Sample records for factor polynomials expand

  1. Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval

    NASA Technical Reports Server (NTRS)

    Alford, John A., II

    2012-01-01

    We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.

  2. Quality factor analysis for aberrated laser beam

    NASA Astrophysics Data System (ADS)

    Ghafary, B.; Alavynejad, M.; Kashani, F. D.

    2006-12-01

    The quality factor of laser beams has attracted considerable attention and some different approaches have been reported to treat the problem. In this paper we analyze quality factor of laser beam and compare the effect of different aberrations on beam quality by expanding pure phase term of wavefront in terms of Zernike polynomials. Also we analyze experimentally the change of beam quality for different Astigmatism aberrations, and compare theoretical results with experimentally results. The experimental and theoretical results are in good agreement.

  3. Tisserand's polynomials and inclination functions in the theory of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Aksenov, E. P.

    1986-03-01

    The connection between Tisserand's polynomials and inclination functions in the theory of motion of artificial earth satellites is established in the paper. The most important properties of these special functions of celestial mechanics are presented. The problem of expanding the perturbation function in satellite problems is discussed.

  4. On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2004-01-01

    Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.

  5. Analysis of Adaptive Mesh Refinement for IMEX Discontinuous Galerkin Solutions of the Compressible Euler Equations with Application to Atmospheric Simulations

    DTIC Science & Technology

    2013-01-01

    ξi be the Legendre -Gauss-Lobatto (LGL) points defined as the roots of (1 − ξ2)P ′N (ξ) = 0, where PN (ξ) is the N th order Legendre polynomial . The...mesh refinement. By expanding the solution in a basis of high order polynomials in each element, one can dynamically adjust the order of these basis...on refining the mesh while keeping the polynomial order constant across the elements. If we choose to allow non-conforming elements, the challenge in

  6. Polynomial modal analysis of lamellar diffraction gratings in conical mounting.

    PubMed

    Randriamihaja, Manjakavola Honore; Granet, Gérard; Edee, Kofi; Raniriharinosy, Karyl

    2016-09-01

    An efficient numerical modal method for modeling a lamellar grating in conical mounting is presented. Within each region of the grating, the electromagnetic field is expanded onto Legendre polynomials, which allows us to enforce in an exact manner the boundary conditions that determine the eigensolutions. Our code is successfully validated by comparison with results obtained with the analytical modal method.

  7. Polynomial meta-models with canonical low-rank approximations: Numerical insights and comparison to sparse polynomial chaos expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konakli, Katerina, E-mail: konakli@ibk.baug.ethz.ch; Sudret, Bruno

    2016-09-15

    The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely themore » exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input dimension, a situation that is often encountered in real-life problems. By introducing the conditional generalization error, we further demonstrate that canonical LRA tend to outperform sparse PCE in the prediction of extreme model responses, which is critical in reliability analysis.« less

  8. A recursive algorithm for Zernike polynomials

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    The analysis of a function defined on a rotationally symmetric system, with either a circular or annular pupil is discussed. In order to numerically analyze such systems it is typical to expand the given function in terms of a class of orthogonal polynomials. Because of their particular properties, the Zernike polynomials are especially suited for numerical calculations. Developed is a recursive algorithm that can be used to generate the Zernike polynomials up to a given order. The algorithm is recursively defined over J where R(J,N) is the Zernike polynomial of degree N obtained by orthogonalizing the sequence R(J), R(J+2), ..., R(J+2N) over (epsilon, 1). The terms in the preceding row - the (J-1) row - up to the N+1 term is needed for generating the (J,N)th term. Thus, the algorith generates an upper left-triangular table. This algorithm was placed in the computer with the necessary support program also included.

  9. Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models.

    PubMed

    Pitarch, José Luis; Sala, Antonio; Ariño, Carlos Vicente

    2014-04-01

    In this paper, the domain of attraction of the origin of a nonlinear system is estimated in closed form via level sets with polynomial boundaries, iteratively computed. In particular, the domain of attraction is expanded from a previous estimate, such as a classical Lyapunov level set. With the use of fuzzy-polynomial models, the domain of attraction analysis can be carried out via sum of squares optimization and an iterative algorithm. The result is a function that bounds the domain of attraction, free from the usual restriction of being positive and decrescent in all the interior of its level sets.

  10. Numeric Function Generators Using Decision Diagrams for Discrete Functions

    DTIC Science & Technology

    2009-05-01

    Taylor series and Chebyshev series. Since polynomial functions can be realized with multipliers and adders, any numeric functions can be realized in...NFGs from the decision diagrams. Since nu- meric functions can be expanded into polynomial functions, such as a Taylor series, in this section, we use...pp. 107–114, July 1995. [13] T. Kam, T. Villa, R. K. Brayton , and A. L. Sangiovanni- Vincentelli, “Multi-valued decision diagrams: Theory and appli

  11. Stitching interferometry of a full cylinder without using overlap areas

    NASA Astrophysics Data System (ADS)

    Peng, Junzheng; Chen, Dingfu; Yu, Yingjie

    2017-08-01

    Traditional stitching interferometry requires finding out the overlap correspondence and computing the discrepancies in the overlap regions, which makes it complex and time-consuming to obtain the 360° form map of a cylinder. In this paper, we develop a cylinder stitching model based on a new set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials. With these polynomials, individual subaperture data can be expanded as a composition of the inherent form of a partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all subaperture data with the LF polynomials. A metal shaft was measured to experimentally verify the proposed method. In contrast to traditional stitching interferometry, our technique does not require overlapping of adjacent subapertures, thus significantly reducing the measurement time and making the stitching algorithm simple.

  12. Measurement of EUV lithography pupil amplitude and phase variation via image-based methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Zachary; Verduijn, Erik; Wood, Obert R.

    2016-04-01

    Here, an approach to image-based EUV aberration metrology using binary mask targets and iterative model-based solutions to extract both the amplitude and phase components of the aberrated pupil function is presented. The approach is enabled through previously developed modeling, fitting, and extraction algorithms. We seek to examine the behavior of pupil amplitude variation in real-optical systems. Optimized target images were captured under several conditions to fit the resulting pupil responses. Both the amplitude and phase components of the pupil function were extracted from a zone-plate-based EUV mask microscope. The pupil amplitude variation was expanded in three different bases: Zernike polynomials,more » Legendre polynomials, and Hermite polynomials. It was found that the Zernike polynomials describe pupil amplitude variation most effectively of the three.« less

  13. Hadamard Factorization of Stable Polynomials

    NASA Astrophysics Data System (ADS)

    Loredo-Villalobos, Carlos Arturo; Aguirre-Hernández, Baltazar

    2011-11-01

    The stable (Hurwitz) polynomials are important in the study of differential equations systems and control theory (see [7] and [19]). A property of these polynomials is related to Hadamard product. Consider two polynomials p,q ∈ R[x]:p(x) = anxn+an-1xn-1+...+a1x+a0q(x) = bmx m+bm-1xm-1+...+b1x+b0the Hadamard product (p × q) is defined as (p×q)(x) = akbkxk+ak-1bk-1xk-1+...+a1b1x+a0b0where k = min(m,n). Some results (see [16]) shows that if p,q ∈R[x] are stable polynomials then (p×q) is stable, also, i.e. the Hadamard product is closed; however, the reciprocal is not always true, that is, not all stable polynomial has a factorization into two stable polynomials the same degree n, if n> 4 (see [15]).In this work we will give some conditions to Hadamard factorization existence for stable polynomials.

  14. Polynomial chaos expansion with random and fuzzy variables

    NASA Astrophysics Data System (ADS)

    Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.

    2016-06-01

    A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.

  15. Determining animal drug combinations based on efficacy and safety.

    PubMed

    Kratzer, D D; Geng, S

    1986-08-01

    A procedure for deriving drug combinations for animal health is used to derive an optimal combination of 200 mg of novobiocin and 650,000 IU of penicillin for nonlactating cow mastitis treatment. The procedure starts with an estimated second order polynomial response surface equation. That surface is translated into a probability surface with contours called isoprobs. The isoprobs show drug amounts that have equal probability to produce maximal efficacy. Safety factors are incorporated into the probability surface via a noncentrality parameter that causes the isoprobs to expand as safety decreases, resulting in lower amounts of drug being used.

  16. Algorithms for Solvents and Spectral Factors of Matrix Polynomials

    DTIC Science & Technology

    1981-01-01

    spectral factors of matrix polynomials LEANG S. SHIEHt, YIH T. TSAYt and NORMAN P. COLEMANt A generalized Newton method , based on the contracted gradient...of a matrix poly- nomial, is derived for solving the right (left) solvents and spectral factors of matrix polynomials. Two methods of selecting initial...estimates for rapid convergence of the newly developed numerical method are proposed. Also, new algorithms for solving complete sets of the right

  17. Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.

    PubMed

    Coelho, Rodrigo C V; Ilha, Anderson; Doria, Mauro M; Pereira, R M; Aibe, Valter Yoshihiko

    2014-04-01

    The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389 (2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the Hermite polynomials.

  18. Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

    NASA Astrophysics Data System (ADS)

    Chen, Zhixiang; Fu, Bin

    This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ polynomial. We first prove that the first problem is #P-hard and then devise a O *(3 n s(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n). Later, this upper bound is improved to O *(2 n ) for ΠΣΠ polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ΠΣ polynomials. On the negative side, we prove that, even for ΠΣΠ polynomials with terms of degree ≤ 2, the first problem cannot be approximated at all for any approximation factor ≥ 1, nor "weakly approximated" in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ-approximation algorithm for ΠΣΠ polynomials with terms of degrees no more a constant λ ≥ 2. On the inapproximability side, we give a n (1 - ɛ)/2 lower bound, for any ɛ> 0, on the approximation factor for ΠΣΠ polynomials. When the degrees of the terms in these polynomials are constrained as ≤ 2, we prove a 1.0476 lower bound, assuming Pnot=NP; and a higher 1.0604 lower bound, assuming the Unique Games Conjecture.

  19. Bi-cubic interpolation for shift-free pan-sharpening

    NASA Astrophysics Data System (ADS)

    Aiazzi, Bruno; Baronti, Stefano; Selva, Massimo; Alparone, Luciano

    2013-12-01

    Most of pan-sharpening techniques require the re-sampling of the multi-spectral (MS) image for matching the size of the panchromatic (Pan) image, before the geometric details of Pan are injected into the MS image. This operation is usually performed in a separable fashion by means of symmetric digital low-pass filtering kernels with odd lengths that utilize piecewise local polynomials, typically implementing linear or cubic interpolation functions. Conversely, constant, i.e. nearest-neighbour, and quadratic kernels, implementing zero and two degree polynomials, respectively, introduce shifts in the magnified images, that are sub-pixel in the case of interpolation by an even factor, as it is the most usual case. However, in standard satellite systems, the point spread functions (PSF) of the MS and Pan instruments are centered in the middle of each pixel. Hence, commercial MS and Pan data products, whose scale ratio is an even number, are relatively shifted by an odd number of half pixels. Filters of even lengths may be exploited to compensate the half-pixel shifts between the MS and Pan sampling grids. In this paper, it is shown that separable polynomial interpolations of odd degrees are feasible with linear-phase kernels of even lengths. The major benefit is that bi-cubic interpolation, which is known to represent the best trade-off between performances and computational complexity, can be applied to commercial MS + Pan datasets, without the need of performing a further half-pixel registration after interpolation, to align the expanded MS with the Pan image.

  20. An Artificial Intelligence Approach to the Symbolic Factorization of Multivariable Polynomials. Technical Report No. CS74019-R.

    ERIC Educational Resources Information Center

    Claybrook, Billy G.

    A new heuristic factorization scheme uses learning to improve the efficiency of determining the symbolic factorization of multivariable polynomials with interger coefficients and an arbitrary number of variables and terms. The factorization scheme makes extensive use of artificial intelligence techniques (e.g., model-building, learning, and…

  1. Cylinder stitching interferometry: with and without overlap regions

    NASA Astrophysics Data System (ADS)

    Peng, Junzheng; Chen, Dingfu; Yu, Yingjie

    2017-06-01

    Since the cylinder surface is closed and periodic in the azimuthal direction, existing stitching methods cannot be used to yield the 360° form map. To address this problem, this paper presents two methods for stitching interferometry of cylinder: one requires overlap regions, and the other does not need the overlap regions. For the former, we use the first order approximation of cylindrical coordinate transformation to build the stitching model. With it, the relative parameters between the adjacent sub-apertures can be calculated by the stitching model. For the latter, a set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials, was developed. With these polynomials, individual sub-aperture data can be expanded as composition of inherent form of partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all sub-aperture data with LF polynomials. Finally the two proposed methods are compared under various conditions. The merits and drawbacks of each stitching method are consequently revealed to provide suggestion in acquisition of 360° form map for a precision cylinder.

  2. A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation

    NASA Astrophysics Data System (ADS)

    Oruç, Ömer

    2018-04-01

    In this paper, a new mixed method based on Lucas and Fibonacci polynomials is developed for numerical solutions of 1D and 2D sinh-Gordon equations. Firstly time variable discretized by central finite difference and then unknown function and its derivatives are expanded to Lucas series. With the help of these series expansion and Fibonacci polynomials, matrices for differentiation are derived. With this approach, finding the solution of sinh-Gordon equation transformed to finding the solution of an algebraic system of equations. Lucas series coefficients are acquired by solving this system of algebraic equations. Then by plugginging these coefficients into Lucas series expansion numerical solutions can be obtained consecutively. The main objective of this paper is to demonstrate that Lucas polynomial based method is convenient for 1D and 2D nonlinear problems. By calculating L2 and L∞ error norms of some 1D and 2D test problems efficiency and performance of the proposed method is monitored. Acquired accurate results confirm the applicability of the method.

  3. Generic expansion of the Jastrow correlation factor in polynomials satisfying symmetry and cusp conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüchow, Arne, E-mail: luechow@rwth-aachen.de; Jülich Aachen Research Alliance; Sturm, Alexander

    2015-02-28

    Jastrow correlation factors play an important role in quantum Monte Carlo calculations. Together with an orbital based antisymmetric function, they allow the construction of highly accurate correlation wave functions. In this paper, a generic expansion of the Jastrow correlation function in terms of polynomials that satisfy both the electron exchange symmetry constraint and the cusp conditions is presented. In particular, an expansion of the three-body electron-electron-nucleus contribution in terms of cuspless homogeneous symmetric polynomials is proposed. The polynomials can be expressed in fairly arbitrary scaling function allowing a generic implementation of the Jastrow factor. It is demonstrated with a fewmore » examples that the new Jastrow factor achieves 85%–90% of the total correlation energy in a variational quantum Monte Carlo calculation and more than 90% of the diffusion Monte Carlo correlation energy.« less

  4. Determination of the expansion of the potential of the earth's normal gravitational field

    NASA Astrophysics Data System (ADS)

    Kochiev, A. A.

    The potential of the generalized problem of 2N fixed centers is expanded in a polynomial and Legendre function series. Formulas are derived for the expansion coefficients, and the disturbing function of the problem is constructed in an explicit form.

  5. An Extension of the Time-Spectral Method to Overset Solvers

    NASA Technical Reports Server (NTRS)

    Leffell, Joshua Isaac; Murman, Scott M.; Pulliam, Thomas

    2013-01-01

    Relative motion in the Cartesian or overset framework causes certain spatial nodes to move in and out of the physical domain as they are dynamically blanked by moving solid bodies. This poses a problem for the conventional Time-Spectral approach, which expands the solution at every spatial node into a Fourier series spanning the period of motion. The proposed extension to the Time-Spectral method treats unblanked nodes in the conventional manner but expands the solution at dynamically blanked nodes in a basis of barycentric rational polynomials spanning partitions of contiguously defined temporal intervals. Rational polynomials avoid Runge's phenomenon on the equidistant time samples of these sub-periodic intervals. Fourier- and rational polynomial-based differentiation operators are used in tandem to provide a consistent hybrid Time-Spectral overset scheme capable of handling relative motion. The hybrid scheme is tested with a linear model problem and implemented within NASA's OVERFLOW Reynolds-averaged Navier- Stokes (RANS) solver. The hybrid Time-Spectral solver is then applied to inviscid and turbulent RANS cases of plunging and pitching airfoils and compared to time-accurate and experimental data. A limiter was applied in the turbulent case to avoid undershoots in the undamped turbulent eddy viscosity while maintaining accuracy. The hybrid scheme matches the performance of the conventional Time-Spectral method and converges to the time-accurate results with increased temporal resolution.

  6. From r-spin intersection numbers to Hodge integrals

    NASA Astrophysics Data System (ADS)

    Ding, Xiang-Mao; Li, Yuping; Meng, Lingxian

    2016-01-01

    Generalized Kontsevich Matrix Model (GKMM) with a certain given potential is the partition function of r-spin intersection numbers. We represent this GKMM in terms of fermions and expand it in terms of the Schur polynomials by boson-fermion correspondence, and link it with a Hurwitz partition function and a Hodge partition by operators in a widehat{GL}(∞) group. Then, from a W 1+∞ constraint of the partition function of r-spin intersection numbers, we get a W 1+∞ constraint for the Hodge partition function. The W 1+∞ constraint completely determines the Schur polynomials expansion of the Hodge partition function.

  7. On polynomial selection for the general number field sieve

    NASA Astrophysics Data System (ADS)

    Kleinjung, Thorsten

    2006-12-01

    The general number field sieve (GNFS) is the asymptotically fastest algorithm for factoring large integers. Its runtime depends on a good choice of a polynomial pair. In this article we present an improvement of the polynomial selection method of Montgomery and Murphy which has been used in recent GNFS records.

  8. Beyond Pascal's Triangle

    ERIC Educational Resources Information Center

    Minor, Darrell P.

    2005-01-01

    In "Beyond Pascals Triangle" the author demonstrates ways of using "Pascallike" triangles to expand polynomials raised to powers in a fairly quick and easy fashion. The recursive method could easily be implemented within a spreadsheet, or simply by using paper and pencil. An explanation of why the method works follows the several examples that are…

  9. Local zeta factors and geometries under Spec Z

    NASA Astrophysics Data System (ADS)

    Manin, Yu I.

    2016-08-01

    The first part of this note shows that the odd-period polynomial of each Hecke cusp eigenform for the full modular group produces via the Rodriguez-Villegas transform ([1]) a polynomial satisfying the functional equation of zeta type and having non-trivial zeros only in the middle line of its critical strip. The second part discusses the Chebyshev lambda-structure of the polynomial ring as Borger's descent data to \\mathbf{F}_1 and suggests its role in a possible relation of the Γ\\mathbf{R}-factor to 'real geometry over \\mathbf{F}_1' (cf. [2]).

  10. Inertial modes in a rotating triaxial ellipsoid

    PubMed Central

    Vantieghem, S.

    2014-01-01

    In this work, we present an algorithm that enables computation of inertial modes and their corresponding frequencies in a rotating triaxial ellipsoid. The method consists of projecting the inertial mode equation onto finite-dimensional bases of polynomial vector fields. It is shown that this leads to a well-posed eigenvalue problem, and hence, that eigenmodes are of polynomial form. Furthermore, these results shed new light onto the question whether the eigenmodes form a complete basis, i.e. whether any arbitrary velocity field can be expanded in a sum of inertial modes. Finally, we prove that two intriguing integral properties of inertial modes in rotating spheres and spheroids also extend to triaxial ellipsoids. PMID:25104908

  11. Explicit analytical expression for the condition number of polynomials in power form

    NASA Astrophysics Data System (ADS)

    Rack, Heinz-Joachim

    2017-07-01

    In his influential papers [1-3] W. Gautschi has defined and reshaped the condition number κ∞ of polynomials Pn of degree ≤ n which are represented in power form on a zero-symmetric interval [-ω, ω]. Basically, κ∞ is expressed as the product of two operator norms: an explicit factor times an implicit one (the l∞-norm of the coefficient vector of the n-th Chebyshev polynomial of the first kind relative to [-ω, ω]). We provide a new proof, economize the second factor and express it by an explicit analytical formula.

  12. A Comparison of Low Performing Students' Achievements in Factoring Cubic Polynomials Using Three Different Strategies

    ERIC Educational Resources Information Center

    Ogbonnaya, Ugorji I.; Mogari, David L.; Machisi, Eric

    2013-01-01

    In this study, repeated measures design was employed to compare low performing students' achievements in factoring cubic polynomials using three strategies. Twenty-five low-performing Grade 12 students from a secondary school in Limpopo province took part in the study. Data was collected using achievement test and was analysed using repeated…

  13. Computing the Partial Fraction Decomposition of Rational Functions with Irreducible Quadratic Factors in the Denominators

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…

  14. Computing Galois Groups of Eisenstein Polynomials Over P-adic Fields

    NASA Astrophysics Data System (ADS)

    Milstead, Jonathan

    The most efficient algorithms for computing Galois groups of polynomials over global fields are based on Stauduhar's relative resolvent method. These methods are not directly generalizable to the local field case, since they require a field that contains the global field in which all roots of the polynomial can be approximated. We present splitting field-independent methods for computing the Galois group of an Eisenstein polynomial over a p-adic field. Our approach is to combine information from different disciplines. We primarily, make use of the ramification polygon of the polynomial, which is the Newton polygon of a related polynomial. This allows us to quickly calculate several invariants that serve to reduce the number of possible Galois groups. Algorithms by Greve and Pauli very efficiently return the Galois group of polynomials where the ramification polygon consists of one segment as well as information about the subfields of the stem field. Second, we look at the factorization of linear absolute resolvents to further narrow the pool of possible groups.

  15. On polynomial preconditioning for indefinite Hermitian matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1989-01-01

    The minimal residual method is studied combined with polynomial preconditioning for solving large linear systems (Ax = b) with indefinite Hermitian coefficient matrices (A). The standard approach for choosing the polynomial preconditioners leads to preconditioned systems which are positive definite. Here, a different strategy is studied which leaves the preconditioned coefficient matrix indefinite. More precisely, the polynomial preconditioner is designed to cluster the positive, resp. negative eigenvalues of A around 1, resp. around some negative constant. In particular, it is shown that such indefinite polynomial preconditioners can be obtained as the optimal solutions of a certain two parameter family of Chebyshev approximation problems. Some basic results are established for these approximation problems and a Remez type algorithm is sketched for their numerical solution. The problem of selecting the parameters such that the resulting indefinite polynomial preconditioners speeds up the convergence of minimal residual method optimally is also addressed. An approach is proposed based on the concept of asymptotic convergence factors. Finally, some numerical examples of indefinite polynomial preconditioners are given.

  16. A contracting-interval program for the Danilewski method. Ph.D. Thesis - Va. Univ.

    NASA Technical Reports Server (NTRS)

    Harris, J. D.

    1971-01-01

    The concept of contracting-interval programs is applied to finding the eigenvalues of a matrix. The development is a three-step process in which (1) a program is developed for the reduction of a matrix to Hessenberg form, (2) a program is developed for the reduction of a Hessenberg matrix to colleague form, and (3) the characteristic polynomial with interval coefficients is readily obtained from the interval of colleague matrices. This interval polynomial is then factored into quadratic factors so that the eigenvalues may be obtained. To develop a contracting-interval program for factoring this polynomial with interval coefficients it is necessary to have an iteration method which converges even in the presence of controlled rounding errors. A theorem is stated giving sufficient conditions for the convergence of Newton's method when both the function and its Jacobian cannot be evaluated exactly but errors can be made proportional to the square of the norm of the difference between the previous two iterates. This theorem is applied to prove the convergence of the generalization of the Newton-Bairstow method that is used to obtain quadratic factors of the characteristic polynomial.

  17. Factorizing the factorization - a spectral-element solver for elliptic equations with linear operation count

    NASA Astrophysics Data System (ADS)

    Huismann, Immo; Stiller, Jörg; Fröhlich, Jochen

    2017-10-01

    The paper proposes a novel factorization technique for static condensation of a spectral-element discretization matrix that yields a linear operation count of just 13N multiplications for the residual evaluation, where N is the total number of unknowns. In comparison to previous work it saves a factor larger than 3 and outpaces unfactored variants for all polynomial degrees. Using the new technique as a building block for a preconditioned conjugate gradient method yields linear scaling of the runtime with N which is demonstrated for polynomial degrees from 2 to 32. This makes the spectral-element method cost effective even for low polynomial degrees. Moreover, the dependence of the iterative solution on the element aspect ratio is addressed, showing only a slight increase in the number of iterations for aspect ratios up to 128. Hence, the solver is very robust for practical applications.

  18. Are Khovanov-Rozansky polynomials consistent with evolution in the space of knots?

    NASA Astrophysics Data System (ADS)

    Anokhina, A.; Morozov, A.

    2018-04-01

    R-coloured knot polynomials for m-strand torus knots Torus [ m, n] are described by the Rosso-Jones formula, which is an example of evolution in n with Lyapunov exponents, labelled by Young diagrams from R ⊗ m . This means that they satisfy a finite-difference equation (recursion) of finite degree. For the gauge group SL( N ) only diagrams with no more than N lines can contribute and the recursion degree is reduced. We claim that these properties (evolution/recursion and reduction) persist for Khovanov-Rozansky (KR) polynomials, obtained by additional factorization modulo 1 + t, which is not yet adequately described in quantum field theory. Also preserved is some weakened version of differential expansion, which is responsible at least for a simple relation between reduced and unreduced Khovanov polynomials. However, in the KR case evolution is incompatible with the mirror symmetry under the change n -→ - n, what can signal about an ambiguity in the KR factorization even for torus knots.

  19. On Partial Fraction Decompositions by Repeated Polynomial Divisions

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2017-01-01

    We present a method for finding partial fraction decompositions of rational functions with linear or quadratic factors in the denominators by means of repeated polynomial divisions. This method does not involve differentiation or solving linear equations for obtaining the unknown partial fraction coefficients, which is very suitable for either…

  20. A general one-dimension nonlinear magneto-elastic coupled constitutive model for magnetostrictive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao, E-mail: zhouhm@cjlu.edu.cn

    2015-10-15

    For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions.more » The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.« less

  1. Pseudo-spectral methods applied to gravitational collapse.

    NASA Astrophysics Data System (ADS)

    Bonazzola, S.; Marck, J.-A.

    The authors present codes for solving Newtonian gravitational collapse in spherical coordinates for the spherical, axial and true 3 D cases. The pseudo-spectral techniques are used. All quantities are expanded in Chebychev or Legendre polynomials or Fourier series for the periodic parts. The codes are able to handle in a rigorous way the pseudo-singularities τ = 0 and θ = 0, π. Illustrative results for each of the three cases are given.

  2. Improving multivariate Horner schemes with Monte Carlo tree search

    NASA Astrophysics Data System (ADS)

    Kuipers, J.; Plaat, A.; Vermaseren, J. A. M.; van den Herik, H. J.

    2013-11-01

    Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For polynomials in one variable, Horner's method provides a scheme for producing a computationally efficient form. For multivariate polynomials it is possible to generalize Horner's method, but this leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring variable first are used. This simple textbook algorithm has given remarkably efficient results. Finding better algorithms has proved difficult. In trying to improve upon the greedy scheme we have implemented Monte Carlo tree search, a recent search method from the field of artificial intelligence. This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by factors up to two.

  3. Polynomial approximation of the Lense-Thirring rigid precession frequency

    NASA Astrophysics Data System (ADS)

    De Falco, Vittorio; Motta, Sara

    2018-05-01

    We propose a polynomial approximation of the global Lense-Thirring rigid precession frequency to study low-frequency quasi-periodic oscillations around spinning black holes. This high-performing approximation allows to determine the expected frequencies of a precessing thick accretion disc with fixed inner radius and variable outer radius around a black hole with given mass and spin. We discuss the accuracy and the applicability regions of our polynomial approximation, showing that the computational times are reduced by a factor of ≈70 in the range of minutes.

  4. Study on the mapping of dark matter clustering from real space to redshift space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Song, Yong-Seon

    2016-08-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.

  5. Improved multivariate polynomial factoring algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P.S.

    1978-10-01

    A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient problem, the bad-zero problem and the occurrence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorithm named EEZ is described. Bascially it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store then the original algorithm. Machine examples with comparative timingmore » are included.« less

  6. Scaling Property of Period-n-Tupling Sequences in One-Dimensional Mappings

    NASA Astrophysics Data System (ADS)

    Zeng, Wan-Zhen; Hao, Bai-Lin; Wang, Guang-Rui; Chen, Shi-Gang

    1984-05-01

    We calculated the universal scaling function g(x) and the scaling factor α as well as the convergence rate δ for periodtripling, -quadrapling and-quintupling sequences of RL, RL^2, RLR^2, RL2 R and RL^3 types. The superstable periods are closely connected to a set of polynomial P_n defined recursively by the original mapping. Some notable properties of these polynomials are studied. Several approaches to solving the renormalization group equation and estimating the scaling factors are suggested.

  7. Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.

    PubMed

    Oettinger, D; Mendoza, M; Herrmann, H J

    2013-07-01

    We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.

  8. Tolerance analysis of optical telescopes using coherent addition of wavefront errors

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    A near diffraction-limited telescope requires that tolerance analysis be done on the basis of system wavefront error. One method of analyzing the wavefront error is to represent the wavefront error function in terms of its Zernike polynomial expansion. A Ramsey-Korsch ray trace package, a computer program that simulates the tracing of rays through an optical telescope system, was expanded to include the Zernike polynomial expansion up through the fifth-order spherical term. An option to determine a 3 dimensional plot of the wavefront error function was also included in the Ramsey-Korsch package. Several assimulation runs were analyzed to determine the particular set of coefficients in the Zernike expansion that are effected by various errors such as tilt, decenter and despace. A 3 dimensional plot of each error up through the fifth-order spherical term was also included in the study. Tolerance analysis data are presented.

  9. Limitations of the paraxial Debye approximation.

    PubMed

    Sheppard, Colin J R

    2013-04-01

    In the paraxial form of the Debye integral for focusing, higher order defocus terms are ignored, which can result in errors in dealing with aberrations, even for low numerical aperture. These errors can be avoided by using a different integration variable. The aberrations of a glass slab, such as a coverslip, are expanded in terms of the new variable, and expressed in terms of Zernike polynomials to assist with aberration balancing. Tube length error is also discussed.

  10. Determination of the Sensibility Factors for TLD-100 Powder on the Energy of X-Ray of 50, 250 kVp; 192Ir, 137Cs and 60Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loaiza, Sandra P.; Alvarez, Jose T.

    2006-09-08

    TLD-100 powder is calibrated in terms of absorbed dose to water Dw, using the protocols AAPM TG61, AAPM TG43 and IAEA-TRS 398, for the energy of RX 50, 250 kVp, 137Cs and 60Co respectively. The calibration curves, TLD Response R versus Dw, are fitted by weighted least square by a quadratic polynomials; which are validated with the lack of fit and the Anderson-Darling normality test. The slope of these curves corresponds to the sensibility factor: Fs R/DW, [Fs] = nC Gy-1. The expanded uncertainties U's for these factors are obtained from the ANOVA tables. Later, the Fs' values are interpolatedmore » using the effective energy hvefec for the 192Ir. The SSDL sent a set of capsules with powder TLD-100 for two Hospitals. These irradiated them a nominal dose of Dw = 2 Gy. The results determined at SSDL are: for the Hospital A the Dw is overestimated in order to 4.8% and the Hospital B underestimates it in the range from -1.4% to -17.5%.« less

  11. Preserving sparseness in multivariate polynominal factorization

    NASA Technical Reports Server (NTRS)

    Wang, P. S.

    1977-01-01

    Attempts were made to factor these ten polynomials on MACSYMA. However it did not get very far with any of the larger polynomials. At that time, MACSYMA used an algorithm created by Wang and Rothschild. This factoring algorithm was also implemented for the symbolic manipulation system, SCRATCHPAD of IBM. A closer look at this old factoring algorithm revealed three problem areas, each of which contribute to losing sparseness and intermediate expression growth. This study led to effective ways of avoiding these problems and actually to a new factoring algorithm. The three problems are known as the extraneous factor problem, the leading coefficient problem, and the bad zero problem. These problems are examined separately. Their causes and effects are set forth in detail; the ways to avoid or lessen these problems are described.

  12. Study on the mapping of dark matter clustering from real space to redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown inmore » this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.« less

  13. Necessary and sufficient conditions for the complete controllability and observability of systems in series using the coprime factorization of a rational matrix

    NASA Technical Reports Server (NTRS)

    Callier, F. M.; Nahum, C. D.

    1975-01-01

    The series connection of two linear time-invariant systems that have minimal state space system descriptions is considered. From these descriptions, strict-system-equivalent polynomial matrix system descriptions in the manner of Rosenbrock are derived. They are based on the factorization of the transfer matrix of the subsystems as a ratio of two right or left coprime polynomial matrices. They give rise to a simple polynomial matrix system description of the tandem connection. Theorem 1 states that for the complete controllability and observability of the state space system description of the series connection, it is necessary and sufficient that certain 'denominator' and 'numerator' groups are coprime. Consequences for feedback systems are drawn in Corollary 1. The role of pole-zero cancellations is explained by Lemma 3 and Corollaires 2 and 3.

  14. Rational approach for assumed stress finite elements

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.; Sumihara, K.

    1984-01-01

    A new method for the formulation of hybrid elements by the Hellinger-Reissner principle is established by expanding the essential terms of the assumed stresses as complete polynomials in the natural coordinates of the element. The equilibrium conditions are imposed in a variational sense through the internal displacements which are also expanded in the natural co-ordinates. The resulting element possesses all the ideal qualities, i.e. it is invariant, it is less sensitive to geometric distortion, it contains a minimum number of stress parameters and it provides accurate stress calculations. For the formulation of a 4-node plane stress element, a small perturbation method is used to determine the equilibrium constraint equations. The element has been proved to be always rank sufficient.

  15. Multiple Scattering of Waves in Discrete Random Media.

    DTIC Science & Technology

    1987-12-31

    expanding the two body correlation functions in Legendre polynomials. This permits us to consider the angular correlations that exist for non-spherical...a scat- of the translation matrix after the angular and radial parts have terer fixed at it. been absorbed in the integration. Expressions for them...Approach New York: Pergamon Press. 1980 ’" close to the actual values for FeO, in isolation since they 171 A R. Edmonds. Angular Momentum in Quantum . h(pa

  16. A Constant-Factor Approximation Algorithm for the Link Building Problem

    NASA Astrophysics Data System (ADS)

    Olsen, Martin; Viglas, Anastasios; Zvedeniouk, Ilia

    In this work we consider the problem of maximizing the PageRank of a given target node in a graph by adding k new links. We consider the case that the new links must point to the given target node (backlinks). Previous work [7] shows that this problem has no fully polynomial time approximation schemes unless P = NP. We present a polynomial time algorithm yielding a PageRank value within a constant factor from the optimal. We also consider the naive algorithm where we choose backlinks from nodes with high PageRank values compared to the outdegree and show that the naive algorithm performs much worse on certain graphs compared to the constant factor approximation scheme.

  17. Constructivism, Factoring, and Beliefs.

    ERIC Educational Resources Information Center

    Rauff, James V.

    1994-01-01

    Discusses errors made by remedial intermediate algebra students in factoring polynomials in light of student definitions of factoring. Found certain beliefs about factoring to logically imply many of the errors made. Suggests that belief-based teaching can be successful in teaching factoring. (16 references) (Author/MKR)

  18. Ligand Electron Density Shape Recognition Using 3D Zernike Descriptors

    NASA Astrophysics Data System (ADS)

    Gunasekaran, Prasad; Grandison, Scott; Cowtan, Kevin; Mak, Lora; Lawson, David M.; Morris, Richard J.

    We present a novel approach to crystallographic ligand density interpretation based on Zernike shape descriptors. Electron density for a bound ligand is expanded in an orthogonal polynomial series (3D Zernike polynomials) and the coefficients from this expansion are employed to construct rotation-invariant descriptors. These descriptors can be compared highly efficiently against large databases of descriptors computed from other molecules. In this manuscript we describe this process and show initial results from an electron density interpretation study on a dataset containing over a hundred OMIT maps. We could identify the correct ligand as the first hit in about 30 % of the cases, within the top five in a further 30 % of the cases, and giving rise to an 80 % probability of getting the correct ligand within the top ten matches. In all but a few examples, the top hit was highly similar to the correct ligand in both shape and chemistry. Further extensions and intrinsic limitations of the method are discussed.

  19. Stochastic uncertainty analysis for unconfined flow systems

    USGS Publications Warehouse

    Liu, Gaisheng; Zhang, Dongxiao; Lu, Zhiming

    2006-01-01

    A new stochastic approach proposed by Zhang and Lu (2004), called the Karhunen‐Loeve decomposition‐based moment equation (KLME), has been extended to solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This approach is on the basis of an innovative combination of Karhunen‐Loeve decomposition, polynomial expansion, and perturbation methods. The random log‐transformed hydraulic conductivity field (lnKS) is first expanded into a series in terms of orthogonal Gaussian standard random variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function of lnKS. Next, head h is decomposed as a perturbation expansion series Σh(m), where h(m) represents the mth‐order head term with respect to the standard deviation of lnKS. Then h(m) is further expanded into a polynomial series of m products of orthogonal Gaussian standard random variables whose coefficients hi1,i2,...,im(m) are deterministic and solved sequentially from low to high expansion orders using MODFLOW‐2000. Finally, the statistics of head and flux are computed using simple algebraic operations on hi1,i2,...,im(m). A series of numerical test results in 2‐D and 3‐D unconfined flow systems indicated that the KLME approach is effective in estimating the mean and (co)variance of both heads and fluxes and requires much less computational effort as compared to the traditional Monte Carlo simulation technique.

  20. Diffraction Theory for Polygonal Apertures

    DTIC Science & Technology

    1988-07-01

    and utilized oblate spheroidal vector wave functions, and Nomura and Katsura (1955), who employed an expansion of the hypergeometric polynomial ...21 2 - 1 4, 2 - 1 3 4k3 - 3k 8 3 - 4 factor relates directly to the orthogonality relations for the Chebyshev polynomials given below. I T(Q TieQdk...convergence. 3.1.2.2 Gaussian Illuminated Corner In the sample calculation just discussed we discovered some of the basic characteristics of the GBE

  1. Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems

    NASA Astrophysics Data System (ADS)

    Demina, Maria V.

    2018-05-01

    The general structure of irreducible invariant algebraic curves for a polynomial dynamical system in C2 is found. Necessary conditions for existence of exponential factors related to an invariant algebraic curve are derived. As a consequence, all the cases when the classical force-free Duffing and Duffing-van der Pol oscillators possess Liouvillian first integrals are obtained. New exact solutions for the force-free Duffing-van der Pol system are constructed.

  2. Approximation for limit cycles and their isochrons.

    PubMed

    Demongeot, Jacques; Françoise, Jean-Pierre

    2006-12-01

    Local analysis of trajectories of dynamical systems near an attractive periodic orbit displays the notion of asymptotic phase and isochrons. These notions are quite useful in applications to biosciences. In this note, we give an expression for the first approximation of equations of isochrons in the setting of perturbations of polynomial Hamiltonian systems. This method can be generalized to perturbations of systems that have a polynomial integral factor (like the Lotka-Volterra equation).

  3. Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations

    NASA Astrophysics Data System (ADS)

    Ariznabarreta, Gerardo; García-Ardila, Juan C.; Mañas, Manuel; Marcellán, Francisco

    2018-05-01

    In this paper, Geronimus–Uvarov perturbations for matrix orthogonal polynomials on the real line are studied and then applied to the analysis of non-Abelian integrable hierarchies. The orthogonality is understood in full generality, i.e. in terms of a nondegenerate continuous sesquilinear form, determined by a quasidefinite matrix of bivariate generalized functions with a well-defined support. We derive Christoffel-type formulas that give the perturbed matrix biorthogonal polynomials and their norms in terms of the original ones. The keystone for this finding is the Gauss–Borel factorization of the Gram matrix. Geronimus–Uvarov transformations are considered in the context of the 2D non-Abelian Toda lattice and noncommutative KP hierarchies. The interplay between transformations and integrable flows is discussed. Miwa shifts, τ-ratio matrix functions and Sato formulas are given. Bilinear identities, involving Geronimus–Uvarov transformations, first for the Baker functions, then secondly for the biorthogonal polynomials and its second kind functions, and finally for the τ-ratio matrix functions, are found.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevast'yanov, E A; Sadekova, E Kh

    The Bulgarian mathematicians Sendov, Popov, and Boyanov have well-known results on the asymptotic behaviour of the least deviations of 2{pi}-periodic functions in the classes H{sup {omega}} from trigonometric polynomials in the Hausdorff metric. However, the asymptotics they give are not adequate to detect a difference in, for example, the rate of approximation of functions f whose moduli of continuity {omega}(f;{delta}) differ by factors of the form (log(1/{delta})){sup {beta}}. Furthermore, a more detailed determination of the asymptotic behaviour by traditional methods becomes very difficult. This paper develops an approach based on using trigonometric snakes as approximating polynomials. The snakes of ordermore » n inscribed in the Minkowski {delta}-neighbourhood of the graph of the approximated function f provide, in a number of cases, the best approximation for f (for the appropriate choice of {delta}). The choice of {delta} depends on n and f and is based on constructing polynomial kernels adjusted to the Hausdorff metric and polynomials with special oscillatory properties. Bibliography: 19 titles.« less

  5. Efficient computer algebra algorithms for polynomial matrices in control design

    NASA Technical Reports Server (NTRS)

    Baras, J. S.; Macenany, D. C.; Munach, R.

    1989-01-01

    The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.

  6. Enumerative Algebraic Geometry of Conics

    DTIC Science & Technology

    2008-10-01

    polynomial defining the conic factors into a product of linear polynomials, then the conic is just the union of two lines. Such a conic is said to be...corresponds to the union of two varieties, so [H ] + [H ] will be the class representing the union of two hyperplanes. But the union of two...sets form a topology, the union S′ = S ∪ [(P5)5 × E] is also closed. Now one great fact about projective varieties is that if we have a projection

  7. Radiometer Calibrations: Saving Time by Automating the Gathering and Analysis Procedures

    NASA Technical Reports Server (NTRS)

    Sadino, Jeffrey L.

    2005-01-01

    Mr. Abtahi custom-designs radiometers for Mr. Hook's research group. Inherently, when the radiometers report the temperature of arbitrary surfaces, the results are affected by errors in accuracy. This problem can be reduced if the errors can be accounted for in a polynomial. This is achieved by pointing the radiometer at a constant-temperature surface. We have been using a Hartford Scientific WaterBath. The measurements from the radiometer are collected at many different temperatures and compared to the measurements made by a Hartford Chubb thermometer with a four-decimal point resolution. The data is analyzed and fit to a fifth-order polynomial. This formula is then uploaded into the radiometer software, enabling accurate data gathering. Traditionally, Mr. Abtahi has done this by hand, spending several hours of his time setting the temperature, waiting for stabilization, taking measurements, and then repeating for other temperatures. My program, written in the Python language, has enabled the data gathering and analysis process to be handed off to a less-senior member of the team. Simply by entering several initial settings, the program will simultaneously control all three instruments and organize the data suitable for computer analyses, thus giving the desired fifth-order polynomial. This will save time, allow for a more complete calibration data set, and allow for base calibrations to be developed. The program is expandable to simultaneously take any type of measurement from up to nine distinct instruments.

  8. Modelling the breeding of Aedes Albopictus species in an urban area in Pulau Pinang using polynomial regression

    NASA Astrophysics Data System (ADS)

    Salleh, Nur Hanim Mohd; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Saad, Ahmad Ramli; Sulaiman, Husna Mahirah; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Polynomial regression is used to model a curvilinear relationship between a response variable and one or more predictor variables. It is a form of a least squares linear regression model that predicts a single response variable by decomposing the predictor variables into an nth order polynomial. In a curvilinear relationship, each curve has a number of extreme points equal to the highest order term in the polynomial. A quadratic model will have either a single maximum or minimum, whereas a cubic model has both a relative maximum and a minimum. This study used quadratic modeling techniques to analyze the effects of environmental factors: temperature, relative humidity, and rainfall distribution on the breeding of Aedes albopictus, a type of Aedes mosquito. Data were collected at an urban area in south-west Penang from September 2010 until January 2011. The results indicated that the breeding of Aedes albopictus in the urban area is influenced by all three environmental characteristics. The number of mosquito eggs is estimated to reach a maximum value at a medium temperature, a medium relative humidity and a high rainfall distribution.

  9. betaFIT: A computer program to fit pointwise potentials to selected analytic functions

    NASA Astrophysics Data System (ADS)

    Le Roy, Robert J.; Pashov, Asen

    2017-01-01

    This paper describes program betaFIT, which performs least-squares fits of sets of one-dimensional (or radial) potential function values to four different types of sophisticated analytic potential energy functional forms. These families of potential energy functions are: the Expanded Morse Oscillator (EMO) potential [J Mol Spectrosc 1999;194:197], the Morse/Long-Range (MLR) potential [Mol Phys 2007;105:663], the Double Exponential/Long-Range (DELR) potential [J Chem Phys 2003;119:7398], and the "Generalized Potential Energy Function (GPEF)" form introduced by Šurkus et al. [Chem Phys Lett 1984;105:291], which includes a wide variety of polynomial potentials, such as the Dunham [Phys Rev 1932;41:713], Simons-Parr-Finlan [J Chem Phys 1973;59:3229], and Ogilvie-Tipping [Proc R Soc A 1991;378:287] polynomials, as special cases. This code will be useful for providing the realistic sets of potential function shape parameters that are required to initiate direct fits of selected analytic potential functions to experimental data, and for providing better analytical representations of sets of ab initio results.

  10. Aberrated laser beams in terms of Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Alda, Javier; Alonso, Jose; Bernabeu, Eusebio

    1996-11-01

    The characterization of light beams has devoted a lot of attention in the past decade. Several formalisms have been presented to treat the problem of parameter invariance and characterization in the propagation of light beam along ideal, ABCD, optical systems. The hard and soft apertured optical systems have been treated too. Also some aberrations have been analyzed, but it has not appeared a formalism able to treat the problem as a whole. In this contribution we use a classical approach to describe the problem of aberrated, and therefore apertured, light beams. The wavefront aberration is included in a pure phase term expanded in terms of the Zernike polynomials. Then, we can use the relation between the lower order Zernike polynomia and the Seidel or third order aberrations. We analyze the astigmatism, the spherical aberration and the coma, and we show how higher order aberrations can be taken into account. We have calculated the divergence, and the radius of curvature of such aberrated beams and the influence of these aberrations in the quality of the light beam. Some numerical simulations have been done to illustrate the method.

  11. An Efficient numerical method to calculate the conductivity tensor for disordered topological matter

    NASA Astrophysics Data System (ADS)

    Garcia, Jose H.; Covaci, Lucian; Rappoport, Tatiana G.

    2015-03-01

    We propose a new efficient numerical approach to calculate the conductivity tensor in solids. We use a real-space implementation of the Kubo formalism where both diagonal and off-diagonal conductivities are treated in the same footing. We adopt a formulation of the Kubo theory that is known as Bastin formula and expand the Green's functions involved in terms of Chebyshev polynomials using the kernel polynomial method. Within this method, all the computational effort is on the calculation of the expansion coefficients. It also has the advantage of obtaining both conductivities in a single calculation step and for various values of temperature and chemical potential, capturing the topology of the band-structure. Our numerical technique is very general and is suitable for the calculation of transport properties of disordered systems. We analyze how the method's accuracy varies with the number of moments used in the expansion and illustrate our approach by calculating the transverse conductivity of different topological systems. T.G.R, J.H.G and L.C. acknowledge Brazilian agencies CNPq, FAPERJ and INCT de Nanoestruturas de Carbono, Flemish Science Foundation for financial support.

  12. Factorization of differential expansion for non-rectangular representations

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2018-04-01

    Factorization of the differential expansion (DE) coefficients for colored HOMFLY-PT polynomials of antiparallel double braids, originally discovered for rectangular representations R, in the case of rectangular representations R, is extended to the first non-rectangular representations R = [2, 1] and R = [3, 1]. This increases chances that such factorization will take place for generic R, thus fixing the shape of the DE. We illustrate the power of the method by conjecturing the DE-induced expression for double-braid polynomials for all R = [r, 1]. In variance with the rectangular case, the knowledge for double braids is not fully sufficient to deduce the exclusive Racah matrix S¯ — the entries in the sectors with nontrivial multiplicities sum up and remain unseparated. Still, a considerable piece of the matrix is extracted directly and its other elements can be found by solving the unitarity constraints.

  13. From Jack to Double Jack Polynomials via the Supersymmetric Bridge

    NASA Astrophysics Data System (ADS)

    Lapointe, Luc; Mathieu, Pierre

    2015-07-01

    The Calogero-Sutherland model occurs in a large number of physical contexts, either directly or via its eigenfunctions, the Jack polynomials. The supersymmetric counterpart of this model, although much less ubiquitous, has an equally rich structure. In particular, its eigenfunctions, the Jack superpolynomials, appear to share the very same remarkable combinatorial and structural properties as their non-supersymmetric version. These super-functions are parametrized by superpartitions with fixed bosonic and fermionic degrees. Now, a truly amazing feature pops out when the fermionic degree is sufficiently large: the Jack superpolynomials stabilize and factorize. Their stability is with respect to their expansion in terms of an elementary basis where, in the stable sector, the expansion coefficients become independent of the fermionic degree. Their factorization is seen when the fermionic variables are stripped off in a suitable way which results in a product of two ordinary Jack polynomials (somewhat modified by plethystic transformations), dubbed the double Jack polynomials. Here, in addition to spelling out these results, which were first obtained in the context of Macdonal superpolynomials, we provide a heuristic derivation of the Jack superpolynomial case by performing simple manipulations on the supersymmetric eigen-operators, rendering them independent of the number of particles and of the fermionic degree. In addition, we work out the expression of the Hamiltonian which characterizes the double Jacks. This Hamiltonian, which defines a new integrable system, involves not only the expected Calogero-Sutherland pieces but also combinations of the generators of an underlying affine {widehat{sl}_2} algebra.

  14. Synthetic Division and Matrix Factorization

    ERIC Educational Resources Information Center

    Barabe, Samuel; Dubeau, Franc

    2007-01-01

    Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.

  15. Correction factors for on-line microprobe analysis of multielement alloy systems

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Tenney, D. R.; Brewer, W. D.

    1977-01-01

    An on-line correction technique was developed for the conversion of electron probe X-ray intensities into concentrations of emitting elements. This technique consisted of off-line calculation and representation of binary interaction data which were read into an on-line minicomputer to calculate variable correction coefficients. These coefficients were used to correct the X-ray data without significantly increasing computer core requirements. The binary interaction data were obtained by running Colby's MAGIC 4 program in the reverse mode. The data for each binary interaction were represented by polynomial coefficients obtained by least-squares fitting a third-order polynomial. Polynomial coefficients were generated for most of the common binary interactions at different accelerating potentials and are included. Results are presented for the analyses of several alloy standards to demonstrate the applicability of this correction procedure.

  16. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.

    PubMed

    Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing

    2014-10-01

    Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.

  17. Tidal disruption of dissipative planetesimals

    NASA Technical Reports Server (NTRS)

    Mizuno, H.; Boss, A. P.

    1985-01-01

    A self-consistent numerical model is developed for the tidal disruption of a solid planetesimal. The planetesimal is treated as a highly viscous, slightly compressible fluid whose disturbed parts are an inviscid, pressureless fluid undergoing distortion and disruption. The distortions were constrained to being symmetrical above and below the equatorial plane. The tidal potential is expanded in terms of Legendre polynomials, which eliminates the center of mass acceleration effects, permitting definition of equations of motion in a noninertial frame. Consideration is given to viscous dissipation and to characteristics of the solid-atmosphere boundary. The model is applied to sample cases in one, two and three dimensions.

  18. Viscoelastic stability in a single-screw channel flow

    NASA Astrophysics Data System (ADS)

    Agbessi, Y.; Bu, L. X.; Béreaux, Y.; Charmeau, J.-Y.

    2018-05-01

    In this work, we perform a linear stability analysis on pressure and drag flows of an Upper Convected Maxwell viscoelastic fluid. We use the well-recognised method of expanding the disturbances in Chebyschev polynomials and solve the resulting generalized eigenvalues problem with a collocation spectra method. Both the level of elasticity and the back-pressure vary. In a second stage, recent analytic solutions of viscoelastic fluid flows in slowly varying sections [1] are used to extend this stability analysis to flows in a compression or in a diverging section of a single screw channel, for example a wave mixing screw.

  19. Poly-Frobenius-Euler polynomials

    NASA Astrophysics Data System (ADS)

    Kurt, Burak

    2017-07-01

    Hamahata [3] defined poly-Euler polynomials and the generalized poly-Euler polynomials. He proved some relations and closed formulas for the poly-Euler polynomials. By this motivation, we define poly-Frobenius-Euler polynomials. We give some relations for this polynomials. Also, we prove the relationships between poly-Frobenius-Euler polynomials and Stirling numbers of the second kind.

  20. Obesity as a risk factor for developing functional limitation among older adults: A conditional inference tree analysis

    USDA-ARS?s Scientific Manuscript database

    Objective: To examine the risk factors of developing functional decline and make probabilistic predictions by using a tree-based method that allows higher order polynomials and interactions of the risk factors. Methods: The conditional inference tree analysis, a data mining approach, was used to con...

  1. [Using fractional polynomials to estimate the safety threshold of fluoride in drinking water].

    PubMed

    Pan, Shenling; An, Wei; Li, Hongyan; Yang, Min

    2014-01-01

    To study the dose-response relationship between fluoride content in drinking water and prevalence of dental fluorosis on the national scale, then to determine the safety threshold of fluoride in drinking water. Meta-regression analysis was applied to the 2001-2002 national endemic fluorosis survey data of key wards. First, fractional polynomial (FP) was adopted to establish fixed effect model, determining the best FP structure, after that restricted maximum likelihood (REML) was adopted to estimate between-study variance, then the best random effect model was established. The best FP structure was first-order logarithmic transformation. Based on the best random effect model, the benchmark dose (BMD) of fluoride in drinking water and its lower limit (BMDL) was calculated as 0.98 mg/L and 0.78 mg/L. Fluoride in drinking water can only explain 35.8% of the variability of the prevalence, among other influencing factors, ward type was a significant factor, while temperature condition and altitude were not. Fractional polynomial-based meta-regression method is simple, practical and can provide good fitting effect, based on it, the safety threshold of fluoride in drinking water of our country is determined as 0.8 mg/L.

  2. Using Chebyshev polynomials and approximate inverse triangular factorizations for preconditioning the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Kaporin, I. E.

    2012-02-01

    In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.

  3. Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos

    DTIC Science & Technology

    2001-09-11

    Some basic hypergeometric polynomials that generalize Jacobi polynomials . Memoirs Amer. Math. Soc...scheme, which is represented as a tree structure in figure 1 (following [24]), classifies the hypergeometric orthogonal polynomials and indicates the...2F0(1) 2F0(0) Figure 1: The Askey scheme of orthogonal polynomials The orthogonal polynomials associated with the generalized polynomial chaos,

  4. Jimena: efficient computing and system state identification for genetic regulatory networks.

    PubMed

    Karl, Stefan; Dandekar, Thomas

    2013-10-11

    Boolean networks capture switching behavior of many naturally occurring regulatory networks. For semi-quantitative modeling, interpolation between ON and OFF states is necessary. The high degree polynomial interpolation of Boolean genetic regulatory networks (GRNs) in cellular processes such as apoptosis or proliferation allows for the modeling of a wider range of node interactions than continuous activator-inhibitor models, but suffers from scaling problems for networks which contain nodes with more than ~10 inputs. Many GRNs from literature or new gene expression experiments exceed those limitations and a new approach was developed. (i) As a part of our new GRN simulation framework Jimena we introduce and setup Boolean-tree-based data structures; (ii) corresponding algorithms greatly expedite the calculation of the polynomial interpolation in almost all cases, thereby expanding the range of networks which can be simulated by this model in reasonable time. (iii) Stable states for discrete models are efficiently counted and identified using binary decision diagrams. As application example, we show how system states can now be sampled efficiently in small up to large scale hormone disease networks (Arabidopsis thaliana development and immunity, pathogen Pseudomonas syringae and modulation by cytokinins and plant hormones). Jimena simulates currently available GRNs about 10-100 times faster than the previous implementation of the polynomial interpolation model and even greater gains are achieved for large scale-free networks. This speed-up also facilitates a much more thorough sampling of continuous state spaces which may lead to the identification of new stable states. Mutants of large networks can be constructed and analyzed very quickly enabling new insights into network robustness and behavior.

  5. High-order regularization in lattice-Boltzmann equations

    NASA Astrophysics Data System (ADS)

    Mattila, Keijo K.; Philippi, Paulo C.; Hegele, Luiz A.

    2017-04-01

    A lattice-Boltzmann equation (LBE) is the discrete counterpart of a continuous kinetic model. It can be derived using a Hermite polynomial expansion for the velocity distribution function. Since LBEs are characterized by discrete, finite representations of the microscopic velocity space, the expansion must be truncated and the appropriate order of truncation depends on the hydrodynamic problem under investigation. Here we consider a particular truncation where the non-equilibrium distribution is expanded on a par with the equilibrium distribution, except that the diffusive parts of high-order non-equilibrium moments are filtered, i.e., only the corresponding advective parts are retained after a given rank. The decomposition of moments into diffusive and advective parts is based directly on analytical relations between Hermite polynomial tensors. The resulting, refined regularization procedure leads to recurrence relations where high-order non-equilibrium moments are expressed in terms of low-order ones. The procedure is appealing in the sense that stability can be enhanced without local variation of transport parameters, like viscosity, or without tuning the simulation parameters based on embedded optimization steps. The improved stability properties are here demonstrated using the perturbed double periodic shear layer flow and the Sod shock tube problem as benchmark cases.

  6. Wind Tunnel Database Development using Modern Experiment Design and Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2003-01-01

    A wind tunnel experiment for characterizing the aerodynamic and propulsion forces and moments acting on a research model airplane is described. The model airplane called the Free-flying Airplane for Sub-scale Experimental Research (FASER), is a modified off-the-shelf radio-controlled model airplane, with 7 ft wingspan, a tractor propeller driven by an electric motor, and aerobatic capability. FASER was tested in the NASA Langley 12-foot Low-Speed Wind Tunnel, using a combination of traditional sweeps and modern experiment design. Power level was included as an independent variable in the wind tunnel test, to allow characterization of power effects on aerodynamic forces and moments. A modeling technique that employs multivariate orthogonal functions was used to develop accurate analytic models for the aerodynamic and propulsion force and moment coefficient dependencies from the wind tunnel data. Efficient methods for generating orthogonal modeling functions, expanding the orthogonal modeling functions in terms of ordinary polynomial functions, and analytical orthogonal blocking were developed and discussed. The resulting models comprise a set of smooth, differentiable functions for the non-dimensional aerodynamic force and moment coefficients in terms of ordinary polynomials in the independent variables, suitable for nonlinear aircraft simulation.

  7. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos

    DTIC Science & Technology

    2002-07-25

    Some basic hypergeometric polynomials that generalize Jacobi polynomials . Memoirs Amer. Math. Soc., AMS... orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos idea of Wiener (1938). A Galerkin projection...1) by generalized polynomial chaos expansion, where the uncertainties can be introduced through κ, f , or g, or some combinations. It is worth

  8. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.

    PubMed

    Mahajan, Virendra N

    2012-06-20

    In a recent paper, we considered the classical aberrations of an anamorphic optical imaging system with a rectangular pupil, representing the terms of a power series expansion of its aberration function. These aberrations are inherently separable in the Cartesian coordinates (x,y) of a point on the pupil. Accordingly, there is x-defocus and x-coma, y-defocus and y-coma, and so on. We showed that the aberration polynomials orthonormal over the pupil and representing balanced aberrations for such a system are represented by the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point; for example, L(l)(x)L(m)(y), where l and m are positive integers (including zero) and L(l)(x), for example, represents an orthonormal Legendre polynomial of degree l in x. The compound two-dimensional (2D) Legendre polynomials, like the classical aberrations, are thus also inherently separable in the Cartesian coordinates of the pupil point. Moreover, for every orthonormal polynomial L(l)(x)L(m)(y), there is a corresponding orthonormal polynomial L(l)(y)L(m)(x) obtained by interchanging x and y. These polynomials are different from the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil. In this paper, we show that the orthonormal aberration polynomials for an anamorphic system with a circular pupil, obtained by the Gram-Schmidt orthogonalization of the 2D Legendre polynomials, are not separable in the two coordinates. Moreover, for a given polynomial in x and y, there is no corresponding polynomial obtained by interchanging x and y. For example, there are polynomials representing x-defocus, balanced x-coma, and balanced x-spherical aberration, but no corresponding y-aberration polynomials. The missing y-aberration terms are contained in other polynomials. We emphasize that the Zernike circle polynomials, although orthogonal over a circular pupil, are not suitable for an anamorphic system as they do not represent balanced aberrations for such a system.

  9. A simple spectral model of the dynamics of the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Singhal, R. P.; Whitten, R. C.

    1987-01-01

    A two-dimensional model of the ionosphere of Venus has been constructed by expanding pertinent quantities in Legendre polynomials. The model is simplified by including only a single ion species, O(+). Horizontal plasma flow velocity and plasma density have been calculated as a coupled system. The calculated plasma flow velocity is found to be in good agreement with observations and the results of earlier studies. Solar zenith angle dependence of plasma density, particularly on the nightside, shows some features which differ from results of earlier studies and observed values. Effects of raising or lowering the ionopause height and changing the nightside neutral atmosphere have been discussed.

  10. Application of the discrete generalized multigroup method to ultra-fine energy mesh in infinite medium calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, N. A.; Forget, B.

    2012-07-01

    The Discrete Generalized Multigroup (DGM) method uses discrete Legendre orthogonal polynomials to expand the energy dependence of the multigroup neutron transport equation. This allows a solution on a fine energy mesh to be approximated for a cost comparable to a solution on a coarse energy mesh. The DGM method is applied to an ultra-fine energy mesh (14,767 groups) to avoid using self-shielding methodologies without introducing the cost usually associated with such energy discretization. Results show DGM to converge to the reference ultra-fine solution after a small number of recondensation steps for multiple infinite medium compositions. (authors)

  11. Polynomial-time solution of prime factorization and NP-complete problems with digital memcomputing machines

    NASA Astrophysics Data System (ADS)

    Traversa, Fabio L.; Di Ventra, Massimiliano

    2017-02-01

    We introduce a class of digital machines, we name Digital Memcomputing Machines, (DMMs) able to solve a wide range of problems including Non-deterministic Polynomial (NP) ones with polynomial resources (in time, space, and energy). An abstract DMM with this power must satisfy a set of compatible mathematical constraints underlying its practical realization. We prove this by making a connection with the dynamical systems theory. This leads us to a set of physical constraints for poly-resource resolvability. Once the mathematical requirements have been assessed, we propose a practical scheme to solve the above class of problems based on the novel concept of self-organizing logic gates and circuits (SOLCs). These are logic gates and circuits able to accept input signals from any terminal, without distinction between conventional input and output terminals. They can solve boolean problems by self-organizing into their solution. They can be fabricated either with circuit elements with memory (such as memristors) and/or standard MOS technology. Using tools of functional analysis, we prove mathematically the following constraints for the poly-resource resolvability: (i) SOLCs possess a global attractor; (ii) their only equilibrium points are the solutions of the problems to solve; (iii) the system converges exponentially fast to the solutions; (iv) the equilibrium convergence rate scales at most polynomially with input size. We finally provide arguments that periodic orbits and strange attractors cannot coexist with equilibria. As examples, we show how to solve the prime factorization and the search version of the NP-complete subset-sum problem. Since DMMs map integers into integers, they are robust against noise and hence scalable. We finally discuss the implications of the DMM realization through SOLCs to the NP = P question related to constraints of poly-resources resolvability.

  12. Approximating exponential and logarithmic functions using polynomial interpolation

    NASA Astrophysics Data System (ADS)

    Gordon, Sheldon P.; Yang, Yajun

    2017-04-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is analysed. The results of interpolating polynomials are compared with those of Taylor polynomials.

  13. Heated blends of phosphate waste: Microstructure characterization, effects of processing factors and use as a phosphorus source for alfalfa growth.

    PubMed

    Loutou, M; Hajjaji, M; Mansori, M; Favotto, C; Hakkou, R

    2016-07-15

    Microstructure of expandable lightweight aggregates (LWAs), which was composed of phosphate waste (PW), cement kiln dust (CKD) and raw clay (RC) was investigated, and the effects of processing factors (temperature, waste content, soaking time) on their physical properties were quantified by using response surface methodology (RSM). The potential use of LWAs as a phosphorus source was assessed through the use of seeds of alfalfa. It was found that the main minerals of the waste, namely carbonates and fluorapatite, were involved in the formation of labradorite/anorthite and melt respectively. Stability of mullite- the main constituent of CKD- was sensitive to the melt content. The assemblage of the identified phases was discussed based on the CaO-SiO2-Al2O3 phase diagram. The results of RSM showed that the change of compressive strength, firing shrinkage and water absorption of LWAs versus processing factors was well described with a polynomial model and the weights of the effects of the factors increased in the following order: sintering temperature > waste content (in the case of PW-RC) > soaking time. On the other hand, it was found that due to the release of phosphorus by soil-embedded pellets, the growth of alfalfa plants improved, and the rate enhanced in this order: PW-RC > PW-CKD > PW-CKD-RC. The absorbed quantity of phosphorus (0.12%) was still lower than the common uptake amount. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Robustness analysis of an air heating plant and control law by using polynomial chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.

    2014-12-10

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less

  15. Equivalences of the multi-indexed orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odake, Satoru

    2014-01-15

    Multi-indexed orthogonal polynomials describe eigenfunctions of exactly solvable shape-invariant quantum mechanical systems in one dimension obtained by the method of virtual states deletion. Multi-indexed orthogonal polynomials are labeled by a set of degrees of polynomial parts of virtual state wavefunctions. For multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson, and Askey-Wilson types, two different index sets may give equivalent multi-indexed orthogonal polynomials. We clarify these equivalences. Multi-indexed orthogonal polynomials with both type I and II indices are proportional to those of type I indices only (or type II indices only) with shifted parameters.

  16. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    PubMed

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second degree where the parabola is its graphical representation.

  17. Dirac(-Pauli), Fokker-Planck equations and exceptional Laguerre polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Choon-Lin, E-mail: hcl@mail.tku.edu.tw

    2011-04-15

    Research Highlights: > Physical examples involving exceptional orthogonal polynomials. > Exceptional polynomials as deformations of classical orthogonal polynomials. > Exceptional polynomials from Darboux-Crum transformation. - Abstract: An interesting discovery in the last two years in the field of mathematical physics has been the exceptional X{sub l} Laguerre and Jacobi polynomials. Unlike the well-known classical orthogonal polynomials which start with constant terms, these new polynomials have lowest degree l = 1, 2, and ..., and yet they form complete set with respect to some positive-definite measure. While the mathematical properties of these new X{sub l} polynomials deserve further analysis, it ismore » also of interest to see if they play any role in physical systems. In this paper we indicate some physical models in which these new polynomials appear as the main part of the eigenfunctions. The systems we consider include the Dirac equations coupled minimally and non-minimally with some external fields, and the Fokker-Planck equations. The systems presented here have enlarged the number of exactly solvable physical systems known so far.« less

  18. Solutions of interval type-2 fuzzy polynomials using a new ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani

    2015-10-01

    A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.

  19. Coherent orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es

    2013-08-15

    We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less

  20. Simple Proof of Jury Test for Complex Polynomials

    NASA Astrophysics Data System (ADS)

    Choo, Younseok; Kim, Dongmin

    Recently some attempts have been made in the literature to give simple proofs of Jury test for real polynomials. This letter presents a similar result for complex polynomials. A simple proof of Jury test for complex polynomials is provided based on the Rouché's Theorem and a single-parameter characterization of Schur stability property for complex polynomials.

  1. On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2003-05-01

    A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.

  2. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.

    PubMed

    Mafusire, Cosmas; Krüger, Tjaart P J

    2018-06-01

    The concept of orthonormal vector circle polynomials is revisited by deriving a set from the Cartesian gradient of Zernike polynomials in a unit circle using a matrix-based approach. The heart of this model is a closed-form matrix equation of the gradient of Zernike circle polynomials expressed as a linear combination of lower-order Zernike circle polynomials related through a gradient matrix. This is a sparse matrix whose elements are two-dimensional standard basis transverse Euclidean vectors. Using the outer product form of the Cholesky decomposition, the gradient matrix is used to calculate a new matrix, which we used to express the Cartesian gradient of the Zernike circle polynomials as a linear combination of orthonormal vector circle polynomials. Since this new matrix is singular, the orthonormal vector polynomials are recovered by reducing the matrix to its row echelon form using the Gauss-Jordan elimination method. We extend the model to derive orthonormal vector general polynomials, which are orthonormal in a general pupil by performing a similarity transformation on the gradient matrix to give its equivalent in the general pupil. The outer form of the Gram-Schmidt procedure and the Gauss-Jordan elimination method are then applied to the general pupil to generate the orthonormal vector general polynomials from the gradient of the orthonormal Zernike-based polynomials. The performance of the model is demonstrated with a simulated wavefront in a square pupil inscribed in a unit circle.

  3. Discrete-time state estimation for stochastic polynomial systems over polynomial observations

    NASA Astrophysics Data System (ADS)

    Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.

    2018-07-01

    This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.

  4. Nodal Statistics for the Van Vleck Polynomials

    NASA Astrophysics Data System (ADS)

    Bourget, Alain

    The Van Vleck polynomials naturally arise from the generalized Lamé equation as the polynomials of degree for which Eq. (1) has a polynomial solution of some degree k. In this paper, we compute the limiting distribution, as well as the limiting mean level spacings distribution of the zeros of any Van Vleck polynomial as N --> ∞.

  5. Legendre modified moments for Euler's constant

    NASA Astrophysics Data System (ADS)

    Prévost, Marc

    2008-10-01

    Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181-216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369-382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289-317 [4

  6. Optimization and formulation design of gels of Diclofenac and Curcumin for transdermal drug delivery by Box-Behnken statistical design.

    PubMed

    Chaudhary, Hema; Kohli, Kanchan; Amin, Saima; Rathee, Permender; Kumar, Vikash

    2011-02-01

    The aim of this study was to develop and optimize a transdermal gel formulation for Diclofenac diethylamine (DDEA) and Curcumin (CRM). A 3-factor, 3-level Box-Behnken design was used to derive a second-order polynomial equation to construct contour plots for prediction of responses. Independent variables studied were the polymer concentration (X(1)), ethanol (X(2)) and propylene glycol (X(3)) and the levels of each factor were low, medium, and high. The dependent variables studied were the skin permeation rate of DDEA (Y(1)), skin permeation rate of CRM (Y(2)), and viscosity of the gels (Y(3)). Response surface plots were drawn, statistical validity of the polynomials was established to find the compositions of optimized formulation which was evaluated using the Franz-type diffusion cell. The permeation rate of DDEA increased proportionally with ethanol concentration but decreased with polymer concentration, whereas the permeation rate of CRM increased proportionally with polymer concentration. Gels showed a non-Fickian super case II (typical zero order) and non-Fickian diffusion release mechanism for DDEA and CRM, respectively. The design demonstrated the role of the derived polynomial equation and contour plots in predicting the values of dependent variables for the preparation and optimization of gel formulation for transdermal drug release. Copyright © 2010 Wiley-Liss, Inc.

  7. Optimization of Paclitaxel Containing pH-Sensitive Liposomes By 3 Factor, 3 Level Box-Behnken Design.

    PubMed

    Rane, Smita; Prabhakar, Bala

    2013-07-01

    The aim of this study was to investigate the combined influence of 3 independent variables in the preparation of paclitaxel containing pH-sensitive liposomes. A 3 factor, 3 levels Box-Behnken design was used to derive a second order polynomial equation and construct contour plots to predict responses. The independent variables selected were molar ratio phosphatidylcholine:diolylphosphatidylethanolamine (X1), molar concentration of cholesterylhemisuccinate (X2), and amount of drug (X3). Fifteen batches were prepared by thin film hydration method and evaluated for percent drug entrapment, vesicle size, and pH sensitivity. The transformed values of the independent variables and the percent drug entrapment were subjected to multiple regression to establish full model second order polynomial equation. F was calculated to confirm the omission of insignificant terms from the full model equation to derive a reduced model polynomial equation to predict the dependent variables. Contour plots were constructed to show the effects of X1, X2, and X3 on the percent drug entrapment. A model was validated for accurate prediction of the percent drug entrapment by performing checkpoint analysis. The computer optimization process and contour plots predicted the levels of independent variables X1, X2, and X3 (0.99, -0.06, 0, respectively), for maximized response of percent drug entrapment with constraints on vesicle size and pH sensitivity.

  8. Exact formulas for multipole moments using Slater-type molecular orbitals

    NASA Technical Reports Server (NTRS)

    Jones, H. W.

    1986-01-01

    A triple infinite sum of formulas expressed as an expansion in Legendre polynomials is generated by use of computer algebra to represent the potential from the midpoint of two Slater-type orbitals; the charge density that determines the potential is given as the product of the two orbitals. An example using 1s orbitals shows that only a few terms are needed to obtain four-figure accuracy. Exact formulas are obtained for multipole moments by means of a careful study of expanded formulas, allowing an 'extrapolation to infinity'. This Loewdin alpha-function approach augmented by using a C matrix to characterize Slater-type orbitals can be readily generalized to all cases.

  9. Optimal design of compact spur gear reductions

    NASA Technical Reports Server (NTRS)

    Savage, M.; Lattime, S. B.; Kimmel, J. A.; Coe, H. H.

    1992-01-01

    The optimal design of compact spur gear reductions includes the selection of bearing and shaft proportions in addition to gear mesh parameters. Designs for single mesh spur gear reductions are based on optimization of system life, system volume, and system weight including gears, support shafts, and the four bearings. The overall optimization allows component properties to interact, yielding the best composite design. A modified feasible directions search algorithm directs the optimization through a continuous design space. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for optimization. After finding the continuous optimum, the designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearings on the optimal configurations.

  10. On multiple orthogonal polynomials for discrete Meixner measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, Vladimir N

    2010-12-07

    The paper examines two examples of multiple orthogonal polynomials generalizing orthogonal polynomials of a discrete variable, meaning thereby the Meixner polynomials. One example is bound up with a discrete Nikishin system, and the other leads to essentially new effects. The limit distribution of the zeros of polynomials is obtained in terms of logarithmic equilibrium potentials and in terms of algebraic curves. Bibliography: 9 titles.

  11. Micropolar curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models

    NASA Astrophysics Data System (ADS)

    Zozulya, V. V.

    2017-01-01

    New models for micropolar plane curved rods have been developed. 2-D theory is developed from general 2-D equations of linear micropolar elasticity using a special curvilinear system of coordinates related to the middle line of the rod and special hypothesis based on assumptions that take into account the fact that the rod is thin.High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First stress and strain tensors,vectors of displacements and rotation and body force shave been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby all equations of elasticity including Hooke's law have been transformed to the corresponding equations for Fourier coefficients. Then in the same way as in the theory of elasticity, system of differential equations in term of displacements and boundary conditions for Fourier coefficients have been obtained. The Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and 2-D equations of linear micropolar elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scale when taking in to account micropolar couple stress and rotation effects.

  12. Application of shifted Jacobi pseudospectral method for solving (in)finite-horizon min-max optimal control problems with uncertainty

    NASA Astrophysics Data System (ADS)

    Nikooeinejad, Z.; Delavarkhalafi, A.; Heydari, M.

    2018-03-01

    The difficulty of solving the min-max optimal control problems (M-MOCPs) with uncertainty using generalised Euler-Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler-Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.

  13. Analysis of bonded joints. [shear stress and stress-strain diagrams

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1975-01-01

    A refined elastic analysis of bonded joints which accounts for transverse shear deformation and transverse normal stress was developed to obtain the stresses and displacements in the adherends and in the bond. The displacements were expanded in terms of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were functions of the axial coordinate. The stress distribution was obtained in terms of these coefficients by using strain-displacement and stress-strain relations. The governing differential equations were obtained by integrating the equations of equilibrium, and were solved. The boundary conditions (interface or support) were satisfied to complete the analysis. Single-lap, flush, and double-lap joints were analyzed, along with the effects of adhesive properties, plate thicknesses, material properties, and plate taper on maximum peel and shear stresses in the bond. The results obtained by using the thin-beam analysis available in the literature were compared with the results obtained by using the refined analysis. In general, thin-beam analysis yielded reasonably accurate results, but in certain cases the errors were high. Numerical investigations showed that the maximum peel and shear stresses in the bond can be reduced by (1) using a combination of flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates.

  14. Direct calculation of modal parameters from matrix orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    El-Kafafy, Mahmoud; Guillaume, Patrick

    2011-10-01

    The object of this paper is to introduce a new technique to derive the global modal parameter (i.e. system poles) directly from estimated matrix orthogonal polynomials. This contribution generalized the results given in Rolain et al. (1994) [5] and Rolain et al. (1995) [6] for scalar orthogonal polynomials to multivariable (matrix) orthogonal polynomials for multiple input multiple output (MIMO) system. Using orthogonal polynomials improves the numerical properties of the estimation process. However, the derivation of the modal parameters from the orthogonal polynomials is in general ill-conditioned if not handled properly. The transformation of the coefficients from orthogonal polynomials basis to power polynomials basis is known to be an ill-conditioned transformation. In this paper a new approach is proposed to compute the system poles directly from the multivariable orthogonal polynomials. High order models can be used without any numerical problems. The proposed method will be compared with existing methods (Van Der Auweraer and Leuridan (1987) [4] Chen and Xu (2003) [7]). For this comparative study, simulated as well as experimental data will be used.

  15. Decomposition of algebraic sets and applications to weak centers of cubic systems

    NASA Astrophysics Data System (ADS)

    Chen, Xingwu; Zhang, Weinian

    2009-10-01

    There are many methods such as Gröbner basis, characteristic set and resultant, in computing an algebraic set of a system of multivariate polynomials. The common difficulties come from the complexity of computation, singularity of the corresponding matrices and some unnecessary factors in successive computation. In this paper, we decompose algebraic sets, stratum by stratum, into a union of constructible sets with Sylvester resultants, so as to simplify the procedure of elimination. Applying this decomposition to systems of multivariate polynomials resulted from period constants of reversible cubic differential systems which possess a quadratic isochronous center, we determine the order of weak centers and discuss the bifurcation of critical periods.

  16. Independence polynomial and matching polynomial of the Koch network

    NASA Astrophysics Data System (ADS)

    Liao, Yunhua; Xie, Xiaoliang

    2015-11-01

    The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “#P-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.

  17. Asymptotically extremal polynomials with respect to varying weights and application to Sobolev orthogonality

    NASA Astrophysics Data System (ADS)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2008-10-01

    We study the asymptotic behavior of the zeros of a sequence of polynomials whose weighted norms, with respect to a sequence of weight functions, have the same nth root asymptotic behavior as the weighted norms of certain extremal polynomials. This result is applied to obtain the (contracted) weak zero distribution for orthogonal polynomials with respect to a Sobolev inner product with exponential weights of the form e-[phi](x), giving a unified treatment for the so-called Freud (i.e., when [phi] has polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) cases. In addition, we provide a new proof for the bound of the distance of the zeros to the convex hull of the support for these Sobolev orthogonal polynomials.

  18. A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vignat, C.; Lamberti, P. W.

    2009-10-15

    Recently, Carinena, et al. [Ann. Phys. 322, 434 (2007)] introduced a new family of orthogonal polynomials that appear in the wave functions of the quantum harmonic oscillator in two-dimensional constant curvature spaces. They are a generalization of the Hermite polynomials and will be called curved Hermite polynomials in the following. We show that these polynomials are naturally related to the relativistic Hermite polynomials introduced by Aldaya et al. [Phys. Lett. A 156, 381 (1991)], and thus are Jacobi polynomials. Moreover, we exhibit a natural bijection between the solutions of the quantum harmonic oscillator on negative curvature spaces and on positivemore » curvature spaces. At last, we show a maximum entropy property for the ground states of these oscillators.« less

  19. Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach

    NASA Astrophysics Data System (ADS)

    Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer

    2018-02-01

    This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.

  20. Rational trigonometric approximations using Fourier series partial sums

    NASA Technical Reports Server (NTRS)

    Geer, James F.

    1993-01-01

    A class of approximations (S(sub N,M)) to a periodic function f which uses the ideas of Pade, or rational function, approximations based on the Fourier series representation of f, rather than on the Taylor series representation of f, is introduced and studied. Each approximation S(sub N,M) is the quotient of a trigonometric polynomial of degree N and a trigonometric polynomial of degree M. The coefficients in these polynomials are determined by requiring that an appropriate number of the Fourier coefficients of S(sub N,M) agree with those of f. Explicit expressions are derived for these coefficients in terms of the Fourier coefficients of f. It is proven that these 'Fourier-Pade' approximations converge point-wise to (f(x(exp +))+f(x(exp -)))/2 more rapidly (in some cases by a factor of 1/k(exp 2M)) than the Fourier series partial sums on which they are based. The approximations are illustrated by several examples and an application to the solution of an initial, boundary value problem for the simple heat equation is presented.

  1. Theoretical and experimental study of a new algorithm for factoring numbers

    NASA Astrophysics Data System (ADS)

    Tamma, Vincenzo

    The security of codes, for example in credit card and government information, relies on the fact that the factorization of a large integer N is a rather costly process on a classical digital computer. Such a security is endangered by Shor's algorithm which employs entangled quantum systems to find, with a polynomial number of resources, the period of a function which is connected with the factors of N. We can surely expect a possible future realization of such a method for large numbers, but so far the period of Shor's function has been only computed for the number 15. Inspired by Shor's idea, our work aims to methods of factorization based on the periodicity measurement of a given continuous periodic "factoring function" which is physically implementable using an analogue computer. In particular, we have focused on both the theoretical and the experimental analysis of Gauss sums with continuous arguments leading to a new factorization algorithm. The procedure allows, for the first time, to factor several numbers by measuring the periodicity of Gauss sums performing first-order "factoring" interfer ence processes. We experimentally implemented this idea by exploiting polychromatic optical interference in the visible range with a multi-path interferometer, and achieved the factorization of seven digit numbers. The physical principle behind this "factoring" interference procedure can be potentially exploited also on entangled systems, as multi-photon entangled states, in order to achieve a polynomial scaling in the number of resources.

  2. Stable Numerical Approach for Fractional Delay Differential Equations

    NASA Astrophysics Data System (ADS)

    Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

    2017-12-01

    In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

  3. Percolation critical polynomial as a graph invariant

    DOE PAGES

    Scullard, Christian R.

    2012-10-18

    Every lattice for which the bond percolation critical probability can be found exactly possesses a critical polynomial, with the root in [0; 1] providing the threshold. Recent work has demonstrated that this polynomial may be generalized through a definition that can be applied on any periodic lattice. The polynomial depends on the lattice and on its decomposition into identical finite subgraphs, but once these are specified, the polynomial is essentially unique. On lattices for which the exact percolation threshold is unknown, the polynomials provide approximations for the critical probability with the estimates appearing to converge to the exact answer withmore » increasing subgraph size. In this paper, I show how the critical polynomial can be viewed as a graph invariant like the Tutte polynomial. In particular, the critical polynomial is computed on a finite graph and may be found using the deletion-contraction algorithm. This allows calculation on a computer, and I present such results for the kagome lattice using subgraphs of up to 36 bonds. For one of these, I find the prediction p c = 0:52440572:::, which differs from the numerical value, p c = 0:52440503(5), by only 6:9 X 10 -7.« less

  4. On Certain Wronskians of Multiple Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Zhang, Lun; Filipuk, Galina

    2014-11-01

    We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes classical results for orthogonal polynomials due to Karlin and Szegő. There are two applications of our results. The first application arises from the observation that the m-th moment of the average characteristic polynomials for multiple orthogonal polynomial ensembles can be expressed as a Wronskian of the type II multiple orthogonal polynomials. Hence, it is straightforward to obtain the distinct behavior of the moments for odd and even m in a special multiple orthogonal ensemble - the AT ensemble. As the second application, we derive some Turán type inequalities for m! ultiple Hermite and multiple Laguerre polynomials (of two kinds). Finally, we study numerically the geometric configuration of zeros for the Wronskians of these multiple orthogonal polynomials. We observe that the zeros have regular configurations in the complex plane, which might be of independent interest.

  5. Riemann-Liouville Fractional Calculus of Certain Finite Class of Classical Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Malik, Pradeep; Swaminathan, A.

    2010-11-01

    In this work we consider certain class of classical orthogonal polynomials defined on the positive real line. These polynomials have their weight function related to the probability density function of F distribution and are finite in number up to orthogonality. We generalize these polynomials for fractional order by considering the Riemann-Liouville type operator on these polynomials. Various properties like explicit representation in terms of hypergeometric functions, differential equations, recurrence relations are derived.

  6. Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, R.; Rayos, E. M.; Campbell, C. H.; Rickman, S. L.

    2006-01-01

    Computational tools have been developed to estimate thermal and mechanical reentry loads experienced by the Space Shuttle Orbiter as the result of cavities in the Thermal Protection System (TPS). Such cavities can be caused by impact from ice or insulating foam debris shed from the External Tank (ET) on liftoff. The reentry loads depend on cavity geometry and certain Shuttle state variables, among other factors. Certain simplifying assumptions have been made in the tool development about the cavity geometry variables. For example, the cavities are all modeled as shoeboxes , with rectangular cross-sections and planar walls. So an actual cavity is typically approximated with an idealized cavity described in terms of its length, width, and depth, as well as its entry angle, exit angle, and side angles (assumed to be the same for both sides). As part of a comprehensive assessment of the uncertainty in reentry loads estimated by the debris impact assessment tools, an effort has been initiated to quantify the component of the uncertainty that is due to imperfect geometry specifications for the debris impact cavities. The approach is to compute predicted loads for a set of geometry factor combinations sufficient to develop polynomial approximations to the complex, nonparametric underlying computational models. Such polynomial models are continuous and feature estimable, continuous derivatives, conditions that facilitate the propagation of independent variable errors. As an additional benefit, once the polynomial models have been developed, they require fewer computational resources to execute than the underlying finite element and computational fluid dynamics codes, and can generate reentry loads estimates in significantly less time. This provides a practical screening capability, in which a large number of debris impact cavities can be quickly classified either as harmless, or subject to additional analysis with the more comprehensive underlying computational tools. The polynomial models also provide useful insights into the sensitivity of reentry loads to various cavity geometry variables, and reveal complex interactions among those variables that indicate how the sensitivity of one variable depends on the level of one or more other variables. For example, the effect of cavity length on certain reentry loads depends on the depth of the cavity. Such interactions are clearly displayed in the polynomial response models.

  7. Large scale analysis of signal reachability.

    PubMed

    Todor, Andrei; Gabr, Haitham; Dobra, Alin; Kahveci, Tamer

    2014-06-15

    Major disorders, such as leukemia, have been shown to alter the transcription of genes. Understanding how gene regulation is affected by such aberrations is of utmost importance. One promising strategy toward this objective is to compute whether signals can reach to the transcription factors through the transcription regulatory network (TRN). Due to the uncertainty of the regulatory interactions, this is a #P-complete problem and thus solving it for very large TRNs remains to be a challenge. We develop a novel and scalable method to compute the probability that a signal originating at any given set of source genes can arrive at any given set of target genes (i.e., transcription factors) when the topology of the underlying signaling network is uncertain. Our method tackles this problem for large networks while providing a provably accurate result. Our method follows a divide-and-conquer strategy. We break down the given network into a sequence of non-overlapping subnetworks such that reachability can be computed autonomously and sequentially on each subnetwork. We represent each interaction using a small polynomial. The product of these polynomials express different scenarios when a signal can or cannot reach to target genes from the source genes. We introduce polynomial collapsing operators for each subnetwork. These operators reduce the size of the resulting polynomial and thus the computational complexity dramatically. We show that our method scales to entire human regulatory networks in only seconds, while the existing methods fail beyond a few tens of genes and interactions. We demonstrate that our method can successfully characterize key reachability characteristics of the entire transcriptions regulatory networks of patients affected by eight different subtypes of leukemia, as well as those from healthy control samples. All the datasets and code used in this article are available at bioinformatics.cise.ufl.edu/PReach/scalable.htm. © The Author 2014. Published by Oxford University Press.

  8. Detection and correction of laser induced breakdown spectroscopy spectral background based on spline interpolation method

    NASA Astrophysics Data System (ADS)

    Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 0.9998, 0.9915, 0.9895, and 0.9940 respectively). The proposed spline interpolation method exhibits better linear correlation and smaller error in the results of the quantitative analysis of Cu compared with polynomial fitting, Lorentz fitting and model-free methods, The simulation and quantitative experimental results show that the spline interpolation method can effectively detect and correct the continuous background.

  9. Laguerre-Freud Equations for the Recurrence Coefficients of Some Discrete Semi-Classical Orthogonal Polynomials of Class Two

    NASA Astrophysics Data System (ADS)

    Hounga, C.; Hounkonnou, M. N.; Ronveaux, A.

    2006-10-01

    In this paper, we give Laguerre-Freud equations for the recurrence coefficients of discrete semi-classical orthogonal polynomials of class two, when the polynomials in the Pearson equation are of the same degree. The case of generalized Charlier polynomials is also presented.

  10. The Gibbs Phenomenon for Series of Orthogonal Polynomials

    ERIC Educational Resources Information Center

    Fay, T. H.; Kloppers, P. Hendrik

    2006-01-01

    This note considers the four classes of orthogonal polynomials--Chebyshev, Hermite, Laguerre, Legendre--and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same…

  11. Determinants with orthogonal polynomial entries

    NASA Astrophysics Data System (ADS)

    Ismail, Mourad E. H.

    2005-06-01

    We use moment representations of orthogonal polynomials to evaluate the corresponding Hankel determinants formed by the orthogonal polynomials. We also study the Hankel determinants which start with pn on the top left-hand corner. As examples we evaluate the Hankel determinants whose entries are q-ultraspherical or Al-Salam-Chihara polynomials.

  12. Mixed Legendre moments and discrete scattering cross sections for anisotropy representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calloo, A.; Vidal, J. F.; Le Tellier, R.

    2012-07-01

    This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, whichmore » better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)« less

  13. From sequences to polynomials and back, via operator orderings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amdeberhan, Tewodros, E-mail: tamdeber@tulane.edu; Dixit, Atul, E-mail: adixit@tulane.edu; Moll, Victor H., E-mail: vhm@tulane.edu

    2013-12-15

    Bender and Dunne [“Polynomials and operator orderings,” J. Math. Phys. 29, 1727–1731 (1988)] showed that linear combinations of words q{sup k}p{sup n}q{sup n−k}, where p and q are subject to the relation qp − pq = ı, may be expressed as a polynomial in the symbol z=1/2 (qp+pq). Relations between such polynomials and linear combinations of the transformed coefficients are explored. In particular, examples yielding orthogonal polynomials are provided.

  14. Extending Romanovski polynomials in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quesne, C.

    2013-12-15

    Some extensions of the (third-class) Romanovski polynomials (also called Romanovski/pseudo-Jacobi polynomials), which appear in bound-state wavefunctions of rationally extended Scarf II and Rosen-Morse I potentials, are considered. For the former potentials, the generalized polynomials satisfy a finite orthogonality relation, while for the latter an infinite set of relations among polynomials with degree-dependent parameters is obtained. Both types of relations are counterparts of those known for conventional polynomials. In the absence of any direct information on the zeros of the Romanovski polynomials present in denominators, the regularity of the constructed potentials is checked by taking advantage of the disconjugacy properties ofmore » second-order differential equations of Schrödinger type. It is also shown that on going from Scarf I to Scarf II or from Rosen-Morse II to Rosen-Morse I potentials, the variety of rational extensions is narrowed down from types I, II, and III to type III only.« less

  15. Polynomial solutions of the Monge-Ampère equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aminov, Yu A

    2014-11-30

    The question of the existence of polynomial solutions to the Monge-Ampère equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the x, y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction ofmore » such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.« less

  16. Solving the interval type-2 fuzzy polynomial equation using the ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim

    2014-07-01

    Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.

  17. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

    NASA Astrophysics Data System (ADS)

    Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

    2003-07-01

    Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.

  18. Multiple zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Wood, C. A.

    1974-01-01

    For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.

  19. Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Yang, Yajun

    2017-01-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…

  20. Interpolation and Polynomial Curve Fitting

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2014-01-01

    Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…

  1. A note on the zeros of Freud-Sobolev orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Moreno-Balcazar, Juan J.

    2007-10-01

    We prove that the zeros of a certain family of Sobolev orthogonal polynomials involving the Freud weight function e-x4 on are real, simple, and interlace with the zeros of the Freud polynomials, i.e., those polynomials orthogonal with respect to the weight function e-x4. Some numerical examples are shown.

  2. Optimal Chebyshev polynomials on ellipses in the complex plane

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Freund, Roland

    1989-01-01

    The design of iterative schemes for sparse matrix computations often leads to constrained polynomial approximation problems on sets in the complex plane. For the case of ellipses, we introduce a new class of complex polynomials which are in general very good approximations to the best polynomials and even optimal in most cases.

  3. A FAST POLYNOMIAL TRANSFORM PROGRAM WITH A MODULARIZED STRUCTURE

    NASA Technical Reports Server (NTRS)

    Truong, T. K.

    1994-01-01

    This program utilizes a fast polynomial transformation (FPT) algorithm applicable to two-dimensional mathematical convolutions. Two-dimensional convolution has many applications, particularly in image processing. Two-dimensional cyclic convolutions can be converted to a one-dimensional convolution in a polynomial ring. Traditional FPT methods decompose the one-dimensional cyclic polynomial into polynomial convolutions of different lengths. This program will decompose a cyclic polynomial into polynomial convolutions of the same length. Thus, only FPTs and Fast Fourier Transforms of the same length are required. This modular approach can save computational resources. To further enhance its appeal, the program is written in the transportable 'C' language. The steps in the algorithm are: 1) formulate the modulus reduction equations, 2) calculate the polynomial transforms, 3) multiply the transforms using a generalized fast Fourier transformation, 4) compute the inverse polynomial transforms, and 5) reconstruct the final matrices using the Chinese remainder theorem. Input to this program is comprised of the row and column dimensions and the initial two matrices. The matrices are printed out at all steps, ending with the final reconstruction. This program is written in 'C' for batch execution and has been implemented on the IBM PC series of computers under DOS with a central memory requirement of approximately 18K of 8 bit bytes. This program was developed in 1986.

  4. AKLSQF - LEAST SQUARES CURVE FITTING

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1994-01-01

    The Least Squares Curve Fitting program, AKLSQF, computes the polynomial which will least square fit uniformly spaced data easily and efficiently. The program allows the user to specify the tolerable least squares error in the fitting or allows the user to specify the polynomial degree. In both cases AKLSQF returns the polynomial and the actual least squares fit error incurred in the operation. The data may be supplied to the routine either by direct keyboard entry or via a file. AKLSQF produces the least squares polynomial in two steps. First, the data points are least squares fitted using the orthogonal factorial polynomials. The result is then reduced to a regular polynomial using Sterling numbers of the first kind. If an error tolerance is specified, the program starts with a polynomial of degree 1 and computes the least squares fit error. The degree of the polynomial used for fitting is then increased successively until the error criterion specified by the user is met. At every step the polynomial as well as the least squares fitting error is printed to the screen. In general, the program can produce a curve fitting up to a 100 degree polynomial. All computations in the program are carried out under Double Precision format for real numbers and under long integer format for integers to provide the maximum accuracy possible. AKLSQF was written for an IBM PC X/AT or compatible using Microsoft's Quick Basic compiler. It has been implemented under DOS 3.2.1 using 23K of RAM. AKLSQF was developed in 1989.

  5. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    PubMed

    Papadopoulos, Anthony

    2009-01-01

    The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  6. The Western Africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates.

    PubMed

    Chowell, Gerardo; Viboud, Cécile; Hyman, James M; Simonsen, Lone

    2015-01-21

    While many infectious disease epidemics are initially characterized by an exponential growth in time, we show that district-level Ebola virus disease (EVD) outbreaks in West Africa follow slower polynomial-based growth kinetics over several generations of the disease. We analyzed epidemic growth patterns at three different spatial scales (regional, national, and subnational) of the Ebola virus disease epidemic in Guinea, Sierra Leone and Liberia by compiling publicly available weekly time series of reported EVD case numbers from the patient database available from the World Health Organization website for the period 05-Jan to 17-Dec 2014. We found significant differences in the growth patterns of EVD cases at the scale of the country, district, and other subnational administrative divisions. The national cumulative curves of EVD cases in Guinea, Sierra Leone, and Liberia show periods of approximate exponential growth. In contrast, local epidemics are asynchronous and exhibit slow growth patterns during 3 or more EVD generations, which can be better approximated by a polynomial than an exponential function. The slower than expected growth pattern of local EVD outbreaks could result from a variety of factors, including behavior changes, success of control interventions, or intrinsic features of the disease such as a high level of clustering. Quantifying the contribution of each of these factors could help refine estimates of final epidemic size and the relative impact of different mitigation efforts in current and future EVD outbreaks.

  7. The Western Africa Ebola Virus Disease Epidemic Exhibits Both Global Exponential and Local Polynomial Growth Rates

    PubMed Central

    Chowell, Gerardo; Viboud, Cécile; Hyman, James M; Simonsen, Lone

    2015-01-01

    Background: While many infectious disease epidemics are initially characterized by an exponential growth in time, we show that district-level Ebola virus disease (EVD) outbreaks in West Africa follow slower polynomial-based growth kinetics over several generations of the disease. Methods: We analyzed epidemic growth patterns at three different spatial scales (regional, national, and subnational) of the Ebola virus disease epidemic in Guinea, Sierra Leone and Liberia by compiling publicly available weekly time series of reported EVD case numbers from the patient database available from the World Health Organization website for the period 05-Jan to 17-Dec 2014. Results: We found significant differences in the growth patterns of EVD cases at the scale of the country, district, and other subnational administrative divisions. The national cumulative curves of EVD cases in Guinea, Sierra Leone, and Liberia show periods of approximate exponential growth. In contrast, local epidemics are asynchronous and exhibit slow growth patterns during 3 or more EVD generations, which can be better approximated by a polynomial than an exponential function. Conclusions: The slower than expected growth pattern of local EVD outbreaks could result from a variety of factors, including behavior changes, success of control interventions, or intrinsic features of the disease such as a high level of clustering. Quantifying the contribution of each of these factors could help refine estimates of final epidemic size and the relative impact of different mitigation efforts in current and future EVD outbreaks. PMID:25685633

  8. Sharing Teaching Ideas.

    ERIC Educational Resources Information Center

    Crouse, Richard J.; And Others

    1991-01-01

    The first idea concerns a board game similar to tic-tac-toe in which the strategy involves the knowledge of the factorization of quadratic polynomials. The second game uses the calculation of the surface areas of solid figures applying the specific examples of cigar boxes and cylindrical tin cans. (JJK)

  9. Learning Activity Package, Algebra.

    ERIC Educational Resources Information Center

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  10. Algebra 1r, Mathematics (Experimental): 5215.13.

    ERIC Educational Resources Information Center

    Strachan, Florence

    This third of six guidebooks on minimum course content for first-year algebra includes work with laws of exponents; multiplication, division, and factoring of polynomials; and fundamental operations with rational algebraic expressions. Course goals are stated, performance objectives listed, a course outline provided, testbook references specified…

  11. Quantum one-way permutation over the finite field of two elements

    NASA Astrophysics Data System (ADS)

    de Castro, Alexandre

    2017-06-01

    In quantum cryptography, a one-way permutation is a bounded unitary operator U:{H} → {H} on a Hilbert space {H} that is easy to compute on every input, but hard to invert given the image of a random input. Levin (Probl Inf Transm 39(1):92-103, 2003) has conjectured that the unitary transformation g(a,x)=(a,f(x)+ax), where f is any length-preserving function and a,x \\in {GF}_{{2}^{\\Vert x\\Vert }}, is an information-theoretically secure operator within a polynomial factor. Here, we show that Levin's one-way permutation is provably secure because its output values are four maximally entangled two-qubit states, and whose probability of factoring them approaches zero faster than the multiplicative inverse of any positive polynomial poly( x) over the Boolean ring of all subsets of x. Our results demonstrate through well-known theorems that existence of classical one-way functions implies existence of a universal quantum one-way permutation that cannot be inverted in subexponential time in the worst case.

  12. Periodic binary sequence generators: VLSI circuits considerations

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1984-01-01

    Feedback shift registers are efficient periodic binary sequence generators. Polynomials of degree r over a Galois field characteristic 2(GF(2)) characterize the behavior of shift registers with linear logic feedback. The algorithmic determination of the trinomial of lowest degree, when it exists, that contains a given irreducible polynomial over GF(2) as a factor is presented. This corresponds to embedding the behavior of an r-stage shift register with linear logic feedback into that of an n-stage shift register with a single two-input modulo 2 summer (i.e., Exclusive-OR gate) in its feedback. This leads to Very Large Scale Integrated (VLSI) circuit architecture of maximal regularity (i.e., identical cells) with intercell communications serialized to a maximal degree.

  13. Current advances on polynomial resultant formulations

    NASA Astrophysics Data System (ADS)

    Sulaiman, Surajo; Aris, Nor'aini; Ahmad, Shamsatun Nahar

    2017-08-01

    Availability of computer algebra systems (CAS) lead to the resurrection of the resultant method for eliminating one or more variables from the polynomials system. The resultant matrix method has advantages over the Groebner basis and Ritt-Wu method due to their high complexity and storage requirement. This paper focuses on the current resultant matrix formulations and investigates their ability or otherwise towards producing optimal resultant matrices. A determinantal formula that gives exact resultant or a formulation that can minimize the presence of extraneous factors in the resultant formulation is often sought for when certain conditions that it exists can be determined. We present some applications of elimination theory via resultant formulations and examples are given to explain each of the presented settings.

  14. Multivariable polynomial fitting of controlled single-phase nonlinear load of input current total harmonic distortion

    NASA Astrophysics Data System (ADS)

    Sikora, Roman; Markiewicz, Przemysław; Pabjańczyk, Wiesława

    2018-04-01

    The power systems usually include a number of nonlinear receivers. Nonlinear receivers are the source of disturbances generated to the power system in the form of higher harmonics. The level of these disturbances describes the total harmonic distortion coefficient THD. Its value depends on many factors. One of them are the deformation and change in RMS value of supply voltage. A modern LED luminaire is a nonlinear receiver as well. The paper presents the results of the analysis of the influence of change in RMS value of supply voltage and the level of dimming of the tested luminaire on the value of the current THD. The analysis was made using a mathematical model based on multivariable polynomial fitting.

  15. Large-scale semidefinite programming for many-electron quantum mechanics.

    PubMed

    Mazziotti, David A

    2011-02-25

    The energy of a many-electron quantum system can be approximated by a constrained optimization of the two-electron reduced density matrix (2-RDM) that is solvable in polynomial time by semidefinite programming (SDP). Here we develop a SDP method for computing strongly correlated 2-RDMs that is 10-20 times faster than previous methods [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)]. We illustrate with (i) the dissociation of N(2) and (ii) the metal-to-insulator transition of H(50). For H(50) the SDP problem has 9.4×10(6) variables. This advance also expands the feasibility of large-scale applications in quantum information, control, statistics, and economics. © 2011 American Physical Society

  16. Large-Scale Semidefinite Programming for Many-Electron Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mazziotti, David A.

    2011-02-01

    The energy of a many-electron quantum system can be approximated by a constrained optimization of the two-electron reduced density matrix (2-RDM) that is solvable in polynomial time by semidefinite programming (SDP). Here we develop a SDP method for computing strongly correlated 2-RDMs that is 10-20 times faster than previous methods [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.213001]. We illustrate with (i) the dissociation of N2 and (ii) the metal-to-insulator transition of H50. For H50 the SDP problem has 9.4×106 variables. This advance also expands the feasibility of large-scale applications in quantum information, control, statistics, and economics.

  17. Stochastic Estimation via Polynomial Chaos

    DTIC Science & Technology

    2015-10-01

    AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic

  18. Vehicle Sprung Mass Estimation for Rough Terrain

    DTIC Science & Technology

    2011-03-01

    distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended

  19. Degenerate r-Stirling Numbers and r-Bell Polynomials

    NASA Astrophysics Data System (ADS)

    Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.

    2018-01-01

    The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.

  20. From Chebyshev to Bernstein: A Tour of Polynomials Small and Large

    ERIC Educational Resources Information Center

    Boelkins, Matthew; Miller, Jennifer; Vugteveen, Benjamin

    2006-01-01

    Consider the family of monic polynomials of degree n having zeros at -1 and +1 and all their other real zeros in between these two values. This article explores the size of these polynomials using the supremum of the absolute value on [-1, 1], showing that scaled Chebyshev and Bernstein polynomials give the extremes.

  1. Umbral orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Sendino, J. E.; del Olmo, M. A.

    2010-12-23

    We present an umbral operator version of the classical orthogonal polynomials. We obtain three families which are the umbral counterpart of the Jacobi, Laguerre and Hermite polynomials in the classical case.

  2. Solution of the two-dimensional spectral factorization problem

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.

    1985-01-01

    An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.

  3. An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixuan, E-mail: weixuan.li@usc.edu; Lin, Guang, E-mail: guang.lin@pnnl.gov; Zhang, Dongxiao, E-mail: dxz@pku.edu.cn

    2014-02-01

    The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect—except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos basis functions in the expansion helps to capture uncertainty more accurately but increases computational cost. Selection of basis functionsmore » is particularly important for high-dimensional stochastic problems because the number of polynomial chaos basis functions required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE basis functions are pre-set based on users' experience. Also, for sequential data assimilation problems, the basis functions kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE basis functions for different problems and automatically adjusts the number of basis functions in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm was tested with different examples and demonstrated great effectiveness in comparison with non-adaptive PCKF and EnKF algorithms.« less

  4. An Adaptive ANOVA-based PCKF for High-Dimensional Nonlinear Inverse Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LI, Weixuan; Lin, Guang; Zhang, Dongxiao

    2014-02-01

    The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect—except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos bases in the expansion helps to capture uncertainty more accurately but increases computational cost. Bases selection is particularly importantmore » for high-dimensional stochastic problems because the number of polynomial chaos bases required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE bases are pre-set based on users’ experience. Also, for sequential data assimilation problems, the bases kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE bases for different problems and automatically adjusts the number of bases in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm is tested with different examples and demonstrated great effectiveness in comparison with non-adaptive PCKF and EnKF algorithms.« less

  5. Design and Use of a Learning Object for Finding Complex Polynomial Roots

    ERIC Educational Resources Information Center

    Benitez, Julio; Gimenez, Marcos H.; Hueso, Jose L.; Martinez, Eulalia; Riera, Jaime

    2013-01-01

    Complex numbers are essential in many fields of engineering, but students often fail to have a natural insight of them. We present a learning object for the study of complex polynomials that graphically shows that any complex polynomials has a root and, furthermore, is useful to find the approximate roots of a complex polynomial. Moreover, we…

  6. Extending a Property of Cubic Polynomials to Higher-Degree Polynomials

    ERIC Educational Resources Information Center

    Miller, David A.; Moseley, James

    2012-01-01

    In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei

    The algebra H of the dual -1 Hahn polynomials is derived and shown to arise in the Clebsch-Gordan problem of sl{sub -1}(2). The dual -1 Hahn polynomials are the bispectral polynomials of a discrete argument obtained from the q{yields}-1 limit of the dual q-Hahn polynomials. The Hopf algebra sl{sub -1}(2) has four generators including an involution, it is also a q{yields}-1 limit of the quantum algebra sl{sub q}(2) and furthermore, the dynamical algebra of the parabose oscillator. The algebra H, a two-parameter generalization of u(2) with an involution as additional generator, is first derived from the recurrence relation of themore » -1 Hahn polynomials. It is then shown that H can be realized in terms of the generators of two added sl{sub -1}(2) algebras, so that the Clebsch-Gordan coefficients of sl{sub -1}(2) are dual -1 Hahn polynomials. An irreducible representation of H involving five-diagonal matrices and connected to the difference equation of the dual -1 Hahn polynomials is constructed.« less

  8. Interbasis expansions in the Zernike system

    NASA Astrophysics Data System (ADS)

    Atakishiyev, Natig M.; Pogosyan, George S.; Wolf, Kurt Bernardo; Yakhno, Alexander

    2017-10-01

    The differential equation with free boundary conditions on the unit disk that was proposed by Frits Zernike in 1934 to find Jacobi polynomial solutions (indicated as I) serves to define a classical system and a quantum system which have been found to be superintegrable. We have determined two new orthogonal polynomial solutions (indicated as II and III) that are separable and involve Legendre and Gegenbauer polynomials. Here we report on their three interbasis expansion coefficients: between the I-II and I-III bases, they are given by F32(⋯|1 ) polynomials that are also special su(2) Clebsch-Gordan coefficients and Hahn polynomials. Between the II-III bases, we find an expansion expressed by F43(⋯|1 ) 's and Racah polynomials that are related to the Wigner 6j coefficients.

  9. Opening of an interface flaw in a layered elastic half-plane under compressive loading

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Fichter, W. B.; Goree, J. G.

    1984-01-01

    A static analysis is given of the problem of an elastic layer perfectly bonded, except for a frictionless interface crack, to a dissimilar elastic half-plane. The free surface of the layer is loaded by a finite pressure distribution directly over the crack. The problem is formulated using the two dimensional linear elasticity equations. Using Fourier transforms, the governing equations are converted to a pair of coupled singular integral equations. The integral equations are reduced to a set of simultaneous algebraic equations by expanding the unknown functions in a series of Jacobi polynomials and then evaluating the singular Cauchy-type integrals. The resulting equations are found to be ill-conditioned and, consequently, are solved in the least-squares sense. Results from the analysis show that, under a normal pressure distribution on the free surface of the layer and depending on the combination of geometric and material parameters, the ends of the crack can open. The resulting stresses at the crack-tips are singular, implying that crack growth is possible. The extent of the opening and the crack-top stress intensity factors depend on the width of the pressure distribution zone, the layer thickness, and the relative material properties of the layer and half-plane.

  10. Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, D.W.; Hawker, D.W.

    1988-12-01

    For the bioconcentration of hydrophobic chemicals by fish, relationships have been previously established between uptake rate constants (k1) and the octanol/water partition coefficient (Kow), and also between the clearance rate constant (k2) and Kow. These have been refined and extended on the basis of data for chlorinated hydrocarbons, and closely related compounds including polychlorinated dibenzodioxins, that covered a wider range of hydrophobicity (2.5 less than log Kow less than 9.5). This has allowed the development of new relationships between log Kow and various factors, including the bioconcentration factor (as log KB), equilibrium time (as log teq), and maximum biotic concentrationmore » (as log CB), which include extremely hydrophobic compounds previously not taken into account. The shape of the curves generated by these equations are in qualitative agreement with theoretical prediction and are described by polynomial expressions which are generally approximately linear over the more limited range of log Kow values used to develop previous relationships. The influences of factors such as hydrophobicity, aqueous solubility, molecular weight, lipid solubility, and also exposure time were considered. Decreasing lipid solubilities of extremely hydrophobic chemicals were found to result in increasing clearance rate constants, as well decreasing equilibrium times and bioconcentration factors.« less

  11. Couple stress theory of curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models

    NASA Astrophysics Data System (ADS)

    Zozulya, V. V.

    2017-01-01

    New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke's law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.

  12. Characterization of bone collagen organization defects in murine hypophosphatasia using a Zernike model of optical aberrations

    NASA Astrophysics Data System (ADS)

    Tehrani, Kayvan Forouhesh; Pendleton, Emily G.; Leitmann, Bobby; Barrow, Ruth; Mortensen, Luke J.

    2018-02-01

    Bone growth and strength is severely impacted by Hypophosphatasia (HPP). It is a genetic disease that affects the mineralization of the bone. We hypothesize that it impacts overall organization, density, and porosity of collagen fibers. Lower density of fibers and higher porosity cause less absorption and scattering of light, and therefore a different regime of transport mean free path. To find a cure for this disease, a metric for the evaluation of bone is required. Here we present an evaluation method based on our Phase Accumulation Ray Tracing (PART) method. This method uses second harmonic generation (SHG) in bone collagen fiber to model bone indices of refraction, which is used to calculate phase retardation on the propagation path of light in bone. The calculated phase is then expanded using Zernike polynomials up to 15th order, to make a quantitative analysis of tissue anomalies. Because the Zernike modes are a complete set of orthogonal polynomials, we can compare low and high order modes in HPP, compare them with healthy wild type mice, to identify the differences between their geometry and structure. Larger coefficients of low order modes show more uniform fiber density and less porosity, whereas the opposite is shown with larger coefficients of higher order modes. Our analyses show significant difference between Zernike modes in different types of bone evidenced by Principal Components Analysis (PCA).

  13. Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2009-12-01

    We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.

  14. Combinatorial theory of Macdonald polynomials I: proof of Haglund's formula.

    PubMed

    Haglund, J; Haiman, M; Loehr, N

    2005-02-22

    Haglund recently proposed a combinatorial interpretation of the modified Macdonald polynomials H(mu). We give a combinatorial proof of this conjecture, which establishes the existence and integrality of H(mu). As corollaries, we obtain the cocharge formula of Lascoux and Schutzenberger for Hall-Littlewood polynomials, a formula of Sahi and Knop for Jack's symmetric functions, a generalization of this result to the integral Macdonald polynomials J(mu), a formula for H(mu) in terms of Lascoux-Leclerc-Thibon polynomials, and combinatorial expressions for the Kostka-Macdonald coefficients K(lambda,mu) when mu is a two-column shape.

  15. Multi-indexed (q-)Racah polynomials

    NASA Astrophysics Data System (ADS)

    Odake, Satoru; Sasaki, Ryu

    2012-09-01

    As the second stage of the project multi-indexed orthogonal polynomials, we present, in the framework of ‘discrete quantum mechanics’ with real shifts in one dimension, the multi-indexed (q-)Racah polynomials. They are obtained from the (q-)Racah polynomials by the multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of ‘virtual state’ vectors, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the ‘solutions’ of the matrix Schrödinger equation with negative ‘eigenvalues’, except for one of the two boundary points.

  16. iDriving (Intelligent Driving)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malikopoulos, Andreas

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in responses to actual driving conditions to improve fuel efficiency.

  17. Conformal Galilei algebras, symmetric polynomials and singular vectors

    NASA Astrophysics Data System (ADS)

    Křižka, Libor; Somberg, Petr

    2018-01-01

    We classify and explicitly describe homomorphisms of Verma modules for conformal Galilei algebras cga_ℓ (d,C) with d=1 for any integer value ℓ \\in N. The homomorphisms are uniquely determined by singular vectors as solutions of certain differential operators of flag type and identified with specific polynomials arising as coefficients in the expansion of a parametric family of symmetric polynomials into power sum symmetric polynomials.

  18. Identities associated with Milne-Thomson type polynomials and special numbers.

    PubMed

    Simsek, Yilmaz; Cakic, Nenad

    2018-01-01

    The purpose of this paper is to give identities and relations including the Milne-Thomson polynomials, the Hermite polynomials, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the central factorial numbers, and the Cauchy numbers. By using fermionic and bosonic p -adic integrals, we derive some new relations and formulas related to these numbers and polynomials, and also the combinatorial sums.

  19. Investigation on imperfection sensitivity of composite cylindrical shells using the nonlinearity reduction technique and the polynomial chaos method

    NASA Astrophysics Data System (ADS)

    Liang, Ke; Sun, Qin; Liu, Xiaoran

    2018-05-01

    The theoretical buckling load of a perfect cylinder must be reduced by a knock-down factor to account for structural imperfections. The EU project DESICOS proposed a new robust design for imperfection-sensitive composite cylindrical shells using the combination of deterministic and stochastic simulations, however the high computational complexity seriously affects its wider application in aerospace structures design. In this paper, the nonlinearity reduction technique and the polynomial chaos method are implemented into the robust design process, to significantly lower computational costs. The modified Newton-type Koiter-Newton approach which largely reduces the number of degrees of freedom in the nonlinear finite element model, serves as the nonlinear buckling solver to trace the equilibrium paths of geometrically nonlinear structures efficiently. The non-intrusive polynomial chaos method provides the buckling load with an approximate chaos response surface with respect to imperfections and uses buckling solver codes as black boxes. A fast large-sample study can be applied using the approximate chaos response surface to achieve probability characteristics of buckling loads. The performance of the method in terms of reliability, accuracy and computational effort is demonstrated with an unstiffened CFRP cylinder.

  20. Prospective Mathematics Teachers' Sense Making of Polynomial Multiplication and Factorization Modeled with Algebra Tiles

    ERIC Educational Resources Information Center

    Caglayan, Günhan

    2013-01-01

    This study is about prospective secondary mathematics teachers' understanding and sense making of representational quantities generated by algebra tiles, the quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative addition and multiplication operations--referent preserving versus referent…

  1. Approximating smooth functions using algebraic-trigonometric polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapudinov, Idris I

    2011-01-14

    The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form p{sub n}(t)+{tau}{sub m}(t), where p{sub n}(t) is an algebraic polynomial of degree n and {tau}{sub m}(t)=a{sub 0}+{Sigma}{sub k=1}{sup m}a{sub k} cos k{pi}t + b{sub k} sin k{pi}t is a trigonometric polynomial of order m. The precise order of approximation by such polynomials in the classes W{sup r}{sub {infinity}(}M) and an upper bound for similar approximations in the class W{sup r}{sub p}(M) with 4/3

  2. Parameter reduction in nonlinear state-space identification of hysteresis

    NASA Astrophysics Data System (ADS)

    Fakhrizadeh Esfahani, Alireza; Dreesen, Philippe; Tiels, Koen; Noël, Jean-Philippe; Schoukens, Johan

    2018-05-01

    Recent work on black-box polynomial nonlinear state-space modeling for hysteresis identification has provided promising results, but struggles with a large number of parameters due to the use of multivariate polynomials. This drawback is tackled in the current paper by applying a decoupling approach that results in a more parsimonious representation involving univariate polynomials. This work is carried out numerically on input-output data generated by a Bouc-Wen hysteretic model and follows up on earlier work of the authors. The current article discusses the polynomial decoupling approach and explores the selection of the number of univariate polynomials with the polynomial degree. We have found that the presented decoupling approach is able to reduce the number of parameters of the full nonlinear model up to about 50%, while maintaining a comparable output error level.

  3. Charge-based MOSFET model based on the Hermite interpolation polynomial

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi; Richelli, Anna; Kovacs, Zsolt

    2017-04-01

    An accurate charge-based compact MOSFET model is developed using the third order Hermite interpolation polynomial to approximate the relation between surface potential and inversion charge in the channel. This new formulation of the drain current retains the same simplicity of the most advanced charge-based compact MOSFET models such as BSIM, ACM and EKV, but it is developed without requiring the crude linearization of the inversion charge. Hence, the asymmetry and the non-linearity in the channel are accurately accounted for. Nevertheless, the expression of the drain current can be worked out to be analytically equivalent to BSIM, ACM and EKV. Furthermore, thanks to this new mathematical approach the slope factor is rigorously defined in all regions of operation and no empirical assumption is required.

  4. Constructing general partial differential equations using polynomial and neural networks.

    PubMed

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Periodicity analysis of tourist arrivals to Banda Aceh using smoothing SARIMA approach

    NASA Astrophysics Data System (ADS)

    Miftahuddin, Helida, Desri; Sofyan, Hizir

    2017-11-01

    Forecasting the number of tourist arrivals who enters a region is needed for tourism businesses, economic and industrial policies, so that the statistical modeling needs to be conducted. Banda Aceh is the capital of Aceh province more economic activity is driven by the services sector, one of which is the tourism sector. Therefore, the prediction of the number of tourist arrivals is needed to develop further policies. The identification results indicate that the data arrival of foreign tourists to Banda Aceh to contain the trend and seasonal nature. Allegedly, the number of arrivals is influenced by external factors, such as economics, politics, and the holiday season caused the structural break in the data. Trend patterns are detected by using polynomial regression with quadratic and cubic approaches, while seasonal is detected by a periodic regression polynomial with quadratic and cubic approach. To model the data that has seasonal effects, one of the statistical methods that can be used is SARIMA (Seasonal Autoregressive Integrated Moving Average). The results showed that the smoothing, a method to detect the trend pattern is cubic polynomial regression approach, with the modified model and the multiplicative periodicity of 12 months. The AIC value obtained was 70.52. While the method for detecting the seasonal pattern is a periodic regression polynomial cubic approach, with the modified model and the multiplicative periodicity of 12 months. The AIC value obtained was 73.37. Furthermore, the best model to predict the number of foreign tourist arrivals to Banda Aceh in 2017 to 2018 is SARIMA (0,1,1)(1,1,0) with MAPE is 26%.

  6. Learning polynomial feedforward neural networks by genetic programming and backpropagation.

    PubMed

    Nikolaev, N Y; Iba, H

    2003-01-01

    This paper presents an approach to learning polynomial feedforward neural networks (PFNNs). The approach suggests, first, finding the polynomial network structure by means of a population-based search technique relying on the genetic programming paradigm, and second, further adjustment of the best discovered network weights by an especially derived backpropagation algorithm for higher order networks with polynomial activation functions. These two stages of the PFNN learning process enable us to identify networks with good training as well as generalization performance. Empirical results show that this approach finds PFNN which outperform considerably some previous constructive polynomial network algorithms on processing benchmark time series.

  7. Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1992-01-01

    Recently, Freund and Nachtigal have proposed a novel polynominal-based iteration, the quasi-minimal residual algorithm (QMR), for solving general nonsingular non-Hermitian linear systems. Motivated by the QMR method, we have introduced the general concept of quasi-kernel polynomials, and we have shown that the QMR algorithm is based on a particular instance of quasi-kernel polynomials. In this paper, we continue our study of quasi-kernel polynomials. In particular, we derive bounds for the norms of quasi-kernel polynomials. These results are then applied to obtain convergence theorems both for the QMR method and for a transpose-free variant of QMR, the TFQMR algorithm.

  8. On universal knot polynomials

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Mkrtchyan, R.; Morozov, A.

    2016-02-01

    We present a universal knot polynomials for 2- and 3-strand torus knots in adjoint representation, by universalization of appropriate Rosso-Jones formula. According to universality, these polynomials coincide with adjoined colored HOMFLY and Kauffman polynomials at SL and SO/Sp lines on Vogel's plane, respectively and give their exceptional group's counterparts on exceptional line. We demonstrate that [m,n]=[n,m] topological invariance, when applicable, take place on the entire Vogel's plane. We also suggest the universal form of invariant of figure eight knot in adjoint representation, and suggest existence of such universalization for any knot in adjoint and its descendant representations. Properties of universal polynomials and applications of these results are discussed.

  9. Zernike Basis to Cartesian Transformations

    NASA Astrophysics Data System (ADS)

    Mathar, R. J.

    2009-12-01

    The radial polynomials of the 2D (circular) and 3D (spherical) Zernike functions are tabulated as powers of the radial distance. The reciprocal tabulation of powers of the radial distance in series of radial polynomials is also given, based on projections that take advantage of the orthogonality of the polynomials over the unit interval. They play a role in the expansion of products of the polynomials into sums, which is demonstrated by some examples. Multiplication of the polynomials by the angular bases (azimuth, polar angle) defines the Zernike functions, for which we derive transformations to and from the Cartesian coordinate system centered at the middle of the circle or sphere.

  10. Chaos, Fractals, and Polynomials.

    ERIC Educational Resources Information Center

    Tylee, J. Louis; Tylee, Thomas B.

    1996-01-01

    Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)

  11. Bin Packing, Number Balancing, and Rescaling Linear Programs

    NASA Astrophysics Data System (ADS)

    Hoberg, Rebecca

    This thesis deals with several important algorithmic questions using techniques from diverse areas including discrepancy theory, machine learning and lattice theory. In Chapter 2, we construct an improved approximation algorithm for a classical NP-complete problem, the bin packing problem. In this problem, the goal is to pack items of sizes si ∈ [0,1] into as few bins as possible, where a set of items fits into a bin provided the sum of the item sizes is at most one. We give a polynomial-time rounding scheme for a standard linear programming relaxation of the problem, yielding a packing that uses at most OPT + O(log OPT) bins. This makes progress towards one of the "10 open problems in approximation algorithms" stated in the book of Shmoys and Williamson. In fact, based on related combinatorial lower bounds, Rothvoss conjectures that theta(logOPT) may be a tight bound on the additive integrality gap of this LP relaxation. In Chapter 3, we give a new polynomial-time algorithm for linear programming. Our algorithm is based on the multiplicative weights update (MWU) method, which is a general framework that is currently of great interest in theoretical computer science. An algorithm for linear programming based on MWU was known previously, but was not polynomial time--we remedy this by alternating between a MWU phase and a rescaling phase. The rescaling methods we introduce improve upon previous methods by reducing the number of iterations needed until one can rescale, and they can be used for any algorithm with a similar rescaling structure. Finally, we note that the MWU phase of the algorithm has a simple interpretation as gradient descent of a particular potential function, and we show we can speed up this phase by walking in a direction that decreases both the potential function and its gradient. In Chapter 4, we show that an approximate oracle for Minkowski's Theorem gives an approximate oracle for the number balancing problem, and conversely. Number balancing is the problem of minimizing | 〈a,x〉 | over x ∈ {-1,0,1}n \\ { 0}, given a ∈ [0,1]n. While an application of the pigeonhole principle shows that there always exists x with | 〈a,x〉| ≤ O(√ n/2n), the best known algorithm only guarantees |〈a,x〉| ≤ 2-ntheta(log n). We show that an oracle for Minkowski's Theorem with approximation factor rho would give an algorithm for NBP that guarantees | 〈a,x〉 | ≤ 2-ntheta(1/rho). In particular, this would beat the bound of Karmarkar and Karp provided rho ≤ O(logn/loglogn). In the other direction, we prove that any polynomial time algorithm for NBP that guarantees a solution of difference at most 2√n/2 n would give a polynomial approximation for Minkowski as well as a polynomial factor approximation algorithm for the Shortest Vector Problem.

  12. Universal Racah matrices and adjoint knot polynomials: Arborescent knots

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Morozov, A.

    2016-04-01

    By now it is well established that the quantum dimensions of descendants of the adjoint representation can be described in a universal form, independent of a particular family of simple Lie algebras. The Rosso-Jones formula then implies a universal description of the adjoint knot polynomials for torus knots, which in particular unifies the HOMFLY (SUN) and Kauffman (SON) polynomials. For E8 the adjoint representation is also fundamental. We suggest to extend the universality from the dimensions to the Racah matrices and this immediately produces a unified description of the adjoint knot polynomials for all arborescent (double-fat) knots, including twist, 2-bridge and pretzel. Technically we develop together the universality and the "eigenvalue conjecture", which expresses the Racah and mixing matrices through the eigenvalues of the quantum R-matrix, and for dealing with the adjoint polynomials one has to extend it to the previously unknown 6 × 6 case. The adjoint polynomials do not distinguish between mutants and therefore are not very efficient in knot theory, however, universal polynomials in higher representations can probably be better in this respect.

  13. Imaging characteristics of Zernike and annular polynomial aberrations.

    PubMed

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  14. Applications of polynomial optimization in financial risk investment

    NASA Astrophysics Data System (ADS)

    Zeng, Meilan; Fu, Hongwei

    2017-09-01

    Recently, polynomial optimization has many important applications in optimization, financial economics and eigenvalues of tensor, etc. This paper studies the applications of polynomial optimization in financial risk investment. We consider the standard mean-variance risk measurement model and the mean-variance risk measurement model with transaction costs. We use Lasserre's hierarchy of semidefinite programming (SDP) relaxations to solve the specific cases. The results show that polynomial optimization is effective for some financial optimization problems.

  15. A Stochastic Mixed Finite Element Heterogeneous Multiscale Method for Flow in Porous Media

    DTIC Science & Technology

    2010-08-01

    applicable for flow in porous media has drawn significant interest in the last few years. Several techniques like generalized polynomial chaos expansions (gPC...represents the stochastic solution as a polynomial approxima- tion. This interpolant is constructed via independent function calls to the de- terministic...of orthogonal polynomials [34,38] or sparse grid approximations [39–41]. It is well known that the global polynomial interpolation cannot resolve lo

  16. A Set of Orthogonal Polynomials That Generalize the Racah Coefficients or 6 - j Symbols.

    DTIC Science & Technology

    1978-03-01

    Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966. [11] D. Stanton, Some basic hypergeometric polynomials arising from... Some bas ic hypergeometr ic an a logues of the classical orthogonal polynomials and applications , to appear. [3] C. de Boor and G. H. Golub , The...Report #1833 A SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE THE RACAR COEFFICIENTS OR 6 — j SYMBOLS Richard Askey and James Wilson •

  17. DIFFERENTIAL CROSS SECTION ANALYSIS IN KAON PHOTOPRODUCTION USING ASSOCIATED LEGENDRE POLYNOMIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. T. P. HUTAURUK, D. G. IRELAND, G. ROSNER

    2009-04-01

    Angular distributions of differential cross sections from the latest CLAS data sets,6 for the reaction γ + p→K+ + Λ have been analyzed using associated Legendre polynomials. This analysis is based upon theoretical calculations in Ref. 1 where all sixteen observables in kaon photoproduction can be classified into four Legendre classes. Each observable can be described by an expansion of associated Legendre polynomial functions. One of the questions to be addressed is how many associated Legendre polynomials are required to describe the data. In this preliminary analysis, we used data models with different numbers of associated Legendre polynomials. We thenmore » compared these models by calculating posterior probabilities of the models. We found that the CLAS data set needs no more than four associated Legendre polynomials to describe the differential cross section data. In addition, we also show the extracted coefficients of the best model.« less

  18. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  19. On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2002-02-01

    An analytical formula expressing the ultraspherical coefficients of an expansion for an infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is stated in a more compact form and proved in a simpler way than the formula suggested by Phillips and Karageorghis (27 (1990) 823). A new formula expressing explicitly the integrals of ultraspherical polynomials of any degree that has been integrated an arbitrary number of times of ultraspherical polynomials is given. The tensor product of ultraspherical polynomials is used to approximate a function of more than one variable. Formulae expressing the coefficients of differentiated expansions of double and triple ultraspherical polynomials in terms of the original expansion are stated and proved. Some applications of how to use ultraspherical polynomials for solving ordinary and partial differential equations are described.

  20. Quadratically Convergent Method for Simultaneously Approaching the Roots of Polynomial Solutions of a Class of Differential Equations

    NASA Astrophysics Data System (ADS)

    Recchioni, Maria Cristina

    2001-12-01

    This paper investigates the application of the method introduced by L. Pasquini (1989) for simultaneously approaching the zeros of polynomial solutions to a class of second-order linear homogeneous ordinary differential equations with polynomial coefficients to a particular case in which these polynomial solutions have zeros symmetrically arranged with respect to the origin. The method is based on a family of nonlinear equations which is associated with a given class of differential equations. The roots of the nonlinear equations are related to the roots of the polynomial solutions of differential equations considered. Newton's method is applied to find the roots of these nonlinear equations. In (Pasquini, 1994) the nonsingularity of the roots of these nonlinear equations is studied. In this paper, following the lines in (Pasquini, 1994), the nonsingularity of the roots of these nonlinear equations is studied. More favourable results than the ones in (Pasquini, 1994) are proven in the particular case of polynomial solutions with symmetrical zeros. The method is applied to approximate the roots of Hermite-Sobolev type polynomials and Freud polynomials. A lower bound for the smallest positive root of Hermite-Sobolev type polynomials is given via the nonlinear equation. The quadratic convergence of the method is proven. A comparison with a classical method that uses the Jacobi matrices is carried out. We show that the algorithm derived by the proposed method is sometimes preferable to the classical QR type algorithms for computing the eigenvalues of the Jacobi matrices even if these matrices are real and symmetric.

  1. On a Family of Multivariate Modified Humbert Polynomials

    PubMed Central

    Aktaş, Rabia; Erkuş-Duman, Esra

    2013-01-01

    This paper attempts to present a multivariable extension of generalized Humbert polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties, and also some special cases for these multivariable polynomials. PMID:23935411

  2. Progress Report on Optimizing X-ray Optical Prescriptions for Wide-Field Applications

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2011-01-01

    We report on the present status of our continuing efforts to develop a method for optimizing wide-field nested x-ray telescope mirror prescriptions. Utilizing extensive Monte-Carlo ray trace simulations, we find an analytic form for the root-mean-square dispersion of rays from a Wolter I optic on the surface of a flat focal plane detector as a function of detector tilt away from the nominal focal plane and detector displacement along the optical axis. The configuration minimizing the ray dispersion from a nested array of Wolter I telescopes is found by solving a linear system of equations for tilt and individual mirror pair displacement. Finally we outline our initial efforts at expanding this method to include higher order polynomial terms in the mirror prescriptions.

  3. DAVIS: A direct algorithm for velocity-map imaging system

    NASA Astrophysics Data System (ADS)

    Harrison, G. R.; Vaughan, J. C.; Hidle, B.; Laurent, G. M.

    2018-05-01

    In this work, we report a direct (non-iterative) algorithm to reconstruct the three-dimensional (3D) momentum-space picture of any charged particles collected with a velocity-map imaging system from the two-dimensional (2D) projected image captured by a position-sensitive detector. The method consists of fitting the measured image with the 2D projection of a model 3D velocity distribution defined by the physics of the light-matter interaction. The meaningful angle-correlated information is first extracted from the raw data by expanding the image with a complete set of Legendre polynomials. Both the particle's angular and energy distributions are then directly retrieved from the expansion coefficients. The algorithm is simple, easy to implement, fast, and explicitly takes into account the pixelization effect in the measurement.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lue Xing; Sun Kun; Wang Pan

    In the framework of Bell-polynomial manipulations, under investigation hereby are three single-field bilinearizable equations: the (1+1)-dimensional shallow water wave model, Boiti-Leon-Manna-Pempinelli model, and (2+1)-dimensional Sawada-Kotera model. Based on the concept of scale invariance, a direct and unifying Bell-polynomial scheme is employed to achieve the Baecklund transformations and Lax pairs associated with those three soliton equations. Note that the Bell-polynomial expressions and Bell-polynomial-typed Baecklund transformations for those three soliton equations can be, respectively, cast into the bilinear equations and bilinear Baecklund transformations with symbolic computation. Consequently, it is also shown that the Bell-polynomial-typed Baecklund transformations can be linearized into the correspondingmore » Lax pairs.« less

  5. An O(log sup 2 N) parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix

    NASA Technical Reports Server (NTRS)

    Swarztrauber, Paul N.

    1989-01-01

    An O(log sup 2 N) parallel algorithm is presented for computing the eigenvalues of a symmetric tridiagonal matrix using a parallel algorithm for computing the zeros of the characteristic polynomial. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The exact behavior of the polynomials at the interval endpoints is used to eliminate the usual problems induced by finite precision arithmetic.

  6. Discrete Tchebycheff orthonormal polynomials and applications

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Discrete Tchebycheff orthonormal polynomials offer a convenient way to make least squares polynomial fits of uniformly spaced discrete data. Computer programs to do so are simple and fast, and appear to be less affected by computer roundoff error, for the higher order fits, than conventional least squares programs. They are useful for any application of polynomial least squares fits: approximation of mathematical functions, noise analysis of radar data, and real time smoothing of noisy data, to name a few.

  7. An Experimental Weight Function Method for Stress Intensity Factor Calibration.

    DTIC Science & Technology

    1980-04-01

    in accuracy to the ones obtained by Macha (Reference 10) for the laser interferometry technique. The values of KI from the interpolating polynomial...Measurement. Air Force Material Laboratories, AFML-TR-74-75, July 1974. 10. D. E. Macha , W. N. Sharpe Jr., and A. F. Grandt Jr., A Laser Interferometry

  8. Curious Consequences of a Miscopied Quadratic

    ERIC Educational Resources Information Center

    Poet, Jeffrey L.; Vestal, Donald L., Jr.

    2005-01-01

    The starting point of this article is a search for pairs of quadratic polynomials x[superscript 2] + bx plus or minus c with the property that they both factor over the integers. The search leads quickly to some number theory in the form of primitive Pythagorean triples, and this paper develops the connection between these two topics.

  9. Oscillatory singular integrals and harmonic analysis on nilpotent groups

    PubMed Central

    Ricci, F.; Stein, E. M.

    1986-01-01

    Several related classes of operators on nilpotent Lie groups are considered. These operators involve the following features: (i) oscillatory factors that are exponentials of imaginary polynomials, (ii) convolutions with singular kernels supported on lower-dimensional submanifolds, (iii) validity in the general context not requiring the existence of dilations that are automorphisms. PMID:16593640

  10. Ghosts of Mathematicians Past: Paolo Ruffini

    ERIC Educational Resources Information Center

    Fitzherbert, John

    2016-01-01

    Paolo Ruffini (1765-1822) may be something of an unknown in high school mathematics; however his contributions to the world of mathematics are a rich source of inspiration. Ruffini's rule (often known as "synthetic division") is an efficient method of dividing a polynomial by a linear factor, with or without a remainder. The process can…

  11. Polynomial time blackbox identity testers for depth-3 circuits : the field doesn't matter.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Saxena, Nitin

    Let C be a depth-3 circuit with n variables, degree d and top fanin k (called {Sigma}{Pi}{Sigma}(k, d, n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runsmore » in time poly(n)d{sup k}, regardless of the base field. The only field for which polynomial time algorithms were previously known is F = Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a {Sigma}{Pi}{Sigma}(k, d, n) circuit to k variables, but preserves the identity structure. Polynomial identity testing (PIT) is a major open problem in theoretical computer science. The input is an arithmetic circuit that computes a polynomial p(x{sub 1}, x{sub 2},..., x{sub n}) over a base field F. We wish to check if p is the zero polynomial, or in other words, is identically zero. We may be provided with an explicit circuit, or may only have blackbox access. In the latter case, we can only evaluate the polynomial p at various domain points. The main goal is to devise a deterministic blackbox polynomial time algorithm for PIT.« less

  12. Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror

    NASA Astrophysics Data System (ADS)

    Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu

    2017-02-01

    Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.

  13. Stability analysis of fuzzy parametric uncertain systems.

    PubMed

    Bhiwani, R J; Patre, B M

    2011-10-01

    In this paper, the determination of stability margin, gain and phase margin aspects of fuzzy parametric uncertain systems are dealt. The stability analysis of uncertain linear systems with coefficients described by fuzzy functions is studied. A complexity reduced technique for determining the stability margin for FPUS is proposed. The method suggested is dependent on the order of the characteristic polynomial. In order to find the stability margin of interval polynomials of order less than 5, it is not always necessary to determine and check all four Kharitonov's polynomials. It has been shown that, for determining stability margin of FPUS of order five, four, and three we require only 3, 2, and 1 Kharitonov's polynomials respectively. Only for sixth and higher order polynomials, a complete set of Kharitonov's polynomials are needed to determine the stability margin. Thus for lower order systems, the calculations are reduced to a large extent. This idea has been extended to determine the stability margin of fuzzy interval polynomials. It is also shown that the gain and phase margin of FPUS can be determined analytically without using graphical techniques. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2004-08-01

    A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed.

  15. On the coefficients of differentiated expansions of ultraspherical polynomials

    NASA Technical Reports Server (NTRS)

    Karageorghis, Andreas; Phillips, Timothy N.

    1989-01-01

    A formula expressing the coefficients of an expression of ultraspherical polynomials which has been differentiated an arbitrary number of times in terms of the coefficients of the original expansion is proved. The particular examples of Chebyshev and Legendre polynomials are considered.

  16. On Polynomial Solutions of Linear Differential Equations with Polynomial Coefficients

    ERIC Educational Resources Information Center

    Si, Do Tan

    1977-01-01

    Demonstrates a method for solving linear differential equations with polynomial coefficients based on the fact that the operators z and D + d/dz are known to be Hermitian conjugates with respect to the Bargman and Louck-Galbraith scalar products. (MLH)

  17. Algorithms for computing solvents of unilateral second-order matrix polynomials over prime finite fields using lambda-matrices

    NASA Astrophysics Data System (ADS)

    Burtyka, Filipp

    2018-01-01

    The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.

  18. On the Analytical and Numerical Properties of the Truncated Laplace Transform I

    DTIC Science & Technology

    2014-09-05

    contains generalizations and conclusions. 2 2 Preliminaries 2.1 The Legendre Polynomials In this subsection we summarize some of the properties of the the...standard Legendre Polynomi - als, and restate these properties for shifted and normalized forms of the Legendre Polynomials . We define the Shifted... Legendre Polynomial of degree k = 0, 1, ..., which we will be denoting by P ∗k , by the formula P ∗k (x) = Pk(2x− 1), (5) where Pk is the Legendre

  19. Development of Fast Deterministic Physically Accurate Solvers for Kinetic Collision Integral for Applications of Near Space Flight and Control Devices

    DTIC Science & Technology

    2015-08-31

    following functions were used: where are the Legendre polynomials of degree . It is assumed that the coefficient standing with has the form...enforce relaxation rates of high order moments, higher order polynomial basis functions are used. The use of high order polynomials results in strong...enforced while only polynomials up to second degree were used in the representation of the collision frequency. It can be seen that the new model

  20. Effects of Air Drag and Lunar Third-Body Perturbations on Motion Near a Reference KAM Torus

    DTIC Science & Technology

    2011-03-01

    body m 1) mass of satellite; 2) order of associated Legendre polynomial n 1) mean motion; 2) degree of associated Legendre polynomial n3 mean motion...physical momentum pi ith physical momentum Pmn associated Legendre polynomial of order m and degree n q̇ physical coordinate derivatives vector, [q̇1...are constants specifying the shape of the gravitational field; and Pmn are associated Legendre polynomials . When m = n = 0, the geopotential function

  1. Luigi Gatteschi's work on asymptotics of special functions and their zeros

    NASA Astrophysics Data System (ADS)

    Gautschi, Walter; Giordano, Carla

    2008-12-01

    A good portion of Gatteschi's research publications-about 65%-is devoted to asymptotics of special functions and their zeros. Most prominently among the special functions studied figure classical orthogonal polynomials, notably Jacobi polynomials and their special cases, Laguerre polynomials, and Hermite polynomials by implication. Other important classes of special functions dealt with are Bessel functions of the first and second kind, Airy functions, and confluent hypergeometric functions, both in Tricomi's and Whittaker's form. This work is reviewed here, and organized along methodological lines.

  2. Polynomial compensation, inversion, and approximation of discrete time linear systems

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1987-01-01

    The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.

  3. Polynomial fuzzy observer designs: a sum-of-squares approach.

    PubMed

    Tanaka, Kazuo; Ohtake, Hiroshi; Seo, Toshiaki; Tanaka, Motoyasu; Wang, Hua O

    2012-10-01

    This paper presents a sum-of-squares (SOS) approach to polynomial fuzzy observer designs for three classes of polynomial fuzzy systems. The proposed SOS-based framework provides a number of innovations and improvements over the existing linear matrix inequality (LMI)-based approaches to Takagi-Sugeno (T-S) fuzzy controller and observer designs. First, we briefly summarize previous results with respect to a polynomial fuzzy system that is a more general representation of the well-known T-S fuzzy system. Next, we propose polynomial fuzzy observers to estimate states in three classes of polynomial fuzzy systems and derive SOS conditions to design polynomial fuzzy controllers and observers. A remarkable feature of the SOS design conditions for the first two classes (Classes I and II) is that they realize the so-called separation principle, i.e., the polynomial fuzzy controller and observer for each class can be separately designed without lack of guaranteeing the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. Although, for the last class (Class III), the separation principle does not hold, we propose an algorithm to design polynomial fuzzy controller and observer satisfying the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. All the design conditions in the proposed approach can be represented in terms of SOS and are symbolically and numerically solved via the recently developed SOSTOOLS and a semidefinite-program solver, respectively. To illustrate the validity and applicability of the proposed approach, three design examples are provided. The examples demonstrate the advantages of the SOS-based approaches for the existing LMI approaches to T-S fuzzy observer designs.

  4. Recurrence relations for orthogonal polynomials for PDEs in polar and cylindrical geometries.

    PubMed

    Richardson, Megan; Lambers, James V

    2016-01-01

    This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.

  5. Gaussian quadrature for multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Coussement, Jonathan; van Assche, Walter

    2005-06-01

    We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.

  6. Frequency domain system identification methods - Matrix fraction description approach

    NASA Technical Reports Server (NTRS)

    Horta, Luca G.; Juang, Jer-Nan

    1993-01-01

    This paper presents the use of matrix fraction descriptions for least-squares curve fitting of the frequency spectra to compute two matrix polynomials. The matrix polynomials are intermediate step to obtain a linearized representation of the experimental transfer function. Two approaches are presented: first, the matrix polynomials are identified using an estimated transfer function; second, the matrix polynomials are identified directly from the cross/auto spectra of the input and output signals. A set of Markov parameters are computed from the polynomials and subsequently realization theory is used to recover a minimum order state space model. Unevenly spaced frequency response functions may be used. Results from a simple numerical example and an experiment are discussed to highlight some of the important aspect of the algorithm.

  7. Optimal determination of the elastic constants of composite materials from ultrasonic wave-speed measurements

    NASA Astrophysics Data System (ADS)

    Castagnède, Bernard; Jenkins, James T.; Sachse, Wolfgang; Baste, Stéphane

    1990-03-01

    A method is described to optimally determine the elastic constants of anisotropic solids from wave-speeds measurements in arbitrary nonprincipal planes. For such a problem, the characteristic equation is a degree-three polynomial which generally does not factorize. By developing and rearranging this polynomial, a nonlinear system of equations is obtained. The elastic constants are then recovered by minimizing a functional derived from this overdetermined system of equations. Calculations of the functional are given for two specific cases, i.e., the orthorhombic and the hexagonal symmetries. Some numerical results showing the efficiency of the algorithm are presented. A numerical method is also described for the recovery of the orientation of the principal acoustical axes. This problem is solved through a double-iterative numerical scheme. Numerical as well as experimental results are presented for a unidirectional composite material.

  8. A simplified procedure for correcting both errors and erasures of a Reed-Solomon code using the Euclidean algorithm

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, I. S.; Eastman, W. L.; Reed, I. S.

    1987-01-01

    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code.

  9. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    PubMed

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  10. Minimum Sobolev norm interpolation of scattered derivative data

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, S.; Gorman, C. H.; Mhaskar, H. N.

    2018-07-01

    We study the problem of reconstructing a function on a manifold satisfying some mild conditions, given data of the values and some derivatives of the function at arbitrary points on the manifold. While the problem of finding a polynomial of two variables with total degree ≤n given the values of the polynomial and some of its derivatives at exactly the same number of points as the dimension of the polynomial space is sometimes impossible, we show that such a problem always has a solution in a very general situation if the degree of the polynomials is sufficiently large. We give estimates on how large the degree should be, and give explicit constructions for such a polynomial even in a far more general case. As the number of sampling points at which the data is available increases, our polynomials converge to the target function on the set where the sampling points are dense. Numerical examples in single and double precision show that this method is stable, efficient, and of high-order.

  11. Modeling State-Space Aeroelastic Systems Using a Simple Matrix Polynomial Approach for the Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2008-01-01

    A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.

  12. An Accurate Centroiding Algorithm for PSF Reconstruction

    NASA Astrophysics Data System (ADS)

    Lu, Tianhuan; Luo, Wentao; Zhang, Jun; Zhang, Jiajun; Li, Hekun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui

    2018-07-01

    In this work, we present a novel centroiding method based on Fourier space Phase Fitting (FPF) for Point Spread Function (PSF) reconstruction. We generate two sets of simulations to test our method. The first set is generated by GalSim with an elliptical Moffat profile and strong anisotropy that shifts the center of the PSF. The second set of simulations is drawn from CFHT i band stellar imaging data. We find non-negligible anisotropy from CFHT stellar images, which leads to ∼0.08 scatter in units of pixels using a polynomial fitting method (Vakili & Hogg). When we apply the FPF method to estimate the centroid in real space, the scatter reduces to ∼0.04 in S/N = 200 CFHT-like sample. In low signal-to-noise ratio (S/N; 50 and 100) CFHT-like samples, the background noise dominates the shifting of the centroid; therefore, the scatter estimated from different methods is similar. We compare polynomial fitting and FPF using GalSim simulation with optical anisotropy. We find that in all S/N (50, 100, and 200) samples, FPF performs better than polynomial fitting by a factor of ∼3. In general, we suggest that in real observations there exists anisotropy that shifts the centroid, and thus, the FPF method provides a better way to accurately locate it.

  13. Algorithm for Compressing Time-Series Data

    NASA Technical Reports Server (NTRS)

    Hawkins, S. Edward, III; Darlington, Edward Hugo

    2012-01-01

    An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").

  14. Numerical solutions for Helmholtz equations using Bernoulli polynomials

    NASA Astrophysics Data System (ADS)

    Bicer, Kubra Erdem; Yalcinbas, Salih

    2017-07-01

    This paper reports a new numerical method based on Bernoulli polynomials for the solution of Helmholtz equations. The method uses matrix forms of Bernoulli polynomials and their derivatives by means of collocation points. Aim of this paper is to solve Helmholtz equations using this matrix relations.

  15. Reliable before-fabrication forecasting of normal and touch mode MEMS capacitive pressure sensor: modeling and simulation

    NASA Astrophysics Data System (ADS)

    Jindal, Sumit Kumar; Mahajan, Ankush; Raghuwanshi, Sanjeev Kumar

    2017-10-01

    An analytical model and numerical simulation for the performance of MEMS capacitive pressure sensors in both normal and touch modes is required for expected behavior of the sensor prior to their fabrication. Obtaining such information should be based on a complete analysis of performance parameters such as deflection of diaphragm, change of capacitance when the diaphragm deflects, and sensitivity of the sensor. In the literature, limited work has been carried out on the above-stated issue; moreover, due to approximation factors of polynomials, a tolerance error cannot be overseen. Reliable before-fabrication forecasting requires exact mathematical calculation of the parameters involved. A second-order polynomial equation is calculated mathematically for key performance parameters of both modes. This eliminates the approximation factor, and an exact result can be studied, maintaining high accuracy. The elimination of approximation factors and an approach of exact results are based on a new design parameter (δ) that we propose. The design parameter gives an initial hint to the designers on how the sensor will behave once it is fabricated. The complete work is aided by extensive mathematical detailing of all the parameters involved. Next, we verified our claims using MATLAB® simulation. Since MATLAB® effectively provides the simulation theory for the design approach, more complicated finite element method is not used.

  16. Multifractal analysis and topological properties of a new family of weighted Koch networks

    NASA Astrophysics Data System (ADS)

    Huang, Da-Wen; Yu, Zu-Guo; Anh, Vo

    2017-03-01

    Weighted complex networks, especially scale-free networks, which characterize real-life systems better than non-weighted networks, have attracted considerable interest in recent years. Studies on the multifractality of weighted complex networks are still to be undertaken. In this paper, inspired by the concepts of Koch networks and Koch island, we propose a new family of weighted Koch networks, and investigate their multifractal behavior and topological properties. We find some key topological properties of the new networks: their vertex cumulative strength has a power-law distribution; there is a power-law relationship between their topological degree and weight strength; the networks have a high weighted clustering coefficient of 0.41004 (which is independent of the scaling factor c) in the limit of large generation t; the second smallest eigenvalue μ2 and the maximum eigenvalue μn are approximated by quartic polynomials of the scaling factor c for the general Laplacian operator, while μ2 is approximately a quartic polynomial of c and μn= 1.5 for the normalized Laplacian operator. Then, we find that weighted koch networks are both fractal and multifractal, their fractal dimension is influenced by the scaling factor c. We also apply these analyses to six real-world networks, and find that the multifractality in three of them are strong.

  17. Nonlocal theory of curved rods. 2-D, high order, Timoshenko's and Euler-Bernoulli models

    NASA Astrophysics Data System (ADS)

    Zozulya, V. V.

    2017-09-01

    New models for plane curved rods based on linear nonlocal theory of elasticity have been developed. The 2-D theory is developed from general 2-D equations of linear nonlocal elasticity using a special curvilinear system of coordinates related to the middle line of the rod along with special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby, all equations of elasticity including nonlocal constitutive relations have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of local elasticity, a system of differential equations in terms of displacements for Fourier coefficients has been obtained. First and second order approximations have been considered in detail. Timoshenko's and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear nonlocal theory of elasticity which are considered in a special curvilinear system of coordinates related to the middle line of the rod. The obtained equations can be used to calculate stress-strain and to model thin walled structures in micro- and nanoscales when taking into account size dependent and nonlocal effects.

  18. Graphical Solution of Polynomial Equations

    ERIC Educational Resources Information Center

    Grishin, Anatole

    2009-01-01

    Graphing utilities, such as the ubiquitous graphing calculator, are often used in finding the approximate real roots of polynomial equations. In this paper the author offers a simple graphing technique that allows one to find all solutions of a polynomial equation (1) of arbitrary degree; (2) with real or complex coefficients; and (3) possessing…

  19. Evaluation of more general integrals involving universal associated Legendre polynomials

    NASA Astrophysics Data System (ADS)

    You, Yuan; Chen, Chang-Yuan; Tahir, Farida; Dong, Shi-Hai

    2017-05-01

    We find that the solution of the polar angular differential equation can be written as the universal associated Legendre polynomials. We present a popular integral formula which includes universal associated Legendre polynomials and we also evaluate some important integrals involving the product of two universal associated Legendre polynomials Pl' m'(x ) , Pk' n'(x ) and x2 a(1-x2 ) -p -1, xb(1±x2 ) -p, and xc(1-x2 ) -p(1±x ) -1, where l'≠k' and m'≠n'. Their selection rules are also mentioned.

  20. Neck curve polynomials in neck rupture model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul

    2012-06-06

    The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of {sup 280}X{sub 90} with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.

  1. More on rotations as spin matrix polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtright, Thomas L.

    2015-09-15

    Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.

  2. Robust stability of fractional order polynomials with complicated uncertainty structure

    PubMed Central

    Şenol, Bilal; Pekař, Libor

    2017-01-01

    The main aim of this article is to present a graphical approach to robust stability analysis for families of fractional order (quasi-)polynomials with complicated uncertainty structure. More specifically, the work emphasizes the multilinear, polynomial and general structures of uncertainty and, moreover, the retarded quasi-polynomials with parametric uncertainty are studied. Since the families with these complex uncertainty structures suffer from the lack of analytical tools, their robust stability is investigated by numerical calculation and depiction of the value sets and subsequent application of the zero exclusion condition. PMID:28662173

  3. Application of polynomial su(1, 1) algebra to Pöschl-Teller potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong-Biao, E-mail: zhanghb017@nenu.edu.cn; Lu, Lu

    2013-12-15

    Two novel polynomial su(1, 1) algebras for the physical systems with the first and second Pöschl-Teller (PT) potentials are constructed, and their specific representations are presented. Meanwhile, these polynomial su(1, 1) algebras are used as an algebraic technique to solve eigenvalues and eigenfunctions of the Hamiltonians associated with the first and second PT potentials. The algebraic approach explores an appropriate new pair of raising and lowing operators K-circumflex{sub ±} of polynomial su(1, 1) algebra as a pair of shift operators of our Hamiltonians. In addition, two usual su(1, 1) algebras associated with the first and second PT potentials are derivedmore » naturally from the polynomial su(1, 1) algebras built by us.« less

  4. Polynomials to model the growth of young bulls in performance tests.

    PubMed

    Scalez, D C B; Fragomeni, B O; Passafaro, T L; Pereira, I G; Toral, F L B

    2014-03-01

    The use of polynomial functions to describe the average growth trajectory and covariance functions of Nellore and MA (21/32 Charolais+11/32 Nellore) young bulls in performance tests was studied. The average growth trajectories and additive genetic and permanent environmental covariance functions were fit with Legendre (linear through quintic) and quadratic B-spline (with two to four intervals) polynomials. In general, the Legendre and quadratic B-spline models that included more covariance parameters provided a better fit with the data. When comparing models with the same number of parameters, the quadratic B-spline provided a better fit than the Legendre polynomials. The quadratic B-spline with four intervals provided the best fit for the Nellore and MA groups. The fitting of random regression models with different types of polynomials (Legendre polynomials or B-spline) affected neither the genetic parameters estimates nor the ranking of the Nellore young bulls. However, fitting different type of polynomials affected the genetic parameters estimates and the ranking of the MA young bulls. Parsimonious Legendre or quadratic B-spline models could be used for genetic evaluation of body weight of Nellore young bulls in performance tests, whereas these parsimonious models were less efficient for animals of the MA genetic group owing to limited data at the extreme ages.

  5. Cylinder surface test with Chebyshev polynomial fitting method

    NASA Astrophysics Data System (ADS)

    Yu, Kui-bang; Guo, Pei-ji; Chen, Xi

    2017-10-01

    Zernike polynomials fitting method is often applied in the test of optical components and systems, used to represent the wavefront and surface error in circular domain. Zernike polynomials are not orthogonal in rectangular region which results in its unsuitable for the test of optical element with rectangular aperture such as cylinder surface. Applying the Chebyshev polynomials which are orthogonal among the rectangular area as an substitution to the fitting method, can solve the problem. Corresponding to a cylinder surface with diameter of 50 mm and F number of 1/7, a measuring system has been designed in Zemax based on Fizeau Interferometry. The expressions of the two-dimensional Chebyshev polynomials has been given and its relationship with the aberration has been presented. Furthermore, Chebyshev polynomials are used as base items to analyze the rectangular aperture test data. The coefficient of different items are obtained from the test data through the method of least squares. Comparing the Chebyshev spectrum in different misalignment, it show that each misalignment is independence and has a certain relationship with the certain Chebyshev terms. The simulation results show that, through the Legendre polynomials fitting method, it will be a great improvement in the efficient of the detection and adjustment of the cylinder surface test.

  6. Generating the patterns of variation with GeoGebra: the case of polynomial approximations

    NASA Astrophysics Data System (ADS)

    Attorps, Iiris; Björk, Kjell; Radic, Mirko

    2016-01-01

    In this paper, we report a teaching experiment regarding the theory of polynomial approximations at the university mathematics teaching in Sweden. The experiment was designed by applying Variation theory and by using the free dynamic mathematics software GeoGebra. The aim of this study was to investigate if the technology-assisted teaching of Taylor polynomials compared with traditional way of work at the university level can support the teaching and learning of mathematical concepts and ideas. An engineering student group (n = 19) was taught Taylor polynomials with the assistance of GeoGebra while a control group (n = 18) was taught in a traditional way. The data were gathered by video recording of the lectures, by doing a post-test concerning Taylor polynomials in both groups and by giving one question regarding Taylor polynomials at the final exam for the course in Real Analysis in one variable. In the analysis of the lectures, we found Variation theory combined with GeoGebra to be a potentially powerful tool for revealing some critical aspects of Taylor Polynomials. Furthermore, the research results indicated that applying Variation theory, when planning the technology-assisted teaching, supported and enriched students' learning opportunities in the study group compared with the control group.

  7. Exploring the use of random regression models with legendre polynomials to analyze measures of volume of ejaculate in Holstein bulls.

    PubMed

    Carabaño, M J; Díaz, C; Ugarte, C; Serrano, M

    2007-02-01

    Artificial insemination centers routinely collect records of quantity and quality of semen of bulls throughout the animals' productive period. The goal of this paper was to explore the use of random regression models with orthogonal polynomials to analyze repeated measures of semen production of Spanish Holstein bulls. A total of 8,773 records of volume of first ejaculate (VFE) collected between 12 and 30 mo of age from 213 Spanish Holstein bulls was analyzed under alternative random regression models. Legendre polynomial functions of increasing order (0 to 6) were fitted to the average trajectory, additive genetic and permanent environmental effects. Age at collection and days in production were used as time variables. Heterogeneous and homogeneous residual variances were alternatively assumed. Analyses were carried out within a Bayesian framework. The logarithm of the marginal density and the cross-validation predictive ability of the data were used as model comparison criteria. Based on both criteria, age at collection as a time variable and heterogeneous residuals models are recommended to analyze changes of VFE over time. Both criteria indicated that fitting random curves for genetic and permanent environmental components as well as for the average trajector improved the quality of models. Furthermore, models with a higher order polynomial for the permanent environmental (5 to 6) than for the genetic components (4 to 5) and the average trajectory (2 to 3) tended to perform best. High-order polynomials were needed to accommodate the highly oscillating nature of the phenotypic values. Heritability and repeatability estimates, disregarding the extremes of the studied period, ranged from 0.15 to 0.35 and from 0.20 to 0.50, respectively, indicating that selection for VFE may be effective at any stage. Small differences among models were observed. Apart from the extremes, estimated correlations between ages decreased steadily from 0.9 and 0.4 for measures 1 mo apart to 0.4 and 0.2 for most distant measures for additive genetic and phenotypic components, respectively. Further investigation to account for environmental factors that may be responsible for the oscillating observations of VFE is needed.

  8. Ferroic phase transition of tetragonal Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics: Factors determining Curie temperature

    NASA Astrophysics Data System (ADS)

    Yu, Jian; An, Fei-fei; Cao, Fei

    2014-05-01

    In this paper, ferroelectric phase transitions of Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 with x ≤ 0.20 ceramics were experimentally measured and a change from first-order to relaxor was found at a critical composition x ˜ 0.19. With increasing Ca content of x ≤ 0.18, Curie temperature and tetragonality was found decrease but piezoelectric constant and dielectric constant increase in a quadratic polynomial relationship as a function of x, while the ferroic Curie temperature and ferroelastic ordering parameter of tetragonality are correlated in a quadratic polynomial relationship. Near the critical composition of ferroic phase transition from first-order to relaxor, the Pb0.42Ca0.18Bi0.4(Ti0.75Zn0.15Fe0.1)O3 and 1 mol % Nb + 0.5 mol % Mg co-doped Pb0.44Ca0.16Bi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics exhibit a better anisotropic piezoelectric properties than those commercial piezoceramics of modified-PbTiO3 and PbNb2O6. At last, those factors including reduced mass of unit cell, mismatch between cation size and anion cage size, which affect ferroic Curie temperature and ferroelastic ordering parameter (tetragonality) of tetragonal ABO3 perovskites, are analyzed on the basis of first principle effective Hamiltonian and the reduced mass of unit cell is argued a more universal variable than concentration to determine Curie temperature in a quadratic polynomial relationship over various perovskite-structured solid solutions.

  9. A Versatile Technique for Solving Quintic Equations

    ERIC Educational Resources Information Center

    Kulkarni, Raghavendra G.

    2006-01-01

    In this paper we present a versatile technique to solve several types of solvable quintic equations. In the technique described here, the given quintic is first converted to a sextic equation by adding a root, and the resulting sextic equation is decomposed into two cubic polynomials as factors in a novel fashion. The resultant cubic equations are…

  10. A general U-block model-based design procedure for nonlinear polynomial control systems

    NASA Astrophysics Data System (ADS)

    Zhu, Q. M.; Zhao, D. Y.; Zhang, Jianhua

    2016-10-01

    The proposition of U-model concept (in terms of 'providing concise and applicable solutions for complex problems') and a corresponding basic U-control design algorithm was originated in the first author's PhD thesis. The term of U-model appeared (not rigorously defined) for the first time in the first author's other journal paper, which established a framework for using linear polynomial control system design approaches to design nonlinear polynomial control systems (in brief, linear polynomial approaches → nonlinear polynomial plants). This paper represents the next milestone work - using linear state-space approaches to design nonlinear polynomial control systems (in brief, linear state-space approaches → nonlinear polynomial plants). The overall aim of the study is to establish a framework, defined as the U-block model, which provides a generic prototype for using linear state-space-based approaches to design the control systems with smooth nonlinear plants/processes described by polynomial models. For analysing the feasibility and effectiveness, sliding mode control design approach is selected as an exemplary case study. Numerical simulation studies provide a user-friendly step-by-step procedure for the readers/users with interest in their ad hoc applications. In formality, this is the first paper to present the U-model-oriented control system design in a formal way and to study the associated properties and theorems. The previous publications, in the main, have been algorithm-based studies and simulation demonstrations. In some sense, this paper can be treated as a landmark for the U-model-based research from intuitive/heuristic stage to rigour/formal/comprehensive studies.

  11. Two-dimensional orthonormal trend surfaces for prospecting

    NASA Astrophysics Data System (ADS)

    Sarma, D. D.; Selvaraj, J. B.

    Orthonormal polynomials have distinct advantages over conventional polynomials: the equations for evaluating trend coefficients are not ill-conditioned and the convergence power of this method is greater compared to the least-squares approximation and therefore the approach by orthonormal functions provides a powerful alternative to the least-squares method. In this paper, orthonormal polynomials in two dimensions are obtained using the Gram-Schmidt method for a polynomial series of the type: Z = 1 + x + y + x2 + xy + y2 + … + yn, where x and y are the locational coordinates and Z is the value of the variable under consideration. Trend-surface analysis, which has wide applications in prospecting, has been carried out using the orthonormal polynomial approach for two sample sets of data from India concerned with gold accumulation from the Kolar Gold Field, and gravity data. A comparison of the orthonormal polynomial trend surfaces with those obtained by the classical least-squares method has been made for the two data sets. In both the situations, the orthonormal polynomial surfaces gave an improved fit to the data. A flowchart and a FORTRAN-IV computer program for deriving orthonormal polynomials of any order and for using them to fit trend surfaces is included. The program has provision for logarithmic transformation of the Z variable. If log-transformation is performed the predicted Z values are reconverted to the original units and the trend-surface map generated for use. The illustration of gold assay data related to the Champion lode system of Kolar Gold Fields, for which a 9th-degree orthonormal trend surface was fit, could be used for further prospecting the area.

  12. Animating Nested Taylor Polynomials to Approximate a Function

    ERIC Educational Resources Information Center

    Mazzone, Eric F.; Piper, Bruce R.

    2010-01-01

    The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…

  13. Polynomial Conjoint Analysis of Similarities: A Model for Constructing Polynomial Conjoint Measurement Algorithms.

    ERIC Educational Resources Information Center

    Young, Forrest W.

    A model permitting construction of algorithms for the polynomial conjoint analysis of similarities is presented. This model, which is based on concepts used in nonmetric scaling, permits one to obtain the best approximate solution. The concepts used to construct nonmetric scaling algorithms are reviewed. Finally, examples of algorithmic models for…

  14. Dual exponential polynomials and linear differential equations

    NASA Astrophysics Data System (ADS)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  15. Polynomial Graphs and Symmetry

    ERIC Educational Resources Information Center

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  16. Why the Faulhaber Polynomials Are Sums of Even or Odd Powers of (n + 1/2)

    ERIC Educational Resources Information Center

    Hersh, Reuben

    2012-01-01

    By extending Faulhaber's polynomial to negative values of n, the sum of the p'th powers of the first n integers is seen to be an even or odd polynomial in (n + 1/2) and therefore expressible in terms of the sum of the first n integers.

  17. Self-Replicating Quadratics

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  18. Polynomial expansions of single-mode motions around equilibrium points in the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo; Circi, Christian

    2018-05-01

    In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth-Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.

  19. Orbifold E-functions of dual invertible polynomials

    NASA Astrophysics Data System (ADS)

    Ebeling, Wolfgang; Gusein-Zade, Sabir M.; Takahashi, Atsushi

    2016-08-01

    An invertible polynomial is a weighted homogeneous polynomial with the number of monomials coinciding with the number of variables and such that the weights of the variables and the quasi-degree are well defined. In the framework of the search for mirror symmetric orbifold Landau-Ginzburg models, P. Berglund and M. Henningson considered a pair (f , G) consisting of an invertible polynomial f and an abelian group G of its symmetries together with a dual pair (f ˜ , G ˜) . We consider the so-called orbifold E-function of such a pair (f , G) which is a generating function for the exponents of the monodromy action on an orbifold version of the mixed Hodge structure on the Milnor fibre of f. We prove that the orbifold E-functions of Berglund-Henningson dual pairs coincide up to a sign depending on the number of variables and a simple change of variables. The proof is based on a relation between monomials (say, elements of a monomial basis of the Milnor algebra of an invertible polynomial) and elements of the whole symmetry group of the dual polynomial.

  20. Reference hypernetted chain theory for ferrofluid bilayer: Distribution functions compared with Monte Carlo

    NASA Astrophysics Data System (ADS)

    Polyakov, Evgeny A.; Vorontsov-Velyaminov, Pavel N.

    2014-08-01

    Properties of ferrofluid bilayer (modeled as a system of two planar layers separated by a distance h and each layer carrying a soft sphere dipolar liquid) are calculated in the framework of inhomogeneous Ornstein-Zernike equations with reference hypernetted chain closure (RHNC). The bridge functions are taken from a soft sphere (1/r12) reference system in the pressure-consistent closure approximation. In order to make the RHNC problem tractable, the angular dependence of the correlation functions is expanded into special orthogonal polynomials according to Lado. The resulting equations are solved using the Newton-GRMES algorithm as implemented in the public-domain solver NITSOL. Orientational densities and pair distribution functions of dipoles are compared with Monte Carlo simulation results. A numerical algorithm for the Fourier-Hankel transform of any positive integer order on a uniform grid is presented.

  1. CBR anisotropy from primordial gravitational waves in inflationary cosmologies

    NASA Astrophysics Data System (ADS)

    Allen, Bruce; Koranda, Scott

    1994-09-01

    We examine stochastic temperature fluctuations of the cosmic background radiation (CBR) arising via the Sachs-Wolfe effect from gravitational wave perturbations produced in the early Universe. These temperature fluctuations are described by an angular correlation function C(γ). A new (more concise and general) derivation of C(γ) is given, and evaluated for inflationary-universe cosmologies. This yields standard results for angles γ greater than a few degrees, but new results for smaller angles, because we do not make standard long-wavelength approximations to the gravitational wave mode functions. The function C(γ) may be expanded in a series of Legendre polynomials; we use numerical methods to compare the coefficients of the resulting expansion in our exact calculation with standard (approximate) results. We also report some progress towards finding a closed form expression for C(γ).

  2. The Adams formulas for numerical integration of differential equations from 1st to 20th order

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. C.

    1976-01-01

    The Adams Bashforth predictor coefficients and the Adams Moulton corrector coefficients for the integration of differential equations are presented for methods of 1st to 20th order. The order of the method as presented refers to the highest order difference formula used in Newton's backward difference interpolation formula, on which the Adams method is based. The Adams method is a polynomial approximation method derived from Newton's backward difference interpolation formula. The Newton formula is derived and expanded to 20th order. The Adams predictor and corrector formulas are derived and expressed in terms of differences of the derivatives, as well as in terms of the derivatives themselves. All coefficients are given to 18 significant digits. For the difference formula only, the ratio coefficients are given to 10th order.

  3. Rainbow net analysis of VAXcluster system availability

    NASA Technical Reports Server (NTRS)

    Johnson, Allen M., Jr.; Schoenfelder, Michael A.

    1991-01-01

    A system modeling technique, Rainbow Nets, is used to evaluate the availability and mean-time-to-interrupt of the VAXcluster. These results are compared to the exact analytic results showing that reasonable accuracy is achieved through simulation. The complexity of the Rainbow Net does not increase as the number of processors increases, but remains constant, unlike a Markov model which expands exponentially. The constancy is achieved by using tokens with identity attributes (items) that can have additional attributes associated with them (features) which can exist in multiple states. The time to perform the simulation increases, but this is a polynomial increase rather than exponential. There is no restriction on distributions used for transition firing times, allowing real situations to be modeled more accurately by choosing the distribution which best fits the system performance and eliminating the need for simplifying assumptions.

  4. Solution of Grad-Shafranov equation by the method of fundamental solutions

    NASA Astrophysics Data System (ADS)

    Nath, D.; Kalra, M. S.; Kalra

    2014-06-01

    In this paper we have used the Method of Fundamental Solutions (MFS) to solve the Grad-Shafranov (GS) equation for the axisymmetric equilibria of tokamak plasmas with monomial sources. These monomials are the individual terms appearing on the right-hand side of the GS equation if one expands the nonlinear terms into polynomials. Unlike the Boundary Element Method (BEM), the MFS does not involve any singular integrals and is a meshless boundary-alone method. Its basic idea is to create a fictitious boundary around the actual physical boundary of the computational domain. This automatically removes the involvement of singular integrals. The results obtained by the MFS match well with the earlier results obtained using the BEM. The method is also applied to Solov'ev profiles and it is found that the results are in good agreement with analytical results.

  5. Identification of black hole horizons using scalar curvature invariants

    NASA Astrophysics Data System (ADS)

    Coley, Alan; McNutt, David

    2018-01-01

    We introduce the concept of a geometric horizon, which is a surface distinguished by the vanishing of certain curvature invariants which characterize its special algebraic character. We motivate its use for the detection of the event horizon of a stationary black hole by providing a set of appropriate scalar polynomial curvature invariants that vanish on this surface. We extend this result by proving that a non-expanding horizon, which generalizes a Killing horizon, coincides with the geometric horizon. Finally, we consider the imploding spherically symmetric metrics and show that the geometric horizon identifies a unique quasi-local surface corresponding to the unique spherically symmetric marginally trapped tube, implying that the spherically symmetric dynamical black holes admit a geometric horizon. Based on these results, we propose a suite of conjectures concerning the application of geometric horizons to more general dynamical black hole scenarios.

  6. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics.

    PubMed

    Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan

    2012-01-01

    Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.

  7. Symmetric polynomials in information theory: Entropy and subentropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozsa, Richard; Mitchison, Graeme

    2015-06-15

    Entropy and other fundamental quantities of information theory are customarily expressed and manipulated as functions of probabilities. Here we study the entropy H and subentropy Q as functions of the elementary symmetric polynomials in the probabilities and reveal a series of remarkable properties. Derivatives of all orders are shown to satisfy a complete monotonicity property. H and Q themselves become multivariate Bernstein functions and we derive the density functions of their Levy-Khintchine representations. We also show that H and Q are Pick functions in each symmetric polynomial variable separately. Furthermore, we see that H and the intrinsically quantum informational quantitymore » Q become surprisingly closely related in functional form, suggesting a special significance for the symmetric polynomials in quantum information theory. Using the symmetric polynomials, we also derive a series of further properties of H and Q.« less

  8. Recursive approach to the moment-based phase unwrapping method.

    PubMed

    Langley, Jason A; Brice, Robert G; Zhao, Qun

    2010-06-01

    The moment-based phase unwrapping algorithm approximates the phase map as a product of Gegenbauer polynomials, but the weight function for the Gegenbauer polynomials generates artificial singularities along the edge of the phase map. A method is presented to remove the singularities inherent to the moment-based phase unwrapping algorithm by approximating the phase map as a product of two one-dimensional Legendre polynomials and applying a recursive property of derivatives of Legendre polynomials. The proposed phase unwrapping algorithm is tested on simulated and experimental data sets. The results are then compared to those of PRELUDE 2D, a widely used phase unwrapping algorithm, and a Chebyshev-polynomial-based phase unwrapping algorithm. It was found that the proposed phase unwrapping algorithm provides results that are comparable to those obtained by using PRELUDE 2D and the Chebyshev phase unwrapping algorithm.

  9. A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials

    NASA Astrophysics Data System (ADS)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing

    2015-09-01

    The accuracy of metamodelling is determined by both the sampling and approximation. This article proposes a new sampling method based on the zeros of Chebyshev polynomials to capture the sampling information effectively. First, the zeros of one-dimensional Chebyshev polynomials are applied to construct Chebyshev tensor product (CTP) sampling, and the CTP is then used to construct high-order multi-dimensional metamodels using the 'hypercube' polynomials. Secondly, the CTP sampling is further enhanced to develop Chebyshev collocation method (CCM) sampling, to construct the 'simplex' polynomials. The samples of CCM are randomly and directly chosen from the CTP samples. Two widely studied sampling methods, namely the Smolyak sparse grid and Hammersley, are used to demonstrate the effectiveness of the proposed sampling method. Several numerical examples are utilized to validate the approximation accuracy of the proposed metamodel under different dimensions.

  10. A solver for General Unilateral Polynomial Matrix Equation with Second-Order Matrices Over Prime Finite Fields

    NASA Astrophysics Data System (ADS)

    Burtyka, Filipp

    2018-03-01

    The paper firstly considers the problem of finding solvents for arbitrary unilateral polynomial matrix equations with second-order matrices over prime finite fields from the practical point of view: we implement the solver for this problem. The solver’s algorithm has two step: the first is finding solvents, having Jordan Normal Form (JNF), the second is finding solvents among the rest matrices. The first step reduces to the finding roots of usual polynomials over finite fields, the second is essentially exhaustive search. The first step’s algorithms essentially use the polynomial matrices theory. We estimate the practical duration of computations using our software implementation (for example that one can’t construct unilateral matrix polynomial over finite field, having any predefined number of solvents) and answer some theoretically-valued questions.

  11. Polynomial reduction and evaluation of tree- and loop-level CHY amplitudes

    DOE PAGES

    Zlotnikov, Michael

    2016-08-24

    We develop a polynomial reduction procedure that transforms any gauge fixed CHY amplitude integrand for n scattering particles into a σ-moduli multivariate polynomial of what we call the standard form. We show that a standard form polynomial must have a specific ladder type monomial structure, which has finite size at any n, with highest multivariate degree given by (n – 3)(n – 4)/2. This set of monomials spans a complete basis for polynomials with rational coefficients in kinematic data on the support of scattering equations. Subsequently, at tree and one-loop level, we employ the global residue theorem to derive amore » prescription that evaluates any CHY amplitude by means of collecting simple residues at infinity only. Furthermore, the prescription is then applied explicitly to some tree and one-loop amplitude examples.« less

  12. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.

  13. A polynomial based model for cell fate prediction in human diseases.

    PubMed

    Ma, Lichun; Zheng, Jie

    2017-12-21

    Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to treat human diseases that are related to abnormal cell development. In this study, we proposed a polynomial based model to predict cell fate. This model was derived from Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model. As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition, we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as well as assessing the variances of the predicted values at randomly selected points. Results show that, within both the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within genes of the apoptosis pathway is much more stable. Considering both the prediction accuracy and the stability of polynomial models of different degrees, the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The presented cell fate prediction model can be extended to other cells, which may be important for basic research as well as clinical study of cell development related diseases.

  14. Combined predictive value of the expanded donor criteria for long-term graft survival of kidneys from donors after cardiac death: A single-center experience over three decades.

    PubMed

    Kusaka, Mamoru; Kubota, Yusuke; Sasaki, Hitomi; Fukami, Naohiko; Fujita, Tamio; Hirose, Yuichi; Takahashi, Hiroshi; Kenmochi, Takashi; Shiroki, Ryoichi; Hoshinaga, Kiyotaka

    2016-04-01

    Kidneys procured from the deceased hold great potential for expanding the donor pool. The aims of the present study were to investigate the post-transplant outcomes of renal allografts recovered from donors after cardiac death, to identify risk factors affecting the renal prognosis and to compare the long-term survival from donors after cardiac death according to the number of risk factors shown by expanded criteria donors. A total of 443 grafts recovered using an in situ regional cooling technique from 1983 to 2011 were assessed. To assess the combined predictive value of the significant expanded criteria donor risk criteria, the patients were divided into three groups: those with no expanded criteria donor risk factors (no risk), one expanded criteria donor risk factor (single-risk) and two or more expanded criteria donor risk factors (multiple-risk). Among the donor factors, age ≥50 years, hypertension, maximum serum creatinine level ≥1.5 mg/dL and a warm ischemia time ≥30 min were identified as independent predictors of long-term graft failure on multivariate analysis. Regarding the expanded criteria donors criteria for marginal donors, cerebrovascular disease, hypertension and maximum serum creatinine level ≥1.5 mg/dL were identified as significant predictors on univariate analysis. The single- and multiple-risk groups showed 2.01- and 2.40-fold higher risks of graft loss, respectively. Renal grafts recovered from donors after cardiac death donors have a good renal function with an excellent long-term graft survival. However, an increased number of expanded criteria donors risk factors increase the risk of graft loss. © 2016 The Japanese Urological Association.

  15. New approach to wireless data communication in a propagation environment

    NASA Astrophysics Data System (ADS)

    Hunek, Wojciech P.; Majewski, Paweł

    2017-10-01

    This paper presents a new idea of perfect signal reconstruction in multivariable wireless communications systems including a different number of transmitting and receiving antennas. The proposed approach is based on the polynomial matrix S-inverse associated with Smith factorization. Crucially, the above mentioned inverse implements the so-called degrees of freedom. It has been confirmed by simulation study that the degrees of freedom allow to minimalize the negative impact of the propagation environment in terms of increasing the robustness of whole signal reconstruction process. Now, the parasitic drawbacks in form of dynamic ISI and ICI effects can be eliminated in framework described by polynomial calculus. Therefore, the new method guarantees not only reducing the financial impact but, more importantly, provides potentially the lower consumption energy systems than other classical ones. In order to show the potential of new approach, the simulation studies were performed by author's simulator based on well-known OFDM technique.

  16. Entanglement of coherent superposition of photon-subtraction squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Liu, Cun-Jin; Ye, Wei; Zhou, Wei-Dong; Zhang, Hao-Liang; Huang, Jie-Hui; Hu, Li-Yun

    2017-10-01

    A new kind of non-Gaussian quantum state is introduced by applying nonlocal coherent superposition ( τa + sb) m of photon subtraction to two single-mode squeezed vacuum states, and the properties of entanglement are investigated according to the degree of entanglement and the average fidelity of quantum teleportation. The state can be seen as a single-variable Hermitian polynomial excited squeezed vacuum state, and its normalization factor is related to the Legendre polynomial. It is shown that, for τ = s, the maximum fidelity can be achieved, even over the classical limit (1/2), only for even-order operation m and equivalent squeezing parameters in a certain region. However, the maximum entanglement can be achieved for squeezing parameters with a π phase difference. These indicate that the optimal realizations of fidelity and entanglement could be different from one another. In addition, the parameter τ/ s has an obvious effect on entanglement and fidelity.

  17. Temperature Effects and Compensation-Control Methods

    PubMed Central

    Xia, Dunzhu; Chen, Shuling; Wang, Shourong; Li, Hongsheng

    2009-01-01

    In the analysis of the effects of temperature on the performance of microgyroscopes, it is found that the resonant frequency of the microgyroscope decreases linearly as the temperature increases, and the quality factor changes drastically at low temperatures. Moreover, the zero bias changes greatly with temperature variations. To reduce the temperature effects on the microgyroscope, temperature compensation-control methods are proposed. In the first place, a BP (Back Propagation) neural network and polynomial fitting are utilized for building the temperature model of the microgyroscope. Considering the simplicity and real-time requirements, piecewise polynomial fitting is applied in the temperature compensation system. Then, an integral-separated PID (Proportion Integration Differentiation) control algorithm is adopted in the temperature control system, which can stabilize the temperature inside the microgyrocope in pursuing its optimal performance. Experimental results reveal that the combination of microgyroscope temperature compensation and control methods is both realizable and effective in a miniaturized microgyroscope prototype. PMID:22408509

  18. Bayesian median regression for temporal gene expression data

    NASA Astrophysics Data System (ADS)

    Yu, Keming; Vinciotti, Veronica; Liu, Xiaohui; 't Hoen, Peter A. C.

    2007-09-01

    Most of the existing methods for the identification of biologically interesting genes in a temporal expression profiling dataset do not fully exploit the temporal ordering in the dataset and are based on normality assumptions for the gene expression. In this paper, we introduce a Bayesian median regression model to detect genes whose temporal profile is significantly different across a number of biological conditions. The regression model is defined by a polynomial function where both time and condition effects as well as interactions between the two are included. MCMC-based inference returns the posterior distribution of the polynomial coefficients. From this a simple Bayes factor test is proposed to test for significance. The estimation of the median rather than the mean, and within a Bayesian framework, increases the robustness of the method compared to a Hotelling T2-test previously suggested. This is shown on simulated data and on muscular dystrophy gene expression data.

  19. Generalized Freud's equation and level densities with polynomial potential

    NASA Astrophysics Data System (ADS)

    Boobna, Akshat; Ghosh, Saugata

    2013-08-01

    We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.

  20. FIT: Computer Program that Interactively Determines Polynomial Equations for Data which are a Function of Two Independent Variables

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.; Roy, M. L.; Tiffany, S. H.

    1985-01-01

    A computer program for interactively developing least-squares polynomial equations to fit user-supplied data is described. The program is characterized by the ability to compute the polynomial equations of a surface fit through data that are a function of two independent variables. The program utilizes the Langley Research Center graphics packages to display polynomial equation curves and data points, facilitating a qualitative evaluation of the effectiveness of the fit. An explanation of the fundamental principles and features of the program, as well as sample input and corresponding output, are included.

  1. First Instances of Generalized Expo-Rational Finite Elements on Triangulations

    NASA Astrophysics Data System (ADS)

    Dechevsky, Lubomir T.; Zanaty, Peter; Laksa˚, Arne; Bang, Børre

    2011-12-01

    In this communication we consider a construction of simplicial finite elements on triangulated two-dimensional polygonal domains. This construction is, in some sense, dual to the construction of generalized expo-rational B-splines (GERBS). The main result is in the obtaining of new polynomial simplicial patches of the first several lowest possible total polynomial degrees which exhibit Hermite interpolatory properties. The derivation of these results is based on the theory of piecewise polynomial GERBS called Euler Beta-function B-splines. We also provide 3-dimensional visualization of the graphs of the new polynomial simplicial patches and their control polygons.

  2. The Translated Dowling Polynomials and Numbers.

    PubMed

    Mangontarum, Mahid M; Macodi-Ringia, Amila P; Abdulcarim, Normalah S

    2014-01-01

    More properties for the translated Whitney numbers of the second kind such as horizontal generating function, explicit formula, and exponential generating function are proposed. Using the translated Whitney numbers of the second kind, we will define the translated Dowling polynomials and numbers. Basic properties such as exponential generating functions and explicit formula for the translated Dowling polynomials and numbers are obtained. Convexity, integral representation, and other interesting identities are also investigated and presented. We show that the properties obtained are generalizations of some of the known results involving the classical Bell polynomials and numbers. Lastly, we established the Hankel transform of the translated Dowling numbers.

  3. Accurate Estimation of Solvation Free Energy Using Polynomial Fitting Techniques

    PubMed Central

    Shyu, Conrad; Ytreberg, F. Marty

    2010-01-01

    This report details an approach to improve the accuracy of free energy difference estimates using thermodynamic integration data (slope of the free energy with respect to the switching variable λ) and its application to calculating solvation free energy. The central idea is to utilize polynomial fitting schemes to approximate the thermodynamic integration data to improve the accuracy of the free energy difference estimates. Previously, we introduced the use of polynomial regression technique to fit thermodynamic integration data (Shyu and Ytreberg, J Comput Chem 30: 2297–2304, 2009). In this report we introduce polynomial and spline interpolation techniques. Two systems with analytically solvable relative free energies are used to test the accuracy of the interpolation approach. We also use both interpolation and regression methods to determine a small molecule solvation free energy. Our simulations show that, using such polynomial techniques and non-equidistant λ values, the solvation free energy can be estimated with high accuracy without using soft-core scaling and separate simulations for Lennard-Jones and partial charges. The results from our study suggest these polynomial techniques, especially with use of non-equidistant λ values, improve the accuracy for ΔF estimates without demanding additional simulations. We also provide general guidelines for use of polynomial fitting to estimate free energy. To allow researchers to immediately utilize these methods, free software and documentation is provided via http://www.phys.uidaho.edu/ytreberg/software. PMID:20623657

  4. Staircase tableaux, the asymmetric exclusion process, and Askey-Wilson polynomials

    PubMed Central

    Corteel, Sylvie; Williams, Lauren K.

    2010-01-01

    We introduce some combinatorial objects called staircase tableaux, which have cardinality 4nn !, and connect them to both the asymmetric exclusion process (ASEP) and Askey-Wilson polynomials. The ASEP is a model from statistical mechanics introduced in the late 1960s, which describes a system of interacting particles hopping left and right on a one-dimensional lattice of n sites with open boundaries. It has been cited as a model for traffic flow and translation in protein synthesis. In its most general form, particles may enter and exit at the left with probabilities α and γ, and they may exit and enter at the right with probabilities β and δ. In the bulk, the probability of hopping left is q times the probability of hopping right. Our first result is a formula for the stationary distribution of the ASEP with all parameters general, in terms of staircase tableaux. Our second result is a formula for the moments of (the weight function of) Askey-Wilson polynomials, also in terms of staircase tableaux. Since the 1980s there has been a great deal of work giving combinatorial formulas for moments of classical orthogonal polynomials (e.g. Hermite, Charlier, Laguerre); among these polynomials, the Askey-Wilson polynomials are the most important, because they are at the top of the hierarchy of classical orthogonal polynomials. PMID:20348417

  5. Staircase tableaux, the asymmetric exclusion process, and Askey-Wilson polynomials.

    PubMed

    Corteel, Sylvie; Williams, Lauren K

    2010-04-13

    We introduce some combinatorial objects called staircase tableaux, which have cardinality 4(n)n!, and connect them to both the asymmetric exclusion process (ASEP) and Askey-Wilson polynomials. The ASEP is a model from statistical mechanics introduced in the late 1960s, which describes a system of interacting particles hopping left and right on a one-dimensional lattice of n sites with open boundaries. It has been cited as a model for traffic flow and translation in protein synthesis. In its most general form, particles may enter and exit at the left with probabilities alpha and gamma, and they may exit and enter at the right with probabilities beta and delta. In the bulk, the probability of hopping left is q times the probability of hopping right. Our first result is a formula for the stationary distribution of the ASEP with all parameters general, in terms of staircase tableaux. Our second result is a formula for the moments of (the weight function of) Askey-Wilson polynomials, also in terms of staircase tableaux. Since the 1980s there has been a great deal of work giving combinatorial formulas for moments of classical orthogonal polynomials (e.g. Hermite, Charlier, Laguerre); among these polynomials, the Askey-Wilson polynomials are the most important, because they are at the top of the hierarchy of classical orthogonal polynomials.

  6. [Analysis of scientific production and bibliometric impact of a group of Spanish clinical researchers].

    PubMed

    Miró, O; Burbano Santos, P; Trilla, A; Casademont, J; Fernandez Pérez, C; Martín-Sánchez, Fj

    2016-01-01

    To study the behaviour of several indicators of scientific production and repercussion in a group of Spanish clinical researchers and to evaluate their possible utility for interpreting individual or collective scientific pathways. We performed a unicentric, ecological pilot study involving a group of physicians with consolidated research experience. From the Science Citation Index Expanded (SCI-Expanded) database, we obtained the number of publications of each author (indicator of production) and the number of citations, impact factor and h index (indicators of repercussion). These indicators were calculated individually for each of the years of research experience and we assessed the relationship between the experience of the researcher and the value of the indicator achieved, the relationship between these indicators themselves, and their temporal evolution, both individually and for the entire group. We analysed 35 researchers with a research experience of 28.4 (9.6) years. The h index showed the lowest coefficient of variance. The relationship between the indicators and research experience was significant, albeit modest (R2 between 0.15-0.22). The 4 indicators showed good correlations. The temporal evolution of the indicators, both individual and collective, adjusted better to a second grade polynomial than a linear function: individually, all the authors obtained R2>0.90 in all the indicators; together the best adjustment was produced with the h index (R2=0.61). Based on the indicator used, substantial variations may be produced in the researchers' ranking. A model of the temporal evolution of the indicators of production and repercussion can be described in a relatively homogeneous sample of researchers and the h index seems to demonstrate certain advantages compared to the remaining indicators. This type of analysis could become a predictive tool of performance to be achieved not only for a particular researcher, but also for a homogeneous group of resear-chers corresponding to a specific scientific niche.

  7. Algorithms in Discrepancy Theory and Lattices

    NASA Astrophysics Data System (ADS)

    Ramadas, Harishchandra

    This thesis deals with algorithmic problems in discrepancy theory and lattices, and is based on two projects I worked on while at the University of Washington in Seattle. A brief overview is provided in Chapter 1 (Introduction). Chapter 2 covers joint work with Avi Levy and Thomas Rothvoss in the field of discrepancy minimization. A well-known theorem of Spencer shows that any set system with n sets over n elements admits a coloring of discrepancy O(√n). While the original proof was non-constructive, recent progress brought polynomial time algorithms by Bansal, Lovett and Meka, and Rothvoss. All those algorithms are randomized, even though Bansal's algorithm admitted a complicated derandomization. We propose an elegant deterministic polynomial time algorithm that is inspired by Lovett-Meka as well as the Multiplicative Weight Update method. The algorithm iteratively updates a fractional coloring while controlling the exponential weights that are assigned to the set constraints. A conjecture by Meka suggests that Spencer's bound can be generalized to symmetric matrices. We prove that n x n matrices that are block diagonal with block size q admit a coloring of discrepancy O(√n . √log(q)). Bansal, Dadush and Garg recently gave a randomized algorithm to find a vector x with entries in {-1,1} with ∥Ax∥infinity ≤ O(√log n) in polynomial time, where A is any matrix whose columns have length at most 1. We show that our method can be used to deterministically obtain such a vector. In Chapter 3, we discuss a result in the broad area of lattices and integer optimization, in joint work with Rebecca Hoberg, Thomas Rothvoss and Xin Yang. The number balancing (NBP) problem is the following: given real numbers a1,...,an in [0,1], find two disjoint subsets I1,I2 of [ n] so that the difference |sumi∈I1a i - sumi∈I2ai| of their sums is minimized. An application of the pigeonhole principle shows that there is always a solution where the difference is at most O √n/2n). Finding the minimum, however, is NP-hard. In polynomial time, the differencing algorithm by Karmarkar and Karp from 1982 can produce a solution with difference at most n-theta(log n), but no further improvement has been made since then. We show a relationship between NBP and Minkowski's Theorem. First we show that an approximate oracle for Minkowski's Theorem gives an approximate NBP oracle. Perhaps more surprisingly, we show that an approximate NBP oracle gives an approximate Minkowski oracle. In particular, we prove that any polynomial time algorithm that guarantees a solution of difference at most 2√n/2 n would give a polynomial approximation for Minkowski as well as a polynomial factor approximation algorithm for the Shortest Vector Problem.

  8. Wilson-Racah quantum system

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.; Taiwo, T. J.

    2017-02-01

    Using a recent formulation of quantum mechanics without a potential function, we present a four-parameter system associated with the Wilson and Racah polynomials. The continuum scattering states are written in terms of the Wilson polynomials whose asymptotics give the scattering amplitude and phase shift. On the other hand, the finite number of discrete bound states are associated with the Racah polynomials.

  9. On the Waring problem for polynomial rings

    PubMed Central

    Fröberg, Ralf; Ottaviani, Giorgio; Shapiro, Boris

    2012-01-01

    In this note we discuss an analog of the classical Waring problem for . Namely, we show that a general homogeneous polynomial of degree divisible by k≥2 can be represented as a sum of at most kn k-th powers of homogeneous polynomials in . Noticeably, kn coincides with the number obtained by naive dimension count. PMID:22460787

  10. A DDDAS Framework for Volcanic Ash Propagation and Hazard Analysis

    DTIC Science & Technology

    2012-01-01

    probability distribution for the input variables (for example, Hermite polynomials for normally distributed parameters, or Legendre for uniformly...parameters and windfields will drive our simulations. We will use uncertainty quantification methodology – polynomial chaos quadrature in combination...quantification methodology ? polynomial chaos quadrature in combination with data integration to complete the DDDAS loop. 15. SUBJECT TERMS 16. SECURITY

  11. On computation of Gröbner bases for linear difference systems

    NASA Astrophysics Data System (ADS)

    Gerdt, Vladimir P.

    2006-04-01

    In this paper, we present an algorithm for computing Gröbner bases of linear ideals in a difference polynomial ring over a ground difference field. The input difference polynomials generating the ideal are also assumed to be linear. The algorithm is an adaptation to difference ideals of our polynomial algorithm based on Janet-like reductions.

  12. A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X.

    2001-08-01

    A few years ago the authors introduced a new approach to study asymptotic questions for orthogonal polynomials. In this paper we give an overview of our method and review the results which have been obtained in Deift et al. (Internat. Math. Res. Notices (1997) 759, Comm. Pure Appl. Math. 52 (1999) 1491, 1335), Deift (Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes, Vol. 3, New York University, 1999), Kriecherbauer and McLaughlin (Internat. Math. Res. Notices (1999) 299) and Baik et al. (J. Amer. Math. Soc. 12 (1999) 1119). We mainly consider orthogonal polynomials with respect to weights on the real line which are either (1) Freud-type weights d[alpha](x)=e-Q(x) dx (Q polynomial or Q(x)=x[beta], [beta]>0), or (2) varying weights d[alpha]n(x)=e-nV(x) dx (V analytic, limx-->[infinity] V(x)/logx=[infinity]). We obtain Plancherel-Rotach-type asymptotics in the entire complex plane as well as asymptotic formulae with error estimates for the leading coefficients, for the recurrence coefficients, and for the zeros of the orthogonal polynomials. Our proof starts from an observation of Fokas et al. (Comm. Math. Phys. 142 (1991) 313) that the orthogonal polynomials can be determined as solutions of certain matrix valued Riemann-Hilbert problems. We analyze the Riemann-Hilbert problems by a steepest descent type method introduced by Deift and Zhou (Ann. Math. 137 (1993) 295) and further developed in Deift and Zhou (Comm. Pure Appl. Math. 48 (1995) 277) and Deift et al. (Proc. Nat. Acad. Sci. USA 95 (1998) 450). A crucial step in our analysis is the use of the well-known equilibrium measure which describes the asymptotic distribution of the zeros of the orthogonal polynomials.

  13. Wilson polynomials/functions and intertwining operators for the generic quantum superintegrable system on the 2-sphere

    NASA Astrophysics Data System (ADS)

    Miller, W., Jr.; Li, Q.

    2015-04-01

    The Wilson and Racah polynomials can be characterized as basis functions for irreducible representations of the quadratic symmetry algebra of the quantum superintegrable system on the 2-sphere, HΨ = EΨ, with generic 3-parameter potential. Clearly, the polynomials are expansion coefficients for one eigenbasis of a symmetry operator L2 of H in terms of an eigenbasis of another symmetry operator L1, but the exact relationship appears not to have been made explicit. We work out the details of the expansion to show, explicitly, how the polynomials arise and how the principal properties of these functions: the measure, 3-term recurrence relation, 2nd order difference equation, duality of these relations, permutation symmetry, intertwining operators and an alternate derivation of Wilson functions - follow from the symmetry of this quantum system. This paper is an exercise to show that quantum mechancal concepts and recurrence relations for Gausian hypergeometrc functions alone suffice to explain these properties; we make no assumptions about the structure of Wilson polynomial/functions, but derive them from quantum principles. There is active interest in the relation between multivariable Wilson polynomials and the quantum superintegrable system on the n-sphere with generic potential, and these results should aid in the generalization. Contracting function space realizations of irreducible representations of this quadratic algebra to the other superintegrable systems one can obtain the full Askey scheme of orthogonal hypergeometric polynomials. All of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2,C). All of the polynomials produced are interpretable as quantum expansion coefficients. It is important to extend this process to higher dimensions.

  14. Piecewise polynomial representations of genomic tracks.

    PubMed

    Tarabichi, Maxime; Detours, Vincent; Konopka, Tomasz

    2012-01-01

    Genomic data from micro-array and sequencing projects consist of associations of measured values to chromosomal coordinates. These associations can be thought of as functions in one dimension and can thus be stored, analyzed, and interpreted as piecewise-polynomial curves. We present a general framework for building piecewise polynomial representations of genome-scale signals and illustrate some of its applications via examples. We show that piecewise constant segmentation, a typical step in copy-number analyses, can be carried out within this framework for both array and (DNA) sequencing data offering advantages over existing methods in each case. Higher-order polynomial curves can be used, for example, to detect trends and/or discontinuities in transcription levels from RNA-seq data. We give a concrete application of piecewise linear functions to diagnose and quantify alignment quality at exon borders (splice sites). Our software (source and object code) for building piecewise polynomial models is available at http://sourceforge.net/projects/locsmoc/.

  15. Where are the roots of the Bethe Ansatz equations?

    NASA Astrophysics Data System (ADS)

    Vieira, R. S.; Lima-Santos, A.

    2015-10-01

    Changing the variables in the Bethe Ansatz Equations (BAE) for the XXZ six-vertex model we had obtained a coupled system of polynomial equations. This provided a direct link between the BAE deduced from the Algebraic Bethe Ansatz (ABA) and the BAE arising from the Coordinate Bethe Ansatz (CBA). For two magnon states this polynomial system could be decoupled and the solutions given in terms of the roots of some self-inversive polynomials. From theorems concerning the distribution of the roots of self-inversive polynomials we made a thorough analysis of the two magnon states, which allowed us to find the location and multiplicity of the Bethe roots in the complex plane, to discuss the completeness and singularities of Bethe's equations, the ill-founded string-hypothesis concerning the location of their roots, as well as to find an interesting connection between the BAE with Salem's polynomials.

  16. Optimal control and Galois theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelikin, M I; Kiselev, D D; Lokutsievskiy, L V

    2013-11-30

    An important role is played in the solution of a class of optimal control problems by a certain special polynomial of degree 2(n−1) with integer coefficients. The linear independence of a family of k roots of this polynomial over the field Q implies the existence of a solution of the original problem with optimal control in the form of an irrational winding of a k-dimensional Clifford torus, which is passed in finite time. In the paper, we prove that for n≤15 one can take an arbitrary positive integer not exceeding [n/2] for k. The apparatus developed in the paper is applied to the systems ofmore » Chebyshev-Hermite polynomials and generalized Chebyshev-Laguerre polynomials. It is proved that for such polynomials of degree 2m every subsystem of [(m+1)/2] roots with pairwise distinct squares is linearly independent over the field Q. Bibliography: 11 titles.« less

  17. Lifting q-difference operators for Askey-Wilson polynomials and their weight function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atakishiyeva, M. K.; Atakishiyev, N. M., E-mail: natig_atakishiyev@hotmail.com

    2011-06-15

    We determine an explicit form of a q-difference operator that transforms the continuous q-Hermite polynomials H{sub n}(x | q) of Rogers into the Askey-Wilson polynomials p{sub n}(x; a, b, c, d | q) on the top level in the Askey q-scheme. This operator represents a special convolution-type product of four one-parameter q-difference operators of the form {epsilon}{sub q}(c{sub q}D{sub q}) (where c{sub q} are some constants), defined as Exton's q-exponential function {epsilon}{sub q}(z) in terms of the Askey-Wilson divided q-difference operator D{sub q}. We also determine another q-difference operator that lifts the orthogonality weight function for the continuous q-Hermite polynomialsH{submore » n}(x | q) up to the weight function, associated with the Askey-Wilson polynomials p{sub n}(x; a, b, c, d | q).« less

  18. New Formulae for the High-Order Derivatives of Some Jacobi Polynomials: An Application to Some High-Order Boundary Value Problems

    PubMed Central

    Abd-Elhameed, W. M.

    2014-01-01

    This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms. PMID:25386599

  19. Combining freeform optics and curved detectors for wide field imaging: a polynomial approach over squared aperture.

    PubMed

    Muslimov, Eduard; Hugot, Emmanuel; Jahn, Wilfried; Vives, Sebastien; Ferrari, Marc; Chambion, Bertrand; Henry, David; Gaschet, Christophe

    2017-06-26

    In the recent years a significant progress was achieved in the field of design and fabrication of optical systems based on freeform optical surfaces. They provide a possibility to build fast, wide-angle and high-resolution systems, which are very compact and free of obscuration. However, the field of freeform surfaces design techniques still remains underexplored. In the present paper we use the mathematical apparatus of orthogonal polynomials defined over a square aperture, which was developed before for the tasks of wavefront reconstruction, to describe shape of a mirror surface. Two cases, namely Legendre polynomials and generalization of the Zernike polynomials on a square, are considered. The potential advantages of these polynomials sets are demonstrated on example of a three-mirror unobscured telescope with F/# = 2.5 and FoV = 7.2x7.2°. In addition, we discuss possibility of use of curved detectors in such a design.

  20. Inequalities for a polynomial and its derivative

    NASA Astrophysics Data System (ADS)

    Chanam, Barchand; Dewan, K. K.

    2007-12-01

    Let , 1[less-than-or-equals, slant][mu][less-than-or-equals, slant]n, be a polynomial of degree n such that p(z)[not equal to]0 in z0, then for 0

  1. Quantization of gauge fields, graph polynomials and graph homology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology.more » -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.« less

  2. An algorithmic approach to solving polynomial equations associated with quantum circuits

    NASA Astrophysics Data System (ADS)

    Gerdt, V. P.; Zinin, M. V.

    2009-12-01

    In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Gröbner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Gröbner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Gröbner bases over F 2.

  3. Recurrence approach and higher order polynomial algebras for superintegrable monopole systems

    NASA Astrophysics Data System (ADS)

    Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong

    2018-05-01

    We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.

  4. Polynomial interpolation and sums of powers of integers

    NASA Astrophysics Data System (ADS)

    Cereceda, José Luis

    2017-02-01

    In this note, we revisit the problem of polynomial interpolation and explicitly construct two polynomials in n of degree k + 1, Pk(n) and Qk(n), such that Pk(n) = Qk(n) = fk(n) for n = 1, 2,… , k, where fk(1), fk(2),… , fk(k) are k arbitrarily chosen (real or complex) values. Then, we focus on the case that fk(n) is given by the sum of powers of the first n positive integers Sk(n) = 1k + 2k + ṡṡṡ + nk, and show that Sk(n) admits the polynomial representations Sk(n) = Pk(n) and Sk(n) = Qk(n) for all n = 1, 2,… , and k ≥ 1, where the first representation involves the Eulerian numbers, and the second one the Stirling numbers of the second kind. Finally, we consider yet another polynomial formula for Sk(n) alternative to the well-known formula of Bernoulli.

  5. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  6. Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Botti, Lorenzo; Di Pietro, Daniele A.

    2018-10-01

    We propose and validate a novel extension of Hybrid High-Order (HHO) methods to meshes featuring curved elements. HHO methods are based on discrete unknowns that are broken polynomials on the mesh and its skeleton. We propose here the use of physical frame polynomials over mesh elements and reference frame polynomials over mesh faces. With this choice, the degree of face unknowns must be suitably selected in order to recover on curved meshes the same convergence rates as on straight meshes. We provide an estimate of the optimal face polynomial degree depending on the element polynomial degree and on the so-called effective mapping order. The estimate is numerically validated through specifically crafted numerical tests. All test cases are conducted considering two- and three-dimensional pure diffusion problems, and include comparisons with discontinuous Galerkin discretizations. The extension to agglomerated meshes with curved boundaries is also considered.

  7. Design of polynomial fuzzy observer-controller for nonlinear systems with state delay: sum of squares approach

    NASA Astrophysics Data System (ADS)

    Gassara, H.; El Hajjaji, A.; Chaabane, M.

    2017-07-01

    This paper investigates the problem of observer-based control for two classes of polynomial fuzzy systems with time-varying delay. The first class concerns a special case where the polynomial matrices do not depend on the estimated state variables. The second one is the general case where the polynomial matrices could depend on unmeasurable system states that will be estimated. For the last case, two design procedures are proposed. The first one gives the polynomial fuzzy controller and observer gains in two steps. In the second procedure, the designed gains are obtained using a single-step approach to overcome the drawback of a two-step procedure. The obtained conditions are presented in terms of sum of squares (SOS) which can be solved via the SOSTOOLS and a semi-definite program solver. Illustrative examples show the validity and applicability of the proposed results.

  8. Multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials

    NASA Astrophysics Data System (ADS)

    Odake, Satoru; Sasaki, Ryu

    2017-04-01

    As the fourth stage of the project multi-indexed orthogonal polynomials, we present the multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials in the framework of ‘discrete quantum mechanics’ with real shifts defined on the semi-infinite lattice in one dimension. They are obtained, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier, from the quantum mechanical systems corresponding to the original orthogonal polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of virtual state vectors. The virtual state vectors are the solutions of the matrix Schrödinger equation on all the lattice points having negative energies and infinite norm. This is in good contrast to the (q-)Racah systems defined on a finite lattice, in which the ‘virtual state’ vectors satisfy the matrix Schrödinger equation except for one of the two boundary points.

  9. Using Tutte polynomials to analyze the structure of the benzodiazepines

    NASA Astrophysics Data System (ADS)

    Cadavid Muñoz, Juan José

    2014-05-01

    Graph theory in general and Tutte polynomials in particular, are implemented for analyzing the chemical structure of the benzodiazepines. Similarity analysis are used with the Tutte polynomials for finding other molecules that are similar to the benzodiazepines and therefore that might show similar psycho-active actions for medical purpose, in order to evade the drawbacks associated to the benzodiazepines based medicine. For each type of benzodiazepines, Tutte polynomials are computed and some numeric characteristics are obtained, such as the number of spanning trees and the number of spanning forests. Computations are done using the computer algebra Maple's GraphTheory package. The obtained analytical results are of great importance in pharmaceutical engineering. As a future research line, the usage of the chemistry computational program named Spartan, will be used to extent and compare it with the obtained results from the Tutte polynomials of benzodiazepines.

  10. Wireless Cybersecurity

    DTIC Science & Technology

    2013-04-01

    completely change the entire landscape. For example, under the quantum computing regime, factoring prime numbers requires only polynomial time (i.e., Shor’s...AFRL-OSR-VA-TR-2013-0206 Wireless Cybersecurity Biao Chen Syracuse University April 2013 Final Report DISTRIBUTION A...19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 21-02-2013 FINAL REPORT 01-04-2009 TO 30-11-2012 Wireless Cybersecurity

  11. On the Complexity of the Asymmetric VPN Problem

    NASA Astrophysics Data System (ADS)

    Rothvoß, Thomas; Sanità, Laura

    We give the first constant factor approximation algorithm for the asymmetric Virtual Private Network (textsc{Vpn}) problem with arbitrary concave costs. We even show the stronger result, that there is always a tree solution of cost at most 2·OPT and that a tree solution of (expected) cost at most 49.84·OPT can be determined in polynomial time.

  12. The Fixed-Links Model in Combination with the Polynomial Function as a Tool for Investigating Choice Reaction Time Data

    ERIC Educational Resources Information Center

    Schweizer, Karl

    2006-01-01

    A model with fixed relations between manifest and latent variables is presented for investigating choice reaction time data. The numbers for fixation originate from the polynomial function. Two options are considered: the component-based (1 latent variable for each component of the polynomial function) and composite-based options (1 latent…

  13. Credible Set Estimation, Analysis, and Applications in Synthetic Aperture Radar Canonical Feature Extraction

    DTIC Science & Technology

    2015-03-26

    depicting the CSE implementation for use with CV Domes data. . . 88 B.1 Validation results for N = 1 observation at 1.0 interval. Legendre polynomial of... Legendre polynomial of order Nl = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 B.3 Validation results for N = 1 observation at...0.01 interval. Legendre polynomial of order Nl = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 B.4 Validation results for N

  14. Some Curious Properties and Loci Problems Associated with Cubics and Other Polynomials

    ERIC Educational Resources Information Center

    de Alwis, Amal

    2012-01-01

    The article begins with a well-known property regarding tangent lines to a cubic polynomial that has distinct, real zeros. We were then able to generalize this property to any polynomial with distinct, real zeros. We also considered a certain family of cubics with two fixed zeros and one variable zero, and explored the loci of centroids of…

  15. Generalized clustering conditions of Jack polynomials at negative Jack parameter {alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernevig, B. Andrei; Department of Physics, Princeton University, Princeton, New Jersey 08544; Haldane, F. D. M.

    We present several conjectures on the behavior and clustering properties of Jack polynomials at a negative parameter {alpha}=-(k+1/r-1), with partitions that violate the (k,r,N)- admissibility rule of [Feigin et al. [Int. Math. Res. Notices 23, 1223 (2002)]. We find that the ''highest weight'' Jack polynomials of specific partitions represent the minimum degree polynomials in N variables that vanish when s distinct clusters of k+1 particles are formed, where s and k are positive integers. Explicit counting formulas are conjectured. The generalized clustering conditions are useful in a forthcoming description of fractional quantum Hall quasiparticles.

  16. Direct solution for thermal stresses in a nose cap under an arbitrary axisymmetric temperature distribution

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.

    1988-01-01

    The design of a nose cap for a hypersonic vehicle is an iterative process requiring a rapid, easy to use and accurate stress analysis. The objective of this paper is to develop such a stress analysis technique from a direct solution of the thermal stress equations for a spherical shell. The nose cap structure is treated as a thin spherical shell with an axisymmetric temperature distribution. The governing differential equations are solved by expressing the stress solution to the thermoelastic equations in terms of a series of derivatives of the Legendre polynomials. The process of finding the coefficients for the series solution in terms of the temperature distribution is generalized by expressing the temperature along the shell and through the thickness as a polynomial in the spherical angle coordinate. Under this generalization the orthogonality property of the Legendre polynomials leads to a sequence of integrals involving powers of the spherical shell coordinate times the derivative of the Legendre polynomials. The coefficients of the temperature polynomial appear outside of these integrals. Thus, the integrals are evaluated only once and their values tabulated for use with any arbitrary polynomial temperature distribution.

  17. Quantum solvability of a general ordered position dependent mass system: Mathews-Lakshmanan oscillator

    NASA Astrophysics Data System (ADS)

    Karthiga, S.; Chithiika Ruby, V.; Senthilvelan, M.; Lakshmanan, M.

    2017-10-01

    In position dependent mass (PDM) problems, the quantum dynamics of the associated systems have been understood well in the literature for particular orderings. However, no efforts seem to have been made to solve such PDM problems for general orderings to obtain a global picture. In this connection, we here consider the general ordered quantum Hamiltonian of an interesting position dependent mass problem, namely, the Mathews-Lakshmanan oscillator, and try to solve the quantum problem for all possible orderings including Hermitian and non-Hermitian ones. The other interesting point in our study is that for all possible orderings, although the Schrödinger equation of this Mathews-Lakshmanan oscillator is uniquely reduced to the associated Legendre differential equation, their eigenfunctions cannot be represented in terms of the associated Legendre polynomials with integral degree and order. Rather the eigenfunctions are represented in terms of associated Legendre polynomials with non-integral degree and order. We here explore such polynomials and represent the discrete and continuum states of the system. We also exploit the connection between associated Legendre polynomials with non-integral degree with other orthogonal polynomials such as Jacobi and Gegenbauer polynomials.

  18. Polynomial Similarity Transformation Theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degroote, M.; Henderson, T. M.; Zhao, J.

    We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero.more » Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.« less

  19. Model-based estimates of long-term persistence of induced HPV antibodies: a flexible subject-specific approach.

    PubMed

    Aregay, Mehreteab; Shkedy, Ziv; Molenberghs, Geert; David, Marie-Pierre; Tibaldi, Fabián

    2013-01-01

    In infectious diseases, it is important to predict the long-term persistence of vaccine-induced antibodies and to estimate the time points where the individual titers are below the threshold value for protection. This article focuses on HPV-16/18, and uses a so-called fractional-polynomial model to this effect, derived in a data-driven fashion. Initially, model selection was done from among the second- and first-order fractional polynomials on the one hand and from the linear mixed model on the other. According to a functional selection procedure, the first-order fractional polynomial was selected. Apart from the fractional polynomial model, we also fitted a power-law model, which is a special case of the fractional polynomial model. Both models were compared using Akaike's information criterion. Over the observation period, the fractional polynomials fitted the data better than the power-law model; this, of course, does not imply that it fits best over the long run, and hence, caution ought to be used when prediction is of interest. Therefore, we point out that the persistence of the anti-HPV responses induced by these vaccines can only be ascertained empirically by long-term follow-up analysis.

  20. On Using Homogeneous Polynomials To Design Anisotropic Yield Functions With Tension/Compression Symmetry/Assymetry

    NASA Astrophysics Data System (ADS)

    Soare, S.; Yoon, J. W.; Cazacu, O.

    2007-05-01

    With few exceptions, non-quadratic homogeneous polynomials have received little attention as possible candidates for yield functions. One reason might be that not every such polynomial is a convex function. In this paper we show that homogeneous polynomials can be used to develop powerful anisotropic yield criteria, and that imposing simple constraints on the identification process leads, aposteriori, to the desired convexity property. It is shown that combinations of such polynomials allow for modeling yielding properties of metallic materials with any crystal structure, i.e. both cubic and hexagonal which display strength differential effects. Extensions of the proposed criteria to 3D stress states are also presented. We apply these criteria to the description of the aluminum alloy AA2090T3. We prove that a sixth order orthotropic homogeneous polynomial is capable of a satisfactory description of this alloy. Next, applications to the deep drawing of a cylindrical cup are presented. The newly proposed criteria were implemented as UMAT subroutines into the commercial FE code ABAQUS. We were able to predict six ears on the AA2090T3 cup's profile. Finally, we show that a tension/compression asymmetry in yielding can have an important effect on the earing profile.

  1. On the degree conjecture for separability of multipartite quantum states

    NASA Astrophysics Data System (ADS)

    Hassan, Ali Saif M.; Joag, Pramod S.

    2008-01-01

    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.

  2. Dynamic response analysis of structure under time-variant interval process model

    NASA Astrophysics Data System (ADS)

    Xia, Baizhan; Qin, Yuan; Yu, Dejie; Jiang, Chao

    2016-10-01

    Due to the aggressiveness of the environmental factor, the variation of the dynamic load, the degeneration of the material property and the wear of the machine surface, parameters related with the structure are distinctly time-variant. Typical model for time-variant uncertainties is the random process model which is constructed on the basis of a large number of samples. In this work, we propose a time-variant interval process model which can be effectively used to deal with time-variant uncertainties with limit information. And then two methods are presented for the dynamic response analysis of the structure under the time-variant interval process model. The first one is the direct Monte Carlo method (DMCM) whose computational burden is relative high. The second one is the Monte Carlo method based on the Chebyshev polynomial expansion (MCM-CPE) whose computational efficiency is high. In MCM-CPE, the dynamic response of the structure is approximated by the Chebyshev polynomials which can be efficiently calculated, and then the variational range of the dynamic response is estimated according to the samples yielded by the Monte Carlo method. To solve the dependency phenomenon of the interval operation, the affine arithmetic is integrated into the Chebyshev polynomial expansion. The computational effectiveness and efficiency of MCM-CPE is verified by two numerical examples, including a spring-mass-damper system and a shell structure.

  3. Algebraic approach to solve ttbar dilepton equations

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Lars

    2006-01-01

    The set of non-linear equations describing the Standard Model kinematics of the top quark an- tiqark production system in the dilepton decay channel has at most a four-fold ambiguity due to two not fully reconstructed neutrinos. Its most precise and robust solution is of major importance for measurements of top quark properties like the top quark mass and t t spin correlations. Simple algebraic operations allow to transform the non-linear equations into a system of two polynomial equations with two unknowns. These two polynomials of multidegree eight can in turn be an- alytically reduced to one polynomial with one unknown by means of resultants. The obtained univariate polynomial is of degree sixteen and the coefficients are free of any singularity. The number of its real solutions is determined analytically by means of Sturm’s theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign change of the polynomial in a given interval through binary brack- eting. Further a new Ansatz - exploiting an accidental cancelation in the process of transforming the equations - is presented. It permits to transform the initial system of equations into two poly- nomial equations with two unknowns. These two polynomials of multidegree two can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic equation can be solved analytically. The analytical solution has singularities which can be circumvented by the algebraic approach described above.

  4. Charactering baseline shift with 4th polynomial function for portable biomedical near-infrared spectroscopy device

    NASA Astrophysics Data System (ADS)

    Zhao, Ke; Ji, Yaoyao; Pan, Boan; Li, Ting

    2018-02-01

    The continuous-wave Near-infrared spectroscopy (NIRS) devices have been highlighted for its clinical and health care applications in noninvasive hemodynamic measurements. The baseline shift of the deviation measurement attracts lots of attentions for its clinical importance. Nonetheless current published methods have low reliability or high variability. In this study, we found a perfect polynomial fitting function for baseline removal, using NIRS. Unlike previous studies on baseline correction for near-infrared spectroscopy evaluation of non-hemodynamic particles, we focused on baseline fitting and corresponding correction method for NIRS and found that the polynomial fitting function at 4th order is greater than the function at 2nd order reported in previous research. Through experimental tests of hemodynamic parameters of the solid phantom, we compared the fitting effect between the 4th order polynomial and the 2nd order polynomial, by recording and analyzing the R values and the SSE (the sum of squares due to error) values. The R values of the 4th order polynomial function fitting are all higher than 0.99, which are significantly higher than the corresponding ones of 2nd order, while the SSE values of the 4th order are significantly smaller than the corresponding ones of the 2nd order. By using the high-reliable and low-variable 4th order polynomial fitting function, we are able to remove the baseline online to obtain more accurate NIRS measurements.

  5. Mathematical models of real geometrical factors in restricted blood vessels for the analysis of CAD (coronary artery diseases) using Legendre, Boubaker and Bessel polynomials.

    PubMed

    Awojoyogbe, O B; Faromika, O P; Dada, M; Boubaker, Karem; Ojambati, O S

    2011-12-01

    Most cardiovascular emergencies are directly caused by coronary artery disease. Coronary arteries can become clogged or occluded, leading to damage to the heart muscle supplied by the artery. Modem cardiovascular medicine can certainly be improved by meticulous analysis of geometrical factors closely associated with the degenerative disease that results in narrowing of the coronary arteries. There are, however, inherent difficulties in developing this type of mathematical models to completely describe the real or ideal geometries that are very critical in plaque formation and thickening of the vessel wall. Neither the mathematical models of the blood vessels with arthrosclerosis generated by the heart and blood flow or the NMR/MRI data to construct them are available. In this study, a mathematical formulation for the geometrical factors that are very critical for the understanding of coronary artery disease is presented. Based on the Bloch NMR flow equations, we derive analytical expressions to describe in detail the NMR transverse magnetizations and signals as a function of some NMR flow and geometrical parameters which are invaluable for the analysis of blood flow in restricted blood vessels. The procedure would apply to the situations in which the geometry of the fatty deposits, (plague) on the interior walls of the coronary arteries is spherical. The boundary conditions are introduced based on Bessel, Boubaker and Legendre polynomials.

  6. Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.

    2005-01-01

    For a general class of exponential weights on the line and on (-1,1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near +/-[infinity] (Freud weights), even weights of faster than smooth polynomial decay near +/-[infinity] (Erdos weights) and even weights which vanish strongly near +/-1, for example Pollaczek type weights.

  7. STATLIB: NSWC Library of Statistical Programs and Subroutines

    DTIC Science & Technology

    1989-08-01

    Uncorrelated Weighted Polynomial Regression 41 .WEPORC Correlated Weighted Polynomial Regression 45 MROP Multiple Regression Using Orthogonal Polynomials ...could not and should not be con- NSWC TR 89-97 verted to the new general purpose computer (the current CDC 995). Some were designed tu compute...personal computers. They are referred to as SPSSPC+, BMDPC, and SASPC and in general are less comprehensive than their mainframe counterparts. The basic

  8. Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs. NBER Working Paper No. 20405

    ERIC Educational Resources Information Center

    Gelman, Andrew; Imbens, Guido

    2014-01-01

    It is common in regression discontinuity analysis to control for high order (third, fourth, or higher) polynomials of the forcing variable. We argue that estimators for causal effects based on such methods can be misleading, and we recommend researchers do not use them, and instead use estimators based on local linear or quadratic polynomials or…

  9. Representing Lumped Markov Chains by Minimal Polynomials over Field GF(q)

    NASA Astrophysics Data System (ADS)

    Zakharov, V. M.; Shalagin, S. V.; Eminov, B. F.

    2018-05-01

    A method has been proposed to represent lumped Markov chains by minimal polynomials over a finite field. The accuracy of representing lumped stochastic matrices, the law of lumped Markov chains depends linearly on the minimum degree of polynomials over field GF(q). The method allows constructing the realizations of lumped Markov chains on linear shift registers with a pre-defined “linear complexity”.

  10. Higher order derivatives of R-Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Das, Sourav; Swaminathan, A.

    2016-06-01

    In this work, the R-Jacobi polynomials defined on the nonnegative real axis related to F-distribution are considered. Using their Sturm-Liouville system higher order derivatives are constructed. Orthogonality property of these higher ordered R-Jacobi polynomials are obtained besides their normal form, self-adjoint form and hypergeometric representation. Interesting results on the Interpolation formula and Gaussian quadrature formulae are obtained with numerical examples.

  11. Shanghai: a study on the spatial growth of population and economy in a Chinese metropolitan area.

    PubMed

    Zhu, J

    1995-01-01

    In this study of the growth in population and industry in Shanghai, China, between the 1982 and 1990 censuses, data on administrative divisions was normalized through digitization and spatial analysis. Analysis focused on spatial units, intensity of growth, time period, distance, rate of growth, and direction of spatial growth. The trisection method divided the city into city proper, outskirts, and suburbs. The distance function method considered the distance from center city as a function: exponential, power, trigonometric, logarithmic, and polynomial. Population growth and employment in all sectors increased in the outskirts and suburbs and decreased in the city proper except tertiary sectors. Primary sector employment decreased in all three sections. Employment in the secondary increased faster in the outskirts and suburbs than the total rate of growth of population and employment. In the city secondary sector employment rates decreased faster than total population and employment rates. The tertiary sector had the highest rate of growth in all sections, and employment grew faster than secondary sector rates. Tertiary growth was highest in real estate, finance, and insurance. Industrial growth in the secondary sector was 160.2% in the suburbs, 156.6% in the outskirts, and 80.9% in the city. In the distance function analysis, industry expanded further out than the entire secondary sector. Commerce grew the fastest in areas 15.4 km from center city. Economic growth was faster after economic reforms in 1978. Growth was led by industry and followed by the secondary sector, the tertiary sector, and population. Industrial expansion resulted from inner pressure, political factors controlling size, the social and economic system, and the housing construction and distribution system. Initially sociopsychological factors affected urban concentration.

  12. New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian; Quesne, Christiane

    2013-04-15

    In recent years, many exceptional orthogonal polynomials (EOP) were introduced and used to construct new families of 1D exactly solvable quantum potentials, some of which are shape invariant. In this paper, we construct from Hermite and Laguerre EOP and their related quantum systems new 2D superintegrable Hamiltonians with higher-order integrals of motion and the polynomial algebras generated by their integrals of motion. We obtain the finite-dimensional unitary representations of the polynomial algebras and the corresponding energy spectrum. We also point out a new type of degeneracies of the energy levels of these systems that is associated with holes in sequencesmore » of EOP.« less

  13. Vector-valued Jack polynomials and wavefunctions on the torus

    NASA Astrophysics Data System (ADS)

    Dunkl, Charles F.

    2017-06-01

    The Hamiltonian of the quantum Calogero-Sutherland model of N identical particles on the circle with 1/r 2 interactions has eigenfunctions consisting of Jack polynomials times the base state. By use of the generalized Jack polynomials taking values in modules of the symmetric group and the matrix solution of a system of linear differential equations one constructs novel eigenfunctions of the Hamiltonian. Like the usual wavefunctions each eigenfunction determines a symmetric probability density on the N-torus. The construction applies to any irreducible representation of the symmetric group. The methods depend on the theory of generalized Jack polynomials due to Griffeth, and the Yang-Baxter graph approach of Luque and the author.

  14. Phase demodulation method from a single fringe pattern based on correlation with a polynomial form.

    PubMed

    Robin, Eric; Valle, Valéry; Brémand, Fabrice

    2005-12-01

    The method presented extracts the demodulated phase from only one fringe pattern. Locally, this method approaches the fringe pattern morphology with the help of a mathematical model. The degree of similarity between the mathematical model and the real fringe is estimated by minimizing a correlation function. To use an optimization process, we have chosen a polynomial form such as a mathematical model. However, the use of a polynomial form induces an identification procedure with the purpose of retrieving the demodulated phase. This method, polynomial modulated phase correlation, is tested on several examples. Its performance, in terms of speed and precision, is presented on very noised fringe patterns.

  15. Pluripotential theory and convex bodies

    NASA Astrophysics Data System (ADS)

    Bayraktar, T.; Bloom, T.; Levenberg, N.

    2018-03-01

    A seminal paper by Berman and Boucksom exploited ideas from complex geometry to analyze the asymptotics of spaces of holomorphic sections of tensor powers of certain line bundles L over compact, complex manifolds as the power grows. This yielded results on weighted polynomial spaces in weighted pluripotential theory in {C}^d. Here, motivated by a recent paper by the first author on random sparse polynomials, we work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body in ({R}^+)^d. These classes of polynomials need not occur as sections of tensor powers of a line bundle L over a compact, complex manifold. We follow the approach of Berman and Boucksom to obtain analogous results. Bibliography: 16 titles.

  16. Hypergeometric type operators and their supersymmetric partners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotfas, Nicolae; Cotfas, Liviu Adrian

    2011-05-15

    The generalization of the factorization method performed by Mielnik [J. Math. Phys. 25, 3387 (1984)] opened new ways to generate exactly solvable potentials in quantum mechanics. We present an application of Mielnik's method to hypergeometric type operators. It is based on some solvable Riccati equations and leads to a unitary description of the quantum systems exactly solvable in terms of orthogonal polynomials or associated special functions.

  17. Gravitational instability of slowly rotating isothermal spheres

    NASA Astrophysics Data System (ADS)

    Chavanis, P. H.

    2002-12-01

    We discuss the statistical mechanics of rotating self-gravitating systems by allowing properly for the conservation of angular momentum. We study analytically the case of slowly rotating isothermal spheres by expanding the solutions of the Boltzmann-Poisson equation in a series of Legendre polynomials, adapting the procedure introduced by Chandrasekhar (1933) for distorted polytropes. We show how the classical spiral of Lynden-Bell & Wood (1967) in the temperature-energy plane is deformed by rotation. We find that gravitational instability occurs sooner in the microcanonical ensemble and later in the canonical ensemble. According to standard turning point arguments, the onset of the collapse coincides with the minimum energy or minimum temperature state in the series of equilibria. Interestingly, it happens to be close to the point of maximum flattening. We generalize the singular isothermal solution to the case of a slowly rotating configuration. We also consider slowly rotating configurations of the self-gravitating Fermi gas at non-zero temperature.

  18. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1989-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  19. A weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1990-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  20. Weak Hamiltonian finite element method for optimal control problems

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Bless, Robert R.

    1991-01-01

    A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.

  1. The determination of the elastodynamic fields of an ellipsoidal inhomogeneity

    NASA Technical Reports Server (NTRS)

    Fu, L. S.; Mura, T.

    1983-01-01

    The determination of the elastodynamic fields of an ellipsoidal inhomogeneity is studied in detail via the eigenstrain approach. A complete formulation and a treatment of both types of eigenstrains for equivalence between the inhomogeneity problem and the inclusion problem are given. This approach is shown to be mathematically identical to other approaches such as the direct volume integral formulation. Expanding the eigenstrains and applied strains in the polynomial form in the position vector and satisfying the equivalence conditions at every point, the governing simultaneous algebraic equations for the unknown coefficients in the eigenstrain expansion are derived. The elastodynamic field outside an ellipsoidal inhomogeneity in a linear elastic isotropic medium is given as an example. The angular and frequency dependence of the induced displacement field, as well as the differential and total cross sections are formally given in series expansion form for the case of uniformly distributed eigenstrains.

  2. Nonperturbative Series Expansion of Green's Functions: The Anatomy of Resonant Inelastic X-Ray Scattering in the Doped Hubbard Model

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Haverkort, Maurits W.

    2017-12-01

    We present a nonperturbative, divergence-free series expansion of Green's functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel.

  3. Dealing with Uncertainties in Initial Orbit Determination

    NASA Technical Reports Server (NTRS)

    Armellin, Roberto; Di Lizia, Pierluigi; Zanetti, Renato

    2015-01-01

    A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation uncertainties from the observation space to the state space. When a minimum set of observations is available DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.

  4. New formulae between Jacobi polynomials and some fractional Jacobi functions generalizing some connection formulae

    NASA Astrophysics Data System (ADS)

    Abd-Elhameed, W. M.

    2017-07-01

    In this paper, a new formula relating Jacobi polynomials of arbitrary parameters with the squares of certain fractional Jacobi functions is derived. The derived formula is expressed in terms of a certain terminating hypergeometric function of the type _4F3(1) . With the aid of some standard reduction formulae such as Pfaff-Saalschütz's and Watson's identities, the derived formula can be reduced in simple forms which are free of any hypergeometric functions for certain choices of the involved parameters of the Jacobi polynomials and the Jacobi functions. Some other simplified formulae are obtained via employing some computer algebra algorithms such as the algorithms of Zeilberger, Petkovsek and van Hoeij. Some connection formulae between some Jacobi polynomials are deduced. From these connection formulae, some other linearization formulae of Chebyshev polynomials are obtained. As an application to some of the introduced formulae, a numerical algorithm for solving nonlinear Riccati differential equation is presented and implemented by applying a suitable spectral method.

  5. State-vector formalism and the Legendre polynomial solution for modelling guided waves in anisotropic plates

    NASA Astrophysics Data System (ADS)

    Zheng, Mingfang; He, Cunfu; Lu, Yan; Wu, Bin

    2018-01-01

    We presented a numerical method to solve phase dispersion curve in general anisotropic plates. This approach involves an exact solution to the problem in the form of the Legendre polynomial of multiple integrals, which we substituted into the state-vector formalism. In order to improve the efficiency of the proposed method, we made a special effort to demonstrate the analytical methodology. Furthermore, we analyzed the algebraic symmetries of the matrices in the state-vector formalism for anisotropic plates. The basic feature of the proposed method was the expansion of field quantities by Legendre polynomials. The Legendre polynomial method avoid to solve the transcendental dispersion equation, which can only be solved numerically. This state-vector formalism combined with Legendre polynomial expansion distinguished the adjacent dispersion mode clearly, even when the modes were very close. We then illustrated the theoretical solutions of the dispersion curves by this method for isotropic and anisotropic plates. Finally, we compared the proposed method with the global matrix method (GMM), which shows excellent agreement.

  6. Computing Tutte polynomials of contact networks in classrooms

    NASA Astrophysics Data System (ADS)

    Hincapié, Doracelly; Ospina, Juan

    2013-05-01

    Objective: The topological complexity of contact networks in classrooms and the potential transmission of an infectious disease were analyzed by sex and age. Methods: The Tutte polynomials, some topological properties and the number of spanning trees were used to algebraically compute the topological complexity. Computations were made with the Maple package GraphTheory. Published data of mutually reported social contacts within a classroom taken from primary school, consisting of children in the age ranges of 4-5, 7-8 and 10-11, were used. Results: The algebraic complexity of the Tutte polynomial and the probability of disease transmission increases with age. The contact networks are not bipartite graphs, gender segregation was observed especially in younger children. Conclusion: Tutte polynomials are tools to understand the topology of the contact networks and to derive numerical indexes of such topologies. It is possible to establish relationships between the Tutte polynomial of a given contact network and the potential transmission of an infectious disease within such network

  7. A Formally-Verified Decision Procedure for Univariate Polynomial Computation Based on Sturm's Theorem

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2014-01-01

    Sturm's Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semiopen interval. This paper presents a formalization of this theorem in the PVS theorem prover, as well as a decision procedure that checks whether a polynomial is always positive, nonnegative, nonzero, negative, or nonpositive on any input interval. The soundness and completeness of the decision procedure is proven in PVS. The procedure and its correctness properties enable the implementation of a PVS strategy for automatically proving existential and universal univariate polynomial inequalities. Since the decision procedure is formally verified in PVS, the soundness of the strategy depends solely on the internal logic of PVS rather than on an external oracle. The procedure itself uses a combination of Sturm's Theorem, an interval bisection procedure, and the fact that a polynomial with exactly one root in a bounded interval is always nonnegative on that interval if and only if it is nonnegative at both endpoints.

  8. Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard

    NASA Astrophysics Data System (ADS)

    Roquet, F.; Madec, G.; McDougall, Trevor J.; Barker, Paul M.

    2015-06-01

    A new set of approximations to the standard TEOS-10 equation of state are presented. These follow a polynomial form, making it computationally efficient for use in numerical ocean models. Two versions are provided, the first being a fit of density for Boussinesq ocean models, and the second fitting specific volume which is more suitable for compressible models. Both versions are given as the sum of a vertical reference profile (6th-order polynomial) and an anomaly (52-term polynomial, cubic in pressure), with relative errors of ∼0.1% on the thermal expansion coefficients. A 75-term polynomial expression is also presented for computing specific volume, with a better accuracy than the existing TEOS-10 48-term rational approximation, especially regarding the sound speed, and it is suggested that this expression represents a valuable approximation of the TEOS-10 equation of state for hydrographic data analysis. In the last section, practical aspects about the implementation of TEOS-10 in ocean models are discussed.

  9. A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  10. A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

    DOE PAGES

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    2017-06-22

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  11. Trajectory Optimization for Helicopter Unmanned Aerial Vehicles (UAVs)

    DTIC Science & Technology

    2010-06-01

    the Nth-order derivative of the Legendre Polynomial ( )NL t . Using this method, the range of integration is transformed universally to [-1,+1...which is the interval for Legendre Polynomials . Although the LGL interpolation points are not evenly spaced, they are symmetric about the midpoint 0...the vehicle’s kinematic constraints are parameterized in terms of polynomials of sufficient order, (2) A collision-free criterion is developed and

  12. Near Real-Time Closed-Loop Optimal Control Feedback for Spacecraft Attitude Maneuvers

    DTIC Science & Technology

    2009-03-01

    60 3.8 Positive ωi Static Thrust Fan Characterization Polynomial Coefficients . . 62 3.9 Negative ωi Static Thrust Fan...Characterization Polynomial Coefficients . 62 4.1 Coefficients for SimSAT II’s Air Drag Polynomial Function . . . . . . . . . . . 78 5.1 OLOC Simulation...maneuver. Researchers using OCT identified that naturally occurring aerodynamic drag and gravity forces could be exploited in such a way that the CMGs

  13. On the best mean-square approximations to a planet's gravitational potential

    NASA Astrophysics Data System (ADS)

    Lobkova, N. I.

    1985-02-01

    The continuous problem of approximating the gravitational potential of a planet in the form of polynomials of solid spherical functions is considered. The best mean-square polynomials, referred to different parts of space, are compared with each other. The harmonic coefficients corresponding to the surface of a planet are shown to be unstable with respect to the degree of the polynomial and to differ from the Stokes constants.

  14. Quantum models with energy-dependent potentials solvable in terms of exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu; Department of Physics, Indiana University Northwest, 3400 Broadway, Gary IN 46408; Roy, Pinaki, E-mail: pinaki@isical.ac.in

    We construct energy-dependent potentials for which the Schrödinger equations admit solutions in terms of exceptional orthogonal polynomials. Our method of construction is based on certain point transformations, applied to the equations of exceptional Hermite, Jacobi and Laguerre polynomials. We present several examples of boundary-value problems with energy-dependent potentials that admit a discrete spectrum and the corresponding normalizable solutions in closed form.

  15. Roots of polynomials by ratio of successive derivatives

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Putt, C. W.

    1972-01-01

    An order of magnitude study of the ratios of successive polynomial derivatives yields information about the number of roots at an approached root point and the approximate location of a root point from a nearby point. The location approximation improves as a root is approached, so a powerful convergence procedure becomes available. These principles are developed into a computer program which finds the roots of polynomials with real number coefficients.

  16. Least-Squares Curve-Fitting Program

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1990-01-01

    Least Squares Curve Fitting program, AKLSQF, easily and efficiently computes polynomial providing least-squares best fit to uniformly spaced data. Enables user to specify tolerable least-squares error in fit or degree of polynomial. AKLSQF returns polynomial and actual least-squares-fit error incurred in operation. Data supplied to routine either by direct keyboard entry or via file. Written for an IBM PC X/AT or compatible using Microsoft's Quick Basic compiler.

  17. Polynomial Interpolation and Sums of Powers of Integers

    ERIC Educational Resources Information Center

    Cereceda, José Luis

    2017-01-01

    In this note, we revisit the problem of polynomial interpolation and explicitly construct two polynomials in n of degree k + 1, P[subscript k](n) and Q[subscript k](n), such that P[subscript k](n) = Q[subscript k](n) = f[subscript k](n) for n = 1, 2,… , k, where f[subscript k](1), f[subscript k](2),… , f[subscript k](k) are k arbitrarily chosen…

  18. On direct theorems for best polynomial approximation

    NASA Astrophysics Data System (ADS)

    Auad, A. A.; AbdulJabbar, R. S.

    2018-05-01

    This paper is to obtain similarity for the best approximation degree of functions, which are unbounded in L p,α (A = [0,1]), which called weighted space by algebraic polynomials. {E}nH{(f)}p,α and the best approximation degree in the same space on the interval [0,2π] by trigonometric polynomials {E}nT{(f)}p,α of direct wellknown theorems in forms the average modules.

  19. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2015-01-01

    Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ{sub 1}-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence onmore » the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.« less

  20. Long-time uncertainty propagation using generalized polynomial chaos and flow map composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luchtenburg, Dirk M., E-mail: dluchten@cooper.edu; Brunton, Steven L.; Rowley, Clarence W.

    2014-10-01

    We present an efficient and accurate method for long-time uncertainty propagation in dynamical systems. Uncertain initial conditions and parameters are both addressed. The method approximates the intermediate short-time flow maps by spectral polynomial bases, as in the generalized polynomial chaos (gPC) method, and uses flow map composition to construct the long-time flow map. In contrast to the gPC method, this approach has spectral error convergence for both short and long integration times. The short-time flow map is characterized by small stretching and folding of the associated trajectories and hence can be well represented by a relatively low-degree basis. The compositionmore » of these low-degree polynomial bases then accurately describes the uncertainty behavior for long integration times. The key to the method is that the degree of the resulting polynomial approximation increases exponentially in the number of time intervals, while the number of polynomial coefficients either remains constant (for an autonomous system) or increases linearly in the number of time intervals (for a non-autonomous system). The findings are illustrated on several numerical examples including a nonlinear ordinary differential equation (ODE) with an uncertain initial condition, a linear ODE with an uncertain model parameter, and a two-dimensional, non-autonomous double gyre flow.« less

  1. Jack Polynomials as Fractional Quantum Hall States and the Betti Numbers of the ( k + 1)-Equals Ideal

    NASA Astrophysics Data System (ADS)

    Zamaere, Christine Berkesch; Griffeth, Stephen; Sam, Steven V.

    2014-08-01

    We show that for Jack parameter α = -( k + 1)/( r - 1), certain Jack polynomials studied by Feigin-Jimbo-Miwa-Mukhin vanish to order r when k + 1 of the coordinates coincide. This result was conjectured by Bernevig and Haldane, who proposed that these Jack polynomials are model wavefunctions for fractional quantum Hall states. Special cases of these Jack polynomials include the wavefunctions of Laughlin and Read-Rezayi. In fact, along these lines we prove several vanishing theorems known as clustering properties for Jack polynomials in the mathematical physics literature, special cases of which had previously been conjectured by Bernevig and Haldane. Motivated by the method of proof, which in the case r = 2 identifies the span of the relevant Jack polynomials with the S n -invariant part of a unitary representation of the rational Cherednik algebra, we conjecture that unitary representations of the type A Cherednik algebra have graded minimal free resolutions of Bernstein-Gelfand-Gelfand type; we prove this for the ideal of the ( k + 1)-equals arrangement in the case when the number of coordinates n is at most 2 k + 1. In general, our conjecture predicts the graded S n -equivariant Betti numbers of the ideal of the ( k + 1)-equals arrangement with no restriction on the number of ambient dimensions.

  2. On Using Homogeneous Polynomials To Design Anisotropic Yield Functions With Tension/Compression Symmetry/Assymetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soare, S.; Cazacu, O.; Yoon, J. W.

    With few exceptions, non-quadratic homogeneous polynomials have received little attention as possible candidates for yield functions. One reason might be that not every such polynomial is a convex function. In this paper we show that homogeneous polynomials can be used to develop powerful anisotropic yield criteria, and that imposing simple constraints on the identification process leads, aposteriori, to the desired convexity property. It is shown that combinations of such polynomials allow for modeling yielding properties of metallic materials with any crystal structure, i.e. both cubic and hexagonal which display strength differential effects. Extensions of the proposed criteria to 3D stressmore » states are also presented. We apply these criteria to the description of the aluminum alloy AA2090T3. We prove that a sixth order orthotropic homogeneous polynomial is capable of a satisfactory description of this alloy. Next, applications to the deep drawing of a cylindrical cup are presented. The newly proposed criteria were implemented as UMAT subroutines into the commercial FE code ABAQUS. We were able to predict six ears on the AA2090T3 cup's profile. Finally, we show that a tension/compression asymmetry in yielding can have an important effect on the earing profile.« less

  3. Perceptually informed synthesis of bandlimited classical waveforms using integrated polynomial interpolation.

    PubMed

    Välimäki, Vesa; Pekonen, Jussi; Nam, Juhan

    2012-01-01

    Digital subtractive synthesis is a popular music synthesis method, which requires oscillators that are aliasing-free in a perceptual sense. It is a research challenge to find computationally efficient waveform generation algorithms that produce similar-sounding signals to analog music synthesizers but which are free from audible aliasing. A technique for approximately bandlimited waveform generation is considered that is based on a polynomial correction function, which is defined as the difference of a non-bandlimited step function and a polynomial approximation of the ideal bandlimited step function. It is shown that the ideal bandlimited step function is equivalent to the sine integral, and that integrated polynomial interpolation methods can successfully approximate it. Integrated Lagrange interpolation and B-spline basis functions are considered for polynomial approximation. The polynomial correction function can be added onto samples around each discontinuity in a non-bandlimited waveform to suppress aliasing. Comparison against previously known methods shows that the proposed technique yields the best tradeoff between computational cost and sound quality. The superior method amongst those considered in this study is the integrated third-order B-spline correction function, which offers perceptually aliasing-free sawtooth emulation up to the fundamental frequency of 7.8 kHz at the sample rate of 44.1 kHz. © 2012 Acoustical Society of America.

  4. On the derivatives of unimodular polynomials

    NASA Astrophysics Data System (ADS)

    Nevai, P.; Erdélyi, T.

    2016-04-01

    Let D be the open unit disk of the complex plane; its boundary, the unit circle of the complex plane, is denoted by \\partial D. Let \\mathscr P_n^c denote the set of all algebraic polynomials of degree at most n with complex coefficients. For λ ≥ 0, let {\\mathscr K}_n^λ \\stackrel{{def}}{=} \\biggl\\{P_n: P_n(z) = \\sumk=0^n{ak k^λ z^k}, ak \\in { C}, |a_k| = 1 \\biggr\\} \\subset {\\mathscr P}_n^c.The class \\mathscr K_n^0 is often called the collection of all (complex) unimodular polynomials of degree n. Given a sequence (\\varepsilon_n) of positive numbers tending to 0, we say that a sequence (P_n) of polynomials P_n\\in\\mathscr K_n^λ is \\{λ, (\\varepsilon_n)\\}-ultraflat if \\displaystyle (1-\\varepsilon_n)\\frac{nλ+1/2}{\\sqrt{2λ+1}}≤\\ve......a +1/2}}{\\sqrt{2λ +1}},\\qquad z \\in \\partial D,\\quad n\\in N_0.Although we do not know, in general, whether or not \\{λ, (\\varepsilon_n)\\}-ultraflat sequences of polynomials P_n\\in\\mathscr K_n^λ exist for each fixed λ>0, we make an effort to prove various interesting properties of them. These allow us to conclude that there are no sequences (P_n) of either conjugate, or plain, or skew reciprocal unimodular polynomials P_n\\in\\mathscr K_n^0 such that (Q_n) with Q_n(z)\\stackrel{{def}}{=} zP_n'(z)+1 is a \\{1,(\\varepsilon_n)\\}-ultraflat sequence of polynomials.Bibliography: 18 titles.

  5. An Introduction to Lagrangian Differential Calculus.

    ERIC Educational Resources Information Center

    Schremmer, Francesca; Schremmer, Alain

    1990-01-01

    Illustrates how Lagrange's approach applies to the differential calculus of polynomial functions when approximations are obtained. Discusses how to obtain polynomial approximations in other cases. (YP)

  6. Development and Evaluation of a Hydrostatic Dynamical Core Using the Spectral Element/Discontinuous Galerkin Methods

    DTIC Science & Technology

    2014-04-01

    The CG and DG horizontal discretization employs high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto- Legendre ...and DG horizontal discretization employs high-order nodal basis functions 29 associated with Lagrange polynomials based on Gauss-Lobatto- Legendre ...Inside 235 each element we build ( 1)N + Gauss-Lobatto- Legendre (GLL) quadrature points, where N 236 indicate the polynomial order of the basis

  7. Numerical Solutions of the Nonlinear Fractional-Order Brusselator System by Bernstein Polynomials

    PubMed Central

    Khan, Rahmat Ali; Tajadodi, Haleh; Johnston, Sarah Jane

    2014-01-01

    In this paper we propose the Bernstein polynomials to achieve the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. We use operational matrices of fractional integration and multiplication of Bernstein polynomials, which turns the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques. PMID:25485293

  8. The s-Ordered Fock Space Projectors Gained by the General Ordering Theorem

    NASA Astrophysics Data System (ADS)

    Farid, Shähandeh; Mohammad, Reza Bazrafkan; Mahmoud, Ashrafi

    2012-09-01

    Employing the general ordering theorem (GOT), operational methods and incomplete 2-D Hermite polynomials, we derive the t-ordered expansion of Fock space projectors. Using the result, the general ordered form of the coherent state projectors is obtained. This indeed gives a new integration formula regarding incomplete 2-D Hermite polynomials. In addition, the orthogonality relation of the incomplete 2-D Hermite polynomials is derived to resolve Dattoli's failure.

  9. Baecklund transformation, Lax pair, and solutions for the Caudrey-Dodd-Gibbon equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Qixing; Sun Kun; Jiang Yan

    2011-01-15

    By using Bell polynomials and symbolic computation, we investigate the Caudrey-Dodd-Gibbon equation analytically. Through a generalization of Bells polynomials, its bilinear form is derived, based on which, the periodic wave solution and soliton solutions are presented. And the soliton solutions with graphic analysis are also given. Furthermore, Baecklund transformation and Lax pair are derived via the Bells exponential polynomials. Finally, the Ablowitz-Kaup-Newell-Segur system is constructed.

  10. Assessing the suitability of fractional polynomial methods in health services research: a perspective on the categorization epidemic.

    PubMed

    Williams, Jennifer Stewart

    2011-07-01

    To show how fractional polynomial methods can usefully replace the practice of arbitrarily categorizing data in epidemiology and health services research. A health service setting is used to illustrate a structured and transparent way of representing non-linear data without arbitrary grouping. When age is a regressor its effects on an outcome will be interpreted differently depending upon the placing of cutpoints or the use of a polynomial transformation. Although it is common practice, categorization comes at a cost. Information is lost, and accuracy and statistical power reduced, leading to spurious statistical interpretation of the data. The fractional polynomial method is widely supported by statistical software programs, and deserves greater attention and use.

  11. Magnetic Resonance Imaging-derived Flow Parameters for the Analysis of Cardiovascular Diseases and Drug Development.

    PubMed

    Michael, Dada O; Bamidele, Awojoyogbe O; Adewale, Adesola O; Karem, Boubaker

    2013-01-01

    Nuclear magnetic resonance (NMR) allows for fast, accurate and noninvasive measurement of fluid flow in restricted and non-restricted media. The results of such measurements may be possible for a very small B 0 field and can be enhanced through detailed examination of generating functions that may arise from polynomial solutions of NMR flow equations in terms of Legendre polynomials and Boubaker polynomials. The generating functions of these polynomials can present an array of interesting possibilities that may be useful for understanding the basic physics of extracting relevant NMR flow information from which various hemodynamic problems can be carefully studied. Specifically, these results may be used to develop effective drugs for cardiovascular-related diseases.

  12. Magnetic Resonance Imaging-derived Flow Parameters for the Analysis of Cardiovascular Diseases and Drug Development

    PubMed Central

    Michael, Dada O.; Bamidele, Awojoyogbe O.; Adewale, Adesola O.; Karem, Boubaker

    2013-01-01

    Nuclear magnetic resonance (NMR) allows for fast, accurate and noninvasive measurement of fluid flow in restricted and non-restricted media. The results of such measurements may be possible for a very small B0 field and can be enhanced through detailed examination of generating functions that may arise from polynomial solutions of NMR flow equations in terms of Legendre polynomials and Boubaker polynomials. The generating functions of these polynomials can present an array of interesting possibilities that may be useful for understanding the basic physics of extracting relevant NMR flow information from which various hemodynamic problems can be carefully studied. Specifically, these results may be used to develop effective drugs for cardiovascular-related diseases. PMID:25114546

  13. Asymptotic formulae for the zeros of orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badkov, V M

    2012-09-30

    Let p{sub n}(t) be an algebraic polynomial that is orthonormal with weight p(t) on the interval [-1, 1]. When p(t) is a perturbation (in certain limits) of the Chebyshev weight of the first kind, the zeros of the polynomial p{sub n}( cos {tau}) and the differences between pairs of (not necessarily consecutive) zeros are shown to satisfy asymptotic formulae as n{yields}{infinity}, which hold uniformly with respect to the indices of the zeros. Similar results are also obtained for perturbations of the Chebyshev weight of the second kind. First, some preliminary results on the asymptotic behaviour of the difference between twomore » zeros of an orthogonal trigonometric polynomial, which are needed, are established. Bibliography: 15 titles.« less

  14. Parametric analysis of ATM solar array.

    NASA Technical Reports Server (NTRS)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  15. Orthogonal polynomial projectors for the Projector Augmented Wave (PAW) formalism.

    NASA Astrophysics Data System (ADS)

    Holzwarth, N. A. W.; Matthews, G. E.; Tackett, A. R.; Dunning, R. B.

    1998-03-01

    The PAW method for density functional electronic structure calculations developed by Blöchl(Phys. Rev. B 50), 17953 (1994) and also used by our group(Phys. Rev. B 55), 2005 (1997) has numerical advantages of a pseudopotential technique while retaining the physics of an all-electron formalism. We describe a new method for generating the necessary set of atom-centered projector and basis functions, based on choosing the projector functions from a set of orthogonal polynomials multiplied by a localizing weight factor. Numerical benefits of the new scheme result from having direct control of the shape of the projector functions and from the use of a simple repulsive local potential term to eliminate ``ghost state" problems, which can haunt calculations of this kind. We demonstrate the method by calculating the cohesive energies of CaF2 and Mo and the density of states of CaMoO4 which shows detailed agreement with LAPW results over a 66 eV range of energy including upper core, valence, and conduction band states.

  16. An equation of state based upon a ratio of polynomials (rational) form for the residual Helmholtz energy: application to nitrogen, argon and methane

    NASA Astrophysics Data System (ADS)

    Gomez-Osorio, Martin A.; Browne, Robert A.; Cristancho, Diego E.; Holste, James C.; Hall, Kenneth R.; Bell, Ian H.

    2017-06-01

    This work presents an equation of state that contains the residual Helmholtz free energy as a ratio of polynomials in density with temperature-dependent coefficients and demonstrates that it is a viable alternative for describing thermodynamic properties accurately. The specific form of the equation in this work has six density terms in the numerator, three density terms in the denominator, and five temperature parameters for each temperature-dependent coefficient. Nitrogen, argon, and methane serve as prototype fluids to demonstrate the capability of the form to describe p-ρ-T behaviour, vapour pressures, speeds of sound, and isochoric heat capacities up to 1000 MPa. Characteristic curves for several properties of nitrogen generated using the equation exhibit proper behaviour at high temperatures and pressures. Because the equation contains no exponential terms or non-integer exponents, the computational time associated with the new equation is more than a factor of 10 less than that required for similar equations with comparable accuracy.

  17. A new surrogate modeling technique combining Kriging and polynomial chaos expansions – Application to uncertainty analysis in computational dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersaudy, Pierric, E-mail: pierric.kersaudy@orange.com; Whist Lab, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux; ESYCOM, Université Paris-Est Marne-la-Vallée, 5 boulevard Descartes, 77700 Marne-la-Vallée

    2015-04-01

    In numerical dosimetry, the recent advances in high performance computing led to a strong reduction of the required computational time to assess the specific absorption rate (SAR) characterizing the human exposure to electromagnetic waves. However, this procedure remains time-consuming and a single simulation can request several hours. As a consequence, the influence of uncertain input parameters on the SAR cannot be analyzed using crude Monte Carlo simulation. The solution presented here to perform such an analysis is surrogate modeling. This paper proposes a novel approach to build such a surrogate model from a design of experiments. Considering a sparse representationmore » of the polynomial chaos expansions using least-angle regression as a selection algorithm to retain the most influential polynomials, this paper proposes to use the selected polynomials as regression functions for the universal Kriging model. The leave-one-out cross validation is used to select the optimal number of polynomials in the deterministic part of the Kriging model. The proposed approach, called LARS-Kriging-PC modeling, is applied to three benchmark examples and then to a full-scale metamodeling problem involving the exposure of a numerical fetus model to a femtocell device. The performances of the LARS-Kriging-PC are compared to an ordinary Kriging model and to a classical sparse polynomial chaos expansion. The LARS-Kriging-PC appears to have better performances than the two other approaches. A significant accuracy improvement is observed compared to the ordinary Kriging or to the sparse polynomial chaos depending on the studied case. This approach seems to be an optimal solution between the two other classical approaches. A global sensitivity analysis is finally performed on the LARS-Kriging-PC model of the fetus exposure problem.« less

  18. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials.

    PubMed

    Janssen, A J E M

    2014-07-01

    The partial derivatives and Laplacians of the Zernike circle polynomials occur in various places in the literature on computational optics. In a number of cases, the expansion of these derivatives and Laplacians in the circle polynomials are required. For the first-order partial derivatives, analytic results are scattered in the literature. Results start as early as 1942 in Nijboer's thesis and continue until present day, with some emphasis on recursive computation schemes. A brief historic account of these results is given in the present paper. By choosing the unnormalized version of the circle polynomials, with exponential rather than trigonometric azimuthal dependence, and by a proper combination of the two partial derivatives, a concise form of the expressions emerges. This form is appropriate for the formulation and solution of a model wavefront sensing problem of reconstructing a wavefront on the level of its expansion coefficients from (measurements of the expansion coefficients of) the partial derivatives. It turns out that the least-squares estimation problem arising here decouples per azimuthal order m, and per m the generalized inverse solution assumes a concise analytic form so that singular value decompositions are avoided. The preferred version of the circle polynomials, with proper combination of the partial derivatives, also leads to a concise analytic result for the Zernike expansion of the Laplacian of the circle polynomials. From these expansions, the properties of the Laplacian as a mapping from the space of circle polynomials of maximal degree N, as required in the study of the Neumann problem associated with the transport-of-intensity equation, can be read off within a single glance. Furthermore, the inverse of the Laplacian on this space is shown to have a concise analytic form.

  19. A Polynomial Subset-Based Efficient Multi-Party Key Management System for Lightweight Device Networks.

    PubMed

    Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah

    2017-03-24

    Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure.

  20. A Polynomial Subset-Based Efficient Multi-Party Key Management System for Lightweight Device Networks

    PubMed Central

    Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah

    2017-01-01

    Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure. PMID:28338632

  1. Conflicting Frames: A Case of Misalignment between Professional Development Efforts and a Teacher's Practice in a High School Mathematics Classroom

    ERIC Educational Resources Information Center

    Heyd-Metzuyanim, Einat; Munter, Charles; Greeno, James

    2018-01-01

    We examine the case of a lesson planning session within the context of professional development for dialogic instruction, and the lesson enacted following this session, which was intended to provide opportunities to 11th and 12th grade algebra students to explore polynomial functions in terms of their roots and linear factors. Our goal was,…

  2. On the degree conjecture for separability of multipartite quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Ali Saif M.; Joag, Pramod S.

    2008-01-15

    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matricesmore » match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.« less

  3. The polynomial form of the scattering equations is an H -basis

    NASA Astrophysics Data System (ADS)

    Bosma, Jorrit; Søgaard, Mads; Zhang, Yang

    2016-08-01

    We prove that the polynomial form of the scattering equations is a Macaulay H -basis. We demonstrate that this H -basis facilitates integrand reduction and global residue computations in a way very similar to using a Gröbner basis, but circumvents the heavy computation of the latter. As an example, we apply the H -basis to prove the conjecture that the dual basis of the polynomial scattering equations must contain one constant term.

  4. Analytical Solutions for the Resonance Response of Goupillaud-type Elastic Media Using Z-transform Methods

    DTIC Science & Technology

    2012-02-01

    using z-transform methods. The determinant of the resulting global system matrix in the z-space |Am| is a palindromic polynomial with real...resulting global system matrix in the z-space |Am| is a palindromic polynomial with real coefficients. The zeros of the palindromic polynomial are distinct...Goupillaud-type multilayered media. In addition, the present treatment uses a global matrix method that is attributed to Knopoff [16], rather than the

  5. Distortion theorems for polynomials on a circle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubinin, V N

    2000-12-31

    Inequalities for the derivatives with respect to {phi}=arg z the functions ReP(z), |P(z)|{sup 2} and arg P(z) are established for an algebraic polynomial P(z) at points on the circle |z|=1. These estimates depend, in particular, on the constant term and the leading coefficient of the polynomial P(z) and improve the classical Bernstein and Turan inequalities. The method of proof is based on the techniques of generalized reduced moduli.

  6. Quantized vortices in the ideal bose gas: a physical realization of random polynomials.

    PubMed

    Castin, Yvan; Hadzibabic, Zoran; Stock, Sabine; Dalibard, Jean; Stringari, Sandro

    2006-02-03

    We propose a physical system allowing one to experimentally observe the distribution of the complex zeros of a random polynomial. We consider a degenerate, rotating, quasi-ideal atomic Bose gas prepared in the lowest Landau level. Thermal fluctuations provide the randomness of the bosonic field and of the locations of the vortex cores. These vortices can be mapped to zeros of random polynomials, and observed in the density profile of the gas.

  7. Polynomial decay rate of a thermoelastic Mindlin-Timoshenko plate model with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Grobbelaar-Van Dalsen, Marié

    2015-02-01

    In this article, we are concerned with the polynomial stabilization of a two-dimensional thermoelastic Mindlin-Timoshenko plate model with no mechanical damping. The model is subject to Dirichlet boundary conditions on the elastic as well as the thermal variables. The work complements our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 64:1305-1325, 2013) on the polynomial stabilization of a Mindlin-Timoshenko model in a radially symmetric domain under Dirichlet boundary conditions on the displacement and thermal variables and free boundary conditions on the shear angle variables. In particular, our aim is to investigate the effect of the Dirichlet boundary conditions on all the variables on the polynomial decay rate of the model. By once more applying a frequency domain method in which we make critical use of an inequality for the trace of Sobolev functions on the boundary of a bounded, open connected set we show that the decay is slower than in the model considered in the cited work. A comparison of our result with our polynomial decay result for a magnetoelastic Mindlin-Timoshenko model subject to Dirichlet boundary conditions on the elastic variables in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) also indicates a correlation between the robustness of the coupling between parabolic and hyperbolic dynamics and the polynomial decay rate in the two models.

  8. A quadratic regression modelling on paddy production in the area of Perlis

    NASA Astrophysics Data System (ADS)

    Goh, Aizat Hanis Annas; Ali, Zalila; Nor, Norlida Mohd; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2017-08-01

    Polynomial regression models are useful in situations in which the relationship between a response variable and predictor variables is curvilinear. Polynomial regression fits the nonlinear relationship into a least squares linear regression model by decomposing the predictor variables into a kth order polynomial. The polynomial order determines the number of inflexions on the curvilinear fitted line. A second order polynomial forms a quadratic expression (parabolic curve) with either a single maximum or minimum, a third order polynomial forms a cubic expression with both a relative maximum and a minimum. This study used paddy data in the area of Perlis to model paddy production based on paddy cultivation characteristics and environmental characteristics. The results indicated that a quadratic regression model best fits the data and paddy production is affected by urea fertilizer application and the interaction between amount of average rainfall and percentage of area defected by pest and disease. Urea fertilizer application has a quadratic effect in the model which indicated that if the number of days of urea fertilizer application increased, paddy production is expected to decrease until it achieved a minimum value and paddy production is expected to increase at higher number of days of urea application. The decrease in paddy production with an increased in rainfall is greater, the higher the percentage of area defected by pest and disease.

  9. Computing border bases using mutant strategies

    NASA Astrophysics Data System (ADS)

    Ullah, E.; Abbas Khan, S.

    2014-01-01

    Border bases, a generalization of Gröbner bases, have actively been addressed during recent years due to their applicability to industrial problems. In cryptography and coding theory a useful application of border based is to solve zero-dimensional systems of polynomial equations over finite fields, which motivates us for developing optimizations of the algorithms that compute border bases. In 2006, Kehrein and Kreuzer formulated the Border Basis Algorithm (BBA), an algorithm which allows the computation of border bases that relate to a degree compatible term ordering. In 2007, J. Ding et al. introduced mutant strategies bases on finding special lower degree polynomials in the ideal. The mutant strategies aim to distinguish special lower degree polynomials (mutants) from the other polynomials and give them priority in the process of generating new polynomials in the ideal. In this paper we develop hybrid algorithms that use the ideas of J. Ding et al. involving the concept of mutants to optimize the Border Basis Algorithm for solving systems of polynomial equations over finite fields. In particular, we recall a version of the Border Basis Algorithm which is actually called the Improved Border Basis Algorithm and propose two hybrid algorithms, called MBBA and IMBBA. The new mutants variants provide us space efficiency as well as time efficiency. The efficiency of these newly developed hybrid algorithms is discussed using standard cryptographic examples.

  10. Cosmographic analysis with Chebyshev polynomials

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando

    2018-05-01

    The limits of standard cosmography are here revised addressing the problem of error propagation during statistical analyses. To do so, we propose the use of Chebyshev polynomials to parametrize cosmic distances. In particular, we demonstrate that building up rational Chebyshev polynomials significantly reduces error propagations with respect to standard Taylor series. This technique provides unbiased estimations of the cosmographic parameters and performs significatively better than previous numerical approximations. To figure this out, we compare rational Chebyshev polynomials with Padé series. In addition, we theoretically evaluate the convergence radius of (1,1) Chebyshev rational polynomial and we compare it with the convergence radii of Taylor and Padé approximations. We thus focus on regions in which convergence of Chebyshev rational functions is better than standard approaches. With this recipe, as high-redshift data are employed, rational Chebyshev polynomials remain highly stable and enable one to derive highly accurate analytical approximations of Hubble's rate in terms of the cosmographic series. Finally, we check our theoretical predictions by setting bounds on cosmographic parameters through Monte Carlo integration techniques, based on the Metropolis-Hastings algorithm. We apply our technique to high-redshift cosmic data, using the Joint Light-curve Analysis supernovae sample and the most recent versions of Hubble parameter and baryon acoustic oscillation measurements. We find that cosmography with Taylor series fails to be predictive with the aforementioned data sets, while turns out to be much more stable using the Chebyshev approach.

  11. Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots

    NASA Astrophysics Data System (ADS)

    Ham, J.-Y.; Lee, J.

    2016-09-01

    We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the A-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the A-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope -4n+2 turns out to be 2. Bibliography: 39 titles.

  12. Wavefront analysis from its slope data

    NASA Astrophysics Data System (ADS)

    Mahajan, Virendra N.; Acosta, Eva

    2017-08-01

    In the aberration analysis of a wavefront over a certain domain, the polynomials that are orthogonal over and represent balanced wave aberrations for this domain are used. For example, Zernike circle polynomials are used for the analysis of a circular wavefront. Similarly, the annular polynomials are used to analyze the annular wavefronts for systems with annular pupils, as in a rotationally symmetric two-mirror system, such as the Hubble space telescope. However, when the data available for analysis are the slopes of a wavefront, as, for example, in a Shack- Hartmann sensor, we can integrate the slope data to obtain the wavefront data, and then use the orthogonal polynomials to obtain the aberration coefficients. An alternative is to find vector functions that are orthogonal to the gradients of the wavefront polynomials, and obtain the aberration coefficients directly as the inner products of these functions with the slope data. In this paper, we show that an infinite number of vector functions can be obtained in this manner. We show further that the vector functions that are irrotational are unique and propagate minimum uncorrelated additive random noise from the slope data to the aberration coefficients.

  13. The NonConforming Virtual Element Method for the Stokes Equations

    DOE PAGES

    Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco

    2016-01-01

    In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less

  14. Polynomial probability distribution estimation using the method of moments

    PubMed Central

    Mattsson, Lars; Rydén, Jesper

    2017-01-01

    We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram–Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation. PMID:28394949

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cangiani, Andrea; Gyrya, Vitaliy; Manzini, Gianmarco

    In this paper, we present the nonconforming virtual element method (VEM) for the numerical approximation of velocity and pressure in the steady Stokes problem. The pressure is approximated using discontinuous piecewise polynomials, while each component of the velocity is approximated using the nonconforming virtual element space. On each mesh element the local virtual space contains the space of polynomials of up to a given degree, plus suitable nonpolynomial functions. The virtual element functions are implicitly defined as the solution of local Poisson problems with polynomial Neumann boundary conditions. As typical in VEM approaches, the explicit evaluation of the non-polynomial functionsmore » is not required. This approach makes it possible to construct nonconforming (virtual) spaces for any polynomial degree regardless of the parity, for two- and three-dimensional problems, and for meshes with very general polygonal and polyhedral elements. We show that the nonconforming VEM is inf-sup stable and establish optimal a priori error estimates for the velocity and pressure approximations. Finally, numerical examples confirm the convergence analysis and the effectiveness of the method in providing high-order accurate approximations.« less

  16. Influence of surface error on electromagnetic performance of reflectors based on Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Li, Tuanjie; Shi, Jiachen; Tang, Yaqiong

    2018-04-01

    This paper investigates the influence of surface error distribution on the electromagnetic performance of antennas. The normalized Zernike polynomials are used to describe a smooth and continuous deformation surface. Based on the geometrical optics and piecewise linear fitting method, the electrical performance of reflector described by the Zernike polynomials is derived to reveal the relationship between surface error distribution and electromagnetic performance. Then the relation database between surface figure and electric performance is built for ideal and deformed surfaces to realize rapidly calculation of far-field electric performances. The simulation analysis of the influence of Zernike polynomials on the electrical properties for the axis-symmetrical reflector with the axial mode helical antenna as feed is further conducted to verify the correctness of the proposed method. Finally, the influence rules of surface error distribution on electromagnetic performance are summarized. The simulation results show that some terms of Zernike polynomials may decrease the amplitude of main lobe of antenna pattern, and some may reduce the pointing accuracy. This work extracts a new concept for reflector's shape adjustment in manufacturing process.

  17. Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.

    PubMed

    Kulkarni, Rishikesh; Rastogi, Pramod

    2018-02-01

    A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.

  18. Polynomial probability distribution estimation using the method of moments.

    PubMed

    Munkhammar, Joakim; Mattsson, Lars; Rydén, Jesper

    2017-01-01

    We suggest a procedure for estimating Nth degree polynomial approximations to unknown (or known) probability density functions (PDFs) based on N statistical moments from each distribution. The procedure is based on the method of moments and is setup algorithmically to aid applicability and to ensure rigor in use. In order to show applicability, polynomial PDF approximations are obtained for the distribution families Normal, Log-Normal, Weibull as well as for a bimodal Weibull distribution and a data set of anonymized household electricity use. The results are compared with results for traditional PDF series expansion methods of Gram-Charlier type. It is concluded that this procedure is a comparatively simple procedure that could be used when traditional distribution families are not applicable or when polynomial expansions of probability distributions might be considered useful approximations. In particular this approach is practical for calculating convolutions of distributions, since such operations become integrals of polynomial expressions. Finally, in order to show an advanced applicability of the method, it is shown to be useful for approximating solutions to the Smoluchowski equation.

  19. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.

    PubMed

    Zhao, Chunyu; Burge, James H

    2007-12-24

    Zernike polynomials provide a well known, orthogonal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. A related set of orthogonal functions is given here which represent vector quantities, such as mapping distortion or wavefront gradient. These functions are generated from gradients of Zernike polynomials, made orthonormal using the Gram- Schmidt technique. This set provides a complete basis for representing vector fields that can be defined as a gradient of some scalar function. It is then efficient to transform from the coefficients of the vector functions to the scalar Zernike polynomials that represent the function whose gradient was fit. These new vector functions have immediate application for fitting data from a Shack-Hartmann wavefront sensor or for fitting mapping distortion for optical testing. A subsequent paper gives an additional set of vector functions consisting only of rotational terms with zero divergence. The two sets together provide a complete basis that can represent all vector distributions in a circular domain.

  20. Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes

    PubMed Central

    Li, Degui; Li, Runze

    2016-01-01

    In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity restriction on the model, and allow that the regressors are generated by a general Harris recurrent Markov process which includes both the stationary (positive recurrent) and nonstationary (null recurrent) cases. Under some mild conditions, we establish the asymptotic theory for the proposed local polynomial CQR estimator of the mean regression function, and show that the convergence rate for the estimator in nonstationary case is slower than that in stationary case. Furthermore, a weighted type local polynomial CQR estimator is provided to improve the estimation efficiency, and a data-driven bandwidth selection is introduced to choose the optimal bandwidth involved in the nonparametric estimators. Finally, we give some numerical studies to examine the finite sample performance of the developed methodology and theory. PMID:27667894

  1. Stabilization of an inverted pendulum-cart system by fractional PI-state feedback.

    PubMed

    Bettayeb, M; Boussalem, C; Mansouri, R; Al-Saggaf, U M

    2014-03-01

    This paper deals with pole placement PI-state feedback controller design to control an integer order system. The fractional aspect of the control law is introduced by a dynamic state feedback as u(t)=K(p)x(t)+K(I)I(α)(x(t)). The closed loop characteristic polynomial is thus fractional for which the roots are complex to calculate. The proposed method allows us to decompose this polynomial into a first order fractional polynomial and an integer order polynomial of order n-1 (n being the order of the integer system). This new stabilization control algorithm is applied for an inverted pendulum-cart test-bed, and the effectiveness and robustness of the proposed control are examined by experiments. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Computational algebraic geometry for statistical modeling FY09Q2 progress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David C.; Rojas, Joseph Maurice; Pebay, Philippe Pierre

    2009-03-01

    This is a progress report on polynomial system solving for statistical modeling. This is a progress report on polynomial system solving for statistical modeling. This quarter we have developed our first model of shock response data and an algorithm for identifying the chamber cone containing a polynomial system in n variables with n+k terms within polynomial time - a significant improvement over previous algorithms, all having exponential worst-case complexity. We have implemented and verified the chamber cone algorithm for n+3 and are working to extend the implementation to handle arbitrary k. Later sections of this report explain chamber cones inmore » more detail; the next section provides an overview of the project and how the current progress fits into it.« less

  3. A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Truong, T. K.; Deutsch, L. J.; Satorius, E. H.; Reed, I. S.

    1988-01-01

    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation.

  4. Verifying the error bound of numerical computation implemented in computer systems

    DOEpatents

    Sawada, Jun

    2013-03-12

    A verification tool receives a finite precision definition for an approximation of an infinite precision numerical function implemented in a processor in the form of a polynomial of bounded functions. The verification tool receives a domain for verifying outputs of segments associated with the infinite precision numerical function. The verification tool splits the domain into at least two segments, wherein each segment is non-overlapping with any other segment and converts, for each segment, a polynomial of bounded functions for the segment to a simplified formula comprising a polynomial, an inequality, and a constant for a selected segment. The verification tool calculates upper bounds of the polynomial for the at least two segments, beginning with the selected segment and reports the segments that violate a bounding condition.

  5. Pulse transmission transmitter including a higher order time derivate filter

    DOEpatents

    Dress, Jr., William B.; Smith, Stephen F.

    2003-09-23

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlotnikov, Michael

    We develop a polynomial reduction procedure that transforms any gauge fixed CHY amplitude integrand for n scattering particles into a σ-moduli multivariate polynomial of what we call the standard form. We show that a standard form polynomial must have a specific ladder type monomial structure, which has finite size at any n, with highest multivariate degree given by (n – 3)(n – 4)/2. This set of monomials spans a complete basis for polynomials with rational coefficients in kinematic data on the support of scattering equations. Subsequently, at tree and one-loop level, we employ the global residue theorem to derive amore » prescription that evaluates any CHY amplitude by means of collecting simple residues at infinity only. Furthermore, the prescription is then applied explicitly to some tree and one-loop amplitude examples.« less

  7. Euler polynomials and identities for non-commutative operators

    NASA Astrophysics Data System (ADS)

    De Angelis, Valerio; Vignat, Christophe

    2015-12-01

    Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.

  8. Torus Knot Polynomials and Susy Wilson Loops

    NASA Astrophysics Data System (ADS)

    Giasemidis, Georgios; Tierz, Miguel

    2014-12-01

    We give, using an explicit expression obtained in (Jones V, Ann Math 126:335, 1987), a basic hypergeometric representation of the HOMFLY polynomial of ( n, m) torus knots, and present a number of equivalent expressions, all related by Heine's transformations. Using this result, the symmetry and the leading polynomial at large N are explicit. We show the latter to be the Wilson loop of 2d Yang-Mills theory on the plane. In addition, after taking one winding to infinity, it becomes the Wilson loop in the zero instanton sector of the 2d Yang-Mills theory, which is known to give averages of Wilson loops in = 4 SYM theory. We also give, using matrix models, an interpretation of the HOMFLY polynomial and the corresponding Jones-Rosso representation in terms of q-harmonic oscillators.

  9. Constant-Round Concurrent Zero Knowledge From Falsifiable Assumptions

    DTIC Science & Technology

    2013-01-01

    assumptions (e.g., [DS98, Dam00, CGGM00, Gol02, PTV12, GJO+12]), or in alternative models (e.g., super -polynomial-time simulation [Pas03b, PV10]). In the...T (·)-time computations, where T (·) is some “nice” (slightly) super -polynomial function (e.g., T (n) = nlog log logn). We refer to such proof...put a cap on both using a (slightly) super -polynomial function, and thus to guarantee soundness of the concurrent zero-knowledge protocol, we need

  10. On the Existence of Non-Oscillatory Phase Functions for Second Order Ordinary Differential Equations in the High-Frequency Regime

    DTIC Science & Technology

    2014-08-04

    Chebyshev coefficients of both r and q decay exponentially, although those of r decay at a slightly slower rate. 10.2. Evaluation of Legendre polynomials ...In this experiment, we compare the cost of evaluating Legendre polynomials of large order using the standard recurrence relation with the cost of...doing so with a nonoscillatory phase function. For any integer n ě 0, the Legendre polynomial Pnpxq of order n is a solution of the second order

  11. A Near to Far Transformation using Spherical Expansions Phase 1: Verification on Simulated Antennas

    DTIC Science & Technology

    2014-09-01

    Antenna Pattern Range. . . . . 75 List of Tables 1 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Legendre polynomials ...first kind Pmn (x) are [3, Equation 12.84 and footnote]: Pmn (x) := (−1)m(1− x2)m/2 dm dxm Pn(x), where Pn(x)’s are the Legendre polynomials . There is the...n ) (4) 9 that computes Pmn (x) = 0 for m > n (5) Table 2 lists the initial Legendre polynomials and their derivatives. Figure 8 plots the first few

  12. New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion.

    PubMed

    Pogosyan, George S; Wolf, Kurt Bernardo; Yakhno, Alexander

    2017-10-01

    The differential equation proposed by Frits Zernike to obtain a basis of polynomial orthogonal solutions on the unit disk to classify wavefront aberrations in circular pupils is shown to have a set of new orthonormal solution bases involving Legendre and Gegenbauer polynomials in nonorthogonal coordinates, close to Cartesian ones. We find the overlaps between the original Zernike basis and a representative of the new set, which turn out to be Clebsch-Gordan coefficients.

  13. Impacts of Sigma Coordinates on the Euler and Navier-Stokes Equations using Continuous Galerkin Methods

    DTIC Science & Technology

    2009-03-01

    the 1- D local basis functions. The 1-D Lagrange polynomial local basis function, using Legendre -Gauss-Lobatto interpolation points, was defined by...cases were run using 10th order polynomials , with contours from -0.05 to 0.525 K with an interval of 0.025 K...after 700 s for reso- lutions: (a) 20, (b) 10, and (c) 5 m. All cases were run using 10th order polynomials , with contours from -0.05 to 0.525 K

  14. Distortion theorems for polynomials on a circle

    NASA Astrophysics Data System (ADS)

    Dubinin, V. N.

    2000-12-01

    Inequalities for the derivatives with respect to \\varphi=\\arg z the functions \\operatorname{Re}P(z), \\vert P(z)\\vert^2 and \\arg P(z) are established for an algebraic polynomial P(z) at points on the circle \\vert z\\vert=1. These estimates depend, in particular, on the constant term and the leading coefficient of the polynomial P(z) and improve the classical Bernstein and Turan inequalities. The method of proof is based on the techniques of generalized reduced moduli.

  15. On the coefficients of integrated expansions of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2006-03-01

    A new formula expressing explicitly the integrals of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another new explicit formula relating the Bessel coefficients of an expansion for infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is also established. An application of these formulae for solving ordinary differential equations with varying coefficients is discussed.

  16. Orthogonal Polynomials Associated with Complementary Chain Sequences

    NASA Astrophysics Data System (ADS)

    Behera, Kiran Kumar; Sri Ranga, A.; Swaminathan, A.

    2016-07-01

    Using the minimal parameter sequence of a given chain sequence, we introduce the concept of complementary chain sequences, which we view as perturbations of chain sequences. Using the relation between these complementary chain sequences and the corresponding Verblunsky coefficients, the para-orthogonal polynomials and the associated Szegő polynomials are analyzed. Two illustrations, one involving Gaussian hypergeometric functions and the other involving Carathéodory functions are also provided. A connection between these two illustrations by means of complementary chain sequences is also observed.

  17. CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae

    NASA Astrophysics Data System (ADS)

    van de Leur, Johan W.; Orlov, Alexander Yu.; Shiota, Takahiro

    2012-06-01

    We develop the theory of CKP hierarchy introduced in the papers of Kyoto school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981), 3806-3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 369-406]). We present appropriate bosonization formulae. We show that in the context of the CKP theory certain orthogonal polynomials appear. These polynomials are polynomial both in even and odd (in Grassmannian sense) variables.

  18. Orthogonal sets of data windows constructed from trigonometric polynomials

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1989-01-01

    Suboptimal, easily computable substitutes for the discrete prolate-spheroidal windows used by Thomson for spectral estimation are given. Trigonometric coefficients and energy leakages of the window polynomials are tabulated.

  19. Hermite polynomials and quasi-classical asymptotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, S. Twareque, E-mail: twareque.ali@concordia.ca; Engliš, Miroslav, E-mail: englis@math.cas.cz

    2014-04-15

    We study an unorthodox variant of the Berezin-Toeplitz type of quantization scheme, on a reproducing kernel Hilbert space generated by the real Hermite polynomials and work out the associated quasi-classical asymptotics.

  20. Schur Stability Regions for Complex Quadratic Polynomials

    ERIC Educational Resources Information Center

    Cheng, Sui Sun; Huang, Shao Yuan

    2010-01-01

    Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)

  1. Dielectric and conformational studies of hydrogen bonded 2-ethoxyethanol and ethyl methyl ketone system

    NASA Astrophysics Data System (ADS)

    Pattebahadur, Kanchan. L.; Deshmukh, S. D.; Mohod, A. G.; Undre, P. B.; Patil, S. S.; Khirade, P. W.

    2018-05-01

    The Dielectric constant, density and refractive index of binary mixture of 2-ethoxy ethanol (2-EE) with ethyl methyl ketone (EMK) including those of the pure liquids were measured for 11 concentrations at 25°C temperature. The experimental data is used to calculate the Excess molar volume, Excess dielectric constant, Kirkwood correlation factor and Bruggemann factor. The excess parameters results were fitted to the Redlich-Kister type polynomial equation to derive its fitting coefficient. The Kirkwood correlation factor of the mixture has been discussed to yield information about solute solvent interaction. The Bruggeman plot shows a deviation from linearity. The FT-IR spectra of pure and their binary mixtures are also studied.

  2. The Instructional Values of Humanistic Educators: An Expanded, Empirical Analysis.

    ERIC Educational Resources Information Center

    Shapiro, Stewart B.

    1987-01-01

    Expanded a previous factorial study of the writings of 40 humanistic educators by including 89 educators. Revealed two new factors--self-determined evaluation and a spiritual-transpersonal factor--as important principles of humanistic education. Confirmed the original factors, a general humanistic instructional paradigm, democratically induced…

  3. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils.

    PubMed

    Mahajan, Virendra N

    2010-12-20

    The classical aberrations of an anamorphic optical imaging system, representing the terms of a power-series expansion of its aberration function, are separable in the Cartesian coordinates of a point on its pupil. We discuss the balancing of a classical aberration of a certain order with one or more such aberrations of lower order to minimize its variance across a rectangular pupil of such a system. We show that the balanced aberrations are the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point. The compound Legendre polynomials are orthogonal across a rectangular pupil and, like the classical aberrations, are inherently separable in the Cartesian coordinates of the pupil point. They are different from the balanced aberrations and the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil.

  4. Symmetries and Invariants of Twisted Quantum Algebras and Associated Poisson Algebras

    NASA Astrophysics Data System (ADS)

    Molev, A. I.; Ragoucy, E.

    We construct an action of the braid group BN on the twisted quantized enveloping algebra U q'( {o}N) where the elements of BN act as automorphisms. In the classical limit q → 1, we recover the action of BN on the polynomial functions on the space of upper triangular matrices with ones on the diagonal. The action preserves the Poisson bracket on the space of polynomials which was introduced by Nelson and Regge in their study of quantum gravity and rediscovered in the mathematical literature. Furthermore, we construct a Poisson bracket on the space of polynomials associated with another twisted quantized enveloping algebra U q'( {sp}2n). We use the Casimir elements of both twisted quantized enveloping algebras to reproduce and construct some well-known and new polynomial invariants of the corresponding Poisson algebras.

  5. Symbolic computation of recurrence equations for the Chebyshev series solution of linear ODE's. [ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Geddes, K. O.

    1977-01-01

    If a linear ordinary differential equation with polynomial coefficients is converted into integrated form then the formal substitution of a Chebyshev series leads to recurrence equations defining the Chebyshev coefficients of the solution function. An explicit formula is presented for the polynomial coefficients of the integrated form in terms of the polynomial coefficients of the differential form. The symmetries arising from multiplication and integration of Chebyshev polynomials are exploited in deriving a general recurrence equation from which can be derived all of the linear equations defining the Chebyshev coefficients. Procedures for deriving the general recurrence equation are specified in a precise algorithmic notation suitable for translation into any of the languages for symbolic computation. The method is algebraic and it can therefore be applied to differential equations containing indeterminates.

  6. On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Freund, Roland W.

    1992-01-01

    The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.

  7. Polynomial approximations of thermodynamic properties of arbitrary gas mixtures over wide pressure and density ranges

    NASA Technical Reports Server (NTRS)

    Allison, D. O.

    1972-01-01

    Computer programs for flow fields around planetary entry vehicles require real-gas equilibrium thermodynamic properties in a simple form which can be evaluated quickly. To fill this need, polynomial approximations were found for thermodynamic properties of air and model planetary atmospheres. A coefficient-averaging technique was used for curve fitting in lieu of the usual least-squares method. The polynomials consist of terms up to the ninth degree in each of two variables (essentially pressure and density) including all cross terms. Four of these polynomials can be joined to cover, for example, a range of about 1000 to 11000 K and 0.00001 to 1 atmosphere (1 atm = 1.0133 x 100,000 N/m sq) for a given thermodynamic property. Relative errors of less than 1 percent are found over most of the applicable range.

  8. Polynomial solution of quantum Grassmann matrices

    NASA Astrophysics Data System (ADS)

    Tierz, Miguel

    2017-05-01

    We study a model of quantum mechanical fermions with matrix-like index structure (with indices N and L) and quartic interactions, recently introduced by Anninos and Silva. We compute the partition function exactly with q-deformed orthogonal polynomials (Stieltjes-Wigert polynomials), for different values of L and arbitrary N. From the explicit evaluation of the thermal partition function, the energy levels and degeneracies are determined. For a given L, the number of states of different energy is quadratic in N, which implies an exponential degeneracy of the energy levels. We also show that at high-temperature we have a Gaussian matrix model, which implies a symmetry that swaps N and L, together with a Wick rotation of the spectral parameter. In this limit, we also write the partition function, for generic L and N, in terms of a single generalized Hermite polynomial.

  9. Genetic parameters of legendre polynomials for first parity lactation curves.

    PubMed

    Pool, M H; Janss, L L; Meuwissen, T H

    2000-11-01

    Variance components of the covariance function coefficients in a random regression test-day model were estimated by Legendre polynomials up to a fifth order for first-parity records of Dutch dairy cows using Gibbs sampling. Two Legendre polynomials of equal order were used to model the random part of the lactation curve, one for the genetic component and one for permanent environment. Test-day records from cows registered between 1990 to 1996 and collected by regular milk recording were available. For the data set, 23,700 complete lactations were selected from 475 herds sired by 262 sires. Because the application of a random regression model is limited by computing capacity, we investigated the minimum order needed to fit the variance structure in the data sufficiently. Predictions of genetic and permanent environmental variance structures were compared with bivariate estimates on 30-d intervals. A third-order or higher polynomial modeled the shape of variance curves over DIM with sufficient accuracy for the genetic and permanent environment part. Also, the genetic correlation structure was fitted with sufficient accuracy by a third-order polynomial, but, for the permanent environmental component, a fourth order was needed. Because equal orders are suggested in the literature, a fourth-order Legendre polynomial is recommended in this study. However, a rank of three for the genetic covariance matrix and of four for permanent environment allows a simpler covariance function with a reduced number of parameters based on the eigenvalues and eigenvectors.

  10. A model-based 3D phase unwrapping algorithm using Gegenbauer polynomials.

    PubMed

    Langley, Jason; Zhao, Qun

    2009-09-07

    The application of a two-dimensional (2D) phase unwrapping algorithm to a three-dimensional (3D) phase map may result in an unwrapped phase map that is discontinuous in the direction normal to the unwrapped plane. This work investigates the problem of phase unwrapping for 3D phase maps. The phase map is modeled as a product of three one-dimensional Gegenbauer polynomials. The orthogonality of Gegenbauer polynomials and their derivatives on the interval [-1, 1] are exploited to calculate the expansion coefficients. The algorithm was implemented using two well-known Gegenbauer polynomials: Chebyshev polynomials of the first kind and Legendre polynomials. Both implementations of the phase unwrapping algorithm were tested on 3D datasets acquired from a magnetic resonance imaging (MRI) scanner. The first dataset was acquired from a homogeneous spherical phantom. The second dataset was acquired using the same spherical phantom but magnetic field inhomogeneities were introduced by an external coil placed adjacent to the phantom, which provided an additional burden to the phase unwrapping algorithm. Then Gaussian noise was added to generate a low signal-to-noise ratio dataset. The third dataset was acquired from the brain of a human volunteer. The results showed that Chebyshev implementation and the Legendre implementation of the phase unwrapping algorithm give similar results on the 3D datasets. Both implementations of the phase unwrapping algorithm compare well to PRELUDE 3D, 3D phase unwrapping software well recognized for functional MRI.

  11. Reachability Analysis in Probabilistic Biological Networks.

    PubMed

    Gabr, Haitham; Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2015-01-01

    Extra-cellular molecules trigger a response inside the cell by initiating a signal at special membrane receptors (i.e., sources), which is then transmitted to reporters (i.e., targets) through various chains of interactions among proteins. Understanding whether such a signal can reach from membrane receptors to reporters is essential in studying the cell response to extra-cellular events. This problem is drastically complicated due to the unreliability of the interaction data. In this paper, we develop a novel method, called PReach (Probabilistic Reachability), that precisely computes the probability that a signal can reach from a given collection of receptors to a given collection of reporters when the underlying signaling network is uncertain. This is a very difficult computational problem with no known polynomial-time solution. PReach represents each uncertain interaction as a bi-variate polynomial. It transforms the reachability problem to a polynomial multiplication problem. We introduce novel polynomial collapsing operators that associate polynomial terms with possible paths between sources and targets as well as the cuts that separate sources from targets. These operators significantly shrink the number of polynomial terms and thus the running time. PReach has much better time complexity than the recent solutions for this problem. Our experimental results on real data sets demonstrate that this improvement leads to orders of magnitude of reduction in the running time over the most recent methods. Availability: All the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/PReach/.

  12. A new interpretation and validation of variance based importance measures for models with correlated inputs

    NASA Astrophysics Data System (ADS)

    Hao, Wenrui; Lu, Zhenzhou; Li, Luyi

    2013-05-01

    In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.

  13. Data Processing Algorithm for Diagnostics of Combustion Using Diode Laser Absorption Spectrometry.

    PubMed

    Mironenko, Vladimir R; Kuritsyn, Yuril A; Liger, Vladimir V; Bolshov, Mikhail A

    2018-02-01

    A new algorithm for the evaluation of the integral line intensity for inferring the correct value for the temperature of a hot zone in the diagnostic of combustion by absorption spectroscopy with diode lasers is proposed. The algorithm is based not on the fitting of the baseline (BL) but on the expansion of the experimental and simulated spectra in a series of orthogonal polynomials, subtracting of the first three components of the expansion from both the experimental and simulated spectra, and fitting the spectra thus modified. The algorithm is tested in the numerical experiment by the simulation of the absorption spectra using a spectroscopic database, the addition of white noise, and the parabolic BL. Such constructed absorption spectra are treated as experimental in further calculations. The theoretical absorption spectra were simulated with the parameters (temperature, total pressure, concentration of water vapor) close to the parameters used for simulation of the experimental data. Then, spectra were expanded in the series of orthogonal polynomials and first components were subtracted from both spectra. The value of the correct integral line intensities and hence the correct temperature evaluation were obtained by fitting of the thus modified experimental and simulated spectra. The dependence of the mean and standard deviation of the evaluation of the integral line intensity on the linewidth and the number of subtracted components (first two or three) were examined. The proposed algorithm provides a correct estimation of temperature with standard deviation better than 60 K (for T = 1000 K) for the line half-width up to 0.6 cm -1 . The proposed algorithm allows for obtaining the parameters of a hot zone without the fitting of usually unknown BL.

  14. AZTEC: A parallel iterative package for the solving linear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S.

    1996-12-31

    We describe a parallel linear system package, AZTEC. The package incorporates a number of parallel iterative methods (e.g. GMRES, biCGSTAB, CGS, TFQMR) and preconditioners (e.g. Jacobi, Gauss-Seidel, polynomial, domain decomposition with LU or ILU within subdomains). Additionally, AZTEC allows for the reuse of previous preconditioning factorizations within Newton schemes for nonlinear methods. Currently, a number of different users are using this package to solve a variety of PDE applications.

  15. Dependent Lifelengths Induced by Dynamic Environments

    DTIC Science & Technology

    1988-02-14

    item has not failed at any time r, our assessment of the failure rate will increase since we expect that the dominant failure mechanism is governed ...of a dynamic environment on the system over a finite range [ 0, T’ ) can be captured through a polynomial environental factor function j7(r). We...Vol. 7, pp. 295- 306. Singpurwalla, N.D. (1988). Foundational issues in reliability and risk analysis. SIAM Review. To app.!ar. 85

  16. Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series

    PubMed Central

    Zhang, Zhihua

    2014-01-01

    Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842

  17. The sensitivity of catchment hypsometry and hypsometric properties to DEM resolution and polynomial order

    NASA Astrophysics Data System (ADS)

    Liffner, Joel W.; Hewa, Guna A.; Peel, Murray C.

    2018-05-01

    Derivation of the hypsometric curve of a catchment, and properties relating to that curve, requires both use of topographical data (commonly in the form of a Digital Elevation Model - DEM), and the estimation of a functional representation of that curve. An early investigation into catchment hypsometry concluded 3rd order polynomials sufficiently describe the hypsometric curve, without the consideration of higher order polynomials, or the sensitivity of hypsometric properties relating to the curve. Another study concluded the hypsometric integral (HI) is robust against changes in DEM resolution, a conclusion drawn from a very limited sample size. Conclusions from these earlier studies have resulted in the adoption of methods deemed to be "sufficient" in subsequent studies, in addition to assumptions that the robustness of the HI extends to other hypsometric properties. This study investigates and demonstrates the sensitivity of hypsometric properties to DEM resolution, DEM type and polynomial order through assessing differences in hypsometric properties derived from 417 catchments and sub-catchments within South Australia. The sensitivity of hypsometric properties across DEM types and polynomial orders is found to be significant, which suggests careful consideration of the methods chosen to derive catchment hypsometric information is required.

  18. Strong stabilization servo controller with optimization of performance criteria.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2011-07-01

    Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Polynomial expressions of electron depth dose as a function of energy in various materials: application to thermoluminescence (TL) dosimetry

    NASA Astrophysics Data System (ADS)

    Deogracias, E. C.; Wood, J. L.; Wagner, E. C.; Kearfott, K. J.

    1999-02-01

    The CEPXS/ONEDANT code package was used to produce a library of depth-dose profiles for monoenergetic electrons in various materials for energies ranging from 500 keV to 5 MeV in 10 keV increments. The various materials for which depth-dose functions were derived include: lithium fluoride (LiF), aluminum oxide (Al 2O 3), beryllium oxide (BeO), calcium sulfate (CaSO 4), calcium fluoride (CaF 2), lithium boron oxide (LiBO), soft tissue, lens of the eye, adiopose, muscle, skin, glass and water. All materials data sets were fit to five polynomials, each covering a different range of electron energies, using a least squares method. The resultant three dimensional, fifth-order polynomials give the dose as a function of depth and energy for the monoenergetic electrons in each material. The polynomials can be used to describe an energy spectrum by summing the doses at a given depth for each energy, weighted by the spectral intensity for that energy. An application of the polynomial is demonstrated by explaining the energy dependence of thermoluminescent detectors (TLDs) and illustrating the relationship between TLD signal and actual shallow dose due to beta particles.

  20. Investigating and Modelling Effects of Climatically and Hydrologically Indicators on the Urmia Lake Coastline Changes Using Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Ahmadijamal, M.; Hasanlou, M.

    2017-09-01

    Study of hydrological parameters of lakes and examine the variation of water level to operate management on water resources are important. The purpose of this study is to investigate and model the Urmia Lake water level changes due to changes in climatically and hydrological indicators that affects in the process of level variation and area of this lake. For this purpose, Landsat satellite images, hydrological data, the daily precipitation, the daily surface evaporation and the daily discharge in total of the lake basin during the period of 2010-2016 have been used. Based on time-series analysis that is conducted on individual data independently with same procedure, to model variation of Urmia Lake level, we used polynomial regression technique and combined polynomial with periodic behavior. In the first scenario, we fit a multivariate linear polynomial to our datasets and determining RMSE, NRSME and R² value. We found that fourth degree polynomial can better fit to our datasets with lowest RMSE value about 9 cm. In the second scenario, we combine polynomial with periodic behavior for modeling. The second scenario has superiority comparing to the first one, by RMSE value about 3 cm.

  1. Volumetric calibration of a plenoptic camera.

    PubMed

    Hall, Elise Munz; Fahringer, Timothy W; Guildenbecher, Daniel R; Thurow, Brian S

    2018-02-01

    The volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.

  2. Functional Form of the Radiometric Equation for the SNPP VIIRS Reflective Solar Bands: An Initial Study

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Xiong, Xiaoxiong

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a passive scanning radiometer and an imager, observing radiative energy from the Earth in 22 spectral bands from 0.41 to 12 microns which include 14 reflective solar bands (RSBs). Extending the formula used by the Moderate Resolution Imaging Spectroradiometer instruments, currently the VIIRS determines the sensor aperture spectral radiance through a quadratic polynomial of its detector digital count. It has been known that for the RSBs the quadratic polynomial is not adequate in the design specified spectral radiance region and using a quadratic polynomial could drastically increase the errors in the polynomial coefficients, leading to possible large errors in the determined aperture spectral radiance. In addition, it is very desirable to be able to extend the radiance calculation formula to correctly retrieve the aperture spectral radiance with the level beyond the design specified range. In order to more accurately determine the aperture spectral radiance from the observed digital count, we examine a few polynomials of the detector digital count to calculate the sensor aperture spectral radiance.

  3. Study of Randomness in AES Ciphertexts Produced by Randomly Generated S-Boxes and S-Boxes with Various Modulus and Additive Constant Polynomials

    NASA Astrophysics Data System (ADS)

    Das, Suman; Sadique Uz Zaman, J. K. M.; Ghosh, Ranjan

    2016-06-01

    In Advanced Encryption Standard (AES), the standard S-Box is conventionally generated by using a particular irreducible polynomial {11B} in GF(28) as the modulus and a particular additive constant polynomial {63} in GF(2), though it can be generated by many other polynomials. In this paper, it has been shown that it is possible to generate secured AES S-Boxes by using some other selected modulus and additive polynomials and also can be generated randomly, using a PRNG like BBS. A comparative study has been made on the randomness of corresponding AES ciphertexts generated, using these S-Boxes, by the NIST Test Suite coded for this paper. It has been found that besides using the standard one, other moduli and additive constants are also able to generate equally or better random ciphertexts; the same is true for random S-Boxes also. As these new types of S-Boxes are user-defined, hence unknown, they are able to prevent linear and differential cryptanalysis. Moreover, they act as additional key-inputs to AES, thus increasing the key-space.

  4. Generalized neurofuzzy network modeling algorithms using Bézier-Bernstein polynomial functions and additive decomposition.

    PubMed

    Hong, X; Harris, C J

    2000-01-01

    This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

  5. Explicit bounds for the positive root of classes of polynomials with applications

    NASA Astrophysics Data System (ADS)

    Herzberger, Jürgen

    2003-03-01

    We consider a certain type of polynomial equations for which there exists--according to Descartes' rule of signs--only one simple positive root. These equations are occurring in Numerical Analysis when calculating or estimating the R-order or Q-order of convergence of certain iterative processes with an error-recursion of special form. On the other hand, these polynomial equations are very common as defining equations for the effective rate of return for certain cashflows like bonds or annuities in finance. The effective rate of interest i* for those cashflows is i*=q*-1, where q* is the unique positive root of such polynomial. We construct bounds for i* for a special problem concerning an ordinary simple annuity which is obtained by changing the conditions of such an annuity with given data applying the German rule (Preisangabeverordnung or short PAngV). Moreover, we consider a number of results for such polynomial roots in Numerical Analysis showing that by a simple variable transformation we can derive several formulas out of earlier results by applying this transformation. The same is possible in finance in order to generalize results to more complicated cashflows.

  6. Views of the Israeli public on expanding the authority of nurses.

    PubMed

    Ben Natan, Merav; Dmitriev, Yulia; Shubovich, Olga; Sharon, Ira

    2013-03-01

    To explore the views of the Israeli public on expanding the authority of nurses and identify factors affecting these views. New advanced nursing roles are currently being introduced and nursing is undergoing dynamic change. Public views on expanding the authority of nurses and factors affecting public views await investigation. In a correlational study, a questionnaire was administered to 200 male and female Israelis aged 18 and older treated at a hospital or healthcare clinic at least once over the past year. Most respondents are in favour of expanding the authority of nurses, considered vital for patients. In addition, the public is in favour of certifying clinical nursing specialists in all fields. Influential factors were ethnicity, personal acquaintance with nurses, income and religiosity. The public has a positive perception of expanding the authority of nurses, and major determinants are familiarity with nursing, ethnicity, income and religiosity. Understanding public views on expanding the authority of nurses in Israel will help policymakers adjust their actions according to social perceptions and needs. This will help nursing managers further the process of expanding nurse authority, to the satisfaction of both nurses and the public they serve. © 2012 Blackwell Publishing Ltd.

  7. Rigorous high-precision enclosures of fixed points and their invariant manifolds

    NASA Astrophysics Data System (ADS)

    Wittig, Alexander N.

    The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by Johannes Grote is extended to compute very accurate polynomial approximations to invariant manifolds of discrete maps of arbitrary dimension around hyperbolic fixed points. The algorithm presented allows for automatic removal of resonances occurring during construction. A method for the rigorous enclosure of invariant manifolds of continuous systems is introduced. Using methods developed for discrete maps, polynomial approximations of invariant manifolds of hyperbolic fixed points of ODEs are obtained. These approximations are outfit with a sharp error bound which is verified to rigorously contain the manifolds. While we focus on the three dimensional case, verification in higher dimensions is possible using similar techniques. Integrating the resulting enclosures using the verified COSY VI integrator, the initial manifold enclosures are expanded to yield sharp enclosures of large parts of the stable and unstable manifolds. To demonstrate the effectiveness of this method, we construct enclosures of the invariant manifolds of the Lorenz system and show pictures of the resulting manifold enclosures. To the best of our knowledge, these enclosures are the largest verified enclosures of manifolds in the Lorenz system in existence.

  8. Orthogonal polynomials, Laguerre Fock space, and quasi-classical asymptotics

    NASA Astrophysics Data System (ADS)

    Engliš, Miroslav; Ali, S. Twareque

    2015-07-01

    Continuing our earlier investigation of the Hermite case [S. T. Ali and M. Engliš, J. Math. Phys. 55, 042102 (2014)], we study an unorthodox variant of the Berezin-Toeplitz quantization scheme associated with Laguerre polynomials. In particular, we describe a "Laguerre analogue" of the classical Fock (Segal-Bargmann) space and the relevant semi-classical asymptotics of its Toeplitz operators; the former actually turns out to coincide with the Hilbert space appearing in the construction of the well-known Barut-Girardello coherent states. Further extension to the case of Legendre polynomials is likewise discussed.

  9. Simulation of Shallow Water Jets with a Unified Element-based Continuous/Discontinuous Galerkin Model with Grid Flexibility on the Sphere

    DTIC Science & Technology

    2013-01-01

    is the derivative of the N th-order Legendre polynomial . Given these definitions, the one-dimensional Lagrange polynomials hi(ξ) are hi(ξ) = − 1 N(N...2. Detail of one interface patch in the northern hemisphere. The high-order Legendre -Gauss-Lobatto (LGL) points are added to the linear grid by...smaller ones by a Lagrange polynomial of order nI . The number of quadrilateral elements and grid points of the final grid are then given by Np = 6(N

  10. Causality and a -theorem constraints on Ricci polynomial and Riemann cubic gravities

    NASA Astrophysics Data System (ADS)

    Li, Yue-Zhou; Lü, H.; Wu, Jun-Bao

    2018-01-01

    In this paper, we study Einstein gravity extended with Ricci polynomials and derive the constraints on the coupling constants from the considerations of being ghost-free, exhibiting an a -theorem and maintaining causality. The salient feature is that Einstein metrics with appropriate effective cosmological constants continue to be solutions with the inclusion of such Ricci polynomials and the causality constraint is automatically satisfied. The ghost-free and a -theorem conditions can only be both met starting at the quartic order. We also study these constraints on general Riemann cubic gravities.

  11. The neighbourhood polynomial of some families of dendrimers

    NASA Astrophysics Data System (ADS)

    Nazri Husin, Mohamad; Hasni, Roslan

    2018-04-01

    The neighbourhood polynomial N(G,x) is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph and it is defined as (G,x)={\\sum }U\\in N(G){x}|U|, where N(G) is neighbourhood complex of a graph, whose vertices of the graph and faces are subsets of vertices that have a common neighbour. A dendrimers is an artificially manufactured or synthesized molecule built up from branched units called monomers. In this paper, we compute this polynomial for some families of dendrimer.

  12. Polynomial asymptotes of the second kind

    NASA Astrophysics Data System (ADS)

    Dobbs, David E.

    2011-03-01

    This note uses the analytic notion of asymptotic functions to study when a function is asymptotic to a polynomial function. Along with associated existence and uniqueness results, this kind of asymptotic behaviour is related to the type of asymptote that was recently defined in a more geometric way. Applications are given to rational functions and conics. Prerequisites include the division algorithm for polynomials with coefficients in the field of real numbers and elementary facts about limits from calculus. This note could be used as enrichment material in courses ranging from Calculus to Real Analysis to Abstract Algebra.

  13. Non-axisymmetric Aberration Patterns from Wide-field Telescopes Using Spin-weighted Zernike Polynomials

    DOE PAGES

    Kent, Stephen M.

    2018-02-15

    If the optical system of a telescope is perturbed from rotational symmetry, the Zernike wavefront aberration coefficients describing that system can be expressed as a function of position in the focal plane using spin-weighted Zernike polynomials. Methodologies are presented to derive these polynomials to arbitrary order. This methodology is applied to aberration patterns produced by a misaligned Ritchey Chretian telescope and to distortion patterns at the focal plane of the DESI optical corrector, where it is shown to provide a more efficient description of distortion than conventional expansions.

  14. Chebyshev polynomials in the spectral Tau method and applications to Eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Johnson, Duane

    1996-01-01

    Chebyshev Spectral methods have received much attention recently as a technique for the rapid solution of ordinary differential equations. This technique also works well for solving linear eigenvalue problems. Specific detail is given to the properties and algebra of chebyshev polynomials; the use of chebyshev polynomials in spectral methods; and the recurrence relationships that are developed. These formula and equations are then applied to several examples which are worked out in detail. The appendix contains an example FORTRAN program used in solving an eigenvalue problem.

  15. The discrete Toda equation revisited: dual β-Grothendieck polynomials, ultradiscretization, and static solitons

    NASA Astrophysics Data System (ADS)

    Iwao, Shinsuke; Nagai, Hidetomo

    2018-04-01

    This paper presents a study of the discrete Toda equation that was introduced in 1977. In this paper, it is proved that the determinantal solution of the discrete Toda equation, obtained via the Lax formalism, is naturally related to the dual Grothendieck polynomials, a K-theoretic generalization of the Schur polynomials. A tropical permanent solution to the ultradiscrete Toda equation is also derived. The proposed method gives a tropical algebraic representation of the static solitons. Lastly, a new cellular automaton realization of the ultradiscrete Toda equation is proposed.

  16. Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamini, Vittorino

    2010-02-15

    Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less

  17. The expression and comparison of healthy and ptotic upper eyelid contours using a polynomial mathematical function.

    PubMed

    Mocan, Mehmet C; Ilhan, Hacer; Gurcay, Hasmet; Dikmetas, Ozlem; Karabulut, Erdem; Erdener, Ugur; Irkec, Murat

    2014-06-01

    To derive a mathematical expression for the healthy upper eyelid (UE) contour and to use this expression to differentiate the normal UE curve from its abnormal configuration in the setting of blepharoptosis. The study was designed as a cross-sectional study. Fifty healthy subjects (26M/24F) and 50 patients with blepharoptosis (28M/22F) with a margin-reflex distance (MRD1) of ≤2.5 mm were recruited. A polynomial interpolation was used to approximate UE curve. The polynomial coefficients were calculated from digital eyelid images of all participants using a set of operator defined points along the UE curve. Coefficients up to the fourth-order polynomial, iris area covered by the UE, iris area covered by the lower eyelid and total iris area covered by both the upper and the lower eyelids were defined using the polynomial function and used in statistical comparisons. The t-test, Mann-Whitney U test and the Spearman's correlation test were used for statistical comparisons. The mathematical expression derived from the data of 50 healthy subjects aged 24.1 ± 2.6 years was defined as y = 22.0915 + (-1.3213)x + 0.0318x(2 )+ (-0.0005x)(3). The fifth and the consecutive coefficients were <0.00001 in all cases and were not included in the polynomial function. None of the first fourth-order coefficients of the equation were found to be significantly different in male versus female subjects. In normal subjects, the percentage of the iris area covered by upper and lower lids was 6.46 ± 5.17% and 0.66% ± 1.62%, respectively. All coefficients and mean iris area covered by the UE were significantly different between healthy and ptotic eyelids. The healthy and abnormal eyelid contour can be defined and differentiated using a polynomial mathematical function.

  18. Interpolation Hermite Polynomials For Finite Element Method

    NASA Astrophysics Data System (ADS)

    Gusev, Alexander; Vinitsky, Sergue; Chuluunbaatar, Ochbadrakh; Chuluunbaatar, Galmandakh; Gerdt, Vladimir; Derbov, Vladimir; Góźdź, Andrzej; Krassovitskiy, Pavel

    2018-02-01

    We describe a new algorithm for analytic calculation of high-order Hermite interpolation polynomials of the simplex and give their classification. A typical example of triangle element, to be built in high accuracy finite element schemes, is given.

  19. Venus radar mapper attitude reference quaternion

    NASA Technical Reports Server (NTRS)

    Lyons, D. T.

    1986-01-01

    Polynomial functions of time are used to specify the components of the quaternion which represents the nominal attitude of the Venus Radar mapper spacecraft during mapping. The following constraints must be satisfied in order to obtain acceptable synthetic array radar data: the nominal attitude function must have a large dynamic range, the sensor orientation must be known very accurately, the attitude reference function must use as little memory as possible, and the spacecraft must operate autonomously. Fitting polynomials to the components of the desired quaternion function is a straightforward method for providing a very dynamic nominal attitude using a minimum amount of on-board computer resources. Although the attitude from the polynomials may not be exactly the one requested by the radar designers, the polynomial coefficients are known, so they do not contribute to the attitude uncertainty. Frequent coefficient updates are not required, so the spacecraft can operate autonomously.

  20. On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT) Uncertainty Models for Multivariate Matrix Polynomial Problems

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.

    1998-01-01

    Robust control system analysis and design is based on an uncertainty description, called a linear fractional transformation (LFT), which separates the uncertain (or varying) part of the system from the nominal system. These models are also useful in the design of gain-scheduled control systems based on Linear Parameter Varying (LPV) methods. Low-order LFT models are difficult to form for problems involving nonlinear parameter variations. This paper presents a numerical computational method for constructing and LFT model for a given LPV model. The method is developed for multivariate polynomial problems, and uses simple matrix computations to obtain an exact low-order LFT representation of the given LPV system without the use of model reduction. Although the method is developed for multivariate polynomial problems, multivariate rational problems can also be solved using this method by reformulating the rational problem into a polynomial form.

  1. Polynomial equations for science orbits around Europa

    NASA Astrophysics Data System (ADS)

    Cinelli, Marco; Circi, Christian; Ortore, Emiliano

    2015-07-01

    In this paper, the design of science orbits for the observation of a celestial body has been carried out using polynomial equations. The effects related to the main zonal harmonics of the celestial body and the perturbation deriving from the presence of a third celestial body have been taken into account. The third body describes a circular and equatorial orbit with respect to the primary body and, for its disturbing potential, an expansion in Legendre polynomials up to the second order has been considered. These polynomial equations allow the determination of science orbits around Jupiter's satellite Europa, where the third body gravitational attraction represents one of the main forces influencing the motion of an orbiting probe. Thus, the retrieved relationships have been applied to this moon and periodic sun-synchronous and multi-sun-synchronous orbits have been determined. Finally, numerical simulations have been carried out to validate the analytical results.

  2. A general method for computing Tutte polynomials of self-similar graphs

    NASA Astrophysics Data System (ADS)

    Gong, Helin; Jin, Xian'an

    2017-10-01

    Self-similar graphs were widely studied in both combinatorics and statistical physics. Motivated by the construction of the well-known 3-dimensional Sierpiński gasket graphs, in this paper we introduce a family of recursively constructed self-similar graphs whose inner duals are of the self-similar property. By combining the dual property of the Tutte polynomial and the subgraph-decomposition trick, we show that the Tutte polynomial of this family of graphs can be computed in an iterative way and in particular the exact expression of the formula of the number of their spanning trees is derived. Furthermore, we show our method is a general one that is easily extended to compute Tutte polynomials for other families of self-similar graphs such as Farey graphs, 2-dimensional Sierpiński gasket graphs, Hanoi graphs, modified Koch graphs, Apollonian graphs, pseudofractal scale-free web, fractal scale-free network, etc.

  3. a Unified Matrix Polynomial Approach to Modal Identification

    NASA Astrophysics Data System (ADS)

    Allemang, R. J.; Brown, D. L.

    1998-04-01

    One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.

  4. Derivatives of random matrix characteristic polynomials with applications to elliptic curves

    NASA Astrophysics Data System (ADS)

    Snaith, N. C.

    2005-12-01

    The value distribution of derivatives of characteristic polynomials of matrices from SO(N) is calculated at the point 1, the symmetry point on the unit circle of the eigenvalues of these matrices. We consider subsets of matrices from SO(N) that are constrained to have at least n eigenvalues equal to 1 and investigate the first non-zero derivative of the characteristic polynomial at that point. The connection between the values of random matrix characteristic polynomials and values of L-functions in families has been well established. The motivation for this work is the expectation that through this connection with L-functions derived from families of elliptic curves, and using the Birch and Swinnerton-Dyer conjecture to relate values of the L-functions to the rank of elliptic curves, random matrix theory will be useful in probing important questions concerning these ranks.

  5. Pseudo spectral collocation with Maxwell polynomials for kinetic equations with energy diffusion

    NASA Astrophysics Data System (ADS)

    Sánchez-Vizuet, Tonatiuh; Cerfon, Antoine J.

    2018-02-01

    We study the approximation and stability properties of a recently popularized discretization strategy for the speed variable in kinetic equations, based on pseudo-spectral collocation on a grid defined by the zeros of a non-standard family of orthogonal polynomials called Maxwell polynomials. Taking a one-dimensional equation describing energy diffusion due to Fokker-Planck collisions with a Maxwell-Boltzmann background distribution as the test bench for the performance of the scheme, we find that Maxwell based discretizations outperform other commonly used schemes in most situations, often by orders of magnitude. This provides a strong motivation for their use in high-dimensional gyrokinetic simulations. However, we also show that Maxwell based schemes are subject to a non-modal time stepping instability in their most straightforward implementation, so that special care must be given to the discrete representation of the linear operators in order to benefit from the advantages provided by Maxwell polynomials.

  6. Planar harmonic polynomials of type B

    NASA Astrophysics Data System (ADS)

    Dunkl, Charles F.

    1999-11-01

    The hyperoctahedral group acting on icons/Journals/Common/BbbR" ALT="BbbR" ALIGN="TOP"/>N is the Weyl group of type B and is associated with a two-parameter family of differential-difference operators {Ti:1icons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/> iicons/Journals/Common/leq" ALT="leq" ALIGN="TOP"/> N}. These operators are analogous to partial derivative operators. This paper finds all the polynomials h on icons/Journals/Common/BbbR" ALT="BbbR" ALIGN="TOP"/>N which are harmonic, icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/>Bh = 0 and annihilated by Ti for i>2, where the Laplacian 0305-4470/32/46/308/img1" ALT="(sum). They are given explicitly in terms of a novel basis of polynomials, defined by generating functions. The harmonic polynomials can be used to find wavefunctions for the quantum many-body spin Calogero model.

  7. LMI-based stability analysis of fuzzy-model-based control systems using approximated polynomial membership functions.

    PubMed

    Narimani, Mohammand; Lam, H K; Dilmaghani, R; Wolfe, Charles

    2011-06-01

    Relaxed linear-matrix-inequality-based stability conditions for fuzzy-model-based control systems with imperfect premise matching are proposed. First, the derivative of the Lyapunov function, containing the product terms of the fuzzy model and fuzzy controller membership functions, is derived. Then, in the partitioned operating domain of the membership functions, the relations between the state variables and the mentioned product terms are represented by approximated polynomials in each subregion. Next, the stability conditions containing the information of all subsystems and the approximated polynomials are derived. In addition, the concept of the S-procedure is utilized to release the conservativeness caused by considering the whole operating region for approximated polynomials. It is shown that the well-known stability conditions can be special cases of the proposed stability conditions. Simulation examples are given to illustrate the validity of the proposed approach.

  8. Fast beampattern evaluation by polynomial rooting

    NASA Astrophysics Data System (ADS)

    Häcker, P.; Uhlich, S.; Yang, B.

    2011-07-01

    Current automotive radar systems measure the distance, the relative velocity and the direction of objects in their environment. This information enables the car to support the driver. The direction estimation capabilities of a sensor array depend on its beampattern. To find the array configuration leading to the best angle estimation by a global optimization algorithm, a huge amount of beampatterns have to be calculated to detect their maxima. In this paper, a novel algorithm is proposed to find all maxima of an array's beampattern fast and reliably, leading to accelerated array optimizations. The algorithm works for arrays having the sensors on a uniformly spaced grid. We use a general version of the gcd (greatest common divisor) function in order to write the problem as a polynomial. We differentiate and root the polynomial to get the extrema of the beampattern. In addition, we show a method to reduce the computational burden even more by decreasing the order of the polynomial.

  9. Ligand Shaping in Induced Fit Docking of MraY Inhibitors. Polynomial Discriminant and Laplacian Operator as Biological Activity Descriptors.

    PubMed

    Lungu, Claudiu N; Diudea, Mircea V; Putz, Mihai V

    2017-06-27

    Docking-i.e., interaction of a small molecule (ligand) with a proteic structure (receptor)-represents the ground of drug action mechanism of the vast majority of bioactive chemicals. Ligand and receptor accommodate their geometry and energy, within this interaction, in the benefit of receptor-ligand complex. In an induced fit docking, the structure of ligand is most susceptible to changes in topology and energy, comparative to the receptor. These changes can be described by manifold hypersurfaces, in terms of polynomial discriminant and Laplacian operator. Such topological surfaces were represented for each MraY (phospho-MurNAc-pentapeptide translocase) inhibitor, studied before and after docking with MraY. Binding affinities of all ligands were calculated by this procedure. For each ligand, Laplacian and polynomial discriminant were correlated with the ligand minimum inhibitory concentration (MIC) retrieved from literature. It was observed that MIC is correlated with Laplacian and polynomial discriminant.

  10. Automatic differentiation for Fourier series and the radii polynomial approach

    NASA Astrophysics Data System (ADS)

    Lessard, Jean-Philippe; Mireles James, J. D.; Ransford, Julian

    2016-11-01

    In this work we develop a computer-assisted technique for proving existence of periodic solutions of nonlinear differential equations with non-polynomial nonlinearities. We exploit ideas from the theory of automatic differentiation in order to formulate an augmented polynomial system. We compute a numerical Fourier expansion of the periodic orbit for the augmented system, and prove the existence of a true solution nearby using an a-posteriori validation scheme (the radii polynomial approach). The problems considered here are given in terms of locally analytic vector fields (i.e. the field is analytic in a neighborhood of the periodic orbit) hence the computer-assisted proofs are formulated in a Banach space of sequences satisfying a geometric decay condition. In order to illustrate the use and utility of these ideas we implement a number of computer-assisted existence proofs for periodic orbits of the Planar Circular Restricted Three-Body Problem (PCRTBP).

  11. A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony; Munoz, Cesar

    2015-01-01

    In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.

  12. Polynomial algebra of discrete models in systems biology.

    PubMed

    Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard

    2010-07-01

    An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.

  13. Efficient algorithms for construction of recurrence relations for the expansion and connection coefficients in series of Al-Salam Carlitz I polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2005-12-01

    Two formulae expressing explicitly the derivatives and moments of Al-Salam-Carlitz I polynomials of any degree and for any order in terms of Al-Salam-Carlitz I themselves are proved. Two other formulae for the expansion coefficients of general-order derivatives Dpqf(x), and for the moments xellDpqf(x), of an arbitrary function f(x) in terms of its original expansion coefficients are also obtained. Application of these formulae for solving q-difference equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Al-Salam-Carlitz I polynomials and any system of basic hypergeometric orthogonal polynomials, belonging to the q-Hahn class, is described.

  14. Hilbert's 17th Problem and the Quantumness of States

    NASA Astrophysics Data System (ADS)

    Korbicz, J. K.; Cirac, J. I.; Wehr, Jan; Lewenstein, M.

    2005-04-01

    A state of a quantum system can be regarded as classical (quantum) with respect to measurements of a set of canonical observables if and only if there exists (does not exist) a well defined, positive phase-space distribution, the so called Glauber-Sudarshan P representation. We derive a family of classicality criteria that requires that the averages of positive functions calculated using P representation must be positive. For polynomial functions, these criteria are related to Hilbert’s 17th problem, and have physical meaning of generalized squeezing conditions; alternatively, they may be interpreted as nonclassicality witnesses. We show that every generic nonclassical state can be detected by a polynomial that is a sum-of-squares of other polynomials. We introduce a very natural hierarchy of states regarding their degree of quantumness, which we relate to the minimal degree of a sum-of-squares polynomial that detects them.

  15. High-order computer-assisted estimates of topological entropy

    NASA Astrophysics Data System (ADS)

    Grote, Johannes

    The concept of Taylor Models is introduced, which offers highly accurate C0-estimates for the enclosures of functional dependencies, combining high-order Taylor polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified interval arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly nonlinear dynamical systems. A method to obtain sharp rigorous enclosures of Poincare maps for certain types of flows and surfaces is developed and numerical examples are presented. Differential algebraic techniques allow the efficient and accurate computation of polynomial approximations for invariant curves of certain planar maps around hyperbolic fixed points. Subsequently we introduce a procedure to extend these polynomial curves to verified Taylor Model enclosures of local invariant manifolds with C0-errors of size 10-10--10 -14, and proceed to generate the global invariant manifold tangle up to comparable accuracy through iteration in Taylor Model arithmetic. Knowledge of the global manifold structure up to finite iterations of the local manifold pieces enables us to find all homoclinic and heteroclinic intersections in the generated manifold tangle. Combined with the mapping properties of the homoclinic points and their ordering we are able to construct a subshift of finite type as a topological factor of the original planar system to obtain rigorous lower bounds for its topological entropy. This construction is fully automatic and yields homoclinic tangles with several hundred homoclinic points. As an example rigorous lower bounds for the topological entropy of the Henon map are computed, which to the best knowledge of the authors yield the largest such estimates published so far.

  16. Testing of next-generation nonlinear calibration based non-uniformity correction techniques using SWIR devices

    NASA Astrophysics Data System (ADS)

    Lovejoy, McKenna R.; Wickert, Mark A.

    2017-05-01

    A known problem with infrared imaging devices is their non-uniformity. This non-uniformity is the result of dark current, amplifier mismatch as well as the individual photo response of the detectors. To improve performance, non-uniformity correction (NUC) techniques are applied. Standard calibration techniques use linear, or piecewise linear models to approximate the non-uniform gain and off set characteristics as well as the nonlinear response. Piecewise linear models perform better than the one and two-point models, but in many cases require storing an unmanageable number of correction coefficients. Most nonlinear NUC algorithms use a second order polynomial to improve performance and allow for a minimal number of stored coefficients. However, advances in technology now make higher order polynomial NUC algorithms feasible. This study comprehensively tests higher order polynomial NUC algorithms targeted at short wave infrared (SWIR) imagers. Using data collected from actual SWIR cameras, the nonlinear techniques and corresponding performance metrics are compared with current linear methods including the standard one and two-point algorithms. Machine learning, including principal component analysis, is explored for identifying and replacing bad pixels. The data sets are analyzed and the impact of hardware implementation is discussed. Average floating point results show 30% less non-uniformity, in post-corrected data, when using a third order polynomial correction algorithm rather than a second order algorithm. To maximize overall performance, a trade off analysis on polynomial order and coefficient precision is performed. Comprehensive testing, across multiple data sets, provides next generation model validation and performance benchmarks for higher order polynomial NUC methods.

  17. Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential

    NASA Astrophysics Data System (ADS)

    Van Assche, W.; Yáñez, R. J.; Dehesa, J. S.

    1995-08-01

    The information entropy of the harmonic oscillator potential V(x)=1/2λx2 in both position and momentum spaces can be expressed in terms of the so-called ``entropy of Hermite polynomials,'' i.e., the quantity Sn(H):= -∫-∞+∞H2n(x)log H2n(x) e-x2dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(-||x||m), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et al. [J. Math. Phys. 35, 4423-4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by Sρ and Sγ, respectively. Briefly, it is shown that, for large values of n, Sρ+1/2logλ≂log(π√2n/e)+o(1) and Sγ-1/2log λ≂log(π√2n/e)+o(1), so that Sρ+Sγ≂log(2π2n/e2)+o(1) in agreement with the generalized indetermination relation of Byalinicki-Birula and Mycielski [Commun. Math. Phys. 44, 129-132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result.

  18. Transfer matrix computation of generalized critical polynomials in percolation

    DOE PAGES

    Scullard, Christian R.; Jacobsen, Jesper Lykke

    2012-09-27

    Percolation thresholds have recently been studied by means of a graph polynomial PB(p), henceforth referred to as the critical polynomial, that may be defined on any periodic lattice. The polynomial depends on a finite subgraph B, called the basis, and the way in which the basis is tiled to form the lattice. The unique root of P B(p) in [0, 1] either gives the exact percolation threshold for the lattice, or provides an approximation that becomes more accurate with appropriately increasing size of B. Initially P B(p) was defined by a contraction-deletion identity, similar to that satisfied by the Tuttemore » polynomial. Here, we give an alternative probabilistic definition of P B(p), which allows for much more efficient computations, by using the transfer matrix, than was previously possible with contraction-deletion. We present bond percolation polynomials for the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively 96, 162, and 243 edges, much larger than the previous limit of 36 edges using contraction-deletion. We discuss in detail the role of the symmetries and the embedding of B. For the largest bases, we obtain the thresholds p c(4, 82) = 0.676 803 329 · · ·, p c(kagome) = 0.524 404 998 · · ·, p c(3, 122) = 0.740 420 798 · · ·, comparable to the best simulation results. We also show that the alternative definition of P B(p) can be applied to study site percolation problems.« less

  19. Macromolecular Rate Theory (MMRT) Provides a Thermodynamics Rationale to Underpin the Convergent Temperature Response in Plant Leaf Respiration

    NASA Astrophysics Data System (ADS)

    Liang, L. L.; Arcus, V. L.; Heskel, M.; O'Sullivan, O. S.; Weerasinghe, L. K.; Creek, D.; Egerton, J. J. G.; Tjoelker, M. G.; Atkin, O. K.; Schipper, L. A.

    2017-12-01

    Temperature is a crucial factor in determining the rates of ecosystem processes such as leaf respiration (R) - the flux of plant respired carbon dioxide (CO2) from leaves to the atmosphere. Generally, respiration rate increases exponentially with temperature as modelled by the Arrhenius equation, but a recent study (Heskel et al., 2016) showed a universally convergent temperature response of R using an empirical exponential/polynomial model whereby the exponent in the Arrhenius model is replaced by a quadratic function of temperature. The exponential/polynomial model has been used elsewhere to describe shoot respiration and plant respiration. What are the principles that underlie these empirical observations? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory for chemical kinetics, is equivalent to the exponential/polynomial model. We re-analyse the data from Heskel et al. 2016 using MMRT to show this equivalence and thus, provide an explanation based on thermodynamics, for the convergent temperature response of R. Using statistical tools, we also show the equivalent explanatory power of MMRT when compared to the exponential/polynomial model and the superiority of both of these models over the Arrhenius function. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration is maximum (the so called optimum temperature, Topt), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the overall curvature of the log(rate) versus temperature plot (the so called change in heat capacity for the system, ). The latter term originates from the change in heat capacity between an enzyme-substrate complex and an enzyme transition state complex in enzyme-catalysed metabolic reactions. From MMRT, we find the average Topt and Tinf of R are 67.0±1.2 °C and 41.4±0.7 °C across global sites. The average curvature (average negative) is -1.2±0.1 kJ.mol-1K-1. MMRT extends the classic transition state theory to enzyme-catalysed reactions and scales up to more complex processes including micro-organism growth rates and ecosystem processes.

  20. The Maximums and Minimums of a Polnomial or Maximizing Profits and Minimizing Aircraft Losses.

    ERIC Educational Resources Information Center

    Groves, Brenton R.

    1984-01-01

    Plotting a polynomial over the range of real numbers when its derivative contains complex roots is discussed. The polynomials are graphed by calculating the minimums, maximums, and zeros of the function. (MNS)

  1. An analysis of value function learning with piecewise linear control

    NASA Astrophysics Data System (ADS)

    Tutsoy, Onder; Brown, Martin

    2016-05-01

    Reinforcement learning (RL) algorithms attempt to learn optimal control actions by iteratively estimating a long-term measure of system performance, the so-called value function. For example, RL algorithms have been applied to walking robots to examine the connection between robot motion and the brain, which is known as embodied cognition. In this paper, RL algorithms are analysed using an exemplar test problem. A closed form solution for the value function is calculated and this is represented in terms of a set of basis functions and parameters, which is used to investigate parameter convergence. The value function expression is shown to have a polynomial form where the polynomial terms depend on the plant's parameters and the value function's discount factor. It is shown that the temporal difference error introduces a null space for the differenced higher order basis associated with the effects of controller switching (saturated to linear control or terminating an experiment) apart from the time of the switch. This leads to slow convergence in the relevant subspace. It is also shown that badly conditioned learning problems can occur, and this is a function of the value function discount factor and the controller switching points. Finally, a comparison is performed between the residual gradient and TD(0) learning algorithms, and it is shown that the former has a faster rate of convergence for this test problem.

  2. The value of continuity: Refined isogeometric analysis and fast direct solvers

    DOE PAGES

    Garcia, Daniel; Pardo, David; Dalcin, Lisandro; ...

    2016-08-24

    Here, we propose the use of highly continuous finite element spaces interconnected with low continuity hyperplanes to maximize the performance of direct solvers. Starting from a highly continuous Isogeometric Analysis (IGA) discretization, we introduce C0-separators to reduce the interconnection between degrees of freedom in the mesh. By doing so, both the solution time and best approximation errors are simultaneously improved. We call the resulting method “refined Isogeometric Analysis (rIGA)”. To illustrate the impact of the continuity reduction, we analyze the number of Floating Point Operations (FLOPs), computational times, and memory required to solve the linear system obtained by discretizing themore » Laplace problem with structured meshes and uniform polynomial orders. Theoretical estimates demonstrate that an optimal continuity reduction may decrease the total computational time by a factor between p 2 and p 3, with pp being the polynomial order of the discretization. Numerical results indicate that our proposed refined isogeometric analysis delivers a speed-up factor proportional to p 2. In a 2D mesh with four million elements and p=5, the linear system resulting from rIGA is solved 22 times faster than the one from highly continuous IGA. In a 3D mesh with one million elements and p=3, the linear system is solved 15 times faster for the refined than the maximum continuity isogeometric analysis.« less

  3. Near-optimal experimental design for model selection in systems biology.

    PubMed

    Busetto, Alberto Giovanni; Hauser, Alain; Krummenacher, Gabriel; Sunnåker, Mikael; Dimopoulos, Sotiris; Ong, Cheng Soon; Stelling, Jörg; Buhmann, Joachim M

    2013-10-15

    Biological systems are understood through iterations of modeling and experimentation. Not all experiments, however, are equally valuable for predictive modeling. This study introduces an efficient method for experimental design aimed at selecting dynamical models from data. Motivated by biological applications, the method enables the design of crucial experiments: it determines a highly informative selection of measurement readouts and time points. We demonstrate formal guarantees of design efficiency on the basis of previous results. By reducing our task to the setting of graphical models, we prove that the method finds a near-optimal design selection with a polynomial number of evaluations. Moreover, the method exhibits the best polynomial-complexity constant approximation factor, unless P = NP. We measure the performance of the method in comparison with established alternatives, such as ensemble non-centrality, on example models of different complexity. Efficient design accelerates the loop between modeling and experimentation: it enables the inference of complex mechanisms, such as those controlling central metabolic operation. Toolbox 'NearOED' available with source code under GPL on the Machine Learning Open Source Software Web site (mloss.org).

  4. Accuracy improvement of the H-drive air-levitating wafer inspection stage based on error analysis and compensation

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Liu, Pinkuan

    2018-04-01

    In order to improve the inspection precision of the H-drive air-bearing stage for wafer inspection, in this paper the geometric error of the stage is analyzed and compensated. The relationship between the positioning errors and error sources are initially modeled, and seven error components are identified that are closely related to the inspection accuracy. The most effective factor that affects the geometric error is identified by error sensitivity analysis. Then, the Spearman rank correlation method is applied to find the correlation between different error components, aiming at guiding the accuracy design and error compensation of the stage. Finally, different compensation methods, including the three-error curve interpolation method, the polynomial interpolation method, the Chebyshev polynomial interpolation method, and the B-spline interpolation method, are employed within the full range of the stage, and their results are compared. Simulation and experiment show that the B-spline interpolation method based on the error model has better compensation results. In addition, the research result is valuable for promoting wafer inspection accuracy and will greatly benefit the semiconductor industry.

  5. Von Bertalanffy's dynamics under a polynomial correction: Allee effect and big bang bifurcation

    NASA Astrophysics Data System (ADS)

    Leonel Rocha, J.; Taha, A. K.; Fournier-Prunaret, D.

    2016-02-01

    In this work we consider new one-dimensional populational discrete dynamical systems in which the growth of the population is described by a family of von Bertalanffy's functions, as a dynamical approach to von Bertalanffy's growth equation. The purpose of introducing Allee effect in those models is satisfied under a correction factor of polynomial type. We study classes of von Bertalanffy's functions with different types of Allee effect: strong and weak Allee's functions. Dependent on the variation of four parameters, von Bertalanffy's functions also includes another class of important functions: functions with no Allee effect. The complex bifurcation structures of these von Bertalanffy's functions is investigated in detail. We verified that this family of functions has particular bifurcation structures: the big bang bifurcation of the so-called “box-within-a-box” type. The big bang bifurcation is associated to the asymptotic weight or carrying capacity. This work is a contribution to the study of the big bang bifurcation analysis for continuous maps and their relationship with explosion birth and extinction phenomena.

  6. The Baker-Akhiezer Function and Factorization of the Chebotarev-Khrapkov Matrix

    NASA Astrophysics Data System (ADS)

    Antipov, Yuri A.

    2014-10-01

    A new technique is proposed for the solution of the Riemann-Hilbert problem with the Chebotarev-Khrapkov matrix coefficient {G(t) = α1(t)I + α2(t)Q(t)} , {α1(t), α2(t) in H(L)} , I = diag{1, 1}, Q(t) is a {2×2} zero-trace polynomial matrix. This problem has numerous applications in elasticity and diffraction theory. The main feature of the method is the removal of essential singularities of the solution to the associated homogeneous scalar Riemann-Hilbert problem on the hyperelliptic surface of an algebraic function by means of the Baker-Akhiezer function. The consequent application of this function for the derivation of the general solution to the vector Riemann-Hilbert problem requires the finding of the {ρ} zeros of the Baker-Akhiezer function ({ρ} is the genus of the surface). These zeros are recovered through the solution to the associated Jacobi problem of inversion of abelian integrals or, equivalently, the determination of the zeros of the associated degree-{ρ} polynomial and solution of a certain linear algebraic system of {ρ} equations.

  7. Sylow p-groups of polynomial permutations on the integers mod pn☆

    PubMed Central

    Frisch, Sophie; Krenn, Daniel

    2013-01-01

    We enumerate and describe the Sylow p-groups of the groups of polynomial permutations of the integers mod pn for n⩾1 and of the pro-finite group which is the projective limit of these groups. PMID:26869732

  8. Cubic Polynomials, Their Roots and the Perron-Frobenius Theorem

    ERIC Educational Resources Information Center

    Dealba, Luz Maria

    2002-01-01

    In this note several cubic polynomials and their roots are examined, in particular, how these roots move as some of the coefficients are modified. The results obtained are applied to eigenvalues of matrices. (Contains 8 figures and 1 footnote.)

  9. Faulhaber's Triangle

    ERIC Educational Resources Information Center

    Torabi-Dashti, Mohammad

    2011-01-01

    Like Pascal's triangle, Faulhaber's triangle is easy to draw: all you need is a little recursion. The rows are the coefficients of polynomials representing sums of integer powers. Such polynomials are often called Faulhaber formulae, after Johann Faulhaber (1580-1635); hence we dub the triangle Faulhaber's triangle.

  10. Social Security Polynomials.

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    1992-01-01

    Demonstrates how the uniqueness and anonymity of a student's Social Security number can be utilized to create individualized polynomial equations that students can investigate using computers or graphing calculators. Students write reports of their efforts to find and classify all real roots of their equation. (MDH)

  11. Non-axisymmetric Aberration Patterns from Wide-field Telescopes Using Spin-weighted Zernike Polynomials

    NASA Astrophysics Data System (ADS)

    Kent, Stephen M.

    2018-04-01

    If the optical system of a telescope is perturbed from rotational symmetry, the Zernike wavefront aberration coefficients describing that system can be expressed as a function of position in the focal plane using spin-weighted Zernike polynomials. Methodologies are presented to derive these polynomials to arbitrary order. This methodology is applied to aberration patterns produced by a misaligned Ritchey–Chrétien telescope and to distortion patterns at the focal plane of the DESI optical corrector, where it is shown to provide a more efficient description of distortion than conventional expansions.

  12. How many invariant polynomials are needed to decide local unitary equivalence of qubit states?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maciążek, Tomasz; Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warszawa; Oszmaniec, Michał

    2013-09-15

    Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e., by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure.

  13. Positivity-preserving High Order Finite Difference WENO Schemes for Compressible Euler Equations

    DTIC Science & Technology

    2011-07-15

    the WENO reconstruction. We assume that there is a polynomial vector qi(x) = (ρi(x), mi(x), Ei(x)) T with degree k which are (k + 1)-th order accurate...i+ 1 2 = qi(xi+ 1 2 ). The existence of such polynomials can be established by interpolation for WENO schemes. For example, for the fifth or- der...WENO scheme, there is a unique vector of polynomials of degree four qi(x) satisfying qi(xi− 1 2 ) = w+ i− 1 2 , qi(xi+ 1 2 ) = w− i+ 1 2 and 1 ∆x ∫ Ij qi

  14. Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fei; Department of Mathematics, University of California, Berkeley; Morzfeld, Matthias, E-mail: mmo@math.lbl.gov

    2015-02-01

    Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior.

  15. Colored knot polynomials for arbitrary pretzel knots and links

    DOE PAGES

    Galakhov, D.; Melnikov, D.; Mironov, A.; ...

    2015-04-01

    A very simple expression is conjectured for arbitrary colored Jones and HOMFLY polynomials of a rich (g+1)-parametric family of pretzel knots and links. The answer for the Jones and HOMFLY is fully and explicitly expressed through the Racah matrix of Uq(SU N), and looks related to a modular transformation of toric conformal block. Knot polynomials are among the hottest topics in modern theory. They are supposed to summarize nicely representation theory of quantum algebras and modular properties of conformal blocks. The result reported in the present letter, provides a spectacular illustration and support to this general expectation.

  16. Fitness Probability Distribution of Bit-Flip Mutation.

    PubMed

    Chicano, Francisco; Sutton, Andrew M; Whitley, L Darrell; Alba, Enrique

    2015-01-01

    Bit-flip mutation is a common mutation operator for evolutionary algorithms applied to optimize functions over binary strings. In this paper, we develop results from the theory of landscapes and Krawtchouk polynomials to exactly compute the probability distribution of fitness values of a binary string undergoing uniform bit-flip mutation. We prove that this probability distribution can be expressed as a polynomial in p, the probability of flipping each bit. We analyze these polynomials and provide closed-form expressions for an easy linear problem (Onemax), and an NP-hard problem, MAX-SAT. We also discuss a connection of the results with runtime analysis.

  17. A Study on Gröbner Basis with Inexact Input

    NASA Astrophysics Data System (ADS)

    Nagasaka, Kosaku

    Gröbner basis is one of the most important tools in recent symbolic algebraic computations. However, computing a Gröbner basis for the given polynomial ideal is not easy and it is not numerically stable if polynomials have inexact coefficients. In this paper, we study what we should get for computing a Gröbner basis with inexact coefficients and introduce a naive method to compute a Gröbner basis by reduced row echelon form, for the ideal generated by the given polynomial set having a priori errors on their coefficients.

  18. Transform Decoding of Reed-Solomon Codes. Volume II. Logical Design and Implementation.

    DTIC Science & Technology

    1982-11-01

    i A. nE aib’ = a(bJ) ; j=0, 1, ... , n-l (2-8) i=01 Similarly, the inverse transform is obtained by interpolation of the polynomial a(z) from its n...with the transform so that either a forward or an inverse transform may be used to encode. The only requirement is that tie reverse of the encoding... inverse transform of the received sequence is the polynomial sum r(z) = e(z) + a(z), where e(z) is the inverse transform of the error polynomial E(z), and a

  19. Comparative Analysis of Various Single-tone Frequency Estimation Techniques in High-order Instantaneous Moments Based Phase Estimation Method

    NASA Astrophysics Data System (ADS)

    Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod

    2010-04-01

    For phase estimation in digital holographic interferometry, a high-order instantaneous moments (HIM) based method was recently developed which relies on piecewise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients using the HIM operator. A crucial step in the method is mapping the polynomial coefficient estimation to single-tone frequency determination for which various techniques exist. The paper presents a comparative analysis of the performance of the HIM operator based method in using different single-tone frequency estimation techniques for phase estimation. The analysis is supplemented by simulation results.

  20. Estimation of Phase in Fringe Projection Technique Using High-order Instantaneous Moments Based Method

    NASA Astrophysics Data System (ADS)

    Gorthi, Sai Siva; Rajshekhar, G.; Rastogi, Pramod

    2010-04-01

    For three-dimensional (3D) shape measurement using fringe projection techniques, the information about the 3D shape of an object is encoded in the phase of a recorded fringe pattern. The paper proposes a high-order instantaneous moments based method to estimate phase from a single fringe pattern in fringe projection. The proposed method works by approximating the phase as a piece-wise polynomial and subsequently determining the polynomial coefficients using high-order instantaneous moments to construct the polynomial phase. Simulation results are presented to show the method's potential.

Top