino, Mamoru; Ito, Shigeru; Kadoma, Yoshinori; Fujisawa, Seiichiro

    2012-01-01

    The anti-inflammatory activity of magnolol and related compounds is currently a focus of interest. In the present study, the inhibitory effects of these compounds on cyclooxygenase (COX-2) expression and nuclear factor-kappa B (NF-κB) activation were investigated in RAW264.7 macrophage-like cells stimulated with the fimbriae of Porphyromonas gingivalis, an oral anaerobe. The cytotoxicity of magnolol, honokiol, eugenol and bis-eugenol against RAW264.7 cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX-2 mRNA, stimulated by exposure to the fimbriae was investigated by real-time polymerase chain reaction (PCR). NF-κB activation was evaluated by enzyme-linked immunosorbent assay (ELISA)-like microwell colorimetric transcription factor activity assay (Trans-AM) and western blot analysis. The radical-scavenging activity was determined using the induction period method in the methyl methacrylate-azobisisobutyronitrile (AIBN) polymerization system under nearly anaerobic conditions. The phenolic bond dissociation enthalpy (BDE) and orbital energy were calculated at the density functional theory (DFT) B3LYP/6-31G* level. The cytotoxicity against RAW264.7 cells declined in the order bis-eugenol>eugenol> honokiol>magnolol, whereas the radical-scavenging activity declined in the order honokiol, bis-eugenol>magnolol> eugenol. Magnolol and honokiol significantly inhibited the fimbria-induced expression of COX-2 at non-cytotoxic concentrations. Both the fimbria-stimulated binding of NF-κB to its consensus sequence and phosphorylation-dependent proteolysis of inhibitor κB-α were markedly inhibited by magnilol and honokiol, whereas eugenol and bis-eugenol did not inhibit COX-2 expression and NF-κB activation. Magnolol and honokiol possessed a high electronegativity (χ) value. Magnolol and honokiol exhibit antioxidative activity, low cytotoxicity, and anti-inflammatory activity. These compounds may be

  5. Collagen gel protects L929 cells from TNFα-induced death by activating NF-κB.

    PubMed

    Wang, Hong-Ju; Li, Meng-Qi; Liu, Wei-Wei; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2017-09-01

    Type I collagen is one of the most abundant components of extracellular matrix. We previously illustrated that murine fibrosarcoma L929 cells grew well on type I collagen gel and escaped from TNFα-induced cell death. In this study, we investigated the mechanism underlying the protective effect of collagen gel. We used western blot, confocal microscopy, MTT assay and flow cytometry by introducing fluorescence staining to determine the expression levels of nuclear factor kappa B (NF-κB), inhibitory ratio and autophagy. L929 cells on collagen gel showed higher expression of NF-κB in the nucleus. Inhibition of NF-κB with pyrrolidine dithiocarbamate hydrochloride (PDTC) or knockdown by NF-κB-siRNA canceled the protective effect of collagen gel on L929 cells from TNFα-induced death, suggesting for the role of NF-κB in the protection from cell death. We found a new aspect of the effect of PDTC on L929 cells cultured on collagen gel. PDTC alone without TNFα induced apoptosis in the L929 cells cultured on collagen gel but not the cells on plastic dish. The apoptosis induction of the L929 cells cultured on collagen gel with PDTC was repressed by inhibiting autophagy with chloroquine, an autophagy inhibitor, suggesting that autophagy contributes to the death induced by the treatment with PDTC. Possible underlying mechanism of this finding is discussed. NF-κB played an important role in protecting the L929 cells cultured on collagen gel from TNFα-induced death.

  6. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmentedmore » inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may

  7. Single Hind Limb Burn Injury to Mice Alters NF Kappa B (NF-κB) Expression and [18F] 2-Fluoro-2-Deoxy-d-Glucose (FDG) Uptake

    PubMed Central

    Carter, Edward A.; Hamrahi, Victoria; Paul, Kasie; Bonab, Ali A.; Jung, Walter; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Burn trauma to the extremities can produce marked systemic effects in mice1, 6, 7. Burn injury to the dorsal surface of mice is also associated with changes in glucose metabolism (18FDG uptake) by brown adipose tissue (BAT) and NF-κB activity in a number of tissues including skeletal muscle. This study examined the effect of a single hindlimb burn in mice on 18FDG uptake by in vivo, NF-κB activity in vivo, and blood flow determined by laser Doppler techniques. Male mice NF-κB luciferase reporter mice (28 grams- 30 grams, male) were anesthetized, both legs were shaven, and the right leg was subjected to scald injury by immersion in 90°C water for 5 seconds. Sham treated animals were used as controls. Each burned and sham mouse was resuscitated with saline (2 ml, IP). The individual animals were placed in wire bottom cages with no food and free access to water. 24 hrs later, the animals were imaged with Laser Doppler for measurements of blood flow in the hind limb. The animals were then injected unanesthetized with 50 µCi of FDG or luciferin (1.0 mg), I.V. via tail vein. Five minutes after luciferin injection, NF-kB mice were studied by bioluminescence imaging with a CCD camera. One hour after 18FDG injection the animals were euthanized with carbon dioxide overdose and 18FDG biodistribution was measured. Tissues were also analyzed for NF-κB luciferase activity. The scalding procedure used here produced a full thickness burn injury to the leg with sharp margins. 18FDG uptake by the burned leg was lower than in the contralateral limb. Similarly luciferase activity and blood flow in the burned leg were lower than in the contralateral leg. 18FDG uptake by BAT and heart was increased, while brain was decreased. In conclusion, the present study suggests that burn injury to a single leg reduced 18FDG uptake by skeletal muscle but increased 18FDG uptake by BAT. The injury to the leg reduced NF-κB expression as compared to the contralateral leg and the uninjured

  8. Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation.

    PubMed

    Kelleher, Zachary T; Sha, Yonggang; Foster, Matthew W; Foster, W Michael; Forrester, Michael T; Marshall, Harvey E

    2014-01-31

    S-nitrosylation of nuclear factor κB (NF-κB) on the p65 subunit of the p50/p65 heterodimer inhibits NF-κB DNA binding activity. We have recently shown that p65 is constitutively S-nitrosylated in the lung and that LPS-induced injury elicits a decrease in SNO-p65 levels concomitant with NF-κB activation in the respiratory epithelium and initiation of the inflammatory response. Here, we demonstrate that TNFα-mediated activation of NF-κB in the respiratory epithelium similarly induces p65 denitrosylation. This process is mediated by the denitrosylase thioredoxin (Trx), which becomes activated upon cytokine-induced degradation of thioredoxin-interacting protein (Txnip). Similarly, inhibition of Trx activity in the lung attenuates LPS-induced SNO-p65 denitrosylation, NF-κB activation, and airway inflammation, supporting a pathophysiological role for this mechanism in lung injury. These data thus link stimulus-coupled activation of NF-κB to a specific, protein-targeted denitrosylation mechanism and further highlight the importance of S-nitrosylation in the regulation of the immune response.

  9. Attenuation of Proinflammatory Responses by S-[6]-Gingerol via Inhibition of ROS/NF-Kappa B/COX2 Activation in HuH7 Cells.

    PubMed

    Li, Xiao-Hong; McGrath, Kristine C Y; Tran, Van H; Li, Yi-Ming; Duke, Colin C; Roufogalis, Basil D; Heather, Alison K

    2013-01-01

    Introduction. Hepatic inflammation underlies the pathogenesis of chronic diseases such as insulin resistance and type 2 diabetes mellitus. S-[6]-Gingerol has been shown to have anti-inflammatory properties. Important inflammatory mediators of interleukins include nuclear factor κ B (NF κ B) and cyclooxygenase 2 (COX2). We now explore the mechanism of anti-inflammatory effects of S-[6]-gingerol in liver cells. Methods. HuH7 cells were stimulated with IL1β to establish an in vitro hepatic inflammatory model. Results. S-[6]-Gingerol attenuated IL1β-induced inflammation and oxidative stress in HuH7 cells, as evidenced by decreasing mRNA levels of inflammatory factor IL6, IL8, and SAA1, suppression of ROS generation, and increasing mRNA levels of DHCR24. In addition, S-[6]-gingerol reduced IL1β-induced COX2 upregulation as well as NF κ B activity. Similar to the protective effects of S-[6]-gingerol, both NS-398 (a selective COX2 inhibitor) and PDTC (a selective NF κ B inhibitor) suppressed mRNA levels of IL6, IL8, and SAA1. Importantly, PDTC attenuated IL1β-induced overexpression of COX2. Of particular note, the protective effect of S-[6]-gingerol against the IL1β-induced inflammatory response was similar to that of BHT, an ROS scavenger. Conclusions. The findings of this study demonstrate that S-[6]-gingerol protects HuH7 cells against IL1β-induced inflammatory insults through inhibition of the ROS/NF κ B/COX2 pathway.

  10. Loss of diphthamide pre-activates NF-κB and death receptor pathways and renders MCF7 cells hypersensitive to tumor necrosis factor.

    PubMed

    Stahl, Sebastian; da Silva Mateus Seidl, Ana Rita; Ducret, Axel; Kux van Geijtenbeek, Sabine; Michel, Sven; Racek, Tomas; Birzele, Fabian; Haas, Alexander K; Rueger, Ruediger; Gerg, Michael; Niederfellner, Gerhard; Pastan, Ira; Brinkmann, Ulrich

    2015-08-25

    The diphthamide on human eukaryotic translation elongation factor 2 (eEF2) is the target of ADP ribosylating diphtheria toxin (DT) and Pseudomonas exotoxin A (PE). This modification is synthesized by seven dipthamide biosynthesis proteins (DPH1-DPH7) and is conserved among eukaryotes and archaea. We generated MCF7 breast cancer cell line-derived DPH gene knockout (ko) cells to assess the impact of complete or partial inactivation on diphthamide synthesis and toxin sensitivity, and to address the biological consequence of diphthamide deficiency. Cells with heterozygous gene inactivation still contained predominantly diphthamide-modified eEF2 and were as sensitive to PE and DT as parent cells. Thus, DPH gene copy number reduction does not affect overall diphthamide synthesis and toxin sensitivity. Complete inactivation of DPH1, DPH2, DPH4, and DPH5 generated viable cells without diphthamide. DPH1ko, DPH2ko, and DPH4ko harbored unmodified eEF2 and DPH5ko ACP- (diphthine-precursor) modified eEF2. Loss of diphthamide prevented ADP ribosylation of eEF2, rendered cells resistant to PE and DT, but does not affect sensitivity toward other protein synthesis inhibitors, such as saporin or cycloheximide. Surprisingly, cells without diphthamide (independent of which the DPH gene compromised) were presensitized toward nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) and death-receptor pathways without crossing lethal thresholds. In consequence, loss of diphthamide rendered cells hypersensitive toward TNF-mediated apoptosis. This finding suggests a role of diphthamide in modulating NF-κB, death receptor, or apoptosis pathways.

  11. Heme oxygenase-1 induction by (S)-enantiomer of YS-51 (YS-51S), a synthetic isoquinoline alkaloid, inhibits nitric oxide production and nuclear factor-kappaB translocation in ROS 17/2.8 cells activated with inflammatory stimulants.

    PubMed

    Chaea, Han-Jung; Kim, Hyung-Ryong; Kang, Young Jin; Hyun, Kwang Chul; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Yun-Choi, Hye Sook; Chang, Ki Churl

    2007-12-05

    Activation of the inducible nitric oxide synthase (iNOS) pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis. We investigated the mechanism of action by which YS-51S, a synthetic isoquinoline alkaloid, inhibits iNOS expression and nitric oxide (NO) production in ROS 17/28 osteoblast cells activated with the mixture of TNF-alpha, IFN-gamma and LPS (MIX). YS-51S, concentration- and time-dependently, increased heme oxygenase (HO-1) expression. Treatment with YS-51S 1 h prior to MIX significantly reduced MIX-induced NO production and iNOS expression with the IC50 to NO production of 47+/-3.3 microM. Electrophoretic mobility shift assay (EMSA) and western blot analysis showed that YS-51S inhibited MIX-mediated activation and translocation of NF-kappaB to nucleus by suppressing the degradation of its inhibitory protein IkappaBalpha in cytoplasm. YS-51S also reduced NF-kappaB-luciferase activity. In addition, an HO-1 inhibitor ZnPPIX, antagonized the inhibitory effect of YS-51S on iNOS expression and DNA strand break induced by MIX, indicating prevention of NO production by YS-51S is associated with HO-1 activity. Moreover, YS-51S inhibited the oxidation of cytochrome c(2+) by peroxynitrite (PN). Our results indicated that YS-51S may be beneficial in NO-mediated inflammatory conditions such as rheumatoid arthritis by alleviating iNOS expression and NO-mediated cell death of osteoblast with 1) inducing HO-1 expression, 2) interfering the activation of NF-kappaB and 3) quenching of PN.

  12. Characterizing Cometary Electrons with Kappa Distributions

    NASA Technical Reports Server (NTRS)

    Broiles, T. W.; Livadiotis, G.; Burch, J. L.; Chae, K.; Clark, G.; Cravens, T. E.; Davidson, R.; Eriksson, A.; Frahm, R. A.; Fuselier, S. A.; hide

    2016-01-01

    The Rosetta spacecraft has escorted comet 67P/Churyumov-Gerasimenko since 6 August 2014 and has offered an unprecedented opportunity to study plasma physics in the coma. We have used this opportunity to make the first characterization of cometary electrons with kappa distributions. Two three-dimensional kappa functions were fit to the observations, which we interpret as two populations of dense and warm (density 10 cubic centimeters, temperature 2 times 10 (sup 5) degrees Kelvin, invariant kappa index 10 to 1000), and rarefied and hot (density equals 0.005 cubic centimeters, temperature 5 times 10 (sup 5) degrees Kelvin, invariant kappa index equals 1 to 10) electrons. We fit the observations on 30 October 2014 when Rosetta was 20 kilometers from 67P, and 3 Astronomical Units from the Sun. We repeated the analysis on 15 August 2015 when Rosetta was 300 kilometers from the comet and 1.3 Astronomical Units from the Sun. Comparing the measurements on both days gives the first comparison of the cometary electron environment between a nearly inactive comet far from the Sun and an active comet near perihelion. We find that the warm population density increased by a factor of 3, while the temperature cooled by a factor of 2, and the invariant kappa index was unaffected. We find that the hot population density increased by a factor of 10, while the temperature and invariant kappa index were unchanged. We conclude that the hot population is likely the solar wind halo electrons in the coma. The warm population is likely of cometary origin, but its mechanism for production is not known.

  13. Sulforaphane inhibits phorbol ester-stimulated IKK-NF-κB signaling and COX-2 expression in human mammary epithelial cells by targeting NF-κB activating kinase and ERK.

    PubMed

    Kim, Ha-Na; Kim, Do-Hee; Kim, Eun-Hee; Lee, Mee-Hyun; Kundu, Joydeb Kumar; Na, Hye-Kyung; Cha, Young-Nam; Surh, Young-Joon

    2014-08-28

    Sulforaphane, an isothiocyanate present in cruciferous vegetables, has been reported to possess anti-inflammatory and cancer chemopreventive properties. However, the molecular mechanisms by which sulforaphane suppresses inflammation and carcinogenesis are yet to be fully elucidated. Since the aberrant expression of cyclooxygenase-2 (COX-2) links inflammation and cancer, the present study was aimed to elucidate the mechanisms by which sulforaphane modulates COX-2 overexpression in human mammary epithelial (MCF-10A) cells stimulated with a prototypic tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Treatment of MCF-10A cells with sulforaphane significantly inhibited TPA-induced expression of COX-2 protein and its mRNA transcript. Transient transfection of cells with deletion mutant constructs of COX-2 promoter revealed that the transcription factor nuclear factor-kappaB (NF-κB) plays a key role in TPA-induced COX-2 expression in MCF-10A cells. Pretreatment with sulforaphane significantly attenuated nuclear localization, DNA binding and the transcriptional activity of NF-κB through inhibition of phosphorylation and subsequent degradation of IκBα in MCF-10A cells stimulated with TPA. Sulforaphane also attenuated TPA-induced activation of IκB kinases (IKK), NF-κB-activating kinase (NAK) and extracellular signal-regulated kinase-1/2 (ERK1/2). Pharmacological inhibition of IKK or transient transfection of cells with dominant-negative mutant forms of this kinase abrogated TPA-induced NF-κB activation and COX-2 expression. In addition, the blockade of ERK1/2 activation negated the catalytic activity of IKKα, but not that of IKKβ, whereas silencing NAK by specific siRNA abrogated the IKKβ activity in TPA-treated cells. Taken together, sulforaphane inhibits TPA-induced NF-κB activation and COX-2 expression in MCF-10A cells by blocking two distinct signaling pathways mediated by ERK1/2-IKKα and NAK-IKKβ. Copyright © 2014 Elsevier Ireland Ltd. All rights

  14. SOCS2 overexpression alleviates diabetic nephropathy in rats by inhibiting the TLR4/NF-κB pathway

    PubMed Central

    Yang, Suxia; Zhang, Junwei; Wang, Shiying; Zhao, Xinxin; Shi, Jun

    2017-01-01

    Suppressor of cytokine signaling 2 (SOCS2) was reported to be involved in the development of Diabetic Nephropathy (DN). However, its underlying mechanism remains undefined. Western blot was carried out to determine the expressions of SOCS2, Toll-like receptors 4 (TLR4) and nuclear factor kappa B (NF-κB) pathway-related proteins in DN patients, streptozotocin (STZ)-induced DN rats and high glucose (HG)-stimulated podocytes. The effects of SOCS2 overexpression on renal injury, the inflammatory cytokines production, renal pathological changes, apoptosis and the TLR4/NF-κB pathway in DN rats or HG-stimulated podocytes were investigated. TLR4 antagonist TAK-242 and NF-κB inhibitor PDTC were used to confirm the functional mechanism of SOCS2 overexpression in HG-stimulated podocytes. SOCS2 was down-regulated, while TLR4 and NF-κB were up-regulated in renal tissues of DN patients and DN rats. Ad-SOCS2 infection alleviated STZ-induced renal injury and pathological changes and inhibited STZ-induced IL-6, IL-1β and MCP-1 generation and activation of the TLR4/NF-κB pathway in DN rats. SOCS2 overexpression attenuated apoptosis, suppressed the inflammatory cytokines expression, and inactivated the TLR4/NF-κB pathway in HG-stimulated podocytes. Suppression of the TLR4/NF-κB pathway enhanced the inhibitory effect of SOCS2 overexpression on apoptosis and inflammatory cytokines expressions in HG-stimulated podocytes. SOCS2 overexpression alleviated the development of DN by inhibiting the TLR4/NF-κB pathway, contributing to developing new therapeutic strategies against DN. PMID:29207635

  15. Inhibition of IKK/NF-κB Signaling Enhances Differentiation of Mesenchymal Stromal Cells from Human Embryonic Stem Cells.

    PubMed

    Deng, Peng; Zhou, Chenchen; Alvarez, Ruth; Hong, Christine; Wang, Cun-Yu

    2016-04-12

    Embryonic stem cell-derived mesenchymal stromal cells (MSCs; also known as mesenchymal stem cells) represent a promising source for bone regenerative medicine. Despite remarkable advances in stem cell biology, the molecular mechanism regulating differentiation of human embryonic stem cells (hESCs) into MSCs remains poorly understood. Here, we report that inhibition of IκB kinase (IKK)/nuclear factor kappa B (NF-κB) signaling enhances differentiation of hESCs into MSCs by expediting the loss of pluripotent markers and increasing the expression of MSC surface markers. In addition, a significantly higher quantity of MSCs was produced from hESCs with IKK/NF-κB suppression. These isolated MSCs displayed evident multipotency with capacity to terminally differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and to form bone in vivo. Collectively, our data provide important insights into the role of NF-κB in mesenchymal lineage specification during hESC differentiation, suggesting that IKK inhibitors could be utilized as an adjuvant in generating MSCs for cell-mediated therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Genetic ablation of P65 subunit of NF-κB in mdx mice to improve muscle physiological function.

    PubMed

    Yin, Xi; Tang, Ying; Li, Jian; Dzuricky, Anna T; Pu, Chuanqiang; Fu, Freddie; Wang, Bing

    2017-10-01

    Duchenne muscular dystrophy (DMD) is a genetic muscle disease characterized by dystrophin deficiency. Beyond gene replacement, the question of whether ablation of the p65 gene of nuclear factor-kappa B (NF-κB) in DMD can improve muscle physiology function is unknown. In this study, we investigated muscle physiological improvement in mdx mice (DMD model) with a genetic reduction of NF-κB. Muscle physiological function and histology were studied in 2-month-old mdx/p65 +/- , wild-type, mdx, and human minidystrophin gene transgenic mdx (TghΔDys/mdx) mice. Improved muscle physiological function was found in mdx/p65 +/- mice when compared with mdx mice; however, it was similar to TghΔDys/mdx mice. The results indicate that genetic reduction of p65 levels diminished chronic inflammation in dystrophic muscle, thus leading to amelioration of muscle pathology and improved muscle physiological function. The results show that inhibition of NF-κB may be a promising therapy when combined with gene therapy for DMD. Muscle Nerve 56: 759-767, 2017. © 2016 Wiley Periodicals, Inc.

  17. Differential effects of black raspberry and strawberry extracts on BaPDE-induced activation of transcription factors and their target genes.

    PubMed

    Li, Jingxia; Zhang, Dongyun; Stoner, Gary D; Huang, Chuanshu

    2008-04-01

    The chemopreventive properties of edible berries have been demonstrated both in vitro and in vivo, however, the specific molecular mechanisms underlying their anti-cancer effects are largely unknown. Our previous studies have shown that a methanol extract fraction of freeze-dried black raspberries inhibits benzoapyrene (BaP)-induced transformation of Syrian hamster embryo cells. This fraction also blocks activation of activator protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB) induced by benzoapyrene diol-epoxide (BaPDE) in mouse epidermal JB6 Cl 41 cells. To determine if different berry types exhibit specific mechanisms for their anti-cancer effects, we compared the effects of extract fractions from both black raspberries and strawberries on BaPDE-induced activation of various signaling pathways in Cl 41 cells. Black raspberry fractions inhibited the activation of AP-1, NF-kappaB, and nuclear factor of activated T cells (NFAT) by BaPDE as well as their upstream PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. In contrast, strawberry fractions inhibited NFAT activation, but did not inhibit the activation of AP-1, NF-kappaB or the PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. Consistent with the effects on NFAT activation, tumor necrosis factor-alpha (TNF-alpha) induction by BaPDE was blocked by extract fractions of both black raspberries and strawberries, whereas vascular endothelial growth factor (VEGF) expression, which depends on AP-1 activation, was suppressed by black raspberry fractions but not strawberry fractions. These results suggest that black raspberry and strawberry components may target different signaling pathways in exerting their anti-carcinogenic effects. (c) 2007 Wiley-Liss, Inc.

  18. Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-kappaB activation.

    PubMed

    Benard, Claudine; Cultrone, Antonietta; Michel, Catherine; Rosales, Carlos; Segain, Jean-Pierre; Lahaye, Marc; Galmiche, Jean-Paul; Cherbut, Christine; Blottière, Hervé M

    2010-01-13

    Carrageenan (CGN) is a high molecular weight sulphated polysaccharide derived from red seaweeds. In rodents, its degraded forms (dCGN) can induce intestinal inflammation associated with macrophage recruitment and activation. The aim of this study was: 1) to analyze the size-dependent effects of dCGN on colon inflammation in vivo, and 2) to correlate these effects with monocyte/macrophage proliferation, cytokine production and expression of various cell surface antigens including ICAM-1 adhesion molecule. Peripheral blood monocytes (PBM) and THP-1 monocytic cells were cultured in the presence of either 10 or 40 kDa, dCGN. The 40 kDa, but not the 10 kDa dCGN, induced colitis in in vivo. Degraded CGN inhibited THP-1 cell proliferation in vitro, arresting the cells in G1 phase. In addition, dCGN increased ICAM-1 expression in both PBM and THP-1 cells with a major effect seen after 40 kDa dCGN exposure. Also, dCGN stimulated monocyte aggregation in vitro that was prevented by incubation with anti-ICAM-1 antibody. Finally, dCGN stimulated TNF-alpha expression and secretion by both PBM and THP-1 cells. All these effects were linked to NF-kappaB activation. These data strongly suggest that the degraded forms of CGN have a pronounced effect on monocytes, characteristic of an inflammatory phenotype.

  19. NF-κB and androgen receptor variant expression correlate with human BPH progression.

    PubMed

    Austin, David C; Strand, Douglas W; Love, Harold L; Franco, Omar E; Jang, Alex; Grabowska, Magdalena M; Miller, Nicole L; Hameed, Omar; Clark, Peter E; Fowke, Jay H; Matusik, Robert J; Jin, Ren J; Hayward, Simon W

    2016-04-01

    Benign prostatic hyperplasia (BPH) is a common, chronic progressive disease. Inflammation is associated with prostatic enlargement and resistance to 5α-reductase inhibitor (5ARI) therapy. Activation of the nuclear factor-kappa B (NF-κB) pathway is linked to both inflammation and ligand-independent prostate cancer progression. NF-κB activation and androgen receptor variant (AR-V) expression were quantified in transition zone tissue samples from patients with a wide range of AUASS from incidental BPH in patients treated for low grade, localized peripheral zone prostate cancer to advanced disease requiring surgical intervention. To further investigate these pathways, human prostatic stromal and epithelial cell lines were transduced with constitutively active or kinase dead forms of IKK2 to regulate canonical NF-κB activity. The effects on AR full length (AR-FL) and androgen-independent AR-V expression as well as cellular growth and differentiation were assessed. Canonical NF-κB signaling was found to be upregulated in late versus early stage BPH, and to be strongly associated with non-insulin dependent diabetes mellitus. Elevated expression of AR-variant 7 (AR-V7), but not other AR variants, was found in advanced BPH samples. Expression of AR-V7 significantly correlated with the patient AUASS and TRUS volume. Forced activation of canonical NF-κB in human prostatic epithelial and stromal cells resulted in elevated expression of both AR-FL and AR-V7, with concomitant ligand-independent activation of AR reporters. Activation of NF-κB and over expression of AR-V7 in human prostatic epithelial cells maintained cell viability in the face of 5ARI treatment. Activation of NF-κB and AR-V7 in the prostate is associated with increased disease severity. AR-V7 expression is inducible in human prostate cells by forced activation of NF-κB resulting in resistance to 5ARI treatment, suggesting a potential mechanism by which patients may become resistant to 5ARI therapy.

  20. GATA-6 and NF-κB Activate CPI-17 Gene Transcription and Regulate Ca2+ Sensitization of Smooth Muscle Contraction

    PubMed Central

    Boopathi, Ettickan; Hypolite, Joseph A.; Zderic, Stephen A.; Gomes, Cristiano Mendes; Malkowicz, Bruce; Liou, Hsiou-Chi; Wein, Alan J.

    2013-01-01

    Protein kinase C (PKC)-potentiated inhibitory protein of 17 kDa (CPI-17) inhibits myosin light chain phosphatase, altering the levels of myosin light chain phosphorylation and Ca2+ sensitivity in smooth muscle. In this study, we characterized the CPI-17 promoter and identified binding sites for GATA-6 and nuclear factor kappa B (NF-κB). GATA-6 and NF-κB upregulated CPI-17 expression in cultured human and mouse bladder smooth muscle (BSM) cells in an additive manner. CPI-17 expression was decreased upon GATA-6 silencing in cultured BSM cells and in BSM from NF-κB knockout (KO) mice. Moreover, force maintenance by BSM strips from KO mice was decreased compared with the force maintenance of BSM strips from wild-type mice. GATA-6 and NF-κB overexpression was associated with CPI-17 overexpression in BSM from men with benign prostatic hyperplasia (BPH)-induced bladder hypertrophy and in a mouse model of bladder outlet obstruction. Thus, aberrant expression of NF-κB and GATA-6 deregulates CPI-17 expression and the contractile function of smooth muscle. Our data provide insight into how GATA-6 and NF-κB mediate CPI-17 transcription, PKC-mediated signaling, and BSM remodeling associated with lower urinary tract symptoms in patients with BPH. PMID:23275439